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ABSTRACT 

 
 

A Novel Spectroscopic Instrument for the Rapid Identification of Live and Dead Bacteria 
 
 

Arjun Krishnamoorthi 
Department of Electrical and Computer Engineering 

Texas A&M University 
 
 

Research Advisor: Dr. Peter Rentzepis 
Department of Electrical and Computer Engineering 

Texas A&M University 
 
 

The rapid detection and assessment of bacterial infections is of critical significance in 

various settings. Currently, the “gold standard” for the quantification of bacterial species is 

Colonies Forming Units (CFU) counting, which requires extensive equipment, personnel, and 

time (on the order of days). Such a procedure is rather unfeasible and detrimental in scenarios 

requiring prompt, in-situ diagnosis. To that effect, a rapid, portable means for detecting and 

assessing bacterial infections would prove invaluable. In this research, a novel spectroscopic 

instrument capable of fluorescence, synchronous fluorescence, and Raman spectroscopy was 

designed and constructed. This instrument was employed to record the fluorescence, 

synchronous fluorescence, and Raman spectra of bacteria, bacterial components, mixtures, and 

other molecules. We have utilized this instrument to determine the effects of ultraviolet (UV) 

irradiation on bacteria and bacterial components. Principal component analysis (PCA) was also 

applied to identify bacterial strains and distinguish live (viable) and dead (nonviable) bacteria 

within minutes. This novel, portable instrument may be used in hospitals, clinics, or the field for 

the rapid detection and identification of live and dead bacteria. 
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CHAPTER I 

INTRODUCTION 

 
 

Bacterial infections present a significant threat to human life. It is estimated that at least 2 

million people incur infections due to antibiotic-resistant bacteria, and in addition, at least 23,000 

people die each year following such infections [1]. Furthermore, almost 1.7 million hospital-

acquired infections, along with approximately 99,000 resulting deaths, occur annually [2]. Such 

health care-associated infection (HAI) was noted to be among the top 10 causes of death in the 

United States with an estimated $4.5 billion to $6.5 billion cost for treatment [3]. Growing 

antibiotic resistance, coupled with a decline in new antibiotics, has further worsened the effects 

of HAIs [2]. Additionally, the threat of bacterial infection is compounded by the fact that current 

detection and assessment methods are rather time-consuming and inefficient. The current “gold 

standard” for the quantification of bacterial species is Colonies Forming Units (CFU) counting, 

which consists of the isolation, culturing, and manual identification of the bacterial strain [4]. 

Such procedures require extensive time (1 to 3 days) and specialized equipment that are 

inappropriate for in-situ analyses and, therefore, may be detrimental to a patient’s long-term 

health, especially in settings where such resources are not readily available. In addition, the 

ability to efficiently diagnose and assess bacterial infections has implications on the efficacy of 

the resulting antimicrobial therapy. Particularly, it has been noted that the inappropriate 

application of antibiotic drugs, in an attempt to treat HAI, has contributed to growing antibiotic 

resistance, toxic effects, and health care costs [2]. Certainly, a rapid means of identifying and 

assessing bacterial infections, in-situ, within minutes rather than days, would prove invaluable in 
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detecting and preventing the onset of infections, in addition to supporting more effective 

antimicrobial therapy for the patient. 

Several studies have been documented in the literature which address such problems. 

Notably, optical spectroscopy, coupled with multivariate data analyses, has proven to be a key 

technique in detecting and identifying bacterial strains and concentrations [5–14]. In particular, 

vibrational spectroscopic techniques, such as Fourier-transform infrared (FTIR) and Raman 

spectroscopy, have been used to accomplish these tasks. FTIR spectroscopy, for example, has 

been applied to identify and classify several bacterial strains, including Staphylococcus, 

Streptococcus, and Escherichia coli, among others [8]. This was accomplished by comparing the 

sample spectra against a database of reference spectra. More recently, FTIR spectroscopy has 

been utilized for the identification and discrimination of bacteria at the genus, species, and clonal 

levels [9–10]. In addition, surface-enhanced Raman spectroscopy (SERS) was integrated with 

discriminant function analysis (DFA) and hierarchical cluster analysis (HCA) to identify and 

discriminate within a group of clinical bacterial samples responsible for urinary tract infections 

[11]. This study similarly demonstrated the ability to distinguish between bacteria within the 

same strain. Current efforts have focused on achieving single bacteria detection through Raman 

spectroscopy [12–13] and applying machine learning for rapid identification and classification 

[14]. 

Owing to the fact that bacterial components, such as amino acids (tryptophan and 

tyrosine) and nucleic acids (DNA), possess absorption and fluorescence bands in the ultraviolet 

(UV) spectral region [15], fluorescence spectroscopy has also been utilized for the detection and 

identification of bacteria [5–7]. When coupled with principal component analysis (PCA), this 

technique has provided discrimination at the associated genus, species, and strain levels [6]. In 
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addition, excitation-emission matrix (EEM) and synchronous fluorescence spectroscopy [16] 

have been employed to resolve the spectra of molecular components, such as tryptophan and 

tyrosine, in both bacterial and human tissue cells [5, 17–19]. Furthermore, such techniques have 

been utilized, along with PCA, to detect and classify pathogenic bacteria in foods [5], as well as 

clinically-important bacteria [17]. As an extension of these results, our previous studies [20–22] 

have demonstrated that the fluorescence and synchronous fluorescence spectra of bacteria, 

including its tryptophan and tyrosine components, undergo detectable changes following UV or 

antibiotic treatment. In particular, we found that the fluorescence of bacteria and its components 

decreases with increasing UV dosage or antibiotic treatment time and may be correlated with the 

number of inactivated bacteria. Subjecting these spectra to PCA allowed us to rapidly distinguish 

live and dead bacteria within minutes. In addition, our work with Raman spectroscopy [23] 

further elucidated the role of protein damage in the inactivation process and provided an 

additional means of determining the live-to-dead bacteria ratio as a function of UV dosage. The 

above results suggest that a portable spectroscopic instrument, capable of fluorescence and 

Raman spectroscopy, would offer a novel and important solution for the rapid detection and 

identification of live and dead bacteria. Such an instrument could be readily employed in 

hospitals, clinics, and the field, thereby providing practically instantaneous detection and 

assessment capabilities. In many of these studies, however, the benchtop instruments used were 

bulky and therefore unsuitable for usage in-situ.  

To that effect, this thesis describes the design, construction, and operation of a novel, 

portable instrument capable of fluorescence, synchronous fluorescence, and Raman spectroscopy 

for the in-situ detection of live and dead bacteria. The additional, onboard capabilities of PCA 

and bacterial disinfection are integrated into the instrument. To that end, this instrument is 
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composed of several commercial, off-the-shelf components, including monochromators, a linear 

charge-coupled device (CCD) detector array, and light-emitting diodes (LEDs). This instrument 

is capable of recording the fluorescence, synchronous fluorescence, and Raman spectra of 

bacteria, bacterial components, and other molecules in-situ within minutes. We have employed 

this instrument to determine the effects of UV radiation on bacteria and bacterial components. In 

addition, live and dead bacteria were rapidly distinguished by means of PCA. These results 

support a novel, efficient, and portable means of identifying live and dead bacteria in-situ.  
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CHAPTER II 

BACKGROUND 

 
 

In this chapter, background information on bacteria, ultraviolet (UV) light, and principal 

component analysis (PCA) is provided. Additionally, the spectroscopic techniques (absorption, 

fluorescence, and Raman spectroscopy) and instrumentation employed for this research are 

described. 

Bacteria  

Bacteria are unicellular, prokaryotic microorganisms [24]. Despite being the most 

primitive form of life on Earth [25], bacteria have remained for over billions of years in a variety 

of harsh environments. As shown in Figure 1, bacteria generally consist of a cell wall, cell 

membrane, and cell interior (cytoplasm).  

 

 

Figure 1: General structure of bacterial cell [26]. 

 

A distinction exists between Gram-positive and Gram-negative bacteria through a staining 

method developed in 1884 [24]. In this method, a crystal violet dye is applied to the bacterium; 
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Gram-positive bacteria retain the dye, while Gram-negative bacteria do not. This rather simple 

method elucidates key differences in the structure of each type of bacteria. To that effect, Figure 

2 displays diagrams of the cell wall for both Gram-positive and Gram-negative bacteria. 

 

 

Figure 2: Structure of cell wall for Gram-positive and Gram-negative bacteria [27]. 

 

It may be observed that Gram-positive bacteria possess a thicker peptidoglycan layer than Gram-

negative bacteria, which results in the retention of the crystal violet dye. Additionally, Gram-

negative bacteria possess an outer membrane, in addition to the inner membrane, while Gram-

positive bacteria simply consist of a single, inner membrane. Due to its additional outer 

membrane, Gram-negative bacteria have been found to possess greater antibiotic resistance than 

Gram-positive bacteria. Bacillus and E. coli are examples of Gram-positive and Gram-negative 

bacteria, respectively. The structure of the cytoplasm is practically the same for both types of 

bacteria and contains the “naked” DNA, situated in a region known as the nucleoid, which is 

utilized and necessary for replication. Bacteria replicate asexually, in as short a time as 20 

minutes, by means of binary fission [24], which results in an identical copy of a bacterium’s 

DNA and cell contents.  



10 
 

The major components of a bacterial cell are proteins and nucleic acids (DNA and RNA). 

Topically, proteins are primarily located in the cytoplasm and along the bacterial membrane [23]. 

Of particular spectroscopic relevance are the aromatic amino acids tryptophan and tyrosine, 

which compose the membrane proteins and serve vital “anchoring” functions [28–29]. 

Tryptophan and tyrosine possess rather intense absorption and fluorescence bands in the UV 

region and have been studied by means of both fluorescence spectroscopy and UV resonance 

Raman spectroscopy [5, 17, 20–21, 30]. In addition, DNA maximally absorbs and fluoresces in 

the UV region [15]. Owing to the fact that its quantum efficiency is orders of magnitude lower 

than that of tryptophan and tyrosine, however, DNA is generally rather difficult to detect 

spectroscopically. Some bacteria, such as Micrococcus luteus and Serratia marcescens, are 

additionally capable of producing colored pigments with absorption bands in the visible region. 

Numerous resonance Raman studies have been conducted in detecting and elucidating the 

functions of these pigments [31–33].  

Ultraviolet (UV) Light  

Ultraviolet (UV) light is generally defined as the region of the electromagnetic spectrum 

with wavelengths in the range of ~ 100–400 nm [34]. Further bands are identified within this 

range, namely vacuum UV (100–200 nm), UVC (200–280 nm), UVB (280–315 nm) and UVA 

(315–400 nm). UV light is typically generated through a mercury vapor lamp, which is a type of 

gas-discharge lamp, composed of an inert gas and mercury. In such lamps, a voltage is applied to 

ionize the inert gas and create an electrical discharge, or arc, which heats, vaporizes, and ionizes 

the mercury. The output light of the lamp, following excitation of the vaporized mercury, is the 

characteristic emission spectrum of the mercury atoms. Recently, however, UV LEDs have 

developed as a less expensive, safer, and more effective alternative for generating narrowband 
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and intense UVC, UVB, and UVA radiation. Such LEDs provide several benefits compared to 

gas-discharge lamps, including a smaller size, faster startup time, and greater energy efficiency. 

Owing to the fact that the absorption band maxima of tryptophan, tyrosine, and DNA are 

in the UVC and UVB regions, UVC and UVB radiation is particularly effective in inactivating 

bacteria. Figure 3 displays the germicidal effectiveness curve and illustrates the utility of UVC 

and UVB LEDs for disinfection.  

 

 

Figure 3: Germicidal effectiveness curve with mercury lamp and UVC LED outputs [35]. 

 

The inactivation of a bacterium is achieved through damage to its DNA, which prohibits 

the replication process [36]. A rather prominent mechanism by which this occurs is the direct 

absorption of UV light by the DNA nucleobases, particularly the pyrimidine bases, which results 

in the formation of lesions along the DNA strand, thereby preventing replication and inactivating 

the bacterium. Cyclobutane pyrimidine dimers, namely thymine dimers, have been shown to be 

the predominant UV photoproduct in both human and bacterial cells upon UV radiation [36–38]. 
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It is worthy to mention that the maximum of the germicidal effectiveness curve occurs at ~ 265 

nm, which corresponds to the absorption band maximum of thymine. Indirect damage to DNA 

may also occur through the generation of free radicals or reactive oxygen species (ROS), namely 

singlet oxygen and hydroxyl radicals, which are highly reactive and may introduce strand breaks 

in DNA [36]. Protein damage, in addition to nucleic damage, is a known deleterious effect of UV 

treatment. Our own studies have detailed the photodegradation of tryptophan and tyrosine and 

suggested that protein damage precedes DNA dimerization [20–21, 23, 39]. This is attributed to 

the higher absorption of UV light by proteins, as they exist in greater quantity, possess 

significantly higher absorption cross-sections, and, topically, envelope the DNA within the 

cytoplasm. It is rather interesting to note that the photoproducts of both tryptophan and tyrosine 

have been shown to promote the production of free radicals and ROS that induce further strand 

breaks in bacterial DNA [36, 40–42].  

Principal Component Analysis (PCA) 

 Principal component analysis (PCA) is a multivariate analysis technique which enables 

the analysis of large, multidimensional datasets through the reduction of dimensionality [43]. 

This is accomplished by treating each dataset as a single object and representing the variation in 

the original data through principal components, which retain the dimensionality of the dataset. 

Typically, the outputs of PCA are a score plot and principal component plots. The score plot is a 

two-dimensional or three-dimensional plot of the objects in principal component space and 

serves as a means for identifying and distinguishing objects. Generally, objects are plotted 

against principal component 1 (PC1), principal component 2 (PC2), and/or principal component 

3 (PC3), as these principal components account for the greatest variation in the original data. 
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Additionally, principal component plots provide detailed information regarding the principal 

components and regions of variation in the data.  

 The applications of PCA in spectroscopy and related fields are numerous and have been 

detailed thoroughly in the literature [44]. Our own studies [20–23] have utilized PCA as a means 

of processing fluorescence and Raman spectra for the identification of live and dead bacteria. 

This was achieved by subjecting the spectra of UV-irradiated bacteria to PCA and observing the 

separation of objects in the score plot as a function of the UV irradiation dose.   

Absorption Spectroscopy 

 In molecules, electronic energy levels comprise broad energy bands that may correspond 

to either singlet (𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, etc.) or triplet (𝑇𝑇0,𝑇𝑇1,𝑇𝑇2, etc.) electronic states [45]. Within these 

electronic states, further vibrational and rotational energy levels may be occupied by the  

molecule. A typical energy level diagram is shown in Figure 4. 

 

 

Figure 4: Energy level diagram of electronic, vibrational, and rotational energy levels. 
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Transitions between ground (lower-energy) states and excited (higher-energy) states may be 

induced through the absorption of light with a wavelength corresponding to a particular energy 

difference. The resulting distribution of transitions is the characteristic absorption spectrum of 

the molecule. Generally, transitions between electronic energy states occur in the UV and visible 

region, while transitions between vibrational and rotational energy levels occur in the infrared 

and microwave region, respectively, owing to the smaller spacing between energy levels. In this 

research, we are solely concerned with electronic absorption. A typical absorption spectrum plots 

the absorbance, 𝐴𝐴, as a function of wavelength, 𝜆𝜆 . This relation is governed by the Beer-Lambert 

Law: 

𝐴𝐴 = log10
𝐼𝐼0
𝐼𝐼 = 𝜀𝜀𝜀𝜀𝜀𝜀 (1) 

where 𝐼𝐼0 is the intensity of light incident on the sample, 𝐼𝐼 is the intensity of light exiting the 

sample, 𝜀𝜀 is the extinction coefficient � 1
𝑀𝑀∙𝑐𝑐𝑐𝑐

�, 𝜀𝜀 is the optical path length (𝜀𝜀𝑐𝑐), and 𝜀𝜀 is the 

concentration of the sample (𝑀𝑀). In general, 𝜀𝜀 is a function of 𝜆𝜆 and the Beer-Lambert Law may 

therefore be rewritten as follows: 

𝐴𝐴(𝜆𝜆) = 𝜀𝜀(𝜆𝜆)𝜀𝜀𝜀𝜀 (2) 

where 𝜀𝜀(𝜆𝜆) is dependent on the sample.  

The design of a typical absorption spectrometer is provided in Figure 5.  

 

 

Figure 5: Simplified block diagram for an absorption spectrometer.  
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The light source is generally a broadband emitting source such as a tungsten or high-pressure 

mercury lamp. The broadband output of the lamp is then coupled to a monochromator, which 

disperses the light and transmits a single wavelength through a slit. The design of a typical 

monochromator is displayed in Figure 6. 

 

 

Figure 6: Design of a Czerny-Turner monochromator [46].  

 

The angular positioning of the diffraction grating determines the wavelength of light that is 

focused at the exit slit. The excitation wavelength may therefore be scanned by rotating the 

diffraction grating by means of a stepper motor. Upon exiting the monochromator, the excitation 

light is redirected to both a sample and reference cell. A detector, such as a photomultiplier tube 

(PMT) or CCD, is situated behind the sample and reference cells to measure the transmitted 

intensity, 𝐼𝐼, and incident intensity, 𝐼𝐼0, respectively. The reference cell is utilized to account for 

solvent absorption and scattering. Owing to its sensitivity to sample concentration, electronic 

absorption spectroscopy has been utilized to observe both protein and DNA damage through the 

decrease of their characteristic absorption band maxima.  
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Fluorescence Spectroscopy 

Following excitation from a ground (lower-energy) electronic state to excited (higher-

energy) electronic state, a molecule will decay through nonradiative and, usually, radiative 

transitions [15, 45]. The excitation of a molecule from the ground electronic state to excited 

electronic state is followed by a rapid, nonradiative decay, on the order of picoseconds, to the 

lowest vibrational level of the excited electronic state. This process is known as vibrational 

relaxation and occurs due to the comparatively smaller spacing between vibrational energy 

levels, resulting in the dissipation of energy as phonons (molecular vibrations). Following 

vibrational relaxation, a molecule will further decay through either nonradiative or radiative 

transitions to the ground electronic state. In addition to vibrational relaxation, nonradiative 

transitions may include internal conversion, in which excess energy is dissipated as heat. 

Radiative transitions involve the emission of photons, or light, in a process known as 

fluorescence. This process is depicted in Figure 7.  

 

 

Figure 7: Energy level diagram for absorption, nonradiative decay, and fluorescence.  
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The resulting distribution of radiative transitions, from the ground vibrational level of the excited 

state to a vibrational level in the ground state, comprises the characteristic fluorescence spectrum 

of the molecule. Owing to the fact that fluorescence is preceded by vibrational relaxation, the 

fluorescence spectrum of a molecule is generally at longer wavelengths and may be considered a 

mirror image of the absorption spectrum. It is worthy to mention that the shape of the 

fluorescence spectrum is generally independent of the excitation wavelength due to radiative 

transitions mostly occurring from the ground vibrational level of the excited state; the intensity 

of the spectrum, however, depends on the absorption cross-section of the molecule at the 

excitation wavelength. The fraction of molecules undergoing radiative transitions additionally 

depends on the quantum yield of the sample. In bacteria, tryptophan possesses the highest 

absorption cross-section and quantum yield in the UV region.  

The design of a typical fluorescence spectrometer is provided in Figure 8.  

 

 

Figure 8: Simplified block diagram for a fluorescence spectrometer.  

 

Fluorescence spectrometers are generally composed of a double monochromator, which includes 

both an excitation monochromator and emission monochromator. The excitation monochromator 

selects and transmits the excitation light to the sample, while the emission monochromator 

disperses and detects the emitted light from the sample. A stepper motor is attached to both the 

excitation and emission gratings for selection and scanning of the excitation and emission 
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wavelengths, respectively. To that effect, a fluorescence spectrum is achieved by selecting a 

particular excitation wavelength and scanning the emission monochromator. Alternatively, 

selecting a particular emission wavelength and scanning the excitation monochromator provides 

an excitation spectrum. In some spectrometers, a one-dimensional (linear) or two-dimensional 

(2D) CCD detector array, capable of detecting the entire fluorescence spectrum, is situated at the 

focal plane of the emission monochromator, which obviates the need for a second stepper motor.  

Excitation-Emission Matrix (EEM) 

 An excitation-emission matrix (EEM) provides a detailed characterization of the 

absorption and fluorescence of a particular sample, where one axis is the excitation wavelength, 

the second axis is the emission wavelength, and the third axis is the intensity of the emitted light. 

This information may be provided in the form of a two-dimensional (2D) contour plot or three-

dimensional (3D) surface plot. Generally, an EEM is achieved by scanning the excitation 

wavelength over an excitation range and measuring the fluorescence spectrum at each individual 

excitation wavelength. EEMs are particularly useful in the analysis of multicomponent samples 

because they may resolve the absorption and fluorescence band maxima of individual 

components. In our previous studies [20–22, 39], we have collected the EEM of bacteria to 

resolve the fluorescence of the tryptophan, tyrosine, and DNA components, which is not possible 

through fluorescence spectroscopy alone. 

Synchronous Fluorescence Spectroscopy 

 Synchronous fluorescence spectroscopy is a useful technique for resolving the 

fluorescence of individual components in a mixture or multicomponent sample [16]. In 

commercial fluorescence spectrometers, this technique is generally achieved by synchronously 
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scanning both the excitation monochromator and emission monochromator such that the 

excitation wavelength, 𝜆𝜆𝐸𝐸𝐸𝐸 , and emission wavelength, 𝜆𝜆𝐸𝐸𝑀𝑀 , satisfy the following relationship: 

∆𝜆𝜆 = 𝜆𝜆𝐸𝐸𝑀𝑀 − 𝜆𝜆𝐸𝐸𝐸𝐸 (3) 

where ∆𝜆𝜆 denotes the constant offset in wavelength maintained between the two 

monochromators. This quantity is a rather critical parameter in determining which fluorescence 

bands are resolved and is generally derived from the EEM of a sample. Alternatively, 

synchronous fluorescence spectra may simply be extracted from a sample’s EEM by considering 

the following rewritten form of equation (3): 

𝜆𝜆𝐸𝐸𝑀𝑀 = 𝜆𝜆𝐸𝐸𝐸𝐸 + ∆𝜆𝜆 (4) 

which is simply a linear equation with a slope equal to unity and intercept equal to ∆𝜆𝜆. 

Synchronous fluorescence spectra may therefore be considered as a set of parallel lines with 

varying intercepts that exist within a sample’s EEM. To that end, once an EEM is acquired, 

synchronous fluorescence spectra of varying ∆𝜆𝜆 may be immediately obtained. For bacteria, 

synchronous fluorescence spectroscopy is an especially useful technique for resolving the 

fluorescence of its cellular components, namely tryptophan and tyrosine. This is made possible 

due to the difference in the absorption and fluorescence band maxima of these components. 

Raman Spectroscopy  

 A rather small fraction of incident light, ~ 1 in 106 photons, is scattered upon interaction 

with a molecule [47]. Typically, the scattered radiation is at the same wavelength (energy) as the 

incident radiation, a phenomenon known as Rayleigh (elastic) scattering. Remarkably, an even 

smaller portion of incident light, ~ 1 in 1010 photons, is inelastically scattered at a different 

wavelength (energy) than the incident radiation [47]. This phenomenon is known as the Raman 

effect, which describes Raman (inelastic) scattering. In general, Raman scattering involves an 
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exchange of energy between an incident photon and molecule, resulting in the excitation or 

relaxation of molecular vibrations. Stokes Raman scattering results in a molecule gaining energy, 

while anti-Stokes Raman scattering results in a molecule losing energy. The quantum mechanical 

models of Rayleigh, Stokes Raman, and anti-Stokes Raman scattering are provided in Figure 9. 

 

 

Figure 9: Quantum mechanical models of Rayleigh and Raman scattering. 

 

Following excitation to a virtual (non-resonant) excited state, a molecule may remain in its 

vibrational state (Rayleigh scattering) or transition to a vibrational state of different energy 

(Raman scattering). Transitions to higher-energy vibrational states correspond to Stokes Raman 

bands, while transitions to lower-energy vibrational states correspond to anti-Stokes Raman 

bands. The resulting distribution of Stokes and anti-Stokes Raman bands, along with the orders 

of magnitude more intense Rayleigh line, is the Raman spectrum of the molecule. It is worthy to 

mention that at room temperature, practically all molecules will occupy the ground vibrational 

level, resulting in Stokes Raman bands being the predominant form of Raman scattering. A 

typical Raman spectrum displays the intensity of scattered light as a function of the Raman shift, 

∆𝜈𝜈 (cm–1), which is computed as follows: 
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∆𝜈𝜈 = 107 �
1
𝜆𝜆𝐸𝐸𝐸𝐸

−
1
𝜆𝜆𝐸𝐸𝑀𝑀

� (5) 

where 𝜆𝜆𝐸𝐸𝐸𝐸  (nm) is the incident wavelength and 𝜆𝜆𝐸𝐸𝑀𝑀  (nm) is the scattered wavelength. In general, 

the Raman shift is unique for different vibrational modes of a molecule, dependent on the atoms, 

bond energy, and bond type associated with the molecular vibration. In fact, specific motions, 

such as stretching, bending, and scissoring, can be associated with distinct Raman shifts. To that 

effect, Raman spectroscopy is a highly discriminating technique for the identification of specific 

functional groups in a molecule. When coupled with infrared absorption spectroscopy, Raman 

spectroscopy may offer a complete, detailed characterization of the vibrational modes of a 

molecule and may therefore aid in its identification.  

Two common designs for a Raman spectrometer are depicted in Figure 10 and Figure 11.  

 

 

Figure 10: Design of Raman spectrometer using 90° configuration. 
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Figure 11: Design of Raman spectrometer using 180° (backscattering) configuration. 

 

Due to the Raman effect being a rather weak phenomenon, a continuous-wave (CW) laser is 

generally employed as the excitation source. Selection of the proper excitation wavelength, 𝜆𝜆𝐸𝐸𝐸𝐸 , 

is required to optimize the scattering intensity (𝐼𝐼𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∝ 𝜆𝜆𝐸𝐸𝐸𝐸
−4) without either degrading the 

sample or inducing intense fluorescence which may mask the Raman signal. In both the 90° and 

180° (backscattering) configurations, the excitation light is focused onto the sample by means of 

a lens or microscope objective with a high numerical aperture (NA), which further increases the 

excitation and scattering intensities. The scattered light is collected at a right angle in the 90° 

configuration, whereas the 180° configuration collects the backscattered light with the same 

microscope objective. One benefit of the backscattering configuration is that the signal collection 

is maximized; however, this often results in a rather intense Rayleigh line which must be 

removed in order to prevent saturation of the detector. This is generally accomplished through a 

dichroic mirror, 𝑀𝑀2, which functions as a longpass filter for transmitting only the Stokes Raman 

bands. While the 90° configuration inherently minimizes the intensity of the Rayleigh line, the 

Raman band intensity is also lower. Additional notch or color filters may be utilized in both 
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configurations for a stronger rejection of the Rayleigh line. Finally, a spectrometer is employed 

for dispersing and detecting the Raman spectrum. 

Owing to the fact that the Raman effect is a non-resonant process, Raman bands can 

theoretically be generated at any excitation wavelength with the same Raman shifts. The 

consequence of this fact is that the scattered wavelength, and its spectral relation to the excitation 

wavelength, changes as well. 

 

 

Figure 12: Effects of changing excitation wavelength on measurement of Raman bands. 

 

In Figure 12, the wavelength shift between the excitation and scattered wavelength, Δ𝜆𝜆 = 𝜆𝜆𝐸𝐸𝑀𝑀 −

𝜆𝜆𝐸𝐸𝐸𝐸 ,  is plotted as a function of Raman shifts in the range of 500–3000 cm–1 for various 

excitation wavelengths. Five common laser output wavelengths in the UV, visible, and infrared 

regions were considered in this analysis. In general, Raman bands undergo spectral contraction 
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in the wavelength domain as the excitation wavelength decreases. In order to record Raman 

spectra in the UV region, for example, notch filters with extremely narrow bandwidths would be 

needed, in addition to spectrometers with high dispersion, resolution, and resolving power. These 

system requirements can be demanding and expensive in terms of equipment, but the tradeoff is 

that the Raman signals should be rather intense, owing to the lower excitation wavelength. For 

certain samples, the excitation wavelength may be chosen to coincide with the absorption band 

of the molecule, a technique known as resonance Raman spectroscopy. This technique has been 

shown to enhance the intensity of the Raman signals by a factor of ~ 103 to 106 [48]. This 

enhancement has been exploited for the detection of proteins and DNA in bacteria through their 

absorption bands in the UV region [49–50].  
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CHAPTER III 

METHODS 

 
 

Materials 

The three bacteria studied in this research were Bacillus thuringiensis (B. thuringiensis), 

Escherichia coli (E. coli), and Serratia marcescens (S. marcescens). B. thuringiensis is a Gram-

positive bacterium, whereas E. coli and S. marcescens are Gram-negative. B. thuringiensis 

suspensions were made by rehydrating B. thuringiensis spores in water for approximately an 

hour. E. coli bacteria were grown by suspending the bacteria in approximately 10 mL of Luria-

Bertani (LB) broth overnight at 37 °C in a water bath. The solution was subsequently centrifuged 

at 3300 rpm (Fisher Scientific Centrific Model 228) for 5 minutes and washed with water. This 

procedure was repeated three times to ensure removal of the growth medium. The bacterial pellet 

was then resuspended in approximately 3 mL of water and stored at 4 °C, until usage, to 

minimize growth. S. marcescens bacteria were grown through similar procedures as those 

followed for E. coli, except that the incubation temperature was adjusted to room temperature to 

facilitate the growth of prodigiosin. All bacterial suspensions were diluted to a final 

concentration of ~ 108 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠
𝑐𝑐𝑚𝑚

 for all experiments. The concentration was approximated by 

recording the absorption spectrum of the bacterial sample and measuring the absorbance at 600 

nm, which is due to light scattering [51].   

The bacterial components tryptophan and tyrosine were also studied in this research. 

Solutions of tryptophan and tyrosine were made in water with concentrations in the range of 2–

400 𝜇𝜇𝑠𝑠
𝑐𝑐𝑚𝑚

, depending on the experiment being performed. 
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UV Irradiation 

Both bacteria and bacterial components were irradiated with UV light using both an Oriel 

mercury arc lamp and UV LED. The mercury lamp was coupled with a UV filter to block light in 

the visible region. The transmission spectrum of this filter is shown in Figure 13. 

 

 

Figure 13: Transmission spectrum of UV filter. 

 

Additionally, a UV lens was utilized to focus the beam onto the sample. The intensity of the 

incident light was measured with a Molectron detector (PM3Q with EPM1000) and generally 

varied between 5–7 𝑐𝑐𝑚𝑚
𝑐𝑐𝑐𝑐2 for irradiation experiments.  
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The UV LED is a UVB LED (MTSM285UV-F1120S) with a nominal output wavelength 

of 285 nm. The relevant electrical and optical characteristics of this component are provided in 

Table 1. 

 

Table 1: Nominal electrical and optical characteristics of UV LED [52].   

Specification Condition Minimum Maximum 

Peak Wavelength 
(nm) 

𝐼𝐼𝐹𝐹 = 20 mA 280 290 

Power Output (mW) 𝐼𝐼𝐹𝐹 = 20 mA 1.0 2.0 

Forward Voltage (V) 𝐼𝐼𝐹𝐹 = 20 mA 5.0 7.0 

FWHM (nm) 𝐼𝐼𝐹𝐹 = 20 mA 10.0 15.0 

 

The fluorescence spectra of bacteria and bacterial components, before and after UV irradiation 

by either the mercury lamp or UV LED, were collected for various irradiation times ranging 

from 0 to 240 minutes, depending on the experiment being performed. 

Absorption Spectroscopy 

Absorption spectroscopy was performed with a Shimadzu UV160U UV-visible recording 

spectrophotometer. Samples were placed in a quartz cuvette with an optical path length of 1 cm. 

The absorption spectra of all samples were recorded prior to UV irradiation. In addition, the 

transmission spectra of the filters employed in this research were also recorded with this 

instrument.  

Fluorescence Spectroscopy 

Fluorescence spectroscopy was performed using our portable instrument. Samples were 

placed in a quartz cuvette with an optical path length of 1 cm. The fluorescence spectra of all 
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samples were recorded before and after UV irradiation for various irradiation times ranging from 

0 to 240 minutes, depending on the experiment being performed. Integration times were 

generally in the range of 1–5 seconds. Averaging and median filtering were performed for all 

spectra to improve the signal-to-noise ratio (SNR). To validate the operation of our portable 

instrument, a Shimadzu RF-5301PC fluorescence spectrometer was also utilized for performing 

fluorescence spectroscopy. 

EEM and Synchronous Fluorescence Spectroscopy 

The EEMs of bacteria, bacterial components, and mixtures were recorded with our 

portable instrument. Samples were placed in a quartz cuvette with an optical path length of 1 cm. 

Generally, EEMs were recorded over an excitation range of 260–310 nm with an excitation 

resolution varying from 1–10 nm, depending on the experiment being performed. Integration 

times were generally in the range of 5–30 seconds. Averaging and median filtering were 

performed for all spectra to improve the signal-to-noise ratio (SNR). Following acquisition of the 

EEM, synchronous fluorescence spectra of varying ∆𝜆𝜆 were derived using our custom MATLAB 

software. To validate the operation of our portable instrument, a Shimadzu RF-5301PC 

fluorescence spectrometer was also utilized for performing synchronous fluorescence 

spectroscopy. 

Principal Component Analysis (PCA) 

PCA was performed on the fluorescence spectra of unirradiated (live) and irradiated 

(dead) bacteria using our custom MATLAB software to derive the score and principal 

component plots. Five fluorescence spectra were collected for each irradiation time interval. The 

data from at least three independent experiments were then normalized and combined for the 
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analysis. Generally, emission data in the range of ~ 300–500 nm resulted in the best variation 

between PCA objects.  

In addition, PCA was also performed on the Raman spectra of various molecules. The 

data from at least ten independent measurements were background subtracted, normalized, and 

combined for the analysis. Generally, data in the range of ~ 500–4000 cm–1 resulted in the best 

variation between PCA objects. 

Raman Spectroscopy 

Raman spectroscopy was also performed with our portable instrument. Samples were 

typically placed in a quartz cuvette with an optical path length of 0.5 cm. For S. marcescens, the 

initial bacterial suspension was concentrated by centrifugation at 3300 rpm (Fisher Scientific 

Centrific Model 228) for 5 minutes. After discarding the supernatant, the bacterial pellet was 

resuspended in approximately 100 𝜇𝜇L of water. A 2.5 𝜇𝜇L aliquot of the suspension was then 

placed on an aluminum mirror. Once the suspension had dried, Raman spectra were recorded. 

Integration times were generally in the range of 1–5 seconds. Averaging was performed for all 

spectra to improve the signal-to-noise ratio (SNR). To validate the operation of our portable 

instrument, a Horiba XploRA PLUS Raman microscope was also utilized for performing Raman 

spectroscopy. 

 

 

 

 

 



30 
 

CHAPTER IV 

DESIGN AND CONSTRUCTION OF PORTABLE INSTRUMENT 

 
 

Overview 

A block diagram of the portable instrument is provided in Figure 14. 

 

 

Figure 14: Block diagram of portable spectroscopic instrument. 

 

The novel, portable instrument is composed of five subsystems: (1) a control and display unit, 

(2) disinfection unit, (3) excitation monochromator, (4) emission monochromator, and (5) Raman 

excitation module. The instrument is capable of performing fluorescence, synchronous 
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fluorescence, and Raman spectroscopy, in addition to its onboard capabilities of UV disinfection 

and PCA processing. The various modes of operation are summarized in Figure 15. 

 

 

Figure 15: System flowchart detailing the various modes of operation. 
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To record fluorescence spectra, the excitation monochromator or disinfection unit may be 

utilized to excite the sample, thereby inducing fluorescence. Raman spectra may be similarly 

obtained by means of the Raman excitation module, which induces Raman scattering from the 

sample. The fluorescence or Raman spectrum is then collected, imaged, and recorded by the 

emission monochromator. Synchronous fluorescence spectroscopy may be achieved by rotating 

the excitation monochromator through a range of preselected excitation wavelengths, with the 

emission monochromator recording the sample’s fluorescence spectrum at each excitation 

wavelength. The resulting dataset is a three-dimensional (3D) excitation-emission matrix (EEM) 

from which synchronous spectra may be easily derived. To perform UV disinfection, the 

disinfection unit may be utilized to irradiate bacterial samples with UV light. All commands 

issued to the excitation monochromator and emission monochromator, along with any recorded 

spectral data, are transmitted via a serial communication link. Finally, the processing and display 

of the recorded spectra, in addition to PCA, is performed by the control and display unit. 

Control and Display Unit 

MATLAB GUIs and Laptop 

The current embodiment of the control and display unit subsystem is a compact laptop 

(Dell Precision 5510 Mobile Workstation Laptop) executing custom MATLAB software. The 

software currently consists of two coupled GUIs; one is an acquisition GUI for communicating 

with the excitation and emission monochromators, while the other is a processing GUI for 

performing PCA on recorded spectral data. The user may easily transition between these GUIs 

during execution of the software. These GUIs were designed using the App Designer feature of 

MATLAB to simplify the creation of the GUI layout and its various buttons, text fields, and 

checkboxes. To that effect, the majority of the programming involved implementing various 
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callbacks for each of the GUIs. The acquisition GUI and processing GUI are shown in Figure 16 

and Figure 17, respectively. 

 

 

Figure 16: MATLAB acquisition GUI. 

 

 

Figure 17: MATLAB processing GUI. 
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Various functionalities are currently available in the acquisition GUI, including the ability to 

record fluorescence, synchronous fluorescence, and Raman spectra, alter acquisition parameters, 

save spectra, calibrate the spectrometer and excitation monochromator, and perform background 

subtraction. In the processing GUI, the user may perform PCA on recorded spectral data and 

view the associated score and principal component plots. In addition, the user may also fine-tune 

the PCA processing by adjusting the region of interest (ROI), which essentially represents the 

range of fluorescence or Raman data subjected to PCA, or performing median filtering on the 

data to reduce noise and improve the separation of PCA objects in the score plot. 

Communication with the excitation and emission monochromators is achieved through a 

common serial communication link, which allows commands to be issued to both subsystems, 

simultaneously, through separate serial ports. In particular, one serial cable connects to an RS-

232 communication port integrated with the emission monochromator, while another serial cable 

feeds into the serial port of the microcontroller within the excitation monochromator. Figure 18 

is the functional block diagram (FBD) of this setup, while Figure 19 shows its implementation. 

 

 

Figure 18: FBD for serial connection between computer and monochromator subsystems. 
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Figure 19: Serial connection between computer and monochromator subsystems. 

 

To achieve communication with both subsystems simultaneously, individual serial port 

connections need to be established in MATLAB. The configurations of these serial port 

connections (e.g., baud rate, parity, data bits, etc.) are determined by the respective 

communication protocols associated with each subsystem. 

Excitation Monochromator Communication 

Communication with the excitation monochromator subsystem is achieved through the 

serial port of the microcontroller within the subsystem. The microcontroller is a DCB-241, which 

is an integrated stepper motor driver-controller board that operates on an RS-422 communication 

protocol. To simplify the software development, a SIN-11 intelligent serial adapter was utilized 

as a means of converting high-level, RS-232 commands from the computer into an RS-422 bus. 

The serial port configuration for this subsystem is provided in Table 2. 
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Table 2: Serial port configuration for excitation monochromator subsystem [53].   

Specification Value 

Baud Rate (bps) 9600 

Data Bits 8 

Stop Bits 1 

Parity None 

Flow Control Hardware 

Handshaking None 

 

The primary purpose of the DCB-241 microcontroller is to rotate the excitation grating located 

within the excitation monochromator subsystem by means of a stepper motor. To that effect, the 

serial port connection with the subsystem is utilized as a means of issuing high-level, ASCII 

commands for configuring and initiating the rotation of the stepper motor. A table of the most 

relevant commands is provided in Table 3. The full set of commands is available in the 

associated DCB-241 documentation [53]. 
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Table 3: Relevant DCB-241 commands for rotating the stepper motor [53]. 

Command Function Value Notes 

I Initial Velocity 18–23,000 SPS The initial velocity 
specifies the start 
and stop speed, in 
steps per second 
(SPS), for the motor. 

K Ramp Slope 0–255 The ramp slope 
specifies the ramp 
acceleration and 
deceleration time. 

V Slew Velocity 18–23,000 SPS The slew velocity is 
the final velocity 
following 
acceleration from the 
initial velocity. 

+ Index in Plus 
Direction 

0–16,777,215 Steps This command steps 
the stepper motor in 
a positive direction 
for the specified 
number of steps. 

- Index in Minus 
Direction 

0–16,777,215 Steps This command steps 
the stepper motor in 
a negative direction 
for the specified 
number of steps. 

S Store Parameters N/A This command saves 
all operational 
parameters for recall 
during a power-on 
reset. 

 

 

 

 



38 
 

A picture of the communication setup is provided in Figure 20. 

 

 

Figure 20: Overall communication setup for the excitation monochromator subsystem. 

 

Emission Monochromator Communication 

Communication with the emission monochromator subsystem is achieved through an RS-

232 port integrated with the onboard control electronics. Owing to the onboard RS-232 port, a 

serial communication cable may be directly connected from the computer to the subsystem for 

communication. Details regarding the serial port configuration for the emission monochromator 

are noted in Table 4. 
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Table 4: Serial port configuration for emission monochromator subsystem [54].   

Specification Value 

Baud Rate (bps) 9600 

Data Bits 8 

Stop Bits 1 

Parity None 

Flow Control Hardware 

Handshaking None 

 

The primary purpose of the emission monochromator subsystem is to detect, digitize, and record 

the fluorescence and Raman spectra of samples. To that effect, the serial port connection with the 

subsystem is utilized as a means of issuing high-level, ASCII commands for configuring 

acquisition parameters (e.g., integration time, averaging, etc.) and receiving spectral data from 

the linear image sensor within the optical bench. A table of the most relevant commands is 

provided in Table 5. The full set of commands is available in the associated spectrometer 

documentation [54]. 
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Table 5: Relevant commands for configuring and reading the spectrometer [54].   

Command Function Value Notes 

K Set Baud Rate 0 This command can 
be used to increase 
the baud rate (bps) to 
as high as 115,200 
bps. 

I Set Integration Time 50–65535 This command can 
be used to set the 
integration time 
(milliseconds).  

A Set Averaging 1–1000000000 This command can 
be used to set the 
number of spectra to 
average in a given 
spectrum 
acquisition.  

a Set ASCII Mode N/A This command 
switches the 
communication into 
ASCII mode. 

b Set Binary Mode N/A This command 
switches the 
communication into 
binary mode. 

S Initiate Scan N/A This command 
initiates a scan and 
returns the spectrum 
in either ASCII or 
binary mode. 
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A picture of the communication setup is provided in Figure 21. 

 

 

Figure 21: Overall communication setup for the emission monochromator subsystem. 

 

Recording Fluorescence and Raman Spectra 

 Fluorescence spectra are recorded by utilizing either the disinfection unit or excitation 

monochromator as a fixed excitation source and subsequently measuring the fluorescence of the 

bacterial sample through the emission monochromator subsystem. Similarly, Raman spectra are 

acquired by coupling the Raman excitation module and emission monochromator for inducing, 
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and subsequently measuring, Raman scattering from the sample. Briefly, these measurements 

require selecting the scan type (i.e., fluorescence or Raman), identifying the excitation source 

(i.e., disinfection unit or excitation monochromator), configuring acquisition parameters, 

acquiring spectral data, processing the data, and outputting the data through a MATLAB figure 

and CSV file. The control logic for these measurements is provided in Figure 22.  

 

 

Figure 22: System flowchart detailing the fluorescence and Raman spectrum measurement. 
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Recording the Excitation-Emission Matrix (EEM) and Synchronous Fluorescence Spectra 

The EEM of a sample is recorded by utilizing the excitation monochromator as a 

scanning excitation source and subsequently measuring the fluorescence of the sample over a 

range of excitation wavelengths. Briefly, this process requires calibrating and configuring the 

excitation monochromator, configuring acquisition parameters, acquiring spectral data over a 

range of scanned excitation wavelengths, processing the data, and outputting the data through 

MATLAB figures and CSV files. The EEM may be displayed as either a two-dimensional (2D) 

contour plot or three-dimensional (3D) surface plot. Once the EEM is acquired, synchronous 

fluorescence spectra of varying Δ𝜆𝜆 may be efficiently acquired within the software itself. 

Currently, once an EEM is acquired, synchronous spectra across a range of Δ𝜆𝜆 are automatically 

extracted and written to a separate CSV file. The control logic for this process is detailed in 

Figure 23.  
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Figure 23: System flowchart detailing the EEM measurement. 
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Disinfection Unit 

Components 

Pictures of the disinfection unit subsystem, along with its major components, are shown 

in Figure 24 and Figure 25. 

 

 

Figure 24: Disinfection unit subsystem and its major components. 

 

 

Figure 25: Excitation and disinfection setup. 
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The disinfection unit currently consists of a high-power, miniature UV LED (Marktech 

Optoelectronics MTSM285UV-F1120S) mounted on a heat sink and coupled with a UV half-ball 

lens (Edmund Optics #67-396). The UV LED is attached to the heat sink by means of a thermal 

adhesive to promote efficient heat dissipation, which is critical in ensuring stable LED operation. 

A UV half-ball lens is utilized as a means of collecting and focusing the diverging output of the 

LED. The effect of attaching a UV half-ball lens to the UV LED is shown in Figure 26. 

 

 

Figure 26: Effect of attaching a UV half-ball lens to the UV LED output. 

 

Thus, the UV half-ball lens increases the excitation intensity and subsequent fluorescence 

intensity emitted by the bacterial sample. When it is coupled to the emission monochromator 

subsystem, the disinfection unit may simultaneously inactivate bacteria and serve as an 

excitation source for fluorescence measurements. This setup is a rather efficient means of 

monitoring changes in the fluorescence of a bacterial sample, which is indicative of the fraction 

of bacteria inactivated, as a function of the UV irradiation time. Owing to the fact that the 

fluorescence of the sample is rapidly diverging, a UV collection lens is utilized for collecting and 

focusing the fluorescence onto an optical fiber (Thorlabs M114L01) positioned at the fiber port. 

This optical fiber is coupled to the input port of the emission monochromator for recording the 
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sample fluorescence. The enclosure, fiber port, and collection lens holder are off-the-shelf 

components from B&W Tek, while the cover was designed and fabricated. 

UV LED 

Selection of the proper UV LED is particularly critical in ensuring that the functionalities 

of disinfection and excitation are both satisfied by a single LED. The maximum germicidal 

effectiveness is theoretically achieved at a UVC wavelength of ~ 265 nm [35], which 

corresponds to the absorption band of DNA. The fluorescence of bacteria, however, is primarily 

due to tryptophan and tyrosine residues, rather than DNA, which possess absorption bands at 

higher wavelengths in the UVB and UVC region (~ 270–290 nm). Tryptophan, in particular, is 

known to be the most intensely absorbing and fluorescing component of bacteria, with an 

absorption band maximum at ~ 280 nm. Therefore, a central wavelength of 285 nm was selected 

for the UV LED, which also provides a rather high germicidal effectiveness [35]. To that effect, 

the nominal output spectrum of the selected UV LED is shown in Figure 27. The nominal 

electrical and optical characteristics of this component were previously described in Chapter III.  

 



48 
 

 

Figure 27: Output spectrum of UV LED for disinfection unit [52]. 

 

The specifications for the peak wavelength and full width at half maximum (FWHM) of the UV 

LED indicate that it is a suitable component for functioning as both a disinfection and excitation 

source, as its most intense emission wavelengths correspond to the absorption bands of 

tryptophan and tyrosine, in addition to providing high germicidal effectiveness. Owing to the fact 

that the absorption bands of tryptophan and tyrosine are rather broad, slight deviations in the 

exact peak emission wavelength do not significantly affect the excitation and disinfection 

capabilities of the UV LED. 
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Excitation Monochromator 

Components 

A picture of the excitation monochromator subsystem, along with its major components, 

is provided in Figure 28. 

 

 

Figure 28: Excitation monochromator subsystem and its major components. 

 

The excitation monochromator consists of a high-power, miniature UV LED (RayVio 

Corporation RVXP4-280-SM-077132) mounted on a heat sink and coupled with a set of three 

UV plano-convex lenses (Fiberguide Industries FSG012S0180). Similar to the disinfection unit, 

the UV LED is attached to the heat sink with a thermal adhesive to promote efficient heat 

dissipation. The three UV lenses are necessary for collecting and reducing the divergence of the 

LED output and ensuring that good coupling is achieved with the scanning monochromator, 

which determines the excitation intensity at the sample location and consequent fluorescence 

intensity. The effect of the coupling lenses is shown in Figure 29 and Figure 30. 
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Figure 29: Image of UV LED output without coupling lenses. 

 

 

Figure 30: Image of UV LED output with coupling lenses. 

 

Thus, the UV coupling lenses are critical in capturing a large fraction of the rapidly diverging 

UV light from the LED. The use of three lenses increases the total optical power and results in a 

sharp image of the emitting surfaces within the LED. Alignment was manually performed 

between the UV LED and input slit of the excitation monochromator to maximize the coupling 

between the two components. 

The scanning monochromator is an off-the-shelf component from Dynasil (SDMC1-02). 

The monochromator consists of two folding mirrors, a single curved mirror, and a reflective 

diffraction grating. The function of this component is to disperse the rather narrowband UV light 

from the LED and focus a particular wavelength of the dispersed light on the exit slit of the 
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monochromator. The particular wavelength of the dispersed light focused on the exit slit is 

dependent upon the angular positioning of the excitation grating and controlled by an onboard 

stepper motor. To that effect, the EEM of a sample may be acquired by rotating the excitation 

grating and consequently scanning a range of excitation wavelengths.  

The integrated stepper motor controller and driver is the DCB-241, which was previously 

described in this chapter. The controller is wired to the stepper motor within the monochromator 

through an external DB-15 connector. Communication with the controller is achieved through 

the onboard serial port.   

A mounting plate for this subsystem was designed and fabricated. In addition, an 

inexpensive, compact electronics project box was utilized as the enclosure. 

UV LED 

 Selection of the UV LED wavelength was guided, mainly, by the same considerations 

noted with the UV LED in the disinfection unit subsystem. Owing to the fact that the LED output 

passes through a monochromator in this subsystem, however, an LED with a significantly higher 

output power was selected. This is necessary to account for both (a) coupling losses at the input 

of the monochromator and (b) diffraction losses within the monochromator itself, which will 

significantly reduce the excitation intensity at the sample location. To that effect, the nominal 

output spectrum of the selected UV LED is shown in Figure 31. The nominal electrical and 

optical characteristics of this component are also provided in Table 6. 
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Figure 31: Output spectrum of UV LED for excitation monochromator [55]. 

 

Table 6: Nominal characteristics of UV LED for excitation monochromator [55].   

Specification Condition Minimum Typical Maximum 

Peak Wavelength 
(nm) 

𝐼𝐼𝐹𝐹 = 200 mA 275 280 285 

Power Output 
(mW) 

𝐼𝐼𝐹𝐹 = 200 mA 30 50 70 

Forward Voltage 
(V) 

𝐼𝐼𝐹𝐹 = 200 mA 20 26 32 

FWHM (nm) 𝐼𝐼𝐹𝐹 = 200 mA Not given. 15 Not given. 
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Thus, the selected UV LED for the excitation monochromator has a significantly higher optical 

power, along with a larger bandwidth, than that used for the disinfection unit. This output power 

is among the highest available for current UV LED technology. 

Scanning Monochromator 

The scanning monochromator selected for this subsystem is the Scanning Digital Mini-

Chrom Monochromator (SDMC1-02) sold by Dynasil. The optical layout for this component is 

provided in Figure 32. 

 

 

Figure 32: Optical layout of the scanning monochromator [56]. 

 

The monochromator optical bench houses a Fastie-Ebert configuration, consisting of two folding 

mirrors, 𝑀𝑀1 and 𝑀𝑀3, a single curved mirror, 𝑀𝑀2, and a reflective diffraction grating, 𝐺𝐺1. The 
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high-power, miniature UV LED is coupled to the monochromator at the entrance slit, whereupon 

the input UV light is reflected by 𝑀𝑀1 to 𝑀𝑀2. 𝑀𝑀2 then collimates and directs the light to the 

reflective diffraction grating, 𝐺𝐺1, which disperses and reflects the light to 𝑀𝑀2 again, which 

focuses the light to the exit slit by means of 𝑀𝑀3. The particular wavelength of the dispersed light 

focused on the exit slit depends upon the angular positioning of the excitation grating, 𝐺𝐺1. To 

that effect, the DCB-241 rotates a stepper motor within the monochromator connected to the 

excitation grating. This allows for rotation to a desired output wavelength or, alternatively, 

through a range of excitation wavelengths, as required in the acquisition of an EEM. An optical 

fiber may also be connected at the exit slit to transmit the excitation light to the sample. In order 

to maximize the excitation intensity, however, the sample should ideally be situated directly at 

the exit slit itself. The efficiency curve of the excitation grating, 𝐺𝐺1, is provided in Figure 33. 

 

 

Figure 33: Absolute diffraction efficiency curve of excitation grating [57]. 
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The excitation grating, 𝐺𝐺1, has a groove density 𝐺𝐺 = 1800 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐

, along with a blaze wavelength 

𝜆𝜆𝐵𝐵 = 250 nm, which corresponds to its wavelength of maximum diffraction efficiency. In the 

excitation region of ~ 260–310 nm, the diffraction efficiency is as high as ~ 50–60%. Thus, the 

monochromator is optimized for performance in the UV region. Owing to its rather broad 

efficiency curve, though, this monochromator may also be coupled with visible light sources if 

needed.    

DCB-241 

 The DCB-241 was described in detail earlier in this chapter. The commands provided in 

Table 3 were utilized to set the initial and final slew velocity of the stepper motor within the 

scanning monochromator, rotate the stepper motor and excitation grating, and thereby perform 

EEM acquisitions when coupled with the emission monochromator subsystem. The DCB-241 

was biased through its onboard potentiometer to output a run current which resulted in stable 

rotation of the stepper motor within the monochromator. This process involved rotating the 

onboard potentiometer in small increments and observing the performance of the stepper motor 

in rotating the excitation grating. Once a minimum run current was established, it was increased 

by ~ 10%. This was done to ensure reliable operation of the stepper motor and minimize heating 

due to large run currents. The initial and final slew velocities of the stepper motor were then set 

to the lowest possible values and increased until the stepper motion was deemed sufficiently 

smooth. The operating parameters of the DCB-241 and stepper motor are summarized in Table 7. 
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Table 7: Operating parameters of the DCB-241 and stepper motor.   

Specification Value 

Motor Step 
Resolution 

8 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑐𝑐

 

Initial Slew 
Velocity ( 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠
) 

20 

Final Slew 
Velocity ( 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠
) 

20 
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Emission Monochromator 

Components  

A picture of the emission monochromator subsystem, along with its major components, is 

shown in Figure 34. 

 

 

Figure 34: Emission monochromator subsystem and its major components. 

 

The emission monochromator subsystem is an off-the-shelf spectrometer (BTC110-S) from 

B&W Tek. This spectrometer includes an optical bench, input fiber port, input power port, 

detector and cooling fan, and communication port for setting acquisition parameters (e.g., 

integration time, averaging, etc.) and acquiring spectral data. The optical bench may be easily 

configured and was modified with optical components, namely mirrors and a diffraction grating, 

with high efficiency in the UV region to increase the spectrometer’s sensitivity to bacterial 

fluorescence. Details regarding the communication with the BTC110-S, and the associated 

procedures for setting acquisition parameters and receiving spectral data, were provided earlier 
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in this chapter. In addition, a mounting plate for this subsystem was designed and fabricated. An 

inexpensive, compact electronics project box was utilized as the enclosure.  

Optical Bench 

 The design of the optical bench and its components is critical in determining the 

sensitivity and performance of the spectrometer in the UV and visible regions. A schematic of 

the optical bench and a picture of its components are shown in Figure 35 and Figure 36, 

respectively.  

 

 

Figure 35: Schematic of optical bench for emission monochromator. 

 

 

Figure 36: Optical bench and its major components. 
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The optical bench essentially utilizes the Czerny-Turner configuration, consisting of two concave 

aluminum mirrors, 𝑀𝑀1 and 𝑀𝑀2, and a reflective diffraction grating, 𝐺𝐺1. Briefly, fluorescence or 

Raman scattered light entering the input fiber port is collected and collimated by the collimating 

mirror, 𝑀𝑀1, dispersed by the diffraction grating, 𝐺𝐺1, and then focused onto the pixels of the 

linear CCD detector array, or linear image sensor, by 𝑀𝑀2, whereupon the spectrum is digitized, 

stored, and transmitted to the computer by means of control electronics and a serial 

communication cable. To achieve this, the optical components were properly aligned to 

maximize the intensity of light falling onto the detector pixels in the focal plane of the 

spectrometer. This was accomplished by performing horizontal and vertical adjustments on the 

mirrors and grating through the set screws in the optical bench. 

To increase the UV sensitivity of the spectrometer, the visible diffraction grating 

provided by B&W Tek was replaced with a UV-visible, ruled diffraction grating with a 

maximum diffraction efficiency as high as ~ 75% in the UV region (Newport Corporation 

33025FL01-060R). This grating is mounted in the Littrow configuration [58] at its associated 

blaze angle 𝜃𝜃𝐵𝐵 ~ 8.6°. The usage of this grating ensures that the fluorescence of bacteria and its 

components is not significantly attenuated within the optical bench. In addition to the diffraction 

grating, the collimating mirror was replaced with a UV-enhanced mirror of the same size to 

further increase the efficiency of the spectrometer in the UV region.  

The detector is the Sony ILX511B linear image sensor [59], which is a CCD detector 

with 2048 pixels. This detector inherently has peak sensitivity in the visible region, but rather 

low UV sensitivity. Therefore, this detector was ordered with an additional dye coating known as 

Lumogen F Violet 570 [60–61]. This dye absorbs strongly in the UV region and fluoresces in the 

visible region, thereby increasing the UV sensitivity of the detector. Owing to its enhanced and 
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broad sensitivity, this detector is suitable for acquiring fluorescence and Raman spectra in the 

UV and visible regions. The efficiency curve of the diffraction grating 𝐺𝐺1 and sensitivity curve 

of the detector are provided in Figure 37 and Figure 38, respectively. 

    

 

Figure 37: Diffraction efficiency curve of emission grating 𝐺𝐺1 [62]. 

 

 

Figure 38: Sensitivity curve of detector (Sony ILX511B) [59]. 
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The emission grating, 𝐺𝐺1, which has a groove density 𝐺𝐺 = 1200 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐

 and a designated blaze 

wavelength 𝜆𝜆𝐵𝐵 = 250 nm, is a rather critical component in determining the performance of the 

spectrometer. Considering the grating equation for a reflective diffraction grating [63], 

𝑑𝑑[sin(𝜃𝜃𝑠𝑠) + sin(𝜃𝜃𝑐𝑐)] = 𝑐𝑐𝜆𝜆 (6) 

where 𝑑𝑑 represents the grating pitch, 𝜃𝜃𝑠𝑠 is the incident angle, 𝜃𝜃𝑐𝑐 is the diffracted angle, 𝑐𝑐 is the 

diffraction order, and 𝜆𝜆 is the wavelength. Note that 𝜃𝜃𝑠𝑠 and 𝜃𝜃𝑐𝑐 are expressed with respect to the 

grating normal. Differentiating with respect to wavelength, 

𝑑𝑑 cos(𝜃𝜃𝑐𝑐)
𝑑𝑑𝜃𝜃𝑐𝑐
𝑑𝑑𝜆𝜆 = 𝑐𝑐 (7) 

Observe that while 𝜃𝜃𝑠𝑠 is constant for the incident beam, 𝜃𝜃𝑐𝑐 varies for each component 

wavelength. Consequently, 

𝑑𝑑𝜃𝜃𝑐𝑐
𝑑𝑑𝜆𝜆 =

𝑐𝑐
𝑑𝑑 cos(𝜃𝜃𝑐𝑐) (8) 

where 𝑠𝑠𝜃𝜃𝑚𝑚
𝑠𝑠𝑑𝑑

 represents the angular dispersion of the grating. This angular dispersion corresponds 

to a linear dispersion, 𝑠𝑠𝑑𝑑
𝑠𝑠𝑑𝑑

,  and reciprocal linear dispersion, 𝑠𝑠𝑑𝑑
𝑠𝑠𝑑𝑑

, in the focal plane:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝜆𝜆 =

𝑑𝑑𝜃𝜃𝑐𝑐
𝑑𝑑𝜆𝜆 × 𝑓𝑓 =

𝑐𝑐
𝑑𝑑 cos(𝜃𝜃𝑐𝑐) × 𝑓𝑓 (9) 

𝑑𝑑𝜆𝜆
𝑑𝑑𝑑𝑑 = �

𝑑𝑑𝑑𝑑
𝑑𝑑𝜆𝜆�

−1

=
𝑑𝑑 cos(𝜃𝜃𝑐𝑐)
𝑐𝑐 × 𝑓𝑓  (10) 

where 𝑓𝑓 is the focal length of the focusing mirror 𝑀𝑀2. The theoretical wavelength spread, Δ𝜆𝜆, 

across the detector plane may then be computed: 

Δ𝜆𝜆 = � 𝑑𝑑𝜆𝜆

𝑑𝑑2

𝑑𝑑1

= �
𝑑𝑑 cos(𝜃𝜃𝑐𝑐)
𝑐𝑐 × 𝑓𝑓

𝑑𝑑2

𝑑𝑑1

𝑑𝑑𝑑𝑑 =
𝑑𝑑

𝑐𝑐 × 𝑓𝑓
� cos(𝜃𝜃𝑐𝑐)𝑑𝑑𝑑𝑑
𝑚𝑚

0

=
𝑑𝑑

𝑐𝑐 × 𝑓𝑓
� cos �

𝑑𝑑
𝑓𝑓� 𝑑𝑑𝑑𝑑

𝑚𝑚

0

 (11) 
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where 𝑑𝑑 = 1
𝐺𝐺

 ~ 833.333 nm (grating pitch) and 𝑓𝑓 ~ 42 mm (focal length of 𝑀𝑀2). In addition, for 

a detector pitch 𝑊𝑊𝑃𝑃 = 14 𝜇𝜇m and 𝑛𝑛 = 2048 pixels, 𝐿𝐿 = 𝑊𝑊𝑃𝑃 × 𝑛𝑛 = 28672 𝜇𝜇m (detector length). 

Assuming first-order diffraction (𝑐𝑐 = 1), we obtain the following: 

Δ𝜆𝜆 ~ 525.72 nm 

which is larger than the experimentally observed spread Δ𝜆𝜆 ~ 438.066 nm. The reduced 

experimental spread is most probably due to a mismatch in the detector pitch and slit width, 

which limits the individual resolution of each pixel, along with nonidealities such as astigmatism 

and imperfect alignment between the beam profile, grating plane, and detector plane. The rather 

large wavelength spread nevertheless allows the spectrometer to detect both UV and visible 

region fluorescence and Raman bands. We may similarly compute the theoretical resolution, 𝑑𝑑𝜆𝜆, 

of the spectrometer [64]: 

𝑑𝑑𝜆𝜆 =
𝑅𝑅𝑅𝑅 × Δ𝜆𝜆 × 𝑊𝑊𝑆𝑆

𝐿𝐿  (12) 

where 𝑅𝑅𝑅𝑅 ~ 1.7145 is a resolution factor determined by the relationship between the slit width 

and pixel width [64], Δ𝜆𝜆 ~ 525.72 nm is the theoretical wavelength spread across the detector 

plane, 𝐿𝐿 = 28672 𝜇𝜇m is the detector length, and 𝑊𝑊𝑆𝑆 = 50 𝜇𝜇m is the slit width. Consequently, 

𝑑𝑑𝜆𝜆 ~ 1.572 nm. 

For Raman measurements, this corresponds to the following resolution in wavenumbers: 

𝑑𝑑𝑅𝑅 = 107 × �
1
𝜆𝜆𝐸𝐸𝐸𝐸

−
1

𝜆𝜆𝐸𝐸𝐸𝐸 + 𝑑𝑑𝜆𝜆�
(13) 

where 𝜆𝜆𝐸𝐸𝐸𝐸 = 532 nm represents the excitation wavelength. Thus, 

𝑑𝑑𝑅𝑅 ~ 55.386 cm–1. 

These values are also in good agreement with the experimentally observed values of 𝑑𝑑𝜆𝜆 ~ 2 nm 

and 𝑑𝑑𝑅𝑅 ~ 70.4 cm–1. This resolution may be improved, at the expense of the wavelength spread 
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at the detector plane, by increasing the grating density. The current resolution is sufficient for 

resolving the fluorescence bands, in addition to the most prominent Raman bands, of bacteria, 

bacterial components, and other molecules of interest in this research. The relevant optical 

characteristics of the spectrometer are summarized in Table 8. 

 

Table 8: Optical characteristics of spectrometer.   

Specification Theoretical Measured 

Wavelength 
Spread Δ𝜆𝜆 (nm) 

525.72 438.066 

Resolution (nm) 1.572 2 

Resolution (cm–1) 55.386 70.4 

 

Calibration 

Calibration of the spectrometer is performed by recording the spectrum of a light source 

with distinct emission lines and subsequently deriving a fitting which provides the wavelength as 

a function of the detector pixel. This calibration is utilized, in software, to convert the pixel-

dependent intensity read out by the detector into a wavelength-dependent spectrum. A rather 

simple source to use in this process is the mercury-vapor lamp, also known as the compact 

fluorescent lamp (CFL), which is the same lamp typically used for overhead lighting. Figure 39 

shows the CFL spectrum recorded by the emission monochromator. 
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Figure 39: CFL spectrum recorded by the emission monochromator as a function of pixel. 

 

From the data shown above, distinct emission lines of the CFL spectrum [65–66] in the UV and 

visible region could be identified at certain pixels. Recall Equation (10): 

𝑑𝑑𝜆𝜆
𝑑𝑑𝑑𝑑 = �

𝑑𝑑𝑑𝑑
𝑑𝑑𝜆𝜆�

−1

=
𝑑𝑑 cos(𝜃𝜃𝑐𝑐)
𝑐𝑐 × 𝑓𝑓  (10) 

The above equation suggests that for small diffraction angles 𝜃𝜃𝑐𝑐, where cos(𝜃𝜃𝑐𝑐) ~ 1, 𝜆𝜆 = 𝑓𝑓(𝑑𝑑) 

is a purely linear function of the position, and hence pixel number, in the focal plane of the 

spectrometer. For large diffraction angles which correspond to the edges of the detector in the 

focal plane, however, 𝜆𝜆 = 𝑓𝑓(𝑑𝑑) will be nonlinear. Thus, the pixel-wavelength pairs were utilized 

to derive a third-order polynomial, which accounts for this nonlinearity, using the least squares 

method. Table 9 provides the pixel-wavelength pairs utilized in deriving this fitting. 
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Table 9: Pixel-wavelength pairs for calibrating spectrometer.   

Pixel Wavelength 
(nm) 

341 365 

496 405.4 

620 436.6 

838 487.7 

1086 542.4 

1106 546.5 

1260 577.7 

1271 580.2 

1294 584 

1313 587.6 

1343 593.4 

1378 599.7 

1440 611.6 

1549 631.1 

1666 650.8 

1739 662.6 

1900 687.7 

1948 693.7 
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Based on the data presented in Table 9, the following third-order polynomial was derived for the 

pixel-wavelength relation: 

𝜆𝜆(𝑝𝑝) = 𝐶𝐶0 + 𝐶𝐶1𝑝𝑝 + 𝐶𝐶2𝑝𝑝2 + 𝐶𝐶3𝑝𝑝3 (14) 

where 𝑝𝑝 represents the pixel number (0 to 2047), 𝐶𝐶0 ~ 269.8408968 nm, 𝐶𝐶1 ~ 0.2921248 nm, 

𝐶𝐶2 ~ –3.7816804 × 10–5 nm, and 𝐶𝐶3 ~ –1.6947201 × 10–10 nm. This polynomial is graphed in 

Figure 40 and illustrates the nonlinear behavior predicted by Equation (10) for large diffraction 

angles.  

 

 

Figure 40: Pixel-wavelength relation 𝜆𝜆(𝑝𝑝). 

 

The resulting fitting was empirically adjusted based on the measured fluorescence and Raman 

spectra of bacteria and bacterial components to achieve reasonable agreement with those 

provided in the literature and measured by a benchtop spectrometer. 
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Raman Excitation Module 

Components  

A schematic and picture of the Raman excitation module subsystem, along with its major 

components, are shown in Figure 41 and Figure 42, respectively. 

 

 

Figure 41: Schematic of the Raman excitation module and its major components. 

 

 

Figure 42: Picture of the Raman excitation module and its major components. 



68 
 

The Raman excitation module essentially utilizes a backscattering optical configuration. The 

excitation light, which is practically collimated at the laser output, passes through a laser line, 

“clean-up” filter and is redirected by a plane aluminum mirror, 𝑀𝑀1, and dichroic filter, 𝑀𝑀2, to 

the microscope objective, 𝐿𝐿1. Owing to the fact that the laser wavelength is below the cutoff 

wavelength of the dichroic filter for transmission, 𝑀𝑀2 essentially functions as an ideal mirror for 

90° reflection. Upon being redirected to 𝐿𝐿1, the laser beam is focused to its diffraction-limited 

spot size at the focal point of the microscope objective. To maximize the scattering intensity, the 

sample should ideally be located directly at the focal point of 𝐿𝐿1. Following excitation of the 

sample, 𝐿𝐿1 collects and collimates the scattered light, which diverges from the focal point of 𝐿𝐿1. 

The Rayleigh scattered light, which is more intense than the Raman lines by orders of 

magnitude, is filtered to prevent saturation of the detector. This is achieved through the same 

dichroic filter, 𝑀𝑀2, which transmits the Stokes-shifted Raman lines, which lie in the passband of 

the filter, and reflect the Rayleigh line, which lies below the associated cutoff wavelength. An 

additional longpass filter is utilized to further reduce the Rayleigh line intensity, while enabling 

the detection of low-frequency Raman bands. The collimated, filtered scattered light is then 

collected and focused by a coupling lens, 𝐿𝐿2, onto an optical fiber coupled with the emission 

monochromator subsystem.  

Laser Source 

The laser source is a continuous-wave (CW) laser diode module (Laserland 1875-532D) 

with a nominal wavelength of 532 nm and output power of 50 mW. In addition to not possessing 

any deleterious effects for either chemical or biological samples, this wavelength of light also 

coincides with the absorption band of various natural pigments, including prodigiosin [67], 

which exist in living organisms such as bacteria [68]. This suggests that the proposed system is 
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capable of recording the resonance Raman spectra of such pigments, in addition to the Raman 

spectra of other biomolecules and chemicals in the solid, liquid, or gas phase. The output of the 

laser diode module is coupled to a laser line, “clean-up” filter (Thorlabs FL05532-10) which 

removes additional, undesirable longitudinal modes that reduce the purity of the excitation light 

and may result in spurious signal or saturation of the detector. To that effect, the transmission 

spectrum of the filter is plotted in Figure 43.  

 

 

Figure 43: Transmission spectrum of the laser clean-up filter [69]. 

 

Clearly, the laser line filter produces a rather pure output at the nominal laser wavelength of 532 

nm. 
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Optical Path Components  

 In regards to the excitation and collection optics, the optical path components include a 

plane aluminum mirror, 𝑀𝑀1, dichroic filter, 𝑀𝑀2, microscope objective, 𝐿𝐿1, longpass filter, and 

coupling lens, 𝐿𝐿2. 𝑀𝑀1 is a protected aluminum mirror (Thorlabs PF05-03-G01) with high 

broadband reflectivity (> 90%) in the visible region without the usage of any additional coatings. 

In addition, the placement of 𝑀𝑀1 allows for a simplified alignment of the laser beam in scenarios 

where the laser source is modified.  

Following 𝑀𝑀1, 𝑀𝑀2 is a dichroic filter (Thorlabs DMLP550T) with a cutoff wavelength, 

550 nm, that is well above the laser output wavelength in order to minimize transmission of the 

beam during its incident propagation, in addition to filtering the Rayleigh scattered light from the 

sample. The transmission and reflectance spectra of the filter are provided in Figure 44. 

 

 

Figure 44: Transmission and reflectance spectra of dichroic filter 𝑀𝑀2 [70]. 
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Following 𝑀𝑀2, 𝐿𝐿1 is a Bausch & Lomb divisible 10𝑋𝑋 microscope objective with high, 

broadband transmission in the visible region. Considering the focal length of the microscope 

objective, 𝑓𝑓, and collimated waist radius of the incident laser beam, 𝑤𝑤0, the diffraction-limited 

spot size may be computed [71]: 

𝑤𝑤𝑓𝑓 =
𝜆𝜆𝑓𝑓
𝜋𝜋𝑤𝑤0

 (15) 

where 𝜆𝜆 = 532 nm, 𝑓𝑓 = 16 mm, and 𝑤𝑤0 ~ 1.6934 mm. The values for 𝑓𝑓 and 𝑤𝑤0 were obtained 

from the datasheets for the microscope objective and laser source, respectively. Consequently, 

𝑤𝑤𝑓𝑓  ~ 1.6 𝜇𝜇m. 

In general, the diffraction-limited spot size is inversely proportional to the magnification of the 

microscope objective. Larger magnifications would theoretically increase the scattering intensity 

owing to the higher numerical aperture and smaller beam diameter at the focal point of 𝐿𝐿1. To 

that effect, microscope objectives of larger magnification, and consequently smaller focal 

lengths, may be easily substituted at the lens holder as needed. 

 The longpass filter (Thorlabs FELH0550) is a premium filter with an optical density 

(OD) greater than 5 in the stopband (rejection region), along with a transmission higher than 

90% in the passband (transmission region). The transmission spectra of the longpass filter and a 

standard color filter, as a function of the Raman shift, are provided for comparison in Figure 45. 
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Figure 45: Transmission spectra of longpass filter [72] and color filter. 

 

The above data show that the longpass filter provides a superior rejection of the Rayleigh 

scattered light, in addition to a higher passband transmission and a faster, steeper transition 

between the stopband and passband. We have successfully recorded Raman spectra with both the 

premium longpass filter and a standard color filter in the Raman excitation module. While both 

filters enable the detection of Stokes Raman bands, the longpass filter provides greater 

sensitivity, especially at lower frequencies. Such low-frequency bands often differentiate 

structurally similar, yet distinct, molecules, thus enabling accurate and rapid materials 

identification. 
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Following the filter, 𝐿𝐿2 is a coupling lens (Fiberguide Industries COL005S0101) that is 

roughly similar in diameter to 𝐿𝐿1, thus maximizing the throughput of the scattered light. 

Additionally, the numerical aperture of 𝐿𝐿2 is matched to the input numerical aperture of the 

attached optical fiber.  
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CHAPTER V 

RESULTS AND DISCUSSION 

 
 

Tryptophan 

Absorption Spectrum 

The normalized absorption spectrum of tryptophan in water is displayed in Figure 46.  

 

 

Figure 46: Normalized absorption spectrum of tryptophan in water. 

 

Tryptophan possesses two rather broad absorption bands with peaks at ~ 280 nm and 220 nm, 

corresponding to the 𝑆𝑆0 → 𝑆𝑆1 and 𝑆𝑆0 → 𝑆𝑆2 electronic transitions, respectively. It may be noted 

that the 𝑆𝑆0 → 𝑆𝑆2 absorption band is considerably more intense than the 𝑆𝑆0 → 𝑆𝑆1 band, owing to 

the higher extinction coefficient of tryptophan at shorter wavelengths. These absorption bands 

are due to the indole group of tryptophan [39, 73]. 
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Fluorescence Spectrum 

The fluorescence spectrum of tryptophan in water (2 𝜇𝜇𝑠𝑠
𝑐𝑐𝑚𝑚

) recorded by the portable 

instrument (integration time: 3 seconds; averaging: 10 scans; median filter width: 20 points) is 

depicted in Figure 47. The fluorescence spectrum recorded by the benchtop instrument is also 

shown in Figure 48 for reference.  

 

 

Figure 47: Fluorescence spectrum of tryptophan recorded by portable instrument. 
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Figure 48: Fluorescence spectrum of tryptophan recorded by benchtop instrument. 

 

The fluorescence spectrum recorded by the portable instrument was achieved by coupling the 

emission monochromator and disinfection unit subsystems. It may be observed that the recorded 

spectra are practically identical with respect to the fluorescence band shape and wavelength of 

peak intensity. The spectrum recorded by the portable instrument was additionally compared 

against the literature [73–75] for further validation of its accuracy.  

Excitation-Emission Matrix (EEM) 
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5 seconds; averaging: 1 scan; median filter width: 20 points). The EEM is provided as a three-

dimensional (3D) surface plot and two-dimensional (2D) contour plot in Figure 49 and Figure 

50, respectively. The 2D contour plot is simply a projection of the 3D surface plot in the 

excitation-emission plane.  

 

 

Figure 49: 3D surface plot of EEM for tryptophan recorded by portable instrument.  
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Figure 50: 2D contour plot of EEM for tryptophan recorded by portable instrument.  

 

The EEM of tryptophan provides a detailed characterization of its most intense excitation and 

emission bands. For tryptophan, peak excitation occurs at ~ 280 nm with peak emission at ~ 350 

nm, which is in good agreement with the literature [75]. The difference in the peak excitation and 

emission wavelength is, in general, characteristic of a given molecule and may be obtained 

through the EEM. 
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Fluorescence Decay  

Solutions of tryptophan in water (2 𝜇𝜇𝑠𝑠
𝑐𝑐𝑚𝑚

) were irradiated by means of a mercury arc lamp 

and UV LED, integrated with our portable instrument in the disinfection unit, for various 

irradiation times ranging from 0 to 240 minutes. Fluorescence spectra were recorded by the 

portable instrument (integration time: 3 seconds; averaging: 10 scans; median filter width: 20 

points) following each interval of irradiation. The peak fluorescence intensity was then plotted as 

a function of the irradiation time, or dosage, for each irradiation source. To that effect, Figure 51 

and Figure 52 display the fluorescence spectra and peak fluorescence intensity of tryptophan as a 

function of the irradiation time, respectively, using the mercury arc lamp.   

 

 

Figure 51: Fluorescence spectra of tryptophan as a function of irradiation time using arc lamp.  
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Figure 52: Peak intensity of tryptophan as a function of irradiation time using arc lamp.  

 

The above data clearly show that the fluorescence spectrum and peak fluorescence intensity of 

tryptophan decrease as a function of irradiation time by the mercury arc lamp. In general, this 

decrease may be modeled by an exponential distribution of the following form: 

𝐼𝐼(𝑡𝑡) = 𝐼𝐼0𝑒𝑒−𝛼𝛼𝑠𝑠  (16) 

where 𝐼𝐼(𝑡𝑡) is the fluorescence intensity (a.u.) at time 𝑡𝑡 (minutes), 𝐼𝐼0 is the initial fluorescence 

intensity at 𝑡𝑡 = 0 minutes of irradiation, and 𝛼𝛼 is a rate constant (minutes–1) proportional to the 

UV irradiance and extinction coefficient of the sample. Figure 53 and Figure 54 similarly display 

the fluorescence spectra and peak fluorescence intensity of tryptophan as a function of the 
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irradiation time, respectively, using the UV LED in the disinfection unit of the portable 

instrument.  

 

 

Figure 53: Fluorescence spectra of tryptophan as a function of irradiation time using UV LED. 
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Figure 54: Peak intensity of tryptophan as a function of irradiation time using UV LED. 
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correlated with a decrease in the concentration of tryptophan molecules. We have observed this 

decrease in fluorescence previously with a benchtop instrument [20–22], which may essentially 

be attributed to the photooxidation, or degradation, of tryptophan upon UV exposure [39, 76–
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kynurenine and N-formylkynurenine, fluoresce maximally in the visible region [78–79] 

y = 3883.4e-0.007x

R² = 0.9974

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300

Pe
ak

 In
te

ns
ity

 (a
.u

.)

Irradiation time (minutes)



83 
 

following UVA excitation and may therefore provide an additional means of monitoring the 

oxidation of tryptophan molecules.  

Tyrosine 

Absorption Spectrum 

The normalized absorption spectrum of tyrosine in water is provided in Figure 55.  

 

 

Figure 55: Normalized absorption spectrum of tyrosine in water. 

 

Tyrosine possesses two rather broad absorption bands with peaks at ~ 275 nm and 225 nm, 

corresponding to the 𝑆𝑆0 → 𝑆𝑆1 and 𝑆𝑆0 → 𝑆𝑆2 electronic transitions, respectively. These absorption 

bands are due to the aromatic side-chain of the tyrosine molecule [15]. Similar to tryptophan, 

tyrosine possesses a higher extinction coefficient and absorption at shorter wavelengths. It is 

worth mentioning, however, that tyrosine has a considerably lower extinction coefficient than 

tryptophan at these wavelengths [15, 73].  
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Fluorescence Spectrum 

The fluorescence spectrum of tyrosine in water (10 𝜇𝜇𝑠𝑠
𝑐𝑐𝑚𝑚

) recorded by the portable 

instrument (integration time: 3 seconds; averaging: 10 scans; median filter width: 20 points) is 

provided in Figure 56. The fluorescence spectrum recorded by the benchtop instrument is shown 

in Figure 57 for reference.  

 

 

Figure 56: Fluorescence spectrum of tyrosine recorded by portable instrument. 
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Figure 57: Fluorescence spectrum of tyrosine recorded by benchtop instrument. 

 

The recorded spectra of tyrosine are practically identical with respect to the fluorescence band 

shape and wavelength of peak intensity. The spectrum recorded by the portable instrument was 

additionally compared against the literature [73–75] for further validation of its accuracy.  
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dimensional (3D) surface plot and two-dimensional (2D) contour plot in Figure 58 and Figure 

59, respectively. 

 

 

Figure 58: 3D surface plot of EEM for tyrosine recorded by portable instrument.  
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Figure 59: 2D contour plot of EEM for tyrosine recorded by portable instrument.  

 

In contrast to tryptophan, the peak excitation of tyrosine occurs at ~ 275 nm with peak emission 

at ~ 305 nm, which is also in good agreement with the literature [75]. Owing to its lower 

extinction coefficient and quantum yield [73], the fluorescence intensity of tyrosine at these 

excitation and emission wavelengths is comparatively lower than that observed with a tryptophan 

solution of similar concentration.  
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Fluorescence Decay  

Solutions of tyrosine in water (10 𝜇𝜇𝑠𝑠
𝑐𝑐𝑚𝑚

) were irradiated by means of a mercury arc lamp 

and UV LED, integrated with our portable instrument in the disinfection unit, for various 

irradiation times ranging from 0 to 240 minutes. Fluorescence spectra were recorded by the 

portable instrument (integration time: 3 seconds; averaging: 10 scans; median filter width: 20 

points) following each interval of irradiation. To that effect, Figure 60 and Figure 61 display the 

fluorescence spectra and peak fluorescence intensity of tyrosine as a function of the irradiation 

time, respectively, using the mercury arc lamp.   

 

 

Figure 60: Fluorescence spectra of tyrosine as a function of irradiation time using arc lamp.  
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Figure 61: Peak intensity of tyrosine as a function of irradiation time using arc lamp.  

 

Figure 62 and Figure 63 similarly display the fluorescence spectra and peak fluorescence 

intensity of tyrosine as a function of the irradiation time, respectively, using the UV LED in the 

disinfection unit of the portable instrument.  
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Figure 62: Fluorescence spectra of tyrosine as a function of irradiation time using UV LED. 
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Figure 63: Peak intensity of tyrosine as a function of irradiation time using UV LED. 
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indicator of oxidative stress in proteins that are present in both bacterial and human tissue cells 

[80, 82–83]. 

Tryptophan and Tyrosine Mixture 

Absorption Spectrum 

The normalized absorption spectrum of a tryptophan and tyrosine mixture in water is 

shown in Figure 64.  

 

 

Figure 64: Normalized absorption spectrum of tryptophan and tyrosine mixture in water. 

 

The absorption spectrum of the mixture displays two broad absorption bands corresponding to 
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Excitation-Emission Matrix (EEM) 

The excitation-emission matrix (EEM) of a tryptophan (100 𝜇𝜇𝑠𝑠
𝑐𝑐𝑚𝑚

) and tyrosine (400 𝜇𝜇𝑠𝑠
𝑐𝑐𝑚𝑚

) 

mixture in water was recorded over the excitation range of 260–310 nm with an excitation 

resolution of 1 nm (integration time: 5 seconds; averaging: 1 scan; median filter width: 20 

points). The EEM is displayed as a three-dimensional (3D) surface plot and two-dimensional 

(2D) contour plot in Figure 65 and Figure 66, respectively. 

 

 

Figure 65: 3D surface plot of EEM for mixture recorded by portable instrument.  
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Figure 66: 2D contour plot of EEM for mixture recorded by portable instrument. 

 

Two rather intense fluorescence bands may be observed in the EEM of the mixture, 

corresponding to the tryptophan and tyrosine fluorescing components. A primary band is present 

with peak excitation at ~ 280 nm and peak emission at ~ 350 nm, which is essentially due to 

tryptophan, in addition to a secondary, less intense band with peak excitation at ~ 275 nm and 

peak emission at ~ 305 nm, which may be assigned to tyrosine. Thus, while both components 

absorb at similar excitation wavelengths, the characteristic fluorescence band maximum of each 

component occurs at a distinct emission wavelength. Moreover, the difference between the 

absorption and fluorescence band maxima of each component may be utilized, through the 
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synchronous fluorescence technique [16], for the spectroscopic identification of each molecule in 

mixture.  

Fluorescence and Synchronous Fluorescence Spectra 

The fluorescence spectra of the tryptophan and tyrosine mixture at various excitation 

wavelengths, along with the synchronous fluorescence spectra of the tryptophan and tyrosine 

components, were extracted from the EEM of the mixture. It was determined that for Δ𝜆𝜆 in the 

range of ~ 20 to 30 nm, the tyrosine component of the mixture could be spectroscopically 

isolated, whereas Δ𝜆𝜆 in the range of ~ 60 to 80 nm were necessary for resolving and 

distinguishing tryptophan fluorescence. These results are consistent with the data reported in 

studies utilizing benchtop monochromators [84–86], including our own [20–22]. To that effect, 

the fluorescence spectrum of the mixture at an excitation wavelength 𝜆𝜆𝐸𝐸𝐸𝐸 = 270 nm, along with 

the synchronous fluorescence spectra of the tyrosine and tryptophan components extracted using 

Δ𝜆𝜆 = 25 nm and Δ𝜆𝜆 = 65 nm, respectively, are provided in Figure 67. 
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Figure 67: Fluorescence and synchronous fluorescence spectra of tryptophan and tyrosine 

mixture recorded by portable instrument. 

 

The data displayed in Figure 67 show that while the fluorescence spectrum of the mixture 

consists of a rather broad, structureless, and diffuse band that cannot be uniquely assigned to 

either tyrosine or tryptophan, the synchronous spectra display narrow, resolved peaks of both the 

tyrosine and tryptophan components, which display characteristic maxima at ~ 305 nm and 350 

nm, respectively. This is made possible through the selectivity of the synchronous fluorescence 

technique provided by the Δ𝜆𝜆 parameter. It is rather important to note that the optimum Δ𝜆𝜆, 

which provides the greatest SNR and smallest bandwidth of the desired fluorescence band, may 

vary slightly between instruments depending on the spectral characteristics of the excitation 
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source, in addition to the sensitivity and calibration of the spectrometer. We find that the data 

recorded by our portable instrument is practically identical to that provided in the literature and 

recorded by benchtop instruments [20–22, 84–86]. In contrast to benchtop spectrometers, which 

typically permit the recording of a synchronous fluorescence spectrum at a single Δλ, our 

portable instrument enables the direct, and practically instantaneous, computation of 

synchronous fluorescence spectra of any arbitrary Δλ following the acquisition of the EEM. This 

technique may therefore be employed for more complex chemical mixtures in order to resolve 

the fluorescence spectra of each individual component based on the appropriate set of Δλ derived 

from the EEM. 

EEM Parameters  

It is of practical relevance to consider the effects of the EEM parameters on the total 

acquisition time. Considering the excitation range, Δ𝜆𝜆, excitation resolution, 𝑑𝑑𝜆𝜆, integration time, 

𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , number of scans to average, 𝑆𝑆, and total stepper motor delay, 𝜏𝜏𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, in addition to 

neglecting any communication delays between the computer and instrument, a lower bound on 

the total acquisition time, 𝜏𝜏𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for a given EEM may be obtained: 

𝜏𝜏𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ ��
Δ𝜆𝜆
𝑑𝑑𝜆𝜆 + 1� × 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑆𝑆� + 𝜏𝜏𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (17) 

which may be rewritten as 

𝜏𝜏𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ �𝑁𝑁 × 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑆𝑆� + 𝜏𝜏𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (18)  

where 𝑁𝑁 = �Δ𝑑𝑑
𝑠𝑠𝑑𝑑

+ 1� denotes the total number of spectra recorded in an EEM acquisition. Of 

particular importance in Equation (17) is the fact that 𝜏𝜏𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∝ �𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑆𝑆� and 

𝜏𝜏𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∝ Δ𝜆𝜆, as expected, yet 𝜏𝜏𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∝
1
𝑠𝑠𝑑𝑑

. Thus, in acquisitions where the SNR is low 

and higher integration times or averaging is required, a smaller excitation range Δ𝜆𝜆 and/or larger 
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excitation resolution 𝑑𝑑𝜆𝜆 may be employed as a means of maintaining a reasonable acquisition 

time. This is particularly important in scenarios where the sample concentration is low or a large 

background interference is present. To investigate the effects of increasing the excitation 

resolution 𝑑𝑑𝜆𝜆, the EEM of the tryptophan and tyrosine mixture was obtained with 𝑑𝑑𝜆𝜆 = 1, 2, 5, 

and 10 nm. The synchronous fluorescence spectra of the tryptophan and tyrosine components 

were then computed from the EEM with Δ𝜆𝜆 = 25 nm and Δ𝜆𝜆 = 65 nm, respectively, for each 

excitation resolution and compared. The results of this comparison are provided in Figure 68. 

 

 

Figure 68: Synchronous fluorescence spectra of tryptophan and tyrosine mixture for various 

excitation resolutions. 
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The computed synchronous fluorescence spectra are practically identical for each excitation 

resolution, with respect to both band shape and fluorescence intensity, and successfully resolve 

the tryptophan and tyrosine components of the mixture. These results suggest that increasing the 

excitation resolution, to as high as ~ 10 nm, is a rather viable means of reducing the total 

acquisition time, particularly in circumstances where higher integration times or averaging is 

required, such as when the sample concentration is low or the fluorescence signal is inherently 

weak. Additional algorithms, such as interpolation of the fluorescence intensity between 

excitation wavelengths, may also be implemented as needed. 

Bacteria 

Absorption Spectra  

The normalized absorption spectra of B. thuringiensis and E. coli suspensions in water 

are depicted in Figure 69 and Figure 70, respectively.  

 

 

Figure 69: Normalized absorption spectrum of B. thuringiensis in water. 
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Figure 70: Normalized absorption spectrum of E. coli in water. 

 

Both bacteria display a rather broad absorption band with maximum absorption at ~ 270 nm. 

This absorption band is primarily due to proteins situated along the cell membrane and within the 

cytoplasm, which consist of tryptophan and tyrosine residues, in addition to DNA, which is 

located in the cell interior. Owing to the fact that DNA is, topically, enveloped by proteins, 

which exist in greater quantity and display much higher absorption, by orders of magnitude, in 

the UV region [15, 39], the observed absorption bands may essentially be attributed to proteins, 

namely tryptophan and tyrosine residues, in the bacterial cell. The recorded absorption at longer 

wavelengths in the visible region, ~ 600 nm, is primarily due to light scattering and may be used 

to estimate the bacterial concentration [51].  

Fluorescence Spectra  

The fluorescence spectra of B. thuringiensis and E. coli suspensions in water (~ 108 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠
𝑐𝑐𝑚𝑚

) 

recorded by the portable instrument (integration time: 5 seconds; averaging: 5 scans; median 
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filter width: 20 points) are provided in Figure 71 and Figure 72, respectively. The corresponding 

fluorescence spectra recorded by the benchtop instrument are shown in Figure 73 and Figure 74 

for reference.  

 

 

Figure 71: Fluorescence spectrum of B. thuringiensis recorded by portable instrument. 

 

 

Figure 72: Fluorescence spectrum of E. coli recorded by portable instrument. 
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Figure 73: Fluorescence spectrum of B. thuringiensis recorded by benchtop instrument. 

 

 

Figure 74: Fluorescence spectrum of E. coli recorded by benchtop instrument. 
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fluorescence band shape and wavelength of peak intensity. The spectra recorded by the portable 

instrument were additionally compared against the literature [5–7, 17, 20–22] for further 

validation of their accuracy. 

Excitation-Emission Matrix (EEM) 

The excitation-emission matrices (EEMs) of B. thuringiensis and E. coli suspensions in 

water (~ 108 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠
𝑐𝑐𝑚𝑚

) were recorded over the excitation range of 260–310 nm with an excitation 

resolution of 2 nm (integration time: 30 seconds; averaging: 1 scan; median filter width: 50 

points). The EEMs are provided as three-dimensional (3D) surface plots and two-dimensional 

(2D) contour plots for B. thuringiensis and E. coli in Figure 75 through Figure 78. 

 

 

Figure 75: 3D surface plot of EEM for B. thuringiensis recorded by portable instrument.  
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Figure 76: 2D contour plot of EEM for B. thuringiensis recorded by portable instrument.  
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Figure 77: 3D surface plot of EEM for E. coli recorded by portable instrument.  
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Figure 78: 2D contour plot of EEM for E. coli recorded by portable instrument.  

 

An intense fluorescence band is observed in the EEM of both B. thuringiensis and E. coli with 

peak excitation at ~ 280–285 nm and peak emission at ~ 335–340 nm. This band is primarily 

assigned to tryptophan, which is known to be the most intensely absorbing and fluorescing 

component of bacterial cells [39, 73], and, to a lesser degree, tyrosine. It is worth noting that 

tryptophan and tyrosine do not exist as free molecules in bacterial cells but rather as components 

of membrane and cytoplasmic proteins. The locations of the excitation and emission band 

maxima are in good agreement with the literature [5, 17, 20–22]. 
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Fluorescence and Synchronous Fluorescence Spectra 

The fluorescence spectra of the B. thuringiensis and E. coli suspensions (~ 108 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠
𝑐𝑐𝑚𝑚

) at 

various excitation wavelengths, along with the synchronous fluorescence spectra of the 

tryptophan and tyrosine components, were extracted from the respective EEMs of the bacteria. 

The same set of Δ𝜆𝜆 employed previously for the tryptophan and tyrosine mixture was utilized in 

this procedure. To that effect, the fluorescence spectrum at an excitation wavelength 𝜆𝜆𝐸𝐸𝐸𝐸 = 270 

nm, along with the synchronous fluorescence spectra of the tyrosine and tryptophan components 

extracted with Δ𝜆𝜆 = 25 nm and Δ𝜆𝜆 = 65 nm, respectively, are provided for B. thuringiensis and 

E. coli in Figure 79 and Figure 80, respectively. The corresponding fluorescence and 

synchronous fluorescence spectra recorded by the benchtop instrument are also provided in 

Figure 81 and Figure 82 for comparison. 
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Figure 79: Fluorescence and synchronous fluorescence spectra of B. thuringiensis recorded by 

portable instrument. 

 

 

Figure 80: Fluorescence and synchronous fluorescence spectra of E. coli recorded by portable 

instrument. 
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Figure 81: Fluorescence and synchronous fluorescence spectra of B. thuringiensis recorded by 

benchtop instrument. 

 

 

Figure 82: Fluorescence and synchronous fluorescence spectra of E. coli recorded by benchtop 

instrument. 

0

50

100

150

200

250

300

280 330 380 430 480

In
te

ns
ity

 (a
.u

.)

Wavelength (nm)

EX = 270 nm

∆λ = 25 nm

∆λ = 65 nm

0

100

200

300

400

500

600

280 330 380 430 480

In
te

ns
ity

 (a
.u

.)

Wavelength (nm)

EX = 270 nm

∆λ = 25 nm

∆λ = 65 nm



110 
 

The synchronous fluorescence spectra recorded for B. thuringiensis and E. coli are practically 

identical to those recorded for the mixture of tyrosine and tryptophan, revealing the tyrosine and 

tryptophan fluorescence band maxima at ~ 315 nm and 350 nm, respectively. This technique 

therefore provides a direct means of recording the fluorescence of individual cellular components 

in bacteria, in addition to observing the effects of UV radiation or other inactivating agents, such 

as antibiotics, on such components. Additionally, it may be possible to record similar 

information, in-situ, for other pathogens such as viruses. It is rather interesting to note that the 

tryptophan to tyrosine synchronous fluorescence intensity ratios recorded for B. thuringiensis 

and E. coli with the portable instrument, ~ 1.44 and ~ 1.70, respectively, are in reasonable 

agreement with those measured by the benchtop instrument, which are ~ 1.46 and ~ 2.05, 

respectively. These results suggest that B. thuringiensis and E. coli possess distinct synchronous 

fluorescence intensity ratios that may aid in identifying the respective bacterial strains. Further 

work is required in establishing the accuracy of this technique at various bacterial concentrations 

and extending it to include additional bacterial strains. We find that the data recorded by our 

portable instrument is practically identical to that provided in the literature and recorded by 

benchtop instruments [5, 17, 20–22, 39]. 

Fluorescence Decay  

Suspensions of B. thuringiensis and E. coli in water (~ 108 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠
𝑐𝑐𝑚𝑚

) were irradiated by 

means of a mercury arc lamp and UV LED, integrated with our portable instrument in the 

disinfection unit, for various irradiation times ranging from 0 to 120 minutes. Fluorescence 

spectra were recorded by the portable instrument (integration time: 5 seconds; averaging: 5 

scans; median filter width: 20 points) following each interval of irradiation. To that effect, Figure 

83 through Figure 86 display the fluorescence spectra and peak fluorescence intensities of B. 
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thuringiensis and E. coli as a function of the irradiation time, respectively, using the mercury arc 

lamp.   

 

 

Figure 83: Fluorescence spectra of B. thuringiensis as a function of irradiation time using arc 

lamp. 
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Figure 84: Peak intensity of B. thuringiensis as a function of irradiation time using arc lamp.  
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Figure 85: Fluorescence spectra of E. coli as a function of irradiation time using arc lamp.  
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Figure 86: Peak intensity of E. coli as a function of irradiation time using arc lamp.  

 

Figure 87 through Figure 90 similarly display the fluorescence spectra and peak fluorescence 

intensities of B. thuringiensis and E. coli as a function of the irradiation time, respectively, using 

the UV LED in the disinfection unit of the portable instrument.  
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Figure 87: Fluorescence spectra of B. thuringiensis as a function of irradiation time using UV 

LED. 
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Figure 88: Peak intensity of B. thuringiensis as a function of irradiation time using UV LED. 
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Figure 89: Fluorescence spectra of E. coli as a function of irradiation time using UV LED. 
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Figure 90: Peak intensity of E. coli as a function of irradiation time using UV LED. 
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This is due to the fact that proteins envelope the DNA in the cytoplasm and possess higher 

absorption than DNA, by orders of magnitude, in the UV region. We determined that protein 

damage, and the resulting changes in the fluorescence and Raman spectra, correlates with the 

inactivation of bacteria and may therefore differentiate between live and dead bacteria. We find 

that the results obtained with the portable instrument are consistent with our previous studies 

[20–22, 39].  

Additionally, it is interesting to note that the fluorescence decay rate constants obtained 

using the mercury lamp and UV LED are comparable for both B. thuringiensis and E. coli, 

varying from ~ 0.008–0.014 minutes–1, which suggests that the inactivation rates for each source 

are similar. This may be due to the fact that while the mercury lamp provides a higher net optical 

power, ~ 4–5 mW in these experiments, than the LED, ~ 1–2 mW, over the UV region, the 

efficiency of the LED in the UVB and UVC regions, where the absorption of proteins is at its 

maximum, is higher. Other studies have similarly demonstrated the advantage of UV LEDs over 

conventional mercury lamps in achieving disinfection [87–89]. 

Identification of live and dead bacteria 

The fluorescence band maximum decrease of B. thuringiensis and E. coli, following 

irradiation by the UV LED, may be utilized in conjunction with PCA for distinguishing live and 

dead bacteria. To that effect, Figure 91 and Figure 92 display the PCA score plots for 

unirradiated (control) and irradiated B. thuringiensis as a function of the irradiation time. These 

score plots were obtained by subjecting fluorescence data in the range of ~ 300 to 400 nm to 

PCA, which resulted in the greatest variation between spectra. The data from at least three 

independent experiments were normalized to the fluorescence band maximum and utilized for 

the analysis. 
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Figure 91: PCA score plot for non-irradiated (control) B. thuringiensis.  

 

 

Figure 92: PCA score plot for irradiated B. thuringiensis.  
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While the score plot for non-irradiated (control) B. thuringiensis displays practically no variation 

with irradiation time, owing to the random scattering of PCA points, the score plot for irradiated 

B. thuringiensis displays a rather strong variation along the principal component 1 (PC1) axis as 

a function of the irradiation time. In particular, as the irradiation time increases, the PC1 score of 

the spectra decreases. The principal component 2 (PC2) score of the spectra, however, remains 

relatively constant. To that effect, the average PC1 and PC2 scores for each irradiation time, in 

addition to the principal component plot for PC1, are plotted in Figure 93 and Figure 94, 

respectively. 

 

 

Figure 93: Average PC1 and PC2 scores as a function of irradiation time for B. thuringiensis. 
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Figure 94: Plot of principal component 1 for B. thuringiensis.  
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bacteria is inactivated within the first few minutes of UV irradiation, which is in good agreement 

with the separation displayed in the PCA plots recorded by our portable instrument. 

Additionally, we found that practically all bacteria were inactivated (dead) after ~ 10 to 20 

minutes of irradiation, which also shows pronounced separation from the non-irradiated (live) 

bacteria on the score plots. Thus, our portable instrument possesses sufficient sensitivity for 

detecting variations in the number of live bacteria at concentrations comparable to those used 

with benchtop instruments. When calibrated with the culturing data obtained through traditional 

means, namely CFU counting, these procedures provide a practically instantaneous, in-situ 

determination of the number of live and dead bacteria following inactivation by UV light, 

antibiotics, or other methods. 

The corresponding PCA score and principal component plots, along with the variation of 

PC1 as a function of the irradiation time, are provided for E. coli in Figure 95 through Figure 98. 

The PCA results for E. coli similarly demonstrate a clear separation between spectra, as a 

function of the irradiation time, along the PC1 axis. 
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Figure 95: PCA score plot for non-irradiated (control) E. coli.  

 

 

Figure 96: PCA score plot for irradiated E. coli.  
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Figure 97: Average PC1 and PC2 scores as a function of irradiation time for E. coli. 
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Figure 98: Plot of principal component 1 for E. coli.  
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Figure 99: Normalized fluorescence spectra of B. thuringiensis, E. coli, and their mixture. 

 

 

Figure 100: PCA score plot for identification of B. thuringiensis, E. coli, and their mixture. 
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Following PCA processing, a clear separation between B. thuringiensis, E. coli, and their mixture 

is observed in the score plot displayed in Figure 100. A close inspection of the normalized 

bacterial spectra in Figure 99 reveals differences between the spectra with respect to the 

wavelength of the fluorescence band maximum, along with the normalized fluorescence intensity 

in several regions. For example, B. thuringiensis displays a higher normalized fluorescence 

intensity than E. coli at longer wavelengths, ~ 400 to 500 nm, in addition to a somewhat shorter 

wavelength of peak fluorescence intensity. These changes are commensurate with the principal 

component plots of PC1 and PC2 provided in Figure 101.  

 

 

Figure 101: Plots of principal component 1 and 2 for bacterial strain identification. 
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The PCA results suggest that the fluorescence spectra of B. thuringiensis and E. coli possess 

detectable differences that may be utilized for the rapid, in-situ identification of each bacterial 

strain. Interestingly, these results additionally suggest that the fluorescence spectrum of the 

mixture is distinct from that of the constituent B. thuringiensis and E. coli strains. The ability to 

identify and distinguish various mixtures of bacteria, in addition to single strains, could prove to 

be very helpful in determining what inactivating agents, such as specific antibiotics, are the most 

effective for a given bacterial infection. Further work is required in recording the fluorescence 

and synchronous fluorescence spectra of additional bacteria and mixtures in order to assess the 

capabilities and limitations of this method. 

Raman Spectra 

Materials Identification 

 To validate the construction and operation of the Raman excitation module, we recorded 

the Raman spectra of several molecules with our portable instrument. This was achieved by 

coupling the emission monochromator and Raman excitation module subsystems. To that effect, 

the Raman spectra of water, methanol, ethanol, isopropanol, and acetone recorded by the 

portable instrument (integration time: 5 seconds; averaging: 10 scans), in addition to those 

recorded by the benchtop Raman spectrometer (integration time: 2 seconds; averaging: 5 scans), 

are shown in Figure 102 through Figure 111.  
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Figure 102: Raman spectrum of water (𝐻𝐻2𝑂𝑂) recorded by portable instrument. 

 

 

Figure 103: Raman spectrum of water (𝐻𝐻2𝑂𝑂) recorded by benchtop instrument. 
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Figure 104: Raman spectrum of methanol (𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻) recorded by portable instrument. 

 

 

Figure 105: Raman spectrum of methanol (𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻) recorded by benchtop instrument. 
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Figure 106: Raman spectrum of ethanol (𝐶𝐶2𝐻𝐻5𝑂𝑂𝐻𝐻) recorded by portable instrument. 

 

 

Figure 107: Raman spectrum of ethanol (𝐶𝐶2𝐻𝐻5𝑂𝑂𝐻𝐻) recorded by benchtop instrument. 
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Figure 108: Raman spectrum of isopropanol (𝐶𝐶3𝐻𝐻8𝑂𝑂) recorded by portable instrument. 

 

 

Figure 109: Raman spectrum of isopropanol (𝐶𝐶3𝐻𝐻8𝑂𝑂) recorded by benchtop instrument. 
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Figure 110: Raman spectrum of acetone (𝐶𝐶3𝐻𝐻6𝑂𝑂) recorded by portable instrument. 

 

 

Figure 111: Raman spectrum of acetone (𝐶𝐶3𝐻𝐻6𝑂𝑂) recorded by benchtop instrument. 
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The Raman spectra recorded by the portable and benchtop instruments are practically identical 

and display the characteristic vibrational bands of several chemical bonds and groups, including 

−𝑂𝑂𝐻𝐻 (hydroxyl), 𝐶𝐶 = 𝑂𝑂 (carbonyl), −𝐶𝐶𝐻𝐻3 (methyl), 𝐶𝐶 − 𝐶𝐶, and 𝐶𝐶 − 𝑂𝑂, among others. A more 

detailed assignment of these bands may be obtained through the literature or appropriate 

databases. It is worth noting that while the current resolution of the portable instrument (𝑑𝑑𝑅𝑅 ~ 

70.4 cm–1) prevents certain Raman bands from necessarily being resolved, the most prominent, 

intense Raman bands are clearly detected and distinguished between each of the molecules. 

These results demonstrate the utility of Raman spectroscopy in obtaining a unique chemical 

fingerprint for a molecule based on its vibrational modes. 

 To further investigate the application of Raman spectroscopy in materials identification, 

we subjected the Raman spectra of water, methanol, ethanol, isopropanol, and acetone to PCA 

over the range of ~ 500 to 4000 cm–1. The normalized Raman spectra for these chemicals, along 

with the 2D and 3D PCA score plots, are provided in Figure 112 through Figure 114. The data 

from at least ten independent measurements were background subtracted and normalized to the 

peak intensity for the analysis. 
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Figure 112: Normalized Raman spectra for performing materials identification. 
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Figure 113: 2D PCA score plot of Raman spectra for materials identification. 

 

 

Figure 114: 3D PCA score plot of Raman spectra for materials identification. 
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A prominent separation between each chemical along the PC1 and PC2 axes is observed in the 

2D PCA score plot. Additionally, plotting in three dimensions, with PC1, PC2, and PC3, resulted 

in more pronounced separation. In particular, the separation between acetone and isopropanol 

increased significantly in the 3D, compared to 2D, PCA score plot, owing to the additional 

variation captured along the PC3 axis. In fact, it was found that practically all variation in the 

original Raman spectra was attributed to as high as four principal components during this 

analysis. To that effect, the principal component plots for PC1, PC2, PC3, and PC4 are depicted 

in Figure 115 through Figure 118. 

 

 

Figure 115: Plot of principal component 1 for materials identification. 
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Figure 116: Plot of principal component 2 for materials identification. 

 

 

Figure 117: Plot of principal component 3 for materials identification. 
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Figure 118: Plot of principal component 4 for materials identification. 
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further differentiate each chemical. Whereas fluorescence spectra are relatively simple and 

generally unimodal distributions whose variation can be captured within a few principal 

components, Raman spectra may require a higher number of principal components in order to 

fully describe their variation. For molecules with many Raman bands, such PCA processing may 

require plotting various combinations of the principal components in both 2D and 3D principal 

component space to achieve useful separation. Consequently, Raman spectra possess a 

tremendous amount of molecular and structural information that, when coupled with PCA, may 

support the identification of various materials in the solid, liquid, or gas state of matter. These 

results suggest that our portable spectroscopic instrument may be utilized for rapid, in-situ 

materials identification with applications in the chemical, pharmaceutical, and food industry, 

among many others [93–94]. Such applications could involve creating an appropriate database of 

Raman spectra that is integrated with our portable instrument and PCA.  

Bacterial Detection 

The Raman capabilities of our portable instrument were further tested by recording the 

Raman spectrum of S. marcescens, which is a Gram-negative bacterium that produces the red 

pigment prodigiosin under certain growth conditions [67], thus causing the bacterial cells to be 

colored. The amount of pigmentation is a function of various growth and environmental factors 

[67, 95]. Prodigiosin (𝐶𝐶20𝐻𝐻25𝑁𝑁3O) is a large molecule with a high degree of conjugation and an 

absorption band maximum of ~ 535 nm in neutral pH [67, 96–97]. The rather high absorption of 

prodigiosin in the visible region, ~ 400–600 nm, results in its red pigmentation. This suggests 

that excitation in the green region, at a wavelength near the absorption band maximum of 

prodigiosin, may provide a resonant enhancement of its vibrational bands by orders of 

magnitude. Such an excitation range is rather ideal for our Raman excitation module, owing to 
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its laser source emitting at 532 nm. To that effect, the resonance Raman spectrum of red S. 

marcescens recorded by the portable instrument (integration time: 1 second; averaging: 20 

scans), along with that recorded by the benchtop Raman spectrometer (integration time: 1 

second; averaging: 10 scans), are shown in Figure 119 and Figure 120, respectively. 

 

 

Figure 119: Resonance Raman spectrum of red S. marcescens recorded by portable instrument. 
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Figure 120: Resonance Raman spectrum of red S. marcescens recorded by benchtop instrument. 
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bacteria, including Micrococcus luteus, Vibrio cholerae, and Staphylococcus aureus, also 

produce pigments that serve as a defense mechanism against oxidative stress and UV light 

exposure, in addition to strengthening the integrity of the cell membrane [32, 68, 98–99]. It may 

even be possible that the inactivation of bacteria can be correlated with damage to its pigments 

[33]. Such pigments also possess broad absorption bands from the visible to UVA region, owing 

to their conjugation, which may be exploited via resonance Raman for the enhancement of their 

vibrational spectra. In fact, the wavenumber positions of the 𝐶𝐶 − 𝐶𝐶 and 𝐶𝐶 = 𝐶𝐶 vibrational bands 

depend on the conjugated chain length [32] and may therefore be an indicator of the pigment and 

the bacterial strain. To that effect, our portable spectroscopic instrument may enable the studies 

and identification of various pigmented bacteria, in-situ within minutes, by means of both 

fluorescence and resonance Raman spectroscopy. When modified with the appropriate laser 

source, longpass filter, and diffraction grating, this instrument may also permit the usage of 

additional enhancement mechanisms, including UV resonance Raman (UVRR) and surface-

enhanced Raman spectroscopy (SERS) [100], for the selective enhancement of bacterial Raman 

bands. 
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CHAPTER VI 

CONCLUSION 

 
 

We have designed, constructed, and validated a portable spectroscopic instrument which 

is capable of recording the fluorescence, synchronous fluorescence, and Raman spectra of 

bacteria, biomolecules, and mixtures remotely. This instrument possesses the additional 

capabilities of UV disinfection and PCA processing of the recorded fluorescence and Raman 

spectra. We have employed this instrument to determine the mechanism of bacterial inactivation 

following UV irradiation by means of both a mercury lamp and UV LED. Fluorescence 

spectroscopy, synchronous fluorescence spectroscopy, and PCA were applied to identify 

bacterial strains and their components, in addition to distinguishing live and dead bacteria 

practically instantaneously, within minutes, compared to the days required using conventional 

procedures. In addition, Raman spectroscopy was utilized to record the vibrational spectra of 

chemicals and bacteria, which were subjected to PCA for rapid materials identification. To that 

effect, this instrument provides a novel, portable spectroscopic means for the detection and 

identification of live and dead bacteria in-situ. 
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