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ABSTRACT

Precise Image Exploration with Cluster Analysis

Sagar Patel
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. James Caverlee
Department of Computer Science and Engineering

Texas A&M University

Since the rise of digital multimedia in our present age, when looking for an image that

closely matches their needs and preferences, the number of images a user must sort through has

become more and more unmanageable. Even when searching for a narrow topic, it can be nearly

impossible to find an image that meets a specific preference by going through all the possible

images.

To combat this growing problem, we describe an exploration system built on deep neural

networks to empower the users to quickly sort through all the possible images by quickly narrowing

down to their preferred images. By design, our exploration system goes around the need to match

the user’s query directly to a small group of images to serve users images that would traditionally

be too difficult to group together and match to a query. We propose to use deep metric learning

and clustering to group the images, which we will see cleverly manages problems that hold back

traditional neural networks in this problem—unseen image groups and shifting definitions.
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CHAPTER I

INTRODUCTION

As the web has grown more and more connected to our lives, social media has become

a vital means for us to connect to the world. As a result, image-focused social media platforms

like Flickr and Pinterest have exploded in size, and with them so have the problems related to

managing and serving a large catalog. For reference, in December 2019, in a blog about their

company, Flickr reported having more than 100 million accounts and tens of billions of photos,

and Pinterest reported having more than 320 million users and 200 billion posts (referred to as

“ideas” on the platform) [1, 2]. At this size, even with a narrow topic in mind, we cannot explore

all the content that these large-scale platforms offer.

To deal with such large collections, social media platforms, not unlike other web platforms,

have continuously worked on improving search. Search in this context has been the focus of

decades of research, and has grown to incorporate more and more features to present each user

a ranked list of images that fit their need [3]. Most of this research has worked to improve on

metrics focused on a natural measure of quality of the search results—relevance. Relevance in this

context is a judgement on whether a result answers the information need behind a query or not.

For example, in a query for “New York”, an image of one of its boroughs, Manhattan, would be

relevant while an image of Seattle would not be.

However, even with the advances in search, complex and specific queries are still particu-

larly difficult to handle because they require an extraordinary level of understanding of both the

images and the query. As a result, when we search for a specific query, we often get back only

a few results, requiring us to broaden our search and going through the images ourselves. For

example, when we search directly for “Ueno Park long exposure” on Flickr as shown in Figure

1 and Figure 2, we get only 38 search results that fit our need. However, when we search for a

generalized version of our query, “Ueno Park”, we get about 85,000 results, of which, many fulfill
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our need that we didn’t see when we search directly for them. From the users’ perspective, this is

a big problem because to them, the fact that the first search didn’t fulfill their need means that they

must personally go through the large collection of images themselves to find images that fit their

need, mixed in with a lot images that aren’t relevant to their need. Finding those specific types of

images in an ever growing list increasingly feels like finding a needle in a hay stack.

Figure 1: Flickr search results for the term “ueno park long exposure”
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Figure 2: Flickr search results for the term “ueno park”

So, to better connect users to the specific type of image they want, we propose to build upon

image exploration [4]. Image exploration works to connect users to specific images by allowing

users to explore all the facets of their query and narrow down their search. We propose to expand

this system by presenting narrow facets over both aesthetic and subjective categories. The system

would first present the users with facets of images formed from an initial category. Then, selecting

a facet would narrow down all the images to only those belonging to the facet, and run the images

through cluster analysis of a different category, or simply display them if the categories convey

enough information or if the images have already been narrowed down enough.

Since our precise image explorer does not rely on properly identifying images such that

they can be matched directly to users’ queries, we fundamentally do not have to rely on breaking

down the intricacies of the query to serve users images. As such, we can fulfill narrow queries

without addressing all the problems traditional search platforms have to do the same.
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In this view of the problem, there are four main challenges:

• Defining and identifying what separates two images. Even when we’re given 2 groups of

images, it’s hard to generalize what separates them. This problem becomes much more

difficult over hundreds of classes, which can easily happen in our problem.

• Handling unseen images. In practice, we must deal with types of images that our model has

never seen (it matches none of the groups we trained over).

• Managing shifting definitions and preferences. While in an offline lab setting, our dataset

doesn’t change. However, when our model is used in a real application, all the information

around it is constantly changing. What defines a particular aesthetic style changes in the

world of photography, and our model has to keep up

• Staying computationally simple. The methods we use should be quick enough to satisfy the

users interacting with it.

So, to help bridge the gap between the gap between what’s easily available to the users and

what could potentially be, we must find ways to connect users to the images of the subject they

want in the style they want. Overall, the contributions of our work are the following:

• First, we describe a new approach to this problem: precise exploration. We propose to

use exploration infused with deep metric learning to connect users to specific images in a

fundamentally different way than search.

• Second, we explore using hierarchical loss to deal with groups with few images in deep

metric learning use cases similar to ours. Analyzing the subject of the images in deep metric

learning raises a unique problem, as we will talk about later, and we find the effects of using

hierarchical loss to address it.

• Third, we introduce a new dataset, places190, simulating a real world application of precise

exploration. This dataset allows us to design and conduct experiments that can specifically

aim to improve deep metric learning in exploration.
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For the remainder of the thesis, we will contextualize our research, properly define our

work’s assumptions, detail our methodology, provide our results and conclusions, and provide

potential ways to expand our work.
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CHAPTER II

RELATED WORK

The central research problem of this work, connecting users to specific types of images, is

a very well researched problem and there are many facets of this problem that have already been

studied. In particular, there has already been considerable work using image exploration, identify-

ing and defining subject and styles, diversifying search, and personalized image recommendations

in this setting. At the core, we apply a different method than these works, and so alongside the

works mentioned here, have more relevant research that we will discuss later when we discuss our

methodology.

Image Exploration

Image exploration is an application of faceted search in the context of images [5]. Faceted

search groups images based on an inherent hierarchical manner, much like how it works in shop-

ping catalogs, where products are listed in a hierarchical manner, going from large categories like

“Health & Beauty” to “Hair” and then to “Shampoo”. The research in this topic largely dates back

to the time before neural networks caught up in the area of Computer Vision. Exploration was seen

as a way to help alleviate the problem associated with content based image retrieval and a way to

evaluate and build upon search results [4, 6]. Without a proper way to identify the content of an

image, exploration worked to group images in a hierarchical way and present facets of informa-

tion to the user. This was primarily done on a fairly broad scale, typically by classifying images

into human-identified categories based on simple knowledge graphs. For example, [4] finds all the

attractions in the given place and using already known information like the location of the taken

image and the attraction to match images to categories. However, as advances in machine learning

and neural networks were made and problems content-based image retrieval that it targeted were

solved, exploration has become less emphasized.

In this thesis, we build upon the basic idea of image exploration introduced in these works,
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and apply deep metric learning to take exploration from a broad human-identified categorization

to very fine-grained automatic image categorization that acts as a medium to connect users to

specific images they want. At the core, we similarly work to alleviate the problems associated with

content-based image retrieval, but on a much finer scale.

Defining and Representing Subject

As we understand it, subject is what a picture is taken of. A subject, according to our

definition here, is the focus of the picture and is implicitly different from objects that simply

exist in the image. However, despite the technical distinction in definition, in practice, it’s better

to think of subjects as just central objects or what multiple objects make up. As such, all the

work done on object detection and specialized versions of it is relevant to ours. This topic is

one of the biggest in field of Computer Vision, and there is an enormous amount of work dealing

with this problem. So, we will only mention only a few key works directly related and used

in this thesis. ImageNet, comprising of ILSVRC challenges and the data, was a major spark in

research around object detection, providing hand-labeled 10,000,000+ images with 10,000+ object

classes. With significant contribution to making deep neural networks computationally possible

with GPUs, research in [7] proposed AlexNet, a deep CNN architecture, to classify the over 1000

classes in ILSVRC 2012 challenge. Following the computational advancement AlexNet made, [8]

introduced GoogLeNet, a CNN architecture that goes even deeper and wider than AlexNet, while

still being computationally costing similar. A year later, [9] introduced ResNet, a deep residual

neural network architecture that, unlike previous work, used residual connections with explicit

reference to layer inputs so that networks with large depths that they couldn’t even be trained before

could be trained in even lower computational cost than the then state of the art neural networks.

Since then, ResNets have become the default choice of neural architecture in image recognition

tasks for many problems, and we will also use ResNet in this work as a baseline, and build on it to

allow us to better identify subjects, the central objects of our pictures.
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Defining and Representing Style

Despite lacking an established definition, we understand style as it refers to the aesthetic

perception of an image, a quality that measures how an image was taken, rather than what it was

taken of. Concretely, in the photography world, style can be identified by classifying the way

the camera was used to take the picture, down to labels such “long exposure” or “shallow depth

of field”. Since these qualities are rather subjective, capturing these qualities in manner that a

computer can understand is in and of itself very difficult. To try to do so, [10] introduces the

AVA dataset, which along with other aesthetic classifications, names 14 styles (as taken from a

popular photography magazine) with about 1200 images each, derived from identifying key words

mentioned description of the images. [11] instead defines 20 concrete styles by the 4000 images

per style they gained by mining Flickr groups associated to that style, and then trains AlexNet (the

CNN architecture trained on ImageNet we mentioned earlier) to classify those styles. In this work,

we will use this dataset and build our models around it.

Diversifying Search Results

The main idea behind diversifying search results is that diversity is desired in search results

to queries that are ambiguous. Diversity in this sense refers to a measure that identifies how

dissimilar relevant results of the query are to each other.

Figure 3: Example of diversity in search results
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For example, in Figure 3, we can say that results on top are more diverse than the ones on the

bottom because while they both have the correct images, the ones on the top are subjectively more

dissimilar to each other. Diversifying search results is a major topic in Information Retrieval and

as such, has an immense amounts of research and tasks dedicated to it [12, 13, 14, 15, 16, 17, 18].

In image retrieval specifically, [19, 20] introduced the MediaEval2014 and Div400 datasets with

hand-labeled data that provides an ideal ranking with diversity in mind, and a way to measure

deviance from those ideal ranking. However, we will not review the specific work produced by

these tasks because despite the fact that the idea behind diversity is still very valuable, the specific

methods these works use are no longer very relevant in the modern image retrieval space with

deep neural networks. This is because as [21] reviewed in a presentation at multiple major IR

conferences, neural networks have become increasing popular in Learning to Rank applications

because they have been so successful at modeling an immense amounts of features and information

that previous work that rely on them just can’t reliably outperform them.

Personalized Image Recommendation

Recommendations can be thought of as the system’s results to an implicit query of user just

passively existing. So far, we have only focused on research as it relates to search on these social

media platforms. However, it’s important to also look at this problem from the recommendation

perspective, as it’s also a major part of the user experience. Since advancements in object recogni-

tion and the rise in popularity of neural networks, research in recommendation system in this space

has grown to model more and more detailed features with increasing accuracy. [22] introduced the

idea of content-based personalization in image recommendation in social media by analyzing click-

through data, using image attributes and descriptions to understand the image. Using that idea in

the neural network space, [23] incorporates spatial, temporal, and visual features into recommen-

dations by combining matrix factorization and Bayesian Personalized Ranking. [24] incorporates

social relationships and association with groups into recommendations.

While we won’t directly build upon the work done here, we will introduce methods that

can be adapted to improve this area as well.
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CHAPTER III

METHODS

Our goal is to ultimately connect users to the specific images they want more easily.

Problem Statement and Overview

In a traditional search environment, to connect users to the specific images they want, we

must take their query q and break it down into f facets, filter by any qualifiers in q, and then

produce a list of images ranked by some score that measures their quality and match to q. For

example, in the query “Empire State Building at night”, the only subject or facet is “Empire State

Building” with the qualifier “night”. So, the answer to the query should be a ranked list of quality

images that show the Empire State Building at night.

However, we of course can’t directly follow our ideology and have a computer analyze the

query exactly how we would. We must approximate that understanding. As such, the quality of our

best approximation of the understanding of the query is extremely important to providing quality

search results. This is because even if we perfectly analyze all of our images and their dynamics,

we can’t provide users with what they want if we cannot match their language to our analysis.

While we won’t mention all the problems that makes it so, in long and complicated queries, the

intricacies in language make it difficult to approximate understanding all its facets and qualifiers.

To deal with this difficulty, instead of proposing an improvement to the way we analyze the

query, we adopt an exploration based approach:

Exploration

Concretely, we propose to expand upon the exploration system proposed in [4] that presents

the users with clusters of images formed from the selected category (like subject) as a way to

navigate through the images by using multiple layers of categorization. Selecting a cluster would

narrow the images down to only those, and run the images through cluster analysis of a different
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category, or simply display them if the categories convey enough information or if the images have

already been narrowed down enough.

This sort of exploration can be understood as search without classification. If we identify all

the clusters we see along the way, we can directly connect users to that specific cluster by matching

it to their query. However, by using exploration, we are separating our ability to serve images and

our ability to match all the clusters to users’ need. After doing so, we can present users with the

specific images they want without having to fully understand the intricacies of the query. A user

can simply query a simpler version of their query in the explorer, be presented with different facets

that they’d be interested in, and quickly arrive at the cluster they were looking for.

Figure 4: An explorer with subject and style analysis

13



In Figure 4, we can see an example of an implementation of this exploration approach

with subject and style as the categories to cluster around. We chose subject and style to clus-

ter around because that’s what we felt was enough to narrow down the images we encountered

(leaving it up to the internal search to provide all the images at least close to a “general” query).

However, if in another application we are particularly interested in an additional category (ultra

fine-grained subject, for example), we can simply cluster around the new category and display

images by subject −→ ultra fine-grained subject −→ style instead.

Formally, we define this sort of exploration as the way to serve the most diverse set of

images in a given category over all the categories. To naturally accomplish this, we cluster the

images around each category, and return the predicted cluster labels (one for each category) for

each image to the exploration viewer to serve. Given the categories C and the set of query results

I , for i ∈ RI , we must predict the cluster label l ∈ RL for each category c ∈ RC (where L, the

total number of clusters in category c, varies for each c and each query).

When given this problem and the two categories subject and style, the obvious answer

would be to just use a fully supervised neural network to classify every class. To do so, we can

view changing L as a variable bounded by L′, the theoretical maximum number classes that all

the potential classes of all possible queries would produce for a category c, and just substitute

the constant L′ in for L to get a RL′ classification problem for each image, for each category

c ∈ C (note that L′ is still different for each category). Style identification, as defined by [11],

can already be done by a supervised CNN, with L′ set to 20 (the number of style classes in their

dataset). Subject identification can also be formulated as fully supervised classification by defining

L′ as the sum of all distinct clusters of all the representative queries on the platform.

However, while this formulation could perform well in an offline lab-based setting, in a

real-world platform with hundreds of millions of images, it’s crippled by two of the main hurdles

we mentioned in the introduction: unseen images and shifting definitions. These two hurdles

mandate that we know about every cluster and that we keep our knowledge absolutely up-to-date.

Because if we don’t know about every cluster or if we only know about the category from 10 days

14



ago, we can’t cluster properly. For example, in subject identification, if we trained over Chicago

and New York, running images of Seattle through our model would tell us that none of the images

belong to any class with reasonable confidence if Seattle was, in fact, different from Chicago and

New York. And even if we did know about the cluster, if our training dataset didn’t closely match

today’s understanding of styles and subjects, we would get our cluster labels incorrect (only this

time confidently so).

To deal with these hurdles, we would have to constantly train and re-train our model, learn-

ing about unseen images and re-learning definitions of old clusters. Both of which, are very costly.

So, to reduce our need to constantly train and re-train, we propose to use deep metric learning for

this problem instead of traditional neural network methods.

Deep Metric Learning

Deep metric learning (also often referred to as distance metric learning) is a semi-supervised

learning method to learn information-rich representations or features in a low-dimension space us-

ing neural networks by first training over a very large general task, and then re-training only the

last layer (the layer which provides the representations) on the specific task [25]. It’s often used in

fine-grained image recognition tasks like facial recognition, reverse image search, and fine-grained

image search [26, 27, 28]. In image classification tasks, the neural network is naturally first trained

on ImageNet, and then retrained on a small dataset with a loss function that attempts adjusts the

wights so that we maximize distance between two dissimilar images and minimize the distance

between two images similar images.
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Figure 5: Demonstration of deep metric learning’s objective

In the demonstration given in Figure 5, we can see what we’re trying to accomplish with

deep metric learning in our toy dataset for subject diversification. We start in a space that doesn’t

separate our data very well, and want to end up in a space that separates our data as best as possible.

Mathematically, we can find this transformation by calculating the loss in our current representa-

tions (as represented by a metric that measures the euclidean distance between images that should

be similar and images that shouldn’t be) and back propagating to end up in our desired space over

many iterations.

More concretely, in training, given the class labels for all the training images, we arbitrarily

separate them into mini-batches (Note that batch selection also matters, and can be thought of

as part of sampling), calculate their representations by feeding them forward our neural network,

and then sample n images, calculate the loss based on the samples, and back propagate the loss.

We repeat this process for all the remaining mini-batches and ultimately repeat again for all the

epochs we need to converge. Technically, our the loss functions are defined as the loss over all

combinations of the images in the mini-batch (all n3 triplets if using triplet-based loss for example).

However, in practice, we sample to estimate this loss because it’s computationally hard to go

through all the combinations and many of the combinations become 0 after just a few iterations.

The main benefit of deep metric learning is its ability to produce feature-rich representations
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of unseen images. In fact, in typical deep metric learning tasks, the test cases consist only of images

belonging to classes never seen before [29, 30]. This is because by learning the transformation that

separates our training images into their respective class as much as possible, we implicitly learn

the intricacies between all the classes and use that knowledge to evaluate where an unseen image

fits in the transformed space.

Most of the research into deep metric learning has focused on improving the two main

components that impact the learning process: sampling and loss. [31] introduced a fundamental

way of thinking about loss functions in deep metric learning by introducing triplet loss, the loss

function. Triplet loss, given an image, finds a positive image (an image that’s in the same class as

the original) and a negative image (an image not in the same class as the original), and calculates

loss such that the distance between the given and positive image is small, and the distance between

the negative is large. Building on this basis, [32] introduces Proxy-NCA, which incorporates the

idea of neighborhood component analysis into triplet loss, and instead of forming triplets with sin-

gle positive and negative images, forms triplets with proxies that represent an entire neighborhood

of images. Unlike the other papers, [33] looks at the effect of sampling in deep metric learning,

and finds sampling is just as important as the loss function, and that properly weighted sampling

with a simple loss function can outperform many state of the art methods. In our work, we use

their distance weighted sampling function, and explore working with a hierarchical loss function

to work alongside it.

Deep Metric Learning in Exploration

Exploration, as we mentioned earlier, needs clusters that represent the most diverse sets

of images. To get those with deep metric learning, we need to train two models per category: a

neural network doing deep metric learning and a clustering model. We naturally train the neural

network on classes for the given category, and use a simple k-means clustering method to cluster

the resulting embeddings for the images. This separation of our feature learning and clustering

is a major benefit to us, and is the reason why deep metric learning handles shifting preferences

much better than a normal neural network classifier. With feature-rich embeddings, it’s much
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easier for us to monitor the shift in our data (which can be the emergence of a new class or the

shifting definition of an existing one), and work to incorporate these changes in our final clustering

model—all without re-training our deep metric learning model.

That said, it’s important to note how subject clustering in the deep metric learning approach

has a unique problem. When we train our neural network, we train over all the different different

classes of all the queries (exactly how deep metric learning models are traditionally trained). This

means that 5 classes formed from the query “New York”, which are intuitively more similar to each

other, are treated the same as 5 classes from 5 different queries in our training process. Of course,

over enough samples, this predisposed intuition would be naturally captured by our neural network.

However, classes from a query that doesn’t return many images would particularly suffer because

they would be overpowered by the noise introduced by treating intra-query classes and inter-query

classes the same, and fail to converge at an equilibrium where all its classes are appropriately

separated.

To help deal with this problem, we explore using hierarchical loss alongside proper distance-

weighted sampling introduced by [33].

Hierarchical Loss

When using hierarchical loss, our main objective is to exploit predisposed information we

have about the relationships between classes to guide our deep metric learning model to reflect

these relationships. The assumption of that objective being that if only few images are preset for a

set of classes, our model can compromise and leave the classes to be similar to each other, instead

of trying to forcefully separate them and ending up with very noisy embeddings.

To implement this idea, we make a very simple modification to the margin loss introduced

by [33] by adding a dynamic variable δ.

`hierarchical(i, j) := (α + yij(Dij − (β × δij)))+ (Eq. 1)

In Eq. 1, the i are the image we picked, and j is either a positive or a negative sample for

the image we’re trying to find loss for, α is a hyper parameter that controls margin of separation,
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yij ∈ {−1, 1}, Dij is the distance between the two images, and β is the class-specific learned

parameter that controls the separation of boundary between positive and negative classes. The

variable we added, δij adds predisposed information about the class relationships to the learned

boundary from the data when comparing to negative samples. In positive samples, i.e the samples

of the class the image belongs to, δij is 1 because our predisposed information is available only

between two different classes. δij is a class-specific variable that incorporates intuitive distance

between samples of two different classes, as defined by a tree that represents the training dataset.

This tree can either be generated automatically according to some metric, or be hand-made based

on prior information about the dataset (ex. all SUVs made by different manufacturers belong to

the higher order topic “SUV”, and can be grouped as such).

In this thesis, we will treat δij as a class-specific variable, and work under a simple intu-

itive assumption that images belonging to the same query are naturally more similar to each other

than the images from a different query. We primarily do this because while it’s possible to more

precisely find the intuitive distance between all possible cluster pairs, finding it would require us

to already have a model that does something similar to deep metric learning.

As we see from Eq. 1, in negative samples, when yij = −1, the loss induced by the sample

becomes 0 if Dij + α = β × δij . So, if we intuitively believe that our anchor image, the one we

picked samples for, should be closer to this specific negative class than other classes, we could set

δij to be lower than all the other classes so that this separation boundary induces 0 loss even while

being smaller than the other classes.
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CHAPTER IV

EXPERIMENTS

In this work, our main conceptual contribution is separating labeling and differentiation of

image classes to serve users the specific images they want without a need to explicitly understand

their need or the meaning behind the image classes. Our technical contribution, hierarchical loss

that adds predisposed information about class relationships, we will evaluate on the places190

dataset that we introduce that separates images based on the subject category.

Dataset

We introduce the places190 dataset, which comprises of 30 queries or large topics (ex. New

York), each broken down into 5-7 classes or small topics (ex. Manhattan Bridge). We picked the

large topics by picking popular locations on Flickr, and then picked small topics to break the larger

topic down into by going on Tripadvisor and finding the top attractions for the given location.

When picking large topics, we first ensured that its general subject is not the same as any large

topics we had already picked (this is mainly to avoid adding significant noise when we do negative

sampling), and that it can be broken down into at least 5 small topics. When picking the small

topics, we just ensured that there were at least 50 public images available on Flickr for the given

attraction on Tripadvisor. After generating the dataset’s topics, we directly use the Flickr API

to mine 50 public images per small topic, for a total of 30 large topics, 190 smaller topics and

190× 50 = 9500 images.

This mining isn’t a perfect way to get images for the smaller topics because it introduces

quite a bit of noise, relying on crowd sourced annotations for the topics and providing no guarantee

of a subject other than the annotated one not being present. However, we use it because it very

accurately resembles a normal use of exploration on Flickr. We further also limit our images to

50 per small class to force our model to be robust enough to perform well on worse than usual

conditions.
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Due to these constraints we have imposed on our dataset, it’s fundamentally hard to perform

well on. As such, we expect that a model that performs well on this dataset will perform even better

in real-world applications of exploration.

Experimental Setup

To implement our hierarchical loss, we extend the work of a popular github on deep metric

learning1 that implements multiple baselines. We experiment with the state-specific version of

our loss, and use the 2-depth natural hierarchy formed with larger topics and smaller topics as

our states. All experiments for subject clustering were performed on a desktop with 8-core Intel

i7-4820k 3.7Ghz, 65GB physical memory and Nvidia GeForce RTX 2080TI with 11GB graphic

memory.

Sampling

Following the train-test split in other deep metric learning datasets, we split our dataset by

classes, training over the first 95 small image classes, and testing over the remaining 95. To create

mini-batches from these training images, we also follow [34]’s mini-batch construction and create

mini-batches of size 112 with 4 positive samples per class.

We use [33]’s distance weighted sampling to estimate the loss inside each mini batch in

our loss function. Due to the skew of the classes in the subject category we’ve already discussed,

distance weighted sampling is vital to quality embeddings in our case.

Evaluation Metrics

To evaluate the quality of our deep metric learning model, we first pass forward all our test-

ing images through the trained neural network, and then use k-means clustering with 95 classes.

Since we can’t directly measure precision from the resulting clusters of the k-means model, we fol-

low other deep metric learning papers, [26, 27], and adopt normalized mutual information (NMI)

and recall@k to evaluate the quality of our deep metric learning model.

1https://github.com/Confusezius/Deep-Metric-Learning-Baselines
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NMI measures the "amount of information" stored in clusters, and be formally written as:

NMI (X,Y) =
I(X;Y )√
H(X)H(Y )

(Eq. 2)

Here, I(X;Y ) is mutual information between the predicted cluster labels X (X = {0, .., n − 1})

and ground truth cluster labels Y (Y = {0, .., n − 1}), and H(X)H(Y ) is the entropy for the the

two cluster labels respectively.

Recall@k measures the quality of nearest neighbor retrieval, adopted from [35]. It measures

the quality of image retrieval by finding the proportion of query images (one of the images of

the clusters) for which the k nearest neighbors represent the whole true cluster. It can still be

represented in the original equation of recall as:

Recall@k =
1

N

N∑
1

|true_cluster[i] ∩ pred(true_cluster[i])@k|
|true_cluster[i]|

(Eq. 3)

Here, the predicted images for the given cluster i (pred(true_cluster[i])@k) are the k-nearest-

neighbors of the centroid (centroid ∈ all predicted centroids {0, .., n − 1}) most similar to a ran-

domly picked image from the cluster.

Looking at exploration, NMI is a measure of how informative our clusters are in a given

category, and recall is a measure of how many of the original images we are able to display on

the last step. Here, a high NMI is essential to our deep metric learning method because without

one, our exploration system lacks enough confidence to be usable. Of course recall also matters.

However, with a low NMI score for example, when a user clicks on a subject cluster that resembles

the Manhattan Bridge, we cannot assure the user that pictures of the Manhattan Bridge aren’t

hidden somewhere in a different subject cluster, or that the images inside are exclusively of the

Manhattan Bridge. And without that reasonable assurance, we end up right at our central problem

and force the user to explore all the images themselves.
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Results

Since we do not fully understand the impact of changing our new variable δ, we begin by

quantifying its impact on recall for our dataset. When changing δ, it’s important that we never set it

less than 1.0 because we directly multiply it with our learned parameter β, and β has regularization

applied to it. So, if we multiply β by a number less than 1.0, we indirectly induce regularization

loss as well. To avoid that, if we need to increase the gap, we simply increase the other delta

instead.

Table 1: Impact of changing delta on recall@k

Delta Recall
close far 1 2 4 8
3.0 1.0 0.6432 0.7263 0.8034 0.8556
1.5 1.0 0.6562 0.7404 0.8074 0.8615
1.0 1.5 0.6500 0.7375 0.8011 0.8526
1.0 3.0 0.6360 0.7234 0.7922 0.8446

In Table 1, "close" means that the two classes are siblings in the dataset tree, and "far"

means that they are not. As we see from the table though, we got results that contradicted our initial

conjecture that classes that are close to each other intuitively should be forced to be closer while

training. Our conjecture rested on the assumption that if they weren’t, the noise added by forcing

them apart with a small dataset would overpower the benefit we get from potentially successfully

separating our classes apart for clustering. However, even with 50 just images, it appears that our

conjecture does not hold up. This is likely because our dataset, although very sparse, still has

enough images to successfully separate class boundaries (although not mentioned here, this effect

is also evident by the fact even when mean loss per epoch drastically changes by changing deltas,

all of them still converge at a similar rate) with deep metric learning, and helping our method do

this is what actually gives us performance increase. Outside of our conjecture, the table also shows

that values too far from the normal also deteriorates our method, no matter which way it is. For
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comparison, all β values per class are initialized as 1, and end up in range {0.94..1.4}.

Now, we compare the results of our hierarchical loss against state of the art deep metric

learning models, using the best values of delta that we got from our previous experiment.

Table 2: NMI and recall@k on PLACES190

Model NMI Recall
1 2 4 8

Proxy NCA [32] 0.5411 0.5739 0.6615 0.7392 0.8114
LiftedStruct [26] 0.5654 0.6314 0.7192 0.7964 0.8503

N-Pair [36] 0.5784 0.6244 0.7183 0.7918 0.8469
Margin [33] 0.5967 0.6493 0.7349 0.8027 0.8575

Hierarchical 0.5975 0.6562 0.7404 0.8074 0.8615

As we can see, hierarchical loss outperforms all of our baselines. However, if we critically

look at our dataset and our performance gains, we can see that predisposed information we were

working with doesn’t actually contribute much. In fact, the performance gain over the simple

Margin Loss is minimal. Now considering that our dataset was comprised of only 30 large topics

and had clear connections between siblings classes, we can see that our dataset was almost perfect

for this loss function—which isn’t the case for arbitrary applications and datasets like cars, cub200

or online products. Despite that, we only got minor performance gains.

Taking into account that we performed a grid search to find the most optimal delta, our

results suggest that our predisposed assumption that 2 image classes belonging to the same query

end up being closer to each other in the neural network doesn’t hold up many times, even if it does

on a grand scale. This means that to get reasonable performance gains from hierarchical loss, we

must go 1 step further and calculate the intuitive distance between all class pairs. However, even

assuming that calculating such distance would give us performance gain, in practice, calculating

such distances isn’t possible without extensive feature engineering and a method that already does

something close to deep metric learning. Therefore, in its current state, hierarchical loss doesn’t

provide enough performance gains to use over loss functions that make no use of predisposed
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information despite having potential and sound presumptions.

Example

Even after looking at the evaluation of our deep metric learning method though, it’s hard to

visualize how a model with these scores would perform in our exploration framework. So, we will

now look at an example of the model handling images.

Figure 6: Explorer using DML with 5k images from Flickr with the query "New York"

In this example, we train the subject category over the places190 dataset mentioned above,

and style category over the predictions generated by [11]’s CNN model for the places190 dataset.

We train the models with hierarchical loss/distance sampling and N-pair loss/N-pair sampling for

subject and style analysis respectively. After training, we pass forward over test images through the
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network, run k-means clustering over a small subset of the images (10%) to determine the number

of classes by silhouette score, and then run k-means clustering over the optimal number of classes.

As we can see from Figure 6, the explorer performs reasonably well, and more importantly,

is interpretable. The subject clusters can be reasonably labeled as sky scrapers, nature, bay, streets

and another view of the bay respectively. The same is true with style clusters, where we can also

reasonably guess the specific style each cluster belongs to. This interpretability allows our explorer

to fulfill its job, and guide the users to the specific images they want very quickly.

Despite the fact that we didn’t explicitly predict the meaning behind the cluster, because

we use many small classes to train our deep metric learning model, our model could generate

embeddings that could reflect the meaning. And so, with a dataset that mines more representative

samples and deals well with noise, exploration can be even better.
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CHAPTER V

CONCLUSION

In this thesis, we applied deep metric learning to image exploration to connect users to

specific images when traditional search fails. The main benefit of exploration is its fundamental

ability to inherently work around the need to map clusters to natural language. Because of this

design advantage, we can effectively work around NLP problems around breaking down complex

queries and still serve the images with complex filters quickly and effectively.

Alongside the concept, we also employed deep metric learning to handle exploration, man-

aging unseen image classes and shifting definitions of the image clusters well. We provided a

visualization of what exploration with deep metric learning can provide, and to specifically better

deal with unseen or under-represented image classes in the subject category in our exploration im-

plementation, we also explored using hierarchical loss. Hierarchical loss attempted to exploits the

predisposed information about the structure of subject analysis in order to get better quality em-

beddings with few samples. However, hierarchical loss in our strict aggregate estimate approach

wasn’t able to perform well enough to warrant using it over traditional methods.

Despite that, there are still many avenues future work can explore based on our results.

In particular, hierarchical loss still presents interesting problems worth investigating. Developing

a way to automatically estimate class-wise intuitive distance without having to do deep metric

learning or feature engineering would particularly help to make hierarchical loss viable. Outside

of technical aspects, future work can also explore using our methods to connect users to images

outside of exploration. With embeddings from this work, it would be interesting to try to tackle the

problem in this work in the original form, and work to label clusters of images with meaning and

break down the query to match it to a cluster. Presumably, the aesthetic style and subject analysis of

images can also help to close the gap between user’s inherent preferences and our approximations

of them.
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