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ABSTRACT 

 
 

Rotational Behavior during the Pole Test:  
A Novel Behavioral Assay in a Mouse Model of Parkinson’s Disease 

 
 

Mariah Barry 
Department of Biomedical Sciences 

Texas A&M University 
 
 

Research Advisor: Dr. Rahul Srinivasan 
Department of Neuroscience and Experimental Therapeutics 

Texas A&M University 
 
 

Parkinson’s disease (PD) is a debilitating disorder that is likely to reach pandemic 

proportions by the year 2040, and there is no cure. Current treatments are symptomatic in 

nature and often have deleterious side effects, such as L-dopa-induced dyskinesia. 

Neuroprotective drugs, however, target the cause of PD, which is neuronal death; these drugs 

may prevent motor deficits from progressing in patients with PD. The development of 

neuroprotective drugs, however, requires a reliable and clinically translatable animal model 

for PD. The classic preclinical model for testing drugs for PD is a rodent model based on 

intracranial injections of 6-hydroxydopamine (6-OHDA), a neurotoxin that results in the loss 

of dopaminergic neurons. Injection of 6-OHDA into the dorsolateral striatum of rodents 

results in retrograde degeneration of dopaminergic axons, resulting in the loss of 

dopaminergic neuronal cell bodies within the substantia nigra pars compacta (SNc), which is 

the brain region lost in PD. Unilateral lesioning with 6-OHDA damages only one side of the 

SNc, and the extent of damage can be quantified with drug-induced rotational assays. These 

behavioral assays, while effective, require administration of additional drugs to induce 
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rotations. The use of drugs, specifically apomorphine or amphetamine, to induce rotations in 

6-OHDA injected rodents is problematic because of potential drug-drug interactions, 

especially in the setting of drug discovery. To address this issue, I developed a new 

behavioral assay that induces rotational behavior during a motor task without the need for 

additional drugs. I utilized either sham-operated or ovariectomized female mice that were 

injected with 6-OHDA into the dorsolateral striatum. These mice were subjected to a 

specialized task in which the mice were required to turn and descend down a 2-foot pole. 

Three trials per mouse were conducted at 5 time points, which included 2 time points prior to 

6-OHDA injection and 3 time points following 6-OHDA injection; each time point was at 

least one week apart. I quantified several parameters utilizing this assay format, including the 

time to turn, time to descend, average score of descent, direction of rotations, and number of 

rotations. Results showed that 6-OHDA significantly increased the number of rotations in 

both ovariectomized and sham-operated female mice without the use of any additional drug. 

My data suggest that spontaneous rotations whilst performing a specialized task such as 

descent down a 2-foot pole are a useful measure for the discovery of preclinical 

neuroprotective drugs to treat PD.  
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NOMENCLATURE 

 
 

PD  Parkinson’s disease 
 
SNc  Substantia nigra pars compacta 
 
6-OHDA 6-hydroxydopamine 
 
DAT  Dopamine transporter 
 
PBS  Phosphate-buffered saline 
 
OCT  Optimum Cutting Temperature 
 
NGS  Normal goat serum 
 
TH  Tyrosine hydroxylase  
 
VTA  Ventral tegmental area 
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CHAPTER I 

INTRODUCTION 

 
 

Parkinson’s Disease 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by both motor 

and non-motor symptoms. Motor symptoms include primary symptoms, such as impaired 

voluntary motor control, slow movement, tremors at rest, stiffness, frail posture, as well as 

secondary symptoms, such as shuffling gait, cramped handwriting, weakened gripping, difficulty 

speaking, and eventually immobility.1 Non-motor symptoms include depression, anxiety, 

irritability, difficulty with executive function, dementia, hallucinations, and more.2 While PD 

used to be considered a rare disorder, it will likely reach pandemic proportions in the next 20 

years; the number of global cases has doubled since 1990 to over 6 million cases, and the number 

is projected to climb to over 12 million cases by 2040.3 Given that the cost of caring for a patient 

with PD in the United States is approximately $22,800 annually, the national economic burden of 

PD is expected to increase substantially in the next few decades.4 Despite its discovery in 1817, 

PD is still largely untreatable.3  

Pathophysiology 

Symptoms for PD result from the gradual loss of dopaminergic neurons in the substantia 

nigra pars compacta (SNc), a brain region located within the midbrain that is crucially involved 

in motor function.5 The aggregation of alpha-synuclein proteins within the SNc, known as Lewy 

bodies, is also associated with PD; the neurotoxic buildup interrupts neuronal functioning.5 

While the exact biochemical mechanisms behind PD remain unknown, there are multiple 

suspected causes. Some genetic mutations have been tied to PD, including those in the PINK1 
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gene; mutations in PINK1 have been known to promote aggregation of alpha-synuclein.5 

Additionally, exposure to environmental toxins may also be linked to PD.5 However, none of 

these suspected causes alone account for most cases of PD; instead, multiple factors likely 

interact to collectively result in oxidative stress, neural inflammation, and eventual 

neurodegeneration.5,6 

Sex Differences 

 While being above the age of 65 is one of the most well-known risk factors for 

developing PD, there is a significant disparity between sexes as well.7,8 PD affects both men and 

women, but it is twice as prevalent in men.9 Male susceptibility to PD is likely enhanced due to 

biological differences in brain physiology and endocrinological function. The female 

nigrostriatal pathway has an increased endogenous concentration of dopamine, which translates 

to better performance in dopamine-related motor and cognitive functioning relative to men.10 PD 

is associated with reduced dopamine transmission within the nigrostriatal pathway; thus, 

naturally higher levels of dopamine in the female brain may be partially responsible for their 

reduced susceptibility to PD.8,10 Furthermore, sex hormones may also impact the progression of 

neurodegenerative diseases. Some research has suggested that estrogen is actually 

neuroprotective, and can reduce dopaminergic neuron loss, whereas testosterone has a 

detrimental effect.8 Understanding the mechanism by which estrogen exerts neuroprotection 

could allow for the development of neuroprotective drugs to treat PD in humans. 

Neuroprotective Drugs 

Current treatments do not focus on the underlying causes of PD, but rather target 

symptoms. Because many symptoms result from reduced dopamine levels within the striatum, 

dopamine agonists such as L-3,4-dihydroxyphenylalanine (L-dopa) are often administered to 
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patients.11 While drugs like L-dopa can be helpful initially, they are associated with harmful side 

effects; they also tend to lose effectiveness over time.11 

Alternatively, neuroprotective drugs have become a favored area of research regarding 

neurodegenerative diseases; these drugs are designed to slow down degeneration of neurons and 

provide protection against future damage.12 In patients with PD, neuroprotective drugs may 

specifically help to reduce cell death in striatal dopaminergic neurons. Currently, there are no 

neuroprotective drugs available as treatment for PD. Interestingly, nicotine and tobacco usage are 

inversely correlated with the development of this disease because of associated neuroprotective 

side effects.13 Due to the dangerous side effects and the likelihood of addiction, nicotine would 

cause more harm than benefit as a treatment for PD. Cytisine, which is a smoking-cessation drug 

with similar structural and functional properties as nicotine, lacks addictive properties and may 

be a viable neuroprotective treatment option for PD.14  

Models of Parkinson’s Disease 

In order to develop better neuroprotective treatments for PD, a biological model that 

replicates the disease in humans must be developed. The gold standard model for PD is the 6-

hydroxydopamine (6-OHDA) rat model, with 6-OHDA administered either unilaterally or 

bilaterally.6 6-OHDA is a neurotoxin that specifically causes cell death in dopaminergic neurons 

of the substantia nigra pars compacta (SNc), the same area of the brain affected in humans with 

PD.6 Using stereotaxic injection, the toxin can be administered to the rodent’s striatum, a section 

of the forebrain integral to the nigrostriatal pathway.15 In this pathway, dopaminergic neurons in 

the SNc project to the striatum, releasing dopamine upon firing. When the neurotransmitter is no 

longer needed in the synapse, it is cleared away using a dopamine transporter (DAT), which 

returns dopamine to the presynaptic neurons originating in the substantia nigra.15 Because 6-
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OHDA is similar in structure to dopamine, the DAT returns the toxin to the neurons, leading to 

neuron death in the substantia nigra, as seen in patients with PD.6 While the nigrostriatal 

pathway does not initiate movement, it is vital for regulating motor function; thus, when 

dopaminergic neurons die, affected individuals begin to experience dyskinesia.5  

While the 6-OHDA model of PD reproduces many aspects of the disease, it tends to 

cause neuronal death quickly rather than the realistic slow onset of symptoms, and it fails to 

cause the aggregation of proteins.16 Alpha-synuclein overexpression has recently become another 

model for PD. Alpha-synuclein is the primary constituent of Lewy bodies; injecting viral vectors 

carrying the alpha-synuclein gene into the substantia nigra can lead to the artificial agglutination 

of the protein in rodents.16 Overexpression of alpha-synuclein leads to gradual 

neurodegeneration, at a rate more comparable to that of PD in humans. However, 

neurodegeneration in the alpha-synuclein model is only moderate compared to that seen in the 6-

OHDA models, and motor dysfunction is less apparent as well.16  

Estrous Cycling and the Role of Estrogen 

 Ovariectomies can be performed on female mouse models of PD in order to better 

understand the effect of the absence of estrogen on the development of PD, as seen clinically in 

men or postmenopausal women. Ovariectomy, or excision of the ovaries, removes the primary 

source of estrogen in the female mouse; the success of ovariectomies can be determined through 

vaginal smearing and cytological analysis.17 The mouse estrous cycle, comparable to the human 

menstrual cycle, lasts approximately 4 days, and has 4 definitive stages: proestrus, estrus, 

metestrus, and diestrus.18 The stage is determined by the predominant cell types present in the 

female reproductive tract, which is in turn determined by varying levels of sex hormones.18 

During the proestrus stage, estrogen, luteinizing hormone, and follicle-stimulating hormone are 
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all at their peak concentration; nucleated epithelial cells predominate in vaginal smears at this 

stage.19 The subsequent stage is estrus. During estrus, prolactin reaches its peak concentration 

while all the other hormones drop to low levels; vaginal smears are characterized by showing 

predominantly cornified epithelial cells.19 The third stage, metestrus, is characterized by a slight 

increase in estrogen and progesterone; vaginal smears exhibit nucleated epithelial cells, cornified 

epithelial cells, and neutrophils.19 Finally, during diestrus, estrogen levels are at their lowest 

concentration whereas progesterone levels are at their highest concentration; neutrophils 

predominate in vaginal smears at this stage.19 

Behavioral Assays 

Behavioral assays are a quantitative method to ensure the validity of a given model. 

While no model has consistently demonstrated all of the motor and non-motor symptoms of PD 

in humans, various tests can be used to measure the range of symptoms that are present in 

models.20  

Tests such as the open field test and apomorphine-induced rotations test allow for 

observation of general activity, locomotion, as well as anxiety or stress levels. The apomorphine-

induced rotations test in particular highlights the damage done to the nigrostriatal pathway in 

rodents with unilateral lesioning.21 Intraperitoneal injections of apomorphine or amphetamine, a 

dopamine agonist and synergist, respectively, will cause heightened activity in the dopaminergic 

neurons of the nigrostriatal pathway. If one side of the brain has been lesioned with 6-OHDA, 

unbalanced dopamine release will occur, resulting in one-sided movement, or rotational 

behavior; a greater degree of damage on one side will result in an increased amount of rotation.22 

The open field test involves placing the mouse in an arena with a designated inner zone; the 

mouse is then monitored for its total distance traveled, average speed, and the amount of times it 
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enters into and remains in the inner zone.23 This test allows for measurement of both motor and 

non-motor characteristics, including locomotor ability and anxiety levels.23 

Tests such as the pole test, cylinder test, challenging beam test, and grip strength test 

allow for verification of motor symptoms in PD models. In the pole test, the mouse must turn 

down and descend a 2-ft pole; this test is used to measure motor coordination and bradykinesia in 

the mice.24 The cylinder test is one in which the mouse is placed in a glass cylinder and removed 

after rearing up to touch the sides of the cylinder 20 times. This test verifies whether the mouse 

exhibits asymmetry between the use of their limbs when touching the glass.24 During the 

challenging beam test, the mouse must traverse an increasingly narrow beam, which is covered 

with a raised mesh grid; motor coordination is measured in this test based on the mouse’s speed, 

head orientation, and the number of times a foot slips through the grid.24 Lastly, the grip strength 

test is used to determine the extent of muscle weakness in one limb compared to the other, which 

again reflects the extent of damage to the nigrostriatal pathway on one side of the brain.25 Given 

that the 6-OHDA model exhibits a clinically translatable amount of neurodegeneration, verified 

through measured motor and non-motor deficits, it can be utilized as a model for PD in humans. 

This provides the necessary foundation for therapeutic testing. 

Objectives 

My primary objective was to develop a mouse model of Parkinson’s disease using 

unilateral stereotaxic striatal injections of 6-OHDA, then perform ovariectomies on half of the 

mice to determine the effect of estrogen, or lack thereof. With these animal models, I then 

conducted various behavioral assays on the mice to determine a new method of quantifying PD-

related pathophysiology in mouse models. In my study, I developed a novel assay based on 

spontaneous rotational behavior that occurs as the mouse descends down a pole. This new assay 
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provides several advantages, as it provides simultaneous measurements of motor coordination 

and dopamine release without the need for injection of additional drugs.  
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CHAPTER II 

METHODS 

 
 

Experimental Timeline and Overview 

This project took place over the course of 6 weeks, using a cohort of 9 female mice. Out 

of these, 5 females were ovariectomized and 4 females received sham surgeries. Sham surgeries 

and ovariectomies took place on the third day of week 1. Additionally, all of the mice received 

intrastriatal injections of 6-OHDA on the fourth day of week 3. Behavioral training took place 

one day before behavioral testing throughout the project timeline. Behavioral testing occurred on 

the third day of week 1 prior to ovariectomies and sham surgeries, the third day of week 2, the 

third day each of week 4, 5, and 6; the last three days of behavior testing occurred after 

intrastriatal injections of 6-OHDA. Vaginal smears were collected every day throughout the 

experiment timeline, beginning on the first day of week 1. The mice were sacrificed after 

behavioral testing ended on the third day of week 6. Figure 1 depicts the timeline details for 

behavioral testing, ovariectomies, sham surgeries, and 6-OHDA injections. Behavior tests that 

were performed included the novel object recognition test, apomorphine rotations, cylinder test, 

ladder test, and pole test. For the purposes of this capstone project, the pole test will be the only 

behavioral protocol explained. 

 

 

Figure 1. Experiment Timeline 
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Chemicals and Materials 

Nine female CL57BL/6 mice were utilized in this experiment; they were maintained in 

the Medical Research and Education Building at the Texas A&M Health Science center in the 

vivarium. Mouse cages included a wire rack for holding food and a water dispenser bottle. Both 

ovariectomies and sham surgeries required isoflurane and 100% oxygen for anesthetization. 

Mice were weighed on a scale, and clippers were used to shave fur around the incision site. 

During surgery, iodine, 70% ethanol, a scalpel, cotton swabs, and eye lubricant were utilized. 

After surgery, mice were placed in their home cage on a heating pad, and given peanut butter and 

water.  

Vaginal smearing required 0.9% saline, 70% ethanol, and double-distilled water; the 

saline was purified through a filter prior to beginning. Three Falcon 50 mL tubes were utilized to 

hold the saline, ethanol, and waste during the smearing process. A one-mL eyedropper was used 

to inject saline and collect cells. Smear samples were collected using a 48-well cell plate. 

Samples were viewed on a 25x75 mm glass slide and stained with crystal violet stain. Glycerol 

was used to cover the smear, and a 24 x 60 mm coverslip was placed on top. An Olympus CK2 

light microscope was used to visualize vaginal smear cell morphology. 

For stereotaxic injection of 6-OHDA, mice were anesthetized with isoflurane 

administered through a Kent Scientific SomnoSuite Low Flow Anesthesia System. For surgery, 

clippers, a scalpel, rat-toothed forceps, scissors, and eye lubricant were also used. Lesions were 

made using a Kopf Instruments stereotaxic apparatus. 10 μg of 6-OHDA in 0.9% saline and 

0.2% ascorbic acid was administered via glass-pulled pipettes. 

The pole test utilized a pole comprised of a rod that was 2 feet long and 0.5 inches in 

diameter. A 3-inch x 3-inch piece of cardboard was screwed to the top of the rod. The base plate 
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was approximately 8 inches long, 4.5 inches wide, and ¾ of an inch tall. Wood shavings were 

used for bedding, and all were placed in the bottom half of a rat cage. Rescue animal cleaner was 

used to clean the pole and rat cage. A 4K Ultra-HD digital video camera was used to record 

behavior on test days, and video recordings were stored on a 32-gigabyte or 64-gigabyte SanDisk 

memory card. 

For transcardial perfusion, isoflurane inhalant was used to deeply anesthetize the mice. 

The perfusion took place in a fume hood; a scalpel, scissors, and 24-gauge injection needle were 

used. Gibco phosphate-buffered saline (PBS) and 10% formalin were injected. After perfusion, a 

spatula, VWR 15 mL tube, and 10% formalin, and 30% sucrose were used for brain tissue 

storage. 

Brain slices were obtained using a Microm HM 550 cryostat, a single-edge razor blade, 

and Fisher Healthcare optimum cutting temperature (OCT) embedding medium. Slices were 

stored in 1% sodium azide in a 24-well cell plate. 

The immunofluorescence staining process required a 24-well cell plate, Gibco PBS, a 

Thermo Scientific MaxQ 2506 Lab Shaker, small paintbrushes, normal goat serum (NGS), 

Sigma Triton X-100, and both primary and secondary antibodies. The primary antibody used was 

chicken anti-tyrosine hydroxylase, diluted 1:1500. The secondary antibody used was goat anti-

chicken 594, diluted 1:2000. Slices were mounted on a 25x75 mm glass slide using fluoromount 

and a 24 x 60 mm coverslip; the edges were sealed with nail polish. Slides were imaged using an 

Olympus confocal scanning laser microscope. 

 

 

 



16 

Ovariectomy and Sham Surgery Procedures 

Ovariectomy Procedure 

Five female mice underwent ovariectomies. The mice were weighed immediately prior to 

surgery. Mice were then anesthetized with isoflurane in an induction chamber; they were 

removed when breathing slowed down to one deep breath per second. Fur on the back was 

shaved with a clipper. During surgery, mice remained anesthetized using vaporized isoflurane 

mixed with 100% oxygen. Mice were placed in the prone position, and two 1-cm incisions were 

made parallel to each side of the lumbar vertebrae. A 1-cm incision was made just behind the 

peritoneum on the erector spinae muscle to reach the ovaries. On each side, uterine blood vessels 

distal to the ovaries were ligated. Then part of the uterine horns, the ovaries, the oviducts and the 

surrounding fat were all excised. The incision was then closed and the mouse returned to its 

home cage. Mice were given peanut butter and water daily in small Petri dishes following 

surgery. 

Sham Surgery Procedure 

Four female mice underwent sham surgeries. The same protocol in the Ovariectomy 

Procedure section above was followed, but uterine vessels, ovaries, oviducts, uterine horns, and 

surrounding fat remained intact for each mouse. Then the incision was reclosed, and the mouse 

was returned to its home cage. The mice were also supplemented with peanut butter and water. 

Vaginal Smear Protocol 

To determine the estrous cycle phases occurring in both the ovariectomized and sham-

operated mice, vaginal smears were collected daily during the experiment. Prior to collecting 

smears, a 0.9% filtered saline solution was prepared. Three 50 mL beakers were used, one filled 

with the filtered saline solution, one filled with ethanol, and one left empty for waste disposal. A 
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48-well cell plate was labeled with identification numbers for each mouse. To begin, the cage 

was opened with the wire rack left in place. The first mouse was removed from the cage and 

placed on the wire rack, then grasped by the scruff of the neck by the handler’s non-dominant 

hand to immobilize the arms and head of the mouse. If the mouse urinated, it was allowed to 

finish and then was cleaned with double-distilled water. An eyedropper with a rubber bulb was 

filled ¾ full with saline solution, then inserted into the vagina of the mouse. The contents of the 

eyedropper were released inside the vagina, then sucked back into the eyedropper. This was 

repeated 4-5 times until enough cells were contained in the saline solution. The eyedropper was 

removed and the mouse was placed back in the cage. The solution was then dispensed into the 

appropriate well for that mouse, and the eyedropper was cleaned using filtered saline, 70% 

ethanol, then filtered saline again. The procedure was repeated for all the female mice.  

To visualize cell morphology, a drop of saline containing cells obtained from each mouse 

was placed on a glass slide and dried at room temperature. The slide was completely covered 

with crystal violet stain for six minutes, then rinsed with double-distilled water. Excess water 

was removed, then approximately 15 μL of glycerol was placed on top of the smear and the 

smear was covered with a glass coverslip. The cells were viewed immediately under a light 

microscope, and pictures were taken at 10x and 20x magnification. 

Stereotaxic Injection of 6-OHDA 

Two weeks after ovariectomies and sham surgeries, all 9 mice were stereotaxically 

unilaterally injected with 6-OHDA. Mice were anesthetized with isoflurane in an induction 

chamber until they were breathing one deep breath per second. The fur on their head between 

their ears and nose was shaved with clippers, and they were placed on the stereotaxic apparatus. 

Mice were continuously anesthetized during surgery using isoflurane. Once immobilized, the 
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skin of the head was incised and reflected laterally from the midline. A craniotomy was 

performed 0.8 mm anteroposteriorly, 2.0 mm mediolaterally, and 2.4 mm dorsoventrally. The 

neurotoxin, which was 10 μg of 6-OHDA in 0.9% saline and 0.2% ascorbic acid, was injected 

unilaterally into the mouse striatum via glass-pulled pipette at a rate of 750 nL/min. After 

injection, the needle was carefully removed, and the head was sutured shut. After surgery, mice 

were placed back in their home cage on a warming pad and supplemented with peanut butter and 

water.  

Pole Test and Analysis  

For pole test, the mice received two days of training prior to the first day of behavioral 

testing, then one day of training prior to each subsequent test day. For both training and testing, 

the pole used was 2 feet long and 0.5 inches in diameter. There was a cardboard topper and a 

heavy base plate at the bottom. The pole was placed in a clean rat cage surrounded with bedding.  

Training Days 

The pole was tipped until almost horizontal, and the mouse was placed on the pole nose-

up toward the cardboard topper. When each mouse was placed on the pole, the tail was manually 

stabilized while the pole was returned to the vertical position. Following release, the mouse had 

to turn nose-down on the pole and then descend until all four limbs were on the base plate. In 

cases where the mouse failed to turn within 15 seconds, the mouse was manually turned by 

gently pulling the tail up toward the cardboard topper. This trial was repeated three times for 

each mouse. Following each training session, the mouse was returned to its home cage. In 

between littermates of the same cage, urine and fecal matter was removed from the pole and base 

plate with a clean cloth, while for mice from different cages, the pole was thoroughly wiped 

down with rescue animal cleaner. 
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Testing Days 

Prior to testing, the digital video camera was set up on the tripod so that the entire pole 

test apparatus was visible. Once recording had begun, a sign with the day number, date, cohort 

number, test, and mouse identification number was passed in front of the camera. With the pole 

held almost horizontally, the mouse was placed on the pole nose-up toward the cardboard topper. 

Their tail was manually stabilized until the pole was vertical again. When the pole reached the 

vertical position and the hand was removed from the pole, then a timer was started. If the mouse 

turned on its own and descended, then it was placed on the pole again for its second trial. If the 

mouse failed to turn after 60 seconds, only then would the mouse be guided to turn down by 

having its tail pulled up toward the top of the pole. Each mouse underwent three trials. Prior to 

recording the next mouse, a sign with updated information for that mouse was passed in front of 

the camera. Protocol for cleaning the pole between littermates of the same cage and mice of 

different cages was the same as training days. After all mice finished testing, the camera 

recording was stopped. 

Analysis 

The pole test videos were manually analyzed. For each trial, each mouse was analyzed 

according to its time to turn down while on the pole, the time it took to descend the pole, and the 

average score of descent. The start time for each trial began when the mouse was placed 

vertically in the starting position (nose-up), after the hand was removed from the pole. The time 

to turn was defined as the amount of time it took from start time for the mouse to turn 180° so it 

was facing nose-down, after bringing its hind limb around to reposition itself on the pole. See 

Figure 2. 
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Figure 2. Example of mouse turning 180° and bringing hind paw around. 

 

The time to descend was recorded as the time after turning until the time the mouse 

touched the base plate at the bottom of the pole with all four limbs. The score of descent was 

given based on a scale from 0 to 5, with 5 being the best. The scoring system was as follows: 0 = 

mouse stayed at top for 60+ seconds; 1 = mouse fell; 2 = mouse descended backwards; 3 = 

mouse descended sideways; 4 = mouse turned after descending halfway; 5 = mouse turned at top 

and descended. For each mouse, the data from all three trials were averaged. 

Due to observation of spontaneous rotations, particularly after unilateral lesioning with 6-

OHDA, the number of rotations for each trial was also retrospectively quantified. One rotation 

was defined as one 360° turn around the pole, measured only during the time it took for the 

mouse to descend. The number of rotations recorded was also averaged from the three trials for 

each mouse. 

Sampling and Statistics 

OriginLab software was utilized to perform two-way repeated measures ANOVA tests 

(surgical treatment*time) for significance testing in time to turn, time to descend, average score, 

and number of rotations for each group of females, ovariectomized or sham-operated. 

Significance testing was done for the weeks prior to 6-OHDA (week 1 and 2) and the weeks after 

6-OHDA (weeks 4, 5, and 6) for each of the four data sets.  
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Transcardial Perfusion and Brain Slicing 

Transcardial Perfusion 

After all testing was complete, mice were deeply anesthetized using isoflurane. Then they 

were placed in the supine position on a platform within a fume hood for transcardial perfusion. 

An incision was made perpendicular to the midline just below the ribcage. Another incision was 

made through the skin and ribs from the most lateral aspect of the ventral ribcage toward the 

clavicle. A second incision was made on the contralateral side through the ribcage so that the 

front-facing ribcage could be reflected cranially, exposing the entire thoracic cavity. With the 

heart visible, a needle containing PBS was inserted into the left ventricle, and approximately 1.5 

mL of PBS were injected to flush out the circulatory system. The vena cava was then transected 

to exsanguinate the mouse. Once PBS had been injected, a needle containing 1.5 mL of 10% 

formalin was inserted into the left ventricle, and its contents were released into the circulatory 

system. After 10 minutes of formalin profusion, the needle was removed and the mouse was 

decapitated. A sagittal incision was made through the skin on along the length of the skull and 

the skin was reflected laterally from the midline. The skull was transected between the eyes and 

down each side toward the dorsal aspect of the head. The top of the skull was then removed, 

exposing the brain. The brain was removed from the skull with a spatula and placed in a 15 mL 

tube filled with 10% formalin; the tube remained in a 4°C cooler overnight. The following day, 

the brain was transferred to a 30% sucrose solution and stored in a 4°C cooler until needed. 

Brain Slicing 

The brain was retrieved from its storage site in 30% sucrose and sliced using a cryostat 

machine set to -24°C. The olfactory bulbs and cerebellum were removed, and the brain was 

mounted rostral-side up on a chuck with OCT embedding medium. OCT medium was used to 
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cover the brain. When the brain and OCT medium were fully frozen, the chuck was mounted to 

the cryostat slicing machine. The slicer was set to cut at a thickness of 100 μm, and the first few 

slices were used to adjust the brain so it was properly positioned. Then, 100 μm brain slices were 

collected and placed in a 24-well cell plate. As the slicer approached the midbrain, 40 μm slices 

were collected and placed in the 24-well cell plate. After the brain slices were collected, the 

slices were put in 1% sodium azide and stored in a 4°C cooler until needed. 

Immunofluorescence Staining and Imaging 

Immunofluorescence Staining 

For each mouse, 2-4 midbrain slices were selected and transferred via a small paintbrush 

into a 24-well cell plate. The slices were washed twice with PBS for 5 minutes each on an 

agitator. Then slices were placed in a blocking and permeabilizing solution consisting of 10% 

NGS and 0.5% Triton X-100 in PBS. Slices remained in the blocking and permeabilizing 

solution for one hour, and then they were washed twice more in PBS for 5 minutes with 

agitation. The slices were incubated in the primary antibody solution, which had 1% NGS, 

0.05% Triton X-100, and a chicken anti-tyrosine hydroxylase antibody diluted 1:1500. The brain 

slices remained in the primary antibody solution overnight with agitation in a 4°C cooler. 

The following day, the slices were removed from the primary antibody solution and 

washed twice with PBS for 5 minutes each with agitation. The slices were then incubated in a 

secondary antibody solution for one hour; the solution consisted of 1% NGS, 0.05% Triton X-

100, and a goat anti-chicken 594 antibody diluted 1:2000. After secondary antibody incubation, 

the slices were washed twice with PBS for 5 minutes with agitation. The slices were transferred 

onto glass slides labeled with the date, mouse number, and antibody information. Once dry, the 
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slices were covered in fluoromount, and a coverslip was placed on top. The slides were left to 

fully dry, and then sealed with nail polish around the edges. 

Imaging 

Slides were imaged using confocal scanning laser microscopy. Images were taken at 10x 

magnification, and tyrosine hydroxylase (TH), a marker for dopaminergic neurons, was tagged 

and fluorescently highlighted in the images. Images of the substantia nigra pars compacta (SNc) 

and the adjacent ventral tegmental area (VTA), a part of the brain involved in reward, were taken 

on both the unlesioned side of the brain and the side lesioned with 6-OHDA. Four images were 

taken for each brain slice, and the images were spliced together to show a representation of 

dopaminergic neuron levels within the midbrain.  
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CHAPTER III 

RESULTS 

 
 

Vaginal Smears 

 Vaginal smears from both ovariectomized and sham-operated groups of females were 

observed under a microscope and compared based on the present cell morphologies. Analysis of 

vaginal smears from sham-operated females revealed that the cell morphology varied on a daily 

basis, corresponding with sequential phases of estrous cycling in the mice. Figure 3 shows 

vaginal smears from a female mouse who received a sham surgery and was still undergoing 

estrous cycling. Image A shows an abundance of nucleated epithelial cells, indicating proestrus. 

Image B shows an abundance of cornified epithelial cells, indicating estrus. Image C shows a 

combination of nucleated epithelial cells, cornified epithelial cells, and neutrophils, indicating 

metestrus. Image D shows an abundance of neutrophils, indicating diestrus. 

 

 

Figure 3. Images of vaginal smears from a sham-operated female over 4 consecutive days.  

 

Vaginal smears from ovariectomized females showed regularity in cell morphology from 

day to day, as seen in Figure 4. Images E, F, G, and H in Figure 4 all show an abundance of 

neutrophils, indicating that the mouse was in a prolonged stage of diestrus. Figures 3 and 4 show 
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a stark contrast in the cell morphologies presented in the ovariectomized females versus the 

sham-operated females over the length of one estrous cycle. 

 

 

Figure 4. Images of vaginal smears from an ovariectomized female over 4 consecutive days. 

 

 One of the mice continued cycling despite removal of the ovaries; all other 

ovariectomized females showed estrous cycle disruption. The behavioral data for this anomalous 

mouse were discounted. 

Midbrain Staining 

Midbrain slices were stained so as to highlight tyrosine hydroxylase (TH) within the 

substantia nigra pars compacta (SNc) and nearby ventral tegmental area (VTA). TH is an 

enzyme required for the production of dopamine, thus is more highly concentrated in 

dopaminergic neurons. The images in Figure 5 were taken from midbrain slices from a sham-

operated female and an ovariectomized female. TH is stained bright yellow in the pictures, 

indicating where dopaminergic neurons and their associated processes lie. The right side of the 

brains received an intrastriatal injection of 6-OHDA while the left sides of the brain were left 

unlesioned. As can be observed in Figure 5, the concentration of TH, and thereby dopaminergic 

neurons, is greatly reduced in the lesioned SNc of both the sham-operated and ovariectomized 

females. Some neurodegeneration also appears to have occurred in the VTA simply due to its 

proximity. Comparative quantification of TH concentration in the SNc is pending. 
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Figure 5. Midbrain slices highlighting unilateral lesioning in both groups of female mice. 

 

Pole Test 

Due to anomalous estrous cycling in one ovariectomized female, pole test behavioral data 

were analyzed for only 8 of the 9 females. Each female completed three trials for each testing 

day, and testing was conducted once a week for 5 of the 6 total experiment weeks. The mice 

were analyzed based on their time to turn, time to descend, and quality of descent, and the 

average of the three trials was recorded for each mouse; results were then separated according to 

the type of surgery each mouse received. Figure 6 below shows graphical results from the pole 

test. Blue indicates data from sham-operated females, while red indicates data from 

ovariectomized females; the green arrow indicates the time point at which all the mice received 

unilateral intrastriatal injections of 6-OHDA. Figure 6 graph A illustrates the average time to 

turn for each of the groups of mice over course of the experiment. Figure 6 graph B illustrates 

the average time to descend for each of the groups of mice over the course of the experiment. 

Figure 6 graph C indicates the score of descent for each of the groups of mice over the course of 

the experiment, with 5 indicating the highest possible score. 

While no apparent pattern can be seen for either average time to turn or average score, it 

appears that the average time to descend increased for both groups of females after both types of 

surgery as well as after receiving injections of 6-OHDA. However, statistical analysis showed 
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that no significant difference between sham-operated females or ovariectomized females existed 

either before 6-OHDA or after 6-OHDA for average time to turn, average time to descend, or 

average score. P-values are indicated on each graph in Figure 6. 

 

 
 

Figure 6. Graphical representation of average time to turn (A), average time to descend (B), and 

average score of descent (C) for both sham-operated and ovariectomized mice. 

 

Interestingly, while analyzing video recordings of the pole test, spontaneous rotation was 

observed as the mice descended the pole, particularly after the mice received intrastriatal 

injections of 6-OHDA. This phenomenon has not been previously described in similar studies 

utilizing the pole test and 6-OHDA rodent models, so I went back through all the videos and 

quantified the number of 360° rotations around the pole for each mouse during the time of 

descent. During the weeks prior to 6-OHDA injections, the average number of rotations was 

relatively low, collectively less than one turn as the mice descended. However, the number of 

rotations immediately increased in both groups after receiving 6-OHDA injections; some of the 

mice rotated around the pole as many as 5 times before reaching the base. Figure 7 below 

illustrates the increase in rotations observed in the mice. Blue indicates data from sham-operated 
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females, while red indicates data from ovariectomized females; the green arrow indicates the 

time point at which all the mice received unilateral intrastriatal injections of 6-OHDA. 

In addition to the observable increase in rotations for each group, statistical analysis 

revealed a significant difference in the average number of rotations of sham-operated and 

ovariectomized females, with more rotation occurring in ovariectomized females (p=0.006). P-

values are also displayed in Figure 7. 

 

Figure 7. Graphical representation of average number of rotations for both sham-operated and 

ovariectomized mice.  
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CHAPTER IV 

CONCLUSION 

 
 

Data Implications 

Results from vaginal smearing indicate that ovariectomy interrupts estrous cycling in 

female mice. Estrous cycling is dependent upon sex hormone fluctuation, similar to menstrual 

cycling in humans. By removing the primary source of estrogen in our female mice, we impeded 

their ability to continue cycling. Given this visible change, we were then able to compare sham-

operated mice and ovariectomized mice as having estrogen and lacking estrogen, respectively. 

Intrastriatal injection of 6-OHDA causes retrograde degeneration of dopaminergic 

neurons in the SNc. Midbrain slice staining shows that the lesioned side of the brain has 

qualitatively lower amounts of TH, indicating fewer dopaminergic neurons and less dopamine 

unilaterally. Such a sizeable dopamine imbalance could be responsible for the spontaneous 

rotational behavior observed during the pole test. The task requires the mouse to turn its entire 

body upside down, descend, and dismount the pole; this requires extensive motor regulation, 

which likely induces dopamine release in the SNc. With a neurotoxin-induced dopamine 

imbalance in this brain region, motor function will consequently be imbalanced. Accordingly, a 

substantial dopamine imbalance presents as rotational behavior. 

The significantly increased number of rotations seen in ovariectomized female mice 

supports the belief that estrogen is neuroprotective. The ovariectomized females, who had little 

to no estrogen, showed a greater degree of rotational behavior; this indicates a greater imbalance 

in dopaminergic neurons. Assuming these mice had a typical amount of dopaminergic neurons to 

begin with, the heightened imbalance suggests that they experienced more extensive 
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neurodegeneration when subjected to intrastriatal injections of 6-OHDA than did their estrogen-

intact counterparts. 

 Because rotational behavior usually requires extensive dopamine release, as achieved 

using drugs such as apomorphine or amphetamines, the spontaneous rotations observed during 

the pole test are extraordinary. Results support the viability of the test, indicating that the pole 

test is successful in causing dopamine release in the SNc. Furthermore, the spontaneous 

rotational behavior provides an exciting new alternative to drug-induced behavior testing. This is 

especially advantageous in the realm of drug testing. The pole test not only provides 

measurements for motor capability, but also an assessment of dopamine release without the need 

for additional drugs, sparing the concern about drug-drug interactions that may arise in other 

models. 

Future Directions 

 Having observed a significant increase in rotational behavior in ovariectomized females, 

the next step is to quantify and compare TH concentrations in both ovariectomized and sham-

operated females. If the behavioral imbalance is supported by corresponding TH concentration 

imbalance, then this would further promote the impression that estrogen has a neuroprotective 

role. 

 If this is true, then estrogen may become a valuable component in a neuroprotective drug 

for PD. Future research will likely focus on the benefit of adding estrogen or estrogen derivatives 

to PD drugs undergoing testing, such as cytisine. One drawback to using estrogen as a drug is 

that it naturally causes feminizing effects, or the formation of female secondary sex 

characteristics, which can be undesirable. However, a non-feminizing derivative of estrogen may 

provide a useful addition to a therapeutic drug for PD. 
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