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ABSTRACT 

 

Quarter Horse mares (498±9 kg BW; 12±7 yr) were utilized in a completely randomized 

design for 56 d to test the hypothesis that concentrate fortification improves apparent 

digestibility and enhances lean mass over the topline. Horses were stratified by age, BW, and 

BCS and randomly assigned to either a custom pelleted concentrate (CON; n=13), or an iso-

caloric, iso-nitrogenous pellet that included amino acid fortification, complexed trace minerals, 

and fermentation metabolite fortification (FORT; n=10). Concentrate was offered at a total 

0.75% BW/d (as-fed) in twice daily rations, and diets were designed to meet or slightly exceed 

maintenance requirements for mature horses. Horses had ad libitum access to Coastal 

Bermudagrass hay (7.4% CP, 67% NDF, and 40% ADF). Every 14 d, BW and BCS were 

recorded and ultrasound images were captured every 28 d. Longissimus dorsi area (LDA) and 

subcutaneous fat thickness (FT) were measured between the 12 and 13th ribs (12/13) and 17 and 

18th ribs (17/18). Intramuscular fat at 17/18 and rump-fat thickness were also obtained. Horses 

were dosed with 10 g/d of titanium dioxide (TiO2) for 14 d to estimate forage dry matter intake 

(DMI). To account for diurnal variation, fecal samples were collected twice daily at 12 h 

intervals during the last four days, advancing by 3 h each day to represent a 24 h period. Fecal 

samples were composited by horse and analyzed for TiO2 to estimate fecal output and acid 

detergent insoluble ash was used to calculate forage DMI. To evaluate body composition, horses 

were infused with a 0.12 g/kg BW deuterium oxide (D2O) on d 0 and 56. Body fat percentage 

(BF) was determined by quantifying D2O in plasma samples collected at pre- and 4-h post-

infusion via mass spectrometry. All data were analyzed using PROC MIXED (SAS v9.4). The 

model contained a fixed effect of diet; horse (diet) was a random effect. Horses receiving FORT 
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gained 17/18 FT (P<0.01) and increased 17/18 LDA from d 0 to 56 (P<0.01) while 17/18 FT and 

LDA were unchanged in CON. Regardless of diet, BF calculated by D2O infusion increased in 

all horses from d 0 to 56 (P<0.01). Average hay DMI was 2.1% BW, but did not differ between 

diets. In this study, concentrate fortification did not significantly (P≥0.27) affect apparent 

digestion. In conclusion, feeding a fortified concentrate may promote greater muscle 

development along the posterior topline, and the use of ultrasonography may provide a more 

objective assessment of body composition when compared to tactile body condition assessment 

in mature horses. 
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CHAPTER I 

 INTRODUCTION AND REVIEW OF THE LITERATURE 

Introduction 

Forage is a primary component of the equine diet; however, a challenge equine managers 

often face is variability in both quality and consistency in available stored forages. Adding lactic 

acid-producing bacteria (Lactobacillus, Bifidobacterium, and Enterococcus) to a diet has 

benefited the horse by improving digestion of minerals (Swyers et al., 2008) and tends to 

improve NDF and ADF digestion (Coverdale et al., 2013). When low-quality (LQ) forage (8.1% 

CP, 75.3% NDF, and 37.6% ADF) was offered, Morgan and associates (2007) determined the 

dietary fermentation aid Saccharomyces cerevisiae enhanced digestion of DM, CP, and NDF. 

Despite increasing microbial utilization of forage through the use of dietary fermentation aids, 

LQ forages may not provide adequate nutrients to meet the nutrient demands of the horse. 

Therefore, commercially formulated concentrates are used to offset this deficit by supplying 

additional nutrients not present in the forage that promote maintenance of muscle tissue and fat 

coverage in the horse. 

Monitoring body composition is necessary to understand change in condition and health 

status. On a scale of 1-9, horse owners often strive to keep their horses at a body condition score 

of 5 to 6 to maximize athletic performance and reproductive efficiency (Henneke et al., 1983; 

Cavinder et al., 2009; Garlinghouse et al., 2010). Kubiak et al. (1987) determined mares with a 

BF of 11.5 to 15% cycled faster and conceived more readily than mares with less BF. 

Ultrasonography is used to monitor changes in tissue development and composition, as well as 

provide an estimation of BF using rump fat measurements (Westervelt et al., 1976). This 
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equation assumes a specific location over the rump represents the individual’s whole BF, but 

fails to account for intramuscular fat and variance in regional adiposity between horses of 

different breeds and ages. Additionally, the equation also indicates that a horse with no rump fat 

would still have 8.64% BF. Infusion of the stable isotope deuterium oxide and analysis of plasma 

pre- and post-infusion can provide a more comprehensive measurement of BF in equines 

(Dugdale et al., 2011; Ferjak et al., 2017). 

Limited information has been gathered to compare performance and digestibility 

characteristics of mature horses maintained on LQ forage. Therefore, the objective of the current 

study was to determine the effect of diet fortification on apparent digestion and body 

composition in mature horses consuming a LQ forage. 

Nutrient Absorption 

Digestion of nutrients has long been studied to evaluate economic efficiency and 

usefulness of particular feeds in animals. Data gathered from this area of research is utilized in 

feed processing for food animal development so that maximum gain relative to the cost of input 

can be achieved. Since horses in the United States are not harvested as a source of protein, the 

traditional application of digestibility studies tends to cover a broader spectrum. In addition to 

the focus placed on early growth and development, the equine industry attends to other 

challenges such as maintaining body condition despite intense exercise or ageing. Rate of 

passage through an equine digestive tract is more rapid than in a ruminant because there is only 

one site of fermentative digestion, and consequently, apparent digestion of fiber is lower for a 

horse (Orton et al., 1985). Compared to cattle, horses have a higher rate of intake of forage, 

which compensates for the more rapid passage of nutrients (Duncan et al., 1990). The anatomical 

arrangement of an enzymatically rich foregut preceding a fermentative hindgut provides only a 
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singular opportunity for production and utilization of volatile fatty acids, thus limiting the 

horse’s ability to derive energy from roughage. 

In a mature stock-type horse, the small intestine comprises one-third of the total volume 

and 10-12 feet of the digestive tract. The small intestine maintains a temperature of 39°C (Merritt 

and Julliand, 2013) and can be divided into three segments: duodenum, jejunum, and ileum. Due 

to bicarbonate secretion throughout the small intestine, pH increases from 6.3, to 7.1, to 7.3 (de 

Fombelle et al., 2003). Digestive enzymes are released into the duodenum through the sphincter 

of Oddi. Absorption of starch and protein substrates primarily occurs in the jejunum, and to a 

much lesser extent in the ileum. Equids are unable to derive energy from structural carbohydrates 

in the foregut due to the lack of cellulase and other enzymes that degrade structures such as 

cellulose, hemicellulose, and pectin found in plant cell walls.  

Enterocytes are the primary cell found in the small intestine. This cell is responsible for 

transportation of dietary nutrients from the lumen of the small intestine into the bloodstream of 

the animal. The gut provides a tremendous amount of surface area for the animal’s body to 

interact with externally acquired digesta, and must protect the animal from absorbing toxic 

substances while ensuring sufficient intake of energy-producing substrates. Surface area, and 

therefore absorptive efficiency, is increased by undulations in the tissue as well as villi and 

microvilli. Micronutrients become trapped in the glycocalyx, a sticky region encompassing the 

microvilli, and must then be transported across the cell’s membrane. When nutrients leave the 

lumen of the small intestine, they must cross the apical membrane of the small intestine via 

passive diffusion, facilitated diffusion, or active transport. Several nutrient-specific transporters 

line the basolateral membrane of the enterocytes, regulating absorption of nutrients into the 
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blood, where they are transported to the liver to either be stored later for energy, or utilized to 

maintain cellular function.  

Non-structural carbohydrates may enter the equine enterocyte through several modes. By 

expending 1 ATP molecule, the sodium-potassium pump on the basolateral membrane transports 

2 potassium ions intracellularly and 3 sodium ions extracellularly, creating a gradient for the 

influx of sodium ions from the cell’s apical membrane (lumen). A sodium ion is transported into 

the cell via a co-transporter, Sodium Glucose Linked Transporter 1 (SGLT1) along with glucose 

and galactose molecules. In addition, GLUT5 serves as a facilitator for the diffusion of fructose 

into the enterocyte. Similarly, GLUT2 permits entry of glucose, galactose, and fructose into the 

cell, but has the ability to translocate from the apical to the basolateral membrane, and also 

facilitates the transport of these monosaccharides into the bloodstream (Leturque et al., 2009).  

Protein digestion begins in the stomach when the structure dissociates in the presence of 

hydrochloric acid and pepsin. In the small intestinal lumen, dipeptides and tripeptides enter the 

enterocyte with aid from the PEPT1 cotransporter. Furthermore, free amino acids can cross the 

apical membrane through either a sodium-independent or sodium-dependent transporter. Again, 

the sodium-potassium pump on the basolateral membrane creates a gradient. A sodium proton 

pump allows one sodium ion to enter the cell on the apical membrane in exchange for a proton; 

sodium may also enter the enterocyte along with a free amino acid in the sodium-dependent 

transporter. Once inside the cell, oligopeptides are further dissociated by peptidases, from which 

free amino acids transaminate and pass through the liver—either contributing toward muscle 

development, provide energy post-deamination, or exit the body via excreted ammonia. 

Undigested protein that passes into the cecum is not utilized as a major source of energy in the 

horse. Unlike ruminants, which can produce microbial crude protein (MCP) pre-gastrically in the 
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rumen, microbes in the horse synthesize MCP post-gastrically. As protein is further degraded by 

microbes, the carbon skeleton Thus, a surplus of protein in the diet is not utilized by the horse.  

Lipids, or triacylcglycerol (TAG), are primarily absorbed in the jejunum of the small 

intestine. Pancreatic lipase, colipase, and bile salts emulsify fat molecules to create a larger 

surface area for digestion. In most monogastrics, bile is stored in the gall bladder and secreted in 

stimulus to the presence of chyme in the duodenum. Horses lack a gall bladder, however, and 

continuously secrete bile. This evolutionary adaption may be attributed to the horse’s continuous 

grazing behavior, and in addition to the relatively low fat content in a forage-only diet. In the 

lumen, monoacylglycerol (MAG), diacylglycerol, and lysophospholipids form a mixed micelle, 

surrounding cholesterol, fat-soluble vitamins (A, D, E, and K), and non-esterified fatty acids 

(NEFAs) to be transported and held in the brush border. Monoacylglycerol and phospholipids 

enter the enterocyte through passive diffusion, while cholesterol and SCFAs enter through a 

protein-dependent mechanism (Wu 2018). Long chain fatty acids are believed to enter via either 

mechanism. A recent study has proposed mTORC1/2 regulates triglyceride absorption (Batista-

Gonzalez t al., 2018), but a complete understanding of transporters involved in uptake is limited 

(Mansbach & Gorelick, 2007). Once inside the cell, MAGs are re-esterified using acyl CoA 

synthetase to form TAGs. Inside the endoplasmic reticulum, the apoprotein B48, TAGs, 

cholesterol, and phospholipids assemble to form a chylomicron. In the Golgi apparatus, the 

chylomicron is further stabilized and coated with carbohydrates. Small chain fatty acids cross the 

basolateral membrane and enter the blood stream to be transported to the liver, while medium 

chain and long chain fatty acids are exocytosed into the lymphatic system.  

Post-ileum, the remainder of the equine digestive tract is referred to as the hindgut. 

Termed the ‘microbiome’, the hindgut is inhabited by bacteria, anaerobic fungi, and protozoa 
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that aid in fermenting the digesta. Energy is obtained from non-structural carbohydrates by 

digesting the leaf and stem components of roughage to form volatile short chain fatty acids 

(VFAs). The three main VFAs in the hindgut are acetate, propionate, and butyrate. In horses 

maintained on a 100% timothy hay diet, the molar percentage of VFAs in the cecum were: 76% 

acetate, 14% propionate, 8% butyrate, and 2% other (Hintz et al., 1971). In the same experiment, 

horses maintained on a 1:4 forage: grain diet of timothy hay and shelled corn observed the 

following VFA ratio in the cecum: 61% acetate, 26% propionate, and 8% butyrate. Within the 

cecum, acetate is seen in greatest proportion (NRC 2007), directly contributing to energy 

production. Acetate may also be converted into long chain fatty acids (LCFAs) to be stored as 

triglycerides or be utilized in the milk of lactating mares (NRC, 2007). Doreau et al. (1992) 

reported that a 95% forage ration compared to a 50% forage and 50% grain ration yielded a 

higher fat content in mare’s milk during the first 2 weeks of lactation. Propionate is also a 

significant source of energy from the large intestine. Simmons and Ford (1991) estimated that 

over half of glucose in circulation from ponies consuming a forage-only diet originated from 

propionate. Butyrate is a significant energy source for the colonocytes, and has been associated 

with decreasing the incidence of colon cancer (Hamer et al., 2007). Lactate is another VFA that 

can be found in the large intestine, although it is less common than the other three in healthy 

horses. Lactate significantly increases in the cecal contents when high starch meals are 

consumed. Horses consuming 2 to 4 grams of starch per meal for each kilogram of bodyweight 

are at risk of developing a condition known as ‘starch overload’, which may contribute to 

laminitis or profound gas colic in the hindgut.  

Starch is known to have high uptake in the digestive tract. It takes the form of an α-D-

glucose structure. Horses can absorb a maximum of 3.5 to 4 g starch/ kg bodyweight (BW) in the 
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small intestines, with excess undergoing rapid fermentation by bacteria in the cecum (Potter et 

al., 1992). When starch bypasses the small intestines, it undergoes rapid fermentation in the 

cecum, which will lead to ‘starch overload’, laminitis, and potentially colic. It is recommended 

that horses be limited to less than 2 g starch/ kg BW to avoid these conditions (Hoffman, 2013).  

Protein, in comparison to starch, has reduced absorption in the digestive tract. Studies 

evaluating CP digestibility from coastal Bermudagrass hay have found an absorption rate of 42-

52% (Fonnesbeck 1967; Gibbs 1982; Aiken et al., 1989). Since protein is the most expensive 

nutrient, finding a balance between maximizing usability while minimizing waste is a large 

concern among horse owners. Furthermore, quality protein must be provided in a bioavailable 

form for the horse to utilize it. Essential amino acids are required in the diet because the animal 

is unable to synthesize them to meet requirements. To replenish protein turnover, these amino 

acids must be provided in specific quantities to optimize growth. For example, lysine is known 

as the ‘first limiting amino acid’; its requirement is greatest in the horse’s diet. If lysine is 

provided inadequately, the excess of other amino acids will be oxidized into waste products so 

that their ratio rebalances to match the quantity of lysine provided (Wu 2018).  

Apparent digestibility is calculated by [intake-feces output]/intake. (Frape 2010). This 

does not take into account endogenous sources of protein that arise from enterocytes, which 

results in an underestimation of true digestibility by as much as 25-30% (Wu 2013). True 

digestibility is the most accurate assessment because it accounts for endogenous nutrient 

interference; however, studies of this nature are limited in the horse. Minimal absorption occurs 

in the distal ileum, which makes this location ideal for the placement of a cannula to sample 

intestinal flux. If a true digestibility study is conducted, baseline endogenous flow of free amino 

acids, and di- and tri-peptides can be determined from ileal fluid samples. Dietary influence on 
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endogenous flow can be determined by feeding a nitrogen-free feed accompanied by an external 

marker.  

Apparent Digestion Techniques 

There are several methods of conducting a digestibility trial. Total fecal collection is the 

most accurate method of assessing nutrient digestibility and fecal output. This method requires 

animals’ assimilation to the diet, then a period of several days to house the animal in a stall or 

collection crate and gather all fecal material. Total fecal collections are costly, require 

appropriate facilities to house the animals, and are often limited by labor, time, and equipment. 

This method may restrict the total number of subjects used in the experiment based on the 

aforementioned factors. Additionally, this method is impractical: for example, lactating mares, 

exercising horses, and animals intolerant to prolonged restraint or wear of collection harnesses 

are eliminated as candidates for this type of trial. 

Internal and external markers can be used to estimate digestibility, intake of nutrients, 

and fecal output. Necessary qualifications for a marker include: mixture throughout the digesta, 

safe to ingest, non-absorbable and non-digestible. Internal markers are a natural part of the 

animal’s diet; examples include acid insoluble ash (AIA), acid detergent insoluble ash (ADIA), 

and acid detergent lignin (ADL). These markers may be utilized when intake is unknown, such 

as in pasture-fed or group-housed animals. Intake can be estimated by collecting samples of feed 

and feces, and comparing the indigestible fraction of each. Digestibility can be calculated by 

comparing the difference in nutrient levels between feed and manure samples, relative to a 

known concentration of the internal marker. Common nutrients evaluated include: dry matter 

(DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF). 

External markers are foreign supplements that are not naturally part of the diet in large 
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quantities. Examples include chromic oxide (Cr3O2) and titanium dioxide (TiO2). Chromic oxide 

has been criticized for its use in animal digestibility studies because it cannot legally be 

incorporated into animal feed and also due to its carcinogenic properties in laboratory analysis 

(Delgarde et al., 2010). However, this risk can be mediated with modern laboratory analysis 

using induction-coupled plasma spectrometry (Sales et al., 2012).Also, this marker has also been 

shown to underestimate digestibility coefficients for DM values (Sales et al., 2012). Titgemeyer 

et al. (2001) utilized TiO2 in cattle for a digestibility trial, and found it underestimated total tract 

DM digestibility by 1.1-5.5%. Using any external marker method for intake and digestibility 

estimation requires a consistent daily supplementation of the chosen marker. Fecal samples free 

from environmental contamination should be collected once the marker has had sufficient 

opportunity to assimilate throughout the digestive tract, usually requiring 7-10 days of adaptation 

(Owens and Hanson, 1992). Previous research has found a diurnal variation in the concentration 

of external markers (Titgemeyer et al., 2001). To compensate for this, fecal samples should be 

obtained over 4 days, with twice daily collections spaced 12 hours apart. Each day of sampling 

the time should advance by 3 hours. For example, day 1: 12AM/12PM, day 2: 3AM/3PM, etc. 

Upon completion of the sampling period, fecal samples for each subject can be composited to 

equally represent a 24 hour period, accounting for any variability in the fecal marker 

concentration.  

Sources of errors can arise from marker estimation techniques that makes comparison 

between studies difficult. For example, results obtained from ADL analysis can vary due to 

difference in composition and amount of lignin in a horse’s diet, which is the indigestible 

component found in all forage. As a grazing crop ages, the cell walls thicken and the ratio of 

lignin increases. Therefore, even if a single species of forage is under evaluation, analysis of its 
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digestibility must be obtained from the same cutting of hay to minimize confounding variables. 

A large source of error can arise from how the fecal samples are obtained prior to analysis. 

Rectal fecal grabs are the most sanitary method for obtaining samples. Should freshly voided 

fecal samples be obtained, it is critical that there is no environmental contamination of the 

sample. Regardless of the marker used, sufficient time should be provided for the supplemental 

marker to plateau the digestive tract. Winsco et al. (2013) used TiO2 to estimate dry matter intake 

(DMI) in group-housed pregnant mares and found realistic total DMI values from 2.1-2.5% BW 

throughout the trial. This project did not validate the external marker, however, so it is unknown 

if the values obtained were under- or over-estimated. Visser (2010) used 4 ponies in a 4˟4 Latin 

square design to test TiO2 as a digestibility marker with a variety of forage/concentrate diets, and 

determined a 97% recovery rate for the marker. Overall, external markers can be used in place of 

a total fecal collection to alleviate some restrictions. However, this method is also subject to 

certain errors that can be avoided by performing a total fecal collection. 

Concepts from digestibility and voluntary intake often interrelate. Equines’ intake of feed 

is influenced by several factors, including phenotypic characteristics of the individual and 

composition of the feedstuff. The size of the animal’s upper arcade directly relates to the volume 

of biomass consumed (Fleurance et al., 2009). Horses’ grazing behavior is often concentrated in 

shorter regions of pasture with less mature forage when given the option (Menard et al., 2002). It 

was once hypothesized that this selective behavior was a natural instinct of the horse to avoid 

manure sites where grass was taller, and thus, protecting themselves from parasite infestation 

(Taylor, 1954). Recent speculation for this behavior suggests that horses attempt to optimize 

their voluntary intake of nutrients by selecting forage that is easier to digest, and therefore less 

developed (Fleurance et al., 2007). However, some results have indicated that horses may prefer 
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grazing taller grass in order to maximize voluntary DMI (Edouard et al., 2009), regardless of pre-

established parasite load (Fleurance et al., 2005). Horses have been observed engaging in grazing 

behavior on pasture for 52-71% of a 24 hour day (Ellis 2010), consuming 2.0-2.5% of their BW 

on an as-fed basis (NRC, 2007). According to results obtained from grazing ponies, average 

intake over 3 hours is 0.8% BW, indicating that in a 12 hour period an equine may consume at 

least 3% of its BW in forage (Longland et al., 2011).  

When equids are provided with ad libitum access to feed, their voluntary consumption 

rate typically averages 3% BW. When ponies were fed free-choice pelleted diets, they consumed 

a total daily intake of 2.9 ± 0.41% BW within 10 ± 0.9 individual meals (Ralston et al., 1979). In 

this study, ponies spend approximately 38% of each day eating. In another study, Ralston and 

Baile (1982) infused ponies with 2 L of water (control) or 300 g glucose dissolved in 2 L of 

water, intragastrically after a 4 hour fast. The researchers observed a delay in post-fast feeding 

by 113 ± 65 minutes in the glucose group, suggesting the glucose had an internal effect on 

metabolic intake regulation.  

Type and maturity of roughage alters DMI. Nutritive value of a forage is determined by 

laboratory analysis of crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber 

(ADF), and crude fiber (CF) content. On a dry-matter basis, NDF content, which is comprised of 

lignin, hemicellulose, and cellulose, may range from 33% in legume pasture to 77% in Tifton 

hay (NRC, 2007). Edouard and colleagues (2009) observed a relationship between increased 

DMI and decreased CP and DMD of the forage. Other research has developed prediction 

equations for voluntary DMI based on NDF% in hay, suggesting a strong inverse relationship (r2 

=0.50-0.68) between the variables (Lawrence et al., 2001; Reinowski and Coleman, 2003; 

Dulphy et al., 1997). 
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Digestive Aids 

There are many commercially available supplements designed to improve forage 

digestion in horses and optimize health. These supplements, termed ‘digestive aids’ or 

‘fermentation aids’, are usually prebiotics, probiotics, or a live yeast supplement (Coverdale, 

2016). Prebiotics are intended to improve the animal’s health by altering the gastrointestinal 

microbiome in favor of fiber fermentation and VFA formation. Probiotics are often colonies of 

beneficial bacteria introduced into the gastrointestinal tract to benefit the immune system. This is 

accomplished by ‘competitive inhibition’ of absorption between the introduced bacteria with 

pathogenic microbes already inhabiting the hindgut (Berg, 1998).  

Gonҫalves et al. (2002) analyzed multiple case studies and found diets composed of 

forage high in cellulose resulted in a higher incidence of impaction colics. From another study 

reviewing 2060 cases (1030 diagnosed colic and 1030 diagnosis other than colic) treated by 

veterinarians across the United States within one year, researchers discovered that horses were 

9.8 times more likely to have colic if the forage component of their diet rapidly changed within 

the past 2 weeks (Cohen et al., 1999). Yeast additives, such as Saccharomyces cerevisiae have 

shown promising results in the horse by increasing digestibility of DM, NDF, and ADF in 

Bermudagrass hay (Morgan et al., 2007). Medina et al. (2002) also demonstrated that 

supplementing S. cerevisiae orally increased the live population of yeast in the equine large 

intestine, which limits the elevation of lactic acid, ammonia, and increased cecal acidity when 

horses were fed a high-starch diet.   

Unfortunately, this field of research is limited in providing in sufficient evidence-based 

conclusions on the potential benefit of digestive aid supplements. One possible reason for this is 

the lack of regulation between the advertised label compared to the actual amount within the 
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product. Ensuring sufficient quantities of the live/active supplement reach the hindgut after 

exposure to enzymatic digestion in the foregut presents another challenge. Overall, this field 

requires further study to better understand methods of intervention in optimizing the horse’s 

hindgut health. 

Body Composition  

Body composition is one outward reflection of health status in the horse. A sufficient 

amount of muscle and adipose tissue is required to maintain normal physiological function. 

Muscle is responsible for coordinating movement and storing glycogen. Compared to humans, 

equines have the ability to store 50% more glycogen in their skeletal muscle (Bergstrom et al. 

1972; Pӧsӧ et al., 2008), a quality that has likely enabled the horse’s survival in escaping danger. 

This large supply of glycogen also functions as a source of substrate for production of adenosine 

triphosphate (ATP), enabling the horse to excel athletically.   

Fat-free mass tends to remain relatively consistent throughout a horse’s life, but adiposity 

can change significantly (Cordero, 2013). Monitoring a horse’s fat content and maintaining a 

healthy level is important for longevity and health within the animal. Obesity has been linked to 

pro-inflammatory conditions, which can be correlated to an increase in blood serum levels of C-

reactive protein, interleukin-6, and tumor necrosis factor-α (Das, 2001). Further analysis of blood 

hormone levels in the horse has discovered a relationship between reduced insulin sensitivity to 

higher BF%, TNF-p, TNF-α, and IL-1 (Vick et al., 2007). Overweight horses are prone to insulin 

resistance, as well as a higher incidence of laminitis.  

When conducting a nutrition trial, change in BW and overall condition must be 

monitored to evaluate the feed’s effect. Caution should be used when drawing conclusions about 

a change in weight with the horse. It is common for the body weight to fluctuate throughout the 
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day by 5 kg due to factors such as feed and water intake or defecation and urination (Webb and 

Weaver, 1979). A horse’s BCS is most readily assessed by using the Henneke scoring system. 

By palpating the horse’s crest, withers, back, tail head, behind the shoulder, and over the rib 

cage, one can provide an approximate determination of the animal’s fat coverage. Henneke et al. 

(1983) studied the effect BCS has on reproductive success in mares and developed a scoring 

system to communicate a horse’s condition, in which 1 indicates severe undernourishment, 5-6 

indicates ideal body condition, and 9 indicates extreme obesity. This system has been widely 

applied across multiple studies due to its ease of use and minimal training requirements. The 

subjective nature of BCS does have limitations. For example, breed, age, and sex of the animal 

affect fat deposition. There is unavoidable bias in score dependent on the individual determining 

the BCS, and distinguishing between fat and muscle based solely on tactile assessment is 

difficult. 

Post-mortem assessment of true body composition in the horse has resulted in significant 

variation of muscle and fat content based on the age, breed, and condition of the animal at its 

time of death. Schrottenloher (1951) initially described the horse carcass to contain 2.73% 

adipose tissue, but he did not report what state the animals were in prior to dissection. Webb and 

Weaver (1979) obtained data from 12 horse dissections, and determined adipose tissue to 

comprise 5.06% of the horses’ (age 1-14 years) live weights. These horses’ conditions were 

classified as either thin, lean, good, and one as fat, with variability in fed or fasted state prior to 

euthanasia. Manual extraction of adipose tissue can result in a large error while estimating total 

BF because intramuscular fat remains unaccounted for using this method. Other post-mortem 

methods of assessment include proximate chemical analysis and near-infrared spectroscopy.  
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Improving the topline musculature has recently been a large focus in the equine nutrition 

industry (Lamprecht et al., 2016). The horse’s ‘topline’ refers to the trapezius muscle, latissimus 

dorsi, and longissimus dorsi, encompassing the entire area from the neck to the tail head. To 

optimize the horse’s genetic potential for muscle development along this region, the nutritional 

requirements must be met first. Muscle growth and maintenance requires adequate protein intake 

to compensate for loss in the continual cycle of protein turnover. Amino acids serve as the 

building blocks for muscle deposition, and must be supplied in appropriate levels to be utilized. 

For example, lysine is classified as the first limiting amino acid, meaning that if there is not a 

sufficient amount of this amino acid, other amino acids present will not be fully utilized. 

Twenty-two amino acids are used in muscle deposition, and nearly half of them must be 

provided in the horse’s diet to maintain condition (Frape, 2010; Lamprecht et al., 2016).  

 In beef cattle, ultrasonography measurements have been used extensively to predict the 

carcass quality of the animal. Greiner et al. (2003) determined correlation coefficients of 0.89 

and 0.86 between ultrasound measures and carcass fat and LDA, respectively. Ultrasonography 

measurements of back fat thickness have also been used as a method to evaluate morphometric 

change in dairy cattle; previous research correlates (r = 0.91) a change in 1 unit of BCS (1-5 

scale) equating to a 23 kg change in BW (Wittek and Fürll, 2002). In addition, Schroder and 

Staufenbiel (2006) determined that a 1 mm change in back fat thickness correlates with a 5 kg 

change in total body fat content. Furthermore, Perkins et al. (1992) found a 0.75 correlation 

coefficient between ultrasonic back fat measurement and actual carcass measures (P ≤ 0.01). 

Although significant work has been done in the cattle industry to utilize ultrasonography as an 

accurate method for assessing live morphometric quantifications, this tool is largely 

underutilized in equine research.  

https://www.sciencedirect.com/science/article/pii/S0022030206720641#bib116
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Ultrasonography has offered an objective assessment of a horse’s subcutaneous fat and 

muscle coverage. Westervelt and associates (1976) assessed fat thickness in a consistent location 

along (n = 8) horses’ rumps (5 cm dorsal of the midpoint between the tuber coxae and tuber 

ischiadicum) then correlated this value with an estimate of total BF within the animal. This 

approximation has also been used in multiple studies due to its relatively easy determination and 

minimal invasiveness. A limitation to this method is the assumption that one region of adiposity 

can be used to predict total BF. Also, intramuscular fat is largely unaccounted for. Gentry et al. 

(2004) compared BCS with ultrasonic measurements in 12 horses at BCS 3.0-3.5 and 12 horses 

at BCS 8.0-9.0. Results from this study indicated that correlation between BCS and rump fat was 

lower (r = 0.84) than correlations obtained using the tail head (r = 0.87) or withers (r = 0.86) 

regions.   

Deuterium Oxide  

Isotopic infusion is a useful method for evaluating morphometric characteristics in live 

animals. Common isotopes used to assess body composition are deuterium oxide (D2O), known 

as ‘heavy water’, and tritium oxide, known as ‘super heavy water’. These isotopes are relatively 

safe to introduce into the subject, and are effective because they evenly distribute throughout an 

entire physiological system. When a known amount of the isotope is injected into a subject, 

analysis of plasma via mass spectrometry can estimate the total body water in the animal. 

Andrews et al. (1997) tested D2O in 6 healthy horses and determined there to be a 4 hour plateau 

phase from 3 to 7 hour post-injection. These researchers also measured a dose of 0.14 g  kg 

D2O
-1  BW-1, finding an average TBW (total body water) content of 63%. Dugdale et al. (2011) 

validated this technique in ponies (BCS 1.25-7/9) by comparing values obtained from deuterium 

oxide analysis with post-mortem proximate analysis of tissue obtained from dissection. A similar 
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experiment was performed in mature stock-type horses (Ferjak et al., 2017), and confirmed its 

usefulness for live-assessment of body composition. The Dugdale (2011) study found all 

measures of D2O were within 5% of the values obtained via proximate analysis of post-mortem 

tissues, thereby suggesting the strength of D2O as a method for live tissue analysis.  

Conclusion 

 In summary, health and performance in the horse is a primary concern of for equine 

owners and managers. Providing a diet that optimizes maintenance of lean muscle and fat 

coverage is critical for horses at all life stages. Horse owners must contend with variability in the 

forage they can obtain for their animals, which may compromise the quality of nutrition, intake, 

and digestibility. By fortifying the concentrate diet with appropriate levels of amino acids, 

deficiencies may be addressed so that the horse’s overall nutritional profile will be enhanced. In 

order to accurately assess change in a horse’s body composition, and thus, well-being, several 

methods may be used. Although body condition scoring is convenient, its results are highly 

subjective and do not reflect changes in body tissue beyond tactile assessment. Ultrasonography 

and deuterium oxide infusion are alternative and more objective methods that can provide horse 

owners with a validated and accurate understanding of their horse’s health.  
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CHAPTER II 

MATERIALS AND METHODS 

 

The experimental protocol was approved by the Institutional Animal Care and Use 

Committee at Texas A&M University (AUP# 2016-0304).  

Horses and Dietary Treatments 

Twenty-three mature stock-type mares (422 to 583 kg BW and 5 to 20 yr of age) were 

used in a completely randomized design for a 56 d trial. Horses were stratified by bodyweight 

(BW), age, and body condition score (BCS) and assigned within strata across two dietary 

treatments. Treatments consisted of either a control diet (CON, n=13) offered at 0.75% BW 

daily, formulated to meet or exceed nutritional requirements for mature horses at maintenance 

(NRC, 2007) or the same pelleted concentrate (FORT; n=10) includeding an additional amino 

acid fortification pack, fermentation metabolite additives, and complexed trace minerals. Dietary 

treatments were formulated to be isocaloric and isonitrogenous (Table 1; Table 2). Horses had ad 

libitum access to round bales of coastal Bermudagrass (Cynodon dactylon) hay. Every 14 d, BW 

was recorded and intake adjusted accordingly. Investigators were blinded to dietary treatment. 
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Table 1. Energy and nutrient composition of pelleted concentrate and coastal Bermuda grass 

(Cynodon dactylon) hay fed to stock-type mares. 

1Determined from laboratory analyses conducted at Texas A&M University.  

2Concentrate consisted of a either a control (CON) pellet or the same pelleted concentrate  

fortified (FORT) with an additional amino acid pack, fermentation metabolite additives, and 

complexed trace minerals concentrate that was offered at 0.75% BW (as-fed basis). 
3Values were obtained from laboratory analyses conducted at a commercial feed testing 

laboratory (SDK Laboratories, Hutchinson, KS). 
4Calculated from equations in NRC (2007).   

 

 

 

 

 

 

 

 

 

 

 

 

Item1  Concentrate2 Hay 

  CON FORT  

DM, %  93.40 92.90 94.90 

Energy and nutrient (DM basis)    

NDF, %  41.50 40.70 77.50 

ADF, %  20.20 21.10 46.00 

ADIA, %  1.57 1.95 3.55 

Starch3, %  11.50 10.80 0.68 

DE4, Mcal/kg  2.76 2.79 1.85 
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Table 2. Amino acid composition of the control (CON) pellet and fortified (FORT) pellet that 

contained an additional amino acid pack, fermentation metabolite additives, and complexed trace 

minerals concentrate offered at 0.75% BW (as-fed basis). 

1(W/W%) indicates percent mass of item per 100 g of solution. 

 

Animal Performance 

Mares were evaluated every 14 d  BW and BCS and on d 0, 28, and 56 for fat thickness 

(FT), muscle depth (MD), and intramuscular fat (IMF) over the longissimus dorsi area (LDA) 

using ultrasonography. The musculoskeletal probe was fitted with a contoured pad and corn oil 

was applied to the ultrasound site to maximize echogenicity and minimize image artifacts. 

Measurements included the intercostal space between the 13th/14th ribs and the 17th/18th ribs, and 

Item (W/W%)1 CON FORT 

Glutamic Acid 2.22 2.14 

Aspartic Acid 1.25 1.20 

Leucine 1.08 1.07 

Proline 0.88 0.86 

Arginine 0.83 0.79 

Alanine 0.74 0.73 

Glycine 0.73 0.71 

Valine 0.72 0.70 

Lysine 0.68 1.02 

Phenylalanine 0.64 0.62 

Serine 0.56 0.53 

Isoleucine 0.56 0.54 

Threonine 0.52 0.53 

Tyrosine 0.41 0.40 

Histidine 0.36 0.35 

Cysteine 0.27 0.25 

Methionine 0.24 0.33 

Tryptophan 0.15 0.13 

Hydroxyproline 0.14 0.14 

Lanthionine § 0.08 0.09 

Taurine § 0.07 0.07 

Hydroxylysine 0.03 0.03 

Ornithine § 0.01 0.01 

Total 13.17 13.24 
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MD and FT over the rump. All FT and MD measurements were taken with the transducer-

oriented perpendicular to the horse’s spine. Estimates of IMF of the LD muscle were determined 

by capturing four independent images over the 17th/18th ribs with the transducer positioned 

parallel to the horse’s spine. In accordance with Westervelt’s method (1976), BF percentage was 

estimated from an equation using rump FT and MD measurements taken 5 cm from the midline 

and centered between the tuber coxae and tuber ischiadicum (% BF = 4.70 × fat depth(cm) + 

8.64). All ultrasound measurements were obtained and interpreted by a single certified technician 

blind to treatments (Designer Genes Technologies, Inc., AR).  

Body Composition 

On d 0 and d 56 of the trial, horses underwent a deuterium oxide (Aldrich Chemistry, 

99.9% atom) infusion. On the morning of the D2O infusion, BW was measured on a digital 

platform scale, and a jugular intravenous catheter was placed and secured with adhesive 

bandaging tape. The jugular catheter site was prepared by clipping the coat to a sanitary length 

(blade size 40), and sterilized using Chloradine scrub 4% in addition to isopropyl alcohol 70%. 

Lidocaine was used as a local anesthetic and injected subcutaneously at the site of catheter 

insertion. At baseline, a venous catheter (12 g, Angiocath) and 30 cm extension set were inserted 

into the jugular vein under aseptic conditions and two 10 mL blood samples were obtained 

(Lithium Heparin 15 ml BD Vacutainer, 158 U.S.P. units). Horses were infused with an 

individual dose of deuterium oxide (D2O; 0.12g/ kg BW) over a time period of 60 seconds, 

followed by a 100 mL saline flush to ensure all D2O was delivered. The dose of D2O was 

obtained from previous studies validating the method in the horse (Dugdale et al., 2011; Ferjak et 

al., 2017). Feed and water were withheld during the 4 h D2O equilibration period. At post 4 h of 

infusion, two 10 mL blood samples were obtained contralateral to the site of catheter insertion. 
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All blood samples were stored on ice then centrifuged at 2000 ˟ g for 12 min. Plasma was 

aliquoted and immediately stored at -80 °C in 2 mL air-tight tubes (VWR, 2mL micro-centrifuge 

tubes). Samples were analyzed by a commercial laboratory (Stable Isotopes Lab, University of 

Arkansas). In brief, plasma samples were thawed then filtered prior to analysis in triplicate by 

gas isotope ratio mass spectrometry. Samples underwent zinc reduction of the isotope-marked 

water. The deuterium abundance in the plasma samples was determined relative to a reference 

standardized tap water which had been normalized against the internal standards. Subsequent 

values were used to calculate the subject’s total BF with a 4% correction factor to account for the 

exchange of non-water related hydrogen atoms within the body. A body lean hydration factor of 

0.732 was used (Speakman, 1997). The following calculations will be used to estimate TBW, 

BF, and FFM: 

Corrected BWa (kg) = BW/1.04  

%TBW = BWa / BW 

%BF = 100 – (%TBW/0.732) 

%FFM = %TBW/0.732 

Digestibility 

Nutrient digestibility was assessed through the use of internal (ADIA) and external 

(Titanium IV Dioxide, rutile; Sigma Aldrich) markers. On d 27 baseline fecal samples were 

collected. From d 28 to 41, 5 g of titanium dioxide (TiO2) was mixed and top-dressed onto each 

concentrate meal. After horses were supplemented with the external marker for 10 d, feces were 

collected from d 38 to 41 of the study. To account for diurnal variation of composition, feces 

were collected twice daily at 12 h intervals and advanced by 3 h each subsequent day, which 

resulted in 8 fecal samples per mare over a 4 d collection period. A 200 to 400 g sample of feces 

was stored at -20°C for later analysis.  
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To prepare samples for analysis, feces, hay, and grain were dried in a forced air oven at 

55°C for 96 h and allowed to equilibrate to room temperature for 24 h. All samples were 

weighed before and after the drying process to determine partial dry matter (DM) percentage. 

Samples were ground in a Wiley mill to pass through a 1 mm screen. To determine overall DM 

percentage, samples were exposed to a 105°C drying oven for 24 h. Similarly, to determine 

organic matter (OM) percentage, difference in samples weight was measured prior and after 

exposure to a combustion oven at 450 °C for 8 h. Neutral detergent fiber (NDF) and acid 

detergent fiber (ADF) values were determined by the Ankom Fiber Analyzer with sodium sulfite 

and α- amylase admitted and without correction for residual ash (Ankom Technology Corp., 

Macedon, NY). A Parr 6300 Calorimeter (Parr Instrument Company, Moline, IL) was used to 

measure gross heat energy (GE) for hay, grain, and fecal samples.  

Forage consumption was estimated by TiO2 analysis following a previously established 

protocol (Myers et al., 2004). Concentrate, hay, and fecal samples were ashed at 450°C for 12 h 

then exposed to concentrated sulfuric acid (95-98% w/w) for 2 h prior to the addition of 30% 

hydrogen peroxide solution. Samples were digested at 350°C for 45 min in a SCP digester. 

Absorbance at 410 nm was measured and compared to standards of 10, 8, 6, 4, or 2 mg TiO2 per 

50 g solution. The following calculation was used to determine the concentration of TiO2 in each 

sample: mg TiO2 / g = (mg TiO2 sample / g sample) – (mg TiO2 baseline / g sample).  

Statistical Analysis 

  Intake, digestion, D2O, and performance variables were analyzed using the MIXED 

procedure (SAS Inst. Inc., Cary, NC). The model contained an effect of treatment and horse 

within diet included as a random effect.  Correlations were determined using the PROC CORR 

procedure in SAS for BCS and body fat percentages determined by either a prediction equation 
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(Westervelt et al., 1976) or deuterium oxide infusion. Main effects were considered significant 

when P ≤ 0.05 and a trend toward significance when P ≤ 0.10.  
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CHAPTER III 

RESULTS 

 

Intake and Performance 

 In situations where both DMI and fecal output are not known, such as in the current 

group-housed setting, dual-marker systems may be used to estimate intake (Winsco et al., 2013). 

There was no affect of dietary treatment on total DMI (P = 0.41), with mares on the CON diet 

consuming 2.86% BW compared to 2.74% BW in mares supplemented with the FORT 

concentrate (Table 3). Concentrate DMI, when expressed as a percentage of BW, was not 

affected (P = 0.24) by dietary treatment. Similarly, dietary treatment did not affect hay DMI, 

with CON and FORT horses consuming 2.13% and 2.03% BW, respectively. Using measures of 

nutritive value and calculations based on the NRC (2007), the CON and FORT concentrates 

were calculated to contain 2.76 and 2.79 Mcal/kg, and the hay contained 1.85 Mcal/kg. Estimates 

based on the use of TiO2 in a dual marker system, CON mares consumed an average of 29.50 

Mcal DE/d and FORT mares consumed 29.05 Mcal DE/d. Horses consumed an average of 638.5 

and 654.6 g CP and 21.32 and 31.97 g Lys per d from the CON and FORT concentrates, 

respectively (Table 3). According to NRC (2007) estimation of nutrient composition values in 

coastal Bermudagrass hay, horses consumed a maximum of 0.36 g Lys/kg, or an average of 4.46 

g Lys and 4.44 g Lys for the CON and FORT diets, respectively.  
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Table 3. Dry matter intake (DMI) of control (CON) or iso-caloric, iso-nitrogenous fortified 

(FORT) pelleted concentrate and coastal Bermudagrass (Cynodon dactylon) fed to stock-type 

mares (least square means). 

  Treatment2     

Item CON FORT SEM P-value3 

Intake, % BW     
   DMI Grain 0.73 0.71 0.01 0.24 

   DMI Hay1 2.13 2.03 0.03 0.54 

   DMI Total 2.86 2.74 0.04 0.41 
1Hay intake determined using a dual-marker system with TiO2 as the external marker and ADIA 

as the internal marker (Titgemeyer et al., 2012). 
2Treatment consisted of either a control (CON; n=10) concentrate or the same pelleted 

concentrate  fortified (FORT; n=12) with an additional amino acid pack, fermentation metabolite 

additives, and complexed trace minerals concentrate that was offered at 0.75% BW (as-fed 

basis). Values listed were obtained from horses within 1 standard deviation of the mean DMI 

(n=22).  
3Main effect of dietary treatment.   

 

When evaluating the change over the feeding period (d 56 minus the d 0 measurement 

obtained at the beginning of the trial), BW and BCS were unaffected by dietary treatment (P > 

0.63). The LDA and FT over the 12/13 ribs (P ≥ 0.74) and IMF (P = 0.57) were not affected by 

diet. Horses maintained on the FORT diet gained FT over the 17/18 ribs (P ≤ 0.02) and tended to 

gain in LDA over the 17/18 ribs from d 0 to 56 of the trial (P ≤ 0.09; Table 4). No differences in 

RF or BF estimation (P = 0.38 and P = 0.58, respectively) were detected.  Utilizing a D2O 

infusion, BF was not affected on d 56 by diet fortification (P ≤ 0.58; Table 5).  
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Table 4. Mean change of ultrasonography measurements (± SEM) of fat thickness (FT) and 

longissimus dorsi area (LDA) over the 12th/13th and 17th/18th ribs and intramuscular fat (IMF) in 

response to feeding either a CON or FORT pelleted concentrate and coastal Bermudagrass. 

    Treatment1   

Variable CON FORT SEM P- value2 

LDA 12th and 13th Rib, cm2    
 

 Initial 72.07 69.89 2.71 0.55 

 Final 77.28 73.32 2.71 0.35 

 Change 5.21 3.43 2.84 0.74 

FT 12th and 13th Rib, cm    
 

 Initial 0.16 0.16 0.01 0.98 

 Final 0.17 0.17 0.01 0.99 

 Change 0.01 0.01 0.01 0.98 

LDA 17th and 18th Rib, cm2    
 

 Initial 84.95 80.97 2.78 0.29 

 Final 89.43 92.45 2.71 0.41 

 Change 4.48a 11.48b 3.03 0.09 

FT 17th and 18th Rib, cm2    
 

 Initial 0.25 0.27 0.03 0.67 

 Final 0.28a 0.41b 0.03 ≤ 0.01 

 Change 0.03a 0.14b 0.03 0.02 

Intramuscular Fat, %3    
 

 Initial 3.92 4.07 0.16 0.47 

 Final 3.13 3.45 0.23 0.37 

 Change -0.79 -0.62 0.22 0.57 
a,b Within item, means that do not have a common superscript differ by (P ≤ 0.10). 
1Treatments consisted of a controlled (CON) or fortified (FORT) pelleted concentrate offered at 

0.75% BW (as-fed basis) and allowed ad libitum access to coastal Bermudagrass (Cynodon 

dactylon) hay.  
2Main effect of dietary treatment.  
3Intramuscular fat percentage measurements obtained on the left hip determined by capturing 

four independent images over the 17th/18th ribs with the transducer positioned parallel to the 

horse’s spine (Aloka SSD-500V, Aloka Inc., Tokyo, Japan).  
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Table 5. Mean BW (± SEM), BCS, and BF change in response to feeding either a CON or 

FORT pelleted concentrate and coastal Bermudagrass. 

    Treatment1     

Variable CON FORT SEM P- value2 

BW, kg     

Initial  494.35 500.01 12.74 0.74 

Final  505.44 508.34 13.54 0.87 

Change  11.09 8.33 4.32 0.63 

Body Condition Score3 
    

Initial  5.60 5.57 0.27 0.92 

Final  5.74 5.78 0.29 0.92 

Change  0.14 0.21 0.15 0.72 

Rump fat, cm4     

Initial  0.81 0.86 0.10 0.90 

Final  1.04 0.86 0.10 0.31 

Change  0.23 0.00 0.15 0.38 

Body fat estimation5, %      

Initial  12.65 12.55 0.59 0.90 

Final  12.74 13.51 0.57 0.31 

Change  0.09 0.96 0.72 0.38 

Body fat estimation6, %      

Initial  7.71 7.57 0.73 0.89 

Final  9.00 8.45 0.81 0.62 

Change  1.29 0.88 0.56 0.58 
1Treatments consisted of a controlled (CON) or fortified (FORT) pelleted concentrate offered at 

0.75% BW (as-fed basis) and allowed ad libitum access to coastal Bermudagrass (Cynodon 

dactylon) hay. 
2Main effect of dietary treatment.  
3Average of 3 evaluators using a 1 to 9 scoring system (Henneke et al., 1983).  
4Rump fat measurements obtained on the left hip at a point 5 cm dorsal of half way between the 

first coccygeal vertebrae and the ischium (Westervelt et al., 1976) using an ultrasound instrument 

(Aloka SSD-500V, Aloka Inc., Tokyo, Japan).  
5Body fat estimated by using prediction equation, % body fat = 4.70 × fat depth (cm) + 8.64 

(Westervelt et al., 1976).  
6Body fat estimated by using 0.12 g/kg BW of deuterium oxide. 

 

Apparent Digestion 

 All digestibility coefficients were calculated based on total tract apparent digestibility.  

Average starch digestibility coefficients were similar, 0.98 and 0.96, for horses receiving the 

CON or FORT diets, respectively (P = 0.16; Table 6). Values for ADF and NDF did not differ (P 
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≥ 0.93) between dietary treatments. Similarly, DM and OM were not affected by diet (P ≥ 0.96). 

Despite the addition of fermentation aids in the FORT diet, apparent digestion did not differ 

between treatments. 

 

Table 6. Apparent digestion of nutrients in response to feeding either a CON or FORT pelleted 

concentrate and coastal Bermudagrass. 

  Treatment1     

Item CON FORT SEM P-value2 

Apparent Digestion, %     

   DM 0.67 0.65 0.04 0.96 

   Starch 0.98 0.96 0.01 0.16 

   NDF 0.66 0.63 0.06 0.95 

   ADF 0.61 0.58 0.06 0.93 

  GE Digestibility 0.69 0.68 0.02 0.71 
1Treatments consisted of a controlled (CON) or fortified (FORT) pelleted concentrate offered at 

0.75% BW (as-fed basis) and allowed ad libitum access to coastal Bermudagrass (Cynodon 

dactylon) hay.  
2Main effect of dietary treatment.  
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CHAPTER IV 

DISCUSSION 

Intake and Digestibility 

In the current study, BW and BCS of horses were not affected by 56 d of diet 

fortification. Lucia et al. (2014) observed a similar response in a group of mature sedentary 

horses housed in similar climatic conditions, which were fed a fortified diet (complexed trace 

minerals, pre- and pro-biotics, enhanced amino acids, and elevated vitamin E) or a non-fortified 

control diet. Increases in BW and BCS were observed over the 154 d study; however, similar to 

the current study, these variables were not affected by diet. Lucia et al. (2014) observed specific 

ultrasonography measurements such as the LDA, and LDFT and RF increased in response to diet 

fortification (P ≤ 0.01). In the current study, the posterior segment of the horses’ topline, over the 

17th and 18th ribs, responded to dietary fortification.  

Mares fed the fortified concentrate, which included nearly twice the Lys content as the 

control (CON=0.68; FORT=1.02), tended have a greater LDA in response to diet fortification, 

although the other areas of the topline were unaffected. Throughout the trial, mean LDA over the 

17/18 ribs ranged from 81.0 to 92.6 cm2, comparatively larger than the same measurement over 

the 12th and 13th ribs, which measured 69.0 to 73.9 cm2.   Miller et al. (2017) reported similar 

measures in mature Quarter horses (n=10; 2-6 yrs.) when compared to the current study. For 

instance, the LDA over the 17th and 18th ribs ranged from 90.0 to 106.9 cm2, and over the 12th 

and 13th ribs ranged from 77 to 92 cm2.  On a similar size comparison, steers have relatable 

ultrasonography measurements compared to horses. In 1965, Hedrick et al. assessed the LDA in 

good and choice steer carcasses of various weights. Those in the weight class closest to mature 

horses weighed a minimum of 386 kg, and averaged an LDA of 81.4 cm2. 
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Lysine is the only amino acid with an established dietary requirement in the horse (NRC, 

2007). With the exception of Lys, CON and FORT diets were not different in amino acid 

composition. If amino acid requirements are not met for a species, then protein synthesis 

resulting in muscle deposition will not occur (Mastellar et al., 2016). According to NRC (2007) 

recommendations, a 500 kg horse at maintenance should receive 27g Lys/d to meet 

requirements. It is possible that due to the lower quantity of CP in the hay, horses fed CON (Lys 

25 g/d) were not adequately supplied with lysine compared to horses fed FORT (Lys 35 g/d) 

concentrate, and thus did not experience muscle development over this area of the topline. 

Therefore, one limitation in the current study is that it is unclear if the greater 17/18 LDA 

measures in the FORT horses were due to dietary fortification alone. 

Based on prior research that estimates the pre-cecal digestion of coastal Bermudagrass to 

be 37% (Gibbs et al., 1988), the average digestible Lys intake from forage consumed by CON 

and FORT horses was calculated to be 1.41 g and 1.37 g, respectively. Pre-cecal digestion of 

protein and amino acids changes with diet composition (de Almeida et al., 1998a; de Almeida et 

al., 1998b; van Niekerk and van Niekerk, 1997), and the values calculated are likely an 

overestimation because the CP of hay in the present study was significantly lower (8 vs. 10%). 

Additionally, differences in other region of the horses’ toplines may not have been detected in 

the current study due to the short duration. Winsco et al. (2011) assessed growth measurements 

and rump fat over 56 d in weanling horses receiving 1 of 4 isonitrogenous diets with varying Met 

concentrations. The researchers did not observe a difference between treatments in BW or rump 

fat throughout the trial in horses undergoing rapid growth. Lucia et al. (2014) began to observe 

changes in rump fat at d 56 in mature horses supplemented with a similar fortified diet. In one 
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experiment involving ponies either fed 1.5% BW or fed ad libitum, Westervelt et al. (1976) 

noted a significant difference between fat cover in the ponies after 126 d.  

In the current study, DMI of hay did not differ between diets. All horses were group-

housed in a dry lot and had access to a round bale. The dual marker system of TiO2 and ADIA 

indicated that there were no differences in the apparent digestion of starch, DM, OM, NDF, or 

ADF. In a previous study that performed a total fecal collection, horses supplemented for 28 d 

with a dehydrated yeast fermentation product tended to have greater apparent digestibility of 

NDF and ADF than the control group (Coverdale et al., 2013). The type of yeast supplemented 

to the horse can have a positive effect on digestibility of structural carbohydrates when the 

concentration of cellulolytic bacteria is increased. For example, when Saccharomyces cerevisiae 

is added to the diet, the equine’s hindgut prevalence of lactate decreases, which reduces acidity 

and creates a more favorable environment for cellulolytic bacteria (Jouany et al., 2008). 

In a recent study, Agazzi et al. (2011) fed horses a grass/legume mixed forage (9.8 % CP, 

64.2 % NDF, and 46.2% ADF) for two weeks, followed by 18 d of live yeast (S. cerevisiae) 

supplementation offered twice daily. No difference was observed in DMI (P ≥ 0.48); however, 

apparent digestion of DM, OM, NDF, and ADF increased (P ≤ 0.04) in supplemented horses 

compared to the control group and CP tended to improve (P ≤ 0.08). Morgan et al. (2007) used a 

total fecal collection to assess the apparent digestibility of low-quality and high-quality hay fed 

to horses receiving a yeast culture supplement. Results from the study indicated that the high-

quality forage (13.1% CP, 73.1% NDF, 35.3% ADF) was more digestible in every component 

than the low-quality forage (8.1% CP, 75.3% NDF, 37.6% ADF). In addition, the yeast culture 

supplement increased the digestibility of NDF, hemicellulose, and CP.  
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Body Composition 

 Using infusion of the stable isotope D2O, total body water was quantitatively assessed in 

mature horses and subsequently percent BF was calculated for mares assigned to either the CON 

or FORT treatment diet. Percentage of BF increased over the 56 d across treatments; however, 

differences were not detected between dietary treatments.  

Absence of change in percent BF relative to treatment correlates with no significant 

change observed in BW, BCS, or BF estimated from rump fat. In this experiment, percent BF 

(D2O) was 8.72% in mares with an average BCS of 5.58 and 5.76 on d 0 and 56, respectively. 

Dugdale et al. (2011) estimated BF using deuterium oxide at 13.1%, in mature horses that were 

between a BCS of 1 to 7. Ferjak et al. (2017) estimated BF to be 5.99% and 10.28% in horses 

with a BCS of 5 or 6, respectively. The BF estimations were similar to values calculated in the 

current study in horses with a similar BCS, which ranged from 7.57% to 9.00% BF, and further 

supports the use of deuterium oxide to evaluate live morphometrics in the horse. 

 When data sets were averaged across dietary treatments for BCS and BF according to 

both Westervelt and D2O evaluations, moderate positive correlations were seen. Deuterium oxide 

BF estimates were moderately correlated with BCS (r = 0.51; P ≤ 0.01), and correlated with the 

Westervelt BF estimate (r = 0.43; P ≤ 0.01); additionally, the Westervelt BF estimate was 

moderately correlated with BCS (r = 0.41; P ≤ 0.01). This value indicates a lower correlation 

than other research conducted on stock-type horses undergoing moderate exercise, which found r 

= 0.50 between RF and BCS (Pritchett et al., 2016).  Prior research which compared these 

morphometric measurements with post-mortem fat assessment determined that deuterium oxide 

estimates are the optimal method of assessing actual body fat (r = 0.86 to 0.98) (Ferjak et al., 

2017). The Westervelt equation is used to calculate percent BF is as follows: BF = 8.64 + 
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4.70×RF (cm). Assuming that the horse measured had no rump fat, this equation would still 

estimate the total BF of the animal at 8.64%. Thus, this equation can present a large source of 

error by estimating the horse’s total BF based on one measured location, and may explain our 

low correlation value between the two variables calculating percent BF.  
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CHAPTER V 

SUMMARY 

 In summary, diet fortification has the potential to provide topline development in the 

horse. This project investigated tissue change through objective means in the mature sedentary 

horse and determined the region over the 17th/18th ribs was the most sensitive to lean muscle and 

fat development. In the current study, analysis of BF using a D2O infusion allowed for a more 

precise quantification of the change in morphometric values throughout the trial. Supplying 

dietary prebiotics and probiotics when feeding low-quality forages did not significantly improve 

hindgut digestibility or nutrient utilization in the horses. 
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