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ABSTRACT 

 

 

Defending Cryptography Against Quantum Attackers 

 

 

Davis Shane Beilue 

Department of Computer Science & Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Fang Song 

Department of Computer Science & Engineering 

Texas A&M University 

 

 

The world of computing looks to propel itself into a new age with the progression of 

quantum computers and their growing capabilities. With these new capabilities come new 

threats, especially in the world of cryptography. Modern encryption schemes are built upon 

mathematical concepts that have proven difficult for today’s computers to solve instances of. 

However, studies over the past few decades have proven that a fully realized quantum computer 

will not find all of these things difficult. This means the privacy of every person and entity could 

be at stake if no preparations are made in anticipation of the fully realized quantum computer. 

Preparing for this threat means having cryptographic standards understood as much as possible 

with schemes ready for implementation. 

This preparation is being regulated by organizations such as the National Institute of 

Standards and Technology (NIST) who has requested that research teams all over the world 

submit their ideas for encryption methods and standards so that the community as a whole can 

collaborate through analysis, critiquing and learning from them, in turn pushing progress forward 

at a faster pace. In this paper, I take up this mantle of analysis and will discuss the results from a 

selected scheme.   
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NOMENCLATURE 

 

 

sk  Secret key 

 

pk  Public key 

 

c  Ciphertext 

 

m  Message to be encrypted 

 

m’  Decrypted message 

 

K  Key to be encapsulated 

 

K’  Decapsulated key 

 

NIST  National Institute of Standards and Technology 

 

LAC  Lattice-based Cryptography (cryptosystem) 

 

LWE  Learning with Errors  
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CHAPTER I 

INTRODUCTION 

 

 

Cryptography has been protecting the world’s most sensitive information for thousands 

of years. Many cereal boxes have had kids reverse the classic “Caesar Cipher” to reveal a hidden 

message, coined for its usage by Julius Caesar himself when disguising sensitive documents. 

The countless hours required to develop a cryptographic scheme would hardly be needed 

if there were no threats to protect information from; as this threat continues to develop, so must 

our defenses against it. 

Note: discussion of topics in this introduction will be done in a highly reductive manner 

so that a beginner in this field might quickly grasp the required breadth of knowledge. 

The Evolution of Cryptography 

Early Cryptography 

Modern cryptographers view the encryption methods of far yesteryear as more of an art 

than the blueprints for effective solutions (Katz and Lindell, 2015). The aforementioned Caesar 

Cipher involves simply choosing a number x and changing all of the letters in the document to 

the one x spaces forward in the alphabet. While a ciphertext produced under this method would 

perhaps be unreadable to an adversary at first glance, simple linguistic analysis has proven 

highly effective in cracking such codes (Katz and Lindell, 2015). 

Many other schemes of this time used simple one-for-one letter substitutions that, though 

often chosen arbitrarily, remained vulnerable to the same attacks. Even more complex ciphers 

such as the Vignère, one that relied on using one word as the key to encrypting many, could be 

attacked effectively by simply learning the length of the keyword. An attacker of this time period 
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needed so little information to begin putting pieces together: we could not dream of using such 

schemes with any confidence today (Katz and Lindell, 2015). 

Modern Cryptography 

The prevailing issues that plagued most early schemes came largely from their lack of 

rigorous forethought and testing. The modern cryptographer now aims to wield complexity 

rather than show the beauties of simplicity and our cryptographic schemes find their roots in 

complex mathematical problems. Functions are used to produce keys that encrypt data so that 

Alice can safely send information to Bob, and only Bob will have the capability to decrypt that 

data (and vice-versa). This will be expanded on in the following section. 

Constructs of Modern Cryptography 

 Though there are many important concepts to understand about modern cryptography, it 

is necessary for the reader to be familiar with the following:  

One-Way Functions 

 A one-way function is usually described as a function that is easy to compute but difficult 

to reverse. This means that a person can easily use inputs to generate an instance of the function 

by computation, but an unknowing adversary cannot easily use the results of that instance to find 

the original inputs (even when they know what the function is). Such functions are foundational 

for the generation of keys. These functions typically have binary strings as inputs and outputs. 

Symmetric Cryptographic Schemes 

 Alice generates a key k (by use of some one-way function) and shares it (discretely) with 

her friend Bob. She then uses k to encrypt her message m, generating a ciphertext c. She sends c 

to Bob who uses the same k on c to regenerate m. 
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Asymmetric Cryptographic Schemes 

 Alice uses a key generation algorithm with some input to obtain certain (often numeric) 

values. These values are used to generate the keypair (sk, pk). She distributes pk publicly so that 

anyone can use it to encrypt a message meant for her. Alice keeps the secret key, sk, for no one 

but her to know. Bob encrypts message m with pk to get ciphertext c. He sends c to Alice who 

uses sk on c to regenerate m. 

An attacker is usually assumed to have access to pk and c through some form of 

eavesdropping. The aim is to develop an encryption scheme such that an attacker cannot 

determine certain information about sk (thus giving them access to m) in polynomial time. 

Most modern cryptographic schemes are of the asymmetric form as distributing keys is 

far easier, but often a symmetric key will be “encapsulated”, or encrypted, using an asymmetric 

public key and sent to the owner of the respective private key. The two parties now both have 

access to an identical secret key that can be used to quickly encrypt and decrypt larger chunks of 

data. 

The Quantum Threat 

 Current encryption schemes rely on the fact that the mathematical problems they are 

based on are difficult for the modern classical computer to solve in polynomial time. Research is 

currently being done in the realm of quantum computers, which would theoretically have the 

computing power to solve these problems far more efficiently (Shor, 1995). This means that 

most cryptographic schemes that are currently seen as secure would no longer be that way when 

attackers have quantum capabilities. 

 Action must now be taken to ensure that information remains secure. Encryption schemes 

need to be developed such that they are able to be run on a classical computer but are also 
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difficult for quantum attackers to solve. The task is a large one, but there are many who are 

striving to find the answer. 

NIST and the Proactive Community 

 No quantum computer built at this point in time has the capabilities required to break 

current encryption in polynomial time, but since research continues to progress the field, we 

must ensure we are ready for the day a quantum attacker reaches full power. 

NIST has sent a call out to the cryptographic community for researchers to submit their 

ideas for the newly necessary schemes. The purpose of this preemptive call is to ensure that we 

have the necessary security standards properly set and implemented across the internet before the 

day of full realization (NIST, 2017). While some submit schemes, many others analyze and 

critique them through multiple rounds of submissions, ensuring that any standards that are set 

have received thorough scrutiny: this is our purpose here. 

The Chosen System 

 I have chosen to analyze a system titled LAC (Lattice-Based Cryptography). This system 

employs lattices as a basis for its operations. Lattice cryptosystems utilize concepts such as the 

Shortest Vector Problem (SVP) and Learning with Errors (LWE) as a basis to make it difficult 

for adversaries to reverse encryption unwantedly. I chose this system as my knowledge of linear 

algebra allowed me to grasp the concept of lattices much more firmly than some of the other 

bases. Below, I will explain some of the more important overarching features of the system, 

while staying somewhat out of the weeds. 
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Lattices 

A lattice can be “defined as the set of all linear combinations 

L(b1,…,bn) = {∑ 𝑥𝑖b𝑖: 𝑥𝑖 ∈ ℤ for 1 ≤ 𝑖 ≤ 𝑛𝑛
𝑖=1 } 

of n linearly independent vectors b1,…,bn in ℝn (Micciancio, 2009).” As an example, consider 

the two-dimensional plane of integer numbers (ℤ2). In this case, your “basis” vectors, b1 and b2 

could be 

b1 =  (
1
0

) , b2 =  (
0
1

) 

so that all vectors in ℤ2 can be rewritten as a linear combination of the given basis vectors. 

 Those familiar with linear algebra and related fields will thus far note the apparent 

similarities between lattices and vector spaces. That which sets the lattice apart from such spaces 

lies in the more specific and specializes forms of the structures. One of the most significant 

forms in cryptography is a group known as q-ary lattices. “These are lattices L satisfying 𝑞ℤ ⊆

𝐿 ⊆ ℤ for some (possibly prime) integer q (Micciancio, 2009).” Essentially, each element in a 

given vector of L is an integer multiple of the integer q.  

The authors of LAC have chosen to use “a provable secure design from Ring-LWE” (Lu, 

et al. 2019). LWE stands for Learning with Errors, which as previously mentioned is one of the 

hard problems associated with lattice-based cryptosystems. The essential steps of key generation 

in such systems are as follows: first define a q-ary lattice L. Then choose an n × l matrix S and 

an h × n matrix A from L uniformly at random. Next choose an h × l matrix E according to a 

centered binomial distribution with some parameter 𝜎 ∈ ℝ. You are now left with a keypair (sk; 

pk) = (S; A, AS+E) (Lu, et al. 2019; Micciancio, 2009). 

The encryption process for these schemes involves taking a message m and vector a that 

has been chosen uniformly at random, then outputting ciphertext (u, c) = (ATa, (AS+E)Ta+f(m)) 
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(Lu, et al. 2019; Micciancio, 2009). To decrypt, compute f -1(c - STu), where S is the private key 

generated in the first step (Lu, et al. 2019; Micciancio, 2009). This style of cryptosystem is 

believed to be very efficient and fits the mold of being easy to compute difficult to reverse, most 

importantly difficult on the quantum level.   
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CHAPTER II 

METHODS 

 

 

Analysis Introduction 

 In order to ensure the world can continue to safely exchange data at a high rate, we must 

be certain that any new way of making that data safe can keep the pace while also keeping the 

integrity of the original message intact. The authors of LAC have provided their own 

benchmarks that they have garnered from set parameters on a highly capable machine, but that 

does not necessarily mean those results will translate to our everyday devices. 

 

 

 

 

Figure 1. Example benchmarks from LAC documentation (Lu et al., 2019).  

 

  



12 

The typical order of steps in pure asymmetric cryptography can be found above. All of 

these steps are crucial in the process and, as can be glimpsed in the above tables, are tested 

separately. My testing will consist of the following steps: 

 

1. Generate keypairs with total lengths of 128, 192, and 256 bits 

2. Encrypt messages (m) of varying size with each public key 

3. Decrypt ciphertexts with secret key and retrieve messages (m’) 

 

The order of steps when using asymmetric principles to encapsulate symmetric keys is 

largely similar: 

 

1. Generate keypairs with total lengths of 128, 192, and 256 bits 

2. Encapsulate some key K with each public key 

3. Decapsulate ciphertexts and retrieve key (K’) 

 

The key lengths of 128, 192, and 256 bits are not chosen arbitrarily, but rather at the 

suggestion of the authors (Lu et al., 2019). In the following sections, I will detail what specific 

analysis will take place at each of the above steps. 

Runtime Analysis 

 My personal runtime tests will be recorded in tables identical to those seen in Figure 1. 

This means that I will be recording the times taken at each step of the encryption/encapsulation 

processes. My results will be compared to those given by the authors as well as the standards 

previously set by modern cryptosystems to assess any discrepancies. The times recorded are the 
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average of 10,000 separate operations and is measured in microseconds. All tests will be run 

three times, and the displayed results will be the average of the three. 

Space Analysis 

 Before the key generation step, users must run a “Makefile” to prepare the code for 

execution. This creates certain files that allow for the execution of the functions. In order to test 

different key sizes, the code will have to be “remade” with the different sizes specified in the 

parameter files. The question is, how much do the different key sizes affect the overall size of the 

system, if at all? These results will again be compared to current cryptographic benchmarks, and 

will follow the following format: 

 

Table 1. Empty size table. 

  Size Before On Disk Size After On Disk 

LAC128         

LAC192         

LAC256         

 

Note: size will be measured in MB. 

Correctness 

It is imperative that, when sending information, the message encrypted by the sender is 

indeed the message decrypted by the recipient. In each encryption test, the encrypted m will be 

compared with the decrypted m’ to detect discrepancies. In the ideal scenario, there will be none. 
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Known Attackers 

 The authors have identified a multitude of attack methods that have proven capable of 

“solving” the various hard problems that form the basis for lattice-based schemes, thus breaking 

encryption (for a specific instance, not all encryption). This fact is not necessarily worrisome on 

its own, as such attacks exist for all standardized cryptosystems. However, it is imperative to 

ensure that these attacks cannot succeed in polynomial time, otherwise, the scheme is near 

useless. 

As has been discussed, LAC is a candidate for post-quantum cryptography, so the 

intended adversaries are expected to have quantum capabilities. I do not have anything of the sort 

at my disposal, so my analysis of attacks will consist mainly of rudimentary attempts of the 

attacks that the authors have found significant enough to include in their documentation. This 

will hopefully open the door for a meaningful conclusion to be drawn regarding these specific 

methods of attacks. 

Device and Implementation 

Device Specifications 

 The device used to conduct these tests is a Dell Precision 5520. It uses an Intel® Core™ 

i7-7820HQ CPU @ 2.90GHz and has 8 GB of RAM. The authors of LAC used a device with an 

Intel® Core™ i7-4770S @ 3.10GHz and 7.6GB of RAM (Lu et al., 2019). 

Implementation Specifics 

 The authors included duplicate tests using an “Optimized Implementation” and an 

implementation utilizing the Advanced Vector Extensions 2 (AVX2) instruction set. The main 

difference in these implementations seems to be how they handle polynomial multiplication, 

which is what the authors describe as “the most time-consuming operation in the implementation 
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of LAC” (Lu et al., 2019). My computer’s processor is capable of using the AVX2 instruction set 

(the implementation which produces the faster results of the two), but many older processors are 

not. Seeing as my focus is to test performance on less capable machines, my tests will utilize the 

“Optimized Implementation.”  
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CHAPTER III 

RESULTS 

 

 

Runtime Results 

 The following tables are the results from encryption tests run by myself and the authors. 

My tests appear in the blue boxes, the authors’ in the yellow boxes, and the white boxes are the 

result of (my results / their results). Note that all shown times are measured in microseconds (μs). 

 

Table 2. My encryption tests. 

  
Key 
Generation   Encryption   Decryption   

Mine CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 196596 48.4375 288626.6667 73.54167 128040 33.33333 

LAC192 480684 170.3125 577328.6667 231.25 408098.6667 142.1875 

LAC256 518213 175.5208 930115.6667 278.6458 439416.3333 139.5833 

 

Table 3. Their encryption tests. 

  
Key 
Generation   Encryption   Decryption   

Theirs CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 124915 40.28 194118 67.24 81187 26.28 

LAC192 335083 106.2 438204 144.63 292243 93.8 

LAC256 382627 124.23 636997 204.8 302890 95.18 

(Lu et al., 2019) 

 

Table 4. Size of my values compared to the authors’. 

  
Key 
Generation   Encryption   Decryption   

  CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 1.57383821 1.20252 1.486861943 1.093719 1.577099782 1.268392 

LAC192 1.434522193 1.603696 1.317488354 1.598908 1.396436071 1.515858 

LAC256 1.354355547 1.41287 1.46015706 1.360575 1.450745595 1.46652 
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Comparing the results of these tests is not surprising: my computer requires more time 

and CPU cycles to accomplish the same tasks as the authors’ device. However, some analysis 

will reveal that my tests never reach times or cycles twice as large as the authors’ (Table 4). 

The trends of runtime found in encryption/decryption largely continue for 

encapsulation/decapsulation: 

 

Table 5. My encapsulation tests. 

  
Key 
Generation   Encapsulation   Decapsulation   

Mine CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 197344 47.39583 287463.6667 79.16667 363815 104.6875 

LAC192 476290.6667 158.3333 661235.3333 223.4375 753254.3333 371.3542 

LAC256 573756.6667 171.875 978157.6667 301.0417 1343048.667 394.2708 

 

Table 6. Their encapsulation tests. 

  
Key 
Generation   Encryption   Decryption   

Theirs CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 122691 39.67 209201 65.71 280125 88.07 

LAC192 333649 105.63 445696 145.48 731472 235.42 

LAC256 377123 123.59 643024 208.71 916835 297.01 

(Lu et al., 2019) 

 

Table 7. Size of my values compared to the authors’. 

Key 
Generation   Encapsulation   Decapsulation   

CPU Cycles Time CPU Cycles Time CPU Cycles Time 

1.608463538 1.194753 1.374102737 1.204789 1.298759482 1.188685 

1.427520138 1.498943 1.483601678 1.535864 1.029778766 1.577411 

1.521404599 1.390687 1.521183761 1.442392 1.464874996 1.327467 
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Space Results 

 Some of these tests required my own custom files to be added to the implementation, 

which in turn affected the overall size of the folder. As a result, it was decided to include the 

results from tests with and without these files. Note that all shown sizes are in kilobytes (KB). 

 

Table 8. With my custom function. 

  Size Before On Disk Size After On Disk 

LAC128 257 308 469 548 

LAC192 257 308 452 532 

LAC256 257 308 469 548 

 

Table 9. Without my custom function. 

  Size Before On Disk Size After On Disk 

LAC128 254 304 463 540 

LAC192 254 304 447 524 

LAC256 254 304 464 540 

 

 The sizes are fairly small by today’s standards which allows this to fit on most any 

modern machine. One interesting thing to note is that the 128-bit implementation takes up more 

room than the 192-bit implementation, and nearly always as much as the 256-bit implementation. 

It is unclear to me at the moment whether this leads to a meaningful conclusion, but the 

discovery of this fact is at least worth mentioning. 
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Correctness Results 

 After generating 1 keypair, 1000 messages were randomly generated, encrypted, and then 

decrypted (hex outputs, 128 implementation): 

 

m 2115A78259B2DD38D3DBC36F2C62BCA7E24CBE225765E1685802E89627AC26B 

p 2115A78259B2DD38D3DBC36F2C62BCA7E24CBE225765E1685802E89627AC26B 

m D437CCE91ED1ED896EB4BEFC95F82C4A6C33DB812CF3C01B7551CD43B76BE 

p D437CCE91ED1ED896EB4BEFC95F82C4A6C33DB812CF3C01B7551CD43B76BE 

m FFBE3BC8BE47BEE228B2E81F99717A84D44FE5EB24BBB7C588A973E872F82C3 

p FFBE3BC8BE47BEE228B2E81F99717A84D44FE5EB24BBB7C588A973E872F82C3 

m C1243FFBD0336F4A838FFDC2D2BFA8F98E4C63A0E546676D8F4328A862AE284D 

p C1243FFBD0336F4A838FFDC2D2BFA8F98E4C63A0E546676D8F4328A862AE284D 

m FC4BCDA36F9BD7AA4A14222AB37E59ED61897855296B1AEEC09838ACADEDCD 

p FC4BCDA36F9BD7AA4A14222AB37E59ED61897855296B1AEEC09838ACADEDCD 

m 54A54D9EA0E8D06519DA19BC9892C537A1B1F9315EDB31993C631DF9AB1DB 

p 54A54D9EA0E8D06519DA19BC9892C537A1B1F9315EDB31993C631DF9AB1DB 

m E45E1EB737B92368F8D5583BBEC33584F97F8C69A69D2194A7A9675CBA98C 

p E45E1EB737B92368F8D5583BBEC33584F97F8C69A69D2194A7A9675CBA98C 

m 281CDDF013878FC32EA21E1A52DA74B461544418244154C9F36CFF85754 

p 281CDDF013878FC32EA21E1A52DA74B461544418244154C9F36CFF85754 

m A0C5D5B79C3BA07047962E5871587B13D671944EAA8A8D7141FE9187F4A7E9BD 

p A0C5D5B79C3BA07047962E5871587B13D671944EAA8A8D7141FE9187F4A7E9BD 

m 34638AC448F39041542A8A4351275ABE849A27778EC4E1259F7F2F2C88AE 

p 34638AC448F39041542A8A4351275ABE849A27778EC4E1259F7F2F2C88AE 

m 188DCC6542936F44C72CE9A47A8E53D9C24BF82C3FAE89C6E666B87F2532B7 

p 188DCC6542936F44C72CE9A47A8E53D9C24BF82C3FAE89C6E666B87F2532B7 

m 6AF3AEB8D16528F98D4D27A17455CC31DCAE4B28ADFD271B5DD9C21D4985B2A 

p 6AF3AEB8D16528F98D4D27A17455CC31DCAE4B28ADFD271B5DD9C21D4985B2A 

m 33AEC51FE36AF49FCE81970A843CDD6E86794AAF54524F2C592A3268D32F 

p 33AEC51FE36AF49FCE81970A843CDD6E86794AAF54524F2C592A3268D32F 

m E19B2B609839DB2C96F37820ABC18A1A4E82C97BA0C858088CD1FB9C61064 

p E19B2B609839DB2C96F37820ABC18A1A4E82C97BA0C858088CD1FB9C61064 

m D6C1AC95E12C62D34CE0809444125540463F49379AAB816DF598D47A494B27C8 

p D6C1AC95E12C62D34CE0809444125540463F49379AAB816DF598D47A494B27C8 
Figure 2. Same keypair for each encryption. 
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There were no discrepancies in any of the message (m)/decrypted plaintext (p) pairs 

tested, as can be seen by the limited tests shown above. After these tests, I believed it valuable to 

do a similar test with some more practical messages (ASCII outputs, 128 implementation): 

 

m 0000AAAAAAACAAAAA$$$$AAAAAAABBBC 

p 0000AAAAAAACAAAAA$$$$AAAAAAABBBC 

m This is a test of the LAC system 

p This is a test of the LAC system 

m Correctness is important %_&-=+/ 

p Correctness is important %_&-=+/ 

Figure 3. Same keypair as before. 

 

 Note that the same keypair was used for each test. This is to mimic the real-world 

scenario where a single keypair is generated by a user, pk is shared publicly, and many people 

then use the same pk to send messages to the user, who will continually use the same sk to 

decrypt those incoming messages. 

Attacker Analysis 

 The authors have named multiple attacks that have either proven effective against 

schemes of a similar nature, or that were proposed by those who analyzed their Round 1 

submission of the NIST call. The following is analysis of two particular attacks that I believe to 

be interesting. 

Primal Attack 

 The primal attack seeks to “[build] a lattice with a unique-SVP instance from the LWE 

samples; then, [using] BKZ algorithm to recover this unique shortest vector (Lu et al., 2019).” In 
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essence, attacks of this nature seem to attempt to exploit very fundamental building blocks of the 

scheme. Thus far, the authors have upheld the case for LAC’s security against these and others 

that build off of the primal attack. I take particular interest in these “generic attacks” because, if 

they prove to be efficient, they would not only compromise the security of LAC, but they would 

seemingly cause issues for many LWE-based cryptosystems, which has the potential of 

eliminating an entire subfield of contenders from the wider field that hope to become part of the 

new standards. 

High Hamming Weight Attack 

 One of the other attacks identified by the authors takes advantage of something called 

Hamming weight, which is essentially the number of nonzero symbols that appear in a given 

string. In the case of LAC, those strings are “the secrets and errors (r, e1) in some ciphertexts” 

(Lu et al., 2019). The goal of an attack is to exploit higher Hamming weights to guess the 

decryption error rate in a given system, then use that information in an attempt to gain more 

knowledge of the private key (Lu et al, 2019). 

 The authors reference a specific implementation of such an attack in their own attack 

analysis, and I attempted my own tests with it (D’Anvers et al., 2018). Using the software 

provided by D’Anvers et al. in their paper (referenced below), I obtained the following: 
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Figure 4. Attack results on the 256-bit implementation. 

 

 The test was done using the same keypair as the previous ones. An average of 251.93 

errors were correctly guessed after 15 tests, where each test attempts to guess 1024 bits. This 

means that correct guesses were made almost a fourth of the time. This remained somewhat 

consistent after another 10 tests (where correct guesses were made about 30% of the time), 

however, during these tests it was discovered that decryption errors were only made around 30% 

of the time as well. Note that the attack algorithm is able to detect non-error cases, so this is less 

concerning than it originally appears. 

 This is important, as any information that an attacker is able to successfully draw out of a 

ciphertext, key, or any other part of a cryptosystem should be minimal: any amount of 

information could form a basis for more to be found. Typically, the margin of concern is when 

an attacker can be correct at a rate of 1/n ± a, where n is the number of possible outcomes and a 
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is some negligible function. It is therefore noteworthy that the rate of errors found is nearing 1/3, 

as there are only 3 possible bits to guess, those being -1, 0, and 1.   
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CHAPTER IV 

CONCLUSION 

 

 

 The tests above showcase the capabilities of this scheme when run on a machine with 

average capabilities. The question remains, how does this compare with current schemes? A 

good comparison can be made with the modern RSA, one of the most widely used cryptosystems 

of today. Thus far, time constraints have allowed me to conduct only very limited research down 

this path, so I do not wish to make any decisive statements regarding such comparisons based on 

the results that I have gathered so far. What I can say is that the fact many in the field believe in 

the efficiency of the math behind the system coupled with its advancement to round two in 

NIST’s call means it may be one of the best options there are (Micciancio, 2009). 

 I do believe that my results in testing the speed of the LAC cryptosystem compare well 

with those given by the authors, and Tables 4 and 7 show great consistency in those results. Its 

size lends itself to be stored and run on most any device, which is important in today’s age of 

smartphones and tablets, and the apparent correctness is a great boon. 

 My one concern is with my results from the Hamming weight attack tests: my results 

seem to imply that this style of attack is a strong candidate for finding a great deal of information 

on a consistent basis. If I were to give any advice, it would be to further analyze these attacks 

and prepare a better defense against them. The authors spent well over a page discussing this 

attack in their latest submission, so it is clearly on their minds, but they seem to claim they are 

“immune” to such methods of attack (Lu et al., 2019). I believe this issue requires further 

investigation.  
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APPENDIX 

 

 

Figure 1. Example benchmarks from LAC documentation (Lu et al., 2019).  
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Figure 2. Same keypair for each encryption. 

m 2115A78259B2DD38D3DBC36F2C62BCA7E24CBE225765E1685802E89627AC26B 

p 2115A78259B2DD38D3DBC36F2C62BCA7E24CBE225765E1685802E89627AC26B 

m D437CCE91ED1ED896EB4BEFC95F82C4A6C33DB812CF3C01B7551CD43B76BE 

p D437CCE91ED1ED896EB4BEFC95F82C4A6C33DB812CF3C01B7551CD43B76BE 

m FFBE3BC8BE47BEE228B2E81F99717A84D44FE5EB24BBB7C588A973E872F82C3 

p FFBE3BC8BE47BEE228B2E81F99717A84D44FE5EB24BBB7C588A973E872F82C3 

m C1243FFBD0336F4A838FFDC2D2BFA8F98E4C63A0E546676D8F4328A862AE284D 

p C1243FFBD0336F4A838FFDC2D2BFA8F98E4C63A0E546676D8F4328A862AE284D 

m FC4BCDA36F9BD7AA4A14222AB37E59ED61897855296B1AEEC09838ACADEDCD 

p FC4BCDA36F9BD7AA4A14222AB37E59ED61897855296B1AEEC09838ACADEDCD 

m 54A54D9EA0E8D06519DA19BC9892C537A1B1F9315EDB31993C631DF9AB1DB 

p 54A54D9EA0E8D06519DA19BC9892C537A1B1F9315EDB31993C631DF9AB1DB 

m E45E1EB737B92368F8D5583BBEC33584F97F8C69A69D2194A7A9675CBA98C 

p E45E1EB737B92368F8D5583BBEC33584F97F8C69A69D2194A7A9675CBA98C 

m 281CDDF013878FC32EA21E1A52DA74B461544418244154C9F36CFF85754 

p 281CDDF013878FC32EA21E1A52DA74B461544418244154C9F36CFF85754 

m A0C5D5B79C3BA07047962E5871587B13D671944EAA8A8D7141FE9187F4A7E9BD 

p A0C5D5B79C3BA07047962E5871587B13D671944EAA8A8D7141FE9187F4A7E9BD 

m 34638AC448F39041542A8A4351275ABE849A27778EC4E1259F7F2F2C88AE 

p 34638AC448F39041542A8A4351275ABE849A27778EC4E1259F7F2F2C88AE 

m 188DCC6542936F44C72CE9A47A8E53D9C24BF82C3FAE89C6E666B87F2532B7 

p 188DCC6542936F44C72CE9A47A8E53D9C24BF82C3FAE89C6E666B87F2532B7 

m 6AF3AEB8D16528F98D4D27A17455CC31DCAE4B28ADFD271B5DD9C21D4985B2A 

p 6AF3AEB8D16528F98D4D27A17455CC31DCAE4B28ADFD271B5DD9C21D4985B2A 

m 33AEC51FE36AF49FCE81970A843CDD6E86794AAF54524F2C592A3268D32F 

p 33AEC51FE36AF49FCE81970A843CDD6E86794AAF54524F2C592A3268D32F 

m E19B2B609839DB2C96F37820ABC18A1A4E82C97BA0C858088CD1FB9C61064 

p E19B2B609839DB2C96F37820ABC18A1A4E82C97BA0C858088CD1FB9C61064 

m D6C1AC95E12C62D34CE0809444125540463F49379AAB816DF598D47A494B27C8 

p D6C1AC95E12C62D34CE0809444125540463F49379AAB816DF598D47A494B27C8 
 

 

Figure 3. Same keypair as before. 

m: 0000AAAAAAACAAAAA$$$$AAAAAAABBBC 

p: 0000AAAAAAACAAAAA$$$$AAAAAAABBBC 

m: This is a test of the LAC system 

p: This is a test of the LAC system 

m: Correctness is important %_&-=+/ 

p: Correctness is important %_&-=+/ 
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Figure 4. Attack results on the 256-bit implementation. 

 

 

 

Table 1. Empty Size Table. 

  Size Before On Disk Size After On Disk 

LAC128         
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Table 2. My encryption tests. 

  
Key 
Generation   Encryption   Decryption   

Mine CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 196596 48.4375 288626.6667 73.54167 128040 33.33333 

LAC192 480684 170.3125 577328.6667 231.25 408098.6667 142.1875 

LAC256 518213 175.5208 930115.6667 278.6458 439416.3333 139.5833 

 

Table 3. Their encryption tests. 

  
Key 
Generation   Encryption   Decryption   

Theirs CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 124915 40.28 194118 67.24 81187 26.28 

LAC192 335083 106.2 438204 144.63 292243 93.8 

LAC256 382627 124.23 636997 204.8 302890 95.18 

 

Table 4. Size of my values compared to the authors’. 

  
Key 
Generation   Encryption   Decryption   

  CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 1.57383821 1.20252 1.486861943 1.093719 1.577099782 1.268392 

LAC192 1.434522193 1.603696 1.317488354 1.598908 1.396436071 1.515858 

LAC256 1.354355547 1.41287 1.46015706 1.360575 1.450745595 1.46652 

 

Table 5. My encapsulation tests. 

  
Key 
Generation   Encapsulation   Decapsulation   

Mine CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 197344 47.39583 287463.6667 79.16667 363815 104.6875 

LAC192 476290.6667 158.3333 661235.3333 223.4375 753254.3333 371.3542 

LAC256 573756.6667 171.875 978157.6667 301.0417 1343048.667 394.2708 

 

Table 6. Their encapsulation tests. 

  
Key 
Generation   Encryption   Decryption   

Theirs CPU Cycles Time CPU Cycles Time CPU Cycles Time 

LAC128 122691 39.67 209201 65.71 280125 88.07 

LAC192 333649 105.63 445696 145.48 731472 235.42 

LAC256 377123 123.59 643024 208.71 916835 297.01 
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Table 7. Size of my values compared to the authors’. 

Key 
Generation   Encapsulation   Decapsulation   

CPU Cycles Time CPU Cycles Time CPU Cycles Time 

1.608463538 1.194753 1.374102737 1.204789 1.298759482 1.188685 

1.427520138 1.498943 1.483601678 1.535864 1.029778766 1.577411 

1.521404599 1.390687 1.521183761 1.442392 1.464874996 1.327467 

 

Table 8. With my custom function. 

  Size Before On Disk Size After On Disk 

LAC128 257 308 469 548 

LAC192 257 308 452 532 

LAC256 257 308 469 548 

 

Table 9. Without my custom function. 

  Size Before On Disk Size After On Disk 

LAC128 254 304 463 540 

LAC192 254 304 447 524 

LAC256 254 304 464 540 

 


