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ABSTRACT

With intensive research in the fields of machine learning and neural networks to improve its

accuracy comes the responsibility to realize feasible hardware solutions on battery powered IoT

devices. This work presents a study of analysis of power hungry computations and a fine-grained

power gated multiplier design using approximation, that aims at energy optimization exploiting er-

ror resilience of these applications. We use truncation to reduce cycles and low power techniques

to reduce power, thus achieving a 2-fold energy reduction. We use wearable IoT devices for medi-

cal purposes as our case study and show the generality of our work across applications. Our work

performs similar to, or better than the latest work in the field and is a more generic implementation.

We propose an online calibration mechanism to determine the approximation rate dynamically that

maximizes energy optimization with very low accuracy loss. Our method uses a clustering solu-

tion to pre-determine the output label in a majority of cases, without having to need an inference

model, thus further reducing energy. We achieve 78% energy improvement compared to a baseline

implementation with just 0.46% accuracy loss across benchmarks.
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1. INTRODUCTION

Recent advancements in the field of machine learning and neural networks has reached human

like accuracy, especially in the field of image recognition and classification. Increasing complexity

of these algorithms [1] in search of better performance has concerned us with its energy consump-

tion to realize them on hardware. Machine learning models such as Support Vector Machine(SVM)

calculates dot product of every feature input with a huge number of support vectors. Neural net-

works are getting deeper and complex. Apart from the classification model, these algorithms have

the extra burden of transforming raw data into other domains, extracting features that are charac-

teristics of different classes. It is challenging to realize them on a battery operated device without

having to recharge them frequently.

We identify the components that are the main energy culprits and focus on optimizing them. For

our case study, we use medical Internet Of Things (IoT) devices for our analysis. We are especially

interested in these devices as they challenge us the most because of 3 reasons: 1) Unlike many other

applications, the dataset available for training these devices is limited due to patient confidentiality

2) Testing dataset differs from person to person and also changes per person over time due to

improvement or degradation of their medical conditions [2] 3) These devices really need to be

small and energy efficient, especially in the light of emerging in-vivo sensors and wireless charging

[3][4]. We will then generalize our implementations for other domains to prove our generality.

1.1 Medical IoT Devices

The application of technology in the field of human health is, by far, one of the most interesting,

advanced and sought out concepts that exists today. Supercomputers are used to model and analyze

diseases [5]. Robotic surgery is the most minimal invasive surgery [6]. Smart pills can sense

information about the body and dispense medicine based on current conditions [7]. The list goes

on, but the recent application of the IoTs on human health gives rise to dedicated research towards

its feasibility and implementation.
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IoTs are various physical devices that are used in everyday lives to collect, process, analyze,

transmit and draw conclusions on data. This technological field is an expanding area with new

ideas and devices added each day [8]. A specific category of IoTs are wearable devices for medical

applications that monitor health by tracking various activity signals such as heart rate, brain signals,

pulses etc. These devices can be used to understand the general health condition of a person,

record his physical activities or to trigger alarm in case of emergency for a patient [9][10][11].

However, such conclusions from data can only be made using advanced machine learning and

neural network techniques. Recently, wearable systems have been actively researched and have

become more prevalent commercially for data analytics with the recent development of machine

learning technologies [12]. General classification methods are being adopted for bio signal analysis

in intelligent wearable systems where sensors are typically used to wirelessly transmit bio signals

captured from different parts of human body, and a data aggregator (e.g. smartphone) classifies

meaningful events from the signals. Sensors have evolved to become more intelligent smart sensors

and are able to provide some of the advanced real time applications to users (e.g. timely prediction

or intervention for patients), so it is possible for the sensor to carry out the complex classification

task locally and then report the analysis results to the data aggregator.

There are 3 major deployment scenarios for these IoT devices: (i) In sensor approach: A stand-

alone device that would sense, compute and conclude, such as a smart watch, (ii) In aggregator

approach: A sensor to capture and transmit the signals wirelessly which are captured and processed

by a data aggregate device, such as a smart phone, (iii) A cross-end approach, as proposed in Xpro

[13], where the sensor performs some kind of data analysis before sending it to the aggregator. In

all the 3 deployment scenarios above, the energy optimization of both the sensor and aggregator

are critical.

In this work, we attempt to achieve energy optimization by addressing two research problems.

First, the low precision is often used in computations to achieve better energy-efficiency. However,

a pre-determined precision rate can hinder the achievable energy optimization as well as effect

accuracy when the test date can change according to subject or over time. Second, even if it is

2



desirable to control the precision per input data for better energy-efficiency and reliability, the tra-

ditional hardware design do not efficiently support run time dynamic precision control. Hence, we

design a custom approximated hardware for our system and design an online calibration mecha-

nism to decide on the approximation. We will generalize our work and compare it to the recent

advancements in this field.

The reminder of this paper is organized as follows. In chapter 2, we present the applica-

tion scope of this paper. We then present the motivation for approximation in chapter Chapter 3.

Chapter 4 lists major advancements in approximate multipliers. We introduce a unique hardware

solution to optimize energy in Chapter 5, and propose a calibration engine to determine the best

approximation rate. In Chapter 6, we present our results. Finally, we draw conclusion in Chapter

7.
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2. FRAMEWORK

2.1 Overall System

A general classification task involves two key processes: feature extraction and model clas-

sification. Figure 2.1 shows our framework that we use for analysis. We choose eight hardware

friendly features as inputs to our model - Min, Max, Mean, Czero, Variance(Var), Standard devi-

ation(Std), Skewness(Skew) and Kurtosis(Kurt). These features capture statistical moments and

signal characterstics from time domain input raw data. To enhance the distinguish ability of the

features, we also extract the corresponding features by taking as input wavelet domain coefficients

which are decomposed from time domain biosignal data. The DWT technique is widely used in

signal processing tasks due to its great time and frequency localization ability at multiple resolu-

tions. We use SVM as classification models for our analysis. We train SVMs by using LIBSVM

[14] and use 10-fold cross-validation technique to find the optimal hyperparameter of each SVM

classifier. Figure 2.2 shows the dependencies and the flow of our design.

Figure 2.1: Framework for IoT devices

We design the feature extraction models in verilog and call them the functional cells. The

functional cells are built using multiplication, division, cordic exponential sub-modules. The DWT

module computes 6 levels of DWT. Features are extracted from time and all the 6 DWT levels of

DWT, thus giving 8*7 features to choose from. To enhance its energy efficiency, each functional

cell is in the idle state that powers off internal processing modules via power gating, if not all input

4



Figure 2.2: Computational dependencies for inference in IoT devices

data is ready. Otherwise, it is enabled for execution. Because we focus on biological signals for

low-power sensor nodes, serial operation is the preferred choice.

2.2 Evaluation Method

Our goal is to have the framework based on the approximate computing mimic the computation

behavior of the precise computing.

2.2.1 Benchmarks and Model

We evaluate our proposed approximate computing framework in representative healthcare ap-

plications where an intelligent sensor predicts the precarious situations such as seizure or heart

attack by monitoring the health state of human-beings through their biosignals for a long period of

time. In this work, we choose the applications that require a binary classification of the widely-used

biosignal such as ECG, EEG and EMG. The evaluated benchmarks are summarized in Table 2.1.

We design the smart sensor to incorporate the full-fledged analytic engine with both feature

extraction and inference computation by using functional cells in our framework. To comprehen-

sively evaluate the reliability of our proposed approximation technique, we use 100 classifiers per

application, so we evaluate 600 inference engines in total.
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Acronym Biosignal
C1 ECG
C2 ECG
E1 EEG
E2 EEG
M1 EMG
M2 EMG

Table 2.1: Summary of Benchmarks

2.2.2 Simulator

To facilitate the evaluation of the classification quality for a number of applications, we design

a in-house simulator that exactly models the computation behavior of the hardware components

of our framework. We implement the primitive logic such as multiplier, divider and Cordic-based

math functions dealing with fixed-point real values, all functional cells using the logic and the

engine optimizer in the simulator. The simulator itself is designed in Matlab, however, we use

Synopsys VCS for verilog simulations and Synopsys design vision for activity based power esti-

mation using Synopsys 90nm generic library.
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3. MOTIVATION

In this chapter, we present the motivation for our work.

3.1 The energy culprit

One of the specifications important to an IoT device’s end user is not having to charge it fre-

quently. Since the battery life of a device is determined by the energy consumed by the system, it

is important to reduce it as much as possible. Both the power of the system and how long it runs,

determines its total energy. If, let us say, a device is made of multiple components and P1, P2 and

P3 are its power, it takes an overall C cycles to run, then its overall energy is E = (P1+P2+P3)*C. To

reduce the energy, it is crucial to reduce both power and cycles. We look at various steps involved

in the complete process - DWT transform of raw data, feature computation and classification model

and plot the power consumed and cycles taken by various computations. Figure 3.1 breaks down

the power consumed by computation of 1st level DWT from raw data, extraction of features using

these DWT values and SVM classification using DWT features. Though presented for one of the

benchmarks, our analysis shows similar trend among the rest as well.

Figure 3.1: Distribution of Power

Figure 3.2 breaks down the cycles consumed by multiplier for these computations respec-

tively. Misc corresponds to miscellaneous logic in the design around the multiplier, divider block,
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required for the correct functionality of the design.

Figure 3.2: Distribution of Cycles

Clearly, the multiplier logic consumes majority of the time and power. To achieve energy

optimization, it is important to optimize both the power as well as cycles of the multiplier logic.

3.2 Redundant bits in input values

We closely observe computational data from various machine learning and neural network

applications. We examine the inputs of multipliers to identify the number of leading zeros, which

could potentially be cut off from the input values, effectively reducing the hardware required to

store and process these bits, without effecting accuracy. To our happy surprise, we realize that

most of these values are very small numbers. Figure 3.3 shows the frequency of number of

leading zeros in input values among 5 sets across 3 different applications: 1) Neural network for

digit recognition using MNIST dataset 2) DWT computation for medical data using EEG, ECG and

EMG datasets 3) Feature extractions for the above medical data 4) Non-linear SVM as a model

classifier for the same medical data and 5) Face detection using linear SVM. Here, the maximum

number of zeros possible is 15, and not 16, due to sign bit. Clearly, most of them have no values

in their integer part. Multiplication with these input operands is a waste of energy. This calls for a

unique design of a multiplier that takes advantage of this input pattern dynamically, not restricting

the bits to any fixed number.
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Figure 3.3: Leading Zeros in Biosignals

3.3 Subject dependencies of bio signals

When dealing with medical IoT devices that capture the patients EEG, ECG and EMG signals,

it is crucial to note the sensitivity of data with respect to different subjects and their conditions to

accurately predict any unusual activity in their medical state. We need to control fine tuning param-

eters, such as approximation rate, due to 2 reasons: 1) Lee et al. [2] show how the signals can vary

with improving medical conditions of patient. This requires us to design our hardware in a way

so that we can tune it overtime. 2) We observe how the precision required analyzing these signals

vary with subjects. We consider EMG signals from 5 subjects and use each possible combination

of 3 different subjects to make 10 different groups. For each group, SVM models were trained

using top 3 models to determine the precision rate for accurate computation. For each model,

precision was calculated using the group the model was trained on (offline calibration) and with

the 2 subjects that were not part of that group (online calibration). Figure 3.4 shows the precision

deduced while offline calibrating vs required calibration observed during online calibration.

The variability in the calibration result and the accuracy loss as presented in Figure 3.5 indicates
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Figure 3.4: Deduced vs required precision across subjects

that offline calibration may not be adequate for the signals sampled from a particular subject. In

cases where online calibration finds a lower needed precision, the offline calibration would pick the

approximation degree too conservatively and we wouldn’t see the full benefits of approximation. In

cases where online calibration finds it needs a higher precision, the offline calibration will choose

approximation too aggressively and will reduce reliability. This calls for an online calibration

mechanism that can aggressively adjust the approximation rate without hurting performance.
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Figure 3.5: Precision loss with offline training
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4. RELATED WORK

Neural network is one of the areas proven to be error resilient, and hence approximations

and reduced precisions are extensively employed. Neural networks are computationally intensive,

with majority of the energy consumed by multiplications. Various approaches are proposed that

specifically identify layers to approximate, weights vs data approximations and identifying specific

neurons that do not contribute to errors.

Du et al. [15] proposed a Neural network accelerator that uses a special kind of multiplier. This

multiplier used is designed to perform inexact computation through logic minimization to reduce

the multiplication energy. Mrazek et al. [16] later proposed a similar inexact multiplier of widths

7 and 11 but designed this approximate multiplier by mutating an accurate multiplier. The accu-

rate multiplier is designed using Cartesian Genetic Programming (CGP) [17]. CGP is a method of

genetic programming model, representing the Boolean function as a directed acyclic graph where

the nodes are 2-input Boolean functions. CGP is used because of its ability to generate approx-

imate hardware implementations [18]. The graph of accurate multiplier is recursively mutated

until a graph is obtained with fewer gates and has an accuracy loss below the expected threshold.

However, it is interesting to observe that these methods obtain a good reduction in energy without

huge performance loss because the authors assume that it is possible to retrain the network after

approximations, which readjusts the weights, and hence does not hurt performance.

Sarwar et al. [19] proposed a multiplier design to reduce the cycles and power consumed by a

multiplier. In a multiplication operation, the product can be generated from smaller bit sequences,

which are lower order multiples of multiplier input. Hence, if simple multiples of multiplier are

available, the multiplication process is reduced to a few shifts and add operations. To gain perfor-

mance and energy improvements, they proposed fewer multiples of multiplier input, thus bringing

in the concept of approximation.

Sharma et al. [20] propose a new architecture design for approximate neural networks. It

is composed of a collection of bit-level computational elements, that dynamically compose to
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logically construct a complete computational engine. The number of bit-blocks used is dependent

on the approximation degree, which is a pre-determined value, conveyed to the hardware through

ISA (instruction set architecture).

Hashemi et al. [21] too use approximate multipliers to optimize energy by saving cycles. They

use 2 leading one detectors (LODs) to identify the significant 1s from the MSB. For each operand,

the location of the most significant 1 is used to capture the next k-2 elements, where k is the number

of bits used in approximate multiplication. The remaining lower bits are either approximated to

zeros or ones based on the closeness of approximated value to its actual value.

Shao et al [22] propose an error correction method to approximated multipliers. They pro-

pose a Approximate Arithmatic Computing (AAAC) model that controls approximation errors and

present optimal error compensation schemes. The Error Compensation Unit (ECU) consists of

signature generator and a K-to-1 mux. For a given input, signature generator produces a signature

capturing essential information about the inputs. Based on this signature, input is classified into

one of the K groups, each having a predetermined error compensation.

Lie et al [23] is the most recent work on multiplier design for machine learning applications. It

is based on the idea that most of the machine learning algorithms are run on a pre-trained machine

with fixed weights. So almost all the time, one of the inputs to the multiplier is fixed. To exploit

this characteristic, the fixed weight is pre-processed and encoded with predetermined number of

bits, according to acceptable levels of precision rather that storing them in binary format. The bit

positions of "1"s are stored in the memory for quick shifts and computations. Here is an example

explaining their idea: Lets say we intend to multiply A(= 011111012 (12510)) with predetermined

number of iterations n(= 4). So, we store four leading 1s in A (= 6, 5, 4 and 3). In the first iteration,

6 is read from memory and B is left-shifted by that amount (010110102 « 6), and accumulate the

shifted value to Sum that is initialized to 0s. In the second iteration, repeat the same procedure as

the first iteration but now shift by 5 and add to accumulated sum, obtaining 864010 or accomplish-

ing 77-percent accuracy. This process is repeated for the subsequent two leading 1s, providing

98-percent and about 100-percent accuracy after the third and fourth iterations.
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5. DESIGN IDEA

Our aim is to redesign the multiplier hardware to reduce its power and cycles based on trunca-

tion, due to the error resilience of machine learning to variations in input. While doing so, we also

show how to determine the approximation rate reliably, while maximizing energy optimization.

5.1 Multiplier design

We design a multiplier that multiplies two fixed-point numbers by controlling the computa-

tional precision to save the energy consumption. The key idea is to redesign a traditional mul-

tiplier to be able to dynamically control the number of bits used during computations by power

gating. By turning off blocks related to unnecessary precision data, the multiplication is carried

out energy-efficiently.

5.1.1 Low power design methodology

Power consumed by a system can be divided into 2 components - dynamic and static power.

Dynamic power is associated with momentary current loss when both the NMOS and PMOS of

CMOS transistors are ON during a 0 to 1 or a 1 to 0 transition. It is directly related to the clock

frequency. On the other hand, static power is the power dissipated by a CMOS due to sub-threshold

current when held at a constant value. We suffer static power loss whenever the CMOS is powered.

Figure 5.1 explains the same in an inverter. While the major component of power consumption had

been dynamic power for quite a long time, for submicron technology, static power is equal to or

more than in proportion as compared to dynamic power and increases with decrease in technology.

Low power design techniques have been well researched and implemented to reduce static power.

These techniques aim at switching power off for unnecessary logic not in use. We use this method,

called as sleep mode to switch off computational logic associated with unnecessary 0 valued bits

on the integer and truncated bits on our fractional part of multiplier.

In order to switch off parts of circuit that do not contribute to the computations, or parts of

circuits that can be dynamically be powered on and off, it is required to partition the circuit into
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Figure 5.1: Dynamic and static power dissipation in a CMOS

power domains. Each power domain has its own header switch. A header power switch is just a

wider PMOS, whose input is controlled by the power management circuit. We use a wider PMOS

to limit the leakage associated with it. Since the outputs of a powered off logic domain would be

corrupted due to no power, the circuits using them need to receive a constant logic to avoid forward

logic corruption. This is done using isolation cells. Isolation cells are special logic elements that

sit between "powered off" domain, X and another "powered on" domain, Y and drive a constant

pre-programmed value when the domain X is turned off. This, is again controlled by the power

management circuit. A system with 2 power domains, with domain X off and domain Y on is

illustrated in Figure 5.2.

5.1.2 Main idea

Figure 5.3 illustrates the basic operation of an integer-based multiplication with an example

of a multiplier operand, A (01012) and a multiplicand operand, B (01112). The multiplication is

performed iteratively using two registers. At the beginning, register 1 stores a multiplicand. At

each ith iteration, the ith bit of the multiplier is examined if it stores one or zero. If one, register

1 shifted left by i and is accumulated to register 2. After P (the bit-width of operands; 4 in this

example) iterations, register 2 becomes the final product.

Based on our finding as presented in the motivation section, we find that most bits on the MSB

are generally zeros and do not need computations. To exploit this, we use a leading 1-bit detector

logic inside our multiplier. This is used to end accumulation when the multiplicand bit-scan reaches

this leading 1 bit, as further zeros do not effect the result. We further propose to truncate a few
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Figure 5.2: Header and isolation control of a low power system

bits on the fractional side to save power and cycles, since most of the machine learning and neural

network algorithms are error resilient to imprecise data. Since the traditional multiplier circuits

are tightly optimized to deal with fixed-point numbers with a certain precision (typically 32 bits),

it is not trivial to reduce its power dissipation when the full-precision is not necessary. Thus, we

redesign a multiplier as a combination of finer cells, called MulCell, each of which vertically fuses

the multiplier circuit in a bit-level manner as illustrated in Figure 5.4. Each MulCell is controlled

by a distinct power subnet where the power source is controlled by a head switch and the output

of the power-gated MulCell is set to a fixed state by an isolation cell. When the full-precision

is not necessary, unnecessary MulCells are turned off to reduce the power consumption. How to

automatically decide the necessary precision during runtime will be discussed in Section 5.2.

Figure 5.5 and Figure 5.6 illustrates a walk-through example about how our proposed MulCell-

based multiplier works without and with power gating.
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Register 1

Shifter Shift_amt

Adder

Register 2

MulCell

0111
× 0101

00000000

+ 00000000

+ 00000111
00000111

00000111
+ 00011100

00100011 
+ 00000000

00100011

Iter1

Iter2

Iter3

Iter4

Figure 5.3: Illustration of an integer-based multiplier

5.1.3 Effectiveness of MulCell Design

Since we focus on reducing cycles too, we use MulCell based approach on Booths multiplier.

Here, instead of scanning 1 bit of multiplicand B, we scan three bits at a time, with 1-bit overlap.

If the three bits are 000 or 111, we do nothing. If the bits are 001 or 010, our partial product is A, if

it is 011, it is 2A, if it is 101 or 110 it is -A, else it is -2A. Since among the 3 bits scanned, one bit

is overlapped, our cycles are halved. We modify this design to use our MulCells. We wire a given

MulCell with the previous two MulCells that automatically computes shifted A and shifted 2A,

thus further reducing power. Figure 5.7 shows our circuit with highlighted changes with respect

to integer multiplier.

However, it is not effective to choose a fixed approximation degree due to 3 reasons: 1) The

expected accuracy might need to be updated 2) Test data can differ greatly from train data, thus

effecting performance 3) The required approximation degree can change over time or can differ by

subject. We need an online mechanism to re-calibrate the approximation degree to be used by the

system.

17



i6/i7

+

i5/i6

+

i4/i5

+

i3/i4

+

i2/i3

+

i1/i2

+

i0/i1

+

0/i0

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

Power
Subnet 

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

Head Switch

Isolation Cell

0 1 0 1

add_en

load

Ptr + 1

Multiplier operand

add_en

Isolation Cell

Figure 5.4: Proposed multiplier with the capability of bit-level power gating

0

0

0/0 

+

0

0

0/0

+

0

0

0/0 

+

0

0

0/0 

+

1

0

1/0 

+

1

1

1/1

+

1

1

1/1

+

0

1

0/1

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

0 0 0 0 0 1 1 1

At cycle 2 (Load, Add)

0

0

-/-

+

0

0

-/-

+

1

1

-/-

+

1

0

-/-

+

1

0

-/-

+

0

0

-/-

+

0

1

-/-

+

0

1

-/-

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

0 0 1 0 0 0 1 1

At cycle 4 (Shift, Add)

0

0

-/-

+

0

0

-/-

+

0

0

-/-

+

1

0

-/-

+

1

0

-/-

+

1

1

-/-

+

0

1

-/-

+

0

1

-/-

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

0 0 0 0 0 1 1 1

At cycle 3 (Shift, No Add)

0

0

0/0 

+

0

0

0/0

+

0

0

0/0 

+

0

0

0/0 

+

0

0

1/0 

+

0

0

1/1

+

0

0

1/1

+

0

0

0/1

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

0 0 0 0 0 0 0 0

At cycle 1 (Preparation)

Figure 5.5: An execution example of our proposed multiplier without power gating

18



0

0

0/0 

+

0

0

0/0

+

0

0

0/0 

+

0

0

0/0 

+

1

0

1/0 

+

1

1

1/1

+

1

1

1/1

+

0

1

0/1

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

0 0 0 0 0 1 0 0

At cycle 2 (Load, Add)

0

0

-/-

+

0

0

-/-

+

1

0

-/-

+

1

1

-/-

+

0

1

-/-

+

0

1

-/-

+

0

1

-/-

+

0

1

-/-

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

0 0 0 1 1 1 0 0

At cycle 4 (Shift, Add)

0

0

-/-

+

0

0

-/-

+

0

0

-/-

+

1

0

-/-

+

1

0

-/-

+

0

1

-/-

+

0

1

-/-

+

0

1

-/-

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

0 0 0 0 0 1 0 0

At cycle 3 (Shift, No Add)

0

0

0/0 

+

0

0

0/0

+

0

0

0/0 

+

0

0

0/0 

+

0

0

1/0 

+

0

0

1/1

+

0

0

1/1

+

0

0

0/1

+

VDDG

S7

VDDG

S6

VDDG

S5

VDDG

S4

VDDG

S3

VDDG

S2

VDDG

S1

VDDG

S0

/S7 /S6 /S5 /S4 /S3 /S2 /S1 /S0

0 0 0 0 0 0 0 0

At cycle 1 (Preparation, PG gating)

Figure 5.6: An execution example of our proposed multiplier with power gating

Figure 5.7: Architecture of Booths multiplier using MulCell
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5.2 Calibration

We design an online calibration mechanism that searches through the possible approximation

degree to be used further during the test phase. Here, we use 3 parameters for approximation de-

gree, one each for DWT computation, feature extraction and SVM. All the degrees are independent

of each other. Each of the multipliers in the respective computations use the approximation degree

as set by the online calibrator.

5.2.1 Basic optimization mechanism

We propose a batch optimization mechanism that finds a minimum precision for an individ-

ual input data and aggregates a set of optimal precision into a final precision by conservatively

choosing maximum one. The model is trained online and then implemented in hardware. Before

actually using the model on test data, we run a calibration phase on a subset of test data. During

this phase, the model is predicting in precise mode, with no loss of accuracy. During the same

time, it performs various iterations on the same data to deduce the approximation rate. Once the

calibration phase is complete, the model inference is based on approximate data as decided by the

calibration engine. The calibration phase can be re-triggered as necessary. The calibration engine

is a simple state machine and functions as follows: As shown in Figure 5.8, a 2-bit Mode register

controls the mode the system is currently operating in. When this Mode is "00", the analytical

engine is operating is precise mode. When the Mode is "01", the analytical engine is operating in

approx mode and for "10", calibration is complete and the analytic engine is predicting in approx

mode with the approximation rate as decided. The control for Mode register is driven by an en-

ergy optimizer. The engine optimizer first sets the Mode in "00", records the predicted values. It

then sets it to "01", and the analytic engine starts to predict for increasing approximate rates and

compares it against precise values. The approximate computing stops when the predicted values

no more match the precise values. At this point, the optimizer engine records the last best approxi-

mation rates into a table and moves the Mode into its next state, "10" if no more calibration data is

available, indicating completion of calibration, else to "00" to calibrate next data. The calibration
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is run for B input data values and the maximum of all the minimum precision values as recorded

in the table is chosen and written into PrecClassResults, as the final approximation degree. The

analytic engine then continues to operate with recorded precision rate from PrecClassResult. To

avoid excessive number of computations, the optimization engine starts with values recorded in

PrecClassResult, rather than from zeros. Figure 5.9 shows the timeline of calibration and actual

prediction.

Analytic
Engine

Engine
Optimizer

Input 
Data (Di)

Mode (m)
Prec Class Result (crp)

idx Prev Prec List (PLp)

{16, 16, 16}1

{16, 16, 16}B
……

Cur Prec List (PLc)

[16, 16, 16]

Figure 5.8: Calibration engine design

…P O A1 An O

……
Calibration Normal Operation

Precise 
Computing

Approx 
Computing Optimization

……

O

C1 CB G time

Figure 5.9: System execution timeline

5.2.2 Precision bound problem

We observe that the majority of input data compute precise classification results with low preci-

sion, but the final precision needs to be bounded by high precision to reliably deal with some input
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data sensitive to approximate computing. Figure 5.10 shows a histogram of minimum precision per

input data collected from the calibration training phase when a SVM cell carries out its inference

computation approximately by using precise features as input. In this example, the benchmarks,

C1, C2, E1, E2,M1 and M2 choose 11, 7, 7, 12, 11 and 13 out of 16-bit precision, respectively due

to 1-3% input cases. Otherwise, it is statistically probable that the accuracy loss incurs by such

percentages. Interestingly, 44-62% of input data produce precise classification results with zero

precision.

Figure 5.10: Min precision per input data

To further explore if the precision bound problem is specific to SVM, we perform experiments

on 3 models SVM, GBT and NN. For SVM, we choose precise data and approximate model. We
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use approximated features and precise model for GBT and approximated features and model for

NN, so as to cover all cases. We build 10 different models of each by varying the input features

and plot a graph of maximum precision required in each case for all the benchmarks, as shown

in Figure 5.11. Clearly, the maximum precision is 11-15 across models. The maximum bound

problem exists across models, limiting the maximum energy optimization that can be achieved,

thus motivating us to build a calibration system that can adjust the precision according to the data

type.

Figure 5.11: Minimum precision required across models

5.2.3 Solution

Since our main problem of higher precision rate is the bound caused by a small percentage of

sensitive data, we intend to identify this sensitive data, so as to distinguish it from others. Figure

5.12 shows the distribution of datapoints in a 2D plane. Blue data points corresponds to positive
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labels, and red data points correspond to negative labels, that require low precisions. The light blue

stars correspond to data points requiring highest precisions and are at the boundary that separates

the 2 regions.

Figure 5.12: Data distribution requiring high and low precision

As our case study, we use SVM for this analysis, with precise features. A SVM model tries to

classify input data into 2 labels: positive and negative, separating them by a hyperplane. Values

far away from the hyperplane can be predicted with high confidence, and those close to the plane

are the main causes of errors. In our case, these sensitive input data are the ones requiring high

precision. To distinguish them from others, we divide the input dataset into several clusters - as

shown in Figure 5.13. When the data is farthest from hyperplane, we can predict them with utmost

certainty, and thus, require only a very few bits of them. For weakly certain data, we maintain high

precision.
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Figure 5.13: SVM clustering solution

5.2.3.1 Cluster formation

In order to form clusters, during calibration on test data, we record the feature values, their

required precision, and the inference they belong to in a table as shown in Figure 5.14a. Just after

calibration is complete, we re-arrange the table in ascending order of precision requirement. We

pick the max 2 precision values as belonging to the uncertain group as shown in Figure 5.14b.

We collect the data points that correspond to these precisions and are the representatives of the

uncertain group.

To decide the representatives of other groups, all other feature points corresponding to positive

label are representatives of strongly positive group and all others corresponding to negative labels

correspond to strongly negative group. Once we have the representatives of these groups, we

compute the centroid of each of the clusters as shown in Figure 5.14c. We have now devised 3
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clusters.

Figure 5.14: Cluster formation a) Collect data b) Decide on max precision that can be categorized
as unceratin c) Compute centroid for each clusters

5.2.3.2 Cluster classification of new data

For a new incoming data, in order to determine the cluster it belongs to, we determine the

Euclidian distance of the new data point with respect to the centroids of three groups. Based on this

information, we compute the 3 scores using Radial Basis Function (RBF) kernel. The new point is

said to belong to the cluster corresponding to maximum RBF score. If the new data corresponds

to strongly positive or strongly negative group, then we skip the SVM model inference and make

a prediction about it based on the cluster it belongs to. If the data corresponds to uncertain group,

we use SVM with full precision to make the prediction.

5.2.3.3 Outliers

It is highly possible that the sample data used to form clusters during calibration might not be

an accurate representative of the entire data in general. For a new incoming data, its distance from

all the clusters can be large, resulting in very poor score with respect to all clusters, as highlighted

in Figure 5.15a. Picking the maximum score and grouping it in a confident cluster results in high

accuracy loss. Hence, we form 2 more clusters: weakly positive and weakly negative clusters,

belonging to those outliers that have similar scores with respect to 2 clusters, as shown in Figure
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5.15b. Now, if the data belongs to uncertain cluster, weakly positive and weakly negative clusters,

we use SVM to make classification decision with full precision. For strongly certain groups, we

skip SVM, thus saving considerable energy.

Figure 5.15: Cluster formation a) Outliers with low scores b) Introduction of weakly positive and
weakly negative clusters
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6. RESULTS

6.1 Multiplier results

We evaluate energy savings from our multiplier design for the complete truncation range on

5 scenarios: 1) DWT computations on raw data for E1, E2, C1, C2, M1 and M2 2) All feature

computations using time and DWT1-DWT6 input data 3) SVM inference using above features 4)

SVM inference for face detection[24] and 5) Neural network for MNIST digit recognition. The

results are presented in figures below. We present our results with the work of SiMul by Liu[23].

6.1.1 DWT computations of biosignal data

In DWT, the transform matrices are fixed. The computations involve multiplication with these

fixed values, and hence, SiMul shows good performance. But since we power gate along with

saving cycles, we see better energy savings with our multiplier for lower truncation bits than SiMul.

The results for DWT energy savings are shown in Figure 6.1

Figure 6.1: Energy reduction for DWT computations on biosignals
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6.1.2 Feature computation of biosignal data

For feature computations, since none of the inputs are ever fixed, Simul performs same as a

baseline integer multiplication. SiMul is not suitable for computations involving varying input

values. Our multiplier performs very well in this case as shown in Figure 6.2

Figure 6.2: Energy reduction for feature extraction on bio signal

6.1.3 SVM for inference of extracted features from biosignal

SVM involves multiplication of input with support vectors, but computation of exponential

involves multiplications where both the input values change. In such case, SiMul cannot be used,

and hence is replaced with an integer multiplier. Our multiplier reduces energy significantly with

increasing truncation bits as shown in Figure 6.3
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Figure 6.3: Energy reduction for SVM inference on biosignals

6.1.4 SVM for Face Detection

Figure 6.4 shows energy optimization on SVM for Face detection. All the multipliers used in

SVM for face detection have one input fixed, and hence, SiMul seems to perform better.

6.1.5 Neural Network for MNIST digit recognition

NN involves multiplication of input with weights, that are fixed. It also has exponential cal-

culations, where SiMul is replaced with Integer multiplication. Our multiplier performs similar to

SiMul, as shown in Figure 6.5.

6.2 Other concerns

6.2.1 Overhead

For 90nm technology, the turning on and off of power switch takes about 200-300ps, thus

enabling to run our multiplier even at 2GHz clock cycle with good margin without any overhead,

because this can be overlapped with the first clock cycle used to load the data. We have an area
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Figure 6.4: Energy reduction for Face Detection

overhead of 39% and power overhead of 13%. The overheads are higher than expected due to 3

reasons: 1) The overhead logic used to detect leading one, 2) Header and isolation cells required

for low power design and 3) Due to partitioning the design into 32 power domains, the synthesis

tool can no-longer optimize logic across power domain boundaries, a constrain not applicable to

general multipliers.

6.2.2 Reliability

Though the isolation cells ensure the forward logic does not get corrupted due to switching

off of a power domain, care must be taken during design that the control signals from power

management follow a power cycles sequence such that isolation condition is turned on before

cutting power supply and is later turned off only after the power has been fully restored. The

power cycle may sometimes need a reset, but in our case, since only a few bits from multiplier are

turned off, we do not see the need for a reset. We do not even retain any of the logic values during

sleep mode, as the output of multiplier are considered zero for switched off MulCells. We perform
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Figure 6.5: Energy reduction for NN MNIST digit recognition

low power simulation using Synopsis VCS using CPF files to ensure expected functionality.

6.3 Calibration results

We evaluate the clustering method by skipping SVM when certain about inference and show

that we achieve an energy savings of about 66%. We further save 12% energy by using our

MulCell based multiplier. We achieve an overall 78% energy savings just on SVM across bench-

marks, as shown in Figure 6.6.

For DWT and Feature computations, we use our basic calibration mechanism to choose the

required precision and use this value as input to our approximated multiplier. We see an overall

46% energy savings across benchmarks, as shown in Figure 6.7.

We also analyze the final output error caused by using clustering method for inference and by

using approximation for DWT and SVM and plot them for all benchmarks, each using 10 different

models of SVM (each using 3 different features from the available features) as shown in the Figure

6.8. We observe only 0.46% accuracy loss on an average and a maximum error of 4.69% for 2 of

the models.
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Figure 6.6: Energy reduction for SVM using clustering and MulCell multiplier

Figure 6.7: Energy reduction for DWT and Feature computation using MulCell multiplier and
precision chosen using basic optimization
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Figure 6.8: Accuracy loss as compared to actual labels for 10 different models

34



7. FUTURE WORK

We would like to extend the boundary problem to NN to see its effectiveness. We believe that a

much simpler model to all of the machine learning models can be used as an estimate about where

the data can belong to. We would like to extend the idea of deducing approximation with online

calibration to applications outside machine learning too.
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8. CONCLUSION

As energy consumption becomes a major issue for battery powered devices, we adopt approx-

imation by truncating bits of multipliers to save power and energy. We show how our hardware

design is generic and can be used across applications and is better that the most recent work. We

devise a mechanism for self-calibration to determine approximation degree with no loss of accu-

racy. We adopt the cluster method, wherein we divide the input data into various clusters based on

the data sensitivity. We skip inference model and use clustering method to make inference where

possible. We show an overall energy savings of 78% for SVM and 46% for DWT and feature

computation, with just 0.46% accuracy loss across benchmarks.
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