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ABSTRACT 

 

 

Polyphosphate Affects Key Metabolic Processes in Dictyostelium discoideum 

 

 

Jacquelyn McCullough 

Department of Biochemistry and Biophysics 

Texas A&M University 

 

 

Research Advisor: Dr. Richard H. Gomer 

Department of Biology 

Texas A&M University 

 

 

 The goal of this project is to determine how physiological levels of polyphosphate affect 

cellular metabolism in the model organism Dictyostelium discoideum. Understanding the effects 

of polyphosphate on a molecular level is important, as its activity in Dictyostelium pathways is 

likely analogous to its activity in human macrophages, and thus polyphosphate shows great 

promise as a target for human therapeutics in a variety of diseases. In order to quantify the 

interactions of polyphosphate with Dictyostelium metabolism, I examined its effect on 

pseudopod formation, mitochondrial size and mass, ATP levels, cellular oxygen consumption, 

intracellular glucose content, and expression of the genes Plc, Pten, Grld, IplA, and PiaA. The 

results demonstrate that polyphosphate impedes pseudopod formation in wild type AX2 

Dictyostelium cells. Additionally, polyphosphate increases mitochondrial size and mass in 

Dictyostelium cells and influences the expression of all genes examined. Polyphosphate seemed 

to induce a small increase in intracellular ATP levels, but the results were not significant. No 

significant impact on glucose content and oxygen consumption were observed. Ultimately, 

polyphosphate may interact with Dictyostelium metabolism through the affecting mitochondrial 

processes and gene expression.  
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SECTION I 

INTRODUCTION 

 

 

Dictyostelium discoideum as a model organism 

 Dictyostelium discoideum is a powerful tool for studying cellular processes from basic 

metabolic pathways to host cell-pathogen interactions. A model eukaryotic organism, 

Dictyostelium is a social amoeba with a well-understood growth curve and physiology. These 

amoebas also closely resemble human immune cells including neutrophils and macrophages. 

Dictyostelium begins its humble life on a plate as a single celled organism in the vegetative state 

and then proceeds through a log phase, slug phase, and fruiting body in order to complete its life 

cycle as a multicellular aggregate organism. The stages of development are spurred both by 

nutrient availability and secreted signals like cAMP. For instance, secreted cAMP signals cells to 

aggregate and alters gene expression so that cells begin to form differentiated multicellular 

structures [1]. Additionally, other secreted factors like polyphosphate regulate cell proliferation 

and viability as they are produced in response to increasing cell density and other factors [2]. 

With an easily manipulated genome and wide variety of knockout and rescue mutants, the effects 

of important genes can be studied at every stage of development. The similarity between 

Dictyostelium discoideum and human macrophages allows us to easily study many immune 

responses and disorders at a molecular level.  

Polyphosphate in biological systems 

 Polyphosphate is an ancient molecule found in all kingdoms of life. It is comprised of 

five to hundreds of inorganic phosphate residues linked by high energy phospho-anhydride 
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bonds [3].  Polyphosphate has been proposed to govern many aspects of biological systems, from 

the development of early life to enabling pathogenicity.  

Roles of polyphosphate in bacteria 

 In bacteria, Polyphosphate kinase 1 (ppk1) is mainly responsible for polyphosphate 

synthesis. Ppk1 hydrolyzes ATP to add a phosphate residue onto a nascent polyphosphate chain. 

Since the reaction is reversible, it can also proceed in the opposite direction to use polyphosphate 

as a substrate for ATP synthesis. In prokaryotes, polyphosphate is most notably linked to its roles 

in bacterial survival and virulence in Mycobacterium tuberculosis, Neisseria meningitidis, 

Helicobacter pylori, Vibrio cholerae, Salmonella typhimurium, Shigella flexneri, Pseudomonas 

aeruginosa, Bordetella pertussis, Yersinia pestis, and many more notorious pathogens [4]. In 

such species, polyphosphate is a necessary component of the stringent response, survival of 

oxidative stress, survival in the stationary phase, motility, and the degradosome [4]. When Ppk1 

was knocked out in Mycobacterium tuberculosis bacteria, they displayed reduced survival in the 

stationary phase and in nitrosative stress conditions as well as decreased resistance to 

macrophages compared to wild type tuberculosis [5]. Since macrophages are the body’s first line 

of defense against bacteria like tuberculosis, it is possible that the bacteria secrete polyphosphate 

when they infect humans in order to survive inside the macrophage, in a way enjoying a free ride 

into the lungs. Given the absence of a ppk1 homolog in higher order eukaryotes, ppk1 may help 

us further understand host-pathogen interactions in human cells.  

Roles of polyphosphate in human tissues 

 In addition to its many functions in prokaryotes, polyphosphate also regulates essential 

processes in mammals, including humans. For instance, polyphosphate has been identified as a 

potential regulator of bone calcification through inhibiting the formation and dissolution of 
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calcium phosphate crystals [6]. Humans also have the protein H-prune, our own form of 

exopolyphosphatase [7], which has been found to fuel metastasis in cancers by increasing tumor 

cell motility [8]. Finally, polyphosphate is also a component of the human inflammatory 

response through potentiating platelet activation and vascular hyperpermeability via Tor 

pathways [9] as well as upregulating expression of inflammatory cytokines in macrophages [10]. 

These factors strengthen the hypothesis that polyphosphate and its associated proteins are 

promising targets for therapeutics against inflammatory diseases and pathogens in human 

medicine.  

Polyphosphate research in Dictyostelium discoideum 

 The goal of my experiments is to use the interaction between Dictyostelium and added 

polyphosphate to clarify the molecular mechanisms behind how bacteria like Mycobacterium 

tuberculosis might similarly use polyphosphate to thwart the human immune system. 

Additionally, my experiments may yield valuable info into how Dictyostelium discoideum and 

other eukaryotic cells use endogenous polyphosphate as a regulatory molecule. Therefore, it is 

necessary to elucidate both the effects of polyphosphate as an autocrine signal used by the 

Dictyostelium cells and as a factor secreted by pathogens to inhibit macrophage activity. 

Dictyostelium discoideum is a useful tool for studying polyphosphate because it is one of the few 

eukaryotes to possess a Ppk1 homolog, and it uses secreted polyphosphate in autocrine 

regulation. The presence of polyphosphate also affects the ability of Dictyostelium to 

phagocytose bacteria [11]. Such phagocytosis is naturally observed in normal feeding habits 

since bacteria like E. coli are staples in the amoeba’s diet. However, polyphosphate allows some 

bacteria like Salmonella Typhimurium to survive inside Dictyostelium cells [11]. Polyphosphate 

and inositol phosphates also regulate key processes in Dictyostelium, including programmed cell 
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death, cell differentiation and other aspects of the cell cycle, cell aggregation, and proliferation 

[12].  

Polyphosphate signaling and pathways 

 A hypothesis common to many Dictyostelium researchers is that polyphosphate exercises 

its effects in the amoeba through regulating gene expression and acting as signaling molecules in 

various pathways. Some polyphosphate signaling pathways have already been identified in D. 

discoideum. In a Ras/Akt pathway, proteins Ras and Akt mediate the ability of polyphosphate to 

induce development of Dictyostelium cells into the multicellular stages of their life cycle by 

increasing expression of a cell-cell adhesion molecule and promoting cell aggregation [3]. A 

negative feedback pathway relies on polyphosphate to regulate cell density in Dictyostelium cells 

[2]. Constitutively-secreted polyphosphate binds the cell surface and causes the rate of 

proliferation to decrease, and it even halts cell proliferation when added to cultures growing at 

mid-log phase [2]. In the identified programmed cell death pathway, inositol phosphates, which 

are important factors in polyphosphate synthesis, cause cell death in a dose and time-dependent 

manner as well as increase the expression of apoptotic factors [13]. In some experiments, high 

nutrient conditions can override the effects of polyphosphate, such as using 100% HL5 media 

over 25% HL5 media [14], which indicates that secreted polyphosphate may behave like a pre-

starvation factor when cells become over-crowded and nutrient-deprived.  

Key pathway components 

 The genes Phospholipase C (Plc), Phosphatase and tensin homolog (Pten), Glutamate 

receptor-like protein D (Grld), Inositol 1,4,5-trisphosphate receptor-like protein A (IplA), and 

Protein pianissimo A (PiaA) were identified as possible polyphosphate pathway components 

through screening mutant Dictyostelium cells for resistance to polyphosphate-induced 
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proliferation inhibition. Each of these genes has an important function in cell metabolism, 

biosynthesis, or the cell cycle. Three of these genes control a pathway initiated by cAMP to 

produce inositol1,4,5-trisphosphate (IP3) and dicaylglygerol (DAG). Pten converts 

Phosphatidylinositol 1,4,5-triphosphate (PIP3) to Phosphatidylinositol 4,5-bisphosphate (PIP2) 

while Plc cleaves PIP2 into IP3 and DAG [15]. IP3 subsequently activates the calcium channel 

IplA. Grld has been identified as a putative G protein-coupled receptor that mediates sensing of 

and response to polyphosphate in D. discoideum [14]. PiaA, an important cytoplasmic signal, is 

involved in development and through enabling activation of adenylate cyclase-coupled GPCR’s 

[16]. Ultimately, I show that polyphosphate may exercise its regulatory effects in Dictyostelium 

using the interplay between these genes and other metabolic processes.  
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SECTION II 

METHODS 

 

 

Cell culture 

 Dictyostelium cells were grown in shaking culture and maintained at concentrations of 

about 2x106cells/mL in HL5 (Formedium Ltd, Norwich, England) media with streptomycin. In 

all experiments, cells were treated with either 150 μM polyphosphate (Spectrum, New 

Brunswick, NJ) or an equivalent amount of pbm buffer (20 mM KH2PO4, 0.01 mM CaCl2, 1 mM 

MgCl2, pH 6.1) in the control group. The same stock of polyphosphate was used for all 

experiments.  

Pseudopod formation assays 

 After 24 hr treatment with pbm or 150 μM poly p, a Nikon Ti2 microscope was used to 

record pseudopod formation in Dictyostelium cells. Cells at a density of 0.2x106 cells/mL were 

allowed to adhere to a cover glass for 30 minutes, and then transferred to an Insall chamber with 

a uniform media gradient so that any chemotaxis effects would not be observed. Then, using the 

20x objective, images were auto-captured every 2 seconds for 5 minutes. Imagej (NIH, Bethesda, 

MD) software was used to document every pseudopod produced by at least 10 cells per video. 

Cells that remained round (formed zero pseudopods), divided, or left the field of view during the 

duration of the video were not counted.  

Mitochondrial assays 

 Wild type AX2 D. discoideum cultured as previously described were treated with 150 μM 

polyphosphate or an equivalent amount of pbm buffer for 24 hours. Then, to avoid 

polyphosphate interfering with the dye uptake as was previously observed, 1x106 cells were 
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centrifuged at 1000 x g for 3 min, quickly washed with ice cold pbm buffer, and then 

resuspended in ice cold pbm. The cells were kept on ice for 5 minutes prior to dye addition. After 

5 minutes, Mitotracker green dye (Thermofisher, Waltham, MA) was added to each tube at a 

concentration of 1 μM. The final conditions were 1x106 cells/mL with 1 μM dye. Cells were 

incubated on ice with the dye for 30 minutes. After 30 minutes, each tube was centrifuged at 

1000 x g for 3 minutes, quickly washed twice with ice cold pbm and then resuspended in 500 μL 

pbm. Fla-1, Fsc-A and Ssc-A measurements for about 10,000 cells per sample in a standardized 

size/granularity range were then taken by a flow cytometer. 

Extracellular oxygen consumption assay  

 The rate of oxygen consumption was measure using an Abcam oxygen consumption 

assay (Abcam, Cambridge, United Kingdom). The assay was conducted in triplicate to n=4 using 

a 96-well plate. After treatment with pbm or poly P for 24 hours, cells at a concentration of 

4x106 cells/mL were spun down at 1000 x g for 3 minutes, washed with fresh HL5 media, and 

then resuspended in HL5 + pbm or 150 μM poly p. 150 μL of cells were added to each well, and 

then the oxygen consumption probe was added. Probe fluorescence was measured over 90 

minutes at an excitation wavelength of 620 nm and an emission wavelength of 380 nm using a 

plate reader. The slope of the trendline for average fluorescence/time was used to determine the 

oxygen consumption rate.  

Intracellular ATP assay 

 Each ATP assay was performed in triplicate due to previously observed 

inconsistency/over-sensitivity within the assay. For each replicate, ATP was extracted from 

1x106 cells that had been treated with either 150 μM poly p or pbm for 24 hours using a boiling 

water method [17] with a few modifications. 1x106 cells were centrifuged at 1000 x g for 3 



10 

minutes and washed with pbm to remove extracellular ATP from the samples. Then, the cell 

pellets were treated with 1 mL boiling sterile water and placed on a heating block at 100°C for 

10 min to ensure thorough extraction. After 10 minutes of heating, tubes were vortexed to lyse 

the cells and then centrifuged at 12,000 rpm for 5 min at -4°C. The supernatant of each sample 

was transferred to a new tube for use in the assay. Any inconsistencies in volume were measured 

and adjusted for in calculating ATP concentration. A firefly luciferase ATP determination kit 

from ThermoFisher Scientific (Thermofisher, Waltham, MA) was used for all experiments, 

including generation of a new ATP standard curve for each experiment. Luminescence was 

measured using a 96 well plate with 10 μL supernatant or ATP standard and 100 μL of reaction 

standard solution from the kit. Measurements were taken on a plate reader at an excitation of 560 

nm at room temperature.   

Glucose content assay 

 The same set of cells was used for the glucose and protein assays in order to calculate 

glucose content. After 24 hours of treatment with pbm or poly p, 10 x106 - 15 x106 cells were 

taken from each group and then clarified as previously described. After being frozen at -20 °C 

for at least 2 hours, the cells were thawed and thoroughly vortexed to ensure lysis. The cell lysate 

was centrifuged at 12000 x g for 3 minutes for clarification, and the supernatant was used in a 

glucose assay kit from Abcam (Abcam, Cambridge, United Kingdom). A standard curve was 

prepared using known glucose concentrations. Fluorescence was measured in a 96-well plate 

using a plate reader.  

cDNA synthesis and qPCR 

 mRNA was extracted from Dictyostelium cells after 0, 1, 4, and 8 hours treatment with 

pbm or 150 μM poly p using a ZYMO Research RNA Miniprep kit (Zymo Research, Irvine, 
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CA). 3x106 – 5x106 cells were used from each sample. Then, the amount of RNA per sample was 

quantified for each sample, and cDNA was synthesized using reagents from the ZYMO kit. 

cDNA was stored at -80 °C until qPCR was performed in triplicate in a 96-well plate using the 

forward and reverse primers of the desired genes as well as GAPDH as a control. Relative 

expression levels were quantified and normalized no added polyphosphate at t=0.  
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SECTION III 

RESULTS 

 

 

Polyphosphate decreases pseudopod formation and increases pseudopod lifespan in D. 

discoideum 

 

  Replicates were done up to n=4, at which point significant differences in both pseudopod 

lifespan and the number of pseudopods formed per minute were observed between the control 

and poly p groups. For counting purposes, pseudopods were defined as non-filipodia projections 

from the main body of the cell. Every pseudopod formed over the 5-minute period was analyzed 

for least 10 cells per treatment group to attain the results for each replicate. Pseudopod lifespan 

quantification began when the pseudopod became distinguishable from the main body of the cell 

and ended when the pseudopod was no longer distinguishable from the main body of the cell. 

Cells treated with poly p ultimately displayed longer pseudopod lifespans than cells in the 

control group. The average pseudopod lifespan for a cell treated with Poly P was 47.76 seconds 

while the average pseudopod lifespan for a cell treated with pbm was 35.99 seconds (figure 1). In 

each replicate, the average pseudopod lifespan was lower in the control group than in the poly p 

group, indicating that the trend is consistent.   

 Pseudopod location was not expected to change in response to polyphosphate since a 

uniform concentration that should not affect chemotaxis was present. Location was defined by 

forming a figurative “X” over the screen of the laptop. Any pseudopod formed toward the top or 

bottom of the “X” was defined as being on the side, any pseudopod formed toward the left side 

of the “X” was on the back, and any pseudopod formed on the right side of the “X” was on the 

front. While the poly p cells grew fewer pseudopods in each location than the pbm cells, the ratio 

of pseudopods formed to the front, back, and side of the cell was about the same. In each group, 
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the cells grew about half as many pseudopods to the front and back as they did to the sides, 

indicating accurate and reliable counting methods.  

 Finally, the number of pseudopods formed per minute was calculated by dividing the 

total number of pseudopods formed on each cell by 5. Cells treated with poly p grew 

significantly fewer pseudopods per minute than cells in the control group. While pbm cells 

produced on average 6.51 pseudopods per minute, cells treated with poly p only produced an 

average of 4.45 pseudopods per minute (figure 1)

  

Figure 1. Polyphosphate effect on pseudopod production in D. dicsoideum (n=4) 

(A) Average pseudopod lifespan over five minutes for cells treated with the control buffer pbm or 150 μM 

polyphosphate for 24 hours in HL5 medium. (B) The average number of pseudopods formed over five minutes was 

quantified for cells treated with pbm or polyphosphate for 24 hours in HL5 medium. Statistical analyses were 

performed as two-tail T tests. * signifies that p < 0.05. The mean and standard error of each experiment are plotted. 

 

Polyphosphate increases mitochondrial size/mass irrespective of cell size and surface area 

 Polyphosphate is known to regulate many aspects of cell growth in Dictyostelium 

including cell proliferation, cytokinesis, cell aggregate size, and bacterial survival inside the cell. 

Many of these processes are already linked to important metabolic pathways. Additionally, high 

A B
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concentrations of polyphosphate are linked to cell death in Dictyostelium. Therefore, I first 

examined the effect of polyphosphate on mitochondria, as they are key organelles in aerobic 

metabolism and certain apoptosis pathways. Mitochondrial size and mass in wild type AX2 cells 

were assessed by flow cytometry using 0.1 μM Mitotracker green dye, which localizes to the 

mitochondria and fluoresces green when excited. Higher fluorescence intensity correlates to 

larger mitochondria. Relative changes in cell surface area and volume were also approximated 

using the forward scatter (Fsc-A) measurement of cell size. I found that, compared to the control 

group, the mitochondria in cells treated with 150 μM polyphosphate were significantly larger. 

The average fluorescence intensity in cells treated with polyphosphate was 2.19 times that of the 

control group (figure 2).  Squaring and cubing the Fsc-A measurement to approximate surface 

area and volume respectively indicated that polyphosphate also increases cell surface area and 

volume. However, the increase in mitochondrial size/mass due to polyphosphate was greater than 

the observed increases in cell surface area and volume. Polyphosphate increased mitochondrial 

size/mass by 1.99 times more than the Fsc-A size measure, 1.74 times the relative increase in 

surface area and 1.53 times the relative increase in volume.  

 Another intriguing observation from this experiment was a possible impact of 

polyphosphate on dye uptake. The experimental technique was refined multiple times to 

eliminate polyphosphate presence during the dye incubation because a fluorescence increase was 

observed even with very brief (<30 minutes) treatment with polyphosphate. Hypothesizing that 

polyphosphate may increase cellular uptake of the dye apart from its effects on the mitochondria, 

I tested a new system in which the polyphosphate was removed and then cellular processes 

halted using an ice bath before dye incubation. In the new experimental design, a smaller, or 

negligible after very brief treatment, fluorescence increase due to polyphosphate was observed. 
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Figure 2. Effect of polyphosphate on mitochondrial size and mass in D. discoideum (n=4)    

Fluorescence intensity was measured using a flow cytometer for at least 10,000 cells that had been treated with pbm 
or 150 μM polyphosphate. Cells were incubated with 0.1 μM Mitotracker green dye before fluorescence was 
measured. The square and cube of median FSC-A were used to approximate cell surface area and volume, 
respectively. Median FLA-1 is a measure of fluorescence intensity. Data was normalized to the pbm group, which 
had no added polyphosphate. The increase in Median FLA-1 attributed to polyphosphate was significantly higher 
than the increases in Median FSC-A and Median FSC-A2 (p < 0.05) 

  
 

Therefore, just the presence of polyphosphate appears to increase cellular uptake of dye, which is 

not indicative of the actual influence of polyphosphate on the mitochondrial size and mass.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polyphosphate may increase intracellular ATP levels 

 Due to the observed effects of polyphosphate on mitochondrial size and mass, I next 

examined the effect of polyphosphate on intracellular ATP levels. Since the mitochondria are the 

site of the citric acid cycle, electron transport, oxidative phosphorylation, B-oxidation, and other 

ATP-generating processes, I hypothesized that polyphosphate would also increase intracellular 

ATP levels in addition to mitochondrial size and mass, A Thermofisher firefly luciferase ATP 
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determination kit was used to quantify intracellular ATP levels in cells treated with 150 μM 

polyphosphate or an equivalent volume of pbm. While the results were not significantly 

significant after n=4 replicates, a small possible increase in ATP levels due to polyphosphate was 

observed (figure 3). The luminescence of cells treated with polyphosphate was about 374 nM 

while that of the cells in the control group was about 292 nM. With more replicates, the results 

may reach significance. Measuring the response to other physiological (between 0 μM and 150 

μM) concentrations of polyphosphate may also reveal whether it significantly affects ATP levels 

in D. discoideum.  

Polyphosphate does not affect oxygen consumption in D. discoideum  

 Oxygen consumption was measured next, as it is an important indicator of aerobic 

metabolism efficiency in eukaryotes. Using a molecular probe kit from Abcam, I quantified 

oxygen consumption over 90 minutes in cells treated with 150 μM polyphosphate or an 

equivalent volume of pbm buffer. Prior to the experiment, I predicted that oxygen consumption 

would increase in cells treated with polyphosphate since the mitochondria enlarged in the 

presence of polyphosphate. However, the data indicate negligible differences in oxygen 

consumption between groups (figure 4).  
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Figure 3. Effect of polyphosphate on intracellular ATP concentration in D. discoideum (n=4) 

Intracellular ATP concentration was quantified using a plate reader and 96-well plate for cells that had been treated 
with pbm or polyphosphate for 24 hours in HL5 medium. Mean and standard error are plotted.  

 

Figure 4. Effect of polyphosphate on rate of oxygen consumption in D. discoideum (n=4) 

Oxygen consumption was measured in cells treated with pbm or 150 μM polyphosphate for 24 hours in HL5 

medium. The rate was calculated from the slope of the most linear segment of the best fit line generated from 

fluorescence/time. Fluorescence was measured in arbitrary units by the plate reader.  
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Polyphosphate does not significantly affect glucose consumption in D. discoideum 

 Glucose metabolism is another essential source of energy for eukaryotic cells since 

glucose feeds into pathways for energy production, such as glycolysis and the TCA cycle, 

biosynthesis, such as the pentose phosphate pathway, and the cell cycle as an indicator of 

sufficient nutrients for cell division. Therefore, changes in cellular glucose levels would indicate 

that polyphosphate may work through a glucose-regulated metabolic pathway to enact its 

previously observed effects on processes like proliferation inhibition and metabolism of 

phagocytosed bacteria. Intracellular glucose levels were quantified with a colorimetric kit from 

Abcam. No significant difference in glucose concentration per cell was observed after n=4 

replicates (Figure 5). Previous experiments determined that polyphosphate does increase protein 

content in Dictyostelium cells [2], so the amount of glucose per protein in cell could be lower in 

cells treated with polyphosphate, but further experimentation is necessary to verify this.  

Polyphosphate regulates expression of key genes in Dictyostelium 

 Finally, I performed qPCR using Dictyostelium mRNA to determine the effect of 

polyphosphate on genes that are likely to be involved in polyphosphate-regulated pathways. The 

genes were selected by screening a variety of available mutants for reduced sensitivity to 

polyphosphate-induced proliferation inhibition. Among the mutants that showed reduced 

proliferation inhibition compared to wild type AX2 cells were plc-, IplA-, pten-, and piaA-, and 

grld-. Thus, expression of the genes Plc (Phospholipase C), IplA (Inositol 1,4,5-trisphosphate 

receptor-like protein A) , Pten (Phosphatase and tensin homolog), PiaA (Protein pianissimo A), 

and Grld (glutamate receptor-like protein D) was targeted in this experiment. These genes 

encode important elements of cell signaling, growth, and biosynthesis pathways. RNA was 

extracted from wild type AX2 cells in shaking culture after 0, 4, 8, and 12 hours of exposure to 
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Figure 5. Effect of polyphosphate on intracellular glucose content 

in D. discoideum (n=4) 

Glucose content was measured using a plate reader in cells that had 

been treated with pbm or 150 μM polyphosphate for 24 hours in HL5 

medium. Mean and standard error are plotted.  

polyphosphate or the control buffer pbm. The qPCR results show that polyphosphate increases 

expression of Plc, IplA, Pten, and PiaA at all time points while decreasing expression of Grld at 

all points compared to the control group (figure 6).  
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Figure 6. Effect of Polyphosphate on expression of Plc, Grld, IplA, PiaA, Ppk1, and Pten in Dictyostelium 

qPCR was formed using cDNA made with mRNA extracted from Dictyostelium cells after exposure to pbm or 150 

μM polyphosphate at 0, 4, 8, or 12 hours. The graph depicts the ratio of polyphosphate treatment gene expression to 

control group gene expression after normalization to t= 0 hr.  
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SECTION IV 

CONCLUSION 

 

 

Polyphosphate may hinder macrophage efficacy through impeding pseudopod production 

One possible explanation for why pseudopod production decreases in Dictyostelium cells 

treated with polyphosphate is that polyphosphate may inhibit the cells’ ability to manipulate their 

cytoskeletons. For instance, the cells may struggle forming the pseudopods, hence the decreased 

number of pseudopods formed per minute, and may also have trouble retracting the pseudopods 

back into the cell body, hence the increased pseudopod lifespan.  In one study, tumor cells 

lacking the human exopolyphosphatase H-prune demonstrated increased motility and metastasis 

[7]. Pseudopod formation is essential for macrophage activity since pseudopods are the 

mechanisms by which they phagocytose molecules or microbes and travel to target destinations 

[18]. Therefore, added polyphosphate may decrease the overall motility of Dictyostelium and 

other macrophage type cells. Manipulation of actin filaments, which Dictyostelium cells use for 

pseudopod production and migration, has also been associated with polyphosphate production 

[19], so it is possible that extracellular polyphosphate may interfere with actin manipulation to 

cause the observed defects in pseudopod production. Finally, the necessity of pseudopod 

formation in both the uptake of microbes and in directing them to intracellular compartments for 

digestion [18] may be one reason behind the necessity for polyphosphate in bacterial survival 

inside macrophage-like cells.  

The mitochondria may be a means of polyphosphate regulation of cellular energetics and 

metabolism 
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 In the process of facilitating aerobic respiration, mitochondria produce the majority of 

healthy cells’ energy in the form of ATP but produce potentially damaging reactive oxygen 

species such as super-oxides and peroxides in the process. Since it is essential that the 

mitochondria keep these ROS sequestered away from the rest of the cell, many apoptosis 

cascades are triggered by mitochondrial damage and ROS escape [20]. ROS also play a role in 

creating an inhospitable environment for intracellular pathogens, especially in the cellular 

compartments in which bacterial invaders are destroyed [21]. Unsurprisingly, polyphosphate is 

one means by which bacteria can survive oxidative stress due to ROS [22], which may help 

explain the increase in mitochondrial size/mass in Dictyostelium cells due to added 

polyphosphate. Unfortunately, little is known about the effect of polyphosphate on ROS in 

mammalian cells.  

 Added polyphosphate also increases intracellular and extracellular ATP levels in human 

cell lines like HUVEC (human umbilical vein endothelial cells) and osteosarcoma cells [23, 24]. 

This prospect is promising for further experimentation into ATP levels in Dictyostelium cells. 

Additionally, it suggests that polyphosphate may contribute to fuel stores in bioenergetic 

processes, which makes sense especially in the context of polyphosphate acting as a pre-

starvation factor in Dictyostelium cells.  

Alteration of gene expression patterns provides insight into polyphosphate regulatory 

pathway components 

 Interestingly, polyphosphate increased expression of the three calcium signaling 

pathways genes Pten, Plc, and IplA as well as that of the G protein-coupled receptor associated 

gene PiaA. These results suggest that polyphosphate may be involved in this calcium signaling 

pathway and that the increased expression of its genes may enable polyphosphate to enact its 
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related effects. Conversely, expression of the putative G protein-coupled receptor Grld is 

downregulated by physiological (150 μM) levels of polyphosphate. It is possible that expression 

of the receptor, as is has been shown to mediate sensing of polyphosphate in Dictyostelium [14] 

also functions through a negative feedback loop in order to prevent cell damage, as high 

concentrations of polyphosphate can cause cell death [25].  

 Further experimentation will focus on determining whether a significant increase in ATP 

levels in Dictyostelium cells can be attributed to polyphosphate and assessing the effects of 

polyphosphate on extracellular media acidification as a measure of glycolysis. I will also 

examine the possible effects of polyphosphate on membrane permeability given my observations 

in the mitochondrial assays and the connection of polyphosphate to vascular hyperpermeability 

in mammals [9].   
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