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ABSTRACT

Remeshing Eulerian-on-Lagrangian Strands

Kevin Jiang
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Shinjiro Sueda
Department of Computer Science and Engineering

Texas A&M University

Physics-based simulation of strands is an important and well-studied topic within the field

of computer graphics. One particular case, in which a strand is bending and sliding around a

sharp corner, has been a challenge to simulate due to the additional constraints that are involved.

Many of the previous methods for simulating strands do not perform well with strands crossing and

sliding with respect to each other. In this research, we have developed a formulation that is capable

of simulating and remeshing bending and sliding strands that combine the traditional Lagrangian

method of physics-based simulation with an Eulerian approach. We found that our program is able

to support dynamic remeshing of an Eulerian-on-Lagrangian strand when it is bending around a

sharp corner, which provides a more accurate simulation. This could be extended to more complex

simulations, such as the simulation of Ayatori (string art or string figures). Additionally, there are

potential engineering applications involving cables.
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CHAPTER I

INTRODUCTION

Simulating strands is one topic of interest within the field of computer graphics. One

method in which this can be achieved is defined as Eulerian-on-Lagrangian strands, which we

will refer to as EOL strands, by Sueda et. al. [2011]. These EOL strands build off the traditional

Lagrangian description of a strand by adding an Eulerian component to each node, which pro-

vides a better simulation of a strand stretching and bending. Our research focuses on accurately

simulating the case in which an EOL strand bends and slides around a sharp corner. One poten-

tial application of this program is to simulate ayatori. Ayatori (also known as string art or string

figures) is a game in which one or more people use their hands to manipulate a loop of string to

form various designs. The patterns created can range from simple shapes to complex patterns that

require many steps to execute. As our research deals with bending strands, it could be extended to

deal with ayatori, which would involve a strand bending and crossing around itself. There are also

engineering applications involving cables.

Figure 1: One pattern that could be made in a game of Ayatori [1]
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Previous Work

There are many pertinent research materials within this field. Many of these deal with

elastic rods, which are curve-like elastic bodies that have a length much larger than its cross-

section. Bergou et al. [2008] presented an approach for modeling elastic rods using quasistatics

and constraints [2]. Batty et al. [2012] later extended this method to simulate the dynamics of

thin sheets of viscous incompressible liquid [3]. Bertails et al. [2006] showed that the equations

for dynamic, inextensible elastic rods can be used for predicting hair motion [4]. Umetani et al.

[2014] introduced a new technique to simulate elastic rods in Position-Based Dynamics framework

[5].

Importantly, none of the previous research mentioned do well with cables crossing and

sliding with respect to each other. Simulating cables or strings can be difficult, since the traditional

Lagrangian method cannot fully account for the case where the string must bend around another

object. As seen in the image below, the part of the string which bends around the corner of the

table is not entirely natural, because it lies in between the nodes for which motion is accounted

for. Remeshing the strand also leads to undesirable artifacts, since the remeshed node cannot slide

around the corner without producing more interpenetrations. Therefore, another method must be

used in order to properly simulate strings sliding and bending.

Figure 2: Example of a simulation of a string sliding over a table using the Lagrangian method
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One important research material to note is the Large-Scale Dynamic Simulation of Highly

Constrained Strands by Sueda et al. [2011], in which they introduce a new framework to overcome

difficulties in simulating highly constrained strand-like physical curves. In summary, the method

combines both the traditional Lagrangian approach and an Eulerian approach, which results in

“robust, efficient, and accurate simulations of massively constrained systems of rigid bodies and

strands [6].” We extend this approach, adding support for dynamic remeshing.
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CHAPTER II

METHODS

We developed our program in C++, using the OpenGL API. Additionally, we used other

libraries including Eigen and GLM to perform the necessary matrix calculations. To start off, we

decided to use code from an existing cloth simulator provided by Dr. Shinjiro Sueda, so that we

could have a framework of code to start developing in.

Nodes and Edges

For our program, we use nodes to represent the different points of a strand. Each node has

its own mass, position, and velocity, which we will refer to as mi, xi, and vi respectively. A strand

can be drawn by simply using linear interpolation to create lines between each node. By storing

the positions and velocities of each node in a vector, we can also calculate their positions over time

by solving the matrix equation Mv̇ = f . Using the method of Sueda et al. [2011], we also add an s

component to each of the nodes. This s component, called the Eulerian coordinate, represents the

coordinates of the material of the strand; in the code, it is essentially the texture coordinates. This

allows the material to move independently of the node’s world coordinates.

We then define two types of nodes. A Lagrangian node, or L-node, refers to a node in

which s has been constrained, allowing only the x to change. We call it this because its motion

is calculated using the Lagrangian description, in which the behavior of particles within a system

is calculated by solving equations related to their position and velocity. The second type of node

we will define is the Eulerian node, or E-node. For this node, the x is constrained, leaving the s

to freely move. This is similar to the Eulerian specification in fluid dynamics, which focuses on

observing the flow over time at a specific point.

To simulate a strand that properly stretches and bends, we require additional forces aside

from gravity. We achieve this by defining a spring between each node, with a given tension to

control how much the strand is allowed to stretch. This introduces spring forces between each
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of the nodes. We can calculate these spring forces by looking at the current length of the edge

compared to the original length of the edge and apply these forces to each node. Adding the

springs allows the strand to stretch and bounce, creating a more realistic simulation.

Texturing

To create the initial visual for the strand, we simply drew a line between each node. How-

ever, this was not enough when we began to implement the s components. Since the s components

describe the reference coordinates of the material, we needed a proper texture so that we could

see the changes in s. To create a surface for texturing, we draw a cylinder in between each node,

rotated so that the flat faces correspond to the positions of the nodes. This creates a smooth, three-

dimensional strand with proper shading and appearance. To texture it, we use a purple and black

checkerboard pattern, to make it easier to debug changes in s. Since the texture coordinates are

directly related to the s components, it is easy to notice changes through visual inspection.

Finally, we add spheres at each node so that it is easy to tell where each node is. We use

red spheres to denote E-nodes and blue spheres to denote L-nodes. We also add smaller spheres

along the strand at specific intervals of s. This allows us to determine whether an issue with the

program is related to the texture or the s components by checking whether the texture behaves the

same way as the spheres. Figure 3 shows what the strand looks like with the debug features.
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Figure 3: Debug texture of strand with L-nodes, E-nodes, and s markers. The red nodes represent
E-nodes, while the blue nodes represent L-nodes.

Matrix Equations

To determine the motion of each node in the strand, we must solve the following matrix

equation:

Av = b (Eq. 1)

Using implicit Euler, we get:

A = M + D

b = Mv0 + hf

M is the mass matrix and D = αhM+βh2K is the Rayleigh damping matrix. α and β are

the damping coefficients, h is the time step, and K is the stiffness matrix for the springs. Given n

nodes in a strand, M, D, and K are all size 4n by 4n. Similarly, v and f are also of length 4n.

f is a vector containing all the forces that act on each node. For our simulation, we only

deal with the spring force from each edge and gravity to make it simpler. The force due to gravity
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is easy to calculate. The only addition we must make is the Jacobian below.

Ji =

(
I3 − Fi

)
(Eq. 2)

With this addition, the vector we add to f becomes JT fg. Ji is the Jacobian for the nodes on each

end of the spring. To get the F that is in the Jacobian for a particular node p, we calculate the

F = (x1 −xp)/(s1 − sp) for each node incident to p, then take the weighted average of the two (or

one if the node is on the end) values. Forming the Jacobian this way allows us to factor s into our

calculations. Similarly, the spring force is calculated as below:

fs = E(l − L)
∆x

l

f =

 JT
0 fs

−JT
1 fs


The spring force is then added to f in the same manner.

We can fill M simply by setting the diagonal elements to the mass of each node. K,

however, is more complex. Below is the formulation of K:

Klocal =

 JT
0KsJ0 −JT

0KsJ1

−JT
1KsJ0 JT

1KsJ1

 (Eq. 3)
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where

Ks =
E

l2

((
1 − l − L

L

)(
∆x∆xT

)
+
l − L

l

(
∆xT∆x

)
I3

)
Ji =

(
I3 −Fi

)
E = modulus of elasticity

l = current length of spring

L = unstretched length of spring

∆x = x1 − x0

To fill K, we loop through each edge and compute the Klocal matrix each time. Each edge is at-

tached to two nodes, so we can obtain the spring length by subtracting the positions of the two

nodes. The Jacobian is used in the same way as in Eq. 2, allowing us to factor s into our calcula-

tions. Once we have the value of Klocal, we add it to the global K matrix by adding it at the indices

corresponding to the nodes on each end of the spring.

The final part we add to the equation is a method to constrain certain nodes. This allows

us to specify which nodes should be constrained, as well as what components should be fixed. We

could simply skip the calculation for each node that we want to be fixed; however, this method is

not easily extensible. A more general constraint method is needed: one that can specify a node to

be either fixed or moving at a constant velocity. To achieve this, we form a KKT system [7]:

A GT

G 0


v

λ

 =

b

0

 (Eq. 4)

The first thing to notice is the addition of the G matrix. We formulate G in such a way that,

after solving the matrix equation, the velocities of the constrained nodes equal the ones that we
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specified. For example, if our G matrix looks like this:

G =

I4 0 0

0 0 I4

 (Eq. 5)

then solving the matrix equation gives us a velocity of 0 for the first and the third nodes (the order

of the rows in G do not matter). We could also constrain the velocity to be a constant by filling the

bottom half of b with nonzero values. This would move the particular nodes at a constant velocity.

To solve this equation, we used the SparseQR solver from the Eigen library, which imple-

ments a left-looking rank-revealing QR decomposition of sparse matrices. Even though it is slower

than other sparse solvers, the result it produced was more stable, which is why we decided to use

it. To get the new position of each node, we multiplied the time step h by the velocities obtained

from the solver and set those as the new positions in the nodes.

When implementing this in the program, we used a sparse matrix for the left side of the

equation. Since all of this has to be calculated for each frame, it is important for the process of

solving the matrix equation to be efficient. Although building a sparse matrix is computationally

expensive, it is often more efficient to solve matrix equations using sparse matrices.

Remeshing

In order to have a strand that behaves properly, we must remesh the strand when two nodes

are too close to each other. For example, assume we have an L-node p that is being dragged towards

an E-node q that is adjacent to it. Since the position of q is constrained, the material of the strand

is essentially being dragged through q. Eventually, p will be dragged very close to q. If the strand

is not remeshed, then p will end up bouncing around q, but never actually passing through q like it

should, producing something similar to the image below:
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Figure 4: Result of two nodes that are too close without remeshing

To check if remeshing is required, we first check the s values for each node after each step

of the program. if an L-node has an s value that is too close to one of an E-node, then that node

is disabled. During the process of disabling the node, we must also remove it from all the edges

that contain that node, as well as from the force and velocity vectors. After removing the node, we

must insert it back in the correct position when it is far enough away from the original node that

caused it to be disabled. Since the s for an L-node is constant, we can tell how far away it is from

the E-node by calculating the difference in s for the disabled L-node and the E-node. Once the

difference reaches the threshold, we re-insert the node into the system matrices and vectors.
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Figure 5: Diagram of node insertion for remeshing.

The last property to calculate before inserting the node back into the strand is the velocity.

Since the values of the node have not changed since being disabled, we need to calculate what

the velocity should be for the node that is being inserted. Figure 5 shows a diagram of a possible

remeshing scenario. Nodes 0, 2, and 3 are L-nodes while node 1 is an E-node. We are inserting

node 2 in between nodes 1 and 3, so its velocity should be a linear interpolation of the velocities

of its neighbors. We can calculate this using the equation:

v2 = (1 − α)vw1 + αvw3 (Eq. 6)
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where

α =
s2 − s1

∆s

∆s = s3 − s1

∆x = x3 − x1

vw =

(
I −F

)vx

vs

 (for E-nodes)

vw = vx (for L-nodes)

F =
∆x

∆s

Using this, we can set node 2’s velocity and direction before insertion, so that it behaves prop-

erly.
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CHAPTER III

RESULTS

To test the performance of the simulation, we chose to run it multiple times, increasing

the number of nodes each time and measuring the simulation time (time taken to calculate one

step). Simulation time was chosen over frames per second (FPS) because FPS includes the time

taken to render the strand. Since we are only interested in how long it takes to calculate the step,

the simulation time is a better choice. To provide a baseline for comparison, the same tests were

performed for a purely Lagrangian version of the strand in which there are only L-nodes included.

To differentiate the two, we will call this method the "Lagrangian method" and the version with

E-nodes and L-nodes the Eulerian-on-Lagrangian method, or EOL method.

The tests were performed on a desktop computer running Windows 10, with an AMD Ryzen

5 1600 six-core processor and a NVIDIA GeForce GTX 1060 6GB graphics card. The code was

compiled using Visual Studio 2017 in release mode. The simulation time was measured using the

chrono C++ library to measure the time between the start and end of each step. For each trial, we

ran the simulation for 100 steps and took the average of the simulation times for all 100 steps. This

was repeated for both Lagrangian and EOL strands with 7, 40, 100, 200, 400, and 800 nodes. Each

trial was done with the same configuration of E-nodes, which can be seen below in Figure 6.
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Figure 6: Configuration of E-nodes for tests.

Figure 7: Log scaled graph of simulation times.
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Figure 8: Simulation times for EOL method.

Figure 9: Simulation times for Lagrangian method.
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Simulation Time

In terms of simulation time, the EOL method performed worse than the Lagrangian method.

Figure 7 shows the comparison of simulation times, with a log scale for the y-axis to make the

comparison easier to see. The simulation time for the EOL method was higher than that of the

Lagrangian method in every case. However, the strand simulated with the Lagrangian method was

unable to smoothly slide across sharp corners.

Figures 8 and 9 show the approximate simulation times for both methods. For the EOL

method, simulation times ranged from around 100 microseconds to almost 6 seconds per step. The

Lagrangian method had much lower times comparatively, ranging from around 10 microseconds to

0.08 seconds. For both methods, the simulation time scaled up drastically from 400 to 800 nodes,

with a similar but smaller increase from 200 to 400 nodes.

Figure 10: The remeshing process. The L-node (blue) approaches the E-node (red), is disabled
when it gets close, and is re-inserted when it is far enough.

Remeshing Functionality

Figure 10 demonstrates the process of remeshing implemented in the simulation when a

node approaches a bend in the strand. As before, the red node represents an E-node and the blue
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node represents an L-node. As the L-node is dragged closer to the E-node, it is disabled once it

reaches a certain threshold. Eventually, once it is far enough away, the L-node is re-inserted into

the strand in a configuration different from the original.

Occasionally during testing, we noticed that the velocity of the node after re-insertion was

not consistent. The velocity ended up being much higher than we would expect from the sim-

ulation, which caused some nodes to heavily bounce back and forth along the strand, since the

velocity was so high.
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CHAPTER IV

CONCLUSION

In this paper, we demonstrated a program capable of simulating a string bending and slid-

ing around sharp corners. The cylinders drawn between each node create the shape of a real-world

string, especially when a realistic texture is applied. Several properties of the strand can be mod-

ified, including the configuration and position of nodes, as well as the mass and thickness of the

strand. Basic physical forces of gravity and tension can be simulated, and the Eulerian components

in each node allow for the manipulation of material coordinates. This enables the strand appear

to stretch and bend by modifying the texture coordinates. Finally, the process of remeshing we

implemented allows for an L-node to pass through other E-nodes without destabilization of the

simulation.

Although the simulation time for higher node counts may be too slow to allow for a smooth

simulation, it is more reasonable for lower node counts. As long as the node count remains at a

moderate level, the simulator will run smoothly. A strand simulated with the Lagrangian method

is faster, but it cannot slide smoothly across sharp corners like the one simulated with the EOL

method.

Future Work

As mentioned earlier, this program could be extended to fully simulate ayatori. One major

step towards such a simulator would be some sort of collision handling. When separate parts of the

strand cross, then they should appear to bend around each other. One possible way this could be

achieved is by first detecting when parts of the strand have crossed. Once it is determined where

they have crossed, E-nodes could have been inserted at the points in which they cross. This could

create a bend in both parts of the strand which accurately represents what would happen in the real

world.

Another improvement that we could make to this simulator is to improve the efficiency.
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Currently, the simulator takes six seconds or more to calculate one step with 800 nodes. To be able

to properly simulate complex patterns, a large number of nodes will be required. Additionally, a

higher node count means the strand looks more realistic. Improving the efficiency of the program

to be able to handle high node counts would allow for simulation of more complex shapes.

Finally, we could improve the interface for which we define nodes and constraints. Cur-

rently, the positions and configurations of nodes are hard-coded into the program, and changing

them would require someone to have knowledge of how the program works. Creating an easy

to understand interface in which a user could define node positions, types, and constraints would

allow for anybody to define their own shapes without having to know how the program works.
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