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What is Cryptography? (5)

Origin of the word “cipher”

Arabic → Medieval Latin → French → Cipher

“Cipher” means zero in Arabic (Al Sifr).

It became “chiffre” in French and later “cipher” or encryption/chiffrement.

How the word “cipher” may have come to mean “encoding/encryption”:

Encoding involves numbers.
Absence of zero in the Roman number system.

-Ibrahim A. Al-Kadi, Cryptography and Data Security: Cryptographic Properties
of Arabic”, proceedings of the 3rd Saudi Eng. Conference, Riyadh, Nov. 1991.

-Georges Ifrah, The Universal History of Numbers: From Prehistory to the
Invention of the Computer, 2000.

-Claude E. Shannon, Communication Theory of Secrecy Systems, 1949.
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Early examples of cryptography

Classic cryptography: from ancient times to the Internet.

It is a weak cryptography.

Use unknown symbols, transposition of letters, substitution of letters.

-Seminal book: David Kahn, The Codebreakers: The Comprehensive History of
Secret Communication from Ancient Times to the Internet, 1996.

-Recent reference: Bruce Schneier, Secrets and Lies: Digital Security in a
Networked World, 2015.
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Early examples of cryptography - Ancient Egypt (1)

The first documented use of cryptography, around 1900 BC in Egypt.

During the reign of pharaohs Amenemhat II and Senusret/Sésostris II of the
12th Dynasty, Middle Kingdom.

A scribe used non-standard hieroglyphs in an inscription on the tomb of the
great chief Khnumhotep II at Beni Hasan, Egypt. Some references cite
archaeologists who supposedly have found basic examples of encrypted
hieroglyphs dating back to the Old Kingdom (2686-2181 BC).
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Early examples of cryptography - Ancient Egypt (2)

Most of the people were illiterate and only the elite could read any written
language.

Some references assume that these non-standard hieroglyphs were not made
to protect critical information, but rather to provide enjoyment for the
intellectual members of the community.

Left: Sphinx of Amenemhat II, Louvre Museum, Paris. Right: Khnumhotep II
depicted while hunting birds, Beni Hasan tomb 3, Egypt.
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Early examples of cryptography - Mesopotamia (Iraq)

Some clay tablets from Mesopotamia are meant to protect information-one
dated near 1500 BC was found to encrypt a craftsman’s recipe for pottery
glaze, presumably commercially valuable.

Tablets were written in Cuneiform (this writing preceded the Egyptian
hieroglyphs). Encryption was made by substitution of cuneiform signs.
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Early examples of cryptography - Atbash (Hebrew abjad)

Hebrew scholars made use of simple monoalphabetic substitution ciphers
(such as the Atbash cipher) in the period 600-500 BC.

The Atbash cipher, also known as the mirror code, is formed by taking the
alphabet and mapping it to its reverse, so that the first letter becomes the
last letter, the second letter becomes the second to last letter, and so on.

In the book of Jeremiah (around 600 BC), biblical verses encrypted Babylon
as Sheshach, and Chaldeans was encrypted as Lev-kamai. A compact table for
Latin-Atbash encryption/decryption is shown below.
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Early examples of cryptography - Ancient Greece (1)

The Scytale, Le bâton de Plutarque.

The scytale transposition cipher was used by the Greek/Spartan military.

The Greek philosopher Plutarch documented the use of the scytale by
Lysander of Sparta around 400 BC.

It consists of a cylinder with a leather strip around it on which is written a
message. The key (the secret or the password) is the rod/cylinder diameter.
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Early examples of cryptography - Ancient Greece (2)
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Other main developments before Modern Cryptography

Due to the lack of time and space, we just give this brief list:

1 Caesar cipher (100-44 BC), shifting the alphabet by 3 positions to the left.

2 The frequency analysis by Abu Yusuf Al-Kindi (801-873 AD).

3 The Vernam (1917) polyalphabet substitution cipher inspired from Vigenere
cipher (1523-1596).

4 The Enigma/Lorentz German machines of WWII.

5 The Data Encryption Standard, the DES (1975), ancestor of the AES.

6 The weak ROT13 cipher (used in games and newsgroups since 1980), similar
to Caesar cipher.

We focus next on public-key cryptography before showing secret-key cryptography
with the AES encryption.
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Asymmetric Cryptography - Public Key

Public key algorithms are fundamental security ingredients in cryptosystems,
applications, and protocols. Public key cryptography is based on prime
numbers and elliptic curves.

Main functions: Encryption, key distribution, and digital signature.

1976: The Diffie-Hellman protocol for key exchange. By three American
cryptographers: Whitfield Diffie, Martin Hellman, and Ralph Merkle.

1977: The RSA algorithm designed at MIT, by Ron Rivest (US), Adi Shamir
(Israel), and Leonard Adleman (US). Keys of lengths from 1024 to 4096 bits
are used in RSA.

1985: ElGamal encryption derived from Diffie-Hellman, by Taher ElGamal
(Egypt+US).

ECC: Elliptical Curve Cryptography. First proposed by Neal Koblitz (Univ. of
Wash.) and Victor Miller (IBM) in 1985. It yields smaller keys, e.g. 164 bits.
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Prime Numbers for Cryptography

Prime Number

Let p ≥ 2 be an integer. The integer p is prime if it is only divisible by 1 and itself.

Examples of small prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...

These numbers are not prime: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, ...

Existence of Large Prime Numbers

Let n be an integer, n > 1. Bertrand’s postulate (now a theorem, originally
conjectured by Joseph Bertrand 1822-1900) states that there exists at least one
prime number p such that n < p ≤ 2n.

Examples of large prime numbers: 40099, 76693691, 12612466877,
1518068879230479685717, 599970664556404984568165167066519.
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The Diffie-Hellman Protocol (1)

How to exchange a secret key?
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The Diffie-Hellman Protocol (2)

How to exchange a secret key?

Alice = Your Machine, desktop, laptop, tablet, or smartphone.

Bob = Your bank server, your GMail account server, or a WhatsApp server.
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The Diffie-Hellman Protocol (3)

How to exchange a secret key?

Select a public prime number p and public number α:
p=24021135745533513541866782302279999450211367669841346251544850744

34466320980337897577273486061438683139481546653325618644861885569289

59685282412522321725339795687780734031491136494570984416579578581222

25936879877190600478225060176787220574430652371647297523641705903430

0702122577342770982520968473778353129761.
and α = 41. Notice p ≈ 10308 ≈ 21024 (1024 bits).
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The Diffie-Hellman Protocol (4)

How to exchange a secret key?

Alice picks up a random integer number a (secret):
a=18535002323881753764573617876936692752827468607526196772384332819

57654935279430802782177356138300496831255493643308633464159688127005

78569056266557476456668133551612469926032645616048086633759718072163

65619113321442865391480341547257835520325127465107154999309047505314

4445030158175739315963580768458788706658.
Only Alice knows a.
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The Diffie-Hellman Protocol (5)

How to exchange a secret key?

Alice sends A = αa to Bob (public):
A=10268793405646026329410396668785606541015903505479612537839271854

53225306193575940320144801180775552623878667995256294943021149765797

08902449052729327290027792199031751465143158560351881484274076087147

53955614426438852525834074265259505647633529594658728372463199324701

1882276209534962043845442137491613286382.
All operations are modulo p. Everyone knows A.
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The Diffie-Hellman Protocol (6)

How to exchange a secret key?

Bob picks up a random integer number b (secret):
b=46067498278252895820456844693840410829833274736620995083059379137

11277055000799065055754920365818240031802894284084348787197396081370

43594945109651050677165032391157879832888786881640710954154561181573

82809812097793187056170746094700343446610354229899811932204069074676

286708383395143604078545334022669405693.
Only Bob knows b.
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The Diffie-Hellman Protocol (7)

How to exchange a secret key?

Bob sends B = αb to Alice (public):
B=17153233696083715739096922176600237826009791641605027670649370211

66977404635427880449736150160092073118442398510776756286495200768864

79135133143633153895268637846720910287484164981973779113857336644373

74722508109008807006968729230451889596444635252925991391114061004390

6135408732960335035621162085042981822726.
All operations are modulo p. Everyone knows B.
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The Diffie-Hellman Protocol (8)

How to exchange a secret key?

Alice computes s = Ba = αab = s. Bob computes Ab = αab = s.
s=65963369188673414771026985734489154951425143596399624471179005220

49356036626737520884988249171493910211721260943146193232755545907449

57014377426276999336200533629625993953121556987800138558887636464577

68397031851062234488919620296305239708153536130629972387020537679935

475198620551005846815210846089364657031.
Besides Alice and Bob, no one knows the secret s.
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The Diffie-Hellman Protocol (9)

Summary of the key-exchange algorithm.

Alice selects a secret key a. Alice sends A = αa to Bob on a public channel.

Bob selects a secret key b. Bob sends B = αb to Alice on a public channel.

A spy listening to the public channel will get A and B, but neither a nor b.

Alice computes Ba = (αb)a = αab = s.

Bob computes Ab = (αa)b = αab = s.

Now Alice and Bob both have s as a shared secret key. A spy cannot find s.

All operations are made modulo a large prime number p (public).
The number α is also public.
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Top 5 Super Computers

The size of p in the previous example (1024 bits) does not allow current
technology, whether based on supercomputers or distributed computing, to break
the Diffie-Hellman key exchange (same for RSA).
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Symmetric versus Asymmetric Encryption (1)

key1 key1

message

Alice Bobkey1 key2

Asymmetric Key System

message decryptencrypt message

shared secret key

ciphertext

Alice Bob

Symmetric Key System

encrypt decrypt
ciphertext

message

public key private key
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Symmetric versus Asymmetric Encryption (2)

key1 key1

message decryptencrypt message

shared secret key

ciphertext

Alice Bob

Symmetric Key System

message
signed text

Alice Bobkey1 key2

Asymmetric Key System

sign verify

private key public key

Yes or No
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RSA Public Key Encryption (1)

RSA Key Generation.

Choose two large (and distinct) prime numbers p and q.
p and q are kept private.

Compute n = pq. All operations will be made modulo n. n is public.

Compute λ = lcm(p− 1, q − 1). λ is kept private.

Choose an integer e such that 1 < e < λ and gcd(e, λ) = 1. e is usually small
to make efficient encryption. e is public.

Determine d such that d · e = 1 modulo λ. d is private.

Public key: n and e. Private key: p, q, λ, and d.
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RSA Public Key Encryption (2)

RSA Key Distribution, Encryption, and Decryption.

Key Distribution: Bob sends his public key (n, e) to Alice.

Encryption: Alice would like to send a message m to Bob, 0 < m < n†.

Alice computes the ciphertext c = me modulo n and transmits c to Bob.

Decryption: Bob recovers m from c using his private key d by computing
cd = (me)d =‡m modulo n.

RSA Signature: Now d is the private key of Alice. She sends signature s by
c = sd and Bob checks it by ce = s.

†The message m should also satisfy gcd(m, n) = 1, i.e. m different from p and q.
‡The proof is based on Fermat’s little theorem and the Chinese remainder theorem.
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ElGamal Encryption System (modified Diffie-Hellman)

ElGamal Encryption.

Key Distribution: Bob sends his public key B = αb to Alice.

Encryption: Alice would like to send a message m to Bob, 0 < m < p.

Alice computes the ciphertext c = m · αab modulo p,
and transmits the pair (c, αa) to Bob.

Decryption: Bob recovers the message m from (c, αa) using his private key b
by computing c · α−ab = m.
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Hardness of Problems used in Public Key Cryptography

Computing discrete logarithms and factoring integers (for Diffie-Hellman and
RSA) are distinct problems, but both problems are difficult.

For both problems, no efficient algorithms are known for non-quantum
computers.

For both problems, efficient algorithms on quantum computers are known.

Algorithms for one problem are often adapted to the other.

The difficulty of both problems has been used to construct various
cryptographic systems.
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AES - Advanced Encryption Standard (1)

AES: Advanced Encryption Standard, original name Rijndael, published in
1998 and standardized in 2001.

Designed by Joan Daemen and Vincent Rijmen, two Belgian cryptographers
(from KUL, Leuven).

Low memory requirement. Fast enough on hardware and software: 10MB/s
up to 1 GB/s. Some implementations run at 10 GB/s.

Some of the major applications:

Point-to-point secure web connections (SSL/TLS).
End-to-end WhatsApp encryption.
End-to-end Facebook Messenger encryption.
IPSec for virtual private networks (VPNs).
x86-64 (Intel and AMD) and ARM (e.g Apple) processors instructions set.
IEEE 802.11i (WiFi).

It encrypts data in blocks of 128 bits. It replaced the DES.

Three versions with 3 key lengths: AES-128, AES-192, AES-256.

As of today, all possible attacks on the full AES did not succeed.
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AES - Advanced Encryption Standard (2)

AES is a network performing many rounds
of substitution and permutation, after
expanding the keys. It applies the diffusion
and the confusion concepts.

Kerckhoffs’ Principle (Auguste Kerckhoffs
1883): A cryptosystem should be secure
even if everything about the system, except
the key, is public knowledge. Reformulated
by Shannon as the enemy knows the system.
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AES - Advanced Encryption Standard (3)

The Confusion Property (Claude Shannon
1949): Each digit of the ciphertext should
depend on several parts of the key.

The Diffusion Property (Claude Shannon
1949): If we change a single digit of the
plaintext, then (statistically) half of the
digits in the ciphertext should change.
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AES - Advanced Encryption Standard (4)

AES is a block cipher (it belongs to
symmetric ciphers).

Plaintext size is 128 bits. Ciphertext size is
128 bits.

The 128 bits are written in a 4× 4 matrix
of 16 bytes, called the state.

Each byte is considered as an element of
F256 = F2[x]/(x

8 + x4 + x3 + x+ 1) (The
Rijndael finite field).
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AES - Advanced Encryption Standard (5)

The AES encryption/decryption key size
can be 128, 192, or 256 bits.

The AES applies 10, 12, or 14 rounds
depending on the key size.

It iterates the function (one round) that
does substitution and permutation.
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AES - Advanced Encryption Standard (6)

AES Key Schedule (key expansion for
confusion). Out of the encryption key, a
new key is created for each round: the
initial round, the 13 main rounds
(AES-256), and the final round.

At each round, a new round key is
generated from the previous key by:
1) Cyclic rotation of the 4 bytes in the 4th
column, 2) Substitution (S-Box) applied to
each byte, 3) Adding a 32-bit constant to
the 4th column, and 4) the resulting 4th
column is XOR-ed with the 1st column in
the previous key. Other columns are also
XOR-ed with the column at the next
position in the previous key.
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AES - Advanced Encryption Standard (7)

The Rijndael S-box used in AES is a
one-to-one mapping (substitution) of
elements of F256 (bytes).

The S-box multiplies by the inverse in the
finite field than applies an affine
transformation.

If byte b is the inverse in F256 \ {0} of the
S-box input byte, then the output is

4⊕

i=0

(b << i)⊕ 0x63.

Non-linear properties of Rijndael: resistant
to linear and differential attacks.
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AES - Advanced Encryption Standard (8)

ShiftRows step: The 4 rows of the state
are shifted to the left, by 0, 1, 2, and 3
bytes respectively.

ShiftRows avoid the columns being
encrypted independently.

MixColumns step: A 4-byte column in the
state is written as a polynomial of F256[x].
Then it is multiplied by 3x3 + x2 + x+ 2
modulo x4 + 1. This step can be
represented by a 4× 4-matrix
transformation (in F256).

ShiftRows and MixColumns provide
diffusion in the AES cipher.

Joseph J. Boutros Texas A&M University at Qatar 2 July 2020 44



Introduction History Key Exchange and Asymmetric Symmetric Encryption Conclusions

Combination of Public Key and Private Key Ciphers

The majority of encrypted communications, HTTPS/TLS, VPN, SSH, proceed in
three steps as shown in the simplified model below:

Exchange Messages
(encrypted)

List of Ciphers

Hello

Client Server

Key Exchange

DH/RSA/ElGamal

AES AES

Schemes

Public

Key

Hello Hello

Schemes

Public

Key

AES (block ciphers) and stream ciphers are much faster than asymmetric
(public-key) ciphers.
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What is missing in this talk?

Due to the lack of space and time, we did not cover:

Stream ciphers like the one-time pad, Enigma, RC4, A5/1, Salsa20, and
Chacha20.

Hash functions used for fingerprinting passwords and for authenticating data.

The Merkle hash tree and how blockchains are built.

However, we prepared a nice comparison in the next slide!
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Comparison of the security of major protocols

Protocol Description Encryption Key Exchange

TLS 1.3 Secure Web Access, 2018 AES, Chacha20 DHE, ECDHE

IPSec Virtual Private Network 3DES, AES, Chacha20 DH, ECDH

WireGuard Virtual Private Network Chacha20 ECDH

Signal WhatsApp, Facebook, Skype AES ECDH

Only TLS 1.3 implements ephemeral key exchange (forward secrecy)
according to our investigations.

We did not list OpenVPN because it is based on TLS.

There is a controversy between AES and Chacha20, mainly about the speed
performance when running on software or hardware, on mobile devices or
desktops.
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Post-Quantum Cryptography (1)

Quantum computers use quantum-mechanical phenomena such as superposition
and entanglement to perform computation. Quantum computers are able to solve
certain computational problems faster than classical computers.
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Post-Quantum Cryptography (2)

Post-quantum cryptography: Cryptosystems that cannot be broken by quantum
computers. We list below some major post-quantum methods.

1 Code-based cryptography (McEliece), based on Goppa codes (Augot 2015)
and quasi-cylic MDPC codes (Misoczki, Tillich, Sendrier, Barreto, 2013).

2 Hash-based cryptography, related to the security reduction of Merkle Hash
Tree to the underlying hash function (Garcia 2005).

3 Lattice-based cryptography:

Hoffstein, Silverman, Pipher, 1996: Nth deg. trunc. polyn. ring (NTRU).
Goldreich, Goldwasser, Halevi, 1997: GGH (weak initial parameters).
Regev, 2009: Learning with errors (LWE).
Lyubashevsky, Peikert, Regev, 2010: Ring learning with errors (Ring LWE).
Stehlé, Steinfeld, 2013: Provably secure NTRU.

Lattice Theory and Practice is a current research topic by Dr. Joseph J. Boutros,
research funds are needed!
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Conclusions

Public-key (asymmetric) cryptography provides key exchange and digital
signature.

Symmetric cryptography provides fast and secure encryption.

Both are needed in almost all systems nowadays.

Military, Governmental Institutions, and the Industry have at their disposal
excellent cryptography tools in this century to protect data.

The 21st century also offers individuals a variety of tools to guarantee their
privacy and the confidentiality of their data under a mass surveillance by
governments and a large number of attacks by cyber hackers.
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Your questions:
All Questions are Welcome

THANK YOU

References for study:

An Introduction to Mathematical Cryptography, by J. Hoffstein, J. Pipher,
and .H. Silverman, 2nd edition, Springer, 2014.

Introduction to Modern Cryptography, by J. Katz and Y. Lindell, 2nd edition,
CRC, 2014 (3rd edition, 2021).
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