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ABSTRACT 

First Year Eats: A First Attempt at Combating Food Insecurity on College Campuses 

Alex Peters 
Department of Statistics 
Texas A&M University 

Research Advisor: Dr. Alan Dabney 
Department of Statistics 
Texas A&M University 

Research Advisor: Dr. Suma Datta 
Department of Biochemistry and Biophysics 

Texas A&M University 

First Year Eats (FYE) is a new program on Texas A&M’s campus dedicated to teaching 

freshmen how to cook from the comfort of their dorms while providing them with the resources 

necessary to do so. To assess the impact of FYE on students, we compare the Fall semester final 

GPA’s of students who participated with a fitting control group of students who did not 

participate. We estimate the impact of FYE on student GPA’s for various demographic subsets of 

students using a bootstrap linear regression on a host of indicator variables including an indicator 

for involvement in FYE. The results show that FYE participants have a higher average GPA than 

non-participants across all demographic strata. This effect is found statistically insignificant, but 

we do find a significant association between FYE participation and differential GPA across 

income strata. We speculate on causes of this and points of future research, as well as make 

suggestions to the FYE team regarding potential improvements to the program going forward. 
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NOMENCLATURE 

FYE    First Year Eats 

GPA    Grade Point Average 

LAUNCH    Program at Texas A&M University that houses FYE 

Learning Community  General categorization of many on-campus programs   
     designed to help incoming freshmen make the transition to   
     college life in a variety of ways, often based on need 

Food Insecurity  The lack of consistent access to food over an extended   
     period of time due to systematic reasons, such as financial   
     inability, or lack of open time to eat  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CHAPTER I  

INTRODUCTION 

It seems to be well-known and highly intuitive that having consistent access to food is a 

vital contributor to a students academic and overall well-being. In fact, much work has been 

done on the importance of food availability and quality in primary and secondary school 

systems. We have learned that food insecurity is correlated with low math and reading scores in 

K-12 students, and that a lack of food on the table can reduce a child’s chances of graduating 

from high school (Alaimo, Olsen, & Frongillo, 2001). The research on food insecurity of primary 

students has inspired great progress in the role that schools play in keeping students fed. 

However, one is surprised to find that the state of such research on university campuses was all 

but absent until fairly recently. 

Food Insecurity on College Campuses 

College students are just like everyone else; they need food, shelter, relationships, and 

goals, among other things. It seems obvious that lower-level needs like food and shelter need to 

be tended to before asking someone with such needs to excel in a college environment.    

 Unfortunately, this is simply not the reality of many students. One study showed that 

average food insecurity among college students across the nation is an alarming 42%, while 

another found food insecurity among college students in Illinois as high as 84% (Bruening et al., 

2017; Morris et al., 2016). These disturbing numbers are beginning to uncover a problem that is 

impossible to shy away from: many students are at an immense disadvantage due to inconsistent 
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access to food, and many of them will go on to leave the university space entirely because of it 

(Woerden, 2018). 

The Goals of First Year Eats 

This is where First Year Eats (FYE) becomes relevant. FYE is categorized as a Learning 

Community and incoming freshmen are enrolled accordingly; in this case, enrolled students are 

those who are projected to be at greater risk of food insecurity at some point in the semester, and 

the program is also open to any who would like to invest their time in learning to cook. It is 

hoped that this program will help these students stay academically and socially focused by 

providing them a rudimentary cooking skillset and the resources with which to keep food on the 

table.  

In the best case scenario, we project that the students in FYE will have higher-on-average 

GPA’s compared to other freshmen enrolled in Learning Communities unassociated with FYE. If 

this can be well-established, it is hoped that this program will become a staple at Texas A&M 

and a model for other universities, in an effort to reduce college hunger rates and positively 

contribute to overall student success across the country. 

An Important Caveat 

 It is of the upmost importance to be very clear about the sampling methodology here; our 

sample is not a simple random sample from the population. Ours is a need-based sample, and in 

some cases, participants are self-selected. Because of this, the strength of our conclusions is 

limited to statements about associative relationships. These can give an indication of where to 

look for true causal relationships, but we cannot infer one from the other. Do keep this in mind 

in reading what follows.  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CHAPTER II  

METHODOLOGY 

FYE consists of a variety of classes and seminars intended to help freshman students 

learn to cook easy meals that they can make themselves. The effectiveness of the program as a 

whole will be based on the effectiveness of these classes and resources and the secure 

environment that these things create for participating students. To determine whether FYE is 

effective, we will need to look at data from the food pantry stocked as part of FYE and the 

academic data of the participants in comparison to non-participating students. With both of these 

datasets in hand, we will be able to draw informative conclusions on preliminary effects that 

FYE has on the students, and use those conclusions to drive the future of the program. 

Data Collection: Pantry Data 

 The first major chapter of this project consists of building a web application that the 

LAUNCH team will use to analyze changes in food usage over time. Because FYE is providing a 

free-of-charge pantry for participant students to take whatever they like, it is of interest to catalog 

the changes in usage of various ingredients, as well as how those changes correlate with the 

content of the cooking classes given to the students. It is hoped that we will see positive change 

in the usage of ingredients that constitute a recipe being taught, as well as flat or negative change 

in the usage of ready-made foods and snack items. A change like this would show that, at 

minimum, the classes being given are actually having an effect on the students involved in the 

program. However, the direction or magnitude of that effect cannot be determined from this data 

alone, so we will need more information to draw concrete conclusions. 
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Data Collection: Student Data 

 After the food pantry application is (more or less) complete, we will turn our attention to 

the actual academic data from participants that we will have on hand after the end of the fall 

semester. The students participating in this program are all already members of on-campus 

Learning Communities in addition to FYE, so it is most natural to look for a comparison in 

students also participating in Learning Communities but not in FYE. So, in order to discern the 

effect that FYE may have on GPA, we will be comparing all members of FYE (treatment) with 

all other learning community participants (control). This will allow a fair comparison of GPA’s 

and should give us a relatively unbiased look at the true association of FYE with student GPA. 

Student Family Income Estimation 

 One factor of interest in our analysis is whether or not a student’s income level changes 

the effect that FYE has on that student’s GPA. However, not every Learning Community is 

required to report a student’s income level, so there is quite a bit of missing data here. 

Fortunately, where we do not have income level, we do have zip codes. Zip codes can be fairly 

accurate proxies for average income estimates, and get more accurate with the inclusion of 

information on ethnicity. With this in mind, we turn our attention to the data available from the 

United States Census Bureau (US Census Bureau, 2019). We obtained a dataset from this 

website that contains 4 variables: zip code, the median household income estimate for that zip 

code, the median household income estimate for Hispanic or Latino identifying families, and the 

median household income estimate for White only identifying families. Asian or African 

American students will be estimated using the overall median household income estimate, 

because the data on these demographics in many Texas counties is quite sparse. Using this 
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information, we can estimate student income level based on their zip code and ethnicity. For any 

student that was missing an income indicator and was not missing a zip code, we estimated their 

income with the median income estimate from their zip code by ethnicity. If their ethnicity was 

not White only or Hispanic or Latino, the median household income estimate was used to 

estimate their income. With this, we now have income estimates for all but 3 of the students in 

our dataset, and we can proceed with our analysis. 

Data Analysis & Variable Selection 

 In the beginning of our modeling, we will attempt to identify which variables out of the 

14 given provide the most predictive power for GPA. Although our best predictive power would 

come from having all variables in the model, it is best to find some optimal balance between 

predictive accuracy and model complexity. Generally, all variables will yield some strength 

towards a prediction, but only a handful will carry the bulk of the predictive power. In other 

words, most variables in a dataset are not very useful for making predictions, so we would like to 

simplify our model as much as possible by removing all of the extraneous variables. 

 Importantly, the kind of variable selection here is a bit different than textbook variable 

selection. While many basic regression problems involve quantitative predictors and desire the 

highest possible prediction accuracy, we are working with categorical data and want a model that 

is interpretable and realistic. Because we are trying to discern the particular association that FYE 

has with GPA, a model that is not readily interpretable will not be so useful. So, though it may be 

true that some particular subset of variables provides the optimal complexity-accuracy balance, 

we have the further constraint that the purpose of our model is not to predict GPA outright, but to 
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associate GPA with a handful of variables that are sensible and yield an intuitive insight into the 

kinds of factors that strongly affect GPA. 

A Potential Regression Model 

 To select which variables should be in our model, we went through many different 

permutations of subsets of variables to see which ones carried the strongest statistical 

significance. Then, to maintain the interpretability of our model as discussed above, we 

consulted with Dr. Suma Datta, a genetics expert with substantial knowledge of food insecurity 

and the kinds of things that would be expected to affect GPA. By her account, GPA is strongly 

affected by things such as ethnicity and income status, and very weakly affected by other 

demographic factors like gender. With this in mind, we went back to the models that we had 

produced in order to find the one that struck an optimal balance between predictive power, 

simplicity, and interpretability. Again, it is important to remember that although the textbook 

case of linear regression is interested solely in predictive power, the purpose of this model is not 

necessarily to predict GPA given some information on a student. Models that are built to 

optimize for predictive power are often blackboxes, and are therefore very difficult to 

deconstruct in terms of understanding exactly how much a particular factor is contributing to the 

prediction. Instead, we are interested in a model that best explains reality, and makes the direct 

effect that a particular factor has on GPA as transparent and relatable to the real world as 

possible. In the end, we have decided on the following set of seven indicator (yes/no) variables:  

• Indicator for membership in the College of Engineering ( ! ) 

• Indicator for membership in the College of Science ( ! ) 

• Indicator for $40,000 - $60,000 income strata ( ! ) 

x1

x2

x3
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• Indicator for $60,000 - $80,000 income strata ( ! ) 

• Indicator for $80,000 - $100,000 income strata ( ! ) 

• Indicator for $100,000+ income strata ( ! ) 

• Indicator for membership in FYE ( ! ) 

Again, these variables were selected via tests of statistical significance, measures of predictive 

power on GPA, and sensibility of interpretation. So, the following regression model will be used 

in the statistical analysis of our data: 

! , 

where !  is a non-parametric error term with mean 0 and variance estimated by bootstrap 

resampling, and ! . 

 Now, it is very important to clarify the interpretation of this worrisome equation. Recall 

that each of !  is a yes/no variable, so each will take value 0 if the student is not a member 

of this factor, or value 1 if the student is a member of this factor. The values of !  will be 

chosen through bootstrap linear regression, which selects the values of these coefficients that 

force our model to best fit the data. The interpretation of these values can best be described with 

a couple of examples: suppose we would like to predict the GPA of a student who is not a science 

or engineering, is in the lowest (0 - $40,000) income strata, and is not in FYE. Then all of our 

!  variables will be equal to zero, and our GPA prediction would be 

!  

So, the value of !  is essentially a ‘baseline’ GPA to compare all other factors against, and this 

value will be the average GPA of all students who are not members of any of the selected factors. 

x4

x5

x6

x7

GPAi = β0i + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + β6x6i + β7x7i + ϵi

ϵ

i ∈ {1,2,…n = 436}

x1…x7

β0…β7

x1…x7

GPA = β0 + β1(0) + β2(0) + β3(0) + β4(0) + β5(0) + β6(0) + β7(0) = β0

β0
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 Next, consider a student who is an engineering student, in the $60,000 - $80,000 income 

strata, and is a member of FYE. Our GPA prediction would now be 

!  

Now, our prediction is the sum of four components; one from our baseline and three from each of 

the factors that this student is a member of. 

 The idea here is that each of  !  is interpreted as the average change to a students 

GPA due to membership in a particular factor. So, !  represents the average change in GPA that 

results from being a member of the College of Science, and so on. A positive value represents a 

positive change in GPA, and a negative value represents a negative change in GPA. 

 After all of this, we can say that our precise goal here is to determine the true value of ! , 

or the average change in GPA that results from being a member of FYE. We would like two 

things of this value: statistical significance and positivity. Positivity is desirable because it 

indicates that the average effect that FYE has on a students GPA is beneficial rather than 

detrimental. Statistical significance is desirable because it indicates that the average effect that 

FYE has on a student’s GPA is real, and not just an artifact of our dataset. If both of these things 

hold, then we have strong evidence from our dataset that FYE has an average positive 

association with student GPA. 

 If one or both of these things fails to hold, it will become important to explore possible 

reasons they do not hold, or to propose new ideas and strategies to help propel FYE forward in 

an effort to eradicate food insecurity on college campuses. This will be covered in the next 

section, after the implementation and analysis of the described regression model.  

GPA = β0 + β1(1) + β2(0) + β3(0) + β4(1) + β5(0) + β6(0) + β7(1) = β0 + β2 + β4 + β7

β1…β7

β1

β7
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CHAPTER III  

RESULTS 

With all of our data in, we can now begin to answer our research questions. There are a 

variety of different conclusions that we could draw from what we have observed so far, and we 

will cover those in the next section. First, we must lay out all of our data, in many forms, from 

many angles. This will help us in understanding the true impact that FYE has had on our 

students, and give us clues on how to improve the program in the coming years. In the following 

subsections, we will explore our data; first with graphics, then with concrete statistical methods. 

Summarizing our Data 

 First, we want to present a table that summarizes our data, to help the reader get an idea 

of the demographic breakdown of this set of students, how many are participating in FYE, and 

how many live in our control group. This is a very important point of realism for the rest of our 

analysis, because the statistical power of the conclusions that can be drawn here depend very 

heavily on the number of students in a particular group. So, if we want to make conclusions 

about the effect of FYE on high income students, for example, we will need to see a relatively 

large number of students (between 40 and 60, at least) within that category in order to have any 

hope of drawing significant conclusions about that particular demographic. Sample size always 

plays an integral role in all statistical analyses, so we will break these numbers down by different 

demographics in Table 1, shown below, to help the reader get a sense of the structure of our 

sample and an intuition for why some groups are particularly difficult to do analyses on. 
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Table 1. Summary of the number of students within various factors in our data 

 Using Table 1 as a reference, we can see the sizes of various demographic breakdowns of 

our data, as well as how those demographic factors intersect with FYE. This table alone holds a 

lot of information as to why we selected a particular set of variables to build our model with, so 

it’s worth explaining some of what we see here. 

FYE Control Total
Gender Female 98 195 293

Male 28 115 143
Total 126 310 436

Ethnicity Hispanic/Latino 110 206 316
Not Hispanic/Latino 0 104 104
White Only 7 0 7
Black Only 4 0 4
Asian Only 4 0 4
Other 1 0 1
Total 126 310 436

College Engineering 21 77 98
Science 16 28 44
Other 89 205 294
Total 126 310 436

First-Gen Yes 121 250 371
No 5 60 65
Total 126 310 436

Income 0 - 40,000 108 172 280
40,000 - 60,000 16 76 92
60,000 - 80,000 0 38 38
80,000 - 100,000 0 15 15
100,000+ 2 6 8
N/A 0 3 3
Total 126 310 436
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 First, you’ll notice that this table contains 5 rows labelled ‘Total’, and each of those rows 

indicates that we have a total of 126 students participating in FYE, 310 students not participating 

in FYE, and 436 total students in our dataset. These repeated rows serve as a good way to check 

that the numbers in the various demographic breakdowns actually add up to 126 and 310 

respectively, telling us that our demographic breakdowns have not left any students out. 

 Now, take a look at the breakdowns by ethnicity and income. You’ll notice that, in several 

cases, either the number of students in the control or the number of students in FYE within this 

category is zero (as in the White Only ethnic demographic, or the 80,000 - 100,000 income 

range, respectively). This is important because it tells us that it will be impossible to distinguish 

an effect that FYE may have on that particular demographic from our data. Now, because of this, 

we would like to separate those factors from FYE in our model, and we do this by letting all of 

ethnicity, income, and FYE be predictors in our model. If this were not done, we may end up 

with a model that gives a false impression of the true impact FYE has on GPA, because our 

estimate of FYE’s impact would be inseparable from the fact that several demographics do not 

contain a control group or a test group at all. This could skew our results in the direction of how 

well the students in such demographics perform, without allowing us to differentiate between 

membership and non-membership in FYE (in the end, the inclusion of ethnicity turned out to 

have a statistically insignificant impact on GPA, so it was dropped from the model. The impact 

that FYE has on ethnicity will instead be analyzed in a different way, explained below). 
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 Next, the demographic subsets of students that have a reasonable number of students 

within both the FYE group and the control group will provide a good basis of comparison for 

how FYE affects GPA. In order to tease this out, we will not include these factors (such as male 

vs female) in our model, but will rather fit the regression model described in the previous section 

for each of these different demographic categories. This will allow us to directly compare the 

impact that FYE has on underrepresented vs. non-underrepresented students, for example (here, 

underrepresented students are defined as students identifying as Hispanic/Latino or Black Only, 

this categorization serves as an amalgamated proxy for ethnicity). Any difference here will be 

seen not within one model, but between the same model fit on different subsets of our data. 

 We will soon provide a graphic as well as a host of examples to help you understand 

exactly what this means, but for now, we will start by looking at the preliminary statistical results 

from our data. 

Initial Results 

We will start our deep dive into the FYE data by presenting several graphs that will 

develop an expectation and intuition for the concrete results in the following subsection. Please 

note that not all observed difference between sample means will actually be statistically 

significant and the following figures are being presented only as a precursor to the statistical 

analysis, to aid in our understanding of the results. In figures 1, 2, and 3, given below, we present 

our data first broken up by membership in FYE, then further broken up by gender and then by 

low income status. These kinds of plots are quite useful in telling us what kinds of things to look 

for and explain in our deeper analysis. 
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Figure 1. Overall GPA alongside GPA of FYE vs. non-FYE Students  

  

 First, we would like to get a bird’s eye glimpse at the overall effect FYE may be having 

on our students. Figure 1 does exactly this; the plot on the left shows a kernel density estimate 

(read: smooth histogram) of the overall GPA distribution for our students. The kernel density 

estimate is a continuous analog of a histogram, so the x-axis represents all possible student 

GPA’s (from 0 to 4), and the y-axis represents the frequency with which any particular GPA 

occurs in our data. The mean of the data, represented by a vertical dashed line, is just above 2.5. 

There is not much surprising about this plot; however, it is of interest to note that the FYE group 

has a slightly lower GPA average than the non-FYE group, though this difference does not yet 

look to be statistically significant.  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Figure 2. Overall GPA alongside GPA by gender, then factored by FYE  

 

 Figure 2 shows the same overall GPA distribution, now accompanied with plots factored 

by gender, where the blue plots belong to male students and the purple plots belong to female 

students. The top right plot only factors students by gender, whereas the bottom two plots are 

further broken down by participation in FYE. It is worth noting that the difference between male 

and female GPA’s is almost non-existent, contrary to some research. This could be due to the fact 

that the students in our sample are not average college students, but Learning Community 

participants. These students (particularly females) may excel in their academic performance 

relative to others.  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Figure 3. Overall GPA alongside GPA by income stratification, then factored by FYE  

 

 Arguably the most fascinating of these plots is Figure 3, shown above. As expected from 

previous research, the gap between low income students and non-low income students is 

significant, with low income students, represented by the blue distribution, trailing pretty far 

behind the others, represented with the green distribution. However, when we control for 

participation in FYE, we see something very unexpected: the low income students who are in 

FYE have a significantly higher average GPA than the non-low income FYE participants. This 

difference absolutely deserves further investigation, if it indeed turns out to be statistically 

significant. 
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 We hope that these graphs will leave you with some kind of intuition for which factors 

affect GPA. In particular, keep these in mind through the next section, because they again help 

substantiate our decision to choose a particular subset of variables for our model. 

Statistical Modeling and Analysis 

Now that we have gone through the exploratory stage of data analysis, it is time to 

present the results in a more rigorous, scientific manner. First, recall our linear regression model 

used to estimate the average effect that college, income, and FYE indicators have on GPA:  

  ! , 

where each of !  indicates the average change in GPA due to being a member of the 

respective group indicated by !  (refer to page 9). To develop this model using our data, we 

implemented the classic least squares regression technique to estimate the true values of ! , 

which we will call ! . It is important to bear in mind that these quantities are estimates of 

the true effects that these factors have on a general student population. Because we would like to 

extrapolate any conclusions we make to future cohorts of Learning Communities, or even similar 

programs at other universities, we will treat our dataset as a sample from a broader population 

and do the analysis accordingly. 

The statistical significance of these estimates will be computed using the bootstrap 

resampling technique (Efron et al., 1994). This method is a very useful work-around for data 

where we cannot assume that the things we are trying to estimate are normally distributed. 

In the Figure 4 presented below, we will present the findings of our analysis in what is 

hopefully a relatively uncomplicated way. We will take the time to explain exactly what it means, 

and how it answers our research questions. 

GPAi = β0i + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + β6x6i + β7x7i + ϵi

β1…β7

x1…x7

β1…β7

̂β1… ̂β7
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Figure 4. Results from a bootstrap linear regression on GPA for various subsets of students 

 

Though this may seem a bit cumbersome, Figure 4 contains a lot of information about our 

data and the effects that particular factors have on GPA. First, observe that on the left of this 

graph, we have six different subsets of students, including the top row of the table, which are the 

results for our entire dataset. The motivation here is to examine the differences in the effect that 

each of the seven predictors has on different subsets of students. It is of interest to see the 

difference in how FYE affects males and females, for instance. Next, observe that on the bottom 

of this graph, we have an ‘intercept’ term followed by the seven predictors that we used to 

construct our model. Finally, observe that each cell is shaded to indicate its statistical 

significance, with a darker cell being more statistically significant that a lighter cell, and an 

unshaded cell being insignificant. 
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Now, we want to explain the precise interpretation of Figure 4, because it may not be 

immediately clear. This is essential to understanding our results, so we will carefully walk 

through a couple of examples to get a good idea of what this table really says. 

Interpreting the Analysis 

 To best explain the contents of Figure 4, we will start with some examples. 

Ex. 1. Suppose we want to predict the GPA of a student who is not in the College of Engineering 

or Science, is in the lowest (zeroth) income stratification, and is not in FYE. Additionally, 

suppose that we are not given any other demographic information about the student. 

 Because we are not given any information about which of the five demographic subsets 

this student belongs to, it is most reasonable to base our prediction off of the results for our entire 

dataset. Thus, we are going to consider only the first row of Figure 4, given below: 

 Now, we have assumed that this student is not a member of any of the seven categories 

(Engineering through FYE), so (as explained on page 10), we set each of these values to zero. 

Then, this table reduces to: 

 

So, our predicted GPA for this student would be exactly !  (95% PI [.913, 4.175]). 

 From this example, we see that this ‘intercept’ term roughly acts as a baseline GPA 

prediction for a student who is not a member of any of the seven categories that we used to build 

2.543
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our model. In fact, this prediction is simply the average GPA of all students in our dataset who 

are not engineering or science students, in the lowest income stratification, and not in FYE. 

Ex. 2. Next, suppose we want to predict the GPA of a female student who is in the College of 

Science, comes from the second income stratification, and is in FYE. Since this student is 

female, we will consider only the second row of the table: 

 We have assumed that this student is a science student, is in the second income 

stratification, and is in FYE. So, we will only include those particular variables in our prediction, 

and the rest will be set to zero, and we get: 

So, our predicted GPA for this student would be 2.608 + .411 + .474 + .044 = 3.537 (95% PI 

[1.891, 5.188]). Notice that the final term is included in our prediction, even though the effect of 

that factor has been deemed statistically insignificant. 

 Hopefully you can see that each of the groups that this student is a member of contributes 

something to her predicted GPA. In that way, all columns of the table (aside from the intercept, 

discussed earlier) indicate the change that being a member of that group produces in predicted 

GPA. Positive values indicate that membership in a particular group has a positive impact on 

GPA, and negative values indicate a negative impact on GPA. 
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 With these things in mind, let us turn our attention back to our research questions to see 

what information we can extract from Figure 4. 

Findings and Their Interpretation 

Figure 4. Repeated for ease of reference, having explained its interpretation 

 Recall that our aim is to determine whether the FYE program has a positive, significant 

association with the GPA’s of the students involved. In Figure 4, the effect that FYE has on GPA 

is displayed in the rightmost column of the table. 

 From this, we can answer our research questions on positivity and significance. First, all 

of the FYE coefficients are positive; therefore, the students in our sample participating in FYE 

had a higher average GPA than the students that did not participate in FYE. Additionally, this 

positivity holds even when students are broken down into demographic subgroups. It looks like 

the impact of FYE on students considered ‘non-underrepresented’ (students identifying as strictly 

caucasian) may be higher than the rest, but a test on equality of regression coefficients shows this 

to be false (p = .318). 
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 Second, none of the FYE coefficients are statistically significant. This means that, despite 

the positivity that we observe, we do not have the statistical evidence to conclude that FYE has a 

positive association with GPA on average. This could be due to a variety of reasons, such as 

sample size or true lack of impact, but the important take away is that our data do not provide us 

the justification to extrapolate FYE’s observed positive impact on GPA to future cohorts of 

students at Texas A&M or otherwise. In a nutshell, FYE had a positive association with the 

GPA’s of this particular group of students, but we cannot conclude that this impact will translate 

to any other group of students. 

 Finally, one of our primary research questions was not only whether or not FYE has a 

general effect on GPA, but whether it has a differential effect across different groups of students, 

say by ethnicity or gender. We can see from Figure 4 that the FYE coefficients are insignificant 

across all subsets of students, but this graphic doesn’t exactly tell us whether there is a true 

difference between the effect of FYE on underrepresented (Hispanic/Latino or Black Only) 

students and the effect on all other students. If there were a true difference here, we could 

conclude that FYE affects minority ethnic groups differently from others, and this would be of 

substantial interest in the coming year. However, a statistical test on the difference between these 

coefficients reveals no significant difference. This means that the effect that FYE had on males 

was no different than females, and similarly for underrepresented ethnic groups vs. others.   

 Now, you may recall the figures 1, 2, and 3 presented on pages 16, 17, and 18. Our model 

tells us that FYE does not have a significant association with average GPA, nor with the average 

difference between male and female GPA’s, so figures 1 and 2 provide nothing of interest. 

However, Figure 3 presented on page 18 looked quite remarkable, and we noted that we wanted 
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to test this difference explicitly. We saw that the GPA gap between low-income students and all 

others seemed to change very drastically when participation in FYE was taken into account. We 

performed a hypothesis test on a difference in means, where one mean was the average 

difference in GPA between low-income and other students not in FYE, and another mean was the 

average difference in GPA between low-income and other students in FYE. As it turns out, this 

difference is statistically significant (p =.012) and tells us that FYE has a significant positive 

association with the difference in GPA between low-income students and all others. This 

difference was not revealed by our regression model because both FYE and income 

stratifications were predictor variables in the model. Now that we know this difference is 

significant, a future point of research will be to use a more complicated model for trying to 

capture this relationship exactly. 

 It may be of general interest to note other columns of Figure 4. In particular, there is a 

consensus that engineering and science disciplines add a GPA penalty to a student’s GPA 

(Tomkin et al., 2016). However, our data show quite the opposite. In contrast to established 

literature, students in engineering and science in our dataset have a significantly higher GPA than 

the average student; as much as .948 GPA boost for males in the College of Science. These 

effects are also highly statistically significant, so they are at least noteworthy. Given that our 

dataset consists of students in Learning Communities, those communities may be particularly 

effective at equipping science and engineering students to do well academically. It could also be 

the case that the kind of students selected to participate in learning communities may be uniquely 

poised to do well in science and engineering. This may be an interesting point of future research 
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We also establish that family income has a substantial impact on student GPA; this is less 

surprising and has been demonstrated before (Betts, 1999). 

 This analysis could be made much more complex; there are ways to include the 

possibility of relationships within our predictors, techniques beyond bootstrap linear regression, 

many different tests to perform, and so on. These may be good starting points for future research 

on this program, and we will require that any future model explain the difference found in GPA 

for low-income and other students caused by FYE. However, in an effort to keep our analysis 

intuitive, explanatory, and efficient, these more complicated ideas were left out for the time 

being. 
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CHAPTER IV  

CONCLUSION 

Despite all of this work, the jury is still out on whether or not FYE truly has an impact on 

GPA, across different groups of students over time. This was almost anticipated from the 

beginning; as for any observational study, decisive results that clear us of any future work are not 

the expectation. Things will become more clear as more data rolls in, and we will be able to 

make data-informed statements next year that would be entirely unwarranted right now. 

Discussion 

Here, we want to take time to examine exactly what we see in our results, what we can 

conclude and what we cannot, and explore possible reasons for what we see in the data. 

First, the general insignificance of the FYE coefficients deserves investigation. It may be 

the case that FYE really does have a positive impact on GPA, but that effect is rather small; on 

the order of a tenth of a letter grade. In fact, if we were able to extrapolate from our dataset to the 

general population of students, this is precisely what we would conclude. However, a smaller 

effect requires a large sample to make statistical tests powerful enough to detect it. At small to 

medium sample sizes, like we have, small effects can be very difficult to discern from random 

noise. As sample size increases, however, that random noise drops, and can eventually drop 

below the level of the small effect we’re looking for, revealing it and allowing us to decisively 

conclude that it is real. Until then, such effects remain hidden. 
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Now, we must turn our attention to the relationship that has been established between 

FYE and GPA differentials across income strata. It is important to clarify that we cannot 

conclude that FYE has a significant impact on the GPA’s of low-income students. However, we 

can conclude that membership in FYE has a significant positive association with the difference 

between the GPA’s of low-income students and non-low-income students. In particular, FYE 

looks to close the GPA gap between low-income students and other students. This is quite 

remarkable, because if the effect of FYE on the students were non-existent, we would not be 

observing such a significant difference here. To be frank, FYE seems to have leveled the playing 

field for these students with respect to their income stratification, and that is incredible. It could 

very well be that the students who benefit most from FYE are the students that come from lower-

income families and do not have access to the kinds of resources that other students have. For 

them, FYE looks to play an essential role in their academic well-being. This is incredibly 

encouraging, as it decisively shows that FYE has some non-zero effect on students, even though 

this effect is not necessarily on GPA directly. This is really the punchline result of this study, and 

future work here will require deep investigation into this surprising relationship. 

Even with this remarkable result, it is still possible that most of FYE’s impact on students 

is not on GPA, but on other aspects of a students life. We proposed that food, shelter, 

relationships, and goals are integral parts to being successful at a university, and it could be that 

most of the effect of FYE is not obvious, but is instead tied more deeply to relationships and 

goals. It may be that the programs implemented by FYE provide a unique social environment for 

the students involved that is difficult to quantify, or that the confidence in being able to cook 

your own food increases general well-being and physical health, but not necessarily GPA. The 
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opportunity to build relationships with a host of peers who are in the same circumstances as 

yourself is a very necessary component to learning to be a college student. Freshman year is a 

time of great change and uncertainty, and programs like this could really be helping students ease 

their minds, if only just a little. The knowledge and ability to make your own food can act as 

incentives for setting new nutritional goals and striving to improve your general life skills. These 

things would be exceedingly difficult to measure, but nonetheless an incredibly profound impact 

of FYE. We can and will speculate on possible ways to uncover these effects, but for the 

moment, they principally cannot be discerned from our dataset.  

As the final part of this work, we would like to give some suggestions to the FYE and /

university administration, concerning ways to improve upon the program, enhance the 

experience for incoming freshman, and collect more detailed data in an effort to draw definitive 

conclusions about what role FYE is playing in the lives of our freshmen. 

Suggestions to First Year Eats 

 In an effort to help FYE progress towards their goal of eradicating food insecurity on 

Texas A&M’s campus, we are going to lay out a list of recommendations for the program. We 

hope that these will help guide the program towards success in the coming years. 

1. Entry and Exit Surveys 

 Our stated research goal was to discover whether or not FYE has an impact on student 

GPA. However, GPA is a one-dimensional piece of information, and students are complex, high-

dimensional human beings. This being the case, it may be wise to consider adding entry and exit 

surveys to the program, as a way of quantifying how the students perceive themselves and their 
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environment, and how that might change as a function of membership in FYE. We imagine these 

would look something like 5-10 question surveys, where each question looks something like: 

On a scale from 1 to 5, please rate your confidence in being self-sustainable on campus 

On a scale from 1 to 5, please rate your overall mental and physical health 

… 

These kinds of questions put an emphasis not on the student’s academic performance, but on 

their self-esteem and perceived adaptation to the college environment. There are many, many 

things that can affect GPA, but FYE targets a very particular facet of a student’s life and it would 

be easiest to measure its effects through questions that directly target a student’s relationship to 

food. The best way to produce or deliver this kind of survey lives within a psychology 

department, so it would be remiss not to consult a psychologist here. We believe that this could 

really illuminate the kind of effects that FYE is having on freshmen, and provide our statisticians 

with more data to draw conclusions from. 

2. Food Stocking Options 

 Next, we think that the students should have some say in exactly what kind of food is 

available in the open pantry. This is where the applet that we discussed on page 6 may be useful, 

as it may inform FYE as to which foods are and are not being consumed. Based off of this data, 

it may be wise to poll participating students, asking whether or not a particular item should be 

taken off the shelves or stocked heavy-handedly. We know that such polls can be answered with 

a bias towards what the subjects think the administration wants to hear, so a poll could be 

constructed to reveal a students food preferences indirectly, such as asking what they enjoy most 
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at dining halls. We believe this interactivity would increase retention, participation, and overall 

effectiveness of the program. 

3. Tracking Students Post Participation 

 Since all of the students in this program live in dorms on campus, there may be a certain 

standard of living and eating that is shared among students in those circumstances. However, as 

students move off campus to apartments or houses, the need to be self reliant will drastically 

increase, and the variability in how well/consistently students feed themselves will also 

drastically increase. This means that it is possible that the effect that membership in FYE has is 

minimal as a freshman, but much more pronounced as a sophomore, and so on. While we do not 

currently have the scope to keep track of this data, it may be worth considering an entirely 

optional, opt out at anytime way for the FYE staff to keep collecting data on students that have 

passed through the program, particularly GPA data and potentially data from the surveys 

mentioned earlier. Again, it would be of upmost importance to make this opt in, and allow the 

students to opt out at a moments notice, because they should be the gatekeepers of their data and 

should not be required to continue to give up their data for even a second longer than they want 

to. It would also be essential to be very clear with them on exactly what kind of data you will 

continue to collect and what to expect from it. This kind of continued tracking would open the 

possibility to seeing the long term effects of FYE that would remain entirely hidden without it.  

 If these suggestions were implemented into the FYE program, we could make 

improvements and determine outcomes at a much faster rate, compared to not having them at all. 

If these things could be implemented into all Learning Communities, that would be even better. 
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It may not be an easy task, but we absolutely believe that it would, in the end, make the programs 

much more effective and enjoyable for all of the students involved. 

Final Words 

 After all of this, we cannot wait to see where FYE goes next. The people running the 

program are its lifeblood, and they want absolutely nothing but the best for the students involved. 

The ethos of this program is wonderful, and the goals that they have set are enormous and noble. 

It has been an immense pleasure to contribute to the program in this way, and we hope to see this 

initial groundwork used as a platform to propel the program into the future. All statistics aside; if 

this program makes a real difference in the life of even one student, then all the time and energy 

spent on this project is worth it. If we could see more selfless initiatives like this, this world 

would become a much better place for us all. 
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