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ABSTRACT 

 

The United States has more than 2.7 million miles of paved roads and highways that 

require approximately $165 billion spending each year. Pavement design, construction, 

maintenance, and management techniques are critical factors for optimizing this massive budget 

that are constantly being evolved. To control the design and maintenance of new and existing 

pavements, the American Association of Transportation Officials’ (AASHTO) currently follow a 

design guide named AASHTOWare Pavement Mechanistic-Empirical (ME) Design. The design 

guide provides a methodology for the analysis and performance prediction of pavements and 

overlays. Although the performance of pavements is known to be closely related to properties of 

the subgrade and underlying layers (i.e., base and/or subbase), some recent research studies 

indicate that the performance predicted by this methodology shows a low sensitivity to the 

properties of underlying layers and does not always reflect the extent of the anticipated effect. To 

overcome these limitations, this study proposes several enhancements, as needed, to the 

Pavement ME Design procedures to better reflect the influence of subgrade and unbound layers 

(properties and thicknesses) on the performance of pavements. These enhancements include 

several modifications of the models contained in Pavement ME Design such as (a) development 

of an artificial neural network (ANN) based soil water characteristics curve (SWCC) prediction 

model of base and subgrade; (b) development of a mechanistic-empirical equilibrium suction (ue) 

model for subgrade; (c) development of a ANN based resilient modulus (MR) model of base ; (d) 

development of a new shear strength (τ) and permanent deformation (εp) prediction model; (d) 

development of a modified modulus of subgrade reaction (k) model. The sensitivity of base and  
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subgrade layers are evaluated on the basis of both flexible and rigid pavements 

performance using the developed models and compared with the predicted performance from 

Pavement ME design models. The results clearly show that the developed models have better 

sensitivity to moisture and interface bonding on both rutting and fatigue cracking performance 

compared to the Pavement ME design models. 

Attaining uniform construction of the required specification quality is another key factor 

to ensure the performance of pavement. To develop more efficient quality control (QC) 

evaluation methods, this study develops a quick and accurate, non-destructive method for 

determining reliable values of the in-place as compacted base course modulus. Simple laboratory 

test methods are incorporated with the ground penetrating radar (GPR) scans to determine the 

resilient modulus of the base layer through a mechanistic-based approach. Research efforts have 

also been undertaken to develop and calibrate the mechanistic-based models for predicting the 

construction quality of stabilized base materials. A mechanistic-empirical model is developed to 

predict the percentage of stabilizer in the base layer from electrical conductivity readings in the 

laboratory and further incorporated with GPR scans to estimate the stabilizer content of the base 

layer in the field. 
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1. INTRODUCTION 

 

1.1. Background 

A pavement is a composite structure consisting of an asphalt concrete (AC) or, Portland cement 

concrete (PCC) surface layer, unbound or treated base layer and subgrade. Base and Subgrade 

layers act as a foundation of the pavement structure which provides support to the surface layer. 

It has been recognized that the performance of flexible and rigid pavements is closely related to 

the characteristics of unbound layers and subgrade. However, recent studies indicate that the 

performance predicted by the current pavement design guide named AASHTOWare Pavement 

ME Design shows low or no sensitivity to these underlying layers (Schwartz et al., 2011).  

In particular, the following cases have been identified as major problems in performance 

predictions (Luo et al., 2017): 

 Total rutting in flexible pavements is marginally sensitive to resilient modulus (MR) and 

soil water characteristics curve (SWCC) and shear strength of unbound layers and 

subgrade;  

 Load-related cracking in flexible pavements is non-sensitive to soil-water characteristics 

curve (SWCC) of unbound base layers, and marginally sensitive to the SWCC of 

subgrade; 

 Faulting in jointed plain concrete pavement (JPCP) is marginally sensitive to resilient 

modulus, slab-base interface bonding and erodibility;  
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 Transverse cracking in JPCP is marginally sensitive to resilient modulus, thickness and 

erodibility of unbound layers 

The sensitivity of the predicted performance from Pavement ME Design on 

base/subgrade layer can be improved by using modified performance prediction models and 

proper design inputs. Hence, a new set of mechanistic-empirical models have been proposed by 

Gu et al. (2015) and Chen et al. (2019) for permanent deformation and faulting respectively.  
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where, 
p  is the permanent strain of the granular material; 0  is the maximum permanent strain; 

N is the number of load cycles; Pa is the atmospheric pressure; 
2J is the second invariant of the 

deviatoric stress tensor; 1I  is the first invariant of the stress tensor; ε0, ρ, β, m, and n are model 

coefficients; c and ϕ are cohesion and friction angle, respectively. 
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[ln( )] e
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N
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N N
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

       (1.2) 

where, f is the faulting depth; N is the number of days after pavement construction date; 0N is 

the number of days after which faulting initiates; N is the number of days to failure due to 

erosion; and e  and 
e are model coefficients. 
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However, the prediction accuracy of these models heavily relies on the accuracy of 

design inputs such as SWCC, equilibrium suction, resilient modulus (MR), shear strength and 

modulus of subgrade reaction (k). Therefore, improved models are necessary to accurately 

predict these design inputs and get a better performance prediction of the pavement. 

Quality control and quality assurance are the two significant challenges in pavement 

construction. To assure the construction quality of base and subgrade layer, the modulus values 

that are compacted should match as closely as possible the modulus values that are used in 

design. For stabilized pavement, the percentage of stabilizer is another significant measure of the 

strength of the base and subgrade layers and must also meet the design criteria. Quality assurance 

of the compacted base course must be conducted in a timely and efficient manner so as not to 

retard the pace of construction. Therefore, it is necessary to develop an efficient nondestructive 

testing (NDT) approach to measure the resilient modulus and stabilizer content of the compacted 

base and subgrade.  

1.2. Problem Statement 

1.2.1. Moisture Insensitive Resilient Modulus Model 

The resilient modulus model incorporated by the AASHTOWare Pavement ME Design show 

very low or no sensitivity to soil moisture. But the resilient modulus has an increasing linear 

relationship with the matric suction on a semi-logarithmic coordinate (Edil et al., 2006). A 

number of studies recommended the use of soil suction in modeling resilient modulus and 

improving related mechanistic pavement design (Oloo and Fredlund, 1998; Wolfe and Butalia, 

2004; Khoury and Zaman, 2004; Edil et al., 2006; Gupta et al., 2007). As a summary of these 

studies, the NCHRP Synthesis 382 (Puppala, 2007) points out that the concept of soil suction 
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plays a vital role in the better understanding of resilient properties of unsaturated soils, and this 

will help in better mechanistic design of pavements. 

 

1.2.2. Inaccurate Assumption of Moisture Availability in Base/Subgrade Layer 

The available moisture to the supporting layers of pavement is a key factor in prediction 

accuracy of the MR and other performance models. At present, the Pavement ME Design 

software requires the input of the depth to a water table as the sole input to the moisture 

availability. It has been recognized that many pavements are built in areas where there is no 

water table within 40 feet of the pavement surface and recommended adding the depth below the 

pavement to the equilibrium suction level and also inputting that suction level. So, a 

comprehensive approach is needed to determine the equilibrium suction level underneath the 

pavement surface. 

1.2.3. Lack of Shear Strength Consideration in Permanent Deformation Model 

The Pavement ME Design paid little attention to the shear strength properties of unbound base 

and subgrade. This needs to be improved because the shear strength of underlying layer materials 

has significant influence on accumulation of permanent deformation in flexible pavements. 

Maree, (1978); Brown, (1996); Theyse et al., (1996); Núñez et al., (2004); and Fernando et al., 

(2008) showed that the shear strength directly affects the amount of total rutting. The ratio of the 

shear strength to shear stress performs well in limiting the permanent deformation of granular 

materials against shear failure (Maree, 1978; Theyse et al., 1996). 

1.2.4. Lack of Slab-Base Interface Bonding Sensitivity in Effective Dynamic k-Value 

Modulus of subgrade reaction (k) is the primary input for rigid pavement design which estimates  
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the reaction pressure sustained by the subgrade layer. In the Pavement ME Design, the modulus 

of subgrade reaction is characterized by a dense liquid or Winkler model, which has no 

consideration of the interface bond between slab and base. The researchers in the past have 

shown that the slab-base interface bonding has a significant impact on performance prediction of 

rigid pavements (Croney, 1977; Tarr et al., 1999; Delatte et al., 2000; Bari et al., 2013). 

Therefore, the inclusion of the degree of bonding effect on the effective dynamic k-value model 

is necessary to improve the influence of unbound layers on rigid pavement performance. 

1.2.5. Lack of Efficient Non-Destructive Testing Methodology to Quality Assurance  

          of Base Layer 

During construction, the measured properties of flexible base for current quality control (QC) 

and quality assurance (QA) are MR value. Due to the need to maintain the pace of construction, it 

is necessary to develop a quick, accurate, and simple nondestructive testing (NDT) approach for 

determining reliable values of the in-place-as-compacted base course modulus value and also the 

stabilizer content for stabilized base material. Falling weight deflectometer (FWD) and a ground-

penetrating radar (GPR) are two NDT devices commonly used for QC purpose in pavement 

construction. But both these approaches are in need of mechanistic characterization model and 

comprehensive evaluation process. 

1.3. Research Objective 

In light of these problems, this study focused on developing enhanced prediction models to 

improve the current pavement design and construction process. The implementation of these 

models in the AASHTOWare Pavement ME Design will improve considerations of the influence 

of subgrade and unbound layers on the performance of flexible and rigid pavements.  
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The main objectives of this study are as follows 

 Develop an improved SWCC prediction model based on Fredlund-Xing approach 

 Develop an improved equilibrium suction model based on Thornthwaite Moisture Index 

 Develop a moisture sensitive resilient modulus prediction model 

 Develop moisture sensitive shear strength prediction model 

 Develop a modified modulus of subgrade reaction model 

 Develop a mechanistic based approach for rapid determination of percentage of stabilizer 

from electrical conductivity 

 Develop an efficient NDT approach to determine on-site modulus value 

1.4. Dissertation Outline 

This dissertation is organized as follows: 

Section 1 is an introduction which contains background, problem statement, research 

objectives and dissertation outline. 

Section 2 presents the development of prediction models for the coefficients of Fredlund-

Xing equation based soil-water characteristics curve, which include two separate three layer 

artificial neural network models for plastic and non-plastic soils respectively. 

Section 3 presents a new mechanistic-empirical approach to predict equilibrium suction 

in subgrade soil, which allows the development of an equilibrium suction contour map in a 

geographic information system (GIS) platform. 

Section 4 presents the development of new prediction models for the coefficients of a 

suction dependent resilient modulus (MR) model. Two three layered artificial neural network 

architectures are constructed: one for plastic base and another for non-plastic base materials. 
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Both of these models are validated against the measured database collected from the Long Term 

Pavement Performance (LTPP) data base and other literature sources.  

Section 5 presents the development of prediction models for permanent deformation 

model coefficients (ϵ0, ρ, β, m and n) and shear strength model coefficients (c’ and φ’). In this 

study repeated and monotonic load triaxial test data are collected from the literature and the 

coefficients of the permeant deformation and shear strength model are calculated respectively.  

Section 6 presents the detailed description of the development of a cross-anisotropic base 

modulus and slab-base interface bond sensitive modified k-value model. An ANN model is also 

developed in this section to predict the k-value for a wide range of pavement layer moduli, layer 

thicknesses and interface bonding ratios. 

Section 7 presents the sensitivity analysis of moisture, interface bonding and tire speed on 

the predicted performance of flexible and rigid pavements. The developed models are also 

compared with the corresponding models in the Pavement ME design and shows the resulting 

differences. 

Section 8 presents the development of a mechanistic-empirical model to predict the 

percentage of stabilizer in base material from electrical conductivity.  

Section 9 presents the use of ground penetrating radar based non-destructive technology 

to determine in-situ resilient modulus of base material. The proposed methodology is validated 

with real time GPR scans and FWD backcalculated modulus values. 

Section 10 presents overall summaries and conclusions of the dissertation. 

Recommendations for future studies are also suggested in this section. 
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2. DEVELOPMENT OF A SOIL-WATER CHARACTERISTICS CURVE                 

PREDICTION MODEL FOR UNBOUND MATERIAL* 

 

2.1. Introduction 

The soil-water characteristics curve (SWCC) represents a relationship between soil suction and 

water content (or degree of saturation). The soil suction due to the presence of water between 

soil particles is an important indicator, which is directly related to the strength, volume change 

and fluid flow characteristics of unsaturated soil material (Fredlund and Rahardjo 1993). The 

unbound material is usually in an unsaturated condition when it is exposed in the field. The 

existing studies found that the degree of saturation or matric suction has a significant impact on 

the resilient modulus of the unbound material, which indicates that the resilient behavior of 

unbound material is stress-dependent and moisture-dependent. (Han and Vanapalli 2015; Gu et 

al. 2014, 2016, Islam et al. 2018). These studies recommended to incorporate the matric suction 

term to the stress-dependent resilient modulus model to reflect the moisture-dependent 

characteristic of unbound material. At various saturation levels, the matric suction values of 

unbound material are determined by the SWCC.  

Currently, there are two common ways to determine the SWCC of unbound material. One 

way is by conducting laboratory tests (e.g., filter paper test and pressure plate test) to measure 

the matric suction at different water contents. This experimental method is usually time-

consuming, and requires special test equipment and test expertise. An alternative way is to 

                                                 

* Reprinted with permission from “Prediction of soil-water Characteristic Curve for unbound material using 

Fredlund–xing Equation-based ANN approach” by Sajib Saha, Fan Gu, Xue Luo and Robert Lytton, 2018. Journal 

of Materials in Civil Engineering, 30(5), 06018002, Copyright [2018] by ASCE. 
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correlate the suction-water relationship to other unbound material indicators, such as grain size 

distribution (GSD), particle diameter, porosity, liquid limit (LL) and plasticity index (PI), mean 

annual air temperature (MAAT) etc. There are many prediction methods available, which can be 

classified into three categories (Zapata et al. 2003). 

 Category 1: Direct prediction of SWCC, which is a curve-fitting method to correlate the 

soil properties (e.g., GSD and porosity) to the matric suction at the different tested water 

contents (Gupta and Larson 1979, Huston and Cass 1987, Reddi and Poduri 1997, and 

Zapata et al. 1999). 

 Category 2: Prediction of SWCC model parameters, which is a statistical method to 

correlate the soil properties (e.g., GSD, LL, PI and MAAT) to the parameters of existing 

SWCC models (e.g., Fredlund-Xing equation). These estimated model parameters are 

further used to generate the SWCC of unbound material (Williams et al. 1983, Zapata et 

al. 2003, Perera et al. 2005, Torres-Hernandez 2011, and Sahin et al. 2015). 

 Category 3: Development of a micromechanics-based SWCC model, which utilizes the 

microstructure of unbound material (e.g., porosity distribution) and the water-particle 

contact (or capillary rise) model to determine the matric suction (Mishra et al. 1989, 

Basile and D’Urso 1997, and Fredlund et al. 1997). 

Among these approaches, Category 1 usually has a low prediction accuracy, since it 

ignores the existing relationship between matric suction and water content. Category 2 

recognizes the existing SWCC models, and uses an indirect method to predict the SWCC via soil 

properties. The prediction accuracy of Category 2 relies on the selected statistical method and the 

quantity of the database used in the analysis. However, most of the aforementioned models were  
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developed based on either a simple regression analysis or a limited number of test results 

(Torres-Hernandez 2011). Compared to Categories 1 and 2, Category 3 is still in a state-of-

development status, which is limited to the soils with large pores (Zapata et al. 2003). Therefore, 

approaches in Category 2 are more accurate and feasible to predict the SWCC of unbound 

material, as long as the issues of statistical method and quantity of database are solved.  

Nowadays, the artificial neural network (ANN) approach becomes a more and more 

popular tool for the development of prediction models. Compared to regression models, the main 

advantage of the ANN approach is that it is capable of capturing nonlinear and complex scattered 

relationships between input and output parameters. In the past, several studies attempted to 

utilize the ANN approach to predict the SWCC of soil, which mainly focused on the Category 1-

based method (i.e., direct prediction of SWCC). For example, Pachepsky et al. (1996) predicted 

the water retention curve using the particle size distribution and bulk density of soil. Similarly, 

Johari et al. (2010) utilized five input variables (i.e., initial void ratio, initial gravimetric water 

content, logarithm of suction normalized with respect to atmospheric pressure, clay fraction and 

silt content) to predict the gravimetric water content of soil. Haghverdi et al. (2012) developed a 

pseudo-continuous ANN approach to predict the water retention curve using the bulk density, 

porosity, organic matter, and percentage of clay, silt and sand. As it is mentioned previously, the 

direct prediction of SWCC does not need a specific equation between matric suction and water 

content, which usually results in a lower prediction accuracy than the equation-based prediction 

method (i.e., Category 2 method) (Jain et al. 2004). However, there is no Category 2-based ANN 

model currently available to predict the SWCC of soil. The main reason is that the development 

of Category 2-based ANN model requires a much larger database of SWCC results. In addition,  
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most of these existing ANN models dealt with subgrade soils (Pachepsky et al. 1996, Schaap and 

Bouten 1996, Koekkoek and Booltink 1999, Jain et al. 2004, Johari et al. 2010, Haghverdi et al. 

2012), but none of these ANN models were capable of predicting the SWCCs of unbound 

granular materials (or unbound aggregates) that are commonly used in pavement base. 

To overcome the aforementioned problems, a Category 2-based ANN approach is 

recommended for estimating the SWCC of unbound material. In this study, a large database 

collected from the NCHRP 9-23A project is used to develop the ANN models. The Fredlund-

Xing equation is used to estimate the relationship between matric suction and water content, as 

shown in Equations 2.1 and 2.2 (Fredlund and Xing 1994). 
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        (2.2) 

where S is the degree of saturation (unit: %); h is the soil matric suction (unit: psi); and af, bf , cf 

are hr soil fitting parameters. The four fitting parameters are the outputs of ANN models and are 

predicted by the input variables.  

The section is organized as follows. The next subsection presents the development of 

ANN models in detail. Subsequently, the ANN models are used to predict the fitting parameters 

in the Fredlund-Xing equation. After that, the developed ANN models are compared with other 

existing regression models in terms of prediction accuracy. A two-step validation process is  
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presented in the following section, which compares the ANN model-predicted SWCCs with 

those measured from the laboratory tests. The final subsection summarizes the major findings of 

this study. 

2.2. Development of Artificial Neural Network Models 

The ANN approach is a computer-based information processing technique, which allows to 

establish the correlations between the input variables Xi and the output variables Yj through the 

inter-connected neurons (i.e., weight factor, wji). Note that the input variables Xi and the output 

variables Yj are usually normalized to xi and yj, respectively. The correlations developed by the 

ANN models between the normalized input parameters xi and the normalized output variables yj 

are shown in Equation 2.3.  

1

n

j ji i
i

y f w x


 
 
 

           (2.3) 

where f is a transfer function, which normally uses a sigmoidal, Gaussian, or threshold functional 

form, and wji  are the unknown weight factors. Developing a neural network model specifically 

refers to the determination of the weight factors wji in Equation 2.3. In this study, the output 

variables Yj represent the four fitting parameters in the Fredlund-Xing equation (i.e., af, bf, cf  and 

hr). The input variables Xi are selected from the SWCC-related material indicators, which will be 

elaborated in the following sub-section. In general, the development of ANN models include two 

critical steps: 1) data collection; and 2) construction of ANN architecture. 

2.2.1. Data Collection 

The database used in this study is collected from the NCHRP 9-23A project entitled “A national 

catalog for subgrade SWCC default inputs and selected soil properties for use with the ME- 
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PDG” carried out at Arizona State University in 2010 (Zapata 2010). In addition to the measured 

SWCC fitting parameters, the database includes material size distribution, soil LL, PI and 

saturated volumetric water content. To better evaluate the influence of soil plasticity, the 

collected database is separated into two groups: plastic soil dataset (PI>0), and non-plastic soil 

dataset (PI=0).  

2.2.2. Construction of ANN Architecture 

As shown in Figures 2.1a and 2.1b, two three-layered neural network architectures consisting of 

one input layer, one hidden layer and one output layer are constructed for plastic soil and non-

plastic soil, respectively. The input variables in the ANN models are selected based on previous 

studies and the mechanics of unsaturated soil. The SWCC of a soil is greatly dependent on its 

pore structure (Fredlund and Xing 1994; Sillers et al. 2001; Rahardjo et al. 2012). The pore size 

is related to the height of each capillary tube using the Young–Laplace equation, which is 

equivalent to a suction value (Fredlund and Rahardjo 1993). The capillary height of the 

corresponding pore can be expressed in terms of the radius of that pore. Thus, soil grain size 

distribution (i.e., percent passing No. 4 sieve and percent passing No. 200 sieve) and gradation 

scale parameter, ϴ and shape parameter, Ѱ, and saturated volumetric content are selected as 

input parameters. Saturated volumetric water content is a measure of the total porosity in soil 

structure. The equilibrium soil suction of plastic soil is proportional to its specific surface area 

(Zapata et al., 2000). The plasticity index (PI) is a simple indicator that reflects the specific 

surface area of soil. The relationship between soil surface area and plasticity index changes, 

particularly when the liquid limit (LL) is above 30% to 40% (Aubertin et al., 2003). Hence, LL is 

also selected as an input parameter in the ANN models. Previous studies investigated the effects  



 

14 

 

of temperature on soil suction-water retention relationship (Liu and Dane 1993, Wu et al. 2014, 

El-Keshky 2011). Soil water is composed of continuous water and isolated pockets of water. 

When the temperature increases, water flows from isolated pockets to the continuous phase, 

which results in a shift in SWCC. In this study, the MAAT is identified as one of inputs for ANN 

models and is collected from Natural Resources Conservation Services (NRCS) soil data mart. 

 

(a) Plastic soil 

 

(b) Non-plastic soil 

Figure 2.1 Illustration of three-layered neural network architecture 
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In Figure 2.1a, the input variables for plastic soil include percent passing No.4 sieve, 

percent passing No.200 sieve, LL, PI, saturated volumetric water content (Sat. vol. wc.) and local 

MAAT (Unit:0C). Figure 2.1b shows that the input variables for non-plastic soil are D30, D60, D90, 

scale parameter (ϴ), shape parameter (Ѱ), saturated volumetric water content and local MAAT 

(Unit:0C). Herein, scale parameter Ө and shape parameter Ѱ are estimated by fitting a power law 

model (ӨxѰ) to the curve of the cumulative percent passing versus sieve size in mm. The hidden 

layer assigns 20 neurons to establish the connection between the output layer and the input layer. 

Both the non-plastic and plastic soil models utilize the sigmoidal transfer function, as 

shown in Equation 2.4 (Gu et al. 2017, Saha et al. 2017). 

 
 

1

1 exp
i

i

f I
I


 

        (2.4) 

where Ii is the input quantity; φ is a positive scaling constant, which controls the steepness 

between the two asymptotic values 0 and 1. The ANN model determines these weight factors wji 

through the two major functions: training and validating.  

The training data set is used to determine the trial weight factors, wji and the validating 

data set is employed to examine the accuracy of the model prediction. In this study, 80 percent 

dataset is used for training and 20 percent dataset for validation. The training algorithm uses the 

Levenberg-Marquardt back propagation method to minimize the mean squared error (MSE). The 

gradient descent weight function is employed as a learning algorithm to adjust the weight factors 

wji. 

2.3. Prediction of SWCC Fitting Parameters Using ANN Model 

The development of ANN models is to predict the SWCC parameters (i.e., af, bf, cf and hr) in  
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Fredlund-Xing equation. These parameters are correlated to the soil physical properties. In this 

study, the ANN models are programmed using the Matlab software. The database used for 

training of ANN models consists of 3600 samples of plastic soil and 250 samples of non-plastic 

soil. 

A statistical analysis was performed to determine the root mean squared error (RMSE) 

and coefficient of determination (R2) associated with the predicted SWCC fitting parameters. 

The RMSE and R2 are computed by using Equations 2.5 and 2.8.  

 Root mean squared error: 
2( )x y

RMSE
n



      (2.5) 

 Residual sum of squares: 2( )resSS x y       (2.6) 

 Total sum of squares: 2( )totSS x x       (2.7) 

 Coefficient of determination: 
2 1 res

tot

SS
R

SS
       (2.8) 

where x is the measured SWCC fitting parameter; y is the predicted SWCC fitting parameter; 

and n is the number of data points. Figure 2.2 and Figure 2.3 compare the predicted SWCC 

parameters of plastic and non-plastic soils respectively against the measured ones using the 

training datasets. As shown in Figure 2.2 and Figure 2.3, the predicted af, bf, cf and hr parameters 

are well coincident with the measured results. This indicates that the developed ANN models 

have desirable accuracy to predict the SWCC for plastic and non-plastic soils. The next section 

will compare these ANN models against the existing regression models in terms of model 

prediction accuracy. 
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                                  (a)                                                                             (b) 

      

                                   (c)                                                                        (d) 

Figure 2.2 Comparison of measured versus predicted SWCC fitting parameters using ANN 

model for plastic soils: (a) af; (b) bf; (c) cf; and (d) hr 

 

      

                                  (a)                                                                             (b) 
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                                   (c)                                                                          (d) 

Figure 2.3 Comparison of measured versus predicted SWCC fitting parameters using ANN 

model for non-plastic soils: (a) af; (b) bf; (c) cf; and (d) hr 

 

2.4. Comparison of ANN Model With Other Regression Models 

A number of regression models have been developed to predict the SWCC fitting parameters. In 

this study, a comparison analysis is performed between the developed ANN models and those of 

the existing prediction models, including the Zapata model (Zapata et al. 2003) and Perera model 

(Perera et al. 2005). Table 2.1 lists the equations of these regression models. 
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Table 2.1 List of existing SWCC fitting parameter prediction models 

 

The predictability of SWCC fitting parameters using the regression models above are 

analyzed in this study. Tables 2.2a and 2.2b list the computed RMSE and R2 values for each 

model. The values of R2 and RMSE indicate the model prediction accuracy. The higher R2 value 

and the smaller RMSE value represent a higher prediction accuracy for the develop model (Gu et 
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where: w = percent of material passing  No.200 sieve 

PI = Plasticity Index 

D60 = material diameter corresponding to 60% passing by weight of material 

Perera Model 
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where: D10, D20, D30, D60, D90, D100 = material diameter corresponding to 10%, 20%,30%, 

60%, 90% and 100% passing by weight of material, respectively 
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al. 2016, Saha et al. 2018c). As presented in Tables 2.2a and 2.2b, the RMSE values associated 

with all the existing SWCC parameter prediction models are very high, meanwhile the 

corresponding R2 values are extremely low. This indicates that the Zapata and Perera models 

have low prediction accuracy of the SWCC fitting parameters for both plastic and non-plastic 

soils. Among these two models, the computed RMSE and R2 values are comparable with each 

other. This demonstrates that these models have the same level of prediction accuracy. 

Compared to these existing models, the developed ANN models have much higher R2 values and 

smaller RMSE values. This indicates that the developed ANN models outperform these existing 

regression models in terms of prediction accuracy. 

Table 2.2 Prediction accuracy of SWCC fitting parameter models 

(a) Plastic Soil 

  

 

 

 

 

(b) Non-plastic Soil 

 

 

 

Although the developed ANN models can accurately predict the SWCC fitting 

parameters, it is still necessary to examine the prediction accuracy of the SWCC. In the 

laboratory, these fitting parameters (i.e., af, bf, cf and hr) in the Fredlund-Xing equation are 

calculated by fitting the SWCC with experimentally available suction-saturation data points. A  

Model 
RMSE R2 

af bf cf hr af bf cf hr 

Zapata 4.86 0.46 0.21 2798 0.0078 0.059 0.29 0.003 

Perera 7.86 0.51 0.33 2544 0.0033 0.04 0.21 0.008 

ANN 1.51 0.12 0.068 0.395 0.68 0.87 0.78 0.45 

Model 
RMSE R2 

af bf cf hr af bf cf hr 

Zapata 5.76 5.34 0.33 3000 0.009 0.00 0.018 0.01 

Perera 7.95 2.19 0.68 2899 0.14 0.12 2.42E-04 0.00 

ANN 0.033 0.028 0.063 0.398 0.92 0.76 0.83 0.48 
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nonlinear least squared regression analysis is performed to determine the best fit parameters. In 

this study, the predicted SWCC fitting parameters are input into the Fredlund-Xing equation to 

estimate the soil suction at various water contents. The estimated soil suction values are then 

compared against the measured ones to investigate the model prediction accuracy.  

To evaluate the suction predictability over the full range of saturation level, the matric 

suction values are calculated at three different degrees of saturation (i.e., 10%, 40% and 80%). 

The predicted matric suction values using different models were compared with experimental 

data at the same saturation level. Figure 2.4 shows the plots of measured versus predicted matric 

suction for plastic soils. Figures 2.4a, 2.4b, and 2.4c correspond to comparisons made by 

experimental data with the Zapata model, Perera model, and ANN model respectively. 

Compared to the two existing models, the developed ANN model has the least RMSE value and 

the highest R2 value. This indicates that the developed ANN model outperforms other models to 

accurately estimate the matric suction of plastic soils at various degrees of saturation.  

      

                                  (a)                                                                             (b) 
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(c) 

Figure 2.4 Comparison of measured versus predicted suction at various saturation levels 

for plastic soils: (a) Zapata model; (b) Perera model; and (c) ANN model 

The obtained R2 value of 0.95 demonstrates that the developed ANN model can accurately 

predict the SWCC of plastic soil. 

Figure 2.5 presents the measured versus predicted suction for non-plastic soils. As seen 

from Figures 2.5a and 2.5b, the predicted matric suction values using the existing models deviate 

significantly from the measured values. This indicates that the existing models yield inaccurate 

matric suction of non-plastic soils. As shown in Figure 2.5c, the developed ANN model has a R2 

value of 0.91, which significantly improves the prediction accuracy of the matric suction for the 

non-plastic soils. It is clearly concluded from Figures 2.4 and 2.5 that the developed ANN 

models are capable of accurately predicting the SWCC of both plastic and non-plastic soils.  
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                                   (a)                                                                         (b) 

 

(c) 

Figure 2.5 Comparison of measured versus predicted suction at various saturation levels 

for non-plastic soils: (a) Zapata model; (b) Perera model; and (c) ANN model 

 

2.5. Validation of the Developed ANN Models 

The validation of the prediction accuracy of the developed ANN models involves two steps, 

including: 1) the validation through the collected data from NCHRP 9-23A database and 2) the 

validation via the independent data from other literature sources.  

At first, a new dataset of 500 plastic soils and 33 non-plastic soils are selected from the  
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NCHRP 9-23A database. The selected soil physical and climatic properties were input into the 

developed ANN models. Figures 2.6 and 2.7 compare the measured SWCC fitting parameters to 

those predicted by the ANN models for the selected plastic and non-plastic soils, respectively. It 

is seen that ANN model predictions have relatively small RMSE and high R2 values for both 

cases. The determined R2 values for plastic soils are in the range from 0.44 to 0.87, non-plastic 

soils show R2 ranging from 0.49 to 0.87. This indicates that the model predicted SWCC fitting 

parameters match well with the measured results. The model predicted fitting parameters are 

then input into the Fredlund-Xing equation to estimate the matric suction values at the selected 

degrees of saturation.   

                        

                                  (a)                                                                          (b) 

                                

                               (c)                                                                            (d) 

Figure 2.6 Validation of measured versus predicted SWCC fitting parameters using ANN 

model for plastic soils: (a) af; (b) bf; (c) cf; and (d) hr  
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                                   (a)                                                                          (b) 

      

                                 (c)                                                                            (d) 

Figure 2.7 Validation of measured versus predicted SWCC fitting parameters using ANN 

model for non-plastic soils: (a) af; (b) bf; (c) cf; and (d) hr  

 

Figures 2.8a and 2.8b plot the measured versus predicted matric suction values at 10%, 

40% and 80% saturation level for plastic and non-plastic soils, respectively. Results show that 

the predicted suction values fit well with the measured ones. Both plastic and non-plastic soil 

dataset show a R2 value greater than 0.90. This validates that the developed ANN models provide 

desirable prediction accuracy of the SWCC. 
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                                (a)                                                                               (b) 

Figure 2.8 Validation of measured vs ANN predicted suction at various saturation levels for 

unbound materials: (a) plastic soil; (b) non-plastic soil 

 

To further validate the prediction accuracy of the developed ANN models, the 

independent data sources (i.e., 2 plastic and 2 non-plastic soil data) are collected from the 

literature (Salour et al. 2013; Ruttanaporamakul 2012; and Gupta et al. 2007) . All of these soil 

physical and climatic properties are shown in Tables 2.3a and 2.3b, which are used as inputs of 

the developed ANN models.  

Table 2.3 Input parameters collected from literature for model validation 

                                                                     (a) Plastic soil 

Reference 
Soil 

source 

#4 

sieve 

#200 

sieve 
LL PI 

Sat. vol. 

wc* 
MAAT(0C) 

Ruttanaporamakul 

et al (2012) 
Louisiana 100 45 23 12 5.4 18.5 

Gupta et al. 

(2007) 

Red Lake 

Falls 
100 93.9 29 10 8.17 3.9 

         Note: *Sat.vol.wc = Saturated volumetric water content 

(b) Non-plastic soil 

Reference 
Soil 

source 
D30 D60 D90 

Sat. vol. 

wc 
MAAT(0C) 

Ruttanaporamakul et 

al. (2012) 
Mississippi 0.075 0.1021 1.41 18.76 17.9 

Salour et al. (2013) Torpsbruk 0.0911 0.6151 11.23 15.73 6.91 
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Figures 2.9a and 2.9b compare the measured and predicted SWCCs for plastic and non-

plastic soils, respectively. As illustrated, the SWCC curves generated by using the predicted 

parameters from the predicted ANN model produce good fits with the experimental curves. In 

Figure 2.9a, the model predicted matric suction values of plastic soils (i.e., Red Lake Falls and 

Louisiana soils) are generally coincident with the experimental results. A small deviation is 

observed in the residual region for the Louisiana soil. This is due primarily to the effect of the cf 

model which has a lower R2 than af and bf   parameters. Similarly, Figure 2.9b presents that the 

predicted matric suction values of non-plastic soils (i.e., Torpsbruk and Mississippi soils) are in 

good agreement with the measured results. Considering the fact that the SWCC curve generated 

from experiment involves high level of variability, the difference between predicted and 

experimental curves are considered to be sufficiently accurate.   

      

(a) Plastic Soil                                                  (b) Non-plastic soil 

Figure 2.9 Comparison of measured versus predicted SWCC curves for unbound 

materials: (a) plastic soil; (b) non-plastic soil 
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2.6. Conclusions 

This study proposes an artificial neural network (ANN) approach to predict the SWCC fitting 

parameters in the Fredlund-Xing equation by using the selected soil physical properties and 

climatic parameters. Two three layer ANN model are developed for plastic and non-plstic soils 

respectively and both models shows higher prediction accuracy compared to the existing 

regression models. The predicted fitting parameters are then input into the Fredlund-Xing 

equation to estimate the SWCC for unbound materials. 
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3. USE OF A MECHANISTIC-EMPIRICAL APPROACH TO PREDICT EQUILIBRIUM 

SUCTION IN SUBGRADE SOIL 

 

3.1. Introduction 

The pavement subgrade moisture condition is critical because it directly affects the strength and 

stiffness of the pavement structure (Perera et al., 2004). Subgrade soils are usually unsaturated 

and the resilient modulus of the subgrade soil is highly dependent on the degree of saturation and 

the corresponding matric suction (Liang et al., 2008; Oloo and Fredlund, 1998; Wolfe and 

Butalia, 2004; Khoury and Zaman, 2004; Gu et al., 2014; Luo et al., 2017; Saha et al., 2018b). 

Past studies have shown that matric suction in the subgrade layer reaches an equilibrium 

condition several years after construction (Aitchison and Richards, 1965; Basma and Ai-

Suleiman, 1991). Hence, accurate approximation of equilibrium suction underneath pavement 

structures is required for accurate determination of long-term resilient modulus of the subgrade 

soil and thereby reliable prediction of pavement performance. 

An Enhanced Integrated Climatic Model (EICM) is implemented in the current Pavement 

ME Design guide to incorporate the climatic design inputs. The EICM is a one dimensional heat 

and moisture flow program developed by the Federal Highway Administration (FHWA) for 

predicting the moisture condition in subgrade soils. The EICM uses the depth to ground water 

table to compute suction. However, this model will yield inaccurate suction values if the water 

table data is missing or the water table depth is greater than 7m. Current studies demonstrate that 

many other factors affect the suction profile in addition to ground water table. These include 

precipitation, evapotranspiration, field capacity etc. (Russam and Coleman, 1961 and Coleman, 
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1965). This study aims to develop an improved prediction model of equilibrium suction, which 

takes into account a variety of influence factors. 

Matric suction in soil reaches an equilibrium condition at a certain depth of the moisture 

active zone (Zm). There are primarily two different approaches available to determine the 

equilibrium suction: (1) correlation with a rational climatic index; and (2) statistical model based 

on climatic factors and soil index properties. 

A climatic index that is related to the soil environment is based on a process in which the 

potential for soil moisture exchange is determined by the frequency analysis of precipitation and 

evapotranspiration. A number of climatic indices, e.g., Thornthwaite Moisture Index (TMI) 

(Thornthwaite, 1948) and Penman Index (Penman, 1963) were developed to correlate with 

various annual moisture balance indicators. TMI was correlated with depth of the moisture active 

zone and equilibrium suction (Carpenter et al., 1974; Edris and Lytton, 1976; Fityus and Buzzi, 

2008; and Lytton et al., 2005). Gay (1994) developed a relationship between mean annual 

moisture depth and TMI. He used climatic data from 12 sites in Texas to establish a relationship 

between TMI values and mean moisture depth. The Post Tensioning Institute [PTI] (2004) and 

the Australian standard AS2870 (2011) developed a correlation between the subgrade 

equilibrium suction and TMI.   

However, existing studies show that suction beneath covered areas depends on both 

climatic factors and soil index properties (Russam and Coleman, 1961; Fredlund and Rahardjo, 

1993; and Zapata, 1999). Recently, Witzack et al. (2006) proposed a statistical model for 

predicting equilibrium suction of subgrade soil based on P200 and wPI parameters, where P200 is 

the percent of material passing No. 200 sieve and wPI is the product of P200 and plasticity index. 
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These correlation models were developed by using a limited number of data sets that are 

highly variable. To improve the prediction accuracy of equilibrium suction in a subgrade layer, a 

mechanistic-empirical approach was adopted in this study which involves the transient suction 

profile and soil water retention characteristics of soil as well as climatic factors. 

The primary objective of this chapter is to introduce and support a method to predict 

equilibrium suction from TMI and soil plasticity index values.  The following section describes 

the generation of the TMI contour map in a Geographic Information System (GIS) platform. This 

contour map provides the input required for determination of equilibrium suction of the subgrade 

soil using a mechanistic-empirical approach from which a contour map of the equilibrium 

suction values for the continental U.S is plotted. Following the description of the contour maps, a 

regression equation is presented that can be used to predict equilibrium suction using TMI and 

the plasticity index (PI). Subsequently a parametric study is described that was used to evaluate 

the effect of soil class and vegetation on equilibrium suction. The concluding section of this 

paper summarizes the paper’s significant findings and addresses their utility. 

3.2. Development of a GIS-Based Contour Map of Thornthwaite Moisture Index (TMI) 

TMI is a moisture index that reflects climate and soil humidity (Thornthwaite, 1948). This index 

is calculated using soil moisture balance in terms of rainfall, potential evapotranspiration and the 

depth of available moisture balance stored in the rooting zone of vegetation at a particular site.  

Figure 3.1 shows the TMI contour map of the United States originally developed by 

Thornthwaite (1948). Various improvements and simplifications have been proposed for 

calculating moisture balance since the development of original TMI map. TMI values primarily 

depend on adopted calculation methods and the time span over which the database was  
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developed (Sun et al., 2017). Olaiz et al. (2018) performed a comparison study of the four 

different TMI contour maps developed from 1948 to 2006, and concluded that the map 

developed by Witczak et al. (2006) matched closely with the original Thorthwaite map. In this 

study, Witczak’s model is used to calculate the TMI value of the continental United States. A 

detailed description of the process used to develop the TMI map in the GIS platform is presented 

in the following paragraphs. 

 

Figure 3.1 Thornthwaite moisture index distribution map of the United States (After 

Thornthwaite 1948) 

 

A GIS-based TMI contour map was generated based on the precipitation and temperature 

metadata file. The spatial metadata files were collected from PRISM (Parameter-elevation 

Regressions on Independent Slopes Model) climate mapping system (Daly et al. 1994, 2002, 

2008) at Oregon State University. The PRISM mapping system was developed based on the  
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National Oceanic and Atmospheric Administration (NOAA) climate database, which includes in 

situ measurements of temperature and precipitation from 5,852 weather stations across the 

continental United States. PRISM uses a weighted regression scheme to account for complex 

climate regimes associated with orography, rain shadows, temperature inversions, slope aspect, 

coastal proximity, and other factors and depicts climatological normal (from 1981 to 2010) at 30-

arcsec (800 meters) resolution. Figure 3.2 shows the annual average precipitation (P) and 

temperature contour map of the United States in the GIS platform. 

 
(a) 

 
(b) 

Figure 3.2 GIS map of the average annual (a) precipitation and (b) temperature (from 1981 

to 2010)  
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Potential evapotranspiration was calculated using monthly average temperature (ti) for the site in 

question (Wilm et al., 1944). An annual heat index (Hy) was determined using Equation 3.1.  

12
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(0.2 )y i

i

H t


         (3.1) 

Then, monthly potential evapotranspiration was quantified using Equation 3.2 
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where ipe  is the potential evapotranspiration in the ith month; and 

7 3 5 26.75 10 7.71 10 0.01792 0.49239y y ya x H x H H      

The ipe value represents potential evapotranspiration over a period of 30-days with 12 hour 

daylight duration. The effect of daily variations in daylight on monthly potential 

evapotranspiration were determined based on a correction factor, di introduced by Mckeen and 

Johnson (1990). The corrected potential evapotranspiration was calculated using Equation 3.3. 

( )
30

i i
i i

d n
PE pe         (3.3) 

where iPE is the monthly corrected potential evapotranspiration (unit: cm); di is the daylight 

correction factor for each month (unit: hrs); in is the number of days in the given month. 

The average annual potential evapotranspiration (
yPE ) was calculated by summing iPE over a 

12 month period (Equation 3.4). 

12

1

y i

i

PE PE


          (3.4) 

Figure 3.3 depicts the calculated 
yPE map of continental United States on the GIS platform. 
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Figure 3.3 GIS map of the average annual potential evapotranspiration (from 1981 to 2010) 

 

Finally, the TMI value is calculated using Equation 3.5 and plotted in Figure 3.4 

75( 1) 10
y

P
TMI

PE
               (3.5) 

 

Figure 3.4 GIS map of Thornthwaite moisture index (from 1981 to 2010) 

 

To validate the TMI contour map developed as described in the preceding approach, TMI 

values were compared with the original map at specific locations. Table 3.1 lists the collected 
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TMI values for specific locations from the original TMI map (Snethen et al., 1977, McKeen, 

1981, Wray, 1989, and Jayatilaka et el., 1992). The corresponding geographic coordinates 

(latitude and longitude) of these locations are included in the Table 3.1.  

Table 3.1 Collected TMI values for the validation of developed TMI contour map 

 

 

 

 

 

 

 

 

 

Figure 3.5 compares the TMI values from the original map and the contour map 

developed in this study, shown in Figure 3.4. TMI values were extracted from the map developed 

in this research for selected geographic coordinates using ArcGIS software. A statistical analysis 

was performed to determine the coefficient of determination (R2) associated with the TMI values 

from original and developed contour maps. This correlation resulted in a R2 value of 0.93 

indicating that the TMI contour map developed in this research is in good agreement with the 

original map. 

Locations Latitude Longitude 

TMI 

(original 

map) 

Locations Latitude Longitude 

TMI 

(original 

map) 

Gallup, New 

Mexico 
35.52 -108.74 -32 

Port Arthur, 

Texas 
29.88 -93.93 26.8 

Synder, 

Texas 
32.71 -100.91 -25 

Lake Charles, 

Louisiana 
30.22 -93.21 58.2 

Durant, 

Oklahoma 
33.99 -96.39 18.4 

Reliance, 

South Dakota 
43.87 -99.60 -12.9 

Houston, 

Texas 
29.76 -95.36 14.8 

Ellsworth, 

Kansas 
38.73 -98.22 9.1 

San Antonio, 

Texas 
29.42 -98.49 -21.3 

Limon, 

Colorado 
39.26 -103.69 -16.8 

El Paso, 

Texas 
31.76 -106.48 -46.5 Price, Utah 39.59 -110.81 -36.4 

Monroe, 

Louisiana 
32.51 -92.11 65.1  
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Figure 3.5 Comparison of TMI values from original map and the developed contour map 

 

The next section of this chapter describes a mechanistic-empirical approach used to 

determine equilibrium suction within the soil using the TMI map developed in this section. To 

relate the TMI value with the soil properties for a specific location, the total map area of the 

continental United States was divided into 74,400 map units. The map units define the map areas 

identified in the Soil Survey Geographic (SSURGO) database that was developed by the 

National Cooperative Soil Survey. These areas are identified based on soil type and other 

components that have unique properties, interpretations, and productivity. The zonal distribution 

toolbar in ArcGIS software was used to calculate the average TMI value of each map unit. 

3.3. Development of a Mechanistic-Empirical Model to Determine Equilibrium Suction 

A fundamental method to determine equilibrium suction was developed in this study, which 

involves a steady state diffusion equation proposed by Mitchell (Mitchell, 1979) and a functional 

relationship between TMI and annual average moisture depth established by Gay (1994). 

Mitchell (1979) expressed matric suction at a depth z in the soil profile by solving a two 
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dimensional diffusion equation with surface boundaries subject to suction change, shown in 

Equation 3.6 

0( ) *

n
z

eu z u u e






         (3.6) 

where ( )u z is the suction at depth z expressed on the pF scale; 
eu is the equilibrium value of 

suction on the pF scale; 0u  is the suction profile amplitude; n is the number of suction cycles per 

second (1 year = 365 x 24 x 60 x 60 seconds);  is the unsaturated soil diffusion coefficient 

(unit: cm2/sec); z is the depth below the surface (unit: cm). 

Figure 3.6 illustrates a typical suction profile in unsaturated soil from the surface to the 

depth of the moisture active zone, Zm. The terms 
dryu and wetu  represent soil suction at the 

surface corresponding to an air dry state and soil field capacity, respectively. The terms ( ')dry mu z

and ( ')wet mu z denote the suction in dry and wet profiles, respectively, at a depth of Zm. The term 

dryu is assumed to be 4.5 pF and 5.7 pF for vegetation and non-vegetation areas, respectively, 

whereas wetu represents 3 pF suction level (FPA, 2017; Gay, 1994).  
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Figure 3.6 Typical suction profile in unsaturated soil between wet and dry state 

 

The presence of vegetation significantly affects the depth of Zm (Cameron, 2001). If the 

site has vegetation at the surface, Zm is at least two feet deeper than the deepest vegetation root 

observed in the soil (FPA, 2017). However, when there is no vegetation in the surface, Zm is the 

depth of desiccation. Several experimental studies were performed by FPA (2017) and Lytton et 

al. (1997) and the average depths of Zm in non-vegetation and fully vegetation area were 

estimated to be 9.39 feet and 21 feet respectively. It is observed that the depth of Zm is dependent 

on the amount of vegetation on the surface. To accurately determine the depth of Zm, a vegetation 

cover map of continental United States is presented in the next section of this paper. 
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3.3.1. Calculation of the Fraction of Vegetation Cover 

NOAA Climate Data Records (CDR) provide historical climate information using data from 

weather satellites. Normalized Difference Vegetation Index (NDVI) data were collected from 

this dataset, which was derived from surface reflectance data acquired by the Advanced Very 

High Resolution Radiometer (AVHRR) sensor. This long-term record spans from 1981 to 2013 

and utilizes AVHRR data from six NOAA polar orbiting satellites. NDVI data were collected in 

Georeferenced Tagged Image File Format (GeoTIFF) with embedded geographic information for 

GIS applications. 

The method proposed by Brunsell and Gillies (2003) was used in this study to obtain the 

fraction of vegetation cover from NDVI. The method scales the NDVI to obtain the fraction of 

vegetation cover (Fr) between bare soil and a full canopy and is expressed in Equations 3.7 and 

3.8 

0

m 0

*
I ax

NDVI NDVI
N

NDV NDVI





       (3.7) 

2( *)rF N          (3.8) 

where NDVI0 is the bare soil NDVI value set as 0.14; and NDVImax is the maximum NDVI 

corresponding to full cover dense vegetation set as 0.75.  

Figure 3.7 shows the Fr map for the continental United States calculated using the raster 

calculator function in ArcGIS.  
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Figure 3.7 GIS map of vegetation cover  

 

The Zm value for specific sites were then determined by linearly interpolating Fr between the 

average Zm of bare soil (9.39 feet) and full cover vegetation (21 feet). The calculated Zm values 

were used to determine the maximum available moisture depth and subsequently establish a 

relationship between maximum available moisture depth and the mean moisture depth, which 

corresponds to the matric suction at equilibrium. 

3.3.2. Calculation of Maximum Available Annual Moisture Depth (dam) 

Maximum available annual moisture depth, dam represents the maximum depth of moisture that 

is lost from soil during a transition from the wet state to the dry state at the root potential of 

resident vegetation. It is determined by the area of volumetric water content profile between dry 

and wet states. Figure 3.8 illustrates the volumetric water content (θ) profile where total moisture 

is stored between 
dry  and wet . Herein, ( ')dry mu z  and ( ')wet mu z  are calculated using Equation 3.6 

when eu  equals 3.0 pF.  
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Figure 3.8 A schematic figure of maximum available annual moisture depth (dam) 

 

 

The unsaturated diffusivity coefficient, represents the slope of the suction profile. 

was determined as a function of the slope of soil water-characteristics curve (SWCC), 

/ logw h   and saturated soil water permeability (van Genuchten, 1980). 

 
/ log

sat

w

k

h




 

        (3.9) 

Saturated soil water permeability, ksat, was collected for all map units from the Natural 

Resource Conservation Service (NRCS) database. The value of n was assumed to be 1.0 cycle 

per year for all sites. The terms
dry , wet , dry  and 

wet were calculated using the SWCC for a 

particular site. The Fredlund-Xing equation was used to estimate the relationship between matric 

suction and volumetric water content, as shown in Equations 3.10 and 3.11 (Fredlund and Xing, 

1994). 
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where h represents matric suction in units of cm of water and ( )C h is a correction factor defined 

as
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The four fitting parameters i.e., af, bf, cf and hr in Equations 3.10 and 3.11 were predicted 

using the artificial neural network (ANN) model developed by Saha et al. (2018a). Soil physical 

properties such as gradation, Atterberg limits, saturated volumetric water content (θsat) and mean 

annual air temperature (MAAT) were used as input parameters and the fitting parameters are 

obtained as output. 

Finally, dam can be expressed as the sum of areas ABC and BCDE in Figure 3.8 or according to 

Equations 3.12 and 3.13.  

0

[ ( ) ( )]
mz

am wet dryd z z                                                                             (3.12)  
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


        (3.13) 

In the moisture balance process, the moisture depth or soil moisture storage reaches an 

equilibrium condition, which is denoted as the mean annual moisture depth, dm. The relationship 

between dam and dm will be described in the next section. 
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3.3.3. Relationship between Mean Annual Moisture Depth (dm) and Maximum Available 

Annual Moisture Depth (dam) 

The mean annual moisture depth (dm) is not only dependent on water retention and diffusivity 

characteristics of soil, but is also affected by climatic factors. As discussed earlier, TMI is an 

indicator of annual moisture balance of a specified location based on precipitation, evaporation, 

deficit and runoff. In this study Gay’s approach (Gay, 1994) was adopted to incorporate climatic 

factors in addition to soil characteristics to estimate moisture depth at equilibrium. He computed 

equilibrium moisture depth from the input of TMI (annual precipitation; P, potential 

evapotranspiration; PE), and the depth of maximum available moisture (dam). When TMI (the 

difference between P and PE) is positive, water was added to the annual moisture storage up to a 

maximum value of dam. If TMI is negative, soil moisture loss occurs and was subtracted from 

storage up to a minimum value of zero. 

Gay (1994) collected climatic data from 12 sites and developed the relationship between 

dm and TMI. In order to fit a rational function between TMI and dm, it is necessary to establish 

the limits of the function. The dependent variable dm logically has a maximum possible value of 

dam and a minimum value of zero. In order to establish the limits of the assumed independent 

variable TMI, Equation 6 was examined. It was deduced from Equation 6 that the minimum 

value of TMI occurs if there is no precipitation for the entire year.  Under this circumstance, the 

minimum value or lower bound of the TMI would be equal to -65, while the upper bound of TMI 

theoretically goes to infinity.  

To establish the relationship between TMI and dm, Juarez-Badillo’s approach was applied 

in this study (Juarez-Badillo, 1975). The functional domains for the variables are shown in 
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Figure 3.9. The real domain for T (= TMI + 65) and moisture depth, d are [0, ] and [0, dam] 

respectively. 

 
Figure 3.9 Functional domains of TMI, T, d and F(d)  

 

The real domain for variable d is incomplete and therefore a function F(d) is needed that 

is similar and straight (i.e. increasing in the same direction) to the real domain of variable, T. The 

following function represents the simplified function form for d that satisfies these boundary 

conditions. 

1 1
( ) [ ]

am m am

F d
d d d

 


       (3.14) 

Assuming a linear rate of change between F(d) and T, and integrating them within the 

limits of the domains shown in Figure 3.9, the final expression for dm is obtained in Equation 

3.17  

( )

( )

dT dF d

T F d
                                                                                       (3.15)            
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        (3.17)                    

The parameters , T1 and d1 were regressed against the measured values of the depth of mean 

annual moisture, dm for 17 locations (Snethen et al., 1977, McKeen, 1981, and Jayatilaka et el., 

1992). The resulting expressions of , d1 and T1 are given by Equations 3.18 through 3.20 

0.00547* amd          (3.18) 

1 0.6388* amd d         (3.19) 

1 223.82* amT d         (3.20) 

Equilibrium suction was then calculated using the dm value at each location, which 

included the regression parameters. Equation 3.21 was used to calculate equilibrium suction.  

'
(1 ) [( ')]

m

n
Z

dry dry

e dry m me Z d
n




 

 





         (3.21) 

To validate the prediction accuracy of the regression parameters, a new set of measured 

suction data at equilibrium were collected from the literature (Snethen et al., 1977, McKeen, 

1981, and Jayatilaka et el., 1992). These were compared against the calculated equilibrium 

suction values and plotted in Figure 3.10  
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Figure 3.10 Comparison of measured and calculated equilibrium suction 

 

 

The predicted suction values show good agreement with the measure values. Hence, these 

relationships facilitate the calculation of equilibrium suction for all map units in the United 

States. Equilibrium suction contour map of continental U.S. was generated in a GIS platform and 

is shown in Figure 3.11. 
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Figure 3.11 GIS based contour map of equilibrium suction 

 

3.3.4. Example Calculation 

The step by step calculation of equilibrium suction is elaborated using an example for a site 

located in Hattiesburg, Mississippi. 

Step 1. Identify geographic coordinates (Latitude and Longitude) of the location 

Hattiesburg, Mississippi: Latitude: 31.3270, Longitude: -89.290 

Step 2: Locate the corresponding map unit key (MUKEY) of this geographic coordinate from 

SSURGO metadata file in ArcGIS as shown in Figure 3.12.  

Equilibrium Suction (cm)

<3000

3,000 - 4,000

4,000 - 5,000

5,000 - 6,000

>6000
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Figure 3.12 Identification of map unit using the geographic coordinates 

 

 

Hattiesburg, Mississippi: mapunit 669755 

Step 3: Determine the fitting parameters (af, bf, cf and hr) of the SWCC for the map unit in 

question using the ANN model developed by Saha et al. (2018a). The inputs of the ANN model 

were collected from the NRCS soil database. Table 3.2 list the input and output parameters of the 

ANN model for map unit 669755.  

Table 3.2 List of input parameters and the ANN predicted output parameters for map unit 

669755 

Input parameters Output parameters 

Passing #4 

sieve 

Passing #200 

sieve 
LL PI θsat 

MAAT 

(0C) 
af (psi) bf cf hr (psi) 

95 41.5 17.5 1.5 40 18 2.49 0.99 0.87 3000 
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Step 4: Determine 
dry (for a suction of 4.5 pF for full vegetation and for a suction of 5.7 pF for 

no vegetation) and wet for a suction of 3.0 pF using the SWCC equation shown in Equations 3.10 

and 3.11 and the predicted output parameters shown in Table 3.2 

dry @4.5 pF = 0.0915 

dry @5.7 pF = 0.045 

@3 pF = 0.207 

Step 5: Find the value of Fr for map unit 669755 from the vegetation cover map shown in Figure 

7. 

Map unit 669755: Fr = 0.67 

Step 6: Since the value of Fr for this location is 0.67 (significant vegetation), 
dry is considered to 

be at a suction level of 4.5 pF. 

dry (actual) = 0.0915 

Step 7: Calculate the actual depth of the moisture active zone for Fr = 0.67 using a linear 

interpolation between 9.39 feet (Fr =0) and 21 feet (Fr = 1). 

mZ (actual) = 17.25 feet  526 cm 

Step 8: Calculate the unsaturated diffusivity coefficient, α using Equation 3.10 

Map unit: 669755; ksat = 2.39 x10-05 cm/sec (NRCS database); ( / log h  )5000 cm= 0.07428 cm-1; 

                               
2.39 05

0.07428

E



 =0.00032 cm2/sec 

Step 9: Calculate ( ')dry mu z  using Equation 3.6 when 𝑢𝑒 = ( ')wet mu z  = 3.0 pF 

Map unit: 669755; ( ')dry mu z = 3.0003 pF 
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Using Equation 3.10 and 3.11, determine dry  and 
wet   

'dry = 0.206917 

wet = 0.206957 

Step 10: Calculate the available moisture depth, amd  using Equation 3.13 

amd  = 16.473 cm 

Step 11: Find out the TMI of mapunit 669755 from the TMI contour map shown in Figure 3.4 

Mapunit 669755: TMI = 49.7 

Step 12: Calculate the mean annual moisture depth, dm using Equation 3.16 

dm = 9.274 cm 

Step 13: Calculate the equilibrium suction, eu  using Equation 3.21. 

eu = 3.439 pF 

To simplify the calculation process, an empirical relationship was established to predict the 

equilibrium suction for various soil types from the TMI value. This relationship and its 

development is presented in the next section.  

3.4. Development of Prediction Models for Equilibrium Suction 

A stepwise multiple regression analysis was performed to identify the significant parameters that 

are correlated with equilibrium suction. The soil and climatic parameters used in the regression 

model were TMI, PI, 
dryu , Zm, Fr, 1/ , sat , af, bf and cf. The t ratio and the p-value obtained 

from the F-test were used to identify the significant variables in the regression model. If the p-

value is less than 0.05, it indicates the variable is significant at the 95% confidence level. The t- 
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ratio is a ratio of the departure of an estimated parameter from its notional value and its standard 

error. A higher absolute value of the t-ratio corresponds to a smaller p-value (Saha et al. 2019c). 

Table 3.3 presents the results of the F-test, which were obtained from the commercially available 

Matlab software. The parameters TMI, PI, 
dryu  and 1/   have a p-value less than 0.05, and 

therefore are significant variables for the equilibrium suction prediction model. For the sake of 

simplicity, the parameter 1/  was not included and only TMI, PI and 
dryu  were used for model 

development. 

Table 3.3 Results of the multiple regression analysis 

 

 

The developed regression equation for equilibrium suction is expressed in Equation 3.22  

( ) 1.95 0.00062* 0.011* 0.324*e dryu pF TMI PI u       (3.22) 

It is observed from Equation 3.22 that equilibrium suction (pF) has a positive correlation 

with PI and
dryu , but follows a negative relationship with TMI. Figure 3.13 shows the plot of 

calculated versus predicted equilibrium suction using Equation 3.22. The R2 value of 0.80 

Variables Parameter estimate Standard error t Ratio p-value 

Intercept 1.26 0.41 3.11 0.002 

TMI -1.1E-03 5.9E-04 -1.93 0.045 

PI 0.029 3.4E-03 8.59 4.41E-15 

udry 0.51 0.064 7.96 2.05E-13 

Zm 4.6E-04 3.1E-04 1.44 0.15 

Fr -0.11 0.18 -0.62 0.53 

1/  -4.2E-03 8.4E-04 -4.95 1.73E-06 

sat  -0.43 0.31 -1.36 0.17 

af (pF) -1.7E-03 0.026 -0.07 0.94 

bf 3.4E-03 6.1E-03 0.56 0.57 

cf -0.17 0.11 -1.48 0.13 
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indicates that the developed regression model is capable of accurately predicting equilibrium 

suction. 

 

 

Figure 3.13 Calculated versus predicted equilibrium suction (pF) 

 

3.4.1. Relationship between TMI and Equilibrium Suction  

The calculated equilibrium suction values for all map units were categorized based on AASHTO 

soil classes. As the mechanistic approach of determining ue depends on the availability of SWCC 

and diffusion characteristics of soil, a simple relationship to predict ue for the various AASHTO 

soil types was established as a function of only the TMI value. An exponential trend line was 

fitted for each case to express the relationship between ue and TMI. 

The standard deviation (σ) of the scattered suction values from the trend line were also 

calculated and the results are presented in Figure 3.14. 
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              (a) AASHTO soil type: A-1                      (b) AASHTO soil type: A-2 

 

(c) AASHTO soil type: A-3                    (d) AASHTO soil type: A-4 

                

             (e) AASHTO soil type: A-6                    (f) AASHTO soil type: A-7-6 

Figure 3.14 Thornthwaite moisture index (TMI) versus equilibrium suction (pF) plots for 

(a) A-1; (b) A-2; (c) A-3; (d) A-4; (e) A-6; and (f) A-7-6 soil types 
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It is evident from Figure 3.14 that the equilibrium suction (𝑢𝑒) value decreases as TMI increases 

for all the soil types. This trend is in agreement with Equation 3.6 because a greater TMI value 

indicates a larger difference between precipitation (P) and evapotranspiration (PE) and therefore 

a larger amount of water being stored within the moisture active zone (larger θe) resulting in a 

smaller 𝑢𝑒 value. Furthermore, the A-3 soil class has the shallowest slope while the A-7-6 soil 

class has the steepest slope in the TMI- ue plots which is consistent with the fact that 𝑢𝑒 increases 

with increasing percentage of fine material. 

The σ values provide a measure of the dispersion of the data from the fitted trend line. In 

the TMI- ue plots in Figure 3.14, σ values ranged from 0.09 to 0.34 which is well within the 

allowable limit compared to the total range of equilibrium suction values.  

3.4.2. Relationship between Fraction of Vegetation Cover (Fr) and Equilibrium Suction 

The amount of surface vegetation is a factor that is not typically considered in the calculation of 

equilibrium suction. However, FPA (2017) documented that vegetation has a major influence on 

soil moisture content within the root zone.  
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                            (c) TMI: 10 to -6                       (d) TMI: -5 to -24 

 

  

(e)TMI: -25 to -40                                      (f) TMI: < -40 

Figure 3.15 Fraction of vegetation cover (Fr) versus equilibrium suction (pF) plots for TMI 

range (a) >40; (b) 40 to 11; (c) 10 to -6; (d) -5 to -24; (e) -25 to -40; and (f) <-40  

 

To consider the effect of vegetation in the surface, a vegetation cover map was generated 

in this study for the continental United States in the GIS platform (Figure 3.7). The calculated 

equilibrium suction values for each map unit were plotted against the corresponding Fr value 

obtained from Figure 3.7. A logarithmic trend line was fitted for each TMI range to establish a 

relationship between 𝑢𝑒 and Fr. The results are presented in Figure 3.15. The plots in Figure 3.15 

clearly indicate that the magnitude of equilibrium suction (pF) decreases as the vegetation cover  
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increases. This is consistent with the fact that an increase of surface vegetation increases the 

depth of moisture active zone (
mZ ), which attributes to higher volumetric water content at 

equilibrium and a smaller equilibrium suction value. Figure 3.15 also shows that the slope of the 

trend line is steepest for TMI>40 and shallowest for TMI<-40, which indicates that the impact of 

vegetation on 𝑢𝑒 is likely to be greater in humid areas having higher TMI values (PTI, 2004; 

Bulut and Nevels, 2018). The range of σ values (0.18 to 0.24) indicate that the proposed model is 

sufficiently accurate for the range of equilibrium values predicted.  

3.5. Conclusions 

A mechanistic-empirical model was developed in this study for determining equilibrium suction 

of subgrade soils by considering the effects of physical properties of the soil and climatic factors. 

A parametric study was also conducted to evaluate the impact of TMI and vegetation on 

equilibrium suction for various soil classes and TMI ranges, respectively. Equilibrium suction 

values increased with increasing percentage of fine material and decreased as surface vegetation 

increased.  

This study developed an improved prediction model of equilibrium suction for subgrade 

soils based on fundamental principles. The equilibrium suction contour map accompanying the 

model allows for a simple and accurate determination of a baseline equilibrium suction values at 

any given latitude and longitude within the continental United States. The incorporation of this 

model in an analysis approach will allow for a more reliable estimation of critical parameters 

such as subgrade resilient modulus and vertical movement due to swelling and shrinking of 

expansive clays thereby improving the prediction of pavement performance. 
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4. DEVELOPMENT OF A MOISTURE SENSITIVE RESILIENT MODULUS PREDICTION 

MODEL FOR UNBOUND BASE MATERIAL† 

 

4.1. Introduction 

Unbound base materials beneath the pavement surface are characterized by the resilient modulus 

(MR) in the Pavement ME Design (AASHTO 2008, Rahman et al. 2019b, Islam et al. 2019), 

which directly affects the design and analysis of flexible pavement structures. The advantage of 

MR over other material properties is that it represents the response to dynamic loading coming 

from vehicle movement. It is defined as the ratio of repeated cyclic loading (
cyc ) divided by 

recoverable strain ( r ) as shown in Equation 4.1.  

cyc

R

r

M



          (4.1) 

The resilient modulus can be estimated in three different approaches: (1) conduct lab tests 

with compacted soil specimen e.g., repeated load triaxial test (RLT), (2) follow back calculation 

method from an in situ device e.g., falling weight deflectometer (FWD); and (3) predict MR 

model coefficients from soil physical properties. The first and second approaches are expensive, 

time consuming and require expert labor. As a result, the third approach based MR model is used 

in this study to characterize the unbound material under different conditions. 

Various models have been developed to predict the resilient modulus of unbound base 

and subgrade materials. The most widely used generalized model developed in the National 

                                                 

† Reprinted with permission from “Use of an artificial neural network approach for the prediction of resilient 

modulus for unbound granular material” by Sajib Saha, Fan Gu, Xue Luo and Robert Lytton, 2018. Transportation 

Research Record, 0361198118756881, Copyright [2018] by SAGE Publications. 
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Cooperative Highway Research Program (NCHRP) project 1-28A, is shown in Equation 4.2 

(Witczak 2003). 

32 k1
1 ( ) ( 1)

k oct
R a

a a

I
M k P

P P


         (4.2) 

where 1I  is the first invariant of the stress tensor; oct is the octahedral shear stress; 
aP  is the 

atmospheric pressure; and  
1k ,

2k  and 
3k are regression coefficients.  

However, a number of studies showed that resilient modulus of unbound granular 

material is not only stress dependent but also moisture dependent (Lekarp et al. 2000). The 

AASHTO employed a moisture dependent MR model which is later adopted by mechanistic-

empirical pavement design guide (MEPDG) (AASHTO 2008). 

m opt

log

1 exp[ln k (S S )]

R

Ropt

M b a
a

bM

a


 


  

     (4.3) 

where RM  is resilient modulus at a given degree of saturation; 
RoptM  is resilient modulus at a 

reference condition; a and b are minimum and maximum of log(MR/MROPT) respectively; km is 

the regression coefficient; and 
opt(S S )  is variation of degree of saturation, expressed as a 

decimal.  

Other researchers have also proposed different moisture dependent resilient modulus 

models for both unbound aggregates and subgrade (Heath et al., 2004, Liang et al., 2008, and 

Cary and Zapata, 2011). However, previous studies also demonstrated the importance of the 

matric suction in the resilient modulus model. There have been a number of other studies 

recommending the use of soil suction in modeling resilient modulus (Oloo and Fredlund, 1998, 
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Wolfe and Bulatia, 2004, Khoury and Zaman, 2004; Luo et al., 2017, Gu et al., 2016). It is 

shown that the matric suction can be different for the same variation of degree of saturation, i.e. 

(S-Sopt), from one material to another (ARA, Inc. 2004). Therefore, the degree of saturation and 

soil suction alone cannot accurately estimate the change of resilient modulus due to moisture. In 

order to consider the moisture and suction dependency of resilient modulus characteristics, a new 

model is proposed by Lytton (Lytton 1995). 

321
1

3
( ) ( )

kkm oct
y a

a a

I fh
E k P

P P

 
                   (4.4)  

where 1I  is the first invariant of the stress tensor; aP  is the atmospheric pressure;  is the 

volumetric water content; mh  is the matric suction in the base matrix; f is the saturation factor, 1 

< f < 1/θ; oct  is the octahedral shear stress; and 1k , 2k  and 3k are regression coefficients. 

In this model, 1I  and oct vary with the stress state, and mh  is related to the moisture 

content of unbound aggregates. Three steps are followed to determine the coefficients 1k , 2k  and 

3k  using Equation 4.4. 

1. Matric suction hm in Equation 4.4 is estimated first at tested specimen water content. A 

separate artificial neural network (ANN) model is used to predict the coefficients of the 

soil water characteristic curve (SWCC) parameters in the Fredlund-Xing equation 

described in later sections. 

2. Volumetric water content, θ and saturation factor, f are calculated for each base material 

from the collected moisture content, maximum dry density and specific gravity data. The  
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saturation factor is an indicator of degree of saturation (Lytton 1995). It is multiplied with 

θ and hm, to express the stress on soil mineral skeleton in the transition zone. The 

transition zone occurs between the air entry point suction value and the unsaturation point 

suction value. The saturation corresponding to the air entry point and the unsaturation 

point are considered as 100% and 85% respectively in this study. Equation 4.5 is 

followed to calculate the saturation factor, f in the transition zone. 

85 1
1 ( 1)

15

S
f




                        (4.5) 

  where S is the degree of saturation (unit: %);   is the volumetric water content  

            (unit: decimel); it is considered to be 2 pF and 3.5 pF at the air entry point and  

             the unsaturation point respectively.            

3. Coefficients k1, k2 and k3 are calculated from collected MR data at different combinations 

of confining pressure and deviator stresses. A matlab code was generated to fit the curve 

for each base material. 

Researchers have developed many correlation models to predict k1, k2 and k3 from soil 

gradation, index and strength properties (Yau and Quintus 2004, Nazzal and Mohammad 2010, 

Malla and Joshi 2007, Gu et al., 2014). However, most of these models are either confined to a 

limited number of datasets or have a poor prediction accuracy. As a result, an ANN model is 

developed in this study to predict the coefficients from soil properties. The main advantage of a 

neural network model over non-linear regression models are that it can capture complex non-

linear scattered relationship between input and output parameters and train the model based on 

the evaluation of error function. The application of the ANN approach for predicting the resilient 
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modulus of subgrade soil has been studied by a few researchers (Coleri et al. 2010, Kim et al. 

2014). Soil index properties (i.e., material percent passing No. 200 sieve, plasticity index (PI), 

optimum moisture content (OMC), maximum dry density (MDD), variation in compaction water 

content) and stress variables (i.e., confining pressure, bulk stress, deviator stress) were used as 

input variables to predict the resilient modulus (Coleri et al. 2010). A different neural network 

analysis was performed with nine different soil source in Georgia (Kim et al. 2014). A similar 

study has been performed for ln(k1), k2 and k3 coefficients by Nazzal et al. (Nazzal and Tatari 

2013). Input variables for the correlation models developed by Nazzal consisted of material 

percent passing No. 200 sieve, LL, PI, MDD, test dry density (TDD), OMC, test moisture 

content (TMC) and  clay%. However, previous ANN approaches had some limitations. The 

resilient modulus values were predicted either as model output for a single stress combination or 

using only the locally available soil data as input. To overcome these limitations, an ANN model 

is developed in this study using a large database of unbound base materials collected from Long 

Term Pavement Performance (LTPP). Moreover, the resilient modulus equation coefficients (k1, 

k2, and k3) were predicted as output to cover a wide range of stress combination. 

The chapter is organized as follows. The next section describes the procedure to estimate 

suction at specific test specimen water content. Subsequently, ANN models are developed to 

predict the coefficients of the MR model using the estimated suction. After that the MR values 

using the predicted coefficients are compared against other existing regression models. Unbound 

base course data collected by the Texas A&M Transportation Institute (TTI) and University of 

Illinois at Urbana-Champaign (UIUC) were used to validate the developed ANN models and 

described in following section. The final section summarizes the major findings of this study. 
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4.2. Prediction of Suction at Test Specimen Water Content  

Matric suction of unbound granular base material was required to accurately estimate the 

resilient modulus in unsaturated condition as shown in Equation 4.4. However, the quantity of 

available SWCC data of unbound base materials from the available literature was not sufficient 

to train an ANN model. Hence the Soil Survey Geographic Database (SSURGO) was used for 

data collection from the United States Department of Agriculture-Natural Resources 

Conservation Service (USDA-NRCS). The database included soil physical and climatic 

properties as well as water content at specific suction pressure. Collected suction-saturation data 

points for each soils were fitted in the Fredlund-Xing equation as shown in Equations 4.6 and 4.7 

(Fredlund and Xing 1994). 
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          (4.7) 

where h is the the soil matric suction (unit: psi); and af, bf , cf are hr are soil fitting parameters.  

A Matlab code was generated to fit the Fredlund-Xing equation with measured data 

points and calculate the SWCC fitting parameters. Out of a total 34,237 soil data collected from 

the NRCS, soils which satisfy gravel characteristics according to Unified Soil Classification 

System (more than 50 percent material retained on the No.200 sieve is defined as coarse grained 

material and more than 50 percent of the coarse grained material retained on the No.4 sieve)  
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were separated out to train and validate the ANN models for the SWCC fitting parameters. The 

2598 plastic (PI>0) soil data and 311 non-plastic (PI=0) soil data were collected and used to train 

the neural network to predict the SWCC fitting parameters for unbound materials.   

Following the architecture in Saha et al. (2018a), two three-layered ANN models 

consisting of one input layer, one hidden layer and one output layer were constructed for plastic 

and non-plastic soils respectively. The input variables for plastic soils included percent passing 

No.4 sieve, percent passing No.200 sieve, liquid limit (LL), plastic limit (PL), saturated 

volumetric water content and local mean annual air temperature (MAAT). Input variables for 

non-plastic soils were particle diameters corresponding to 30, 60 and 90 percent passing of 

material D30, D60 and D90, gradation scale parameter (ϴ), and shape parameter (Ѱ), saturated 

volumetric water content and local MAAT.  The output of the developed ANN models were 

fitting parameters (i.e., af, bf, cf and hr) of the SWCC in the Fredlund-Xing equation, as shown in 

Equations 4.6 and 4.7.                            

The hidden layer in the ANN model assigned 20 neurons to establish connection between 

input and output layers. The 80 percent of the total dataset was used for training and 20 percent 

for validation of ANN models. Water contents at 0.1, 0.33 and 15 bars (1 bar = 100 kPa) were 

available in the USDA-NRCS database. In this study, the predicted SWCC parameters were 

input into the Fredlund-Xing equation to estimate the water content at the same suction levels. 

The estimated water contents were compared against the measured values to investigate the 

prediction accuracy. 

Figures 4.1a and 4.1b showed the plots of measured versus predicted degree of saturation 

for plastic and non-plastic soils, respectively. The developed ANN models had a very good  
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prediction accuracy generating a R2 value of 0.91 for both plastic and non-plastic soils. Hence 

the same trained models were used to predict the SWCC fitting parameters for base materials 

collected from the LTPP database. Predicted af, bf, cf and hr parameters of the LTPP materials 

were input into the Fredlund-Xing equation to estimate matric suction of the specimen at the 

tested water content. 

    

                         (a) Plastic soils                                         (b) Non-plastic soils 

Figure 4.1 Comparison of measured versus predicted saturation (%) at 0.1, 0.33 and 15 

bars suction level for unbound granular base materials using ANN model 

 

4.3. Development of Artificial Neural Network Models for MR Model Coefficients 

The ANN approach is an adaptive information processing technique, which allows to establish 

the correlations between the input variables Xi and the output variables Yj through the inter-

connected neurons (i.e., weight factor, wji). Note that the input variables Xi and the output 

variables Yj are usually normalized to xi and yj, respectively. The correlations developed by the 

ANN models between the normalized input parameters xi and the normalized output variables yj 

are shown in Equation 4.8.  
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where  f  is a transfer function, which normally uses a sigmoidal, Gaussian, or threshold 

functional form; wji and bj are the unknown weight factors and bias term respectively.  

A neural network model specifically adjusts the weight factors wji and bias bj in Equation 

4.8 based on the minimum error function. In pavement engineering, the ANN approach is usually 

used to develop prediction models on the basis of a large number of data collected from 

experiments and numerical analysis. ANN models have been successfully developed to predict 

the crack growth function (e.g., reflective cracking and top-down cracking) in asphalt concrete 

(Ceylan et al. 2011, Ling et al. 2017). The ANN approach was also utilized to predict the 

geogrid-reinforced flexible pavement performance (Gu et al. 2017). In general, the development 

of ANN models includes two critical steps: 1) data collection; and 2) construction of ANN 

architecture. 

4.3.1. Data Collection   

A large collection of unbound base materials was available in the LTPP database. Out of total 

3010 unbound base materials 717 materials were selected which passes gravel specifications. 

217 plastic (PI>0) and 500 non-plastic (PI=0) base materials were separated out to develop two 

different sets of ANN models for k1, k2 and k3. Resilient modulus tests were conducted on 15 

different combinations of confining pressure and nominal maximum axial stress level. In 

addition to the resilient modulus test data, physical properties of base materials such as 

gradation, Atterberg limits, moisture content, density and specific gravity were collected from 

the LTPP database.  
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4.3.2. Construction of ANN Architecture 

Two three-layered ANN models, one for plastic and another for non-plastic soil were constructed 

as shown in Figure 4.2a and 4.2b respectively. Three layers of the ANN model consisted of a 

single input, a hidden and an output layer. Soil physical properties i.e., percent of material 

passing 3/8” sieve, percent of material passing no. 200 sieve, PL, PI, OMC, MDD and TMC 

were introduced as input parameters for plastic soils. Input parameters for non-plastic soils 

included the percent of material passing  the 3/8” sieve, percent of material passing the No. 200 

sieve, gradation scale parameter;ϴ,  and shape parameter; Ѱ, OMC, MDD, and TMC. The 

hidden layer assigned 10 neurons to establish the connection between the output layer and the 

input layer. The number of neurons was selected based on the number of data points. Too many 

hidden neurons allow the network to memorize instead of generalizing the training set (Lawrence 

and Peterson 1993). 

 

(a) Plastic soil 
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(b) Non-plastic soil 

Figure 4.2 Illustration of three-layered neural network architecture (a) Plastic; (b) Non-

plastic soil 

Both the non-plastic and plastic soil models utilized the sigmoidal transfer function, as 

shown in Equation 4.9 (Gu et al. 2017). 

 
 
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1 exp
i

i

f I
I


 

        (4.9) 

where Ii is the input quantity, and φ is a positive scaling constant. 

The parameter φ controls the steepness between the two asymptotic values 0 and 1. The 

ANN model determines these weight factors wji through the two major functions: training and 

validating. The training data set is used to determine the trial weight factors, wji and bias term, bj 

the validating data set is employed to examine the accuracy of the model prediction. In this 

study, 80 percent of the dataset was used for training and 20 percent of the dataset is for 

validation. The training algorithm used the Levenberg-Marquardt back propagation method to 
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minimize the mean squared error (MSE). The gradient descent weight function was employed as 

a learning algorithm to adjust the weight factors wji. 

4.4. Prediction of MR Model Coefficients Using ANN Model 

In this study, the ANN model was developed to predict the MR model coefficients (i.e., k1, k2 and 

k3) from base physical properties. The coefficients of the MR model were correlated with base 

material physical properties and used to estimate the resilient modulus. Figure 4.3 showed the 

comparison between measured and predicted MR model coefficients for plastic soils. The 

predicted MR coefficients showed high R2 and low RMSE, which indicated a good prediction 

accuracy. The R2 values for MR coefficients were in the range of 0.66 to 0.73. Similarly, Figure 

4.4 plotted the comparisons between measured and predicted MR model coefficients for non-

plastic soils. The R2 value for k1, k2 and k3 coefficients were 0.78, 0.74 and 0.58 respectively.  

    

                                 (a) k1                                                                 (b) k2 
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    (c) k3 

Figure 4.3 Predicted MR model coefficients of plastic base materials from physical 

properties using ANN approach 

 

Note that a high level of variability was involved in estimated coefficients due to 

variations in cyclic load triaxial test results and seasonal changes in selected physical properties 

(Ji et al. 2014). Hence, the predicted k1, k2 and k3 values need to be scrutinized in the validation 

process. If the validation dataset provides comparable results, then the predicted coefficients can 

be considered to be sufficiently accurate to use in MR model equation. 

    

                                 (a) k1                                                               (b) k2 
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                                                                       (c) k3 

Figure 4.4 Predicted MR model coefficients for Non-Plastic base materials from physical 

properties using ANN approach 

 

4.5. Comparison of ANN Model with Other Regression Models 

A number of regression models have been developed to correlate the soil physical properties 

with MR model coefficients. In this study the correlation models (Nazzal et al. 2010, Gu et al. 

2014, and Soliman et al. 2016) were selected and compared against measured values to 

investigate the accuracy of the MR coefficients. They were named as Yau model (Yau and 

Quintus 2004), Malla model (Malla and Joshi 2007), and Soliman model (Soliman and Shalaby 

2016), respectively. All of these three regression models used the generalized MR constitutive 

equation shown in Equation 4.2. 

Seven different sets of regression equations were proposed by Yau and von Quintus for 

crushed stone materials, crushed gravel,uncrushed gravel, sand, coarse grained soil-aggregate 

mixture, fine grained soil-aggregate mixture and fine grained soil, respectively. The physical 

properties used to correlate with the generalized MR model coefficients were material percent 

passing No. 3/8” sieve,  No. 4 sieve,  No. 40 sieve,  No. 200 sieve, percentage of silt (% silt),  
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percentage of clay (% clay), LL, PI, OMC, MDD, TMC and test dry density (TDD). 

Malla and Joshi studied the correlation between the MR model coefficients and the 

gradation and compaction parameters of base materials. Regression analysis was performed on 

MR model coefficients for uncrushed gravel and crushed limestone. The variables were selected 

on the basis of the literature and the logical influence of gradation, compaction and moisture 

content parameters on the regression constants (k1, k2 and k3). These variables included: OMC, 

TMC, MDD, material percent passing No. 4 sieve, material percent  passing No. 40 sieve, 

material percent  passing No. 200 sieve.  

Soliman and Shalaby presented regression equations of the generalized MR model 

coefficients for six AASHTO soil types (A-1-b, A-3, A-2-4, A-4, A-6 and A-7-6). Data used in 

the regression analysis was collected from 19 states in New England and the nearby regions in 

the United States and two provinces in Canada. The soil properties that were considered in the 

regression analysis include: OMC, TMC, MDD, LL, PI, TDD, percentage of coarse sand (% 

CSAND), percentage of fine sand (% FSAND), percentage of silt (% silt), percentage of clay (% 

clay), material percent  passing  3” sieve, 2” sieve, 1 ½” sieve,1” sieve, ¾” sieve, 1/2” sieve, 3/8” 

sieve, No. 4 sieve, No. 10 sieve, No. 40 sieve, No. 80 sieve and No. 200 sieve. 

The accuracy of the prediciton of the MR model coefficients by the existing correlation 

models were analyzed in this study. Table 4.1 listed all the predicted MR coefficients using Yau, 

Soliman, Malla and ANN models. Compared to the ANN model, the estimated RMSE values 

from the three regression models were high and the R2 values were extremly low.  
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Table 4.1 Prediction Accuracy of SWCC Fitting Parameter Models 
 

 

 

 

 

 

High RMSE and low R2 values indicated a poor prediction accuracy. The R2 values for k1, 

k2 and k3 from all the three regression models were less than zero, while R2 values from ANN 

model were in the range of 0.63 to 0.76. The negative R2-values indicated the slope of the best fit 

line relating the predicted to the measured coefficients was negative. Therefore, the developed 

ANN models had a significant improvement in predicting the MR model coefficients from base 

physical and compaction properties. 

The accuracy of MR values using the predicted coefficients were examined in the next 

section. Predicted coefficients from the three regression models were input into Equation 4.2 and 

the ANN model coefficients were input into Equation 4.4 to calcualte MR values, which were 

compared to the measured values. Figure 4.5 showed the comparisons between measured and 

estimated MR values using the ANN predicted coefficients.     

Model 
R2 RMSE 

k1 k2 k3 k1 k2 k3 

Yau  -4.51 -2.15 -3.06 0.31 0.25 0.54 

Soliman  -2.27 -0.16 -1.42 0.43 0.59 0.89 

Malla  -0.023 -0.03 -1.86 28.82 0.94 0.61 

ANN 0.76 0.72 0.63 0.10 0.05 0.04 
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                   (a) Plastic base materials                          (b) Non-plastic base materials     

Figure 4.5  Comparison of ANN model predicted resilient moduli against measured values  

       

Clearly the MR values estimated using the ANN coefficients matched well with the test 

data. The R2 value estimated for both plastic and non-plastic base materials were 0.91, which 

demonstrated a high accuracy. Figures 4.6a, 4.6b and 4.6c presented the results from Yau, 

Soliman and Malla models respectively. The R2 value estimated from Yau, Soliman and Malla 

models were 0.32, -1.53 and -1.62e06 respectively, which indicated the regression models failed 

to predict the coefficients. The negative R2 value from Soilman and Malla model indicated that 

the best fit line relating the predicted to the measured values had a negative slope. 

              

                         (a) Yau model                                                       (b) Soliman model  
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            (c) Malla model  

Figure 4.6  Comparison of measured versus predicted resilient moduli using regression 

mdoels 

 

4.6. Validation of the Developed ANN Models 

To validate the developed ANN models for the MR model coefficients, test data were collected 

from the TTI (Epps et al. 2014, and Titus-Glover and Fernando 1995) and UIUC (Tutumluer et 

al. 2009). Epps et al. (2014) conducted triaxial repeated load tests to evaluate the laboratory 

performance of unbound granular materials. In addition to the MR test results at different 

combinations of confining pressure and deviator stresses, aggregate physical, strength and 

moisture properties were also collected. Titus-Glover and Fernando performed the compressive 

creep and recovery tests for collected unbound base materials in the TTI laboratory. Tutumluer et 

al. conducted resilient modulus tests at the 15 various stress states. Since no suction values were 

provided by the UIUC research team, the suction is estimated using the developed ANN models 

from the base physical properties. Table 4.2 listed all the collected physical properties used as 

the ANN inputs for the validation dataset. 
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Table 4.2 Input Parameters Collected From Literature for Model Validation 

Data Souces Soil source 
#3/8 

sieve 

#200 

sieve 
PL PI MDD OMC TMC 

Epps et al.  
E-02-2-3-2 45.9 12.36 10 5 136.2 7.2 7.2 

E-08-2-1-6 49.2 6.3 9 5 140.4 6.5 6.5 

Titus-Glover 

and Fernando  

Limestone 

(-2% OMC) 
64.71 17.61 12.8 7.9 127.4 9.045 7.045 

Limestone 

(OMC) 
64.71 17.61 12.8 7.9 127.4 9.045 9.045 

Tutumluer et al.  

Dolomite FC 

4% (OMC) 
69.9 4 N/A N/A 133 10.5 10.5 

Dolomite FC 

8% (OMC) 
71.1 8 N/A N/A 133 8.48 8.48 

 

The collected base properties were input into the trained ANN model to predict k1, k2 and 

k3. Resilient modulus values were calculated using the predicted coefficients from the ANN 

models and compared with the test results. Figure 4.7 showed the comparison between measured 

and estimated MR values using the ANN predicted coefficients.  

 

Figure 4.7 Validation of measured versus ANN predicted MR at various stress levels for 

collected unbound materials  

 

The data points plotted above the line of equality were from the UIUC dataset and those 

plotted below were from the TTI. The TTI data were all plastic base whereas UIUC base 
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materials were non-plastic. The over predictions in estimated suction for non-plastic base 

materials contributed to the over predicted MR values for UIUC dataset. Overall, the MR values 

estimated using the predicted coefficients from the ANN models produced a good fit with the 

test results. Figure 4.7 depicted a R2 value of 0.8 between measured and predicted dataset. 

Hence, the developed ANN model can be used as a prediction tool to accurately estimate the MR 

model coefficients that are used in pavement design and analysis. 

4.7. Conclusions  

This study developed ANN models to predict the coefficients of a stress and moisture dependent 

resilient modulus model. Two three layered ANN models were developed for plastic and non-

plastic base materials respectively where base physical and index properties were selected as 

input. A good prediction accuracy of the developed models indicate better estimation of the 

resilient modulus of base materials.  
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5. PREDICTION MODEL FOR SHEAR STRENGTH AND PERMANENT DEFORMATION 

MODEL COEFFICIENTS 

 

5.1. Introduction 

The Pavement ME design mainly considers the elastic behavior of unbound base and subgrade 

materials but little attention has been paid to their shear strength. Previous studies have presented 

that the shear strength of underlying layer materials is related to the pavement performance 

through the following aspects: 

 Influence on accumulation of permanent deformation in flexible pavements 

 Influence on extent of erosion in rigid pavements 

 Influence on degree of bonding between the concrete slab and the base course in rigid 

pavements 

In flexible pavements, the shear strength directly affects the amount of total rutting 

(Theyse et al. 1996, Fernando et al. 2008, Maree 1978). For example, it was suggested that the 

dominant factor in determining permanent deformation is the relationship between the shear 

strength of the soil and the applied shear stress. The ratio of the shear strength to shear stress 

performs well in limiting the permanent deformation of granular materials against shear failure 

(Theyse et al. 1996, Maree 1978). 

Shear strength effects the extent of erosion in the base course of rigid pavements, which 

is the key factor in the development of faulting in JPCP and punchouts in CRCP. “Soil 

Erodibility”, (2014) depicted that a small change in the shear strength has a considerable effect 

of the degree of erosion in the lower range of shear strength. Furthermore, in rigid pavements,  
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the shear strength is directly related to the degree of bonding between the concrete slab and base 

course and the degree of bonding has a significant impact on the performance of rigid pavements 

(Tarr et al. 1999, Bari et al. 2013, Croney 1977, Delatte et al. 2000). 

5.2. Prediction Model for Shear Strength of Base and Subgrade  

In light of the critical role of shear strength in performance prediction, it is incorporated by the 

research team in the model formulation of both flexible and rigid pavements. The general shear 

strength model is defined according to the Mohr-Coulomb failure envelope, which is determined 

from triaxial tests on laboratory molded specimens. 

tannc            (5.1) 

where  is the shear stress; c is the total cohesion; 
n
 is the normal stress on the failure plane;

is the angle of internal friction 

Furthermore, the impact of moisture variations on the shear strength is taken into account 

in this study. As the water content increases by a small amount, the shear strength decreases 

significantly depending on the magnitude of normal stress (Oloo, 1994). Such a reduction 

accelerates shear failure and intensifies rutting in flexible pavements and erosion in rigid 

pavements. The research team has developed a moisture-sensitive shear strength model for 

unbound base materials (Lytton 1995). 

' ( ) tan 'n mc fh             (5.2) 

where 'c is the effective cohesion; '  is the effective friction angle;  is the volumetric water 

content; f is the saturation factor; and hm is the matric suction; 

Figure 5.1 illustrates the Equation 5.2 which represents the dependence of the shear 

strength of unbound materials on the matric suction. 
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Figure 5.1 Schematic plot of Mohr’s circle showing dependence of shear strength on matric 

suction 

 

To make the moisture-sensitive shear strength model more applicable in the pavement 

design, prediction models have been developed for the shear strength parameters c ́ and   ́. In 

this way, the shear strength of unbound layers and subgrade can be estimated using common soil 

properties in the absence of triaxial test data. 

5.2.1. Prediction Model for Unbound Base 

To develop the prediction models for unbound base materials, the measured shear strength 

parameters of different types of base materials were collected from literature sources (Epps et al. 

2014, Tutumluer et al. 2009, and Chow et al. 2014). Additional data were collected to obtain soil 

physical properties such as gradation, Atterberg limit, optimum and saturated moisture content 

and the soil water characteristic curve of the various materials tested. Finally, regression analysis 

was conducted to determine the relationships between the shear strength parameters (c ́ and   ́) 

and the collected physical properties.       

' 0.221* 4.6* (%) 455.62* 1262.75sat sc PI G         (5.3)             

' 0.0272* 0.638* (%) 1.487* (%) 69.92opt satPI MC       (5.4) 
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The goodness of fitting by the developed regression equations is shown in Figure 5.2 for 

the collected base materials. R2 value of 0.81 and 0.87 for c ́ and   ́ parameters respectively 

indicate that the regression equations have a good prediction accuracy. 

 

 (a)                                                                   (b) 

Figure 5.2 Comparison of predicted and measured shear strength model parameters (a) c  ́

and (b)   ́ 

5.2.2. Prediction Model for Subgrade 

Similar prediction models have been developed for the shear strength parameters of subgrade. 

The friction angle is dependent on the Plasticity Index (Holtz and Kovacs 1981). Based on the 

experimental test data, an empirical correlation is developed between   ́ and PI for normally 

consolidated soils as shown in Equation 5.5. 

2' 0.0014* 0.28* 35.87PI PI          (5.5) 

It is obvious that the matric suction, friction angle, porosity, and gradation of the 

subgrade material have an effect on the cohesive shear strength, and this is confirmed with 

subsequent studies in the mechanics of unsaturated soils (Lytton 1995, Epps et al. 2014). Due to 

insufficient triaxial test data for subgrade, unconfined compressive strength test data were 
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collected form LTPP database and used to develop the prediction model for cohesive strength. In 

this study, an ANN model has been developed to predict the cohesion parameter from subgrade 

physical and strength properties. The architecture of the ANN model is shown in Figure 5.3. A 

three layered network was constructed with one input, one hidden and a single output layer. 

Maximum dry density, soil porosity, effective friction angle and suction value at optimum 

moisture content are selected as input parameters. The hidden layer is consisted of 10 neurons 

and the c ́ parameter is the output of the developed model. 432 unconfined compressive strength 

test data were collected from LTPP and used in training and validating the ANN model.  

 
Figure 5.3 Illustration of three-layer neural network archtictute to predict c ́ parameter 

 

Figure 5.4 shows the prediction accuracy of the developed ANN model for training and 

validation datasets. The obtained R2 value of 0.98 and 0.97 for training and validation dataset 

demonstrate that the developed ANN model can accurately predict the c ́ parameter. 
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Figure 5.4 Target and output c ́ values for training, validation and overall datasets 

5.3. Prediction Model for Permanent Deformation of Unbound Material  

Permanent deformation is a major form of distress in flexible and rigid pavement. In the 

pavement ME design, the total permanent deformation is the sum of the individual layer 

permanent deformations, i.e., surface layer, unbound layers and subgrade layer. The permanent 

deformation model for unbound base and subgrade layers used in the Pavement ME design is 

shown in Equation 5.6. 

( )
0( ) N
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r

e h



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



         (5.6) 

where δ is the permanent deformation for the layer; ϵr is the resilient strain imposed in the 

laboratory test; ϵv is the average vertical resilient strain in the layer; h is the thickness of the 
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layer; N is the number of traffic repetitions; ϵ0, ρ, β are the model coefficients; βs is the gloabal 

calibration coefficient (1.673 for granular materials and 1.35 for subgrade soils). 

However, the rutting model used in the pavement ME design is less sensitive to the 

modulus and the thickness of the unbound layers (Masad and Little 2004). As a result, a different 

permanent deformation model is proposed by Tseng and Lytton (Tseng and Lytton 1989), shown 

in Equation 5.7. 

( )

0
Ne h


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

         (5.7) 

 Later on, the Tseng-Lytton model was improved and a new mechanistic-empirical 

permanent deformation model for unbound materials was proposed, which is capable of 

predicting the permanent deformation behavior at different stress states using the single-stage 

test protocol (Gu et al. 2015). The formulation of the model is given as follows: 

2( / ) 1
0( ) ( ) ( )N m n

p

a a

J I K
N e

p p

 
   

      (5.8) 
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         (5.9) 
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
         (5.10)                  

where J2 is the second invariant of the deviatoric stress tensor; I1 is the first invariant of the stress 

tensor; ε0 , ρ , β , m , and n are model coefficients; c ́ and   ́ are effective cohesion and friction 

angle, respectively.   

In this model, the two terms, J2 and (αI1 + K) are incorporated into the Tseng-Lytton 

model, which is used to reflect the influence of a stress state on the permanent deformation of 

unbound materials. 
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Many laboratory tests were conducted by the same research team and validated the 

accuracy of the model proposed in Equation 5.8. They concluded that the proposed model 

matches well with the measured permanent deformation curves. The sensitivity of the proposed 

model was also studied and demonstrated that it improved the sensitivity of unbound layer 

significantly (Gu et al. 2017). Hence the model proposed by Gu et al. (2015) is adopted is this 

study to predict permanent deformation of base and subgrade soils. 

The model coefficients (ϵ0, ρ, β, m and n) in Equation 5.8 can be determined by two 

approaches. 

1. By fitting the model to the permanent strain measured in the repeated load permanent 

deformation test 

2. Using prediction models developed from a set of physical properties such as the 

maximum dry density, percent fines content, and aggregate gradation etc. 

From these two approaches, approach 1 is time consuming, requires an extensive laboratory 

setup and expert personnel to conduct the test. In this study a regression model is developed to 

predict the permanent deformation of unbound materials. 

5.3.1. Prediction Models for Permanent Deformation Coefficients of Unbound Base 

In order to develop the prediction models of the coefficients of Equation 5.8, the research team 

utilized the measurements from the repeated load triaxial test on 108 different types of base 

materials collected from literature sources (Epps et al. 2014, Tutumluer et al. 2009, Chow et al. 

2014, Cetin et al. 2014a, Soliman and Shalaby 2015). In addition to triaxial test data, soil 

physical properties such as gradation, Atterberg limit, maximum dry density and optimum 

moisture content data were also collected for the base samples. Finally, regression analysis was 
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conducted to determine the relationships between the permanent deformation model coefficients 

(ϵ0, ρ, β, m and n) and the collected physical properties. 

0 4log 0.017* 0.00967* 0.99P MDD          (5.11) 

4log( ) 0.0574* 0.0937* 5.0756P MC        (5.12) 

40.01483* 0.00813* 0.00136* (%)P MDD sat        (5.13) 

00.2153* 0.396m          (5.14) 

0.22993* 0.746n m          (5.15) 

where P4 is the percent of material passing No. 4 sieve (unit: %); MDD is the maximum dry 

density (unit: lb/ft3); MC is the test moisture content (unit: %); sat(%) is the degree of saturation 

(unit: %) 

The goodness of fitting by the developed regression equations is shown in Figure 5.5 for 

the collected base materials. The predicted coefficients showed a good match with the measured 

values. 

 

 (a)                                                                 (b) 
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                                (c)                                                                       (d) 

 

                                                                            (e) 

Figure 5.5 Comparison of predicted and measured permanent deformation model 

parameters (a)
0
(b)   (c)  (d) m and (e) n 
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6. DEVELOPMENT OF A MODULUS OF SUBGRADE REACTION MODEL TO IMPROVE 

SLAB-BASE INTERFACE BOND SENSITIVITY‡ 

 

6.1. Introduction 

Subgrade acts as a supporting layer in pavement structure. Proper characterization of subgrade 

strength is necessary for pavement design and construction. Modulus of subgrade reaction (k-

value) is widely used to evaluate subgrade strength and soil structure interaction, and design the 

rigid pavements. It is represented as the reaction pressure (P) sustained by the soil under a rigid 

plate per unit settlement (∆). The k-value can be measured from a field plate load test conducted 

on top of subgrade (Rao, 2000; MnDOT 2007) or estimated from correlations with other load 

bearing capacity tests e.g., consolidation test, triaxial test and California Bearing Ratio (CBR) 

test (Ziaie-Moayed and Janbaz, 2009).  

The k-value from the plate load test is calculated using the Winkler model, which 

assumes an elastic plate resting on a liquid foundation (Winkler, 1867). This model considers the 

soil behavior as a series of linear elastic springs, as shown in Figure 6.1a. Many researchers have 

utilized the model to characterize soil-foundation interaction (Biot, 1922; Terzaghi, 1955; Vesic, 

1961; Horvath, 1983; Vallabhan and Das, 1988). In the Winkler model, the submodel of elastic 

plate is well established, but the submodel of foundation needs modification. It was attempted to 

improve the Winkler model by adding other forms of interaction among the spring elements 

(Filonenko-Borodich, 1940; Hetényi, 1971; Pasternak, 1954; Vlasov and Leont'ev, 1966; 

                                                 

‡ Reprinted with permission from “Development of a modulus of subgrade reaction model to improve slab-base 

interface bond sensitivity” by Sajib Saha, Fan Gu, Xue Luo and Robert Lytton, 2019. International Journal of 

Pavement Engineering, 1-12, Copyright [2019] by Taylor & Francis. 
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Vallabhan and Das, 1989). The Pasternak model shown in Figure 6.1b allows the transverse 

connection in the supporting media and introduces shear interaction on slab-base interface (Shi et 

al., 1993&1994). Later on, Iancu-Bogdan and Vasile, (2010) and Farouk (2014) investigated the 

problem of beam on foundations using the finite element method. They considered more 

complex factors such as the realistic contact stresses between slab and foundation, and the 

nonlinear stress-dependent elastoplastic behavior of soil foundation. 

 

                                       (a)                                                              (b) 

Figure 6.1 Foundation models for rigid pavement (a) Winkler model; (b) Pasternak model  

 

Recently, the concept of modulus backcalculation was proposed using the deflection 

basin generated from a falling weight deflectometer (FWD) (Hoffman and Thompson 1981). 

Hall et al. (1991) derived the solution of the dynamic k-value of subgrade from the FWD 

deflection basin. Subsequently, the “backcalculated best-fit approach (BBF)” was adopted by the 

Long Term Pavement Performance (LTPP) program to determine k-values for rigid pavements 

(FHWA, 2001). 

For the rigid pavement analysis in the Pavement ME Design, the load bearing capacity of 

subgrade foundation is characterized by an effective dynamic k-value. The actual rigid pavement 

structure is transformed into an equivalent structure with a k-value, which represents the 

compressibility of all layers underneath the concrete slab. The subbase and subgrade materials in  
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the design guide have been characterized by the Winkler model, which is easy for 

implementation but neglects the shear interaction with the supporting media. In the BBF 

approach, the degree of bonding on the slab-base interface is assumed to be either 1 for fully 

rough interface or 0 for frictionless slip interface. However, it is recognized that none of these 

assumptions are realistic for base courses (Tarr et al. 1999, Saha et al. 2019a). Shear restraints 

exist between the slab and base layer because of rough interfaces. This causes an interlocking of 

the slab and base, which has a significant effect on the structural performance of pavement 

(Jeong and Zollinger, 2001; Jung and Zollinger, 2011; Bari et al., 2013). 

In addition, the nature of cross anisotropy of base material is not considered in the 

Pavement ME Design while calculating the k-value. Recent studies have shown that granular 

base materials exhibit stress dependent and cross anisotropic behavior (Gu et al., 2016; Zhang et 

al., 2018a&b). The triaxial testing protocols were developed by Adu-Osei et al. (2001) and 

Tutumluer and Seyhan (1999) for determining anisotropic resilient properties of granular 

materials in the laboratory. Tutumluer et al. (2003) and Park and Lytton (2004) found that the 

use of nonlinear anisotropic base modulus significantly affects the stress distribution in the base 

layer and diminishes the horizontal tensile stresses in the bottom half of the base layer. The 

performance of pavement was predicted by Masad et al. (2006) and Oh et al. (2006) using the 

nonlinear cross-anisotropic model and showed good agreement with the field measurements. 

Hence, there was a need to develop a modified k-value model, which involves both corrected 

base modulus due to cross anisotropy and the slab-base interface bond. 

This chapter is organized as follows. The next section presents the detailed description of 

the development of the modified k-value model. Subsequently, the modified k-value is calculated 
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for the LTPP sections. In the following, an artificial neural network (ANN) model is developed 

to predict the modified k-value for a wide range of pavement layer moduli, layer thicknesses and 

slab-base bonding ratios. The development of an ANN model involves two steps: 1) estimation 

of pavement structural response using the commercial finite element (FE) software ABAQUS; 

and 2) construction of ANN architecture based on the FE simulation results. After that, the 

developed ANN models are compared with the calculated k-values for selected pavement 

sections in terms of prediction accuracy. The final section summarizes the major findings of this 

study. 

6.2. Development of Modified k-Value Model 

The development of modified k-value model is elaborated as below, which contains four 

submodels: 

 Cross anisotropic modulus submodel for the base layer 

 Slab-base equivalent thickness submodel 

 Slab-base interface shear bonding submodel 

 Modified k-value submodel 

6.2.1. Cross Anisotropic Modulus Submodel for Base Layer 

The cross-anisotropic behavior of base material is characterized by the generalized Hooke’s 

Law, which is shown in Equation 6.1.  

1
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      (6.1) 
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where Ex is the horizontal modulus; Ey is the vertical modulus; νxy is the Poisson’s ratio to 

characterize the effect of vertical strain on horizontal strain; νxx is the Poisson’s ratio to 

characterize the effect of horizontal strain on the perpendicular horizontal strain. 

A layered elastic program, WinJULEA, is used in this submodel to determine the stress 

states in the middle of base layer. The computed stresses are then input into the generalized 

resilient modulus model shown in Equation 6.2 to calculate the vertical modulus of base layer 

(NCHRP, 2003). In general, the resilient moduli in the vertical and horizontal directions follow a 

constant ratio, n (Tutumluer et al. 1999, Masad et al. 2006), which is shown in Equation 6.3. It is 

known that the current Pavement ME Design does not allow inputting both horizontal and 

vertical moduli of base materials. To consider the effect of cross anisotropy, the base modulus is 

corrected as the golden mean of the vertical and horizontal modulus, as shown in Equation 6.4. 

32

1 ( ) ( 1)
kkv oct

R a

a a

M k P
P P


         (6.2)  

H

R

V

R

M
n

M
          (6.3) 

1/2 1/2( ) ( )V H V

R R R RM M M M n         (6.4) 

where V

RM is the resilient modulus in the vertical direction; H

RM is the resilient modulus in the 

horizontal direction; n is the modulus ratio. 

An iterative model is developed within this submodel to determine the cross anisotropic 

resilient modulus of base material. Figure 6.2 is a schematic flowchart for the iterative method. 
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Figure 6.2 Flowchart of corrected base modulus due to cross anisotropy 

 

 

The input parameters include the pavement layer thicknesses and initial moduli in the 

WinJULEA program. Initial values of the vertical and horizontal stresses are computed from the 

analysis. The computed initial stresses are then used to calculate the resilient moduli using 

Equations 6.2-6.4. Equation 6.5 presents the convergence criterion for the iteration, which 

indicates that the base modulus is finalized whenever the difference between the input and 

calculated moduli is less than 1 percent of the calculated modulus. If the difference is greater 
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than 1 percent of calculated modulus, the calculated modulus will be input again in the 

WinJULEA program, and the iteration process is continued until the desired criterion is reached. 

( ) ( )

( )

1%
R Calculated R Input

R Calculated

M M

M


        (6.5) 

6.2.2. Slab-Base Equivalent Thickness Submodel 

The formulation of the equivalent thickness submodel includes two steps. First, a cooperating 

slab and base system is introduced using the transformed-section method, as shown in Figure 

6.3.  

The moment of inertia of the pavement cross section is calculated based on the 

transformed section as follows: 

2

tr slab base i iI I I Ad           (6.6) 

where Itr is the moment of inertia of the transformed pavement section; slabI is the moment of 

inertia of the slab; baseI  is the moment of inertia of the transformed base; Ai is the area of the slab 

and the transformed area of the base course; di is centroidal distance to each of the areas; and δ is 

the interface shear bonding. 
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Figure 6.3 Illustration of transformed-section method for a cooperated concrete slab and 

base course system 

 

The calculation steps of the moment of inertia for a typical cooperated slab and base system is 

shown in Table 6.1. 

Table 6.1 Steps of moment of inertia calculation for a cooperated slab and base system 
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 1 2iA A A 
 

 1 1 2 2i iA y A y A y 
 

    

 

Second, the thickness of the equivalent section is calculated using the moment of inertia 

of the transformed section. The transformed section that consists of concrete and base is 

converted into an equivalent cross section of concrete. The thickness of the equivalent section is 

estimated by considering the same moment of inertia for both sections. For a plate, the thickness 

of equivalent section is expressed as,  
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2
3

*12
(1 )tr

eq

I
h

b
         (6.7) 

where 
eqh  is the thickness of the equivalent section; b is the width of the equivalent section; and 

 is the Poisson’s ratio of concrete 

As shown in Equations 6.6 and 6.7, the thickness of the equivalent cross section depends 

on the degree of bonding,  in the slab-base interface. A formulation of slab-base interface shear 

bonding is presented in the next section. 

6.2.3. Slab-Base interface shear bonding model 

The interface shear bonding,  in Equation 6.6 is expressed by the ratio of in-situ shear stress

2( )
fzx   and the shear stress 2v  on the slab-base interface when shear stress is fully transferred. 

2

2

2

( )
,    ( )   

f

f

zx

zx fs
v






          (6.8) 

where 
fs is the shear strength of the base course;  

Figure 6.4 shows a schematic of the shear stress in the PCC-base interface. The 

parameters 1v  and 2v  are shear stresses on the interface in the slab and base layer, respectively 

when shear stress is fully transferred. The parameter 
2( )

fzx   is the shear stress in the base course 

on the interface for in situ conditions, which is limited by the shear strength, 
fs  of base course. 
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Figure 6.4 Illustration of in-situ shear stress in the base course on the PCC-base interface 

using a Mohr-Coulomb failure envelope 

 

When 2( )
fzx  is greater than 2v , the interface is considered as fully bonded. Depending on 

the ratio of the 2( )
fzx  and 2v , the partial bonding condition is defined on the PCC-base 

interface. The following subsections derive the expressions of 2v  and 2( )
fzx  . 

Formulation of v2 

The shear stress acting on the two faces of PCC-base interface can be expressed using the 

theorem of elastic beam shear stress on the transformed section. It is assumed that shear stress is 

fully transferred through the interface of the transformed section. 

1
1

VQ
v

Ib
 ;                      (6.9) 

2
2

( )b

s

VQ
v

E
Ib

E

          (6.10) 

where V is the shear force acting on the cross section; Es is the slab modulus; Eb is the base 

modulus. 
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The parameter Q is the first moment of area from the neutral axis of the transformed 

section; herein 
1 1 1Q A d  and

2 2 2Q A d . 

Substituting Equation 6.9 into Equation 6.10 yields,  

2
2 1

1

*
( / )b s

Q
v v

Q E E
         (6.11) 

Note that 1v  is determined using the Boussinesq point load solution (Boussinesq, 1885), as 

shown in Equation 6.14. Figure 6.5 illustrates the shear stress acting on the PCC-base interface. 

 

 

Figure 6.5 Stresses in slab-base interface caused by a point load 
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where  P is the surface point load; hs is the thickness of the slab; a is the horizontal distance of 

target point from P;   is the Poisson’s ratio 

Substituting Equation 6.14 into Equation 6.11 yields, 
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     (6.15) 

where hb is the thickness of the base; ̅z is the distance of neutral axis from point of interest; 

Formulation of (τzx)2θf 

The expression of in-situ shear stress in the base course on PCC-base interface is derived using 

the Mohr-Coulomb failure envelope, as shown in Figure 6.6. The failure envelope is defined by 

the shear strength parameters, i.e., cohesion, c and friction angle, . 
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Figure 6.6 Maximum shear strength of base course in Mohr Coulomb failure envelope 

 

 

2( ) sin 2
fzx r          (6.16) 

where r is the radius of the Mohr’s circle; 

Herein, the state of plane stress on the slab-base interface is defined by x , z and zx , which is 

rotated by an angle of 2 from principal plane of stress. The angle of rotation, 2  is expressed in 

Equation 6.17. 
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   (6.17) 

As illustrated by Figure 6.6, the shear strength of the base course is calculated by Equations 6.18 

and 6.19. 

cosfs r           (6.18) 

tan [ sin ]tanf fs c c r              (6.19) 

where 
f is the normal stress on the failure plane; 

Therefore, 

( tan )cosr c             (6.20) 

Herein,  
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According to Equations 6.16, 6.17 and 6.20, it is obtained that 
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The expression of interface shear bonding,  is derived from Equations 6.8, 6.15 and 6.22, 
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6.2.4. Modified Subgrade k-Value Submodel 

The modified k-value submodel is developed using the calculated heq and δ values from the 

previous submodels. The determination of the modified k-value is divided into the following 

steps (Saha et al. 2019b): 

 The deflection patterns generated by FWD are used to determine the modified k-values. 

The FWD sensor deflections (0 cm, 30.48 cm [12 inch], 60.96 cm [24 inch], and 91.44 

cm [36 inch] away from the loading point) are obtained, and the basin area, BA, is 

calculated as: 
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     (6.24) 

where SS is the FWD sensor spacing (30.48 cm ≈ 12 inch); and 
jD  is the sensor  

deflection (j=0 to 3). 

 The effective relative stiffness length is calculated as follows: 

1/ 4

1

2

3

ln( )

[ ]
k

e

k BA

k
l

k






        (6.25) 



 

103 

 

where k1, k2, k3 and k4 are the coefficients obtained from the field correlation, k1=36, 

k2=1812.597, k3=2.559, and 1/k4=4.387 (Smith et al., 2017) 

 Finally the subgrade k-value is formulated in Equation 6.26. The concept of equivalent 

slab thickness is applied from Equation 6.7 to consider the effects of both the slab and 

base layer on the pavement subgrade k-value  

3

2 412(1 )

s eq

e

E h
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l



        (6.26) 

where sE is the elastic modulus of the PCC; and   is the Poisson’s ratio of PCC. 

6.3. Estimation of Modified k-value for LTPP Pavement Sections 

The pavement data used in this study to estimate the modified k-value is collected from the LTPP 

database. A total of 505 sets of rigid pavement section data are collected, including both Jointed 

Plain Concrete Pavement (JPCP) and Continuously Reinforced Concrete Pavement (CRCP). In 

addition to the backcalculated layer moduli, the database includes layer thicknesses and FWD 

deflection patterns. In the LTPP, the FWD test uses four loading sequences with a target load of 

27 kN (6000 lbs), 40 kN (9000 lbs), 53.38 kN (12000 lbs) and 71.17 kN (16000 lbs) respectively. 

In this study, only the deflection basins generated from 40 kN load are selected for analysis. To 

avoid the discrepancy in measured deflection patterns, the deflection basin tests that were 

performed along the mid-lane path are selected for the analysis. The mid-lane test locations are 

designated as J1 and C1 for JPCP and CRCP pavements, respectively. 

6.3.1. Correction of Base Modulus 

As shown in Equation 6.3, the resilient moduli of base material in the horizontal and vertical 

directions follow a constant ratio. Based on the existing laboratory results (Adu-Osei et al., 2001;  
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Kim, 2004), the n value is in the range of 0.3-0.5. In this study, the n value is assumed as 0.4 for 

all base materials collected from the LTPP pavement sections. Following the flowchart in Figure 

6.2, the modulus of base materials are corrected for all pavement sections.  

 

Figure 6.7 Base resilient modulus convergence with iteration number 

 

The procedure to determine the corrected base modulus is illustrated for an example 

LTPP section 27-4054 (State code-SHRP ID). The pavement section 27-4054 consists of a 0.24 

m (9.4-in.) PCC layer, a 0.15 m (6-in.) unbound base layer, and a semi-infinite silty clay 

subgrade layer. Herein, the backcalculated modulus value is collected from the LTPP database 

and used as the initial input at each layer. Figure 6.7 shows the plot of golden mean base 

modulus against iteration number. The value of collected MR coefficients k1, k2 and k3 for the 

base layer and the determined vertical and horizontal stress values after first iteration are also 

included in Figure 6.7. The final MR value is achieved after four iterations when it meets the 

convergence criteria shown in Equation 6.5. 
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6.3.2. Estimation of Slab-Base Interface Bonding Ratio 

The interface shear bonding ratio is calculated for the collected LTPP pavement sections. From 

the collected 505 pavement sections, 267 sections have the treated base layer underneath the 

PCC surface layer and 238 pavements section are constructed using unbound base course.  

 

                                 (a)                                                                                (b) 

Figure 6.8 Formulation of friction angle from Mohr Coulomb failure envelope for                

(a) treated base; (b) unbound base 

 

 

As shown in Equation 6.23, the expression for the degree of bonding is based on the 

shear strength parameters c and . In the LTPP database, the available experimental data are not 

sufficient to determine these shear strength parameters. The unconfined compressive strength test 

data are available for cement and lime treated base materials, whereas triaxial shear strength tests 

are conducted for unbound base materials only at a confining pressure of 34.47 kPa (5psi). 

Hence, empirical models are used in this study to estimate the c and   parameters from base 

strength and saturation properties. 
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Stabilized base layer 

Existing studies have investigated the relationship between the cohesion parameter, c and the 

physical and strength properties of stabilized base materials. Balmer (1958) and Clough et al. 

(1981) reported that cement treatment increases cohesion while internal friction angle remains 

constant. Thompson (1966) stated that addition of lime to unbound material yields a substantial 

increase in cohesion and minor improvement in internal friction angle. The relationship 

suggested by Thompson (1966) is used in this study to determine the cohesion of treated soils 

based on unconfined compressive strength.  

  64.12 0.292 cc           (6.27) 

where, c is the unconfined compressive strength, unit: kPa;    

Then the friction angle, , is determined from c and the collected unconfined 

compressive strength test data, as shown in Figure 6.8a. The unconfined compressive strength 

test data are collected for 55 treated base materials from the LTPP database. The degree of 

bonding,  on the slab-base interfaces is calculated from Equation 6.23 using the estimated shear 

strength parameters. 

Unbound base layer 

Similarly, many researchers had investigated the shear strength test data and identified the 

influence of several physical properties on the shear strength parameters of unbound granular 

materials. The relative density and degree of saturation are the two most important parameters 

affecting the shear strength parameters of unbound base (Maree, 1978). Theyse (2000) evaluated 

the effects of relative density and degree of saturation on the shear strength parameters, and  
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proposed the following relationship for cohesion. 

12.12 2.30c 0.0107 RD Se e        (6.28) 

where RD is the relative density, unit: %; S is the degree of saturation, unit: %; and, c is the 

cohesion, unit: kPa. 

Herein, RD is the ratio of the compacted density of a material to the maximum dry 

density (MDD). The density and water content data are collected from the LTPP database to 

calculate the RD and S in Equation 6.28. Figure 6.8b presents the equation to calculate the 

friction angle . Shear strength and compressive strength test data are collected from 88 granular 

unbound base courses, which are then used to calculate . 

The black and green bars in Figure 6.9a denote the degree of bonding on slab-base 

interface using the proposed shear bonding submodel and BBF approach respectively. 
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(b) 

Figure 6.9 Comparison of calculated slab-base interface degree of bonding ratio with the 

backcalculated best-fit appraoch for (a) treated base; and (b) unbound base layer  

 

 

Using the proposed bonding submodel, approximately a half of the pavement sections 

with treated base material are fully bonded ( =1) with the PCC slab layer and the rest of the 

pavements have partially bonded slab-base interface. However, no partial bonding condition 

exists in the BBF approach. Note that the BBF approach assumes the bonding condition based on 

the PCC modulus (FHWA, 2001). The slab-base interface is considered as fully bonded if the 

PCC modulus is greater than 26890 MPa (3900 ksi) whereas a frictionless slip interface is 

applied for lower PCC modulus values. Figure 6.9b compares the calculated degree of bonding 

using the proposed bonding submodel and the BBF approach. It is observed that most pavement 

sections are partially bonded with the PCC layer using the proposed submodel, while all 

pavement sections are fully bonded using the BBF approach.  
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Comparison with wheelpath faulting 

The degree of interface bonding has a significant impact on erodibility prediction of rigid 

pavements (Tarr et al., 1999; Bari et al., 2013; Croney, 1977; Delatte et al., 2000). In the process 

of erosion, the concrete slab deforms under repeated traffic loading, which yields shear stress 

between the slab and base. As a result, adequate interface bonding can significantly reduce 

erosion. Erosion is addressed through the faulting distress model (ARA, 2004). A better 

interfacial bonding model can infer better sensitivity to measured faulting. The correlation 

between the measured wheelpath faulting and the calculated degree of bonding is presented in 

Figure 6.10. The wheelpath fauling data are collected for JPCP pavement sections from the 

LTPP database. 

 

Figure 6.10 Sensitivity of slab-base degree of bonding on wheelpath fault (mm)  

 

The calculated degree of bonding shows a better sensitivity to the observed faulting data. It is 

obvious that the faulting value decreases with the increasing degree of bonding in the slab-base 

interface. However, the assigned interface bonding in the BBF approach shows no sensitivity to 
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observed faulting. It is concluded that the developed interface bonding model can better predict 

the interface condition for rigid pavements.  

6.3.3. Estimation of Modified k-Value 

In this section, the modified k-values are calculated by following the previously presented 

approach. Figure 6.11 plots the modified k-values versus BBF k-values for the same pavement 

structure collected from the LTPP database. As presented, the BBF approach has higher k-values 

than the modified k-value model. This discrepancy has occurred due to the different interface 

bonding ratios. The interface between the slab and base is considered as fully bonded in the BBF 

approach for most of the pavement sections, while most of them are partially bonded in the 

modified k-value model. 

 

Figure 6.11 Comparison of modified versus LTPP k-values 

 

An ANN model will be developed in the next section to predict the modified k-values for 

various combinations of pavement structure and layer moduli. A wide range of pavement 

structural properties, including layer thicknesses and material strength properties, resilient 
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moduli and slab-base interface bonding ratios, will be input in the ANN model. The deflection 

basin (BA) which is generated due to FWD loading is determined using FE analysis of pavement 

structure and used in the calculation of modified k-value. Application of ANN model eliminate 

the use of FE simulation for each pavement structure. Moreover, the AASHTOWare Pavement 

ME design software facilitate the incorporation of ANN model and therefore it is the most 

convenient way of implement modified k-value model in that software. The development of the 

ANN model is elaborated as follows. 

6.4. Development of Artificial Neural Network Model 

The ANN approach is an adaptive information processing technique, which allows to establish 

the correlations between the input variables Xi and the output variables Yj through the inter-

connected neurons (i.e., weight factor, wji). The input variables Xi and the output variables Yj are 

usually normalized to xi and yj, respectively. The correlations developed by the ANN models 

between the normalized input parameters xi and the normalized output variables yj are shown in 

Equation 6.29.  

1
j

n

j ji i
i

by f w x


 
 

 
          (6.29) 

where   f  is a transfer function, which normally uses a sigmoidal, Gaussian, or threshold  

functional form;  wji and bj  are the unknown weight factors and bias term respectively.  

The ANN model specifically adjusts the weight factors wji and bias bj in Equation 6.29 

based on the minimum error function. In pavement engineering, the ANN approach is usually 

used to develop prediction models on the basis of a large number of data collected from 

experiments and numerical analysis (Gu et al., 2017; Saha et al., 2018a&b). In general, the 
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development of ANN models includes two critical steps: 1) calculation of deflection basin; and 

2) construction of ANN architecture, which are described as below. 

6.4.1. Calculation of Deflection Basin  

The deflection basin of a specific pavement structure for FWD loading is estimated using FE 

program Abaqus. A total of 1296 simulation cases are developed with different combinations of 

pavement layer thicknesses, layer modulus and PCC-base interface bond. Pavement structural 

responses are calculated under falling weight deflectometer (FWD) loading using the finite 

element software ABAQUS. A typical rigid pavement structure and the corresponding finite 

element model is shown in Figure 6.12. In this study a large variety of pavement structures are 

modeled with different combinations of PCC and base thickness and PCC, base and subgrade 

modulus. In order to properly represent the effect of the strength of the base course and its level 

of erosion on the interface, it is necessary to accurately characterize the slab-base interface. A 

Coloumb interface model is placed between the bottom of the concrete and the top of the base 

course. The interface model has a normal and a tangential load transfer behavior at each nodal 

point. By adjusting the friction coefficient and the elastic slip distance, it is possible to represent 

a variety of shear strength levels of the base course on the interface, including zero strength. 

Varying the strength of the base course interface will generate different deflection patterns. 

These deflection patterns are used to generate the different levels of the subgrade k-values that 

are needed to represent the effect of lowered shear strength and erosion of the surface of the base 

course on the foundational support. The FWD sensor deflections (0 cm, 30.48 cm, 60.96 cm, and 

91.44 cm away from the loading point) are obtained from the FEM analysis, and the modified k-

value is calculated using Equations 6.24, 6.25 and 6.26. 
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(a)                                                                                       (b) 

Figure 6.12 (a) Schematic plot of a typical pavement structure; (b) Axisymmetric model of 

pavement in ABAQUS 

 

 

6.4.2. Construction of ANN Architecture 

A three-layered ANN model is constructed in this study as shown in Figure 6.13. Three layers of 

the ANN model consists of one input, one hidden and one output layer. Pavement structural 

properties (i.e., PCC slab and base thicknesses), strength properties (i.e.; PCC, base and subgrade 

moduli), and PCC-base interface bonding ratio are introduced as input parameters. Table 6.2 

summarizes the range of the input parameters in the ANN model. A total of 20 neurons are 

assigned in the hidden layer (Lawrence and Petterson, 1993). The developed ANN model utilizes 

the sigmoidal transfer function, as shown in Equation 6.30 (Gu et al., 2017). 

 
 

1

1 exp
i

i

f I
I


 

         (6.30) 
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where   Ii is the input quantity; φ is a positive scaling constant,  

The parameter φ controls the steepness between the two asymptotic values 0 and 1. The 

ANN model determines these weight factors wji through the two major functions: training and 

validating. The training data set is used to determine the trial weight factors, wji and bias term, bj. 

and the validating data set is employed to examine the accuracy of the model prediction.  

Table 6.2 Selected range of input parameters in ANN training dataset 

Input parameters Level Input values 

PCC thickness (mm) 3 178, 254 and 348 

Base thickness (mm) 3 101.6, 203.2 and 254 

PCC modulus (MPa) 3 14420, 41400, and 82737 

Base modulus (MPa) 4 69, 690, 6894 and 25000 

Subgrade modulus (MPa) 3 34.5, 282 and 551 

PCC-base interface bonding 4 0, 0.3, 0.6, and 1 

 

 

 
Figure 6.13 Illustration of Three-Layered Neural Network Architecture for k-values 

 

In this study, 80 percent of the dataset is used for training and 20 percent of the dataset is 

for validation. The training algorithm uses the Levenberg-Marquardt back propagation method to 
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minimize the mean squared error (MSE). The gradient descent weight function is employed as a 

learning algorithm to adjust the weight factors wji. Figure 6.14 shows the comparison between 

targeted and predicted k-values from the ANN model. The high R2 values for training and 

validation datasets indicate a good prediction accuracy of ANN model. 

 

Figure 6.14 Target and output k-values for training, validation, and overall data sets for 

1296 simulation cases 

 

To further validate the prediction accuracy of ANN model, the k-values that are 

calculated using the modified subgrade reaction model are collected for 125 LTPP pavement 

sections. The slab-base interface degree of bonding in these pavement sections are calculated 
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using Equation 6.23. Figure 6.15 presents the comparison of calculated and ANN predicted k-

values for the collected pavement sections at the calculated degree of bonding condition. The 

ANN model shows high prediction accuracy with a R2 value of 0.92. This indicates that the 

developed ANN model is capable of accurately predicting the modified k-value at any given 

degree of bonding.  

 

Figure 6.15 Comparison of calculated versus predicted modified k-values  

 

A sensitivity analysis for the degree of bonding is performed for selected pavement 

sections and shown in Figure 6.16. As illustrated, the modified k-values increase with the 

increasing degree of bonding for most pavement sections. However, for pavement sections 8-

0214 and 29-5000, k-values slightly decrease with the increasing degree of bonding ratio. The 

potential reason is that the increase of slab-base bonding ratio causes a higher thickness of 

equivalent transformed section and basin area.  The k-value increases with the increase of 

equivalent thickness but it continues to decrease when basin area increases. In case of a relatively 

higher modulus ratio (Ebase/Eslab) between slab and base, the degree of bonding has a greater  
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impact on the thickness of equivalent section compared to the basin area. Therefore, k-value 

increase with the increasing degree of bonding. But pavement section 8-0214 and 29-5000 have 

a slab-base modulus ratio of 0.001285 and 0.001049 respectively that is very low. Hence there is 

a negligible amount of increase in equivalent thickness with degree of bonding and it has a 

greater effect on basin area. As a result, k-value decreases with the increasing degree of bonding 

for these pavement sections.  

 

Figure 6.16 Modified k-values at 0, 0.3, 0.6 and 1 degree of bonding for selected LTPP 

pavement sections 

 

6.5. Conclusions 

This study proposed a modified modulus of subgrade reaction (k) model that considered the 

nature of cross anisotropy for base material and the shear interaction between PCC slab and base 

course. The modified k-values obtained from the proposed model were significantly different 

from the k-values from Pavement ME design. The new model could also determine the k-value 
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for partial interface bonding conditions accurately. An ANN model was developed to predict the 

modified k-value for a wide range of pavement layer thicknesses, moduli and bond ratios. 
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7. SENSITIVITY ANALYSIS 

 

7.1. Introduction 

Pavement structure is typically consist of the top surface layer, an intermediate base course layer 

and a bottommost subgrade layer. Currently, AASHTOWare Pavement ME Design software is 

used for the analysis and predict the performance of pavements and overlays. The performance 

of flexible and rigid pavement is known to be closely related to the properties of base and/or 

subbase as well as subgrade layer. However, recent studies indicated that the performance 

predicted by the software shows low sensitivity to the properties of base and subgrade layers 

(Schwartz et al. 2011), so the procedure contained in the Pavement ME Design need to be 

improved. The properties of base and subgrade layers that include in Pavement ME Design 

software are: resilient modulus (MR), soil-water characteristics curve (SWCC), thickness, 

erodibility index, load transfer efficiency (LTE), slab-base interface bond, ground water depth 

from subgrade (Luo et al. 2017). It is required to enhance these property models and implement 

in Pavement ME Design software and therefore have the anticipated effect of base and subgrade 

layer properties on the performance of rigid pavement. 

This study developed several models as described in previous chapters for unbound 

granular materials and subgrade, which are intended to enhance the sensitivity of predicted 

pavement performance to these underlying layers. The sensitivity of these enhanced models is 

evaluated in this chapter for both flexible and rigid pavements. The common performance 

indicators contained in the Pavement ME Design that will be evaluated here include: fatigue 

cracking and rutting for flexible pavements, and fatigue cracking and faulting for rigid  
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pavements. The sensitivity analysis will demonstrate whether the predicted performance changes 

with the change of traffic speed, moisture conditions, and interface degree of bonding of the 

structural layers. In addition, the proposed enhanced models are compared with the 

corresponding models in the Pavement ME Design, which shows the resulting difference in the 

prediction of pavement performance.   

7.2. Improved Sensitivity of Base Layer on Flexible Pavement Performance 

Unbound granular materials are generally applied in the bases and subbases to support pavement 

surfaces and transfer vehicle loads to the subgrades. The stiffness of the bases and subbases in 

the pavement design are described using resilient modulus which is the ratio of axial stress and 

recoverable axial strain (Kalcheff and Hicks 1973, Rahman et al. 2017). However, in most 

pavement designs, the bases and subbases are treated as linear elastic and isotropic materials 

using one resilient modulus and Poisson’s ratio, which do not represent realistic properties of 

unbound granular materials. Researchers have shown that the modulus of unbound granular 

materials in the vertical direction is greater than that in the horizontal direction. The ignorance of 

this property will cause overestimation of tensile stresses in base layers, which affect further 

pavement performance models. Studies with the anisotropic base and subbase layers showed 

better predictions with field measurements compared with isotropic models (Wang and Al-Qadi 

2012). In addition to the effects of anisotropy of materials, characterization of the resilient 

modulus is significantly dependent upon the moisture content and suction state (Lytton 1995, 

Luo et al. 2017). 

Tire dimension and contact pressure is another important factor for accurate prediction of 

pavement performance. In Pavement ME design, uniform vertical contact pressure is used 
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resulting from standard inflation pressures of a stationary tire (ARA, Inc. 2004). However, it was 

recognized that the assumption of uniform contact stress distribution and static loading ignore 

the localized tire-pavement contact stresses which contribute to the development of pavement 

ruts and initiation of crack in the pavement (Wang et al. 2012; Al-Qadi et al. 2010). Past 

researchers have developed 3D FE models to investigate the influence of non-uniform tire 

pressure distribution and showed high horizontal strain compared to that obtained from uniform 

pressure distribution (Fang et al. 2007, Hernandez 2010, Khavassefat et al. 2012 and Wang, 

2011). Moreover, field experiment from previous studies clearly shows that rolling tire induces 

not only vertical contact stress but also longitudinal and transverse contact stresses as well. Al-

Qadi et al. 2010 investigated the surface tangential contact stress due to rolling tire effect and 

showed that the computed values, especially at shallow depth, matches well with the measured 

values. It is recognized that the developed longitudinal and transverse strains are related to the 

interaction behavior of tire-pavement contact surface (Wang et al. 2014; Gruber et al. 2012). 

Tire-pavement contact is a transient rolling contact and only a realistic tire-pavement contact 

interaction model can simulate the longitudinal and transverse strain conditions. In order to 

properly investigate the dynamic behavior of tire-pavement interaction under different rolling 

conditions, this paper developed a numerical model of rolling smooth tire and a tire-pavement 

interaction model, which is capable of accurately characterizing the contact and traction stress 

distribution at the tire-pavement interface. 

The following subsection presents a tire-pavement interaction model with stress-

dependent, moisture-sensitive, anisotropic base layer using the commercial finite element 

software ABAQUS. The responses of the pavement under different tire speed and the effects of  
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moisture content on base material properties will also be evaluated. 

7.2.1. Finite Element Model of Pavement Structures 

A pavement section with 5,000 mm length and 1122 mm width was used in this study. The width 

and the height of the pavement were selected from Al-Qadi et al. (2004) and LTPP pavement 

section database respectively. the predictability of this model were validated against 

experimental results (Saha, 2013). The length of the pavement was determined by conducting 

parametric study to reduce the boundary effect on the computed results. The 3D model of the 

pavement section is shown in Figures 7.1a. The transverse section shown in Figure 7.1b is 

collected from a typical LTPP section 13-4111 (State code-SHRP ID) with three different layers. 

The finite element mesh for 3D analysis was created using eight-node linear brick reduced 

integration elements (C3D8R).  

 

  

 

 

 

 

 

    

     (a)                                                                                (b) 

Figure 7.1 (a) Dimensions of developed pavement model in 3D simulation domain; (b) 

Layer property and thickness of each pavement layer 
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Accurate representation of the inter layer characteristics is important for obtaining 

accurate pavement behavior under tire loading. Similar to Al-Qadi et al. (2004), the interaction 

between the layers was modeled using the Coulomb’s friction law which involves the surface-to-

surface contact feature in ABAQUS. A friction coefficient of 1.0 was used for each interface. In 

the pavement model, the bottom boundary was fixed in all directions and the tire load was 

applied at the top. The horizontal boundaries (back, front, left and right) were modeled using 

infinite elements (CIN3D8) to nullify the edge effect errors. 

7.2.2. Finite Element Model of Tire Load 

Physically, traffic load acts as a moving dynamic load in pavement. To simulate the movement 

of traffic load, a dynamic implicit (quasi-static application) approach was adopted in this study. 

The loading on the pavement was applied through simulating a rolling tire at design velocity. A 

wide base tire (455/55R22.5) was considered in this study for the application of traffic load. 

Figure 7.2 illustrates the layout and dimensions of developed tire model. According to the 

tire designation code, the sidewall height was selected as 222.5 mm (445 X 0.50). Out of the 

total sidewall height, tire tread thickness was considered to be 18 mm (Wang et al 2012) and belt 

thickness as 20 mm. Because of simplicity and free rolling tire condition, no inflation pressure 

applicability was adopted and therefore, the tire model did not include any physical side wall and 

radial ply section. An inflated air zone was placed in between belt and tread material which 

facilitate the calibration of contact stress-length with pavement surface.  
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(a)                                                                        (b) 

 

Figure 7.2 Layout and dimension of developed (a) 2D and (b) 3D tire model 

 

The length of three tire rim as shown in Figure 7.2a was selected as 285.75 mm (22.5 X 

25.4), which represent the decimal number of the designation code in inches. The 3D width of 

the tire was selected as 320 mm (Al-Qadi et al 2004, Saha et al. 2019e), shown in Figure 7.2b. 

The contact pressure at the tire-pavement interface was employed by applying a concentrated 

point load at the center of tire tire rim without any air inflation pressure. Angular velocity 

boundary condition was applied to the tire to maintain a linear velocity in the tire-pavement 

interaction path. At first the velocity was increased from 0 to the constant velocity for 1 sec and 

then maintained the same velocity throughout the path. The velocity incremental time period was 

allowed to avoid inconvergence in slip phenomena. As the realistic tire-pvement contact area-

pressure distribution and simulation of realistic fictional effect was the main purpose of rolling 

tire technique, a tire-pavement interaction was applied at the interface followed by contact area-

pressure calibration. 
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7.2.3. Material Properties of Pavement Layers 

The surface material is modeled as viscoelastic and isotropic. For solid-like viscoelastic 

materials such as asphalt concrete, a generalized Maxwell model is applied to represent the 

relaxation modulus of the material in terms of Prony series as in Equation 7.2. 

2ij kk ij ije e             (7.1) 

where 𝜆, 𝜇 is the Lame’s constant; 𝜎𝑖𝑗, 𝑒𝑖𝑗 are stress and strain component, respectively; 𝑒𝑘𝑘 is 

the first invariant of stress tensor; 𝛿𝑖𝑗 is Kronecker delta; 
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where 𝐸(𝑡) is the relaxation modulus of the material; 𝐸∞ is the long-term modulus of the 

material; 𝑁 is the the number of Prony series terms (or Maxwell elements); 𝜏𝑖 is relaxation time; 

The stress-dependent nonlinearity of unbound granular base materials can be 

characterized using Equation 7.3 from the Pavement ME Design Guide.  
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Also, the research team proposed an improved model to characterize the resilient 

modulus of unbound granular materials which takes the moisture condition of the material into 

consideration. The formula is expressed as Equation 7.4.  
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where 𝐸𝑧 is the vertical modulus of the material (assuming z axis is the vertical axis); 𝑘1, 𝑘2 and 

𝑘3 are regression coefficients determined from laboratory tests; 𝑃𝑎 is the the atmosphere 
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pressure; 𝐼1is the first invariant of stress tensor; 𝜏𝑜𝑐𝑡 is the octahedral shear stress; 𝜃 is the 

volumetric water content; 𝑓is the saturation factor; ℎ𝑚 is the matric suction; An example of the 

base information is given in the following Table 7.1. 

Table 7.1 Example of Base Material Information 

State: Georgia, State Code: 13, SHRP ID: 4111 
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 Moisture 
Volumetric Water 

Content, % 

Matric Suction, 

kPa 

Base 

Dry 8.76 527 

Medium 9.73 309 

Wet 10.70 187 

af =27.44 , bf =0.58, cf =1.066, hr =20684 

 Moisture 
Volumetric Water 

Content, % 

Matric Suction, 

kPa 

Subgrade 
Medium 23.34 308 

af =45.57 , bf =0.88, cf =0.56, hr =20684  

 

The anisotropy of the unbound granular base is modeled as cross-anisotropy which 

requires five independent parameters to characterize the materials as shown in Equation 7.5. 
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(7.5) 

in which 

/x zn E E          (7.6) 

/zx zm G E          (7.7) 

0 1 xy            (7.8) 

2

0 1 2xy zxn             (7.9) 

where 𝐸𝑧 is the vertical modulus of the material; 𝐸𝑥 is the horizontal modulus of the 

material; 𝐺𝑧𝑥 is the shear modulus in the z-x plane; 𝜐𝑥𝑦 is the Poisson’s ratio in the x-y plane; 𝜐𝑧𝑥 

is the Poisson’s ratio in the z-x plane. The material parameters applied in the models are 

presented in Table 7.2. 
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Table 7.2 Material Parameters of Pavement Layers 

Surface 

𝐸∞ 42 𝐸, MPa; 𝜏, s 

𝐸1 6564 𝜏1 4.09E-06 

𝐸2 6582 𝜏2 0.000256 

𝐸3 3200 𝜏3 0.00771 

𝐸4 1342 𝜏4 0.21 

𝐸5 299 𝜏5 3.88 

𝐸6 103 𝜏6 66.3 

Base 

𝑘1 1637 𝑛 0.45  

𝑘2  0.42 𝑚 0.35  

𝑘3 -0.20  𝜐𝑧𝑥 0.38  

𝜐𝑥𝑦 0.43      

Subgrade 
𝑘1 1220 𝑘2 0.28 

𝑘3 -2.28   

 

7.2.4. Pavement Performance Model in Pavement ME Design 

The performance of pavements is affected by the material properties of pavements including the 

stiffness and responses of pavements under traffic loading including strains at critical locations 

(Rahman et al. 2019a). In this chapter, the pavement performance predicted by the Pavement ME 

Design Guide distress models will be utilized to investigate how the pavement structure, material 

properties and the loading level influence the pavement performance. Additionally, the modulus 

models for unbound granular base proposed by the research team and Pavement ME Design 

Guide will be compared in terms of distresses such as fatigue cracking and rutting. 

Fatigue cracking in asphalt mixtures 

The approach explained in the Pavement ME Design Guide to predict fatigue life of the 

pavement is based on the calculation of damage at either the surface for top-down cracking or the 

bottom for bottom-up cracking (AASHTO, 2008). The final form to predict the number of load 

repetitions to the fatigue cracking is from the Asphalt Institute (AI) model (Asphalt Institute, 

1981) with the national field calibrated model. Since the original form of AI model was proposed 
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to only predict load repetitions in the phase of crack initiation and the difference between 

national and local conditions, the available performance prediction model is limited in terms of 

its accuracy and variability (Wang and Al-Qadi, 2012). The performance of fatigue cracking in 

this section is evaluated using bottom-up fatigue cracking model in MEPDG. For top-down 

cracking, alternative models can be found in recent research (Ling et al., 2018, Roque et al., 

2010). 

 
3.9492 1.281

1

1 1
0.00432 ( ) ( )f

t

N k C
E

       (7.10) 

in which, for the bottom-up cracking 

 1

11.02 3.49 )(

1

0.003602
0.000398

1 ach

k

e


 




      (7.11) 

10MC           (7.12) 

4.84( 0.69)b

a b

V
M

V V
 


       (7.13) 

where 𝑁𝑓 is the number of load repetitions to fatigue cracking; 𝜀𝑡 is the tensile strain at 

the critical location; 𝐸 is the stiffness of the material; ℎ𝑎𝑐 si the thickness of the asphalt 

layer; 𝑉𝑎, 𝑉𝑏 are the content of the air voids and the effective binder content, respectively; 

Permanent deformation in the base layer  

To predict the permanent deformation of the pavement, the Pavement ME Design Guide 

applies models corresponding to the material type and computes the accumulated plastic strain at 

each sublayer. For the unbound granular materials, the proposed model (AASHTO, 2008) with 

the calibrated coefficient to predict the permanent deformation is presented as Equation 7.14.  
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in which 

 log 0.61119 0.017638 cW          (7.15) 
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       (7.18) 

Where 𝛽𝐺𝐵 si the national calibration factor, 1.673; 𝑊𝑐 is the water content (%);  𝐸𝑟 is the 

resilient modulus of the layer/sublayer (psi); 𝜀0, 𝛽, 𝜌 are material properties; 𝜀𝑟 is the resilient 

strain imposed in laboratory test to obtain material properties; 𝜀𝑣 is the average vertical strain in 

the layer/sublayer as obtained from the primary response 

model; 𝑎1=0.15; 𝑎9=20.0; 𝑏1=0.0; 𝑏9=0.0; 

A new mechanistic-empirical rutting model has been developed to predict the rut depth in 

unbound granular materials with the load cycle. Compare with the Equation 7.14 in the 

Pavement ME Design Guide, the proposed model eliminates the term of the thickness of the 

unbound granular materials and are more involved with the stress states and material properties. 

The formula of the model is presented as the following equation. 

2( / ) 1
0( ) ( ) ( )N m n

p

a a

J I K
N e

p p

 
   

      (7.19) 

in which 
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2sin '

3(3 sin ')








        (7.20) 

'.6cos '

3(3 sin ')

c
K







        (7.21) 

' 0.221* 4.6* (%) 455.62* 1262.75sat sc PI G         (7.22)             

' 0.0272* 0.638* (%) 1.487* (%) 69.92opt satPI MC       (7.23) 

0 4log 0.017* 0.00967* 0.99P MDD          (7.24) 

4log( ) 0.0574* 0.0937* 5.0756P MC        (7.25) 

40.01483* 0.00813* 0.00136* (%)P MDD sat        (7.26) 

00.2153* 0.396m          (7.27) 

0.22993* 0.746n m          (7.28) 

where 𝑐′ is the cohesion of the material; 𝜙′ is the friction angle of the material; 𝑃𝐼 is the 

plasticity index of the material; 𝑆𝐺 is the specific gravity of the material; 𝑃200 is the percent 

passing No. 200 sieve; 𝜃𝑜𝑝𝑡 is the optimum volumetric water content; 𝜃𝑠𝑎𝑡  is the saturated 

volumetric water content; 𝛾𝑑 is the dry density of the material; 𝐼1 is the first invariant of the 

stress tensor; 𝐽2 is the second invariant of the deviatoric stress tensor; 𝑃𝑎 is the atmosphere 

pressure, 101.3 kPa; 

7.2.5. Comparisons of Results from Proposed Models and Pavement ME Design Models 

Comparison of rutting models in unbound granular base 

Equations 7.14 and 7.19 present the rut depth which is the permanent deformation in the base 

layer under repeated loads. The material properties required in these two models are obtained 

from LTPP database and presented in Table 7.3.  
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Table 7.3 Base Material Information for Rut Depth Calculation 

Information Value 

Volumetric Water Content in FE Model, % 9.73 

P200 (Percent Passing No. 200 Sieve) 8.5 

Maximum Dry Density, 3lb/ ft  135 

PI (Plasticity Index) 14 

Optimum Water Content, % 9 

Specific Gravity 2.687 

Load Number 100,000 

 

Figure 7.3 shows the rut depth in the base layer using two models when other factors 

such as the pavement structure, material properties, the loading level and the number of load 

repetitions are the same. It can be seen when using the model proposed by the research team, the 

rut depth is greater.  

 
Figure 7.3 Rut Depth in the Base Layer Using Different Models 

Sensitivity analysis 

In the previous sections, the finite element models with new granular base and subgrade models 

were run to check the feasibility and effectiveness of the proposed models. Also, the proposed 

rutting model was compared with the one in the Pavement ME Design Guide. In this section, 
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sensitivity analysis will be performed on the finite element models with new based/ subgrade 

models to determine the effects of the load level, pavement structure, material properties and  

moisture conditions on the pavement performance, in which the rutting model is the proposed 

rutting model. 

Different Loading Levels 

 
(a) 

  
(b) 

Figure 7.4 Pavement Performance Including (a) Load Repetitions to the Fatigue Cracking 

(b) Rut Depth in the Base at Different Loading Levels 
 

Figure 7.4 presents the pavement performance under different loading levels as computed 

with the ABAQUS using models developed by this study. For the fatigue cracking, the loading 
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repetitions are calculated based on the Pavement ME Design Guide criteria. It can be seen that 

the number load repetitions decreases dramatically with the increase of the loading level. The 

total rut depth in the base layer is calculated using the permanent deformation model proposed 

by the research team when the loading repetition number is 100,000. The rut depth increases 

with the increase of the loading level. 

Different Moisture Conditions of the Base Layer 

Figure 7.5 presents the pavement performance when stresses and strains computed with 

ABAQUS and the material models developed by the research team and when the moisture of the 

base layer varies. As the moisture content of base layer increases, the modulus of the base 

decreases, which reduces the load repetitions to the fatigue cracking. For the rut depth, when the 

moisture content of the base layer changes from 8.76% to 10.70%, the total rut depth also 

increases. 
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(b) 

Figure 7.5 Pavement Performance Including (a) Load Repetitions to the Fatigue Cracking 

and (b) Rut Depth in the Base at Different Moisture Conditions of the Base Layer                                   

7.3. Improved Sensitivity of Base Layer on Rigid Pavement Performance 

A moisture and suction dependent resilient modulus (MR) model is used in this subsection, as 

noted in Equation 4.20. Similarly, to improve the slab-base interface bond sensitivity in rigid 

pavement performance, an artificial neural network model is developed in Chapter 4.  

Table 7.4 Selected LTPP pavement sections and FWD backcalculated modulus values for 

each layer 
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Base 

thickness 

(in) 

Backcalculated values 

δ Slab 

modulus 

(psi) 

Base 

modulus 

(psi) 

Subgrade 

modulus 

(psi) 

Wet-Freeze 
Minnesota 27 4034 10 3.6 5342000 98000 11000 0.52 

Kentucky 21 4025 9.8 6 5693000 195000 25000 0.9 

Wet-

Nonfreeze 

Alabama 01 0606 10.3 6.3 7798000 195000 8000 0.5 

North 

Carolina 
37 5037 7.8 15.1 4875000 20000 14000 0.11 

Dry-Freeze 

Colorado 08 7776 10.7 15.3 4147000 100000 27000 0.48 

North 

Dakota 
38 3006 8.5 3.8 10000000 199000 50000 0.37 

Dry-

Nonfreeze 

New 

Mexico 
35 3010 7.9 6.9 7171000 64000 22000 0.22 

Arizona 04 0214 8.3 6.1 7087000 98000 25000 0.32 
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To examine the sensitivity of the moisture and degree of bonding on pavement 

performance, the proposed models were applied in eight LTPP pavement sections listed in Table 

7.4. Each pavement section in Table 7.4 is consisted of one surface, one base and a subgrade 

layer. The modulus values for each layer are calculated using falling weight deflectometer 

backcalculation procedure. To illustrate the effect of moisture in subgrade k-value and therefore, 

pavement performance, MR values were calculated first at three different moisture conditions. 

Table 7.5 lists the MR values for each pavement structure at three selected moisture conditions: 

(1) equilibrium volumetric water content + 10%; (2) equilibrium volumetric water content; (3) 

equilibrium volumetric water content - 10%. Equilibrium suction and the corresponding 

volumetric water content were calculated using Equation 4.15 and the SWCC equation 

developed by Fredlund and Xing as shown in Equation 4.1 and 4.2. The four fitting parameters 

(af, bf, cf and hr) of the SWCC equation were predicted from the ANN model developed in 

section 2. 

Table 7.5 Calculated MR values at the mid-depth of base layer at different moisture 

conditions 

 

 

 

 

 

 

 

 

State 

Code 

SHRP 

ID 

 

 δ 

SWCC parameters 

     θ 
-hm 

(kPa) 
  f 

MR parameters 
 MR   

(MPa) af bf cf hr k1 k2 k3 

27 4034 

0 

4.91 2.62 1.65 3000 

0.00306 2621 1 

689.3 0.66 -0.03 

37.2 

0.52 0.0034 1931 1 33.9 

1 0.00374 1635 1 32.8 

21 4025 

0 

5.86 0.34 1.74 2999 

0.0418 5976 1 

945.55 0.67 -0.29 

880.2 

0.9 0.0465 3845 1 707.5 

1 0.0511 2498 1 569.2 

01 0606 

0 

6.71 1.01 0.07 2998 

0.1265 9386 1 

913.7 0.73 -0.03 

1397.2 

0.5 0.1406 1750 2.74 930.3 

1 0.1546 41 5.81 115.8 

37 5037 

0 

7.57 0.98 1.08 2999 

0.0606 732 1 

431.43 0.92 -0.23 

126.3 

0.11 0.067 533 1 105.7 

1 0.0741 403 1 91.5 



 

137 

 

Table 7.5 Continued 

 

 

 

 

 

The coefficients of the proposed MR model were predicted using the ANN model shown 

in Figure 4.17. To compare the sensitivity of moisture on subgrade k-value, the MR values were 

calculated at different moisture conditions using the proposed model and the Pavement ME 

design model. After that the subgrade k-values were calculated using the developed ANN model 

shown in Figure 6.13 and Pavement ME design approach. Table 7.5 also list three different 

bonding conditions for each pavement structure: (1) No bond; (2) partially bonded and (3) fully 

bonded. Each bonding condition was applied as an input in the developed ANN model and 

compared with the predicted k-values from Pavement ME design.   

State 

Code 

SHRP 

ID 

 

 δ 

SWCC parameters 

     θ 
-hm 

(kPa) 
  f 

MR parameters 
 MR   

(MPa) af bf cf hr k1 k2 k3 

08 7776 

0 

1.06 1.01 0.69 2999 

0.072 3832 1 

983.52 0.207 -0.03 

167.2 

0.48 0.08 1858 1 147.6 

1 0.088 975 1 132.4 

38 3006 

0 

1.00 1.01 0.79 2999 

0.038 3778 1 

544.43 0.65 -0.08 

184.2 

0.37 0.042 1961 1 131.1 

1 0.046 1100 1 98.5 

35 3010 

0 

5.30 3.35 1.05 2998 

0.012 3189 1 

859.5 0.73 -0.02 

114.3 

0.22 0.013 2093 1 92.5 

1 0.015 1565 1 84.8 

04 0214 

0 

5.05 0.12 2.18 2999 

0.066 1995 1 

900.14 0.509 0.047 

162.9  

0.32 0.073 533 1 92.3 

1 0.08 124 1 54.7 
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(a)  

 
(b) 

Figure 7.6 Sensitivity of degree of bonding on subgrade k-value using (a) ANN model;  

(b) Pavement ME design model 
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(a) 

 
(b) 

Figure 7.7 Sensitivity of moisture on subgrade k-value using (a) ANN model; (b) Pavement 

ME design model 

 

Figure 7.6 presents the sensitivity of degree of bonding on subgrade k-value using the 

developed ANN model and the Pavement ME design model. The effect of moisture on subgrade 

k-value is illustrated in Figure 7.7. It is observed from Figure 7.6 that both ANN model and the 

Pavement ME design have similar sensitivity of degree of bonding on k-value. But, as shown in  

0.E+00

2.E+07

4.E+07

6.E+07

8.E+07

A
N

N
 p

re
d
ic

te
d
 k

-v
al

u
e 

(N
/m

3
)

LTPP pavement section identification number (State code-SHRP ID)

Eq. vol. wc. + 10%
Eq. vol. wc.
Eq. vol. wc. - 10%

0
.0

8
%

0
.3

0
%

2
.2

3
%

4
.8

9
%

1
4

.2
3

7
%

2
0

.4
2

%

2
.7

3
%

6
.3

7
%

0
.8

3
%

1
.7

8
%

-2
.7

5
%

-5
.3

4
%

3
.1

8
%

0
.1

2
%

0
.4

0
%

-0
.0

0
3

%

0.E+00

2.E+07

4.E+07

6.E+07

8.E+07

P
av

em
en

t 
M

E
 k

-v
al

u
e 

(N
/m

3
)

LTPP pavement section identification number (State code-SHRP ID)

Eq. vol. wc. + 10%
Eq. vol. wc.
Eq. vol. wc. - 10%

1
.2

E-
0

5
%

2
.5

E-
0

5
%

-0
.3

7
%

-0
.6

8
%

-0
.4

9
%

-1
.0

9
%

1
.6

8
%

3
.5

0
%

0
.2

7
%

1
.2

0
%

-0
.0

7
%

-0
.0

3
% 1
.5

E-
0

4
%

2
.3

E-
0

4
%

0
.6

5
%

1
.1

6
%



 

140 

 

Figure 7.6a, ME design model has no partial bonding condition whereas ANN model can predict 

k-value at any bonding conditions. In both cases, degree of bonding has higher sensitivity when 

the base-slab modulus ration is relatively higher. LTPP section 21-4025 and 08-7776 have a 

higher modulus ration compared to the other sections and therefore shows a significant change in 

k-value due to the change in degree of bonding. 

Figure 7.7 compares the sensitivity of moisture on k-value using the ANN model and 

Pavement ME design model. Pavement ME design has almost no sensitivity of moisture on 

subgrade k-value. But the proposed ANN model shows relatively higher sensitivity. 

Although the combination of moisture sensitive MR model and the developed ANN model show 

large sensitivity to moisture and slab-base degree of bonding on k-value, it is still necessary to 

evaluate the effect of moisture and degree of bonding on pavement performance. The next 

subsection describes the prediction of the fatigue cracking (top-down and bottom-up) and 

faulting performance for various bonding and moisture conditions and compares with the 

predicted performance using Pavement ME design model.   

7.3.1. Effect of Moisture and Slab-base Interface Bonding on Rigid Pavement Performance 

The Pavement ME design guide adopted an incremental distress calculation procedure which 

requires hundreds of thousands of stress and deflection calculation to compute monthly damage 

(i.e., different loads, load positions and temperature gradients) over a design period. ISLAB2000 

finite element (FE) software is used in the design guide to accurately compute rigid pavement 

responses, such as stresses and deflections under the influence of traffic and environmental load. 

The structural distress considered for JPCP design are fatigue related transverse cracking 

of PCC slabs and differential deflection related transverse joint faulting. Transverse cracking of  
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PCC slab initiate either at the top surface of the PCC slab and propagate downward (top-down 

cracking) or vice-versa (bottom-up cracking) depending on the loading and environmental 

conditions. Both types of fatigue cracking and the faulting performance are considered in this 

study for sensitivity analysis. 

The fatigue damage at the top of the slab occurs due to repeated loading by heavy axles 

when the pavement is exposed to high negative temperature gradient (the top of the slab cooler 

than bottom of the slab). The critical loading condition for top-down cracking involves a 

combination of axles that loads the opposite ends of a slab simultaneously. In the presence of 

high negative temperature gradient, such load combinations cause a high tensile stress at the top 

of the slab near the critical edge (Saha et al. 2019d). 

Similarly bottom-up transverse cracking initiate due to a critical tensile bending stress at 

the bottom of the slab. This bending stress is maximum when the truck axles are near the 

longitudinal edge of the slab, midway between the transverse joints. Moreover, this stress 

increases greatly when there is a high positive temperature gradient through the slab (the top of 

the slab is warmer than the bottom of the slab).   

A difference in elevation across a joint or crack is classified as faulting distress. Repeated 

heavy axle loads crossing transverse joints creates the potential for joint faulting. In this study, to 

compute the critical stress for top-down cracking, two single axles load, weighing 22,000 lbs. 

each, were applied at opposite ends of the transverse joint in addition to a negative 30C 

temperature gradient. While for bottom-up cracking, one single axle load of 22,000 lb at midway 

between the transverse joints was exposed to a positive 30C temperature gradient. Lastly, one 

tendem axle load, weighing 57,000 lb near the edge of transverse joint was applied for the 
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computation of joint faulting. No temperature gradient was applied for faulting distress 

calculation. 

Figure 7.8 shows the effect of degree of bonding on pavement performance i.e., tensile 

stress at surface, tensile stress at slab bottom and differential deflection across the transverse 

joint using the k-value predicted from ANN model and Pavement ME design model. 

 
                    ANN model                                           Pavement ME design 

                                                                      (a) 

 
                   ANN model                                             Pavement ME design 

                                                                       (b) 
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                   ANN model                                            Pavement ME design 

(c) 

Figure 7.8 PCC slab-base interface bond sensitivity on (a) tensile stress at top of slab; 

(b) tensile stress at bottom of slab; and (c) deferential deflection on transverse joints 

 

It is observed that the developed ANN model has larger sensitivity of tensile stress and 

differential deflection due to change in degree of bonding at slab-base interface. For both ANN 

model and Pavement ME design model, fully bonded condition shows the lowest tensile stress 

and differential deflection whereas no bonding between slab and base develop largest tensile 

stress and deflection. As it is seen, Pavement ME design model can only calculate tensile stress 

and deflection at two extreme bonding conditions but the developed ANN model has the 

capability of predict tensile stress and deflection at partially bonded condition as well. 

Figure 7.9 shows the sensitivity of moisture on tensile stress and differential deflection 

using the proposed moisture and suction dependent MR model and Pavement ME design model.  
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                               ANN model                                            Pavement ME design 

                                                                      (a) 

 
ANN model                                              Pavement ME design 
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   ANN model                                             Pavement ME design 

                                                                        (c) 

Figure 7.9 Base layer moisture sensitivity on (a) tensile stress at top of slab; (b) tensile 

stress at bottom of slab; and (c) deferential deflection on transverse joints  

 

As shown in Figure 7.9, the Pavement ME design model shows very low sensitivity of 

tensile stress at slab top and bottom and differential deflection due to the change in moisture at 

middle of base layer. However, the proposed MR model and the corresponding k value from 

ANN model shows higher sensitivity in tensile stress and differential deflection for change in 

moisture. Tensile stress at slab top and bottom increases with the increase of moisture in base 

layerIn summary, the models developed in this project are sensitive and capable of identifying 

various pavement responses including stress and strain at the bottom and top of asphalt layer and 

distress including cracking and rutting in asphalt pavement and faulting in concrete pavement 

with different base and subgrade properties with different environmental conditions including 

moisture and temperature, while in the Pavement ME Design such obvious differences cannot be 

observed.  
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8. DEVELOPMENT OF A MECHANISTIC-EMPIRICAL MODEL TO ESTIMATE 

PERCENTAGE OF STABILIZER FROM ELECTRICAL CONDUCTIVITY 

 

8.1. Introduction 

In this study, a mechanistic non-destructive approach is developed to predict the percentage of 

stabilizer in the base material based on electrical conductivity and water content readings. To do 

the laboratory test, unbound base material was collected from US 259 site. Detail description of 

the site location and laboratory test results are presented in following sub-sections. 

8.2. US 259 Site 

Unbound base materials were collected form a pavement section located in US259 site, as shown 

in Figure 8.1.  Section 1 and 2 in Figure 8.1 are located in Texas and Oklahoma respectively, 

which have different layer structure. Figure 8.2 illustrates the cross-sectional view of both 

sections. The pavement layers that are same in both sections are consisted of a 3-inch hot mix 

asphalt (HMA) layer, a 10-inch base course, and subgrade soil. The only difference between the 

two pavement sections is the type of base material that has been used. A cement treated base 

layer is placed in pavement section 1, whereas flexible base is used for the pavement section 2. 

The following sub-section describe the laboratory tests that were performed using the base 

materials from US 259 pavement section. 
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Figure 8.1 Location of Pavement Section 1 and Section 2 in US259 

 

 

Figure 8.2 Structures of Identified Pavement Sections 1 and 2 in US 259 

 

8.2.1. Moisture-Density Relationship 

  

In this study, neat base materials were collected from US259 section 2 location. Maximum dry 

density (MDD) - optimum moisture content (OMC) tests were performed for neat base material  
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in the laboratory following the specification Tex-113-E. The specification documented in Tex-

120-E was followed to determine the MDD-OMC relationship for cement treated base materials. 

MDD-OMC tests were performed only for 2% cement treated US259 base material. Then the 

OMC for 4% and 6% cement treated US259 materials were calculated using the relationship 

documented in Tex-120-E (Equation 8.1). 

% molding water = % optimum moisture from M/D curve  

                                                          + 0.25 (% cement increase)                             (8.1) 

where % cement increase is the difference in cement content between curve and other cement 

contents 

Tables 8.1 and 8.2 present the results of the moisture content tests and the corresponding 

dry unit weight for neat and 2% cement treated US 259 materials respectively. The calculated 

dry densities at different moisture content are plotted in Figure 8.3. The optimum moisture 

content for neat US 259 material was calculated as 6.5% whereas it had increased to 7.75% for 

2% cement treated material. Equation 8.1 was used to determine the OMC for 4% and 6% 

cement treated base material and the calculated OMC values were 8.28% and 8.75% 

respectively. 

Table 8.1 Laboratory Dry Unit Weight Results for Neat US 259 Base Material 

Compacted Soil-Sample no. 1 2 3 4 

Water content (%) 5 6 7 8 

Compacted soil + mold (g) 10341.89 10337.36 10527.87 10477.97 

Mold (g) 1800.76 1714.58 1827.97 1700.97 

Wet mass of soil (g) 8541.13 8622.78 8699.9 8777 

Volume of specimen (cm3) 3872.14 3808.51 3809.9 3812.69 

Wet density (g/cm3) 2.2057 2.264 2.283 2.302 

Dry density (g/cm3) 2.1 2.136 2.134 2.131 
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Table 8.2 Laboratory Dry Unit Weight Results for 2% Cement Treated US 259 Base 

Material 

Compacted Soil-Sample no. 1 2 3 

Water content (%) 6 8 10 

Compacted soil + mold (g) 16980.6 17249.4 16987.7 

Mold (g) 8125.3 8125.3 8250.6 

Wet mass of soil (g) 8855.3 9124.1 8737.1 

Volume of specimen (cm3) 3892 3892 3892 

Wet density (g/cm3) 2.275 2.344 2.244 

Dry density (g/cm3) 2.146 2.170 2.040 

           

                                       (a)                                                                      (b) 

Figure 8.3 Moisture-Density Results for (a) Neat; and (b) 2% Cement Treated 

US 259 Base Material 

 

 

8.2.2. Percometer Test 

The percometer test quickly measures the dielectric constant and electrical conductivity of 

materials (Saha et al. 2019f). The frequency of the percometer that has been used in this study is 

50 kHz. Figure 8.4 shows a typical measurement of dielectric constant of flexible base using the 

percometer instrument. The dielectric constant of unbound and treated base was measured to 

directly relate to the moisture content and percentage of stabilizer in base material. 
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Figure 8.4 Measurement of Dielectric Constant of Base material Using Percometer 

(Reprinted from Sahin 2014) 

 

 

8.2.3. Filter Paper Test 

The filter paper test specified in ASTM D5298 was followed to measure matric suction for 

unbound and treated US259 base materials. Materials passing No. 4 sieve were collected and 

compacted at different moisture contents. Filter papers were placed in a sealed jar for seven days 

with the compacted unbound aggregate specimen. After seven days, the increasing mass of the 

filter papers were measured by a highly accurate scientific scale. Finally, the matric suction of 

the specimen was determined using the filter paper calibration curve (Bulut et al. 2001). Next 

section describes the test results and establish the empirical model to predict percentage of 

stabilizer from electrical conductivity and evaporable water content. 

8.3. Development of a Prediction Model for Percentage of Stabilizer 

8.3.1. Soil-Water Characteristics Curve for Neat and Cement Treated Samples 

The suction at different degrees of saturations were measured using the filter paper test method 

described in previous section. Both matric and total suctions were determined by means of the 
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filter paper method. Figure 8.5 plots the soil water characteristics curves (SWCC) for neat US 

259 and 2% cement treated US 259 soil samples. Similarly SWCC were generated for 4% and 

6% cement treated soil samples. 

 

 

Figure 8.5 Soil water characteristics curve for Neat US 259 and 2% cement treated US 259 

base materials  

 

8.3.2. Determination of Evaporable Water Content from Electrical Conductivity Readings 

The relation between the evaporable water content and the electrical conductivity in base 

material was investigated using the percometer and filter paper measurements. Figure 8.6a 

presents the plot of measured matric suction versus electrical conductivity data, whereas Figure 

8.6b on the right hand side is plotted to present the variation of matric suction with evaporable 

volumetric water content. The curves were plotted for neat, 2%, 4% and 6% cement treated soil 

specimens. The evaporable water content in unbound base material can be easily estimated from 

the recorded electrical conductivity and suction readings. Figure 8.6 shows that the evaporable 
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volumetric water content in 6% cement treated US 259 base material is 0.085 for a 

corresponding electrical conductivity of 11 μs/cm.  

  

(a)                                                                         (b) 

Figure 8.6 Determination of volumetric water content from electrical conductivity 

 

8.3.3. Prediction of Osmotic Suction from Electrical Conductivity and Volumetric Water 

Content 

Osmotic suction is related to the amount of salts dissolved in the free pore-water (Fredlund et al. 

1993). Past studies have proposed several procedures to measure the osmotic suction of soil. In 

this study, the osmotic suction was determined by subtracting the estimated matric suction from 

total suction. 

Figure 8.7 plots the calculated osmotic suction against volumetric water content for US 

259 base material. The curves were plotted for both neat and cement treated base materials.  
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                                       (a)                                                                   (b) 

Figure 8.7 (a) Osmotic Suction versus evaporable volumetric water content plot; (b) 

Osmotic Suction versus Electrical Conductivity plot, for neat, 2% and 4% cement treated 

US 259 base material 

 

As it is seen, osmotic suction value increased with the increase of cement stabilizer in base 

material. The observed phenomena is obvious because the amount of dissolved salt increases 

with the higher percentage of cement. Similarly figure 8.7b depicts that osmotic suction has an 

inverse relationship with electrical conductivity. 

Based on the observed relationship shown in Figure 8.7, an empirical equation was 

developed to predict the osmotic suction from measured evaporable volumetric water content 

and electrical conductivity. 

3

2.8 1
. . *

( . . .) . .
O S

EV wc E C
        (8.2) 

where, O.S. is the osmotic suction, (unit: kPa); E.V. wc. Is the evaporable volumetric water 

content, and E.C. is the Electrical conductivity, (unit: µs/cm).   
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8.3.4. Molar Concentration of Cement Solute in Water  

As stated earlier, osmotic suction is a soil property which arises from the salt content in the soil 

pore fluid. Therefore, in a stabilized base material osmotic suction is influenced by the 

percentage of stabilizer in the pore solution. Van’t Hoff proposed a relationship between Molar 

concentration, C  , and osmotic suction that is applicable for both treated and neat base 

material. 

From Van’t Hoff’s equation, 

RTC             (8.3) 

where  is the osmotic Suction;  is the number of ions from one molecule of solute; R is 

78.314 10  J mol/K; T is (273+ 0C) K; C is the molar concentration (moles/1000g of solvent); 

and is the osmotic coefficient 

Figure 8.8 plots the molar calculated concentration of 2% cement treated US 259 material at 

various water content.  

 

 

Figure 8.8 Molar concentration of cement solute for 2% cement treated US 259 material 
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8.3.5. Comparison of the Estimated Molar Concentration with Literature Data 

Approximately 0.3 grams of water are required per gram anhydrous cement to form hydrated 

solid products and achieve normal plasticity (Glasser and Marr, 1984). Portland cement pastes 

are usually about 40 percent hydrated with one day at 15 to 250C, 70 percent hydrated within one 

month (Reardon, 1992). In this study, 2% cement (13.4 grams) was used to stabilize the base 

material. Considering a hydration rate of 70 percent, water required to form the hydration 

product is 0.7*13.4*0.3 = 2.814 gm.  

Table 8.3 Concentration of ions in Pore Water 

Ion Concentration (mM)   

 Case-1 Case-2 Case-3 Case-4 Case-5 Case-6 Case-7 
Average (Cement 

= 2000 gm) 

Average (Cement 

= 13.4 gm) 

OH- 743 590 440 477 546 689 651 591 3.96 

Ca2+ 2 0.6  1 <1 <1 <1 1 0.01 

Si4+     0.9  1 1 0.01 

K+ 639 420 490 376 442 547 519 490 3.28 

Na+ 323 250 560 136 110 156 173 244 1.63 

Al3+       0.1 0.1 0.00 

SO42- 27    4 3 19 13 0.09 

Evap. v.w.c. = 0.078 Evap. v.w.c. = 0.123 Evap. v.w.c. = 0.159 

Concentration 

(per 49.11 gm 

of water) 

Concentration 

(per 1000 gm 

of water) 

Concentration 

(per 37.96 gm 

of water) 

Concentration 

(per 1000 gm 

of water) 

Concentration 

(per 24.18 gm 

of water) 

Concentration 

(per 1000 gm 

of water) 

3.96 80.63 3.95 104.3 3.95 163.75 

0.01 0.14 0.006 0.176 0.0067 0.277 

0.01 0.14 0.006 0.176 0.0067 0.277 

3.28 66.85 3.28 86.48 3.283 135.773 

1.63 33.29 1.63 43.06 1.63 67.609 

0.00 0.01 0.0006 0.0176 0.00067 0.0277 

0.09 1.77 0.087 2.294 0.0871 3.602  
Total = 

182.83 

 
Total = 

236.52 

 
Total = 371.32 

*Evap. v.w.c. = Evaporable volumetric water content 
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However, the change of evaporable water content was measured after the addition of 

cement, and it was observed that the amount of evaporable water reduced was approximately 

2.96 grams.  In other words, 2.96 grams of water was used to form the hydration products.  So, 

water available in the solution = (52.07 – 2.96) = 49.11 grams. Reardon (1992) listed the 

concentrations of major solute components in pore water expressed from ordinary Portland 

cement pastes with water/ cement ratios of approximately 0.5. Since all quantities are in 

milimoles per 1000gm of water, cement content for the listed amount is 2000 gm in Table 8.3. 

Figure 8.9 shows the comparison of estimated molar concentration in 2% cement treated 

US 259 base material using Van’t Hoff’s equation and the molar concentration calculated  from 

the typical cement ions concentration collected from the literature. A reasonable agreement is 

observed between the estimated concentration using Van’t Hoff’s equation and the concentration 

calculated from the literature. 

 

Figure 8.9 Comparison of Molar Concentration of Cement Solute calculated based on 

Van’t Hoff’s Equation and Ion Concentration from Literature 
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A nondestructive approach has been evaluated in the later sub-sections to incorporate the 

prediction model of percentage of stabilizer and determine in-situ stabilizer content in the base 

material. The ground penetrating radar is a nondestructive geophysical tool to detect the 

dielectric properties of each layer in pavement. The formulation of calculating electrical 

conductivity from radar waves with non-normal incidents have been developed by (Balanis, 

2012) and discussed in the following subsections.  

8.4. Determination of Electrical Conductivity from Ground Penetrating Radar Waves    

The ground penetrating radar (GPR) is one of the nondestructive geophysical tools used 

to detect the underground layer properties and monitors the variations in the layer 

beneath the surface layer. It is has been adapted and was successfully applied to predict 

the pavement layer system characteristics by pavement engineers. The basic principle of 

the GPR operation system is that it emits the electromagnetic (EM) pulses and receives 

the reflected signals through an antenna and measures in the time of arrival of each 

wave. The magnitude of the signals amplitudes changes are based on the dielectric 

properties of each layer (Annan, 2003). The mechanics of the radar sending energy and 

the reflection from each layer interface is shown in Figure 8.10. 
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Figure 8.10 A Typical Received Radar Signal from a Pavement Structure (Reprinted from 

Sahin, 2014) 

The GPR technology offers a high speed data collection and assessment of the continued 

dielectric profile. A transmitter antenna transmits a high-frequency monopulse electronic signal, 

which travel through each layer and reflects at the interface between the two layers of the 

materials with different dielectric properties. This high frequency signal is received by the 

antenna and transmitted to a signal acquisition unit to convert them to relatively lower signal 

pulses. A typical plot of a received radar signal versus time for one pulse is shown in Figure 

8.11. The first amplitude Ao is the reflection from the lower end of the antenna and the second 

amplitude is reflected signal from the pavement surface. 
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Figure 8.11 Radar Operation System Principals of a Typical Emitted and Received Radar 

Signal Schematic (Reprinted from Sahin, 2014) 

 

Figure 8.11 shows that the incident wave is reflected at each layer interface and plotted as 

return voltage against time of arrival in nanoseconds. The amplitude A1 represents the pulse 

energy from the surface of the pavement, amplitude A2 and A3 represent the reflection from the 

surface of the base and subgrade, respectively. These signals are received by a receiver and are 

converted in a low frequency and digitized by an A/D converter and then sent to a host computer 

to data process and display. A radar system moves along the survey location and received waves 

displayed in a 2-D pseudo color strip map by the host computer. A radar system is usually 

carried by a van, and the radar antenna is mounted on the front bumper. An air launched ground 

penetrating radar unit is shown in Figure 8.12a. 



 

160 

 

 

(a) 

 

(b) 

Figure 8.12 (a) A GPR Equipment and; (b) Mechanics of Signal Operation System 

(Reprinted from Sahin, 2014)  
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This particular GPR van operates at a highway speed of 60 mph and can effectively 

collect the data. This unit is capable of emitting and receiving 50 pulses per second in 

penetrating to a depth of 2 feet. In Figure 8.12 (b), Ao is the incident amplitude; A1 is the 

amplitude of the GPR wave that is reflected from the surface; A2 is reflected from the interface 

between the surface layer and the base course; A3 is reflected from the interface between the base 

course and the subgrade. The GPR uses a very sophisticated system and most advanced 

technology. The main component of a GPR is a high speed pulse generator, high speed data 

acquisition, real time data processing, and wireless communication systems. Displaying data is a 

synchronized process in the GPR unit. This system was adapted by the state transportation 

departments and agencies: likewise, TxDOT and TTI have the GPR vans. 

8.4.1. Principal of Ground Penetrating Radar System 

The dielectric constant and the layer thickness can be calculated by using the measured 

amplitudes (volts) and time delays (ns). The general form of the equations are summarized 

below. The surface layer dielectric equation is given in Equation 8.4 

2

1

1

1 /

1 /

m
a

m

A A

A A


 
  

 
        (8.4) 

where a  gives the dielectric of the surface layer, A1 is the amplitude of surface reflection (volts), 

Am is the amplitude of reflection from a large metal plate in volts (this represents the 100% 

reflection case). 

The top layer thickness is presented in Equation 8.5 
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1
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2 a

c t
h



 
  
  

         (8.5) 

where h1 shows the thickness of the top layer, c is the speed of electromagnetic wave in air (5.9 

ins/ns two way travel), 1t  is the time delay between peaks A1 and A2 (in ns). 

The dielectric value of base course layer is presented in Equation 8.6 
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 
  
  

      (8.6) 

where b  yields the dielectric value of the base course aggregate and A2 is the amplitude of 

reflection (volts) from the top of the base course layer. 

The thickness of the base course layer is estimated in Equation 8.7 

2

2
base

b

c t
h




          (8.7)       

where hbase yields the thickness of the base and 2t  is time delay (ns) between A2 and A3        

The given equations from 8.4 to 8.7 provide a summary that are derived to calculate the 

pavement layer dielectric values and thickness. In this particular study, the base course thickness 

and dielectric constant will be utilized to calculate the electrical conductivity of base layer. This 

study is discussed in the following sub-section in detail. 

8.4.2. Formulation of Electrical Conductivity 

Figure 8.13 illustrate the incidence of a non-normal radar wave at the interface between two 

layers 
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Figure 8.13 Illustration of Radar Waves with Non-normal Incidents 
 

 Here, is the perpendicular polarized GPR wave; and II is the parallel polarized GPR wave 

The impotent properties of a free space wave signal are, 
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The reflection coefficients are expressed as, 
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Now,  
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Here, 
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The imaginary part of [ ]j  is 
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The reflection coefficient for perpendicular polarization, 
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If Layer 1 is base (dielectric) material, 

Perpendicular Polarization: 1  0; 1 =0; 1 0   
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Parallel Polarization: 1  0; 1 =0; 1 0   
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Using the estimated electrical conductivity values from GPR signal waves expressed in Equation 

8.8 to 8.21 and the laboratory prediction model of percentage of stabilizer based on conductivity 

readings, a non-destructive methodology of determining percentage of stabilizer in the base 

materials can be developed with further validation. 
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9. A GROUND PENETRATING RADAR BASED NON-DESTRUCTIVE METHODOLOGY 

TO DETERMINE MR 

 

9.1. Introduction 

Flexible base layer is laid between asphalt concrete layer and subgrade in asphalt pavements. A 

flexible base with high quality can provide functional support to the pavement structures, and 

effectively dissipate the stresses induced by the traffic load to the underlying subgrade (Huang, 

1993). During construction, the measured properties of flexible base for current quality control 

(QC) and quality assurance (QA) are the dry unit weight and water content. They are compared 

with the laboratory compaction curves of unbound aggregates specimens to assure that an 

adequate level of compaction has been achieved for flexible base. However, the current 

pavement design is not based upon the dry unit weight and moisture content of flexible base, but 

based upon the resilient modulus of base layer. The resilient modulus of each individual 

pavement layer significantly influences the performance and service life of pavement. To assure 

the construction quality of flexible base, the modulus values of the base course that were 

compacted should match as closely as possible the modulus values of base course that were used 

in design. Quality assurance of the compacted flexible base course must also be conducted in a 

timely and efficient manner so as not to retard the pace of construction. Therefore, it is necessary 

to develop an efficient nondestructive testing (NDT) approach to measure the resilient modulus 

of the compacted flexible base. 

Falling weight deflectometer (FWD) and ground penetrating radar (GPR) are two 

nondestructive testing devices commonly used in pavement engineering. FWD is primarily used  
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to estimate the resilient modulus of each individual pavement layer by measuring the pavement 

surface deflections at the different load levels. The use of FWD normally requires a specific 

traffic control, which significantly increases the potential user time delay costs and the road 

safety problems. GPR is another nondestructive testing device used to measure the dielectric 

constant of paving materials, and to estimate the layer thickness of pavements. The measured 

dielectric constant profiles are related to the density of asphalt concrete, the density of base 

course, and the moisture content of base course. Compared to the FWD device, the GPR system 

can be operated at normal highway speed (e.g., 60 mph), thus it will not cause any traffic 

disruptions. According to the aforementioned task objectives, the GPR system-based NDT 

approach is selected for evaluating flexible base construction. 

9.2. Estimation of Resilient Modulus of Flexible Base in the Field 

In this section, the mechanistic-based NDT approach is employed to evaluate the quality of 

flexible base in terms of the determined resilient modulus profiles. Figure 9.1 illustrates the 

procedures of implementing the mechanistic-based NDT approach for field projects. The GPR 

outputs are analyzed by the software PaveSCM to obtain the dielectric constant profile of 

flexible base. The laboratory characterization results and the dielectric constant data are input 

into the software LayerMAPP to estimate the resilient modulus of the in-situ flexible base. The 

FWD test is also conducted on the field test sections. The FWD test data is analyzed by the 

software Modulus 6.0 to backcalculate the resilient modulus of the in-situ flexible base. To 

validate the mechanistic-based NDT approach, the predicted resilient moduli of flexible base are 

compared to those backcalculated from the FWD test data. 
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Figure 9.1 Validation of Mechanistic-Based NDT Approach Using Field Project Data   

 

 

9.2.1. GPR Signal Processing 

The successful deployment of the mechanics-based MR determination models rely on collecting 

quality GPR data and suitably processing those data (Saha et al. 2019g).  Before readings of 

dielectric constant, thickness or any other pavement properties are estimated from a GPR scan, 

the raw GPR scan needs to be pre-processed. Pre-processing of the raw GPR scans helps remove 

background noise in the signals, reduce the effects of the antenna height variation due to the 

bounce of the vehicle while driving, and enables more accurate identification of layer interfaces. 

The pre-processing of the raw GPR scan is performed using the following methods: 

 Filtering of the radar signals 

 Surface normalization 

 Height variation correction of signal amplitude 

 Thin-layer subtraction 
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Filtering of Radar Signals 

The raw GPR scans can contain low and/or high frequency noise that would need to be removed. 

The low and high frequency noise can be removed by applying bandpass FIR or IIR filters. The 

frequency of the bandpass filter will depend on the frequency of the GPR antenna. The system 

currently in use by the research team does not usually encounter this noise, so no filtering is 

currently applied.  However, for eventual implementation, it’s possible that other currently 

available GPR systems may use or require filtering.  

Surface Normalization 

The height of the antenna(s) can change due to the bounce of the vehicle during a scan. This 

height change results in the surface reflection of the signal to vary along the length of the scan. 

This occurrence can be seen in the Figure 9.2, where the surface reflection is inside the 

highlighted box. The variation in the height of the antenna can be seen in the radar signal with 

the variation in the signal reflection of the surface.  

 
Figure 9.2 B-scan Plot Showing Variation in Surface Reflection Location 
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This variation in the signal reflection propagates through the entire signal. The small horizontal 

brown line highlights what could be mistaken for an interface. But when a surface normalization 

is applied, the surface reflection is repositioned so that all the signals in the scan have the surface 

reflection located at the same depth (i.e. time). As a result, the variation of the position of the 

signal due to the antenna height variation is removed. Figure 9.3 shows the same scan with the 

surface normalization applied.  

 
Figure 9.3 B-scan Plot Showing Surface Reflection at Same Depth 

In Figure 9.3, the surface reflections of all the signals appear at the same depth. Also, what had 

appeared to be an interface in the original scan, highlighted by the brown line, is now a complete 

flat line, meaning that it is not an interface and instead is just noise in the signal. This example 

scan was performed on top of the lime-treated subgrade (LTS) layer at the RELLIS test site. In 

this example, applying the surface normalization eliminates the misidentification of the bottom 

of the LTS layer.  

Height Variation Correction of Signal Amplitude 

The variation in the height of the antenna caused by vehicle bounce during a scan also affects the 

amplitude of the signal. When the antenna gets closer to the pavement the signal amplitude  
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increases, and when the antenna is further away from the pavement the signal amplitude 

decreases. This variation in antenna height which in turn affects the signal amplitude is corrected 

by applying a bounce correction.  Figure 9.4 illustrates how the time between the end reflection 

and surface reflection are used to determine the bounce correction.  

𝐵𝑘 = −1.1907 × Δ𝑡 + 9.1617      (9.1) 

where 𝐵𝑘 – Bounce correction factor, Δ𝑡 – Time difference between End Reflection and Surface 

Reflection 

 
Figure 9.4 A-scan of Signal Showing End Reflection and Surface Reflection 

 

An improvement on the above bounce correction equation could be to use a polynomial equation 

instead of the linear equation.  

Thin-layer Subtraction 

The thin-layer subtraction allows identifying top layer(s) whose thickness is under 2 or 3 inches 

and also reduces any back-ground noise in the raw GPR signal. The thin-layer subtraction is 

performed by subtracting the raw GPR signal by the signal recorded over a metal plate. The 

signal recorded over a metal plate will be almost identical to the signal sent from the antenna.  
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The amplitude of the metal plate signal is adjusted so that it has the same amplitude as the GPR 

signal recorded over the pavement. Then surface reflections from both the signals are lined up 

and the subtraction is performed for the entire signal. In order to improve this subtraction, the 

number of samples in the signal is increase by a factor of 100.  

Figure 9.5 shows an A-scan that was recorded over the TOM-F layer at the RELLIS test 

site. From looking at the reflections, the interface of the TOM-F and the D Mix layers is not 

visible.  

 
Figure 9.5 A-scan signal without Thin-Layer Subtraction 

 

Figure 9.6 presents the signal after the thin-layer subtraction. From the plot the interface of the 

bottom of the TOM-F / top of the D Mix layers is visible.  
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Figure 9.6 A-scan signal after Thin-layer Subtraction 

To perform the signal analysis, a new signal is formed that combines the original signal and the 

thin-layer subtracted signal.  The beginning part of the original signal is used up to the surface 

reflection, and then combined with the thin-layer subtracted signal after the surface reflection as 

shown in Figure 9.7.  

 
Figure 9.7 A-scan signal - Part of Surface Reflection and Thin-layer Subtracted Signal 
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Figure 9.7 contains both the surface reflection from the original signal and the remaining 

part of the signal from the thin-layer subtraction. From this signal the top of the TOM-F layer, 

the top of the D-Mix layer, and the top of the base layer are visible.  

Thickness and Dielectric Constant Calculations 

To calculate the thickness, the dielectric constant of each layer needs to be calculated first. The 

dielectric constant, ε, for a layer is calculated using these formulae, 

𝜀𝑖 = 𝜀𝑖−1 × (
1+𝜌

1−𝜌
)
2

       (9.2) 

where 𝑖 – Layer number  

when 𝑖 = 0 the layer is air, the 𝜀0 = 1.0 

𝜌𝑖 =
𝑘𝑎×

𝐴𝑖
𝐼𝐴

𝑇𝑖
                   (9.3) 

where 𝜌𝑖 – Reflection coefficient, 𝑘𝑎 – Calibration amplitude correction factor, 𝐴𝑖 – Layer 

amplitude, IA – Incident amplitude 

𝑇𝑖 = 𝑇𝑖−1 ×
4×√𝜀𝑖−1×𝜀𝑖

(√𝜀𝑖−1+√𝜀𝑖)
2      (9.4) 

where 𝑇𝑖 – Transmission coefficient 

When 𝑖 = 1,  𝑇1 = 1.0, the thickness of the layers is calculated using this formula,  

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 5.9 ×
(Δ𝑡+𝑘𝑡)

√𝜀𝑖
      (9.5) 

where, 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, in inches, Δ𝑡 – Time delay, in nano-seconds, 𝑘𝑡 – Calibration time correction 

factor 

The correction factors 𝑘𝑡 and 𝑘𝑎 are calculated using a ground-truth thickness from a 

core, with the GPR signal having been recorded over the core location. The correction factor 𝑘𝑡  
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is usually needed to be used for pavements with thin surface layers. The reason for the correction 

factor is the overlapping of the signal reflections will affect time delay by a factor, which is 

caused by the variations in the slopes of the signal reflections.  

9.2.2. Dielectric Constant Scans 

Figures 9.8, 9.9, 9.10, 9.11 and 9.12 illustrate the dielectric constant results from each layer at 

the RELLIS site.  With further processing in coordination with the mechanics-based models, 

these contour plots will be transformed into outputs of modulus or density. 

 
Figure 9.8 Dielectric Constants - TOM-F, D Mix, Base and Subgrade Layers – Flexible 
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Figure 9.9 Dielectric Constant - TOM-F Layer – Flexible 

 

 
Figure 9.10 Dielectric Constant - D Mix Layer – Flexible 

 

 
Figure 9.11 Dielectric Constant - Base Layer 
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Figure 9.12 Dielectric Constant - Subgrade Layer 

9.2.3. Thickness Calculations 

Figures 9.13, 9.14, 9.15, and 9.16 present the thickness calculations from the GPR.  These results 

illustrate how, if desired, GPR may also be able to provide near full-coverage assessment of 

constructed layer thickness for quality acceptance. 

 

 

 
Figure 9.13 Thickness - TOM-F, D Mix and Base Layers – Flexible 
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Figure 9.14 Thickness - TOM-F Layer – Flexible 

 

 
Figure 9.15 Thickness - D Mix Layer – Flexible 

 

 
Figure 9.16 Thickness - Base Layer – Flexible 

 

Using the laboratory characterization of base materials and putting the results in PaveSCM 

software the water content and the matric suction will be determined and therefore MR profile of 

the base layer will be plotted in the LayerMapp software with the help of dielectric constant and 

thickness scans.  
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10. CONCLUSIONS AND RECOMMENDATIONS 

 

10.1. Conclusions 

This study proposed several enhancements to the Pavement ME Design with the purpose of 

increasing the sensitivity of pavement performance to base layers and subgrade. These 

enhancements include: (a) ANN models to predict the SWCC by using the soil physical 

properties and climatic parameters; (b) a mechanistic-empirical model to predict the equilibrium 

soil moisture suction beneath pavement for each of the AASHTO soil classes of  base course and 

subgrade soils (c) ANN models to predict the stress and moisture-dependent resilient modulus 

(MR); (d) regression models to predict the coefficients of the suction dependent shear strength 

and permanent deformation model; (e) a modified modulus of subgrade reaction (k) model that 

considered the cross anisotropy of the base material and the shear interaction between the PCC 

slab and the base course. 

 In the later part of this study, the effect of the proposed models were evaluated on 

pavement performance. The sensitivity of moisture, degree of bonding and tire speed were 

quantified on the rutting, fatigue cracking (top-down and bottom-up) and faulting performance 

using the developed models and compared with the predicted performance using Pavement ME 

design models.   

 To improve the construction quality of pavement layers, a rapid non-destructive approach 

was also evaluated. Ground penetrating radar signals were utilized to generate the dielectric 

constant and electrical conductivity profiles of underlying layers and further used to estimate MR 

and percent of stabilizer with the help of specific laboratory characterization.  
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10.1.1. Soil Water Characteristics Curve of Base and Subgrade soils  

 Two three-layered neural network architectures consisting of one input layer, one hidden 

layer and one output layer were constructed for plastic and non-plastic soil, respectively. 

The input variables for plastic soil include the material percent passing the No.4 sieve, 

material percent passing the No.200 sieve, liquid limit(LL), plasticity index(PI), saturated 

volumetric water content and local mean annual air temperature (MAAT). The input 

variables for non-plastic soil are particle diameter corresponding to 30 percent, 60 

percent and 90 percent passing of material (D30, D60, D90), gradation scale parameters 

(ϴ), gradation shape parameter (Ѱ), saturated volumetric water content and local MAAT. 

The hidden layer assigns 20 neurons. A total of 3600 plastic soil and 250 non-plastic soil 

data collected from the NCHRP 9-23A project were used to develop the ANN models. 

 Compared to the existing prediction models, such as the Zapata model, and the Perera 

model , the developed ANN models had the highest accuracy (e.g., smallest RMSE and 

highest R2 values) to predict the SWCC fitting parameters in the Fredlund-Xing equation. 

The developed ANN models can accurately estimate the matric suction of soil at any 

given saturation level. The obtained R2 values were 0.95 and 0.91 for plastic and non-

plastic soils, respectively. 

 The prediction accuracy of the developed ANN models were validated by two data 

sources, i.e., test data from the NCHRP 9-23A database and independent data from other 

literature sources. The comparison of model-predicted matric suction values to the 

measured ones validates that the developed ANN models are capable of accurately 

predicting the SWCCs for both plastic and non-plastic soils. 
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10.1.2. Equilibrium Suction Prediction Model for Subgrade Soil 

 A GIS based TMI contour map of the continental United States was developed using 

precipitation and temperature data collected from the PRISM (Parameter-elevation  

Regressions on Independent Slopes Model) Climate Group. The contour map of TMI was 

validated by comparing the values for specific locations with the original TMI map. 

 A mechanistic-empirical model to determine equilibrium suction was developed in this 

study based on Mitchell’s steady state diffusivity equation and a functional relationship 

between TMI and mean annual moisture depth. 

 A GIS based equilibrium suction contour map of the continental United States was 

generated by calculating the values for all map units using the mechanistic-empirical 

approach developed.   

 A simplified regression model was developed to predict equilibrium suction from readily 

available and influential parameters such as TMI, plasticity index and the dry suction 

value. 

10.1.3. Resilient Modulus Model of Base Materials 

 Two three-layered ANN models were developed for plastic and non-plastic base 

materials respectively. Input variables for plastic and non-plastic soil included material 

percent passing 3/8” sieve, material percent passing no. 200 sieve, plastic limit, plasticity 

index, maximum dry density, optimum moisture content and test moisture content. The 

output variables are the three coefficients k1, k2 and k3 of the resilient modulus model. 

 The developed ANN models showed a higher prediction accuracy compared to the three  
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regression models selected from the existing literature. The ANN models can accurately 

estimate the resilient modulus of base materials at any stress level. The obtained R2 

values are 0.91 and 0.90 for plastic and non-plastic base materials, respectively. 

 The ANN models do not provide any insight into the complex relationship between the 

MR model coefficients and the base physical properties. Thus, it is not recommended to 

use as a prediction tool for the values that are out of the range of the training dataset. In 

this study, a large dataset of 779 base materials were collected from the LTPP database 

and hence provided a wide range of input properties.  

 The developed ANN models were validated using the resilient modulus test data from 

different sources. The R2 value between the measured and predicted validation resilient 

modulus values was 0.8. 

10.1.4. Shear Strength and Permanent Deformation Prediction Model 

 To improve the predictability of the mechanistic-empirical permanent deformation 

model, a new set of prediction models were developed for shear strength model 

coefficients (c’ and φ’) and permanent deformation model coefficients (ϵ0, ρ, β, m and n).  

In addition to the repeated and monotonic load triaxial test data, soil physical properties 

such as gradation, Atterberg limits, dry density and moisture content data were also 

collected for corresponding base and subgrade materials 

 Two different sets of prediction models were developed for shear strength model 

coefficients of unbound base and subgrade respectively. Regression analysis was 

conducted to determine the relationships between the shear strength model parameters 

and the collected physical properties of unbound base materials. R2 value of 0.81 and  



 

184 

 

0.87 for c’ and φ’ parameters respectively indicate that the regression equations had a 

good prediction accuracy. Similarly, an empirical correlation was used to define the φ’ 

parameter and an ANN model was developed to predict the cohesion parameter from 

subgrade physical and strength properties. The obtained R2 value 0.98 and 0.97 for 

training and validation dataset demonstrated the prediction accuracy of the c’ parameter. 

 Regression analysis was conducted to determine the prediction models of the permanent 

deformation model coefficients for unbound base materials. The predicted coefficients 

showed a good match with the measured values. 

10.1.5. Modulus of Subgrade Reaction for Rigid Pavements  

 A slab-base interface shear bonding submodel was developed based on the shear strength 

properties of the base course, c and   . Depending on the degree of bonding in the slab-

base interface, the equivalent section and the altered deflection basin, which further 

affected the modified k-value. 

 The estimated degree of bonding values were compared with the previously developed 

“backcalculated best-fit (BBF)” approach bonding condition. In the BBF approach, the 

slab-base interface is only considered as a non-bonded or fully bonded condition. 

However, this study found that most of the treated base layers were either in a fully 

bonded or partially bonded condition and the unbound base layers were mostly partially 

bonded. 

 Modified k-values were compared with the BBF k-values. Significant changes in the k-

values were observed due to the base modulus and interface bonding corrections.  
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Modified k-values were compared with the BBF k-values. Significant changes in the k-

values were observed due to the base modulus and interface bonding corrections. The 

BBF approach has higher k-value than the modified model due to the difference in 

interface bonding ratios. The BBF interface bonding between slab and base is considered 

fully bonded for most of the cases while the modified k-value model considered partially 

bonded conditions. 

 A three-layered ANN model was constructed to predict the modified k-value, which 

included one input layer, one hidden layer and an output layer. The FWD deflection 

basins were computed using a finite element program. The developed ANN model was 

validated by comparing the prediction results with the calculated modified k-values from 

the LTPP pavement sections. The obtained R2 value of 0.92 indicated that the developed 

models had a desirable accuracy in the prediction of the modified k-value. A sensitivity 

analysis was conducted to evaluate the effect of the degree of bonding on k-value. The 

results showed that, in general, a higher degree of bonding produces a higher modified k-

value. 

10.1.6. Prediction of Pavement Performance and Sensitivity Analysis 

 As the moisture content increases in the base layer, the load repetitions to the fatigue 

cracking reduces. The rut depth in the base layer shows an increasing trend with the 

moisture content, while such trend is not as obvious as with the fatigue cracking.  

 The ANN model for k-value was used to evaluate the sensitivity of moisture and degree 

of bonding using the proposed models. The sensitivity of the modified k-values to  
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moisture and degree of bonding was found to be improved significantly compared to the 

existing Pavement ME Design k-values. The sensitivity of moisture increased for all 

selected pavement sections due to the inclusion of the suction effect in the MR model. 

However, the effect of the degree of bonding is same for the modified k-value and 

Pavement ME Design k-value when there is either fully bonded or no bond condition in 

slab-base interface. But the developed ANN model can predict the k-value for the 

partially bonded condition as well. 

 To study the effect of moisture and degree of bonding on pavement performance, tensile 

stress at the top and bottom of the slab and differential deflection across the transverse 

joint were evaluated. The sensitivity of moisture and degree of bonding were calculated 

using the proposed MR and modified k-value model and compared with the results from 

Pavement ME Design MR and k-values. The MR values using the proposed model and the 

corresponding modified k-values from the ANN model showed much higher sensitivity 

on calculated stress and deflections compared to the results from Pavement ME Design 

models. 

10.1.7. Prediction of Percentage of Stabilizer in Base Layer 

 A mechanistic-empirical correlation model was developed to predict the molar 

concentration in stabilized base pore water solution based on electrical conductivity and 

evaporable volumetric water content. Predicted molar concentration was compared with 

the basic concentration of cement ions in soil pore water solution collected from the 

literature and a reasonably good match was observed. A proportional relationship can be 

established further between molar concentration of salt ions and percentage of stabilizer  
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in the base material. 

 An expression of electrical conductivity was derived from parallel and perpendicular 

polarization of GPR signal waves. Therefore, the stabilizer content in the base can be 

directly estimated in the field using the GPR signals and the laboratory based correlation 

model between electrical conductivity and the percentage of stabilizer. 

10.1.8. Determination of Base Modulus using Ground Penetrating Radar wave 

 A mechanistic based non-destructive (NDT) approach was established developed to 

determine the resilient modulus (MR) profile of flexible base. The ground penetrating 

radar (GPR) signals were analyzed by the PaveSCM software to obtain the dielectric 

constant profile. The dielectric constant data was input into the LayerMAPP software in 

addition to the laboratory characterize soil-water characteristics curve (SWCC) and 

suction-dielectric characteristics curve (SDCC) and estimated the MR of in-situ base. 

 A new preprocessing approach of the raw GPR scans was undertaken before using 

dielectric constant readings in PaveSCM software. The preprocessing steps include 

filtering of radar signals, surface normalization, height variation correction of signal 

amplitude and thin-layer subtraction. 

10.2. Recommendations for Future Research 

There are several items of future work that emerge from the work that has been accomplished in 

this study including the following: 

 Replace the models that are currently in the Pavement ME Design software by those that 

have been developed in this study.  

 Incorporate the equilibrium suction contour map of the US that have been developed in  
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this study into the Pavement ME Design software. 

 Develop new relationships to characterize the properties of stabilized base course 

materials as they are controlled and affected by the soil moisture suction. 

 Validate the GPR based approach that has been proposed in this study to predict the base 

modulus and stabilizer content using in-situ field data. 
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