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ABSTRACT 

 
In treating spinal cord injury (SCI), it is important to identify agents that could 

diminish the inflammatory response that follows primary injury. Human and rodent SCI 

research shows an increase in neutrophils following injury, yet, little is known about 

cellular activation post-injury. This study was implemented in dogs with naturally-

occurring SCI resulting from intervertebral disk herniation (IVDH) to characterize the post-

injury inflammatory response. Canine SCI parallels human SCI with respect to identifiable 

contusion with sustained compression; treatment modalities; and histopathic, molecular 

and magnetic resonance lesion phenotype. However, unlike most human SCI, dogs with 

IVDH-SCI do not have poly-trauma masking inflammatory responses to the injured cord. 

Cerebrospinal fluid (CSF), blood, and spinal cord tissue were characterized in dogs with 

SCI and in healthy controls recruited from Texas A&M University. Metabolite 

concentrations from CSF were measured using enzyme-linked immunosorbent assays 

and tandem mass spectrometry. Isolated peripheral blood neutrophil activity and 

expression of L-selectin were evaluated with flow cytometric analysis. Neutrophils were 

identified in damaged spinal cords of dogs with severe IVDH. The inflammatory response 

in dogs with SCI is increased in CSF metabolite profiles. Neutrophil activity in circulation 

is prolonged, and there is evidence to suggest a canine specific expression of neutrophil 

L-selectin.   This is the first observation of neutrophils in the damaged canine spinal cord. 

This study demonstrates changes in the peripheral immune cells in an animal model that 

closely resembles human pathogenesis of neuroinflammation after spinal cord injury.  
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NOMENCLATURE 
 
AA   Arachidonic acid 

ASIA   American Spinal Cord Association Impairment Score  

BBB   Blood-brain barrier 

BBB score  Basso, Bresnahan, Beattie 

CD11b  Compliment domain 11b 

CD62L  Compliment domain 62L, also L-selectin 

CNS   Central nervous system 

COX   Cyclooxygenase 

CSF   Cerebrospinal fluid 

CT   Computed tomography 

DAMPs  Damage associated molecular patterns 

DHA   Docosahexaenoic acid 

DHR 123  Dihydrorhodamine 123 

DiHDPE  Dihydroxydocosapentaenoic acid 

ECM   Extracellular matrix 

ELISA   Enzyme-linked immunosorbent assay 

EPAs    Eicosapentaenoic acids 

FBS   Fetal bovine serum 

GCs   Glucocorticoids 

HpDHA  Hydroperoxyl docosahexanoic acid 

IL-6   Interleukin 6 

IL-8   Interleukin 8 
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IVDH   Intervertebral disc herniation 

LOX   Lipoxygenase 

LPS   Lipopolysaccharide  

LTB4   Leukotriene B4 

LTs   Leukotrienes 

LTC4   Leukotriene C4 

MFI   Median fluorescent intensity 

MFS   Modified Frankel score 

MMPs   Matrix metalloproteinases  

MMP-9  Matrix metalloproteinase-9 

MPO    Myeloperoxidase 

MR    Magnetic resonance imaging 

MS/MS  Tandem mass spectrometry  

NETs   Neutrophil extracellular traps 

NE   Neutrophil elastase  

NSAIDs  Non-steroidal anti-inflammatory drugs 

OBA   Oxidative burst activity  

PAMPs  Pathogen associated molecular patterns 

PBS   Phosphate buffered saline 

PG   Prostaglandins 

PGE2   Prostaglandin E2 

PLA2    Lipoprotein-associated phospholipase A2 

PNS   Peripheral nervous system 
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ROS    Reactive Oxygen Species 

SCI   Spinal cord injury 

TNCC   Total nucleated cell count 

TNF   Tumor necrosis factor 

TLRs   Toll-like receptors 

TSCIS   Texas Spinal Cord Injury Score 

TXB2   Thromboxane B2 

7AAD   7-Aminoactinmycin 
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1. INTRODUCTION 

 

Traumatic spinal cord injury (SCI) occurs suddenly and affects the lives of healthy 

people at a rate of 10,000 new injuries per year across the world [1]. Spinal cord injury 

results from a traumatic blow to the spine causing contusion, compression, or laceration, 

that leaves patients partially or completely paralyzed below the level of injured cord. In 

North America, SCI is primarily caused by a motor vehicular accident [1]. The most visible 

disability of SCI patients in the eyes of the public is the loss of motor function requiring 

the use of a wheelchair.  However, in addition to a damaged central nervous system 

(CNS), human patients with SCI often experience a range of other medical problems 

including but not limited to blood pressure abnormalities, urinary tract infections, and skin 

infections [2]. Indeed, complications affecting bowel and bladder functions along with 

impotence are actually more concerning issues for human patients with spinal cord injury, 

than regaining locomotor ability. Complications from SCI can lead to re-hospitalizations, 

and in most patients can cost upwards of $300,000 over a lifetime, not including outpatient 

and long-term care [3]. Besides the additional lifetime costs for the patient, societies as a 

whole lose valuable members of the workforce due to inability of most SCI patients to 

return to work. Some patients have a hard time coping and integrating back into their 

communities they were once part of [4].  There is a higher incidence of depression among 

SCI patients when compared to the general population [5]. Despite recent advances in 

stem cell biology and cutting-edge electrical stimulation technologies, there is still no cure 

for spinal cord injury [6-8].  
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To understand how a cure for spinal cord injury is imagined and implemented, one 

needs to first understand the factors that cause and propagate the injury.  Injury to the 

spinal cord is divided into primary and secondary processes. Primary injury is the actual 

mechanical damage to the spinal cord, and may include compression, contusion, and 

laceration. Surgical intervention can address the compressive facets of primary injury 

(contusion and laceration cannot be treated surgically).  However, primary injury is not 

the only complication to human patients suffering from spinal cord damage. After the 

sudden onset of the primary injury, the body responds by launching secondary injury 

cascades, including processes such as inflammation, oxidative stress, and excitotoxicity.   

There has been a great deal of focus on the inflammatory aspects of secondary 

injury. A large portion of neuroinflammation research has focused on macrophage 

activation because activated macrophages can act as either pro-inflammatory agonists, 

or anti-inflammatory cells promoting growth and repair [9]. Although much is known about 

the initiation of secondary injury, much less is knowns about when macrophages and 

other cells switch from a pro-inflammatory to the growth promoting anti-inflammatory 

state. Therefore, this work aims to answer the central question: when is the appropriate 

time to administer a therapeutic that will drive the switch of the inflammatory cascade from 

the damaging pro-inflammatory state, to a growth promoting anti-inflammatory 

environment? To answer this question, the focus of this work is on a key component of 

the neuroinflammation cascade: the infiltrating neutrophil, the first cell from circulation to 

enter into the spinal cord after injury. In order to characterize neutrophil contribution to 

SCI, a naturally-occurring canine of spinal cord injury was utilized.  
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1.1 Neuroinflammation  

Neuroinflammation is different from peripheral inflammation because an extensive 

barrier exists between the normal blood flow circulation where cells from the immune 

system reside, and the brain and spinal cord of the CNS. The blood-brain-barrier is 

composed of endothelial cells with a series of tight junctions set in place to regulate what 

goes in and out of the central nervous system during normal homeostasis and also after 

injury. To solve the “problem” of neuroinflammation, one first as to consider the timing of 

inflammatory events in CNS damage in order to see at what point neurons are not able 

to grow or repair. Generally, the sequences of events are known following SCI, however, 

the timing and overlap between events remains a mystery. There is still debate about 

whether the immune response is helpful [10] or harmful in model systems of SCI [11]. 

Furthermore, some immune responses may be helpful in the early stages of 

neuroinflammation, but the same responses may be harmful at a later time point. 

Therefore, characterizing the immune response timing in SCI is important in treatments 

focused on mitigating neuroinflammation in SCI. Questions still remain about why the 

natural inflammatory response to SCI is insufficient to promote a significant amount of 

recovery over the lifetime of SCI patients.  

 

1.2 Macrophages as a focus of neuroinflammation research 

To date, treatments for mitigating spinal cord damage and secondary inflammation 

have been focused on controlling macrophage polarization. Activated macrophages 

infiltrate the CNS after neutrophils and hit peak trafficking around 3 days post-injury, but 

can remain in the tissue for months or years following spinal cord injury [12]. Macrophages 
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in SCI and other diseases can exist as either proinflammatory or anti-inflammatory 

polarized states, or anywhere along a continuum in between. This is a problem because 

M1 macrophages (proinflammatory) are the dominant cell type following SCI and remain 

polarized in M1 rather than resolving to an anti-inflammatory M2 state. Besides being 

unable to drive M1-M2 macrophage polarization, another problem to consider is that 

macrophages are derived from both microglia and peripheral circulating monocytes. 

These activated or polarized macrophages are referred to as microglia or macrophages 

because they are morphologically identical as well as express the same intracellular and 

extracellular markers [13, 14]. In vitro, M2 macrophages stimulate axon regeneration, but 

in vivo environmental factors drive M2 macrophages back into an M1 phenotype [15]. The 

contents of phagocytosed material can drive the polarization of macrophages [16]. 

Neutrophils and red blood cells are phagocytosed by macrophages. Therefore, it is 

possible that neutrophils can be a useful therapeutic target to help drive the macrophage 

polarization towards axon regrowth. Although, timing of when the immune response 

should be driven to an anti-inflammatory state and the role of neutrophils in this switch is 

still poorly understood.  

 

1.3 Neutrophils as first responders to injury and infection 

Neutrophils are the most common white blood cells found in peripheral circulation 

under normal physiological conditions. In humans and in dogs, neutrophil make up 50-

70% of the total leukocytes found in circulation. When pathogens or traumatic injury are 

present in the tissues, neutrophils respond to distress signals, transmigrate through the 
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endothelium (extravasation), and release their granular contents to break down damaged 

cells and debris.  

Neutrophil generation and function during normal physiological conditions and in 

response to bacterial infection have been well established [17]. Neutrophils are produced 

in the bone marrow and are typically found only in blood circulation. If no injury or 

pathogens are encountered, then neutrophils are transported back to the bone marrow 

or to the liver to be digested [18, 19].  Neutrophils have constitutive expression of 

chemokine receptors and produce proteases that are stored in three different kinds of 

granules: azurophilic, specific, and gelatinase. The most commonly mentioned is 

myeloperoxidase (MPO), which catabolizes the production of reactive oxygen species 

(ROS), which will be discussed in the following section.  

Neutrophils have the shortest half-life of all leukocytes, but can live longer if 

activated by certain pathological or injury conditions [20]. When neutrophils encounter 

distress signals in the blood stream, they activate, extravasate through the endothelium, 

and ultimately live longer than when they are not activated. Once out of the blood stream, 

activated neutrophils engulf and breakdown bacteria and also can produce neutrophil 

extracellular traps (NETs). More specifically, NETs are composed of DNA nucleotide 

strands peppered with proteases, which can break down bacteria extracellularly.  

Neutrophils respond similarly to injury as they do to infection by releasing granular 

contents to break down cellular debris. This will be discussed in further detail in following 

sections and throughout this dissertation. However, activated neutrophils use of NETs in 

response to injury is poorly understood. Furthermore, prostaglandin E2 (PGE2) is 

elevated soon after traumatic injury [21-23], and is a well-known inhibitor of neutrophil 



 

 6 

ROS production [24-26].  More recently, PGE2 has been shown to affect the use of NETs 

(NETosis) by neutrophils [27, 28] and will also inhibit release of a potent neutrophil 

chemoattractant, leukotriene B4 (LTB4) [29].  Inhibition of neutrophil activation of disease 

and injury in which PGE2 is elevated complicates neuroinflammation characterization 

projects because one would need multiple groups with both inhibited and non-inhibition 

neutrophil activation to elucidate the role of neutrophil activation.  

Questions remain about the role of neutrophils in bacterial infection and in 

response to injury. Their role in wound healing is shown to be necessary [10]. Depletion 

of monocytes results in the proliferation of neutrophils [30]. The role of this work is to 

characterize the role of necessary yet poorly understood neutrophils responding to a 

specific central nervous system injury, by applying our knowledge of the benefits of 

neutrophils in their classical function of bacterial infection in peripheral infection or injury.  

 

1.4 Neutrophil granular contents 

Neutrophil granule contents contribute to antimicrobial functions, 

immunomodulation, extracellular matrix remodeling, and cell death (for review of 

neutrophil granules [31-33]). Neutrophil granules can be contained in one of 3 different 

types of vesicles: primary, secondary, and tertiary, which are named based on how early 

in neutrophil development the granules are produced. Primary (azurophilic) granules are 

produced by neutrophils during the promyelocyte development stage and are composed 

primarily of MPO and serine proteases, such as neutrophil elastase (NE). Secondary 

(specific) granules contain lactoferrin and neutrophil gelatinase associated lipocalin and 

are developed in the myelocyte stage which follows the promyelocyte stage. Granules 
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that are developed in full matured neutrophils are called tertiary (gelatinase) granules and 

contain primarily matrix metalloproteinases (MMPs).  

A few of the proteases contained in neutrophilic granules have been reported to 

be involved in SCI inflammation: MPO, neutrophil elastase, and matrix metalloproteases 

(MMPs) or gelatinase [34]. Neutrophil elastase is a serine proteinase that neutrophils 

release during transmigration through the blood brain barrier. Inhibition of neutrophil 

elastase after SCI has shown decreased neutrophil infiltration, vascular leakage and 

increased endothelial cell preservation [35, 36]. MPO) catalyzes the production of highly 

reactive and cytotoxic hypochlorous acid from hydrogen peroxide and chloride anions. 

When neutrophil infiltration is blocked following SCI, decreases in MPO and reaction 

oxygen species have been reported [37]. There are several isoforms of MMPs. MMP-9 

and MMP-3 have been implicated in breakdown of the basal lamina surrounding the 

endothelium of the BBB and activating macrophages [11, 38, 39]. Neutrophilic granular 

contents are contained in sealed granules and are not released until the cell has been 

activated by cytokines or other signals.  

 

1.5 Neutrophils under normal physiological conditions 

Under normal physiological conditions, neutrophils can be found in bone marrow, 

spleen, liver, and lung [40]. Like other granulocytes (basophils and eosinophils), 

neutrophils develop in the bone marrow by a process called granulopoiesis.  It takes 10-

14 days to produce mature neutrophils in circulation and this is probably the reason why 

some studies show a spike in neutrophil infiltration 2 weeks post traumatic injury [41]. 

Neutrophils exist in four different compartments: in the bone marrow during maturation, 
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in the bone marrow matured and in storage, in circulation, and migrated to tissues or 

aggregating on the endothelium surface. Neutrophils have a half-life in circulation of 1.5 

hours in mice, and 8 hours in humans [42, 43]. During inflammation, their circulation 

lifespan increases and they can be primed at sites of injury to persist [40, 44].  Neutrophils 

in circulation have oxidative burst activity (OBA) profiles in humans following both 

traumatic brain injury as well as spinal cord injury [45, 46].  

 Neutrophils, like many cells in the body have receptors on their surface used to 

recognize foreign bodies like bacteria and even extracellular contents that are typically 

only found in intact and healthy cells. These receptors are called Toll-like receptors 

(TLRs), which are transmembrane proteins that are homologs for the drosophila Toll 

protein that mediates antimicrobial responses in that organism. Their extracellular portion 

is rich with leucine and cystine motifs that are involved in ligand binding, while their 

intracellular portion is essential for signaling [47]. Toll-like receptors are constitutively 

expressed on the surface of neutrophils and depending on what type of TLR, can 

recognize many pathogens including but not limited to: double stranded RNA seen in 

viruses, lipopolysaccharide (LPS) a major component of bacterial walls, extracellular 

DNA, and heat-shock proteins normally secured inside healthy cells. These types of 

ligands recognized by TLRs are called pathogen molecular patterns and damage 

molecular patterns (PAMPs and DAMPs, respectively). Molecular patterns expressed by 

damaged or dying cells will be covered later in this section in regards to neutrophil 

response to spinal cord injury.  

 During granulopoesis, the first type of granule formed in the developing neutrophil 

is the primary or azurophilic granule which has the ability to produce reactive oxygen 
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species. Oxidative burst is so named because neutrophils utilize oxidative respiration 

chain reaction to produce the ROS needed to breakdown engulfed bacteria or cell debris 

[48].  Activated neutrophils are those that are capable of releasing their reactive oxygen 

species and oxidative enzymes from their granules. Oxidative burst activity  in neutrophils 

is when in response to signals, neutrophils move all their granular contents and reactive 

oxygen species to the surface of their cells in preparation for tissue and cell degradation 

[49]. Granular contents, enzymes that are able to safely produce reactive oxygen species 

are contained in primary or azurophilic granules. This means that ROS production is the 

very first function neutrophils are able to perform in their mature state. Breakdown of 

bacteria and cellular debris is covered in following sections.  

   

1.6 Neutrophil extravasation through the blood brain barrier  

Despite the extra protections to keep the central nervous system separated from 

normal circulations, neutrophils can exit the blood vessels and traverse the blood-brain 

barrier (BBB) to enter the CNS. So far, neutrophil existence in 3 of 4 compartments have 

been discussed: maturation and storage in the bone marrow, and neutrophils in 

circulation. The forth compartment discussed in this section will cover migration of 

neutrophils out of the blood stream.  

The BBB is specialized endothelium in the microvessels that form the walls of 

capillaries in the brain. The endothelial cells of the BBB are very similar to endothelium 

of other tissues, except that they have more complex tight junctions, which allow for a 

more restricted regulation of molecules and cells entering the CNS. The BBB functions to 

regulate ions, neurotransmitters, macromolecules, and neurotoxins from getting into the 
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brain [50-52].  Under normal physiological conditions, immune cells can enter the brain 

through the BBB and facilitate neurogenesis in the hippocampus [53].  

Some cytokines, like tumor necrosis factor (TNF), Interleukin-6 (IL-6), and IL-1β, 

can impair BBB function by opening tight junctions which leads to increased neutrophil 

transmigration [54-56]. Disorganization of VE-cadherin and β-catenin molecules of the 

tight junctions is part of the neutrophil transmigration process [57]. There is a gate function 

by T cells to allow for macrophages to enter through the choroid plexus following spinal 

cord injury in mice [58].  

Endothelial cells of the BBB up regulate expression of adhesion molecules in 

response to astrocytic cytokine secretion of TNF and IL-1 [59-61]. P-selectin and 

Intracellular adhesion molecule-1 are both transmembrane proteins involved in arresting 

leukocytes in the blood stream to facilitate transmigration in spinal cord injury in mice [62]. 

Junctional adhesion molecules on endothelial cells are responsible for the final required 

step of transmigration of neutrophils through the BBB and into the injured tissue [59, 63, 

64]. Also affected by TNF cytokine production is the glycocalyx, a tight meshwork of 

charged glycosaminoglycans found on the luminal surface of endothelial cells, which is 

diminished to allow for increased adhesion of neutrophils to the endothelial wall [65].  

The neurovascular unit is comprised of the endothelium, astrocytes, pericytes, 

neurons and the extra cellular matrix surrounding these cells. Pericytes, along with other 

cells in the neurovascular unit, regulate the recruitment of more neutrophils to the site of 

injury [66, 67]. Pericytes are cells not dissimilar from astrocytes, with their end feet closely 

associated with microvasculature in the CNS and both cell types express neuron-glial 

antigen 2, which makes their cellular boarders difficult to differentiate in 
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immunohistochemistry [68, 69]. After spinal cord injury, pericytes are thought to control 

capillary blood flow by squeezing the diameter of the vessel [70], which can affect the 

tethering and transmigration of neutrophils through the microvasculature. The BBB has 

close cell-cell interactions with astrocyte end feet and pericytes in the CNS that are 

thought to drive the more restrictive nature of the endothelium during neuronal 

development [71]. 

It is clear that neutrophils have the ability to enter the damaged spinal cord. What 

remains to be investigated is if neutrophils are entering the damaged cord because there 

is a physical breakdown of the BBB, or rather, because there is a physical breach in blood 

vessel walls along with primary injury. The purpose of this work is to contribute to the 

knowledge of whether or not neutrophils are responding to distress signals sent from the 

injury site, or if they are just passively arriving in the damaged spinal cord along with 

hemorrhagic swelling associated with the injury in experimental models of SCI and 

naturally-occurring injury.  

 

1.7 Role of neutrophils in neuroinflammation following spinal cord injury   

Neutrophils are the first responders from peripheral circulation to respond to 

central nervous system (CNS) injury as an important part of the innate inflammatory 

response. In the case of SCI,  neutrophils respond within hours of initial trauma and are 

at peak trafficking by 24 hours post injury [34].  Most of the effector molecules contained 

in neutrophilic granules are proteases and aid in degrading extracellular components, 

which can be damaging to recovery from SCI [38]. However, neutrophils are also reported 

to have a beneficial role in wound healing [10, 72], and are necessary for clearance of 
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debris in peripheral nerve injury [30]. Therefore, blocking transmigration of neutrophils 

into the injured spinal cord to mitigate neuroinflammation has not been proven to be an 

effective treatment for spinal cord injury.  

Neutrophil function in response to SCI is poorly understood. Cytokines and cell 

adhesion molecules identified in experimental SCI rodent models as key mediators in 

neuroinflammation have been corroborated in human studies [73, 74]. Experimental 

mouse models utilizing specific gene knockouts prior to induced injury in order to 

characterize neutrophil infiltration are particularly helpful in elucidating neutrophil function 

[55, 62]. Yet, there are many differences in cell behavior and injury onset between 

humans with spontaneous injury and laboratory animals with induced SCI. 

Initiating the peripheral inflammatory response to SCI is a multi-step process that 

involves the initial damage alert signals produced by dead or dying cells being released 

to the extracellular space, followed by signals directly recruiting leukocytes to the CNS. 

Concurrently, chemokines are produced that alter the tight junctions of the blood brain 

barrier and increase expression of leukocyte adhesion molecules on the endothelial 

luminal surface. Once these events have occurred, leukocytes can enter the CNS and 

the damaged cord. There are several signal cascade events that occur within the 

damaged cord immediately following spinal cord injury that propagate before signals 

reach leukocytes in peripheral circulation.  

Damage to cells from SCI causes cellular components normally contained within 

cells to be suddenly exposed in the extra cellular matrix (ECM). These components, for 

example, free-floating ATP and non-nuclear DNA are called DAMPs, which activate TLRs 

on resident CNS cells. Resident cells propagate intracellular signals via activation of their 
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toll-like receptors, which activates the nuclear factor-κB pathway, and subsequently up-

regulates production and release of cytokines and chemokines in the damaged cord. 

From initial injury, damaged cells release DAMPs that activate astrocytes and microglia 

to produce cytokines and chemokines.  

In the context of acute spinal cord injury, cytokines and chemokines are 

responsible for alerting immune cells that there is an injury, resulting in the recruitment of 

proinflammatory cells. There are a vast array of cytokines and chemokines that are 

elevated in acute SCI and several are directly involved in recruiting immune cells to the 

site of injury. These cytokines and chemokines can be found in the cerebrospinal fluid 

(CSF) that bathes the brain and spinal cord. Damage signals are released by resident 

CNS cells into the CSF.  Astrocyte production of CCL-2 (MCP-1) stimulates recruitment 

of neutrophils and monocytes to the site of injury [75]. Interleukin-8 (CXCL-8), produced 

by microglia in vitro in response to TLR signaling [76], is elevated less than 12 hours after 

injury in homogenized rat spinal cord [56], and in dog spinal cord following intervertebral 

disk herniation [77, 78]. CXCL-8 is also elevated in humans and dog CSF 48 hours after 

injury. Studies utilizing clinical patients, humans and dogs, have longer post-injury tissue 

sampling times than in experimental SCI models [78, 79], which further separates 

comparisons made between clinical and experimental injuries.  

Other cytokines up-regulated in the first 24 hours after SCI, such as TNF, 

Interleukin-6 (IL-6), and IL-1β, are not directly related to leukocyte chemoattraction, but 

rather, can impair BBB by opening tight junctions and therefore contribute to leukocyte 

recruitment indirectly [54-56]. IL-6 enhances expression of TNF, which reduces the 

glycocalyx in the blood vessel lumen [80], and expression of  IL-1β, which is required for 
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neutrophil transmigration in peripheral bacterial infection [81]. Disorganization of VE-

cadherin and β-catenin molecules of the tight junctions is part of the neutrophil 

transmigration process [57].  

Along with signaling cascades targeting vascular permeabilization, endothelial 

cells of the BBB also up-regulate expression of adhesion molecules in response to 

astrocytic cytokine secretion of TNF and IL-1 [59-61]. P-selectin and Intracellular 

adhesion molecule-1 (ICAM-1) are both transmembrane proteins involved in arresting 

leukocytes in the blood stream to facilitate transmigration in spinal cord injury in mice [62]. 

Junctional adhesion molecules on endothelial cells are responsible for the final required 

step of transmigration of neutrophils through the BBB and into the injured tissue [59, 63, 

64].  

These actions by cytokines and chemokines to both actively recruit leukocytes to 

the site of CNS injury, as well as providing an opening of the BBB, allows for cells from 

the periphery, such as neutrophils and monocyte derived macrophages, to enter the 

injured cord.  

Once in the damaged CNS, neutrophils have always been thought to be harmful 

for recovery because they release many toxic factors. However, their presence in the 

injured cord may also help control inflammatory responses once thought to be a passive 

process. Little is known about what drives the inflammatory response in CNS injury, and 

targeting neutrophils once in the injured cord may prove to be the key to driving the anti-

inflammatory response to promote tissue repair. Activated macrophages are present in 

the damaged cord of dogs with SCI, but neutrophil infiltration was not documented in 

these experiments [77, 82].  
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1.8 Neutrophil communication with macrophages in the injured cord  

The recruitment process of neutrophils to the injured spinal cord relies heavily on 

CNS immune mediators, resident cells that interact with the injured environment and 

propagate the immune response. The two main CNS immune mediators that interact with 

neutrophils are astrocytes and microglia/macrophages that produce cytokines to recruit 

more neutrophils [83, 84].  

The neurovascular unit is comprised of the endothelium, astrocytes, pericytes, 

neurons and the extra cellular matrix surrounding these cells. Pericytes, along with other 

cells in the neurovascular unit, regulate the recruitment of more neutrophils to the site of 

injury [66, 67].  

 Neutrophils interact with macrophages within the CNS by way of phagocytosis 

after their function of removing and degrading damaged cells. When neutrophils are 

phagocytosed, they alter the polarized state of the macrophage, shifting it from an M2 

back to the proinflammatory M1 state. Whether this happens because neutrophils 

intentionally drive the environment to their desired state, or because the macrophages 

are responding to the reactive contents in the neutrophilic granules remains unclear [85, 

86].  

The contents of phagocytosed material can drive the polarization of macrophages 

[16]. Following CNS injury, neutrophils and red blood cells are phagocytosed by 

macrophages. Therefore, it is possible that neutrophils can be a useful therapeutic target 

to help drive the macrophage polarization towards axon regrowth.  
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1.9 Cerebrospinal fluid importance in SCI 

Along with the vertebral column and the meninges, the CSF functions to protect 

the brain and spinal cord by cushioning the CNS tissue in fluid. CSF is produced by 

specialized ependymal cells of the choroid plexus that line the ventricles in the brain. The 

CSF flows through cavities of the brain, ventricles, and central canal of the spinal cord, 

as well as around the outside of the brain and spinal in between the pia mater and dura 

mater of the meninges. The CSF provides nutrients via the blood vasculature [50, 51]. 

Because the CSF bathes the spinal cord, the CSF can be used as a representative tissue 

to provide an idea of the condition of the spinal cord during homeostasis, injury, or 

infection. CSF is also an ideal space for drug delivery, because the continuous flow can 

be achieved by drug delivery with lumbar puncture or delivery into the cisternal magna 

which is a routine procedure in both humans and dogs [73, 87, 88]. Analysis of the CSF 

can be used for biomarker SCI research and used to infuse treatments [52, 89, 90].  

During injury, breakdown of the BBB can occur, allowing signals to disperse from 

the damaged CNS parenchyma out to the blood supply, by way of the cerebrospinal fluid. 

Therefore, shortly following injury, the CSF is suffused with damage associated molecular 

patterns (DAMPs) and leukocyte chemoattractant molecules [91-93].  These DAMPs can 

also travel from the CSF, through the blood-brain barrier, and into the serum [94].  

 The CSF in normal physiological conditions allows for transport nutrients to CNS 

tissue from the blood. However, there is little nutrient that is normally part of the CSF. The 

blood supply to the central nervous system is tightly regulated by way of extra tight 

junctions between endothelial cells in the BBB, for review see [95]).  
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 Neutrophils can breach the BBB and enter the CSF following injury [96]. Their 

presence may contribute to the propagation of signaling by DAMPs and other cytokines 

shown to be elevated in human and dog CSF [79, 97, 98]. Sampling of the CSF in large 

animals (dogs) and humans can occur without sacrificing the individual  [23, 78, 87, 96, 

99, 100]. In other smaller species, such as mice and rats, the CSF compartment only 

contains small volumes and so samples have to be pooled together [101].  

 The cerebrospinal fluid is an important tissue for identifying damage signals 

coming from the damaged spinal cord. It is also an important conduit for possible drug 

delivery or retrieval of neutrophils that have already traversed the blood-brain barrier. The 

CSF in large animals and in humans can be collected with little to no harm being inflicted 

on the individual and is often routine practice in neurology clinical settings. Because of 

this, the CSF was an important part of this work and will be discussed further in this body 

of work in later sections.  

 

1.10 Arachidonic acid metabolism after spinal cord injury 

Arachidonic acid (AA) and docosahexaenoic acid (DHA) are omega-6 and omega-

3 polyunsaturated fatty acids, respectively, that are in high concentrations in cell 

membranes. High concentrations of both AA and DHA are found in adult normal human 

brain [102], and are important in early human infant development [103, 104]. Leukotrienes 

(LTs) and prostaglandins (PGs) are eicosanoids derived from AA, while eicosanoids 

derived from DHA metabolism are eicosapentaenoic acids (EPAs), 

dihydroxydocosapentaenoic acids (DiHDPEs), hydroperoxyl docosahexanoic acids 

(HpDHAs), and others. Generally speaking, eicosanoids derived from AA have differing 
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properties from eicosanoids derived from DHA [105]. For example, prostaglandin E2, 

derived from AA and regulated by cyclooxygenase enzymes (COX), is known to induce 

fever and inhibit neutrophil activity. Paradoxically, 17-hydroperoxydocosahexanoic acid 

(17s-HpDHA) has anti-inflammatory affects in the CNS [106, 107].  Levels of AA and DHA 

can be influenced by diet, and are in high concentrations in fish oil, which has been used 

as a dietary supplement in several diseases including spinal cord injury [108-111].  

 

1.11 Neutrophils in damaged spinal cord tissue  

Once in the tissue, neutrophils function to breakdown damaged and dying cells by 

releasing their neutrophilic granular proteases. Cellular morphology and the presence of 

MPO in primary neutrophilic granules is one way to identify neutrophils in the injured 

spinal cord [112-114]. Although neutrophils have a short lifespan of less than 10 hours, 

their longevity can increase during the inflammatory response [40, 44]. Within the tissue, 

neutrophils can release extracellular traps (NETs). NETs are composed of unraveled 

neutrophilic DNA strands, antimicrobial histones, and proteases, such as MPO and 

neutrophil elastase [115]. NETs have been studied in regards to immobilizing and 

destroying cancer cells or bacteria [116, 117], but have yet to be studied in the context of 

SCI. It is possible that NET production in spinal cord injury is a transient process difficult 

to visualize because prolonged NET production leads to neutrophil lysis [116], and 

neutrophils may be being phagocytosed by macrophages shortly after neutrophils release 

NETs. Because they are phagocytosed by macrophages, neutrophils help drive the 

M1/M2 polarization [118].  They may also be inhibited from producing NETs. 
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Questions remain about neutrophil function following SCI. Perhaps these cells play 

more of a role in driving the inflammatory response than previous studies suggest, by 

bringing in their potent granular contents, despite having a short half-life under normal 

physiological conditions.  

 

1.12 The underappreciated role of neutrophils in SCI  

There are two general ways to approach treatments for spinal cord injury. Damage 

to the spinal cord is marked by an inability of damaged nerve axons to regenerate below 

the level of injury, resulting in glial scarring and very little, if any recovery of locomotion 

or sensation. Therefore, one way is to explore the intrinsic mechanisms that control 

neuron growth or regrowth within the nervous system cells themselves. In this way, 

scientists can either target specific pathways within the damaged neuron and force it to 

grow after SCI when naturally it would not, or, replace the damaged cells with neuron 

stem cells that will develop into new neurons.  

A second way to approach treatments for spinal cord injury is to focus on the 

environment surrounding the damaged neurons. In this approach, targets involved in 

some way that alters the physical and chemical properties of the extra cellular matrix 

surrounding the damaged neurons. In theory, if the reason why damaged neurons will not 

regenerate following spinal cord injury is an intrinsic factor malfunction, then implanting 

stem cells into the damage cord should work. To date, there has not been a successful 

treatment with stem cell implantations following SCI [8]. Furthermore, if neurons in the 

central nervous system were unable to regenerate on their own, then the question arises 

on how they are able to develop during normal embryological development. Also, 
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peripheral nerves can regenerate naturally after injury. How the extrinsic factors 

regulating cells or the extra cellular matrix components surrounding damaged neurons 

are altered to promote neuron growth or regrowth is important for elucidating what is 

targeted in SCI therapeutic interventions. If we can better understand the processes 

involved in neuroinflammation, then we can provide a target window of opportunity and 

target molecule or cell that regulates the area surrounding damaged nerves.  

 

1.13 Models of spinal cord injury and neutrophils    

 For more than 30 years of spinal cord injury research, rodents have evolved into 

the standard injury model for the development of novel therapeutics [119, 120]. Indeed, 

nearly everything about rodents can be standardized. Housing, light cycles, and diet can 

be kept consistent throughout an entire experiment. Numbers of animals in each group 

can be as small or as large as is appropriate for each study. Induced injury, with the help 

of specialized equipment, can be reliably reproduced in multiple animals and be 

incomplete or complete, and along different levels of the spinal cord. This general 

standardization among experiments in rodents allows for optimal circumstances for drug 

efficacy to be achieved [121, 122]. Much of what we know of regulation of nerve growth, 

scar formation, and inflammation has come from the use of rodents in SCI [123].  

 Rats in particular are the primary model for SCI [124, 125]. Both rats and mince 

qualify as standardized and less costly than larger animal models, but mice and rats differ 

in regards to neuropathology and recovery from SCI [126, 127]. Complete transection of 

the spinal cord can be studied in rats, but generally the two main injuries that are used on 

rats in SCI research are compression or contusion injuries.  In humans, often times a 
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force of impact can cause fractures of the vertebrae that will cause an impact injury to the 

spinal cord. In an experimental setting, the vertebral laminae are removed to expose the 

cord for application of induced injury. Compression injures can be induced by clamping 

the spinal cord in clips or forceps, or by placing a tiny balloon in the vertebral canal and 

gradually increasing the volume [128, 129]. Contusion injures model well to human impact 

injuries and are performed using a weight-drop device at different weights and heights 

[130, 131]. Decompression of the spinal cord can be achieved by removing the force 

applied by these devices, which improves recovery. Decompression is the only practice 

included in the standard of care for human SCI [132].  

 The universal measure for rodents with induced SCI are scored on the Basso, 

Bresnahan and Beattie (BBB score) [133]. This outcome measurement scale, which 

ranges from 0-21, was created to include measurements of a broader range of spinal cord 

damage and expand the distribution of behavioral scores [134]. The walking ability of  rats 

scored with the BBB score is comparable to outcome measurements in the human 

American Spinal Injury Association impairment score (ASIA) [130]. Rodent locomotor 

abilities can also be assessed by Catwalk technology, where the animals can walk on a 

transparent surface and be video recorded from below [135]. Interestingly, small 

increases in the percent of spared tissue have significant effects on basic locomotor 

recovery and changes in BBB scores, whereas on the high end of the BBB scale even 

animals with anywhere from 45-90% tissue sparing are hardly distinguishable behavior 

wise [133]. This discrepancy between locomotor scoring and recovery at the two ends of 

the BBB score can be problematic for designing therapeutics or testing pharmacological 

interventions in rodent models of SCI.   
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The acute immune response is a complicated multi-pathway process that is still 

poorly understood in the context of spinal cord injury. Cytokines and cell adhesion 

molecules identified in experimental SCI models as key mediators in neuroinflammation 

have been corroborated in human studies [73, 74]. Experimental models that knock out 

genes prior to induced injury in order to characterize neutrophil infiltration are particularly 

helpful in elucidating neutrophil function [55, 62]. Yet, there are many differences in cell 

behavior and injury onset between humans with spontaneous injury and laboratory 

animals with induced SCI.  

The most salient advantage to working with dogs as a translation model of disease 

is the fact that dogs are clinical patients with spontaneous injuries. Dogs are used in 

cancer research because they develop tumors spontaneously [136, 137]. Dogs can also 

suffer spontaneous spinal cord injury, often secondary to intervertebral disk herniation 

[138-141]. Like humans, there is a notable increases of neutrophils in the CSF of dogs 

following SCI [96]. Also in the CSF, acute phase proteins including CXCL8 [78], and an 

arachidonic acid pathway metabolite, prostaglandin E2 [23] have been shown to be 

elevated in dogs after SCI. In normal circulation, dogs have similar neutrophil percentages 

to humans [142]. Also, like humans, dog neutrophils express LFA-1 and can develop 

genetic neutrophil infiltrating abnormalities when the LFA-1 complex is mutated [143]. 

Activated macrophages are present in dogs with SCI, but neutrophil infiltration was not 

documented in these experiments [77, 82]. Myelomalacia is a condition occurring in a 

small population of dogs with severe spinal cord injury and is characterized by 

hemorrhagic necrosis of spinal cord tissue, and massive infiltration of neutrophils [144]. 

This progressive oxidative stress is an extreme case of neuroinflammation following 



 

 23 

spinal cord injury where the usual defense are inadequate for any kind of recovery, and 

may be a useful example of secondary injury at the far end of the spectrum [145]. 

 

1.14 Aims of the study    

 The overarching goal of this study was to characterize the inflammatory response, 

more specifically, neutrophil activity, following naturally occurring spinal cord injury in 

dogs. The future of testing therapeutic interventions in this large animal model that closely 

resembles human injury is an important translational step between experimental rodent 

injury and large-scale human clinical trials. This work will contribute to the field of SCI 

research by providing key information on the cerebrospinal fluid profiles and behavior of 

neutrophils in dogs with spinal cord injury
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2. DAMAGE SIGNALS PROPOGATED THROUGH CEREBROSPINAL FLUID* 

2.1 Background  

 Several experimental animal models of spinal cord injury (SCI) have been 

established, including contusion, laceration, clip compression, and crush in a variety of 

species [126, 146, 147]. These systems generate highly stereotypical injuries and 

minimize heterogeneity in severity, timing of injury, genetic background, and 

environmental exposure.  While elimination of inter-animal variability likely enhances 

detection of the effects of putative therapeutic interventions, it does not fully reflect the 

diverse injury characteristics that complicate naturally-occurring SCI [148]. 1 

Canine intervertebral disc herniation (IVDH) causes a naturally-occurring form of 

SCI that bears critical similarities to human SCI with respect to both injury 

pathomechanisms and treatment.  The resulting SCI occurs spontaneously, consists of 

varying components of compression and contusion, and is treated with a combination of 

decompressive surgery and physical rehabilitation [139, 149].  Histologic facets of injury 

parallel those detected in both humans with SCI and SCI models, including axon 

destruction demyelination, and centrally-oriented necrosis/cavitation [140].  Spinal cord 

lesions in affected dogs contain activated microglia [82];  have aberrantly increased 

expression of IL-6, IL-8 [77], and matrix metalloproteinase-9 (MMP-9) [150]; and contain 

a population of peripherally-derived leukocytes [82, 151].  Additionally, these 

                                                

* Reprinted with permission from Russell RL, Levine JM, Jeffery ND, Young C, Mondragon A, Lee B, Boudreau 
CE, Welsh CJ, Levine GJ: Arachidonic acid pathway alterations in cerebrospinal fluid of dogs with naturally 
occurring spinal cord injury. BMC Neuroscience 2016, 17(1):1-9. 
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inflammatory events result in loss of blood-spinal cord barrier integrity and increased 

oxidative stress [144].  The similarities between human SCI and canine SCI resulting from 

IVDH have prompted the development of validated outcome measures including ordinal 

gait scores, kinematics, kinetics, urodynamics, and sensory testing in order to detect 

subtle improvement associated with experimental therapeutic interventions [152-154]. 

Furthermore, studies by several independent groups have utilized dogs with IVDH as a 

second species to evaluate neuroprotective and potential regenerative strategies headed 

for human clinical trials [139, 153, 155, 156].  

The arachidonic acid (AA) pathway is a critical mediator of secondary SCI and an 

attractive target for pharmacologic interventions.  Metabolism of AA is ubiquitous; this 

polyunsaturated fatty acid is released from cell membranes by phospholipase A2 (PLA2, 

for review see Schaloske & Dennis, 2006 [157]). In rodent spinal cord contusion models, 

PLA2 protein expression is induced within minutes of injury, persists for up to 7 days post-

injury, and correlates with the development of demyelination and neuronal necrosis [158]. 

Following its release from the cell membrane, AA is metabolized into leukotrienes (LTs) 

and prostaglandins (PGs) via 5-lipoxygenase (5-LOX) and cyclooxygenase (COX), 

respectively [159, 160]. Leukotrienes and PGs function as immune cell chemoattractants, 

vasodilators, inducers of oxidative stress, and modulators of neurosensory processing. 

Further, LTs and PGs are increased acutely after experimental SCI and remain aberrantly 

elevated for months post-trauma [21].  Chronic dysregulation of 5-LOX and COX 

pathways following experimental spinal cord contusion results in depletion of lipid 

metabolites, altered amino acid biosynthesis, and pro-inflammatory events.  Limited 

investigation of these pathways has occurred in large animal models of SCI.  In one study 
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that utilized an experimental canine model of compression/contusion, LTs and PGs were 

increased within the cerebrospinal fluid (CSF) one day following injury and remained 

elevated for approximately 7 days after the primary event [161]. 

 

 

 

Figure 2.1 Arachidonic acid pathway metabolites and their precursors and products 
The fatty acids arachidonic acid (AA) and docosahexaenoic acid (DHA) are precursors for a number 
of eicosanoid products. These products, or eicosanoids, are catalyzed by 3 main enzymes: 
cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P-450 (cyt P 450). The main products 
from the COX pathway are called prostaglandins (PGH2, PGE2, and 15 keto PGE2)  and  
thromoboxanes (TXA2 and TXB2). The lox pathway converts AA to leukotrienes (LTA4, LTB4, LTC4, 
LTD4, and LTE4), hydroperoxyeicosatetraenoic acid (HPETE) and hydroxyeicosatetraenoic acid  (15-
HETE). The cytochrome P-450 (cyt P-450) pathway produces epoxide derivatives (EpETEs, EpOMEs, 
EpODEs, and EpDPEs) which are precursors for dihydroxydocosapentaenoic acid (DiHDPE) and 
dihydroxy HETEs (DiHETEs). Metabolites from AA breakdown studied in a previous study (Russell et 
al, 2016) are highlighted in orange. Metabolites from this study are highlighted in blue.  
 

 

In this study, we assessed alterations of AA metabolism after SCI in dogs with 

IVDH by using enzyme-linked immunosorbent assays (ELISA) to measure CSF 
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concentrations of PLA2, leukotriene C4 (LTC4) and prostaglandin E2 (PGE2) (Figure 

2.1).  We selected these mediators because they represent critical nodes in the AA 

pathway that are altered in experimental SCI.  Our primary objective in this exploratory 

study was to determine if there were higher concentrations of AA metabolites in the CSF 

of dogs with SCI than in healthy control dog CSF.  Our secondary objective was to 

determine if, in dogs with SCI, CSF AA pathway metabolites were correlated with 

functional deficits at the time of sampling and 42-day post-injury recovery as measured 

by a validated ordinal score. Because so little is known about the factors that drive the 

inflammatory response following SCI coupled with the ease of CSF sampling in humans 

and in dogs, there is value in large metabolomic discovery-based studies in dogs with 

naturally-occurring spinal cord injury. Therefore, our third objective was to determine 

differentially expressed arachidonic acid pathway metabolites in the CSF of dogs with 

SCI by using unbiased tandem mass spectrometry discovery-based metabolomics 

approach (Figure 2.1).  

 

2.2 Methods 

2.2.1	Sample	size	determination	ELISA		

Sample size was determined a priori and was based on previous studies that 

examined inflammatory mediators (e.g., IL-8, C-reactive protein, MMP-9) in the CSF of 

dogs with IVDH-associated SCIs compared to CSF of healthy control dogs[78, 162].  In 

those studies, samples from 8-21 healthy controls and 35-47 dogs with IVDH were used 

to identify significant inter-group differences.  Based on these data, we elected to utilize 

all control (n=21) and SCI samples (n=44) available within our biobank.    
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2.2.2 Sample size determination MS/MS 

A second set of samples were sent to the West Coast Metabolomics center for 

metabolomics analysis. Similarly, CSF was collected cranial to the injury from the 

cerebellomedullary cistern in dogs with naturally-occurring SCI (N=21) and purpose-bred 

dogs (N=21) with owner consent and/or approval from the Texas A&M University Animal 

Care and Use Committee. All animal procedures consisted of standard medical and 

surgical care, and cerebrospinal fluid samples were collected between 2009 and 2012 

and then stored at -80°C until being shipped on dry ice to the West Coast Metabolomics 

Center in 2018. Only CSF samples from SCI animals given no glucocorticoids or non-

steroidal anti-inflammatories prior to collection, with red blood cell counts less than 50 

cells/µL, and an admit motor score of 3 (non-ambulatory) or less, were sent for further 

analysis. Healthy dogs had to have a normal physical and neurological examination; 

normal complete blood count, serum biochemistry, and urinalysis; and CSF red blood cell 

counts less than 50 cells/µL.   

 

2.2.3 Inclusion and exclusion criteria 

A repository of CSF aliquots collected from the cerebellomedullary cistern, stored 

at -80°C, and housed at Texas A&M University since December 2009 was screened in 

February 2014 for samples from dogs with IVDH-associated SCI that met the following 

inclusion criteria:  1) lesion between T3 and L5 vertebrae; 2) neurologic impairment of <7 

days duration; 3) surgical decompression of IVDH with post-operative rehabilitation; and 

4) complete medical records including neurologic score at admission and follow-up 
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scoring at day 42 post-surgery.  Dogs that were part of on-going clinical trials or had a 

myelogram performed as part of pre-operative diagnostics were excluded from this study. 

 Healthy control CSF samples were collected from purpose-bred dogs with normal 

physical and neurologic exams, normal complete blood counts, and normal serum 

biochemical analysis.  All CSF samples from healthy control dogs were collected and 

stored in the same manner as described for dogs with IVDH-associated SCI and were 

required to have a normal total nucleated cell count (TNCC) (<5 cells/µL) and total protein 

concentration (<35 mg/dL). 

 

2.2.4 Sample collection and therapeutic procedures 

Procedures in dogs with naturally-occurring SCI were performed with owner 

consent and consisted of standard medical and surgical care. Purpose-bred dogs were 

obtained and used with approval from the Texas A&M University Animal Care and Use 

Committee (AUP 2007-115; AUP 2011-145).  All studies adhered to the National Institutes 

of Health Guide for Care and Use of Laboratory Animals. 

Dogs with SCI underwent complete physical examination, neurologic examination, 

complete blood count, and serum biochemistry prior to anesthesia. Data including age, 

gender, duration of SCI, and recent delivery of non-steroidal anti-inflammatory drugs 

(NSAIDs) or glucocorticoids (GCs) were collected (Table 2.1, reprinted with permission 

from Russell et. al., 2016). Dogs were considered treated with these drugs if NSAIDs or 

GCs were administered within the 7-day period prior to CSF collection. Dogs were then 

pre-medicated with glycopyrrolate (Robinul-V, West-Ward, Eatontown, NJ, USA) and 

oxymorphone (Numorphan, Endo Pharmaceuticals, Chadds Ford, PA, USA) or 
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hydromorphone (West-Ward, Eatontown, NJ, USA).  Following pre-medication, dogs 

were induced with propofol (Rapinovet, Abbott Labs, Chicago, IL, USA) and intubated, 

and anesthesia was maintained with sevoflurane (SevoFlo, Abbott Labs, Chicago, IL, 

USA).  Thoracolumbar vertebral column imaging was performed either via magnetic 

resonance imaging (MR) or computed tomography (CT).  Cerebrospinal fluid was then 

collected via needle puncture of the cerebellomedullary cistern with an aliquot saved and 

stored at -80° C for further analysis.  Following CSF collection and diagnostic imaging, a 

hemilaminectomy was performed to remove herniated, compressive intervertebral disc 

material and associated hemorrhage from the epidural space.  Either gross appearance 

of the disc material or histopathology was used to confirm the diagnosis of IVDH.   

 Following surgery, dogs were recovered and provided intravenous fentanyl citrate 

(Hospira Inc., Lake Forest, IL, USA) analgesia and bladder evacuation if unable to 

voluntarily void.  Twenty-four hours later, physical rehabilitation consisting of supported 

overland walking, passive range of motion, and standing strength exercises were initiated.  

Dogs were released to their owner’s care after pain control was achieved via oral 

analgesics (tramadol hydrochloride, Amneal Pharaceuticals, Hauppauge, NY, USA) and 

urine could be voluntarily voided or the bladder manually expressed.  The owners 

continued physical rehabilitation exercises for 6 weeks post-operatively.   
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Table 2.1 Population characteristics for dogs with spinal cord injury (SCI) and 
healthy control dogs used in ELISA experiments, Reprinted with permission from 
(Russell et. al., 2016). 
 

 

2.2.5 Neurological scoring 

Two separate ordinal SCI scores were used in this study, and were applied at initial 

evaluation and at a 42-day post-SCI re-evaluation.  The modified Frankel score (MFS), 

and the Texas Spinal Cord Injury Score (TSCIS) have both been validated previously in 

dogs with IVDH-associated SCI and have been shown to have excellent inter-rater 

agreement, correlate well with MRI-based measures of SCI, and predict 42-day post-SCI 

motor outcome[163].  For both assessment tools, dogs were considered ambulatory if 

they could rise unassisted and take 10 or more steps without falling.  Dogs that were non-

Variable
SCI dogs 
(n=44)

Healthy 
control dogs 

(n=21)
Dogs

Median age 5.75 yrs 3 yrs

MFS at admission 2.5 N/A

Injury to anesthesia time 36.5 hrs N/A

Female intact 4(9%) 0(0%)

Female spayed 18(41%) 3(14%)

Male intact 8(18%) 5(24%)

Male neutered 14(32%) 13(62%)
Breeds

Dachshund 34(76%) 0(0%)
Labrador Retriever 0(0%) 7(33%)

Mixed breed 4(9%) 5(24%)
Injuries

T12-13 6(14%) N/A

T13-L1 13(30%) N/A

L1-L2 5(11%) N/A

L2-L3 8(18%) N/A
Other thoracic 8(18%) N/A
Other lumbar 4(9%) N/A

Treatments
Non-steroidal anti-inflammatory drugs 17(39%) 0(0%)
Glucocorticoids 14(32%) 0(0%)
Both 3(<1%) 0(0%)

Sex 
characteristics
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ambulatory had pelvic limb movements evaluated using tail support.  Postural reaction 

scores were determined by supporting the dog in a standing position and placing the 

dorsum of the paw in contact with the ground.  Conscious perception of mild and severe 

stimuli was evaluated by pinching the interdigital webbing and clamping the nail bed with 

hemostats, respectively.  Pain sensation was considered intact based on demonstration 

of a behavioral (e.g., orienting to the stimulus, vocalization) or physiological (e.g., 

tachycardia, tachypnea) response to stimulation.   

 

 

 

Table 2.2 Population characteristics for dogs with spinal cord injury (SCI) and healthy control 
dogs used for MS/MS 
 * Non-steroidal anti-inflammatory drugs (NSAIDs) directly affect actions of PGE2 and other eicosanoid 
products from arachidonic acid metabolism. Therefore, samples from dogs treated with NSAIDs were 
removed from analysis.  
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Table 2.3 Cerebrospinal fluid analysis for injured dogs in MS/MS 
* samples with red blood cell counts higher than 50 were not analyzed. 

 

 

 The MFS was used as a cordinal system to stratify injured dogs into groups that 

parallel those in the American Spinal Cord Injury Association Impairment Scale (ASIA).  

The MFS consists of 6 strata where 0 = paraplegic with absent pain sensation from the 

hindquarters; 1 = paraplegic with pain sensation intact to severe stimuli; 2 = parapaplegic 

with intact sensation for mild stimuli; 3 = non-ambulatory paraparetic; 4 = ambulatory 

paraparetic; and 5 = signs consistent with spinal pain only. 

 The TSCIS was developed as a more refined system than the MFS and was used 

for all analyses that did not require stratification into broad functional categories.  With 

this system, individual limbs are assessed independently and given a score based on 

sensation, gait, and proprioceptive placing.  Sensation was scored as 0 = absent, 1 = 

sensation present to severe stimuli, but absent for mild stimuli, and 2 = sensation intact.  

Proprioceptive placing was scored as 0 when absent, 1 when delayed (correction to 

normal posture taking > 2 seconds), and 2 when considered normal.  For gait 

assessment, scores ranged from 0-6 for each limb as follows: 0 = no voluntary movement 

present when supported; 1 = intact limb protraction with no ground clearance; 2 = intact 

limb protraction with inconsistent ground clearance; 3 = intact limb protraction with 

consistent ground clearance; 4 = ambulatory with moderate paresis/ataxia (will fall 
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occasionally); 5 = ambulatory with mild paresis/ataxia (does not fall even on slick 

surfaces); and 6 = normal gait.   

 

2.2.6 Measurement of AA pathway metabolite concentrations 

Cerebrospinal fluid concentrations of PLA2, LTC4, and PGE2 were measured 

using commercially available ELISA (MyBioSource, San Diego, CA). The PLA2 ELISA 

(for the lipoprotein-associated isoform), catalog # MBS015390, was performed following 

the manufacturer’s protocol, using a standard curve ranging from 800-25 ng/mL. The 

LTC4 and PGE2 ELISAs (catalog #MBS013956 and MBS705363, respectively) were also 

performed following the manufacturer’s protocol, and the standard curves used were 31.2 

-1000 pg/mL for LTC4 and 31.25-2000 pg/mL for PGE2. All control CSF samples were 

run as technical duplicates.  A single run was performed on injured dog samples, because 

volume available was limited.  

 

2.2.7 Mass spectrometry 

CSF samples from dogs with SCI (N=21) and healthy dogs (N=21) were sent to 

the West Coast Metabolomics center for solid phase extraction-liquid chromatography-

electrospray ionization tandem mass spectrometry (MS/MS). Briefly, samples were 

thawed on ice and then mixed by vortex. 50 µL of CSF sample was mixed with 200 µL of 

surrogate standards and incubated at -20°C for 30 minutes. Samples were centrifuged at 

15,000 rcf at 6°C for 5 minutes. Filtered supernatant was transferred into a PVDC filter 

plate and stored at -20°C until further analysis.  
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2.2.8 Statistics 

The primary objective of this study was to determine whether the concentrations 

of the AA pathway metabolites in CSF are associated with functional recovery status at 

42 days. These relationships were explored first by using univariable linear regression 

with TSCIS at 42 days as the outcome (dependent variable). Multivariable linear 

regression was then used to examine the effects of the various possible interactions 

including initial injury severity, time delay between injury and sampling, NSAID and GC 

administration, through their inclusion as covariates. All analyses were conducted using 

commercially available software (Stata 11, StataCorp, College Station, TX).   

Secondary objectives of this study were to explore relationships between injury 

and AA metabolite concentrations. We compared the CSF metabolite concentrations 

between control and SCI dogs using Mann-Whitney tests. Association between AA 

metabolite concentration and cell count in the CSF and with SCI severity at presentation 

were analyzed using linear regression.  Figures were generated using GraphPad Prism, 

version 6.0 (GraphPad Software, San Diego, CA).     

Descriptive statistics were calculated for dog demographics including age, sex, 

breed, injury to CSF collection interval, and injury severity (Table 2.2). Concentrations of 

71 metabolites were collected for each of the 21 injured dog CSF samples and 21 healthy 

control samples. For the specific MS/MS equipment used here, there is a limit of detection 

(LOD) and a limit of quantification (LOQ) for each metabolite analyzed. Because MS/MS 

is optimized for use with urine and blood samples, most of the sample metabolite 

concentration from the CSF samples were below the LOQ values. Therefore, in order to 

utilize more of the information from this data set, a “limit of use” was set for each 
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metabolite half-way between the LOD and the LOQ values. Anything below this half-way 

value was deemed below the limit to which we could reliably trust the data and changed 

to a value of 0.00. From this analysis, out of 2,982 metabolite concentrations for 71 

metabolites in 41 animals, 2,092 concentrations were changed to 0.00, leaving 890 

metabolite concentrations that were non-zero values.  Differences in abundance of CSF 

metabolites between dogs with SCI and healthy purpose bred controls were analyzed for 

biomarker analysis and pathway analysis in the publicly available MetaboAnalyst software 

[164]. Data was normalized using pareto scaling (mean-centered and divided by the 

square root of the standard deviation of each variable). The heatmap of the top 25 

metabolites, the fold change graph, and the volcano plot were all generated on 

MetaboAnalyst. Volcano plot statistical analysis was also generated in MetaboAnalyst.  

Dot plots were generated using GraphPad Prism 7 (GraphPad Software Inc., La Jolla, 

CA).  

 

2.3 Results 

2.3.1 Population characteristics ELISA 

There were 44 dogs in the SCI group (Table 2.1). The median age was 5.75 years 

(range, 1-12 years).  The 3 most common breeds were dachshunds (n=34; 76%), mixed 

breeds (n=4; 9%), and shih tzus (n=3; 7%). There were 4 intact females (9%), 18 spayed 

females (41%), 8 intact males (18%), and 14 neutered males (32%). The median duration 

between the time of initial injury and CSF collection was 36 hours (range, 3-182 hours).  

The median MFS before CSF acquisition was 2.5 (a score indicating non-ambulatory 

paraparesis; scores ranged from 0-5).  The median TSCIS sub-scores at presentation 
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were as follows: nociception 4 (range, 0-4), proprioceptive placing 0 (range, 0-3), and 

motor 2 (range, 0-10). The most common vertebral levels at which compressive/contusive 

lesions were located based on MR and CT imaging included: T12-T13 (N = 6; 14%), T13-

L1 (N = 13; 30%), L1-L2 (N = 5; 11%), and L2-L3 (N = 8; 18%); there were 8 dogs with 

thoracic injuries at other levels (18%) and 4 with lumbar injuries at other levels (9%).  

There were 17 dogs (39%) that received NSAIDs, 14 that received glucocorticoids (32%), 

and 3 dogs (<1%) that received both NSAIDs and glucocorticoids.    

 

 

Figure 2.2 Scatter plots and line and whisker plots 
CSF concentrations of AA metabolites from 44 dogs with SCI and 21 control dogs. There was a 
significantly higher CSF PLA2 concentration in dogs with SCI compared to control dogs (asterisks, p= 
0.0370) (Panel a).  The concentration of LCT4 in the CSF of SCI dogs was significantly lower than 
that in control dogs (asterisks, p<0.0001) (Panel b). The concentration of PGE2 in the CSF of SCI 
dogs was significantly higher (Panel C, asterisks, p = 0.0273) compared to that in control dogs 
(<31pg/mL, dotted line). Reprinted with permission from Russell et. al., 2016. 
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The 21 control dogs had a median age of 3 years (range, 1-4).  The 2 most 

common breeds were Labrador retriever and beagle (33% and 24%, respectively, Table 

2.1). There were 0 intact females, 3 spayed females (14%), 5 intact males (24%), and 13 

neutered males (62%). No control dogs received glucocorticoids or NSAIDs.  

 

 

 

Figure 2.3 Linear regressions amongst CSF AA pathway metabolite concentrations  
Compared to total nucleated cell counts (TNCC, cells/μL), CSF total protein (mg/dL), and CSF red 
blood cell count (cells/μL) in 44 SCI dogs. PLA2 concentration was negatively associated with TNCC 
in dogs with SCI (r2= 0.178, slope = -0.400; p= 0.004) (Panel a). CSF PGE2 concentration correlated 
positively with CSF total protein concentration (Panel b, r2= 0.422, slope= 3.75; p<0,0001, and CSF 
RBC (Panel c, R squared= 0.451, slope= 0.370; p<0,0001). Reprinted with permission from Russell 
et. al., 2016. 
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2.3.2 Population characteristics MS/MS 

There were 21injured dogs that received decompression surgery and 21 healthy 

dogs that were used as controls (Table 2.2). The median age was 5 years (range 3-12 

years). The most common breed was dachshunds (n=15, 71%) and mixed breed (n=3, 

14%) while the remaining dogs were of various breeds. There were 17 neutered males 

(81%), 4 intact males (19%). Females were excluded in this study. The median duration 

from injury to sampling was 20.5 hours. The range of injury duration to time of sampling 

was from 7- 44.5 hours. The median MFS at the time of collection was 2 (range 0-3), 

indicating non-ambulatory paraparesis. Dogs did not receive GCs or NSAIDs within 30 

days of being enrolled in the study nor did they receive any during the duration of the 

study as per standard animal care procedures.  

The healthy control dogs had a median age of 3 years (range 1-4). The 2 most 

common breeds were Labrador Retriever (33%) and beagle (24%). There were 0 intact 

females, 3 spayed females (14%), 5 intact males (24%), and 13 neutered males (62%). 

None of the healthy controls received GCs or NSAIDs.  

2.3.3 CSF analysis ELISA 

In the SCI group, the median TNCC was 2 cells/μL (range, 0 - 107 cells/μL), the 

median red blood cell count (RBC) was 10 cells/μL (range, 0 - 11005 cells/μL) and the 

median total protein concentration was 18 mg/dL (range, 9-94 mg/dL). Twelve dogs had 

pleocytosis (TNCC > 5 cells/μL); of these the median percentage of neutrophils was 49% 

(range, 0-85%), monocytes 24.5% (range, 0-100%), lymphocytes 12% (range, 0-63%), 

and eosinophils was 0% (range, 0-3%). No pleocytosis was detected in control CSF 

samples.  In the control group, the median TNCC was 0 cells/μL (range, 0 - 2 cells/μL), 
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the median RBC was 3 cells/μL (range, 0 - 730 cells/μL) and the median total protein was 

26 mg/dL (range 10-35 mg/dL). 

 

 

     

Figure 2.4 Linear regressions of CSF AA pathway metabolites  
Modified Frankel scores (MFS) at day of hospital admission (day 0). PLA2 and LTC4 were not 
significantly correlated to MFS at day 0 (r2= 0.0004, slope = -0.221; p= 0.894, and r2= 0.012, slope = 
0.-2.23; p= 0.4756, respectively) (Panels a and b).  PGE2 was higher in SCI dogs with lower MFS at 
day 0 ( r2 = 0.137, slope = -23.9; p= 0.013) (Panel c). Reprinted with permission from Russell et. al., 
2016. 
 

 

2.3.4 CSF analysis MS/MS 

Dogs in the injured group (N=21) had CSF collected and cell counts were totaled 

(Table 2.3). CBC analysis was performed before anesthesia and before decompression 
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surgery. The RBC counts were used to determine if CSF samples were of high enough 

quality to use by only using samples that had RBC counts of less than 50 cells/µL.  

 

 

 

 
Figure 2.5 Linear regressions of AA pathway metabolites and Texas Spinal Cord Injury 
Scores (TSCIS) at day 42 post-injury 
PLA2 and LTC4 were not significantly correlated to TSCIS at day 42 (r2= 0.00003, slope = -0.021; p= 
0.970, and r2= 0.030, slope = 0.-1.166; p= 0.262, respectively) (Panels a and b).  PGE2 was 
significantly correlated to lower TSCIS at day 42 in dogs with SCI (r2= 0.199, slope = -9.62; p= 0.002) 
(Panel c). Reprinted with permission from Russell et. al., 2016. 

	

2.3.5	AA	pathway	mediators	are	dysregulated	in	the	CSF	of	SCI	dogs	

 There was significantly higher CSF PLA2 concentration (p= 0.0370) in dogs with 

SCI (median=158.65 ng/mL, range, 129.47-219.45 ng/mL) compared to control dogs 

(Figure 2.2a, median=140.08 ng/mL, range, 106.04-347.93 ng/mL, reprinted with 
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permission from Russell et. al., 2016).  The concentration of LCT4 in the CSF of SCI dogs 

(median=148.69 pg/mL, range, 71.88 - 202.37 pg/mL) was significantly lower (p<0.0001) 

than that in control dogs (median=332.27 pg/mL, range, 105.49 - 579.09 pg/mL) (Figure 

2.2b). The concentration of PGE2 in the CSF of SCI dogs (median<31pg/mL, range <31 

– 451.07 pg/mL) was significantly (p = 0.0273) greater compared to control dogs (Figure 

2.2c; all control dogs had CSF containing concentrations that were below the limit of 

detection for this kit <31pg/mL). 

 

 
 

 

Figure 2.6 Hierarchical clustering heatmap of the top 25 metabolites tested for all SCI and 
normal healthy dogs analyzed.  
Each individual dog is in a column, with all normal on the left and SCI dogs on the right. Each 
metabolite is a single row. The lines on the left represent hierarchical clustering. The Scale bar is in 
the top right corner. 
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Table 2.4 Cerebrospinal fluid log fold changes (FC) for metabolites FC > 1.0 
 

 

We explored associations between CSF analytes including TNCC, RBC, total 

protein concentration, and percentage of leukocytes and AA pathway metabolite 

concentrations in the CSF of SCI dogs.  The only significant associations were between 

PLA2 and TNCC (Figure 2.3a, r2= 0.178, slope= -0.400; p=0.004, reprinted with 

permission from Russell et. al., 2016), PGE2 and CSF total protein (Figure 2.3b, r2= 

0.422, slope= 3.75; p<0.0001), and PGE2 and CSF RBCs (Figure 2.3c, r2= 0.451, slope= 

0.370; p<0.0001).  
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Figure 2.7 Fold changes of metabolites from cerebrospinal fluid (CSF) from spinal cord 
injured (SCI) and healthy dogs 
Dotted lines are at +/- 1 log fold-change. There are 14 metabolites elevated in SCI dog CSF compared 
to healthy dogs (pink dots > 1) and 4 metabolites that are decreased in SCI dog CSF (pink dots < -1).  
 

 

2.3.6 CSF PGE2 is correlated with SCI severity and 42-day outcome 

Prostaglandin E2 concentration in the CSF was significantly and positively 

associated with increasing severity of SCI at the time of sampling, as measured by the  

MFS in univariate and multivariate models (Figure 2.4c, p=0.029 and p=0.041, 

respectively).  No other AA mediators were associated with SCI severity at the time of 

sample acquisition (Figure 2.4a-b, reprinted with permission from Russell et. al., 2016).  

The CSF concentrations of PLA2 and LTC4 were not significantly associated with 42 day 

post-SCI TSCIS (Figure 2.5 a-b, p=0.970 and 0.262, respectively, reprinted with 

permission from Russell et. al., 2016).  Prostaglandin E2 concentration was significantly 
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and negatively associated with 42-day post-SCI recovery as measured by the TSCIS in 

univariate and multivariate models (Figure 2.5c, r2= 0.199, slope= -9.61, p=0.003 and 

p=0.006, respectively). Because of the low number of SCI dogs in which PGE2 reached 

detectable concentrations we examined the sensitivity of this result to the numerous null 

values by repeating the test but including only the dogs with detectable values; both 

univariable (r2=0.39, slope= -10.47, p=0.073) and multivariable (r2=0.51, slope= -1.77, 

p=0.137) analysis revealed a non-significant association, although this may also result 

from the much-reduced power of these tests.   

2.3.7 AA metabolites heat map and fold changes determined by MS/MS 

The hierarchical clustering and heatmap of the top 25 metabolites can be seen in 

Figure 2.6. Dogs with SCI had 12 metabolites elevated higher in SCI dogs compared to 

healthy controls. There were 4 metabolites downregulated more than 1.0-fold change 

difference (Figure 2.7). The log fold change values are shown in Table 2.4.  

2.3.8 Volcano plot of AA pathway metabolites determined by MS/MS 

A volcano plot, which is a scatter plot that compares the fold change difference 

(threshold FC > 1.5) to the p-values from t test (p < 0.05, Figure 2.8). The only metabolite 

to be significantly different on the volcano plot (p<0.05, FC=1.53) was 19,20 

dihydroxydocosapentaenoic acid (DiHDPE). Along with 19,20 DiHDPE, the next four 

highest metabolites scatter plots are shown in Figure 2.9a-e. Thromboxane B2 (TBX2) 

concentrations were not different between groups, but all measurements were above the 

limit of detection for this analysis (Figure 2.9f).   
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Figure 2.8 Volcano plot analysis of differentially expressed metabolite concentrations for all 
cerebrospinal fluid samples from spinal cord injured and healthy dogs.  
The further the metabolite position from 0,0, the more significant the difference from the entire group. 
The pink dot represents the metabolite above thresholds for fold change (FC, x-axis) and t-test p-value 
(p, y-axis). 19,20 HiHDPE is above the 1.5-fold change cutoff with a p-value > 0.05 (horizonal dotted 
line).  
 

 

2.4 Discussion 

 This study broadly compared measures of AA metabolism in dogs after naturally-

occurring SCI with that in healthy control dogs. The concentration of PLA2, which frees 

AA from phospholipid membranes, was significantly higher in SCI versus control dogs, 

and had a weak negative association with the total nucleated cell count in the CSF.  The 

CSF concentration of LTC4, a pro-inflammatory leukotriene, was significantly lower in 

dogs with naturally-occurring SCI compared to control dogs. The CSF concentration of 

PGE2 was significantly higher in SCI dogs compared to control dogs, and significant  
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Figure 2.9 Dot plots for metabolite concentrations of 6 metabolites from cerebrospinal fluid 
(CSF) of healthy and spinal cord injured dogs.  
There were 4 metabolites that trend towards elevated concentrations in CSF of dogs with SCI (a-d). 
Metabolite 19,20- DiHDPE was significantly elevated in CSF of injured dogs with volcano plot analysis 
(e, gray asterisk, p < 0.05, FC > 1.5). Thromboxane B2 (TXB2) has measurable amounts for every 
individual CSF sample analyzed (f). TXB2 levels were not significantly different between the two 
groups (p > 0.05).  

 

 

relationships existed between CSF PGE2 concentration, initial SCI severity, as well as 

42-day post-SCI recovery.  

Here, we found CSF concentration of lipoprotein-associated PLA2 was significantly 

higher in SCI dogs compared to control dogs. In studies performed on rodent spinal cord 

homogenates post-SCI, the secretory isoform of PLA2 increases within hours of injury, is 

over-expressed for days following SCI, and is negatively correlated with recovery of 

locomotion [159]. Critically, there are 27 isoforms of PLA2, of which only 7 have been 

clearly demonstrated to be dysregulated in SCI [159]. We chose to measure lipoprotein-

associated PLA2 because it has not been previously evaluated in the context of SCI, up-
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regulation has been established in neuro-inflammatory diseases such as Alzheimer’s 

[165], it is secreted from inflammatory cells known to be present within injured cords, and 

validated methodologies existed to measure it in dogs.  While findings here suggest 

lipoprotein-associated PLA2 is released following injury, there was no association 

between CSF PLA2 concentration and injury severity at the time of sampling or 42-day 

post-SCI outcome.  Additionally, CSF PLA2 concentration was weakly, but negatively, 

associated with CSF TNCC.  The complex and overlapping role of PLA2 isoforms, 

treatment of dogs with immune-modulating drugs, and sample size may explain our 

inability to detect associations between CSF lipoprotein-associated PLA2 concentrations 

and certain facets of injury.   

The CSF concentration of LTC4 was significantly higher in healthy control dogs 

compared to those with SCI.  This finding is in contrast to data from a guinea pig spinal 

cord contusion model, which showed increased parenchymal LTC4 10 minutes after SCI 

that persisted 60 minutes post-SCI.  Data from dogs with experimental spinal cord 

contusion likewise showed abrupt, early increases in LTC4 concentration, measured 

within the CSF [161].  Our results may have differed from these previous studies for a 

variety of reasons.  First, the median time between SCI and CSF sampling in our 

population was 36 hours; thus, we may not have captured many dogs with post-injury 

elevations in LTC4.  Secondly, a proportion of the naturally injured dogs studied here 

received either NSAIDs or glucocorticoids, both of which could reduce LT production.  

Additionally, post-SCI increases in CSF or parenchymal LTC4 may be species- specific, 

or model- specific.  In a study of cats with experimental compressive SCI, LTC4 

concentration was not significantly different between sham and SCI animals [166].  
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Finally, we believe post-SCI shunting within the LT pathway could be possible and might 

explain the higher CSF LTC4 concentration in control dogs compared to those with injury 

in this study.  For example, macrophages (the predominant inflammatory cell that 

releases LTC4) that are exposed to a pro-inflammatory environment in vitro have reduced 

LTC4 synthase mRNA expression [167].   

A prominent finding from this study is the 1.84 log fold change difference of 15-

Keto PGE2 in CSF of injured dogs over healthy control dogs. Although this finding was 

not mathematically significant, our group has previously seen a similar pattern of 

significantly increased concentrations of PGE2 in CSF of dogs with SCI [23]. 

Prostaglandin E2 is ubiquitous throughout the body and is most known for its deleterious 

effects as a vasodilator and fever inducer [168]. However, PGE2 is also a well-known 

inhibitor of neutrophil reactive oxygen species (ROS) release [24, 25, 169]. The more 

reactive form is PGE2, while the downstream product 15-Keto PGE2 is the less active 

and more stable form of PGE2 [170]. It is unclear whether cells within the CSF of dogs 

with spinal cord injury are actively converting the more reactive PGE2 isoform into the 

less reactive 15-Keto PGE2, or if the conversion is a product of unchecked inflammation. 

More studies are needed to explore PGE2 and its isoforms.  

The finding of elevated 19,20 dihydroxydocosapentaenoic acid (DiHDPE) in the 

CSF of SCI dogs is notable because of its association with fish oil as a dietary 

supplement. This diol is a downstream product from docosahexaenoic acid (DHA), which 

is an omega-3 poly unsaturated fatty acid which is a main component of fish oil. Increases 

in ingested DHA causes increases in serum levels of 19,20 DiHDPE [171, 172]. 

Interestingly, administration of DHA improves neurological outcomes in rats with SCI 
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[173, 174].  In this study, the log fold change difference between dogs with SCI and 

healthy controls was 1.53. It is not clear whether elevated levels of 19,20 DiHDPE in the 

CSF of injured dogs is a pathway that is beneficial for SCI and should be promoted, or if 

increased levels of the diol in the CSF is an indication that lipid and protein oxidation are 

detrimental processes that may be potential targets for therapy. More research is needed 

to investigate the specific role of 19,20 DiHDPE in naturally-occurring SCI.  

Interestingly, the eicosanoid thromboxane B2 was one of the few metabolites from 

this study that had detectable concentrations in every CSF sample. However, there were 

no differences between dogs with SCI and healthy controls (p > 0.05). In rodent studies, 

TXB2 concentration in the injured spinal cord are highest 1-hour post injury and then 

reduced back down to normal levels as soon as 8 hours post injury [175-177]. Our findings 

from the current study are consistent with these results.  The duration of injury before 

sample collection ranged from 7 hours to up to 44.5 hours post-injury. One advantage to 

working with experimental models of SCI is the time of CSF sampling is less variable. 

However, in a clinical environment with both humans and dog, collecting CSF samples 

less than 12 hours post injury is not feasible [79]. Likewise, targeting mediators of 

inflammation that are elevated minutes to a few hours after injury are probably not feasible 

targets for SCI therapeutics that can be tested in large scale clinical trials.  

Cerebrospinal PGE2 concentration was significantly increased in dogs with SCI 

compared to healthy control dogs.  Additionally, CSF PGE2 concentration was 

significantly and positively associated with CSF protein concentration and RBC in injured 

dogs; both these CSF analytes are increased as a result of intrathecal bleeding and blood-

spinal cord barrier disruption [178].  Finally, CSF PGE2 concentration was significantly 
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and positively associated with more severe injury at the time of sampling and also 42-day 

post-SCI recovery as measured by an ordinal scoring system. The relationship between 

CSF PGE2 and 42-day post-SCI recovery was assessed using multivariate logistic 

regression.  The strength of this approach is that it takes account of other contributory 

factors such as immunomodulatory drug administration, initial injury severity, and timing 

of injury.  When we assessed associations between CSF PGE2 and 42-day outcome only 

using dogs with SCI that had detectable CSF PGE2, the relationships were non-

significant.  While examining relationships in this manner does eliminate bias from null 

values, it substantially reduces statistical power (9 dogs assessed). Biologic facets of SCI 

and recovery are typically investigated in rodent contusion models under a series of highly 

controlled conditions.  Here, we assessed AA pathway metabolites in a naturally-

occurring, large animal model of SCI that recapitulates many features of human injury.  

There are limitations inherent to utilizing samples from dogs with naturally occurring SCI, 

one of which is the administration of immune response-modulating drugs prior to sample 

collection.  Multivariate logistic regression was used to mitigate influence of administration 

of these drugs when assessing relationships between CSF AA metabolite concentration 

and 42-day outcome.  We did not, however, directly examine the impact of prior NSAID 

or GC delivery on CSF AA metabolite concentration in injured dogs.  This study could not 

be adequately powered to investigate the influence of these drugs because of the great 

variety of interactions between time of injury, time of drug administration, and time of 

sample collection.  Certainly, it is possible that interactions between these drugs and 

targets in the AA pathway impacted data reported here.  Additionally, heterogeneity in 

injury severity, timing of injury, and vertebral level of compression that are inherent to 
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clinical studies can affect the ability to detect significant inter-group differences.  Despite 

these limitations, this study suggests that lipoprotein associated PLA2, LTC4, and PGE2 

are all associated with SCI and may provide information relevant to recovery of function.  

These data, combined with those from other model systems, provide further evidence that 

AA metabolites are a viable target for pre-clinical SCI trials.  

 

2.5 Future directions 

 Future directions of this study include tests for the notable AA pathway 

contributors, such as up and downstream products of PGs using ELISAs rather than large 

scale metabolomics platforms with less specificity. It would be interesting to know the 

levels of these metabolites in the plasma of dogs with SCI and compare them to humans 

with SCI. One of the limitations of this study was low and sometimes undetectable levels 

of metabolites in the watery CSF, especially in healthy controls where arachidonic acid 

levels are low to nonexistent.  Because CSF collection in dogs is routine clinical practice, 

samples can be pooled from dogs of similar age, breed and sex. These future studies 

might help the field characterize the inflammatory response following SCI and could 

contribute to the background knowledge needed to find an appropriate therapeutic for the 

cure for SCI.  
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3. NEUTROPHIL ACTIVATION IN CIRCULATION 

3.1 Background 

 A problem in treating spinal cord injury is mitigating secondary injury and 

inflammation. One of the key components of inflammation following spinal cord injury is 

leukocyte infiltration into the damaged spinal cord [10, 179-182]. The first cells to infiltrate 

from circulation into the damaged cord are neutrophils. Traditionally, neutrophils have 

been studied mostly in the context of bacterial infection and their effective role in breaking 

down infected cells and dismantling bacteria is recognized as their principal role in the 

inflammatory response. However, neutrophils recently have garnered more attention in 

their role following SCI [183, 184]. In rodents, controlling neutrophil and monocyte 

recruitment and infiltration into the injured spinal cord have led to improved neurological 

outcomes and reduced lesion size [185-188]. Although, other studies in rodents have 

shown the benefits of neutrophils in SCI and peripheral nerve crush injury [10, 30]. It is 

probable that infiltrating neutrophils are both beneficial and detrimental to regrowth and 

repair of the damaged spinal cord, and therefore, special attention should be given to the 

spatial and temporal changes in neutrophil activity following SCI. In addition to 

inconsistent results in rodent studies, questions remain about neutrophil activation and 

infiltration in humans and large animal models of SCI.  

Neutrophils studied in the context of acute spinal cord injury are known to respond 

to damage-associated molecular patterns (DAMPs), activate granules and produce 

reactive oxygen species (ROSs), and express L-selectin in order to leave the blood vessel 

and enter the damaged spinal cord. Neutrophils are transient cells under physiological 

conditions and have a half-life of several hours in humans [42, 43]. However, when 
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activated, neutrophils can live for multiple days [20, 189]. Neutrophils are granulocytes 

produced in the bone marrow that function primarily to break down pathogens and cellular 

debris using ROSs and proteases. After responding to DAMPs and producing ROS, 

neutrophils can express varying amounts of L-selectin on their surface. L-selectin is a firm 

adhesion marker that neutrophils in circulation express constitutive amounts of, but can 

also upregulate L-selectin. Once the glycocalyx is reduced, ligands for L-selectin and 

other adhesion molecules are exposed on the endothelium surface. Neutrophils then 

shed L-selectin, release more of their granular  

contents to get through the basement membrane,  and leave the blood stream [190] 

(Figure 3.1). Lymphocytes and monocytes also express L-selectin on their surface, but 

enter the damaged cord after neutrophils [191]. Although much is known about initial 

neutrophil recruitment and activation in acute SCI, much less is known about how long 

activated and infiltrating neutrophils exist in SCI  [34, 59], especially in humans and large 

animal models of SCI.  

Neutrophils respond to DAMPs non-specifically, meaning that they can be 

activated by broken bones or soft tissue damage (such as lacerations or incisions) at the 

same time responding to spinal cord injury. Therefore, neutrophils after SCI are best 

studied under conditions without polytrauma.  Secondly, because neutrophils respond to 

skin incisions and soft tissue damage, models of naturally-occurring injury are also ideal 

for the study of neutrophils. Therefore, experiments measuring neutrophil activity were 

carried out in dogs with intervertebral disk herniation (IVDH) with spontaneous SCI, a 

model that closely resembles human injury but without polytrauma. IVDH is common in  
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Figure 3.1 Neutrophils in circulation 
Neutrophils extravasate from circulation by releasing activated granular contents and expressing 
adhesion molecules on the cell surface. Neutrophils express constitutive amounts L-selectin and LFA-
1 and have non-activated granules in normal circulation before damage signals enter the blood stream 
(a). When damage signals reach the blood stream, the glycocalyx is reduced, exposing ligands on the 
endothelial surface. Damage signals cause neutrophil granule activation (b). Neutrophils release 
activated granules and adhere to the endothelial membrane using the firm adhesion molecule, L-
selectin (c). After passing through the endothelium, neutrophils can shed L-selectin and are now 
activated and in the damaged spinal cord (d).  
 

 

dachshunds, and is diagnosed with CT or MRI and treated with decompression injury 

[138-141], very similar to humans. In addition to diagnosis and treatment similarities, dogs 

suffering from IVDH and secondary SCI have a similar window for treatment modalities. 

Often times, rodent studies are “proof of principal” studies using genetically modified 

animals, or with treatment modalities administered within hours of injury. With clinical 
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patients, dogs or humans, proof of principal studies are out of the scope of what is 

possible for characterization of inflammation events following SCI.  

This work has been done to characterize the response of neutrophils to SCI in 

dogs for several days and weeks following spinal cord injury. To our knowledge, this is 

the first time peripheral neutrophil activity in dog SCI has been monitored beyond 0-3 

days post injury.  

 

 

 

Table 3.1 Population characteristics for subjects 
-M = miniature -LH= long-haired, MC= male castrated, FS= female spayed.  
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3.2 Methods 

3.2.1 Dogs 

 All animal procedures were conducted with approval from the Texas A&M 

University Animal Care and Use Committee (AUP# 2015-0129). Procedures in dogs with 

naturally-occurring SCI were performed with owner consent and consisted of standard 

medical and surgical care. Enrollment in this study was from July 2015 to June 2018. 

Dogs with SCI underwent physical and neurologic examination. Dogs were included in 

the study if they met the following criteria: 1) non-ambulatory for less than 48 hours from 

time of hospital admission; 2) no history of back pain; 3) no delivery of non-steroidal anti-

inflammatory drugs (NSAIDs) or glucocorticoids (GCs) within the last 30 days; 4) no 

vaccine administration within the last 14 days; 5) and SCI between the spinal levels of 

T3-L3. Dogs were excluded from further participation if they had additional neurologic 

disease unrelated to SCI, illness or disease in which the immune system was functioning 

abnormally (e.g. cancer or inflammatory bowel disease), inflammation unrelated to SCI 

(e.g. clinically significant skin infection), uncooperative, pregnant, or weighed less than 4 

kg (9lbs). If all inclusion criteria were met, then owners would give consent for the dogs 

to participate in 5 blood draws on the day of hospital admission (day 0) and days 3,7,30, 

and 90 post-surgery. The inclusion criteria of non-ambulatory status was assigned using 

the modified Frankel score [192]. Only dogs with a grade of 0 defined as paraplegia with 

no deep nociception, grade 1 defined as paraplegia with no superficial nociception, grade 

2 defined as paraplegic with nociception, or grade 3 defined as non-ambulatory 

paraparesis (weight bearing and non-weight bearing), were enrolled in this study.  



 

 58 

 Healthy dogs were recruited from Texas A&M University employees and 6 out of 

the 10 were matched for breed, sex, and age within 20% of the injured match. After 

matching 6 healthy dogs to the injured dogs, the AUP was amended to include an 

increased number of reference population dogs, and 4 of the 10 control animals were 

enrolled as reference controls that were chondrodystrophic breeds [193].  Healthy 

matched and reference control dogs (N=9) met the same inclusion and exclusion criteria 

as the injured dogs, with the exclusion of spinal cord injury.  

 

3.2.2 Neutrophil isolation 

Blood draws of 10 mLs were collected from the jugular vein using a 22 G needle 

and syringe and placed in 2 EDTA coated plastic 6 mL tubes. Blood in the EDTA tubes 

was transported from the clinic to the laboratory on ice. The following experiments were 

conducted at 4°C or using ice cold reagents. Whole blood was transferred to a 15 mL 

conical tube and centrifuged at 4°C for 10 minutes at 1800 rpm using a swinging bucket 

rotor. The supernatant was collected as plasma and was aliquoted and stored at -80°C. 

The remaining blood was mixed 1:1 with ice cold Phosphate-Buffered Saline, pH 7.4 

(PBS) and was carefully layered onto room temperature HistopaqueÒ-1077 (Millipore-

Sigma, Darmstadt, Germany, cat# 10771) on top of HistopaqueÒ-1119 (cat# 11191) and 

centrifuged at room temperature for 30 minutes at 1600 rpm with the break off. The top 

layer of cells was collected as peripheral blood mononuclear cells, and aliquoted and 

stored at -80°C in RPMI 160 Medium (ThermoFisher, Waltham, MA, cat# 11875093) with 

10% Fetal Bovine Serum (cat# 10437-036, FBS) and 20% Dimethyl Sulfoxide (Millipore-

Sigma, cat# D8418, DMSO). The bottom layer was collected as neutrophils into a fresh 



 

 59 

15 mL conical tube and washed twice with ice cold PBS and centrifuged at 4°C at 1050 

rpm for 4 minutes. Red blood cells were lysed by first freeing the cells from the bottom of 

the tube by gently pipette mixing with 80 µL of ice-cold PBS. Then, 2-3 mLs of ice-cold 

H2O was applied to the loosened cell pellet for promptly 30 seconds. Isotonicity was 

restored by adding a 1:1 volume of 2X PBS. Cells were washed twice with PBS and 

centrifuged at 4°C at 1050 rpm for 4 minutes. Cells were counted using 0.2% trypan blue 

exclusion dye and a Cellometer Auto 1000 (Nexcelom Bioscience LLC, Lawrence, MA). 

Neutrophils were brought to a concentration of 1x106 cells/mL with RPMI.   

 

 

 

Figure 3.2 Neutrophils oxidative burst activity 
Oxidative burst activity  in healthy and injured dogs as a measurement of median fluorescent intensity 
(MFI) of dihydrorhodamine 123 conversion to rhodamine 123 (R 123). A representative sample of a 
healthy dog (gray shaded) and the injured matched control on days 0,3,7, 30 and 90 (a-e). The 
summary of all 8 injured dogs on a Bland-Altman plot (f). The healthy dogs OBA were measured from 
a single blood draw (g).   
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3.2.3 Oxidative burst activity assays 

Neutrophils were isolated from dogs with spinal cord injury on the day of hospital 

admission (day 0) and days 3,7,30 and 90 post-surgery, and from healthy controls on a 

single day. A count of 400,000 cells were incubated in a 24-well culture plate in RPMI at 

37°C with 5.0% CO2 for 1.5 hours before the addition of 50 µM Dihydrorhodamine 123 

(DHR 123, Millipore-Sigma, cat# 109244-58-8). After 20 minutes incubation with DHR 

123, cells were transferred to round bottom tubes, centrifuged at 1050 rpm for 4 minutes 

at 4°C, and the supernatant was removed. Cells were resuspended in ice cold PBS with 

6% FBS (FACS Buffer) and underwent flow cytometry on a BD FACS Calibur (BD 

Biosciences, San Jose, CA) to measure the conversion of non-fluorescent DHR 123 to 

Rhodamine 123 in the FITC channel.  

 

 

             

Table 3.2 Individual changes in oxidative burst activity as measured by median fluorescent 
intensity changes for all dogs 
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3.2.4 Statistical analysis  

Flow cytometry standard files were exported and analyzed using FlowJo version 

10.4.2 (FlowJo, LLC, Ashland, Oregon). The ellipse tool was used to gate neutrophils 

based on forward and side scatter values, and MFI values were obtained. GraphPad 

Prism 7 (GraphPad Software Inc., La Jolla, CA) was used to create scatter and box plots. 

Data from injured animals were plotted on a Bland-Altman plot to detect differences 

among samples that were collected on different days [194].  

  

3.2.5 L-selectin expression 

A count of 300,000 neutrophils was incubated with 10 ng/mL Lipopolysaccharide 

from E. coli (Millipore-Sigma, cat# L2630) in RPMI at room temperature for 10 minutes. 

The remaining neutrophils were aliquoted and centrifuged 4°C at 1050 rpm for 4 minutes 

and resuspended in ice cold FACS Buffer and Human BD Fc Block (BD Biosciences, San 

Jose, CA, cat# 564219) following the manufacturer’s protocol. After blocking, cells were 

brought to a volume of 350 µL with FACS buffer and incubated with the following 

antibodies following the manufacturer’s protocols (1:80 dilution) and incubating on ice in 

the dark for 30 minutes: rat anti-mouse CD11b:FITC, Clone M1/70 (Biolegend, San 

Diego, CA, cat# 101206 ); mouse anti-human CD62L:RPE, Clone FMC46 (Bio-Rad, 

Hercules, CA, cat# MCA1076PET); and 7 Aminoactinomycin D staining solution for cell 

viability (7AAD, TONBO biosciences, San Diego, CA, cat# 10140-986). Neutrophils were 

centrifuged 4°C at 1050 rpm for 4 minutes and resuspended in 350 µL of fresh FACS 

buffer. Anti-Rat and Anti-Mouse BD CompBeads were incubated with 1 µL of antibody as 

per the manufacturer-s protocol and run on the BD FACS Calibur prior to all neutrophil 
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samples and used for compensation. Neutrophil suspensions with and without antibodies 

(unstained control) fluorescent intensities were measured on the FACS Calibur (BD 

Biosciences). Flow cytometery standard files were exported and analyzed using FlowJo 

version 10.4.2 (FlowJo, LLC, Ashland, Oregon). In FlowJo, the ellipse tool was used to 

gate neutrophils based on forward and side scatter values. Next, dead cells were 

excluded using a rectangle gate on cells that were 7AAD negative. Then, viable 

neutrophils were gated using the rectangle tool to isolate only cells that were CD 11b+. 

Finally, a rectangle gate was used to demarcate CD62LHigh and CD62LLow cells based on 

the average of the matched control animals mean fluorescent intensity scores (Figure 

3.3).   

 

 

 

Figure 3.3 Gating strategy for neutrophils expressing high amounts of L-selectin 
Neutrophils are isolated from blood and then the ellipse gate is applied to the side and forward scatter 
plot (a). Next, cells are gaited for negative 7-Aminoactinmycin (7AAD), a fluorescent dye that has a 
strong affinity for nuclear DNA and therefore will only bind to cells with dead cells (b). All neutrophils 
express constitutive amounts of CD11b, an adhesion marker that is functional for cell adhesion when 
in complement with CD18. Only neutrophils that were CD11b+ were gated for further analysis (c). 
Finally, L-selectin high cells were gated using a rectangle gate applied to the healthy control neutrophil 
scatter plots (not pictured). All L-selectin high gates were identical for all scatter plots obtained and 
percentage of L-selectin high neutrophils were calculated (d).  
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Figure 3.4 Percentage of cells with L-selectin high expression 
A representative of an injured animal with all 5 time-points, where there are more cells with L-selectin 
high expression 0-30 days post injury and very few at 90 days post injury (a). The healthy matched 
control dog has fewer cells that are L-selectin high expressing (b). The percentage of neutrophils 
expressing high amounts of L-selectin among all injured animals (c). Healthy animal expression of 
high L-selectin (d).  
 

 

3.3 Results 

3.3.1 Population characteristics 

There were 9 injured dogs that received decompression surgery and 9 healthy 

dogs that were used as age, breed, and sex matched controls or reference controls (Table 

3.1). For the 9 injured dogs, the median age was 4 years (range 2-9 years). The most 

common breed in the injured group were dachshunds (n=6, 67%), while the remaining 

dogs were of various breeds (n=3, 33%). There were 5 neutered males (56%), 3 spayed 

females (33%), and 1 intact female (11%). The median duration between first reported 

time of injury and blood collection on day 0 was 18 hours (range 10-48 hours). The median 
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MFS at the time of the blood draw on day 0 was 2 (range 0-3), indicating non-ambulatory 

paraplegia.  

There were 6 healthy control dogs that had the same age, breed, and sex 

characteristics as the injured animals, with the exception of all the dogs in the control 

group were either spayed or neutered, respectively (Table 3.1). After collecting 6 matched 

from chondrodystrophic breeds to be used as reference controls [195], the AUP was 

amended to allow for more healthy control blood collections. 

 

3.3.2 Oxidative burst activity in peripheral circulating neutrophils 

To measure OBA in circulating neutrophils, the conversion of non-fluorescent DHR 

123 to fluorescent R123 was measured in SCI and healthy dogs (Table 3.2). Higher MFIs 

indicate higher levels of OBA by isolated neutrophils. One individual injured dog and a  

second individual matched-control dog is shown in Figure 3.2.  Of the 9 injured dogs 

enrolled in the study, 7 of them were measured for OBA. On day 0, the range of MFIs 

was between 9.73-30.4 for 6 dogs that had blood drawn on day 0. The range of neutrophil 

activity on day 3 was 20.7-36.8 for 6 dogs. Day 7 MFIs ranged from 21.1-32.8 for 5 dogs. 

For the 5 dog neutrophils measured on day 30, the MFI range is the largest, from 11.6-

35.8.  Measurements of MFI for all injured animals were plotted on a Bland-Altman plot 

to detect differences in measurements outside the range of normal values or +/- 2 

standard deviations away from the mean (Figure 3.2F, dotted lines).   
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Table 3.3 Individual changes in L-selectin high as measured by rectangle gate inclusion 
 

 

3.3.3 L-selectin expression in peripheral circulating neutrophils 

L-selectin expression was measured using an antibody to L-selectin. The gating 

strategy for identifying L-selectin expression is shown in Figure 3.3A-D. The percentage 

of cells that were expressing high levels of L-selectin were measured using a rectangle 

gate, and an identical gate was applied to all scatter plots. A representative sample of 

one injured animal (Figure 3.4A) and the matched healthy control (Figure 3.4B) are 

shown. Expression of L-selectinhigh neutrophils for all injured animals are shown in Figure 

3.4C and individual dog L-selectinhigh neutrophils are shown in Table 3.3. The percentage 

of cells that were expressing high amounts of L-selectin for the healthy controls is shown 

in Figure 3.4D.   

 

Subject Group Case # L-selectin (% cells)
SCI Surgical Day 0 Day 3 Day 7 Day 30 Day 90

TAMU # 17 64.9 62.5 66.6 NA 8.2
TAMU # 19 49.3 22.2 37 68.8 31.1
TAMU # 20 15.3 22.1 9.1 70.1 33.2
TAMU # 21 73.4 27.5 NA NA NA
TAMU # 22 38.9 11.7 42.9 NA NA
TAMU # 23 66.2 41.3 33.9 43.1 17.4
TAMU # 24 74.3 64.7 53.2 67.6 13.5
TAMU # 27 12 23.5 13.1 32.6 44.5
TAMU # 28 20.6 NA NA 46.4 41.3

Uninjured
TAMU # 5 7.5
TAMU # 16 NA
TAMU # 18 41.1
TAMU # 25 47.2
TAMU # 26 12.2
TAMU # 29 22.4
TAMU # 30 30.7
TAMU # 31 34.1
TAMU # 33 10.3

Single Day Blood Draw
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Figure 3.5 Changes in L-selectin high neutrophils after stimulation with LPS 
Lipopolysaccharide (LPS) measured by rectangle gate inclusion and then subtracting the LPS+ L-
selectin high from the LPS- sample. All neutrophils stimulated with LPS expressed higher amounts of 
L-selectin on the cell surface. Representative samples of LPS- and LPS+ from single subject from the 
injured group (TAMU # 28, A). Representative samples of LPS- and LPS+ from single subject from 
the control group(TAMU # 29, B).  
 
 
 

Neutrophils were incubated with LPS to artificially regulate L-selectin expression 

on the cell surface (Figure 3.5). In all cases, LPS induced L-selectinhigh expression. 

Differences between the amount of L-selectinhigh expression were calculated by 

subtracting L-selectinhigh values from the LPS- sample from the L-selectinhigh LPS+ values 

(Table 3.4). The highest values indicate a higher capacity for expressing higher amounts 

of L-selectin. The largest differences between LPS+ and LPS- values were from day 90 

samples and the healthy controls, although these results were not significant (p<0.05).   
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3.3.4 Trends from day 0 and day 3 from OBA and L-selectin 

OBA values on day 0 all increased on day 3, with the exception of one subject 

(Figure 3.6A). Inversely, L-selectin expression decreased from all animals with the 

exception of 1 individual (Figure 3.6B).  

 

3.4 Discussion 

 These experiments were conducted to characterize the neutrophil response in 

peripheral circulation following a naturally-occurring spinal cord injury in canine clinical 

patients. Even with the abundance of successful pre-clinical trial data in experimental 

rodent studies, there is still a high failure rate for human large-scale clinical SCI studies 

[73, 196]. Development of highly reproduceable and standardized injuries that show 

statistical significance between groups have lead researchers to rely on rodents for pre-

clinical trials [119].  Recent attention has been given to the importance of large animal 

SCI research to bridge the gap between human and experimental rodent SCI [121, 197]. 

Likewise, the role of neutrophils in inflammation following SCI has been given more 

credence than in years past  [184]. More studies characterizing the immune response in 

large animal models are needed to help identify areas where preclinical work can be 

improved and large animal models can be used when preclinical work fails to reach full 

potential in human clinical trials.  

 This study in dogs with SCI addresses some of the concerns with experimental 

rodent SCI since the individuals in this study were suffering from spontaneous injury, 

clinically relevant patient enrollment (i.e. non-ambulatory inclusion criteria), sufficient 
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blood volumes for repeat sampling, no polytrauma, and no prior administration of GCs or 

NSAIDs.  

 

 

Table 3.4 Individual changes in L-selectin high neutrophils after stimulation with LPS  
Values were obtained by subtracting the LPS+ value from the LPS- value for each sample on each 
day.  
  

 

Patients were not given GCs or NSAIDs prior to enrollment or during the course of 

the study. This is imperative to mention because anti-inflammatories have been shown to 

directly influence the amount of ROS production and L-selectin expression in circulating 

neutrophils. In humans, the NSAID diclofenac induces shedding of L-selectin [198]. This 

mechanism is believed to be achieved by the induction of ROS production to break thiol 

bonds in L-selectin [199]. Therefore, as ROS production inside neutrophils increases, 

then L-selectin expression is reduced.  
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Figure 3.6 Opposing patterns of OBA of L-selectin expression on days 0 and 3 in dogs with 
spinal cord injury.  
In OBA of dogs injured dogs, all activity increases from day 0 to day 3 with one exception (TAMU # 
24, panel A). In the same dogs, with the addition of 2 additional dogs, all cells have fewer L-selectin 
high expressing cells on day 3 compared to day 0 (exception is TAMU # 27, panel B). 

 

 

The inclusion of a day 0 time-point in this study was significant. Dogs enrolled in 

this study were clinical patients and the sustained injury for all individuals was naturally-

occurring. All blood draws for this time-point were taken prior to surgery, laminectomy, 

and skin and muscle incisions. This means that neutrophil activity on day 0 was in 

response to SCI and not any extraneous damage to the skin, muscle, or bone, as there 

would be in experimental SCI.  

 Oxidative burst activity of circulating neutrophils in dogs with SCI was highest 3 

and 7days post-injury. This is remarkable considering that neutrophils are only expected 

to be entering the damaged cord 1-3 days post-injury. Although neutrophil activation in 

circulation does not directly indicate their end goal is to enter the injured cord, increased 

activity in the periphery does leave room for speculation the reasons why this is 

happening 7 days after spinal cord injury but not in healthy animals. Measurements of 
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OBA were decreased back to normal levels by day 90, compared to matched and 

reference healthy control dogs.  

 All measurements of OBA from injured dogs were plotted on a Bland-Altman plot 

to detect differences between two groups. Traditionally, a Bland-Altman plot is used to 

identify difference in measurements between two different tests or protocols. However, 

this method has been used to characterize neutrophil surface molecule expression in 

other disease models [194]. In this experiment, 4 dogs of the 7 measured had elevated 

levels of oxidative burst activity on day 3 when compared to the healthy control dogs. This 

result is consistent with studies from humans where neutrophil activity is high days after 

spinal cord injury [200].  

 The percent of neutrophils with L-selectinhigh expression was the most variable on 

day 0, and surprisingly highest on day 30 in injured dogs compared to healthy dogs. The 

variability on day 0 in understandable because the inclusion criteria for this study included 

dogs that sustained injury anywhere from 0- 48 hours prior to hospital admission. The 

large variability of measurements on day 0 includes a large gap between 3 animals that 

had smaller percentages of cells producing high amounts of L-selectin (range 12.0-20.6) 

and 6 animals with higher percentages of L-selectinhigh expression (range 38.9 – 73.4). 

One may conclude that the 3 lowest measurements on day 0 are from dogs that sustained 

less severe injuries when compared to the other injured animals. However, the 3 lowest 

measurements on day 0 were collected from dogs 13,15, and 45 hours after injury. 

Similarly, the MFS for these animals (grades 2,3,3) were similar to the median for the 

group. Because L-selectin has a cyclical rhythm throughout the day [201], the time of 

blood collection from day zero was analyzed. The blood draws on day 0 ranged from 8:00 
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am – 4:30 pm. The healthy control dog blood draws were all collected at 8:00 am. On 

days 3 and 7, blood draws were performed from 8:00-10:00am. On days 30 and 90, the 

blood draws occurred from 9:00 am-11:00 am. The finding that most consistently high 

percentage of L-selectinhigh expression on neutrophils on day 30 is of note because 

neutrophil activity is thought to be insignificant at 30 days post-injury. Although, these 

cells are collected from peripheral circulation and could therefore be responding to other 

systems other than the injured CNS, for example, the incisions from surgery or the 

laminectomy that all these injured animals were treated with.  

 Neutrophils were incubated with LPS, the main component in bacterial cell walls. 

LPS exposure causes activation of neutrophil granules in a calcium dependent manner. 

Because the blood samples were collected in EDTA coated tubes that chelates all 

available Ca2+, induced neutrophil activation could not be determined in these 

experiments. However, LPS does interact with surface expression of L-selectin in a Ca2+ 

independent manner. In these experiments, neutrophils incubated with 10ng/mL LPS all 

expressed more L-selectin on their cell surface. This result is inconsistent with both 

rodents and human neutrophils. When exposed to LPS, human and rodent neutrophils 

will robustly shed L-selectin [202, 203]. It is possible that induced expression of L-selectin 

by dog neutrophils when exposed to LPS is a species-specific condition.  

 The two most limiting factors for this study were patient enrollment due to exclusion 

criteria, and variability of enrolled patients demographics (age, sex, and breed, etc.). 

Often times, dogs with IVDH do not show obvious signs of acute non-ambulation, but 

rather, mild symptoms progress over time. Dogs enrolled in this study had a clear event 

in which the owner noticed their dog “went down” at a specific time, or small window of 



 

 72 

time, for example, when they were at work and arrived home. Many cases seen at the 

Texas A&M small animal hospital during the enrollment period were put on observation 

for more than 48 hours before receiving surgical intervention, and were therefore not 

eligible to participate. Another related complication to the 48-hour injury onset inclusion 

is the administration of GCs or NSAIDs prior to enrollment. Often time these animals are 

in pain and so primary care physicians will administer pain medication as well as 

recommending Texas A&M for consulting. GCs and NSAIDs directly affect both OBA and 

L-selectin expression on leukocytes in circulation, and therefore these dogs were 

excluded from the study. Another limitation of this study was the amount of variability seen 

across the population of dogs suffering from IVDH treated at Texas A&M Small Animal 

Hospital. A power calculation was performed using human data to detect a 1.5-fold 

change difference between groups. This result yielded 19 animals per group, however, 

due to patient availability and the stringent inclusion criteria, the enrollment period was 

closed after only 9 animals were enrolled.  

 In conclusion, this study is the first to characterize neutrophil function in a 

longitudinal analysis following naturally-occurring spinal cord injury. Like in humans, dog 

neutrophils are producing reactive oxygen species for a prolonged period post-injury. Like 

rodents, dog neutrophils have reduced expression of L-selectin when ROS production is 

high. However, repeated studies with larger samples sizes should be performed to 

confirm the results seen here.  

 

3.5 Future directions 

 The AUP for this project from Texas A&M University included amendments for the 

addition of two groups:  SCI injured non-surgical dogs, and dogs with long bone fractures. 
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With a longer recruitment period and additional research coordinating staff, these groups 

of dogs could be included in future studies of neutrophil activation characterization in 

naturally-occurring spinal cord injury. It would also be interesting to include another group 

of dogs suffering from bacterial meningitis to have both an infection control and a trauma 

control (long bone fractures). The addition of the non-surgical SCI cases would be to 

further elucidate the action of neutrophils after major surgery. These experiments should 

be repeated in rodent models of SCI where injuries are induced after incisions through 

muscle and skin and laminectomy are performed. 
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4. NEUTROPHILS IN DAMAGED SPINAL CORD TISSUE 

4.1 Background 

 In humans, spinal cord injury (SCI) most often occurs secondary to car accidents, 

and there are thousands of new injuries each day in the United States and around the 

world [1]. Damage to the spinal cord occurs after a mechanical injury to the spine, which 

causes damage to blood vessels, tissue swelling, cord laceration or transection, cell 

death, and eventually glial scarring. Human injury can be classified based on pathological 

features into 4 different types of lesions: 1) contusion/cyst, 2) cord maceration from 

massive compression, 3) cord laceration due to open injuries, or 4) solid cord injury (injury 

affects mostly white matter with gray matter sparing) [204, 205]. In human injury, there is 

often damage to the ventral part of the cord due to vertebral luxation or disk herniation.  

 In experimental SCI, rats are subjected to compression or contusion injuries by 

first anesthetizing the animal and performing a laminectomy to expose the spinal cord 

and then inducing compression or contusion injury with clips or weight-drop devices, 

respectively [128, 130, 131]. Contusion injuries with a weight-drop device induce injury to 

the dorsal side of the cord, although sufficient weight can cause complete paralysis in 

most cases[130, 133]. Histopathological features of rat experimental injury are 

comparable to human injury in regards to MR signal enhancement, gross lesion size, and 

amount of intact or destroyed tissue as seen in histological staining patterns [130].  In 

both human and rodent SCI, there is an initial influx of neutrophils that peaks 1-3 days 

post injury [35, 206-208], followed by a secondary infiltration of monocyte-derived 

macrophages that can last for several months or years [118, 209, 210].  
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Table 4.1 Case summaries for 3 dogs with spinal cord injury  
Spinal levels are the areas of diagnosed injury from necropsy reports.  
 

 

Although experimental SCI is analogous to structural changes seen in human 

injury, rodent models of induced injury lack heterogeneity inherent to clinical injured 

patients. To this end, pet dogs with naturally-occurring SCI can be viewed as translational 

clinical trial model of SCI. Injured dog spinal cords bear many of the same lesion patterns, 

early myelin abnormalities and axon damage as seen in humans [140]. Like humans but 

unlike rodents, dogs can sustain naturally-occurring spinal cord injuries. Commonly, this 

transpires secondary to intervertebral disk herniation (IVDH) [151].  

  Like both humans and rodents, dogs have an inflammatory response following 

SCI [77, 82, 211]. In small number of IVDH cases, dogs can sustain a myelomalacia that 

is accompanied by hemorrhage and extensive neutrophil and macrophage infiltration 

[144, 145, 212]. This progressive oxidative stress is an extreme type of neuroinflammation 

following spinal cord injury where the usual mechanisms are inadequate for any kind of 

recovery, and may be a useful example of secondary injury at the far end of the spectrum 

[145]. Although there is mention of neutrophil infiltration in these cases, there has yet to 

be confirmed presence of neutrophil infiltration in dog spinal cord following injury. In this 

study, neutrophil infiltration in the injured spinal cords of 3 dogs will be described.  
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Figure 4.1 Case 1 neutrophils in the spinal cord at the level of injury  
20x magnification (a) and 60x magnification (b). Red arrows are pointing to intact blood vessels. 
Yellow and green arrows indicate neutrophils and lymphocytes, respectively.  
 

 

4.2 Neutrophils in the injured spinal cords of dogs 

Three cases of dogs with IVDH and SCI from patients seen at Texas A&M Small 

Animal Hospital were included in this description (Table 4.1). Cases were identified from 

necropsy cases completed by the pathology department in 2017 and 2018 in collaboration 

with Dr. Brian Porter. The inclusion criteria for these cases were, 1) dogs suffered from 

acute spinal cord injury, 2) dogs were euthanized 0-7 days post-injury (range for these 

cases: 2-4 days), 3) dogs were not given glucocorticoids (GCs) or non-steroidal anti-

inflammatory drugs (NSAIDs) one week prior to euthanasia, and 4) histology was included 

as part of necropsy procedures. 

Case 1 was a 9-year-old, neutered male Maltese who was first discovered to have 

discomfort in his hindlimbs while attempting to lie down. The injury progressed until the 
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patient was non-ambulatory and deep pain negative. Euthanasia was elected by the 

owner 48 hours after the initial onset of discomfort. Case 2 was a 3-year-old spayed 

female long-haired Chihuahua who had a history of urinary tract infections two months 

prior to the onset of IVDH. The patient was non-ambulatory and deep pain negative for 4 

days prior to euthanasia. This patient was given unknown pain medication from a primary 

care veterinarian prior to admission at Texas A&M Small Animal Hospital.  Case 3 was a 

4-year-old neutered male Yorkshire Terrier who was first ataxic and in pain when held. 

The situation progress until the third day when the patient became non-ambulatory and 

deep pain negative. On the third day, the patient was given carprofen, a common NSAID 

prescribed for pain in veterinary medicine. On the fourth day the patient was taken to 

Texas A&M. An MRI was performed and the patient was shown to have mildly 

compressive extradural intervertebral disc extrusion at L1-2 with severe SCI including 

intraparenchymal hemorrhage. Also, on physical examination on the fourth day, the 

patient had hyperesthesia, and euthanasia was elected that same day.  

 In all cases, neutrophils were seen in the injured spinal cords. In case 1, there was 

no intervertebral disk space collapse observed grossly, but histopathology revealed a 

subdural hemorrhage with extruded disk material in the lumbar spinal cord. There were 

multiple examples of neutrophils in the tissue, near but outside of intact blood vessels 

(Figure 4.1).  Case 2 gross pathological findings included acute, extradural hemorrhage 

extending from T11 to the sacrum. There were some, but not many neutrophils in the 

tissue of that were outside intact blood vessels (Figure 4.2). Case 3 gross diagnosis was 

consistent with the clinical diagnosis of T13-L1 IVDH with myelomalacia. 

Histopathological analysis confirmed extensive myelomalacia and hemorrhage. There 
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were multiple neutrophils present in the lumbar spinal cord (Figure 4.3). There was 

obvious extensive hemorrhage in the tissue, along with some intact blood vessels.  

 

 

 

Figure 4.2 Case 2 neutrophils in the spinal cord at the level of injury 
20x magnification (a) and 60x magnification (b,c). Red arrows are pointing to intact blood vessels. 
Yellow and green arrows indicate neutrophils and lymphocytes, respectively.  

 

4.3 Discussion 

As with human injury, findings varied between cases. However, one consistent 

finding between all 3 cases was that neutrophils were present in the injured spinal cords 

of all three cases. There were more neutrophils observed in the spinal cord of case 3 

compared to cases 1 and 2. This is likely due to the fact that the amount of hemorrhage 

was greater in case 3 compared to the others. In both case 2 and case 3, dogs had 

received pain medication prior to tissue collection.  
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Figure 4.3 Case 3 neutrophils in the spinal cord at the level of injury 
20x magnification (A) and 60x magnification (B-C). Red arrows are pointing to intact blood vessels. 
Yellow and green arrows indicate neutrophils and lymphocytes, respectively.  
 

 

In summary, neutrophils were identified in the spinal cords of 3 cases of canine 

IVDH and secondary SCI. This result is consistent with what is seen in both spontaneous 

human injuries, as well as in rodents with experimental injury. In addition, these results 

are also consistent with the high variability seen in human clinical settings. This 

characterization of neutrophil infiltration is a valuable contribution to the effort to make 

dog spinal cord injury clinical trials more prolific in order to advance more successful 

treatments into large-scale human clinical trials that might otherwise fail by going straight 

from rodent to humans. 
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5. DISCUSSION 

 

 The current studies were designed to take advantage of a naturally-occurring 

clinical model of spinal cord injury and allowed us to characterize the activity of neutrophils 

over time following spinal cord injury in dogs. Because neutrophils are transient cells 

under normal physiological conditions, and experiments in rodents identify macrophages, 

not neutrophils, as the primary driver of post-injury inflammation, one might expect to see 

low levels of neutrophil activity 1-3 days after injury. However, data reported here 

indicates that neutrophils in circulation and in the damaged cord have prolonged 

activation and increased presence, respectively. In addition, there is evidence reported 

here to support the hypothesis that dogs, like humans and also rodents, have a higher 

incidence of arachidonic acid metabolism in the cerebrospinal fluid following SCI than is 

seen in homeostatic conditions.   

CSF was collected in a single sampling from dogs with spinal cord injury and from 

purpose bred healthy control dogs. Increased concentrations of AA pathway metabolites 

were detected in the CSF of several canine patients who suffered from spinal cord injury, 

compared to purpose bred healthy controls. Because neutrophils are found in increased 

numbers in the CSF of dogs with SCI [96], and neutrophils are main cells induced to 

metabolize arachidonic acid [27, 159, 213], increased AA metabolism in CSF of dogs with 

spinal cord injuries supports this result. In our studies here as well as previously reported 

findings indicate that levels of some AA metabolites are steady state (TXB2) or decreased 

levels (LTC4 [23]) in dogs with spinal cord injury seem to contradict results from studies 
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conducted in rabbits and rats [214-216]. However, timing of sampling as well as collection 

techniques differed between dog clinical patients and experimental laboratory animals. 

 Neutrophils were isolated from peripheral blood of dogs with spinal cord injuries 

on the day of hospital admission (day 0) and then at 3,7,30 and 90 days post-injury, to 

evaluate the degree and length of neutrophil activity following spinal cord injury and 

decompression surgery. Despite the central dogma that neutrophils contribute only 

negligible amounts to inflammatory cascades after 1-3 days following spinal cord injury, 

we present evidence to suggest that neutrophils are activated in circulation longer than 

the 1-3 days, and that neutrophils are present in the injured spinal cords of dogs. 

Peripheral blood neutrophil production of ROS was elevated in dogs with spinal cord 

injury compared to healthy control dogs. This result is consistent with peripheral blood 

neutrophil activity  in human SCI [200]. Peripheral blood neutrophil expression of L-

selectin was variable across all measurements of injured animals at 0,3,7,30 and 90 days, 

but was particularly variable on the day of hospital admission. This variability is inherent 

in clinical studies and is particularly notable because L-selectin expression is cyclical 

under normal physiological conditions [201], and the dog enrolled on day 0 occurred at 

the time of hospital admission which varied for each animal.  This evidence supports the 

hypothesis that neutrophils may play a key role in inflammation along with macrophages 

following spinal cord injury.   

 In recent past, focus has been on macrophage polarization as the main driver of 

neuroinflammatory cascades, while the role of neutrophils has been largely ignored [191]. 

Indeed, a study from Hannover, Germany has yielded important information on the 

activation of macrophages in SCI in dogs, but the same study also suggested that 
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neutrophils are not present in the injured dog cord [77]. In these experiments, we report 

the presence of neutrophils in the injured cord of 3 dogs with spinal cord injuries. In all 3 

cases, neutrophils were found to be in the parenchyma and outside of intact blood vessels 

in the area and in areas lacking large areas of hemorrhage. This result is inconsistent 

with other studies of dog SCI, but consistent with models of rodent and human SCI.  

 The following sections are dedicated to the discussion of these results in addition 

to the unexpected findings, limitations of clinical studies in dogs, and the implications of 

study for future research of large animal naturally-occurring spinal cord injury.  

 

5.1 Neutrophil activity following SCI  

 We addressed the question of whether or not neutrophil activity was prolonged in 

dogs with SCI for longer than 1-3 days post injury. The reason for exploring this area is 

due to the fact that the neutrophil contribution to inflammatory events after CNS injury 

have been largely ignored. This makes sense when considering the naturally short half-

life of neutrophils in circulation and tissues under normal physiological conditions. After 

injury neutrophils can survive for longer than a few hours and contribute to inducing and 

prolonging inflammatory cascades [20].  However, macrophages can survive in the 

injured cord for several months and even years [12]. Thus, research has rightfully focused 

on factors driving macrophage polarization. And yet, phagocytosis of neutrophils by 

stimulated macrophages leads to a shift in polarization to an anti-inflammatory state [16], 

an increase in release of IL-10 and TGFb [217], increased regulation of arginase-1, and 

decreased regulation of nitric oxide synthesis [218]. Because of this ability by neutrophils 

to drive the polarization state of macrophages in spinal cord injured tissue, more work is 
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needed to further elucidate the important role played by neutrophils in neuroinflammation. 

Additionally, because neutrophils are reactive to soft tissue damage and skin incisions, 

neutrophil activity needs to studied in a naturally occurring model of neuroinflammation 

as seen in clinical human and dog patients.  

 

5.1.1 Neuroinflammation in dogs with SCI 

These experiments were conducted in dogs with spinal cord injuries because of 

the spontaneous nature of the injury. On the day of hospital admission, day 0, blood draws 

were conducted before the dogs underwent decompression surgery. This is notable 

because this means that all results from day 0 are a direct result of neutrophil responses 

to the herniated disc and SCI. Dogs as clinical patients with spontaneous injury are used 

in other models of CNS disease. Canine tumors have been increasingly more common in 

cancer research settings because they develop spontaneously [136, 137].  Similar to 

spinal cord injury in dogs and in humans, gliomas in dogs are highly variable and cover a 

broad range of tumor subtypes and have varying genetic backgrounds [219, 220].  

These experiments were also carried out in dogs because dogs have a more 

similar immune system to humans compared to rodents. In normal circulation, dogs have 

similar neutrophil percentages of total white blood cells to humans [142]. Also, like 

humans, dog neutrophils constitutively express LFA-1 (CD 11/CD 18 in complex). Dogs 

have been reported to have mutations in the LFA-1 complex [143]. Activated 

macrophages are present in the damaged cord of dogs with SCI, but neutrophil infiltration 

was not documented in these experiments [77, 82]. Like humans, there is a notable 

increases of neutrophils in the CSF of dogs following SCI [96]. 
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5.1.2 Cerebrospinal fluid arachidonic acid pathway metabolism from dogs 

 The hypothesis was that AA metabolism would have an overall increase in 

pathway regulation in the cerebrospinal fluid of dogs with SCI when compared to healthy 

dogs. CSF samples from both injured and healthy dogs were sent for analysis on a solid 

phase extraction-liquid chromatography-electrospray ionization tandem mass 

spectrometry (MS/MS).  This technique was optimized for blood and urine samples [221-

223]. CSF samples have also been analyzed with MS/MS [224]. Metabolites in the gut 

microbiome have utilized MS/MS [225, 226], but to our knowledge, this is the first report 

of CSF metabolite analysis in dogs with spinal cord injury.  

 Out of the over 70 metabolites measured in dog CSF with MS/MS, only 19,20 19,20 

DiHDPE was significantly overexpressed in dogs with SCI when compared to healthy 

dogs. Although this result is consistent with elevated levels of free-floating AA and DHA 

after SCI, elevation of 19,20 DiHDPE in the serum of humans and rats is associated with 

increased ingestion of fish oil as a dietary supplement 19,20 DiHDPE [171, 172]. It is 

unclear from this discovery-based sampling of CSF in spinal cord injured dogs if an 

increased amount of 19,20 DiHDPE is an attempt to mitigate pro-inflammatory events by 

shifting AA metabolism to more anti-inflammatory pathways and this pathway should be 

targeted for promotion. On the other hand, increased 19,20 DiHDPE could simply just be 

a biomarker for AA metabolism in CSF of animals with CNS injury. Follow up experiments 

on the levels of DiHDPE need to be explored before any speculation on the meaning of 

19,20 DiHDPE levels in CSF of dogs with SCI.  
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The studies presented here,  as well as previously reported studies, have detected 

steady levels of TXB2 and decreased levels of LTC4 in the CSF of dogs with SCI [23]. 

These results seem to contradict results from small mammal studies where TXB2 and 

LTC4 levels were high in the CSF of rabbits [227],  and in the CSF and spinal cord of rats 

[214-216]. In these experimental SCI studies, sampling of CSF, blood, and spinal cord 

tissue was done minutes to hours after injury, whereas in our study the average duration 

from injury onset to sample collection was 23 hours.  

 

5.1.3 Neutrophil activity is prolonged in circulation following SCI in dogs 

 We set out to characterize neutrophil activity in circulation from dogs with SCI by 

isolating neutrophils from peripheral blood and measuring the amount of oxidative burst 

activity and the amount of L-selectin expressed on the cell surface. Additionally, 

neutrophils were also cultured with LPS, the main component of bacterial cell 

membranes, to induce L-selectin expression. In these experiments, OBA was increased 

above normal levels in some individual dogs with SCI. Expression of L-selectin was 

variable in all dogs with SCI and healthy individuals, and was dependent on the time of 

day the sample was collected. Inducing L-selectin expression increased L-selectin 

expression in all cases. The characterization experiments discussed here are important 

to report for future experiments where treatments for humans are going to mitigate 

neuroinflammatory events.  

 Oxidative burst activity is a measure of the level of reactive oxygen species 

production by neutrophils. In this study, neutrophil OBA was increased to above basal 

levels in some individuals at the time of hospital admission, and also 3- and 7-days post 
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injury. In two individuals, OBA was increased 30 days after injury. The high variability of 

these clinical samples is consistent with what is seen in human patient neutrophil OBA 

[228]. These results are also consistent with what is seen in human neutrophils at 1-7 

days post injury [200], but to the best of our knowledge, 30 and 90 days post injury is the 

longest neutrophil activity has been measured in clinical patients. These results are 

inconsistent with data from rodents that find neutrophil activity is reduced as soon as 1-3 

days post injury [113, 207, 229]. However, in experimental rodents, neutrophil activity has 

not been measured up to 30- and 90-days post injury. It is possible that rodent neutrophils 

in circulation respond differently to SCI those in dogs and humans, or due to life-span 

differences between species that the temporal axis of neutrophil activation is different 

between humans and large animals versus rodents.  

L-selectin expression was found to be highly variable in dogs with SCI compared 

to healthy animals. This result is consistent with both human and rodent expression of L-

selectin, as the adhesion molecule is constitutively expressed and regulated on a cyclical 

pattern throughout the day. Although consistent with human data, it is of note that the 

results reported here were from a low number of individuals (N=9) and with high variability 

within groups of measurements from each day. 

Because induction of neutrophil ROS production is Ca2+ dependent, in these 

experiments induced OBA activity could not be measured. Blood samples were collected 

in EDTA tubes which chelated all excess Ca2+. However, LPS to L-selectin binding is a 

calcium independent process [230]. Isolated neutrophils from healthy and injured dogs 

were incubated with LPS prior to flow cytometric analysis. In LPS treated neutrophils, the 

amount of increased varied with each animal and the amounts were highest on days 90 
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and in controls, although these increases were not significant. In all samples measured, 

LPS induced expression of L-selectin. This result is contrary to other studies where LPS 

induced the shedding of L-selectin in both rats [230-233] and humans [234-236]. Inability 

of dog neutrophils to react to fMLP, a peptide released by and unique to bacteria, has 

been well documented [142, 237, 238]. To the best of our knowledge, this appears to be 

the first documented result of dog neutrophil response to LPS. The unique ability of canine 

neutrophils to respond to LPS stimulation by inducing L-selectin expression appears to 

be species specific. Furthermore, this could explain the result of highly variable L-selectin 

expression on neutrophils from dogs with SCI, in which neutrophil extravasation is 

regulated by another selectin or integrin complex other than L-selectin.  

  

5.1.4 Neutrophils are present in the injured spinal cords of dogs 

  The identification of neutrophils in the spinal cords of dogs with SCI reported here 

is the first documented instance of neutrophil infiltration in this model system. This finding 

is consistent with observations in human and rodent injury [35, 206-208]. Infiltrating 

neutrophils have been mentioned as a key characteristic in a small population of severe 

SCI in dogs called myelomalacia [144, 145, 212]. And yet, neutrophil identification was 

not confirmed in these studies. Most studies of neuroinflammation following SCI do not 

focus on neutrophil contribution, but rather the more robust monocyte derived 

macrophage that lasts in the damaged tissue for months or years after injury. Research 

in dogs with SCI is no exception to this rule, as focus in recent studies has been on 

macrophage polarization in the injured cord [77]. Although the number of cases was 
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minimal, the first observation of neutrophils in the damaged cords of dogs in a valuable 

contribution to the field of neuroinflammation research in a large animal model of SCI.  

 

5.2 Canine clinical research models  

 Using dogs in translational medicine as pre-human clinical studies is increasing in 

popularity in regards to characterizing and treating neurological deficits prior to studies in 

human medicine [197]. Indeed, clinical trials with pet dogs are already carried out very 

similar to experimental design in human medicine [121]. Dogs have similar environmental 

variations when comparted to humans, such as genetic variability between breeds, age, 

and sex. Furthermore, dogs live in the exact same environments as humans. In fact, 

humans and dogs have the similar gut microbiomes [239]. Many drugs used in human 

medicine are also safe for use in dogs. However, using clinical canine patients in pre-

human clinical trials is not without difficulties. There are challenges in translating any 

study from one species to another [240]. Dogs in clinical trials have human owners, and 

thus have the same limitations as human studies including response bias and missing 

data. Like in human studies, there are difficulties in collecting consistent and high-quality 

samples post-mortem. Some limitations of using pet dogs in research studies are outlined 

in this section.  

   

5.2.1 Use of non-steroidal anti-inflammatory drugs  

 Dogs were excluded from enrollment in this study if they received glucocorticoids 

or non-steroidal anti-inflammatory drugs within the previous 30 days. This enrollment 

requirement was included for two reasons. First, administration of NSAIDs causes 
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adverse effects on the kidney in dogs [241-243]. Second, NSAIDs and GCs directly affect 

neutrophil activation [243-245]. Despite the acute adverse effects of NSAIDs on kidney 

function, some NSAIDs are still used in veterinary medicine for short-term use for pain 

management [246, 247]. In the context of spinal cord injury, GCs do not benefit inured 

dogs [248]. However, NSAIDs have been associated with success of recovery after SCI 

injury in dogs and dogs administered NSAIDs were less likely to experience injury 

recurrence [248, 249]. Although NSAIDs do have a positive effect on SCI outcomes, it 

should be noted that the effects of NSAIDs are only associated with minor improvements 

in outcome and recovery. The use of NSAIDs alone have not been proven to be an 

effective treatment for spinal cord injury in dogs or in humans [250].  

 

5.2.2 Repeated measures in clinical studies  

 The ability to serially measure neutrophils in the circulation of clinical patient dogs 

with SCI was one of the most compelling aspects of this work. Attempting to analyze serial 

measures of 9 dogs with SCI and multiple missing timepoints was the most challenging 

barriers to overcome. Clinical veterinary patient dogs with spinal cord injury enrolled in 

this study were subjected to 5 blood draw repeated measurements. In this study, there 

were multiple missing measurements throughout the study. Missing values are inherent 

in human clinical trials with repeated measures [251, 252]. Missing values can be 

categorized in 3 different ways as either completely random, missing at random, or non-

random [253].This study was no exception from human clinical studies with repeated 

measurements as we had all 3 types of missing values. The most common days for 

missing values were at the end of the study. This makes sense as owners enrolled their 
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dogs and then dropped out for various reason such as too far travel distance from the 

clinic, missed or forgotten appointments, poor outcome, or even good outcome. On days 

30 and 90 animals were mostly recovered from the injury and surgery, so their neutrophil 

counts were lower than days just after surgery. On a couple of occasions, the dogs 

recovered earlier than 7 days post-surgery. On those cases when the owner was traveling 

from rural Texas hundreds of miles away, it did not make sense to keep the animal 

enrolled in the study for a single blood draw. In these cases, blood draws could occur on 

earlier days, but in some cases the animals were discharged before communication with 

the laboratory occurred.  

Statistical analysis of the repeated measurements in circulating neutrophil activity 

was a challenge in this study. There are methods for interpolating missing data in 

repeated measure studies [253]. However, because data were collected days and weeks 

between measurements, and the variability of dog breeds, ages, and sex was so high, 

interpolating missing data was deemed inappropriate for this study.  

 

5.2.3 Collecting tissue from clinical patients with SCI 

 A challenge of relying on clinical patients for research work is the mercurial 

collection of tissue for histological analysis. In this study, pathological cases were 

collected over a 2-year timeframe and only a limited number of cases that underwent 

necropsy had accompanying histology performed. Some cases had vertebral luxation, in 

which the spinal cord was severed. Histology need not be performed on these animals 

with an obvious mechanism of injury. This is unfortunate, as acute spinal cord transection 

would be an interesting subpopulation to include in future studies.  
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 Another limitation of collecting tissue from clinical patients is the quality of 

preserved tissues. In experimental SCI with purpose bred animals, rodents can be 

perfused with fixative that arrests biochemical reactions and allows for clearer tissue that 

is not riddled with artifact. However, in larger patients such as dogs and humans, 

perfusion can be a challenge across larger tissue surface areas and volumes. Handling 

larger volumes of fixative is both more dangerous and also costly.  

 Some of these limitations can be overcome with proper experimental design and 

facility approval of animal use protocols. In future research of SCI in dogs, care should 

be taken to collect high quality samples following standardized protocols.  

 

5.3 Future of dog SCI research 

 As of right now, translating rodent studies into dogs prior to human clinical trials is 

viewed as too risky. However, spending years and millions of dollars on a rodent 

preclinical study that does not translate to human medicine is also a risk for society and 

particularly to the percentage of the population suffering from SCI. This is particularly of 

note for treatments involving differential regulation of the immune system.  Before starting 

a human clinical trial, safety and drug efficacy information based on rodent studies is 

sufficient for approval from the United State Food and Drug Administration (FDA) [6, 254, 

255]. The risk is that a successful treatment in rodents could be not proven to be 

successful in dogs but might still work for human injury. If a canine patient dies during the 

course of a clinical trial, that death must be explained before research can continue. 

Sometimes the death of the animal is unrelated to the treatment, or the treatment dosage 

was not correct, but a different dose would be successful. There is value in studying and 
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improving policies through the FDA and other regulatory bodies across the world. For 

now, studies providing characterization of dogs with spinal cord injuries, with particular 

focus on the immune response, are valuable contributions to the field of SCI research.  

 

5.3.1 Short comings of translating rodent models of SCI directly to human medicine 

 Although many issues and concerns to producing a standardized and reproducible 

model for SCI in rodents have been addressed in the introduction, there are still limitations 

to using rodents as models for human injury in SCI. First, there is a large size difference 

between rats and mice and humans. This could be significant for validation of human SCI 

therapies made for humans but tested in rodents because the ability of regenerating 

neurons to bridge a smaller gap in an injured rat spinal cord is easier than in the larger 

human cord [256, 257]. Furthermore, testing drug efficacy in smaller animals may not 

translate well to humans if the drug delivery system is in normal circulation, i.e. it might 

take longer for the drug to arrive at the injury site than the drug is effective and scaling up 

the dosage would not necessarily help with this problem [121]. Axonal tract organization 

between rats and humans differs in location of the corticospinal fibers and other tracts 

[258]. Spinal cord organization is even different between subspecies of different rats 

[259]. Besides differences in morphological features of injury and spinal cord organization 

between rodents and humans, there are also significant differences in inflammatory 

responses between the two, which will be discussed in greater detail in future sections.  

 These limitations in using rodents as the only model for SCI research can be costly 

in both dollar amounts spent on treatments that are not translatable to human medicine, 

and time it will take to discover a successful therapy. To date, there is no cure for spinal 
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cord injury, and very few treatments from rodent research have been successful in large-

scale human clinical trials. The most tangible example of failed treatment for SCI that had 

promising results in preclinical trails was administration of methylprednisolone. For 

decades, this treatment was trialed in humans and several other species before the 

attempt as a treatment was eventually abandoned in the mid 2000s [6, 260, 261]. For 

these reasons, there is value in including large animal or non-human primate models of 

SCI instead of just going from rodents to humans which has not worked now for multiple 

decades of research [197].  

Neutrophils of mice and rats responding to injury and infection are different in many 

ways than humans who have endured spontaneous traumatic injury such as SCI. Both 

rats and mice have low blood and CSF volumes, meaning that samples often have to be 

pooled [101]. Neutrophils in humans make up 50-70% of the total white blood cells in 

circulation, while in mice they are around 10-25% [262]. Reduction of the glycocalyx 

begins within minutes of spinal cord injury in rats and mice, and is repaired 3 days post-

injury in rats [65], and 5-7 days post-injury in mice [80]. The glycocalyx recovery time has 

not been studied in humans following SCI, but the differences in neutrophil percentages 

of white blood cells counts coupled with the differences in recovery time between mice 

and rats leaves room for speculation on whether neutrophil trafficking is mimicked in 

rodent models of SCI.   Furthermore, mouse leukocytes express Ly6 family surface 

markers, which are standard use for identification of neutrophils in peripheral circulation 

as well as within the tissues in SCI research [10, 58, 187]. Other species including 

humans, dogs, cats, and rats do not express Ly6 gene products on their leukocytes [263]. 

Defensins are proteins rich with cysteine residues that are used primarily in antimicrobial 
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host defense, but are also reported to function as monocyte recruitment tools by 

neutrophils in humans, however, mouse neutrophils do not produce defensins [264]. In 

rats, there is a notable lymphocytic (T cells and B cells) inflammatory response in 

experimental SCI models, but in humans, there is a larger innate inflammatory response 

by microglia and neutrophils [265]. Another key difference between rodent models of SCI 

and human injury is the fact that humans undergo spontaneous, naturally-occurring injury 

often accompanied by polytrauma (example, broken bones). In rodent models, the injury 

to the spinal cord occurs after the animal is anesthetized and after significant skin 

incisions and laminectomy have been performed.  

 

5.3.2 Availability of dog reactive antibodies and assays 

 One of the most limiting factors for research conducted in dogs is the lack of 

commercially available reagents that are reactive in dogs. Commercial availability is an 

issue for every canine study [266, 267], whereas in rodent research availability is almost 

never an issue when determining feasibility of a study. Often in canine research, a 

validation study precedes any hypothesis driven research [268]. It might even be 

necessary to produce novel antibodies specific for work in dogs [269]. However, as dogs 

are recognized more and more as valuable models with clinical patients, commercial 

availability and validation of cross-species reactivity is increasing. This is especially 

apparent in glioma research, where dogs are now recognized as a naturally-occurring, 

translationally relevant animal model for human brain cancer [270].  
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6. CONCLUSIONS 

 

Similar to cancer research, the hope is to make naturally-occurring canine SCI a 

successful pre-human clinical trial model in order to improve drug efficacy and safety for 

use in both human and veterinary medicine. This study in a large animal model of 

contributes to the field of SCI research by providing dog CSF profiles that are similar to 

humans in regards to timing of both sample collection and a possible window in time and 

location for therapeutic intervention. This is the first report of a species-specific 

lipopolysaccharide-induced increase of surface L-selectin expression on canine 

neutrophils. This is also the first documented instance of neutrophils in the injured spinal 

cord of dogs following spinal cord injury. I hope that this work contributes to advancing 

the knowledge for the betterment of human and dog clinical trials. I hope that these trials 

can become standardized for use in all areas of SCI research and characterization of 

neuroinflammation. I hope that these treatments lead to a cure for spinal cord injury in 

both human and veterinary medicine.  
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