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ABSTRACT

Video object segmentation is gaining increased research and commercial importance in

recent times from no checkout lines in Amazon Go stores to autonomous vehicles operat-

ing on roads. Efficient operation for such use cases require segmentation inference in real

time. Even though there has been significant research in image segmentation, both semantic

and instance, there is still much scope for improvement in video segmentation. Video seg-

mentation is a direct extension of image segmentation, except that there is temporal relation

between neighboring frames of videos. Exploiting this temporal relation in an efficient way

is one of the most important challenges in video segmentation. This temporal relation has

a lot of redundancy involved and many of the prevalent state-of-the-art techniques do not

exploit this redundancy.

Optical flow is one of the approaches for exploiting temporal redundancies. Intermedi-

ate feature maps of previous frames are interpolated using this information and rest of the

segmentation operation is performed. However, optical flow provides motion resolution on

a pixel level. There is not enough motion between consecutive frames to warrant motion

estimation on pixel level. Instead we can divide a frame into multiple blocks and estimate

the movement of their centroids in consecutive video frames.

Based on this idea, we present a motion vector approach to video semantic segmentation.

Additionally, we also propose an adaptive technique to select keyframes during inference.

We show that our proposed algorithm can bring down the computational complexity during

inference by as much as 50% with only a 2-3% drop in the accuracy metric. Our algorithm

can operate at as high as 136 frames per second indicating that it can easily handle real time

inference.
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1. INTRODUCTION AND LITERATURE REVIEW

Image and Video Segmentation has been an active research for past 2 decades. The

research in both these areas was more of theoretical in nature due to absence of enough com-

putation resources. Many of the deep learning ideas were available even in 90s, but active

research never happened due to lack of computational resources. However, progress made

in GPU architectures, combined with active research in deep learning, has significantly pro-

pelled the advances in both image and video segmentation (especially image segmentation)

in past decade. Even though video segmentation can be thought of as a direct extension of

image segmentation, except that video frames have temporal relations between them, there

is still a significant scope of improvement.

We know that neighboring frames in videos are highly correlated. Using this information,

we can interpolate intermediate feature maps to perform final segmentation. In this thesis

presentation, we present techniques which can bring down the computational complexity in

video segmentation. Specifically, we explore the use of motion vectors, used in video encod-

ing, combined with deep learning architectures to perform video semantic segmentation. We

show how the use of motion vector can significantly bring down the redundancy and time

complexity for the video segmentation tasks with a little drop in accuracy metric.

1.1 Deep Learning

We first present some background on the recent deep learning research to better under-

stand the advances in video segmentation. Deep learning gained prominence when AlexNet

[1] achieved sub 15% error rate and over 10% improvement with respect to existing tech-

niques on the ImageNet dataset [2]. Earlier classical machine learning techniques for image

classification and object detection used to focus on hand-crafted features. However, deep

learning operations such as convolutional nets combined with proper initialization (Xavier

[3], He [4]) and activations (e.g. ReLU) can efficiently extract spatial features in the images
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and perform classification and detection task very efficiently.

There have been multiple architectures which later improved over AlexNet’s perfor-

mance e.g. VGG16 [5], ResNet [6], GoogleNet [7] to name a few. Since all of these ar-

chitectures are built for classification, they have a fully connected softmax layer on top of

extracted feature maps. Most of the image and video segmentation networks remove the last

fully connected layer and use the previous layers as a backbone component to extract feature

maps. Essentially, they are built on top of these popular backbone architectures.

1.2 Image Segmentation

There are 2 type of segmentations prevalent in the recent literature semantic segmentation

and instance segmentation. In instance segmentation, we detect each occurrence of an object

class uniquely. The detection can be in terms of a bounding box or on a pixel level. One of

the earliest attempts towards instance segmentation was R-CNN [8] where authors generated

bounding box proposals for every image using selective search [9]. These bounding boxes

are passed to a modified version of AlexNet followed by an SVM classifier to detect a par-

ticular object. The object detection is posed as a regression problem to tighten the bounding

box proposals. It is evident that this architecture is passing every region proposal through the

complete network leading to redundancy. An improved version Fast R-CNN [10] was pro-

posed to decrease the redundancy. Authors proposed running the backbone architecture only

once on the complete image under consideration and later use the feature maps to generate

bounding box proposals. Fast R-CNN also combines feature extractor CNN layers, classifier

and regressor into a single network. An improved version of Fast R-CNN, Faster R-CNN

[11] was proposed which focused on accelerating the region proposal step.

Both R-CNN and Fast R-CNN used Selective Search to generate region proposals. How-

ever, it was observed that Selective Search is acting as bottleneck for the whole process.

A region proposal network (RPN) is added to generate regions of different aspect ratio for

segmentation. All the algorithms discussed yet give the instance segmentation in a bounding

box format. Finally, a pixel level extension of Faster R-CNN was proposed. Mask R-CNN
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[12] adds a parallel branch to the Faster R-CNN architecture. The parallel branch takes the

region proposals of feature map as input in a fully convolutional layer and outputs a binary

mask indicating whether a particular pixel belongs to object or background. Since, the shape

of feature map and original image is different, use of bilinear interpolation is suggested to

avoid rounding off the pixels leading to precise instance level object segmentation.

In semantic segmentation, we give class-wise segmentation on a pixel level. Every

unique occurrence of an object class is not characterized uniquely, instead unique occur-

rences of same class are labelled as belonging to the same class. Because of this, in semantic

segmentation, we do not need a separate region proposal network. Semantic segmentation

can be thought of multi-label classification on a pixel level. Intermediate feature maps are

significantly downsampled as compared to the original image resolution due to the pool-

ing operations and final output mask needs to be in the dimension as the image. Semantic

segmentation algorithms employ a variety of upsampling algorithms to reach the same reso-

lution as input image.

First of such algorithms was the Fully Convolutional Networks (FCN) [13] which uses

deconvolutional layers to upsample the intermediate feature maps. Additionally, it uses skip

connections from relatively higher resolution feature maps to aid the process of upsampling.

SegNet [14] stored the feature map indices during pooling operations and used this informa-

tion to upsample (un-pool). Later [15] introduced the concept of dilated convolutions (atrous

convolution) to increase the receptive field during upsampling. Finally, there have been a

series of 4 papers referred to as DeepLab which are considered as benchmark algorithms for

semantic segmentation. The final paper in this series DeepLabv3+ [16] uses an atrous spatial

pyramid pooling (ASPP) module combined with a skip connection from initial block of the

backbone network to output the final segmentation result.

1.3 Video Segmentation

Multiple algorithms, both classical and deep learning based, enforce temporal relations

in neighboring frames. One such paper is ObjectFlow [17] which uses optical flow to prop-

3



agate and estimate object segmentation for every mask. Since optical flow estimates can

be incorrect especially at the object boundaries, it proposed an iterative scheme to estimate

optical flow and perform object segmentation. Segmentation is performed by propagating

foreground labels through a graphical model consisting of pixels and superpixels. [18] was

the first work (also referred as MaskTrack) to show that a deep learning network designed

for semantic image segmentation can be used for video segmentation task as well. It feeds

current frame’s estimated segmentation mask to the next frame to enforce temporal consis-

tency. The mask estimate acts as a guide for next frame’s segmentation. MaskTrack is a

semi-supervised approach towards segmentation. In semi-supervised problems, ground truth

is available for only the first frame during validation and testing phases. The network is

trained during the training phase in an offline manner. Later, the network is fine tuned for

the first frame’s ground truth during validation and testing.

During the same time-frame, another semi-supervised technique OSVOS [19] was pro-

posed. OSVOS argues against enforcing any kind of temporal relation during segmentation.

Instead, it proposes to treat every frame as a standalone image and perform segmentation on

that. It was observed that temporal relation is achieved as a by-product. Because this ap-

proach does not exploit temporal information, it performs really well on cases when objects

reappear in video sequence or when objects are occluded.

It can be clearly observed that both OSVOS and MaskTrack do not exploit the tempo-

ral information efficiently, instead they both compute feature maps for every frame in the

sequence. Most of the image or video segmentation networks have 2 parts: a backbone net-

work and a recognition network. Backbone Network such as ResNet101 acts as a feature

extractor and computes high level features associated with the frame. Recognition Network

performs upsampling and final segmentation on the computed feature maps. Backbone Net-

work takes majority chunk of the computational resources consumed in the whole process.

Deep Feature Flow [20] (DFF) proposed an algorithm along these lines. Referring to Fig-

ure 1.1 [20], it can be observed that spatial relations are maintained even in the low-resolution
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feature maps. DFF utilizes this information by interpolating feature maps in neighboring

frames using the optical flow information. A separate network FlowNet [21] is designed for

estimating optical flow. This approach brings down the computational complexity signifi-

cantly with a little drop in the accuracy metric.

During the same time, we were conducting our research, [22] proposed an approach sim-

ilar to our algorithm. However, their work does not address the adaptive keyframe selection

problem and fusion of low level features during upsampling.

Figure 1.1: Illustration of feature map filters

[23] proposed a modulator-based approach to perform semi-supervised segmentation. It

uses a modulator network to adjust the intermediate layers given a generic segmentation

mask (object of interest). Effectively, it acts like meta-leaning algorithms which uses meta-

data from previous experiences to adapt to new situations with a limited number of gradient

updates. Finally, we talk about another recent algorithm [24] which attempts to fully enforce

the temporal relation in neighboring frames. It uses Convolutional LSTM model to perform

segmentation. Even though it can selectively propagate features to future time steps, their

current approach does not bring down the redundancy in any way.

5



2. PROPOSED APPROACH

Optical flow-based approach DFF is significantly bringing down the computational com-

plexity for segmentation tasks. Instead of optical flow, we propose the use of motion vector.

Motion Vector operates on block level (collection of pixels) to estimate movement of block

centroids. The motivation behind using motion vector is that there is not enough motion

between consecutive frame which warrant motion estimation on a pixel level. Addition-

ally, deep learning architectures are powerful enough to compensate for any loss in motion

information due to the use of motion vectors. In subsequent subsections, we explain the

preliminaries followed by a detailed description of our approach

2.1 Motion Estimation

We have established earlier that many of the video segmentation techniques perform a

significant amount of redundant computations. The reason can be attributed to inefficient

exploitation of temporal information in consecutive video frames. Many of the motion esti-

mation techniques can come handy to exploit the temporal redundancy. DFF [20] proposed

a flow estimation-based algorithm to perform segmentation. They estimate the optical flow

with a neural network and used this information to interpolate the intermediate feature maps.

This approach significantly brought down the computational complexity with a little drop in

accuracy metric. The question now is: can we further bring down the time complexity dur-

ing inference operations. We propose to perform segmentation by motion estimation using

motion vectors

2.2 Motion Vector

There are two types of redundancies in video coding – spatial redundancy and tempo-

ral redundancy. Spatial redundancy is addressed by transmitting significant DCT (Discrete

Cosine Transform) coefficients. Temporal redundancy is addressed by motion estimation

algorithms. Motion estimation refers to estimation of motion vectors between consecutive
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frames. Talking in context of H.264 MPEG video compression standard, videos have three

type of frames – I, P and B frames. I frame is least compressible followed by P and B frames.

I frame is compressed in itself meaning it does not need any other frame’s information for

decoding. P frames require previous frame’s information for decoding and B frames requires

both previous and next frame’s information for decoding.

Assuming we are encoding a frame It of size HxW . It is divided into blocks of equal

dimension NxN pixels represented by Bk
t (x, y) where x, y refers to centroid coordinates of

kth block in the frame at time t. Motion estimation finds best match in the reference frame

such that the error Bk
t (x, y) − Bk

t−1(x + mk
x, y + mk

y) is minimized. The vector mk
x,mk

y is

referred to as the motion vector. In simple words, motion vector refers to the displacement

between current frame’s block and reference frame’s block such that error between them

is minimized. Thus, during the video encoding only the error term and estimated motion

vectors are used for transmission. Figure 2.11 shows an illustration of estimated motion

vector and transmitted error term of P-frame.

Figure 2.1: Illustration of Motion vector in neighboring frames

There are multiple ways to estimate motion vector, most common of them being block

1credits:https://web.stanford.edu/class/ee398a/handouts/lectures/EE398a_MotionEstimation_2012.pdf
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matching algorithms. In block-matching a neighborhood is defined around the block to be

matched. Figure 2.22 shows an illustration of the neighborhood search space defined in

the block matching algorithm. Exhaustive search can be a very inefficient time-consuming

process. For our experiments, we use Three Step Search [25] approach to estimate the motion

vectors.

Figure 2.2: Illustration of Block Matching algorithm to estimate Motion Vector

2.3 Algorithm

Now that we have covered all the preliminaries, we will explain our algorithm in de-

tail. Intermediate feature maps in image segmentation network captures high level features,

computation of which consumes most of the computational power. We argue that it is not

necessary to run the backbone network on neighboring frames. There is not enough motion

between neighboring frames which merit computing intermediate feature maps for every

frame in the sequence. We believe that even the segmentation using optical flow estimation

would still have too much redundancy.
2credits: https://courses.engr.illinois.edu/ece417/fa2017/ece417fa2017lecture23.pdf
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Motion vector can capture the movement in high level features very well and further

bring down the computational complexity. Taking this as inspiration, we propose the use of

motion vector for interpolating the intermediate feature maps in neighboring frames. The

benefits are two folds:

• Motion vectors are already encoded in the incoming video stream, so we do not need

to compute motion vector explicitly unlike optical flow

• If we are performing segmentation on a sequence of video frames (images), motion

vector computation would be much cheaper as compared to optical flow computation.

The reason being motion vector operates on block level, whereas optical flow operates

on pixel level.

Let us assume we have two neighboring frames It and It+1 with ground truth segmenta-

tion mask as St and St+1 and intermediate feature maps as zt and zt+1 respectively. Let It be

I-frame and It+1 be the P-frame. Let the backbone network be a function f(.) and recogni-

tion network be a function g(.). When we run the full segmentation network on It, estimated

segmentation mask is Ŝt = g(f(It)). Let the motion vector transformation be a function h(.)

(Equation 2.1). Thus, the interpolated feature map would be ẑt+1 = h(f(It)) and estimated

segmentation mask would be Ŝt+1 = g(ẑt+1) = g(h(f(It))). As we will explain later, train-

ing data is such that ground truth is available after every 20th frame. So, we perform training

such that P-frame will have the ground truth. We use weighted cross-entropy loss as the loss

function. The loss would be L(St+1, Ŝt+1). Since the ground truth is not available for frame

It, the gradient flows from Ŝt+1 to ẑt+1 and later to zt through the function h(.) ensuring all

the learnable parameters (weights) of the network are updated. It should be noted that the

function h(.) is similar to bilinear interpolation and has no learnable parameter.

2.4 Motion Vector Interpolation

We use a block size of 16 with a neighborhood of 16 for block matching. With a frame

of dimension 512x512x3, the dimension of motion vector m = (mx,my) would be 32x32.
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Since, motion vector captures the movement between the block centroids in neighboring

frames, the coordinates would satisfy mx,my ∈ [−16, 16]. We normalize the motion vector

by the block size implying mx,my ∈ [−1, 1]

The interpolation is in feature map space whose resolution is 16 times lower than the

original input frame size. We also transform the motion vector from relative coordinates to

absolute coordinates with respect to upper left corner of the feature map. Effectively, every

pixel in feature space represent one block of the original input frame. The procedure for

estimating the pixel (x0, y0) of ẑt+1 with the corresponding motion vector as (mx0 ,my0) is

as follows:

x1 = floor(mx0), y1 = floor(my0)

x2 = x1 + 1, y2 = y1 + 1

t1 = zt(x1, y1)
x2 −mx0

x2 − x1

+ zt(x2, y1)
mx0 − x1

x2 − x1

t2 = zt(x1, y2)
x2 −mx0

x2 − x1

+ zt(x2, y2)
mx0 − x1

x2 − x1

ẑt+1(x0, y0) = t1
y2 −my0

y2 − y1
+ t2

my0 − y1
y2 − y1

(2.1)

2.5 Information Loss

It should be noted that in a way we are discarding the frames (P-frames) on which the

full segmentation network is not run. The only information we are using is the motion vector

which captures motion between blocks of neighboring frames. There can be cases when

objects are moving really fast in the neighboring frames. Additionally, low level features also

change in consecutive frames. Thus, using only the motion vector information might lead to

unsmooth boundaries in the segmentation mask. We use the DeepLabv3+ architecture [16]

which introduces a skip connection from initial blocks of the backbone network to end of the
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segmentation network. In case of ResNet101 backbone, the skip connection would be from

output of block 1 of the backbone. This skip connection would preserve some information

of the frames on which full segmentation network is not run leading to smooth boundaries in

the final segmentation mask.

2.6 Key Frame Selection

In many of the video encodings such as H.261, H.264, motion vector information is

already encoded in the video stream and we would not have to explicitly compute them

leading to further drop in computational complexity. There are many available datasets,

where only static images of video sequences are available. In those cases, we will need to

compute motion vectors which will still be cheaper than optical flow computation. For such

cases, we need to decide on what frames (Keyframes) to run the full segmentation network.

DFF [20] fixed the duration of keyframes meaning they run the full segmentation network for

every Nth frame (N can be any fixed integer). It is an inefficient scheme because the content

of the frames in video can change at a varying rate. We propose to design an auxiliary

network which can decide on-the-fly if we need to run the full segmentation network or

we can just interpolate the intermediate feature maps from the previous frames and perform

segmentation. As established in the section 2.5, we are extracting low level features from

every frame, we pass them through auxiliary network to learn the change in content between

2 frames.
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Figure 2.3: Inference Flowchart

2.7 Inference

Figure 2.3 illustrates the inference flowchart used for our proposed algorithm.

• Sequence of video frames coming as input. If it is the first frame, designate it as a

keyframe.
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• Run full segmentation network on the keyframe and store the intermediate feature

map.

• Go to the next frame

• Pass the previous keyframe and the current frame through the auxiliary network which

indicates if there is enough motion between them. If probability is below a certain

threshold, interpolate previous frame’s feature map using motion vector, run rest of

the network and go to step 3

• Otherwise designate current frame as a keyframe and go to step 2

2.8 Extension to Instance Segmentation

The proposed approach can be extended to instance segmentation task as well. We just

need to the replace the upsampling module of the network with a Region Proposal Network

similar to Faster R-CNN [11] or Mask R-CNN[12]. The feature map interpolation using

motion vector will remain exactly the same. Thus, our algorithm is segmentation agnostic.
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3. NETWORK ARCHITECTURE

3.1 Primary Network

We use a modified version of DeepLabv3+ architecture for our experiments which is

a benchmark network for semantic understanding tasks. It has 3 modules namely Back-

bone (Encoder), ASPP and decoder. Backbone network also referred to as encoder uses

ResNet101 architecture. It has 4 blocks of multiple residual layers with each block reducing

the resolution by 2. Thus, if the input resolution is HxW , the feature map resolution would

be H/16xW/16. Each block is a series of convolution, ReLU, BatchNorm and skip connec-

tions. Backbone network is followed by the ASPP module. Referring to Figure 3.1(a) [26],

ASPP module has 4 parallel operations performing deconvolution at different dilatation rates

(Figure 3.1(b) [27]) and a global averaging pool operation. Output of these 5 operations is

stacked together in filter dimension and passed through a convolution operation. The decoder

module has a skip connection from first block of the backbone network. It stacks the output

of ASPP module and first block of backbone along the filter dimension and passes it through

multiple convolution and upsampling operations to output the final segmentation mask.

The output size is HxWxC where C is the number of classes. A softmax operation is

(a) ASPP Module (b) Dilated Deconvolution

Figure 3.1: Upsampling Module
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performed to select the class for every pixel. We use cross entropy loss function for training

the network. Since dataset can be biased in terms of proportion of different classes, we train

the network with weighted cross entropy loss function as well. We experiment with both the

Adam optimizer and Stochastic Gradient Descent (SGD) optimizer. We use weight decay

and polynomial learning rate scheduler to adaptively vary the learning rate.

The above explained network architecture is executed only for I-frames. Referring to Fig-

ure 3.2, we can see that for P-frames, only block 1 of the backbone architecture is executed.

Later high level features of previous frame are interpolated using the motion vector informa-

tion followed by ASPP and Decoder module. Low level features of P-frames are fused with

the Decoder module to incorporate information of P-frame. This operation avoids discarding

of full information of P-frames.

Figure 3.2: Primary Network
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3.2 Auxiliary Network

As we discussed earlier that we are using an auxiliary network to adaptively select

keyframes. Since every frame goes through first block of ResNet101 irrespective of whether

it is a keyframe or not. Output of the first block can capture lower level features such as

edges, boundaries etc. We form a pair of neighboring frames and calculate their low-level

features and pass them through the auxiliary network. Low-level features are stacked across

the filter dimension and passed through a series of convolution, batch norm, ReLU, global

average pooling and convolution operation. Finally, softmax of the output is calculated to

return the probability of whether the current frame should be a keyframe or not. In terms

of convolution operations, we are adding only 2 layers on top of the original primary net-

work. Since the output is also binary in nature, we use cross entropy loss alongside an SGD

optimizer.

Figure 3.3: Auxiliary Network
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3.3 Training Procedure

DeepLabv3+ architecture has a ResNet101 backbone followed by an ASPP (atrous spa-

tial pyramid pooling) module and decoder. ResNet101 is pretrained on ImageNet [2]. We

divide training of our Segmentation Network in two phases. In first phase, we train our

model on all the standalone images in the dataset. We use Adam optimizer with a learning

rate of 0.007 and a decay rate of 0.0001. We use a batch size of 8 with 2 Nvidia P4000

GPU modules. We also use many data augmentation techniques such as random horizontal

flipping and rotation of input images, random cropping, gaussian blurring and gaussian nor-

malization. This leads to much more generalization on validation set and reduces overfitting.

Additionally, we train the ASPP and decoder modules at 10 times higher learning rate as

compared to the backbone module. We use input frame resolution as 512x512.

Figure 3.4: Training Flowchart
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When our model reaches the highest validation accuracy metric, we move to next phase

of training. In second phase, we finetune the network for the video sequence. We use a block

size of 16 with a neighborhood search space as 16 too. It should be noted that ground truth

is available for every 20th frame only. To overcome this, we train the network for a pair of

images. Second image is the one for which the ground truth is available. Effectively, first

image in the pair is an I-frame on which full segmentation network is executed and second

one is a P-frame for which intermediate feature maps are interpolated and low level feature

maps are computed using block 1 of the backbone.

Gradient can flow from feature map of second image to feature map of first image. Mo-

tion vector transform has no learnable parameter. Training is performed with a relatively

lower learning rate of 0.0002. We could have kept the backbone parameters non-trainable.

However, since the feature maps capture high level features and high-level features change

very slowly in neighboring frames, keeping backbone parameters might not capture the ap-

propriate change in the low level features.

When the segmentation network is fully trained, we train the auxiliary network to adap-

tively select the keyframes. We generate the ground truth for every frame using the trained

primary segmentation network and create pairs of neighboring frames. Then, we generate

binary labels for these image pairs which indicate whether there is enough motion between

them or not. We divide the frame in 9 segments and calculate relative motion between corre-

sponding segments of the image pair. We take the maximum deviation and compare it against

a pre-defined threshold. The reason for dividing the image in 9 segments is to address the

cases where there is enough motion in some parts and no motion in some other parts leading

to averaging.

The input to auxiliary network is the low level feature maps of the block 1 of the ResNet101

backbone. We freeze the segmentation network completely to avoid any gradient flow from

the auxiliary network. We use cross entropy loss with an SGD optimizer to train the auxiliary

network. Figure 3.4 shows flowchart of the complete training procedure.
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4. EXPERIMENTS

In this section, we outline details of conducted experiments alongside datasets and ob-

tained results.

4.1 Dataset

There are many available video segmentation datasets. Since it is a semantic segmen-

tation task, we perform all our experiments with Cityscapes dataset [28]. Cityscapes is a

semantic understanding dataset consisting of urban scenes as seen from a car driving in var-

ious cites of Germany. It has 30 classes such as road, car, person, bridge etc. to name a few.

The dataset consists of 2975 training and 500 validation labelled ground truth images. The

labelled ground truth corresponds to 20th frame of 30 frame snippets.

4.2 Performance Metrics

4.2.1 Accuracy Metric

For segmentation purposes, there are 2 commonly used metrics for performance (accu-

racy) namely mean intersection over union mIoU and mean average precision mAP . For

semantic segmentation, mIoU metric is used. IoU is defined as the ratio of true positives

TP and sum of true positives, false negatives FN and false positives FP . mIoU is the mean

value across all classes in the dataset.

IoU = 100
TP

TP + FN + FP
(4.1)

4.2.2 Inference Time

We also use inference time as a metric. We assume that during inference, a single frame is

processed at any given instance. With this assumption, we pass the frame sequence through

the network. We compare our proposed algorithm’s inference time against the case when

there is no interpolation and complete segmentation network is executed for every frame.
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4.3 Results

4.3.1 Loss and Accuracy Metric

We compare performance of 4 cases to evaluate our algorithm. First, we consider the

DeepLabv3+ architecture’s performance on standalone images as our benchmark. Secondly,

we evaluate our algorithm which employs motion compensation and adaptive keyframe se-

lection. Referring to Table 4.1, we can observe a drop of 3 points between the benchmark

DeepLabV3+ and our algorithm with motion vector interpolation and adaptive keyframe se-

lection. Next, we experiment with separate ASPP and Decoder module for I and P frame.

This leads to an improvement of 1 point to 0.655. This makes sense because for P-frame,

ASPP and Decoder act on a noisy feature map (interpolated feature map) and using separate

modules can capture the noise introduced by motion compensation. Finally, we consider

when low level features are not computed for P-frames and not fused during upsampling.

This leads to a significant drop of 15 points on the accuracy metric. This points to the ob-

servation that motion vector might not be able to capture the complete motion between the

neighboring frames and we need low level features to incorporate P-frame information. This

also indicates that there is relatively more change in low level features as compared to high

level features in consecutive frames.

Algorithm mIoU
DeepLabV3+ 0.674
Ours (Motion Compensation and Adaptive Keyframe selection) 0.646
Ours (Separate upsampling module for I and P frame) 0.655
Ours (No low level features) 0.523

Table 4.1: Accuracy Metric

For DeepLabV3+, even though the highest reported metric (mIoU) is as high as 0.8, we

could achieve only 0.675 as the highest metric. The primary reason being that this is highly
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(a) Loss (b) Mean Intersection over Union

Figure 4.1: Training on standalone images

(a) Loss (b) Mean Intersection over Union

Figure 4.2: Finetuning on video sequence

dependent on hyper-parameter settings and available computational resources. Referring

to Figure 4.1, we can observe that loss is decreasing and mIoU is increasing. If we train

furthermore, these metrics will continue to improve. However, considering the limitation

of resources, we have limited the number of epochs to 80. This constitutes the phase 1 of

training. In phase 2, we finetune the learned weights of previous phase at a much lower

learning rate for the video sequence. Referring to Figure 4.2, both the loss and mIoU metrics

are improving. After finetuning for 24 epochs, we have reached an mIoU metric of 0.646

which is an approximately 3 point drop from our benchmark.
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4.3.2 Inference Time Metric

We have already explained our assumptions for comparing the inference time metric. We

take a sequence of 90 images for performing the inference. We compare the performance of

our proposed algorithm with different keyframe durations against the case when full infer-

ence is run on every frame.

Algorithm KeyFrame Duration Time (seconds)
Ours 2 0.66
Ours 3 0.53
Ours 4 0.49
Ours Adaptive 0.57
Ours (No low level features) Adaptive 0.51
Ours 0 0.99
DeepLabV3+ - 0.99

Table 4.2: Inference Time Metric

When keyframe duration is 2 (meaning every 3rd frame is a keyframe), we are observing

a drop of approximately 34% in the inference time. We are getting a segmentation rate of

136 fps which indicates that we can easily perform inference in real time scenarios. When

the keyframe duration goes to 4, inference time comes down as much as 52%. In case of

adaptive keyframe selection, inference time drops by 42%. When low level features are not

computed for every frame, a further drop in inference time is observed. However, since the

accuracy metric is too low (0.523, ref Table 4.1) for this case, reduction in inference time

does not mean much.

These results combined with accuracy metric clearly proves the real world scenario fea-

sibility of our proposed algorithm. When motion compensation is not performed and every

frame is treated as a keyframe, inference time is similar to the DeepLabV3+ inference case.
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(a) P-frame (b) Ground Truth

Figure 4.3: Input frame and ground truths

(a) Prediction using full segmentation network in-
ference

(b) Prediction using our proposed approach

Figure 4.4: Predictions
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4.3.3 Segmentation visualization

In this section, we show some of the segmented frames using our proposed approach.

Figure 4.3(a) and 4.3(b) has input P-frame and ground truth respectively. In one case, we

run the full segmentation network on the frame (treating it as a keyframe) shown in Figure

4.4(a). In the other case (which is our proposed algorithm), we interpolate the intermediate

map of the previous frame and run rest of the segmentation network. The prediction with

the full inference is more closer to the actual ground truth. However, prediction with our

proposed algorithm is not too far. As per the mIoU metric, for this particular frame, it lags

by approximately 3%.

4.4 Other Experimental Observations

In this section, we lay down some of the experiment we conducted which did not yield

expected results. This analysis is important to understand our presented results in a more

meaningful context.

• We attempted to enforce temporal consistency on low level features. In consecutive

frames, there is relatively more change in low level features as compared to high level

features. This hypothesis is backed up by the observations in section 4.3.1. LSTMs can

capture long term temporal consistency in time series very well. LSTMs can decide

what low features to propagate to next frames for processing. However, the vanilla

version of LSTM turned out to be a computationally expensive operation.

• The dataset is relatively biased towards some of the classes. To balance out the bias, we

experimented with weighted cross entropy loss. However, it did not yield us desired

results.

• Referring to Figure 4.1 (a) and (b), we observe a large fluctuation in loss and accuracy

metric. The reason can be attributed to a relatively smaller batch size of 4. This can

significantly increase the batch variance and move the gradient in wrong direction
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• Referring to Figure 4.5, achieved accuracy metrics are highly dependent on initial-

ization. Even though, we are initializing the convolutional layer weights with the He

initialization [4], the rate of convergence still varies significantly for different runs.

Figure 4.5: Rate of convergence of accuracy metric for different runs
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5. SUMMARY AND CONCLUSIONS

We discussed a motion vector based approach for video semantic segmentation. Many of

the existing techniques do not exploit the redundancy in the video frame sequences induced

by the temporal relations which can lead to these algorithms becoming infeasible for real

world use cases. We addressed this redundancy by interpolating intermediate feature maps

with the help of motion vectors. This has led to upto 50% drop in the inference time making

our algorithm much more feasible for real world production environments. This was at the

expense of a small drop of 2-3% in the accuracy metric. In terms of fps, we can process upto

136 frames per second which is much higher than any of the streaming rates proving our

algorithm should not suffer from any kind of bottlenecks during real time inference. Addi-

tionally, our algorithm can be extended to instance segmentation cases as well by replacing

the upsampling module with a region proposal network.

We also proposed an auxiliary network which can decide on the fly whether we need to

run the full segmentation on a frame. This network takes away the cases where there is hard

scheduling of keyframes. Instead it adaptively decides whether a frame will be a keyframe

or not.

5.1 Immediate Extensions

Our work has some immediate extensions which we enlist in this section.

• We have assumed till now that motion vector is available in video encoding. In cases,

when it is not available, we are using Three Step Search (TSS) for estimating motion

vector. Implementing TSS on CUDA can be a challenge and might lead to bottlenecks.

Instead, we can design a neural network architecture to estimate it for the cases when

only the individual frames are available. We actually designed a network on lines

of Flownet [21] for this task. However, the learned model has relatively high mean

square error in motion vector estimation. We believe that this error can brought down
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by tweaking network and hyperparameters.

• We are using bilinear interpolation for estimating feature map of non keyframes. In-

stead we can use spatial transformer networks [29] for this task, which is much more

generic and fast for warping operations.

• We have exclusively used DeepLabv3+ architecture for the semantic segmentation

task. However, we can experiment with other architectures available in literature to

bring down the computational complexity with similar accuracy metrics.

5.2 Future Work

We have shown that motion vectors can significantly bring down the computational com-

plexity with a reasonable drop in the accuracy metric. This property can be utilized for many

other video related applications. One such area would be activity recognition in videos which

is an active area of research in computer vision now. Many of the prevalent techniques do

not exploit the temporal redundancy efficiently and rely on LSTM based approaches for en-

coding the video sequence into feature maps. Some approaches use 3D convolutional for

collection of video frames to estimate the feature maps. There has been some work on effi-

cient frame selection which can adequately capture the activity in the video sequence. We

believe that frame selection can be performed in the feature space whereas feature maps can

be computed using our motion vector-based interpolation.

Additionally, we wish to work on computationally efficient ways to enforce temporal

consistency on low level features. Using temporal relations in these features should further

boost the accuracy score and enforce the temporal consistency even more strongly. In terms

of architecture, we will explore LSTMs or Recurrent Nets.
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