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ABSTRACT

Dehazing is an important pre-processing step in almost all computer vision systems deployed in

outdoor settings. Existing dehaze methods are either based on heuristic image priors, or on models

trained with hazy-clear image pairs of the same scene. In practice, however, obtaining paired

images isn’t feasible, so researchers often add synthetic haze on clean images to create paired data

sets. This might result in a domain shift when models trained on synthetic images are used for

real-world outdoor settings. In this work, we propose UD-GAN (UnPaired Dehaze GAN), a novel

generative adversarial network based dehazing model, which can generate clean images using only

unpaired data. UD-GAN can not only be trained using a large repository of real-world clear and

hazy images but it can also learn the characteristics of true haze better than other models trained

on synthetic data. Moreover, our method is model-agnostic and would perform well even when

the assumptions made by the physical model don’t hold true. UD-GAN uses an attention-based

generator and we explore two types of attention maps which can be used along with this generator.

Finally, we compare the performance of our approach using full-reference metrics, no-reference

metrics, and the accuracy in object detection. The qualitative and quantitative results generated by

UD-GAN are on-par with the current state-of-the-art dehazing methods.

ii



DEDICATION

To Papa

iii



ACKNOWLEDGMENTS

The timely completion of this work wouldn’t have been possible if it hadn’t been for my advisor

Prof. Zhangyang Wang. His invaluable guidance helped me veer through many obstacles during

the course of my research. I would like to extend my sincere thanks to Prof. Theodora Chaspari and

Prof. Xiaoning Qian for serving as my committee members and providing their constant support.

I also appreciate the support of the CSE graduate office staff, especially, Karrie Bourquin, for their

patience and help in meeting multiple deadlines for my thesis completion.

Special thanks to my roommates and friends: Isha, Vrushali, Hemangi, Tushar, Mayank,

Christopher, and Puneet. Whenever I indulged in self-doubt or fear, they were always there for

my rescue and provided me with a safe and loving ecosystem.

Finally, I would always be deeply indebted to my family for their incessant love and support.

Sitting thousands of miles away, across the oceans, they have always been my ardent supporters

instilling optimism in me during some of the most trying moments.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Prof. Zhangyang Wang and Prof.

Theodora Chaspari of the Department of Computer Science and Engineering and Prof. Xiaoning

Qian of the Department of Electrical and Computer Engineering. All work for the thesis was

completed independently by the student.

Portions of this research were conducted with the advanced computing resources provided by

Texas A&M High Performance Research Computing. There are no outside funding contributions

to acknowledge related to the research.

v



NOMENCLATURE
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1. INTRODUCTION

Haze is an atmospheric phenomenon caused by the presence of dust, smoke, and other dry

particulates [3]. When a reflected light from an object surface hit these particles, their course of

propagation changes. This results in images with poor contrast and faint colors. The deterioration

in image quality is directly proportional to the distance of the scene from the camera since very

less amount of light reflected from the far scenery will reach the camera sensor.

Figure 1.1: Image formation under hazy weather conditions and atmospheric scattering model
(Reprinted from [1])

Outdoor computer vision applications such as autonomous vehicles [4], object tracking and

recognition, and traffic surveillance cameras [5] perform best when the input images are clear.

Weather conditions such as haze and fog work against the success of these applications by dete-

riorating the visibility of scenery. Likewise, hobbyists or professional photographers, specifically

those interested in long-distance photography, also suffer from haze effects because what is seen

with the naked eye is not what is captured by the camera sensor. Due to these concerns, image

dehazing is a widely sought after problem and has been studied by researchers for over a decade.

We can formally define the term "dehazing" as the process of recovering an image with im-
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proved visibility and better colors as if it was captured on a clear day. When the haze removal

model takes only a single scene image as input, the process is called "single image dehazing". Sin-

gle image dehazing methods can be largely categorized as prior-based and data-driven methods.

Prior-based methods [6, 7, 8] make sophisticated image statistics assumptions, or use strong priors

to recover the actual image scenery. However, when the assumptions made by these methods are

violated, these priors no longer provide satisfactory results. Data-driven methods [1, 9, 10], on the

other hand, experiments with different variations of CNN to perform dehazing. While deep learn-

ing methods learn to recover a clear image by training on large data set of clear and hazy images,

prior based methods use only an input image. Deep learning based methods perform better in most

situations due to this very reason.

Figure 1.2: An example of hazy image (left) and it’s clear version (right) generated by UD-GAN

Most of the DNN-based models use a paired data set where every image scene is available in

two variants – clear image and hazy image. Obtaining such kind of paired data sets is impracti-

cal for most real-world cases and often researchers add a layer of fake haze on clear images to

work around this issue. Dehazing models which are trained in a supervised manner have a few

downsides.
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• First, in most real-world scenarios, it is impractical to retrieve the additional meta-data such

as depth, 3-D models that helps in authentic paired images.

• Second, synthetically created hazy images don’t represent the actual distribution of true hazy

images and therefore models trained using this data may not perform well in the real-world

settings.

One solution to overcome these drawbacks is – unsupervised learning. In unsupervised learn-

ing, the model will be fed with unpaired clear and images, thus eliminating the paired data con-

straint. CycleDehaze [11] and, DeepDCP [12] (inspired by Dark Channel Prior [8]) are recently

proposed dehazing methods based on unsupervised learning approach. The problem of recovering

a clear image from a hazy one bears a strong similarity with another category of computer vision

tasks –image-to-image translation. Multiple unsupervised ways [13, 14] of image translation have

been proposed recently. Inspired from these methods, our model uses generative adversarial net-

work (GANs) to learn the low-level mapping between hazy and clear images in an unsupervised

way

In this thesis work, we propose UD-GAN (UnPaired Dehaze GAN), a dehazing approach

which can be trained using real-world images in a fully unpaired fashion. Figure 1.2 presents

UD-GAN’s results on a sample hazy image. Unlike other unsupervised methods which use a

cycle-consistency loss to regularize the training, UD-GAN uses an attention-based generator net-

work along with a combination of hybrid loss functions. Adding attention to the generator helps

the model to focus on some specific areas in an image while creating a clear image. We further ex-

plore two types of attention maps and compare the model’s performance using each attention map.

This comparison underscores the importance of the attention map in our model. Most dehazing

methods are based on the physical scattering model, however, our approach is independent of the

scattering model. This gives our model an advantage over other model-dependant methods for sit-

uations where the relationship between the original scene and the hazy scene is fairly complex and

cannot be captured by the scattering model. Finally, we evaluate our results using full-reference

metrics, no-reference metrics, and its accuracy in object detection done under hazy conditions.
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To the best of our knowledge, our method is the first one to use unpaired learning to recover

hazy images by injecting visual attention in the generator. The remainder of this work is organized

as follows. In Section 2, we first discuss an important physics-based model which explains the

mathematical relationship between hazy and clear image. Following this, we review the past liter-

ature on dehazing ranging from prior-base classical methods to deep learning methods using both

supervised and unsupervised learning. In Section 3, we discuss the detailed architecture of UD-

GAN, our final loss function, and the two types of attention maps. In Section 4, we provide both

visual and quantitative results of our approach and compare it with other state-of-the-art methods.

In the last section, we conclude our results and also discuss future work to be done in this area.
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2. BACKGROUND AND RELATED WORK

2.1 Atmospheric Scattering Model

The atmospheric scattering model [15, 16, 17], also referred as Koschmieder model is a widely

used model to describe the generation of a hazy image. Figure 1.1 and 2.1 explains this phe-

nomenon in action. The model can be formally described as:

I(x) = J(x)t(x) + A(1− t(x)) (2.1)

where I(x) is observed hazy image, J(x) is the real image to be recovered, t(x) is the medium

transmission matrix, A denotes the global atmospheric light, and x represents the pixels in the

input hazy image I . The medium transmission map t(x) is a distance dependent factor and is

mathematically defined as:

t(x) = e−βd(x) (2.2)

where β is the atmosphere scattering coefficient and d(x) is the distance between the camera and

the scene point. Atmospheric light A is the light coming from an object at an infinite distance i.e

diffusion of light by the haze and it is usually represented as a constant vector with 3 components

in RGB space A = (Ar, Ag, Ab)

Based on the above model (2.1), hazy image I(x) can be described as a linear combination of

two factors:

i. Direct attenuation (J(x)t(x)) represents the amount of light scattered or decayed before it

reached camera lens.

ii. Airlight (A(x)(1 − t(x))) is a function of scene depth and global atmospheric light A. It

represents the change in scene brightness due to environmental light scattering.

Dehazing methods based on this physical model estimate parameters A and t(x) to recover

clear scene J(x). This is an under-constrained problem because there are three unknowns A, t(x), J(x)
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Figure 2.1: Different components in Atmospheric Scattering Model (Reprinted from [1])

and only a single input image I(x).

2.2 Overview of Dehazing Approaches

Earlier approaches tried using several image enhancement techniques - contrast-based [18],

histogram-based [19]. These methods didn’t perform well because they didn’t factor in the varying

haze density in the image. We can widely classify existing image dehazing methods on the basis

of their inputs:

i. Multiple Images: Different images are obtained under various weather conditions to perform

dehazing [16, 17, 20]

ii. Polarizing Filters: To avoid the inconvenience of capturing images under various weather

conditions, various filters were used to simulate different weathers [21]

iii. Single Image + Additional Metadata such as depth or 3-D model of the scene [22]

iv. Single Image dehazing methods uses only the hazy image as input.

Except for single-image based approach (iv), the other three methods listed above are not practical

under real-life settings as we generally have a single hazy image with no additional data. In this

6



work, our main focus is on single image dehazing methods

2.3 Single Image Dehazing

Most state-of-the-art single image dehazing techniques are based on the atmospheric scattering

model and approximate the critical parameters A and t(x) using:

i. Classical Prior-Based methods

ii. Data-Driven methods (based on CNNs or GANs)

2.3.1 Prior-Based Methods

Classical prior methods depend on hand-crafted features using various properties of an image

such as color, texture, and contrast to remove the haze from an input image. They use natural

image priors and depth statistics. Fattal et al. proposed Independent Component Analysis (ICA)

based minimal input approach for dehazing a color image [7]. This technique, however, was time-

consuming and didn’t perform well on dense-haze scenes. One of the most popular prior-based

methods, Dark Channel Prior (DCP) [8], approximates the transmission matrix very reliably. It is

based on an observation that at least one color channel has some pixels with very low intensities in

most of the haze-free patches. However, DCP performance falls when the objects in an image are

similar to the atmospheric light. Zhu et al. proposed a color attenuation prior and created a linear

model for estimating the scene depth of the hazy image [23]. Meng et al. developed a contextual

regularization dehazing method and explored inherent boundary constraints to restore the clear

images [24]. Li et al. applied dehazing on video sequences by jointly estimating scene depth and

recovering the clear latent image [25]. Berman et al. put forward a non-local prior based approach

which is based on the assumption that each color cluster in the clear image becomes a haze-line in

RGB space [6].

2.3.2 Data-Driven Methods

Based on deep learning, most data-driven methods either estimate the transmission map or

directly recovers a clear image. Having a large knowledge bank in the form of training images
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help these data-driven methods learn haze features better than prior based methods.

2.3.2.1 Supervised Learning

DehazeNet [1] proposed a supervised CNN-based method to learn the transmission matrix

t(x). Multi-scale CNN (MSCNN) [9] is another effective dehazing model which first predicts

coarse scale transmission matrix and later refines it locally. Both DehazeNet and MSCNN esti-

mates the transmission map using a trained model; there is an extra step in the workflow to recover

the clear image. AOD-Net [10] removed this extra step by introducing an end-to-end design which

directly generates a clear image as output without any separate or intermediate parameter estima-

tion step. Another end-to-end dehazing model is based on densely connected pyramid architecture

[26]. Gated Fusion Networks (GFN) [27] uses a fusion of white balancing, gamma correction and

contrast enhancing techniques to achieve dehazing.

All the methods discussed in the last paragraph are supervised; all use dataset of paired (clear-

hazy) images for training. Paired (clear-hazy) images are created either using depth meta-data

information or by adding artificial haze by varying levels of A and β. Models trained on synthetic-

haze images may not generalize well to real-world hazy images.

2.3.2.2 Adversarial Learning

Generative Adversarial Networks (GANs) [28] have been successful in image generation [29,

30], image manipulation tasks, such as style transfer, image inpainting. General GAN architectures

consist of a generator and a discriminator who are adversarially trained at the same time. The

discriminator’s task is to correctly distinguish real samples and the output of the generator; while

the generator’s task is to output fake images which can fool the discriminator. The key to the

success of GANs is the concept of an adversarial loss that forces the images generated by the

generator to be indistinguishable from real photos.

i. Supervised GAN-based methods:

PO-GAN (Perceptually Optimised GAN) combined adversarial loss with perceptual loss

and guided filtering to directly generate a haze-free image as model output [31]. Zhang et

8



al. proposed a model which relaxed the assumption of constant global atmospheric light A

in physical scattering model [32]. Besides dehazing, there are other supervised GAN-based

models to enhance/restore images such as - deblurring [33], super-resolution [34], deraining

[35].

ii. Unsupervised GAN-based methods:

Recently multiple unsupervised GANs have been developed to learn the inter-domain map-

ping without using paired input samples, such as cycleGAN [13], disco-GAN [36], and

dualGAN [37]. CycleGAN [13] uses a cycle-consistency loss to build a mapping between

two different domains. CycleDehaze [11] combines the principle of cycleGAN with a per-

ceptual loss to build a dehazing model. Golts et al. introduced a network using the DCP

(Dark Channel Prior) energy function as a loss to recover the haze-free image [12].

9



3. PROPOSED METHODOLOGY

In this section, we discuss the architecture of UD-GAN as shown in Figure 3.1. We will explain

the attention-based generator network and the two types of attention layers we experimented with

in this work. Besides the generator and discriminator network architectures, choosing a good

loss function is essential as well, especially for training a reconstruction network based on CNNs

[14, 38]. Therefore, we trained UD-GAN using a hybrid loss function combining relativistic-

GAN based loss and perceptual loss. This section will further elaborate attention layers and loss

functions.

3.1 Attentive-Generator Network

The purpose of a generator is to create clear images from hazy ones. We use U-Net [39] as

the backbone of our generator architecture. U-Net is essentially an encoder-decoder network with

additional skip connections to share the low-level information at different depth layers between the

input and output. This also enables the generator to synthesize images of higher quality.

Usually, paired learning methods compare the ground-truth clear image and output clear image

using traditional L2 or L1 errors for regularizing the training process. However, in the case of

UD-GAN, we don’t have paired images. Therefore, we need to find another way to regularize

the generator network. Inspired from [35, 40], we introduce attention layers to this U-Net based

generator architecture. These attention layers help reinforcing the integral details of the input hazy

images in the generated output. Attention layers are resized to the size of various feature maps and

added to the U-Net generator network at different depths as shown in the architecture in figure 3.1.

To generate an attention map, we use two techniques explained in the following section. Choosing

an appropriate attention map helps immensely in reducing both training time and generating better

output images.

10
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3.1.1 Hue-Disparity based Attention

Hue-Disparity between an input image I(x)and it’s semi-inverse image Isi(x) is an indicator of

haze level at a given location in an image [41] semi-inverse image is defined using below equation

where c ∈ (r, g, b)

Isi(x) = max[Ic(x), 1− Ic(x)]

Hazy Image Semi-Inverse Image Attention Map

Figure 3.2: Hue Disparity Based Attention Map. The first column represents the input hazy image,
the middle one is the semi-inverse image where the pixels with the blue/purple color represents
the haze-free pixels. The final column represents the attention map used by the generator for the
corresponding input hazy image, where brighter (whitish) pixels represents the hazy image area
where we want our generator to specifically work on.

Hue-disparity feature is formally defined as below where superscript h represents the hue chan-

nel in HSV space:

H(x) = |Ihsi(x)− Ih(x)|

As described in Fig. 3.2, image patches with higher haze density have higher (brighter) values in

the corresponding attention map.
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• For haze-free regions, there will be at least one channel in the original image with small

values, that value will be replaced by the semi-inverse operation, leading to a large change

in hue values. In semi-inverse images, these haze-free regions will have dark blue or purple

color as shown in Fig. 3.2.

• On the contrary, for hazy areas in the input image, all channels will have high value, then the

semi-inverse operation will return the same values. Hence, there will be no visual observable

difference for hazy images.

3.1.2 Illumination-based Attention

Besides the hue-disparity attention mechanism, we also tried using the illumination channel I

of the input image for creating an attention map. Since human eyes don’t perceive RGB colors

uniformly, we use the following standard formula to get the brightness of the image

I = 0.299 ∗R + 0.587 ∗G+ 0.114 ∗B (3.1)

We use (1 − I) as our attentional map. Figure 3.3 represents the hazy images and their corre-

sponding illumination based attention maps. Although this attention-map isn’t the direct represen-

tation of the spatially varying haze densities of the input image, we found in our experiments that

network using such attention mechanism does generate good dehazed results.

3.2 Adversarial Loss

UD-GAN’s goal is to learn the underlying mapping between hazy (source) domain and clear

(target) domain. To achieve this, our network contains a discriminator D and a generator G. For

calculating the adversarial loss, we use a relativistic discriminator [42], which enforces the prop-

erty that training the generator should not only increase the probability that fake data is real but

also decrease the probability that real data is real. We can do this by making the discriminator rel-

ativistic, i.e D depends on both real and fake data. The standard relativistic discriminator function

can be described as below:

13



Hazy Image Illumination Channel Attention Map

Figure 3.3: Illumination Based Attention Map. The first column represents the input hazy image,
the second column uses Eq.3.1 to generate a gray image representing its brightness. The last
column is inverse of the illumination channel and it will be used as an attention map input to the
generator.

DRa(xr, xf ) = σ(C(xr)− IExf∼Pfake
[C(xf )]) (3.2)

DRa(xf , xr) = σ(C(xf )− IExr∼Preal
[C(xr)]) (3.3)

We use xr and xf to represent the real hazy and fake hazy images respectively, and C represents

the discriminator network. We apply the relativistic property to the least-squares GAN (LSGAN)

[43] and use it as adversarial loss for our generator and discriminator network.

3.3 Perceptual Consistency Loss

The adversarial loss only penalizes the network when the generated output image doesn’t match

the characteristics of clear images. It doesn’t ensure that contextual details of the input images

are preserved in the generated output. Therefore, inspired by [44], we use Perceptual Loss, LP , to

force perceptual similarity between the image produced by the generator and the input hazy image.

14



Formally, it can be defined as:

L(IH) =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

||ϕi,j(I
H)− ϕi,j(G(IH))||2 (3.4)

L(IH) = LP (3.5)

where IH represents the input hazy image and G(IL) denotes the image generated by the

generator network. ϕi,j represents the feature maps extracted from a VGG-16 model pre-trained

on Image Net 1. i and j denotes the i-th max pooling layer and j-th convolutional layer respectively.

We experimented by extracting the features from both low-level (conv2,2, conv3,3) and high-level

(conv5,1) layers of VGG-16 network.

3.4 Overall Loss Function of UD-GAN

The final UD-GAN loss is composed of a linear combination of the three aforementioned

losses:

Ltotal = λ1LRaGan + λ2Lp (3.6)

where λi represents the contribution of a given loss function to the total loss.

1Using VGG-16 pre-trained weights provided by this Github repo
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4. EXPERIMENTS AND RESULTS

This section describes the training and testing dataset, followed by our experimental setup for

training the dehazing model. Finally, we compare the results of our proposed approach with the

existing dehazing methods

4.1 Dataset

We use the RESIDE (REalistic Single Image DEhazing) dataset [2] for training and evaluating

the performance of our network. It contains both indoor and outdoor training images.

4.1.1 Overview of RESIDE

This dataset is further divided into five subsets, each serving different training and evaluation

purpose.

i. ITS (Indoor Training Set) with 13,900 synthetic indoor images from NYU2 [45] and Mid-

dlebury stereo datasets [46]

ii. OTS (Outdoor Training Set) contains 2,057 paired clear images and the corrresponding syn-

thetic hazy images

iii. HSTS (Hybrid Subjective Testing Test) has mix of synthetic and real-world hazy images,

each containing 10 images

iv. SOTS (Synthetic Objective Testing Sets) includes both indoor and outdoor sections called

SOTS-indoor and SOTS-outdoor, each containing 500 images

v. RTTS (Real-World Task-Driven Testing Set) provides 4,332 real-world images obtained from

the web. Each image in RTTS is annotated with object bounding boxes and 5 categories -

person, bicycle, bus, car, or motorbike

vi. RTTS - Unannotated contains 4,807 unannotated real-world hazy images

16



All the synthetic hazy images are created by first collecting clean haze-free images along with their

depth meta-data, followed by using various combinations of the A and β parameters in the physical

model (2.1)

4.1.2 Unpaired Dataset

Dehazing task can be construed as an image-to-image translation task where the source domain

is a hazy image and target domain is a clear image.

4.1.2.1 Training Data

To create the datasets for source and target domains, we further merge or split the categories in

RESIDE dataset to suit our purpose.

i. Hazy Domain (Source) contains RTTS - Unannotated [vi] images

ii. Clear Domain (Target) combines clear images from ITS & OTS [i, ii]

4.1.2.2 Evaluation Dataset

We use SOTS-outdoor, HSTS-synthetic and RTTS-annotated datasets of hazy images to evalu-

ate the performance of the model qualitatively and quantitatively.

4.2 Training Details

We implemented this method in PyTorch and it uses the official CycleGAN [13] code 1 as the

base and builds on top of it. In terms of hardware, all the training is done using two Tesla K80

Nvidia’s GPUs. To enrich the training data set, we perform data augmentation on ITS, OTS, and

RTTS - Unannotated datasets. Each image is randomly cropped to the size of 256 X 256 and the

cropped image can be further flipped horizontally or vertically. During the training, we used Adam

optimizer with learning rate 10−4 and batch size 30. The network weights are initialized using

Gaussian initialization with zero mean and variance of 0.02.
1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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4.3 VGG-16 Features for Lp

As explained in the methodology section, we are using perceptual loss Lp to force the generated

output to be similar to the input hazy image. The effect of Lp on the final dehazed output varies

with the chosen VGG-16 layer for feature extraction. In this section, we perform experiments using

three different VGG-16 conv layers – conv2,2, conv3,3, conv5,1, and analyze if the choice of VGG-

16 feature layer impacts the performance of the UD-GAN model in any way. Unless otherwise

mentioned, all the results in this sub-section use Illumination-Based Attention.

Figure 4.1: This figure contains four scatter plots presenting our analysis on the effect of the
choice of VGG-16 feature layer for Lp on the full-reference metrics - PSNR and SSIM. The first
row represents the PSNR and SSIM plots of dehazed images in the SOTS dataset. Similarly, the
second row, represents the results evaluated on HSTS-Synthetic dataset
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Fig. 4.1 summarises our findings in this regard. conv5_1 (yellow color) performs the worst out

of the three feature layers for both HSTS and SOTS dataset. In fact, we only trained the conv5_1

for 44 epochs because the visual results (Fig. 4.2) were also poor in quality and we didn’t see the

benefit of training it for more epochs. This is why, in all the four plots, yellow line for conv5_1 can

be seen extending till 45th epoch only. Between conv2_2 (magenta)and conv3_3 (green), conv2_2

seems to perform better and consistently gives better PSNR and SSIM results throughout the epoch

training.

Hazy Image conv5,1 (20) conv2,2 (20) conv 2,2(75)

Figure 4.2: Visual comparison of dehazed images obtained from models trained using conv5_1
and conv2_2 for calculating feature loss. Row 2 and 4 zooms into the specific parts of the dehazed
images to help in visualizing the semantic details of the images. The number in parenthesis, next
to VGG-16 feature name represents the number of epochs trained to obtain the image.

It is well known that the PSNR and SSIM values aren’t always representative of the quality

of the restored images, therefore, we will visually inspect the images generated by using conv5_1
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and conv2_2 VGG-16 feature. In Fig. 4.2 we don’t include the visual results for conv3_3 since

the visual results are very similar to conv2_2. We observe that dehazed image obtained by using

conv5_1 model has patchy artifacts whereas the dehazed results from conv2_2 model trained for

20 and 75 epochs are free from such artifacts. Based on both the visual and quantitative results, in

our final model, we chose conv2_2 for calculating the perceptual loss, LP .

4.4 Evaluating the Attention Layer

We evaluate the performance of UD-GAN using two different attention layers. For the sake

of representation, we will refer our model using illumination-based attentive layer as UD-GANI ,

and model using hue-disparity based attentive layer as UD-GANHD where subscript I refers to the

Illumination and HD refers to Hue Disparity.

• On the one hand, UD-GANI takes at least 50 epochs to create a clear dehazed image, but

on the other hand, UD-GANHD generates clear output with a model trained for less than

20 epochs. Intuitively, this is because the hue-disparity based attention highlights the hazy

image regions which help the fast learning of the generator network for creating dehazed

images.

• We ran multiple experiments using both attentive layers and observed that PSNR and SSIM

values for UD-GANHD values are always less than that of UD-GANI . We think this is

because the skip connection of illumination-based attentive layers between first and last

layers of the generator enforces the dehazed image to preserve the same relative brightness

and therefore leading to better PSNR and SSIM values.

• Hue-Disparity based attention map, if used as it is, sometimes leads to strong artifacts in the

dehazed images as shown in Fig. 4.3. Therefore, we do gaussian filtering on the attention

map before providing it as an input to the generator.

20



Figure 4.3: Gaussian blurring in UD-GANI . The first column contains the hazy image and the
second column represents hue-disparity attention-map corresponding to the hazy image. Column
3 and 4 presents two versions of UD-GANI model – former version directly feeds the attention map
to the UD-GAN generator, whereas later version first performs Gaussian blurring of the attention
map. We can observe that the dehazed image generated from UD-GANI version which doesn’t use
Gaussian blurring suffers from serious artifacts

4.5 Quantitative Evaluation

In this section, we use three criterias to evaluate the performance of UD-GAN and compare it

with existing state-of the-art dehazing methods 2 – DCP [8], CAP [23], DehazeNet [1], AOD-Net

[10]. For the purpose of evaluation, we use SOTS, HSTS, and RTTS-Annotated datasets.

• Full Reference Metrics – Table 4.1 compares both UD-GANI and UD-GANHD against the

state-of-the-art dehazing models3. These results are evaluated on the images where ground-

truth images are available. Although PSNR values for UD-GANI are more comparable to

the state-of-the-art methods than UD-GANHD, SSIM values are low for both versions of the

UD-GAN models.

• No Reference Metrics– Full-reference metrics require a ground-truth clear image against

which a generated image will be compared. However, we lack that flexibility in most of the

real-world settings. In this section, we use two popular no-reference image quality assess-

ment (IQA) models 4:
2The state-of-the-art results are from the dehazing RESIDE benchmark paper [2]
3The top-3 performances are highlighted using red, cyan and blue, respectively
4These metrics are calculated using the official implementation shared by the authors of BLIINDS-II and SSEQ

(link)
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i. BLIINDS-II– Blind Image Integrity Notator using DCT statistics [47]

ii. SSEQ– Spatial-Spectral Entropy-based Quality [48]

Different from PSNR and SSIM (higher values are better), both of the no-reference metrics

values range from 0 (best) - 100 (worst). However, to compare our results against the RE-

SIDE benchmark, we follow their suit and complement (reverse) these scores to make them

consistent with the full-reference metrics.

Table 4.2 compares SSEQ and BLIINDS-II scores of UD-GAN against other dehazing

methods3. Our model has better results than other state-of-the-art methods when using no-

reference metrics. This implies that while UD-GAN doesn’t perform well in converting the

hazy image to its actual clear content, it does improve the overall quality of the image as

proved by the no-reference metrics results.

• Performance of Object Detection on Dehazed Images – Another way we evaluated the

performance of our approach is by performing object detection on the dehazed images. We

use Faster-RCNN [49] model for comparing the performance with other state-of-the-art-

methods. Table 4.3 lists mAP scores of object detection.

4.6 Qualitative Evaluation

Figure 4.4 shows that UD-GAN can recover a visually pleasing clear image from a hazy one.

The table also compares our model output with other state-of-the-art methods. Figure 4.5 provides

more examples of our model’s performance under light and heavy haze conditions. As compared

to light haze images, heavy haze images require more number of training epochs.

There are multiple cases where the generator fails to generate a visually pleasing image. Figure

4.6 shares few such examples. In all the examples shared, we can see that generator was able to

recover the texture details under the haze very accurately, however the generated output has a lot

of blue artifacts.
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4.7 Stability of GAN Training

Achieving stability while training GANs is a difficult task. We observed in our experiments

that with same number of epochs training, UD-GANHD generates visually better dehazed results

than UD-GANI . However, training of UD-GANHD is highly unstable as compared to that of

UD-GANI ; the results generated in two consecutive epochs can vary hugely in visual quality. We

experimented with RTTS dataset and observed that if we train the generator for a few more epochs,

the visual quality of generated images can become better or worse.
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DCP [23] CAP [23] Dehaze-Net [1] AOD-Net [10] UD-GANI UD-GANHD

SOTS - Synthetic
PSNR 16.62 19.05 21.14 19.06 21.25 19.61
SSIM 0.8179 0.8364 0.8472 0.8504 0.7701 0.6931

HSTS-Synthetic
PSNR 14.84 21.53 24.48 20.55 21.32 19.27
SSIM 0.7609 0.8726 0.9153 0.8973 0.7836 0.6894

Table 4.1: Full-Reference Evaluation Results on Dehazed Images from SOTS and HSTS-Real
Datasets. Results of DCP, CAP, Dehaze-Net, AOD-Net are reprinted from [2] for the purposes of
comparison.

DCP [23] CAP [23] Dehaze-Net [1] AOD-Net [10] UD-GANI UD-GANHD

SOTS - Synthetic
SSEQ 64.94 64.69 65.46 67.65 82.47 79.87

BLIINDS-II 74.71 73.41 71.71 79.02 85.93 94.15
HSTS-Synthetic

SSEQ 86.15 85.32 86.01 86.75 83.10 81.71
BLIINDS-II 90.70 85.75 87.15 87.5 89.85 95.55

HSTS-Real World
SSEQ 68.65 67.67 68.34 70.05 82.92 85.44

BLIINDS-II 69.35 63.55 60.35 74.75 90.95 94.90

Table 4.2: No-Reference Evaluation Results on Dehazed Images from SOTS, HSTS-Real and
HSTS-Synthetic Dataset. Results of DCP, CAP, Dehaze-Net, AOD-Net are reprinted from [2] for
the purposes of comparison.

DCP [23] CAP [23] Dehaze-Net [1] AOD-Net [10] UD-GANI UD-GANHD

mAP 40.58 39.63 40.54 37.47 44.08 45.62
Person 61.54 61.29 61.40 61.22 63.15 66.15
Bicycle 40.77 40.48 40.68 40.33 49.63 50.25

Car 42.15 41.52 41.74 35.13 46.99 46.92
Bus 24.18 24.74 25.20 20.56 23.23 24.70

Motorbike 34.25 30.10 33.70 30.09 37.74 40.07

Table 4.3: Detection Results on dehazed images obtained using UD-GANI and UD-GANHD. Re-
sults of DCP, CAP, Dehaze-Net, AOD-Net are reprinted from [2] for the purposes of comparison.
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Hazy Image DCP CAP DehazeNet AOD-Net UD-GAN

Figure 4.4: Qualitative results of single image dehazing on real-world hazy images.
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Light Haze UD-GAN Heavy Haze UD-GAN

Figure 4.5: Left column: light hazy images, Right column: heavy hazy images

Hazy Image UD-GAN

Hazy Image UD-GAN

Figure 4.6: Failure Cases: Blue artifacts appear in the output images specifically under heavy haze
conditions
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5. CONCLUSION AND FUTURE WORK

The proposed UD-GAN model in this thesis work introduces a novel way to perform dehazing

in an unsupervised manner. Adding attention to the generator network as well as the perceptual loss

helps in regularizing the adversarial training process. Moreover, our model is independent of the

physical scattering model and can overcome some of its common failure scenarios. Experimental

results show that our model beats the state-of-the-art methods in both no-reference and object

detection evaluation criteria. This architecture can be extended to other image restoration methods

as well - such as image deraining, denoising and others. For applying it to another problem, we

only need to prepare an attention map corresponding to the problem.

In future work, we would like to tweak the UD-GAN’s architecture to avoid the blue artifacts

in the final dehazed output and to achieve good results for SSIM and PSNR. Moreover, current

training of GANs is unstable as the outputs vary widely as we train for more epochs. We can

introduce changes in UD-GAN methodology to make the training more stable.
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