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ABSTRACT

In an era of increasing data availability, it is possible to better understand the world around us

and improve policy with empirical evidence. The difficulty is in distinguishing causal effects from

other confounding factors in quantitative analysis. The purpose of each of the following essays is

to uncover causal effects using natural-experiments and various methodologies along with detailed

administrative data. The first essay studies the extent to which investments in physical education

during middle school can improve student health and achievement. The second essay examines

ways in which jurors may be systematically biased, specifically focusing on the interaction between

the gender of the defendant and the jury composition. The final essay studies how individuals

respond to improved job opportunities with respect to their criminal behavior. Collectively these

studies contribute to discussions on health, education, the criminal justice system, discrimination,

stimulus programs, and hydraulic fracturing.
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1. INTRODUCTION

This dissertation, and my research more broadly, centers on social and policy relevant questions

in the field of applied microeconomics spanning topics in crime, education, and health. Much of

my research agenda is driven by understanding the effects of policy or identifying ways in which

policy could be improved. Methodologically, I identify causal effects using quasi-experiments

coupled with detailed administrative data.

In my first chapter, Analisa Packham and I examine the impact of investments in physical edu-

cation (PE) by analyzing a four-year, $37 million program in Texas that mandated daily PE classes

for middle-school students. Despite the fact that several public health agencies have promoted

physical activity in schools as a way to combat growing rates of childhood obesity, little is known

about how such initiatives affect student outcomes. We estimate the causal effects of PE on student

fitness, achievement, and classroom behavior by exploiting a discontinuity in program eligibility

to analyze the impact of TFN on over 350,000 students. We find no evidence that such invest-

ments lead to healthy changes in body composition, higher overall fitness levels, or improvements

in student test scores. On the contrary, we find some suggestive evidence that physical education

has adverse consequences for middle-school students, including more classroom misbehavior and

reduced school attendance.

In my second chapter, I along with Mark Hoekstra examine the extent to which criminal con-

viction rates are affected by the similarity in gender of the defendant and jury. To identify effects,

we exploit the random variation in both the assignment to jury pools and the ordering of poten-

tial jurors. We do so using detailed administrative data on the juror selection process and trial

proceedings for two large counties in Florida. Results indicate that own-gender juries result in

significantly lower conviction rates on drug charges, though we find no evidence of effects for

other charges. Estimates indicate that a one standard deviation increase in expected own-gender

jurors ( 10 percentage points) results in an 18 percentage point reduction in conviction rates on

drug charges, which is highly significant even after adjusting for multiple comparisons. This re-
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sults in a 13 percentage point decline in the likelihood of being sentenced to at least some jail time.

These findings highlight how drawing an opposite-gender jury can impose significant costs on de-

fendants, and demonstrate that own-gender bias can occur even in settings where the importance

of being impartial is actively pressed on participants.

Finally, my third chapter studies how individuals respond to improved economic conditions

with respect to their criminal behavior. Economic theory suggests crime should decrease as eco-

nomic opportunities increase the returns to legal employment. However, there are well-documented

cases where crime increases in response to areas becoming more prosperous. This paper addresses

this puzzle by examining the effects on crime only for residents already living in the area prior

to the economic boom. This approach isolates the effect of local economic opportunity from the

effect of changing composition due to in-migration during these periods. To identify effects, I

exploit within- and across-county variation in exposure to hydraulic fracturing activities in North

Dakota using administrative individual-level data on residents, mineral lease records, and crimi-

nal charges. Results indicate that the start of economic expansion —as signaled by the signing

of leases —leads to a 22 percent reduction in criminal cases filed. Effects are smaller once the

fracking boom escalates during the more labor-intensive period. This is consistent with improved

economic opportunity reducing crime.
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2. THE EFFECTS OF INVESTMENTS IN PHYSICAL EDUCATION ON STUDENT

HEALTH AND ACHIEVEMENT

2.1 Introduction

In the United States, the rate of childhood obesity has more than quadrupled in the past thirty

years (Centers for Disease Control and Prevention, 2016). One in three children are at risk of

becoming overweight or obese, and among children of lower socioeconomic status, the risk is

even higher (Centers for Disease Control and Prevention, 2016; Let’s Move, 2016).

From a public policy perspective, policies that seek to target the inputs to obesity, like food

and exercise, can reduce negative externalities imposed by higher health care costs in the long run

(Cutler et al., 2003; Finkelstein et al., 2003; 2009). Given that children between the ages of 5-18

spend approximately 40 hours a week at school and may eat several meals there, a natural policy

solution to address childhood obesity and increase total social welfare is to encourage children

to form healthy habits at school. The purpose of this paper is to analyze the effects of one such

initiative, Texas Fitness Now, on student health and academic performance.

Due to the concern of rising health risks and costs of obesity in recent years, federal and state

agencies have created new guidelines and implemented numerous programs to encourage physical

activity. Recently, medical authorities including the Institute of Medicine, American Heart Asso-

ciation, and the American Academy of Pediatrics, have endorsed curricula that consist of at least

30 minutes of daily physical activity a day as a way to reduce obesity and overweight (Institute of

Medicine, 2013; Pate and O’Neill, 2008; Wilson, 2017). Despite these recommendations, schools

may not provide enough opportunities for students to meet this standard during the school day, due

to resource or time constraints. Only 3.8% of elementary schools, 7.9% of middle schools, and

2.1% of high schools provide daily physical education (Centers for Disease Control and Preven-

tion, 2007).

Although physical education (PE) interventions are continually recommended by medical pro-
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fessionals as a strategy to increase physical activity and reduce childhood obesity, the results of

such policies have been mixed. A literature review by Guerra et al. (2013) reports that only 1

out of 11 published studies that use randomized control trials to evaluate PE programs estimate

significant reductions in body mass index (BMI). None find effects on body weight. And while

a handful of studies document that increasing PE time can reduce obesity for young, elementary-

school children (Centers for Disease Control and Prevention, 2016; Cawley et al., 2013; Waters et

al., 2011; Datar and Sturm, 2004), there is less evidence to suggest that such programs are effective

at reducing BMI for middle-school or high-school students (Cawley et al., 2007; Wang et al., 2003;

von Hippel and Bradbury, 2015; Knaus et al., 2018).

Separate from the effects on health, PE proponents argue that increasing physical activity yields

large academic benefits by improving cognition, focus, and memory. There is a growing body of

research implying that this may indeed be the case.1 In a recent report, the CDC describes analyses

that link school-based physical activity, including physical education, to academic behaviors such

as cognitive skills, academic attitudes, attendance, and achievement, and provides suggestive evi-

dence of a positive relationship between physical activity and academic performance. (Centers for

Disease Control and Prevention, 2010).2 Moreover, studies evaluating increases PE time in schools

appear to offer some affirmation that such programs can improve student outcomes (Tremarche et

al., 2007; Carlson et al., 2008).3

That being said, one concern is that increasing PE requirements takes away important instruc-

tional time, which could lead to less learning and poorer student outcomes. In a review of 7 quasi-

experimental studies, which focus on academic outcomes for students up to grade 6, Trudeau and

Shephard (2008) finds that physical activity can be added to school curriculum without hindering

student achievement. Dills et al. (2011) similarly explores this hypothesis and finds no statistically

1 For evidence on the relatinoship between physical activity and cognition, see, for example, Tomporowsk et al.
(2008).

2 Out of the 43 studies, nearly all estimates testing the relationship between academic performance and physical
activity are positive (98.5%), and approximately half are statistically significant.

3 Specifically, Tremarche et al. (2007) estimates the effects of a randomized control trial, and concludes that stu-
dents in an elementary school with more PE time had higher reading test scores. Carlson et al. (2008) uses Early
Childhood Longitudinal Study and finds that increasing PE time raises test scores for girls.
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significant or economically significant impact of weekly PE on test scores for elementary-aged

children, suggesting that PE at worst has no effect on academic achievement.

Based on the above research, we would expect that policies targeting physical activity have

the ability to positively affect student behavior and performance, implying that there may be some

scope for school-level services to play an even larger role. However, nearly all of the literature to

date focuses on elementary-aged children, while little to no evidence exists on the effects of PE

on middle-school students. Accordingly, a fundamental policy question remains unanswered: how

much can PE affect adolescent fitness and health, and how much do these programs translate to

changes in attendance, disciplinary action, and academic performance?

To answer this question, we present new evidence on the effects of physical education require-

ments and contribute to a growing literature on how policies can address childhood obesity and

student achievement. In particular, we estimate a model that exploits a discontinuity in eligibil-

ity criteria for Texas Fitness Now (TFN), a four-year physical education grant program targeting

low-income students with the aim of improving overall health and well-being. Program-eligible

schools included campuses teaching grades 6, 7, and/or 8 with a large majority of economically

disadvantaged students. Participating schools received funds contingent on the agreement that

they: (i) spent funds on new athletic equipment or services related to PE and (ii) ensured that

students attend PE classes for 30 minutes each school day.

The Texas Education Agency (TEA) has since pointed to the positive improvements in fitness

and body composition as evidence of the program’s success; however, the fact that fitness scores

were increasing in each subsequent year of the program suggests that other factors probably con-

tributed to the average increase observed across some Texas schools (Texas Education Agency,

2011).4

Similarly, von Hippel and Bradbury (2015), uses a fixed effects model instrumenting for pro-

gram participation over time, and estimates that TFN improved some measures of fitness for some

4 In particular, the TEA compared the year-to-year differences in test scores in grantee schools only. They report that
TFN led to statistically significant increases of 3.6-6.2 percentage points in aerobic capacity, trunk lift, upper body
strength and endurance, and body composition between 2007 and 2009 (Texas Education Agency, 2011).
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groups, although they find no effects on BMI.5 However, the authors model estimates by gender

as well as groups of years of the program separately, making both the overall average effects and

local average effects of the program difficult to distinguish, and they do not provide any support

for their identifying assumption, casting doubt on the validity of the research design.

This research addresses these shortcomings and builds on the existing literature in a number of

ways. First, we employ a regression discontinuity design, using the eligibility criteria directly, to

compare otherwise similar students across the TFN eligibility threshold. Under the plausible as-

sumption that other determinants of student fitness and performance are smooth across the school

grant-qualifying cutoff, this research design allows us to compare outcomes of students in schools

just below the eligibility threshold to students just above the threshold. In doing so, we are able

to provide evidence that any changes in student outcomes are a result of the program, and not

an artifact of school selection or other unobservable characteristics. Below we provide evidence

in support of this assumption showing schools eligible for physical education grant funding were

similar to schools just below the cutoff in terms of size, other financial resources and student com-

position. Second, we use individual-level administrative data to study student outcomes, which

constitutes an improvement on school-level data since it additionally contains information on stu-

dent raw test scores, attendance and disciplinary behavior. Moreover, the granular nature of these

data allows us to test for compositional changes and detect student attrition.

We find that Texas Fitness Now did not improve physical fitness, including overall body mass

index (BMI), body fat, aerobic capacity, or strength and flexibility. However, we show that TFN

was effective at reducing the number of obese students, implying that such interventions may be

most effective for high-risk students.

Using individual-level data on student academic outcomes for Texas middle schoolers, we esti-

mate no effect of the program on student achievement. Conversely, we present suggestive evidence

that compulsory PE classes reduce attendance rates and increase incidents of disruption and mis-

5 In particular, von Hippel and Bradbury (2015) finds that effects were greatest in measures of strength, and greater
for girls than for boys, although they report no statistically significant effects on shoulder flexibility. They find that
both boys and girls in high-poverty middle schools could complete more pushups and a faster shuttle run. Girls
could also complete more curl-ups, a higher trunk lift, and had a better sit and reach.
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behavior. These findings imply that interventions encouraging daily physical activity have the

potential to negatively impact students if adolescents have a strong aversion to physical education.

Given the existing literature documenting the beneficial effects of physical education on elementary-

aged students, these findings may be somewhat surprising. However, there are several potential

explanations why 12-14 year olds respond differently than young children to physical activity ini-

tiatives. For instance, middle-school students may have already formed lifetime exercise and eat-

ing habits, and therefore are more obstinate than elementary-aged children to abandon unhealthy

habits. Another explanation is that for economically disadvantaged and/or overweight teens, PE

class may serve as a class period where students that struggle with aerobic exercises experience

bullying and teasing.6 Finally, since middle-schoolers are less energetic, physical education could

make teenagers more tired than younger students, which may contribute to more distractions or

misbehavior in the classroom. Below, we explore these possibilities in an effort to shed light on

the more comprehensive effects of PE requirements for middle-school students.

The rest of this paper is organized as follows. Section 2 describes the Texas Fitness Now

program in more detail. Section 3 describes the data and empirical strategy. Section 4 presents the

main results. Section 5 provides a discussion of the main results and potential mechanisms before

concluding.

2.2 Background on Texas Fitness Now

The Texas Fitness Now (TFN) program was, at the time of initiation, the second-largest phys-

ical activity grant program in the US.7 From 2007-2011, with the goal of curtailing childhood

obesity and Type II diabetes, the State of Texas allocated $37 million to the poorest Texas middle

schools to be spent on physical education and activity. Although nutrition was included as a facet

of the program, TFN primarily focused on increasing funds and requirements for physical edu-

6 In particular, students report being bullied more in middle school than at any other point during their academic
career. Over 22 percent of middle schoolers experience bullying at least once per week, as compared to 11 percent
of high schoolers, and these effects are largest in low-income schools (National Center for Education Statistics,
2018).

7 For reference, the largest grant program is the ongoing yearly Carol M. White Physical Education Program, which
allocated 72.6 million in grants for physical education to 149 entities in 2007 (U.S. Department of Education, 2013).
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cation.8 Schools that accepted the funding were required to have students participate in physical

education classes for at least 30 minutes per day or 225 minutes every two weeks.9 To ensure

compliance, applicants detailed how they would feasibly incorporate more PE classes into their

curriculum, and participants were required to conduct fitness assessments twice per school year

for evaluation. While no data exists on how individual schools allot time for PE, during the course

of the program, over 1/3 of participating campuses reported having difficulty finding time to fit

more PE classes into the curriculum, indicating that the program’s time constraints were binding

for many schools (TEA 2011).10

Table A.1 displays the total amount of grant funding distributed in each year of the program,

as well as how eligibility changed over time. Schools serving 6th, 7th, and 8th grade students were

eligible to participate in the grant program if in the previous school year they had reported having

at least 75% economically disadvantaged students, although this cutoff was extended to include

schools with 60% economically disadvantaged students in 2009 and 2010.11 Participating schools

received an average of $10,000 to improve their physical education programs by purchasing equip-

ment such as stop watches, pedometers, jump ropes, and free weights, as well as by adding more

PE classes and hiring coaches and fitness instructors.12

The State of Texas required that the schools use the grant money as a supplement and not

as a replacement for other academic programs. For example, TFN funds could not be spent on

8 Only 7% of schools reported spending some money on nutrition initiatives (Texas Education Agency, 2011).
9 While Texas maintains baseline PE requirements for middle schools, students in grades 6-8 only need to participate

in daily physical activity for 4 out of 6 semesters. “Physical activity" is defined at the district-level, but in many
cases may include extra-curricular activities, such as marching band or cheerleading, although these activities would
not meet PE requirements under TFN guidelines.

10 One of the main limitations of our data is that we are unable to speak directly to how schools chose to reallocate
timing for PE courses. After speaking to a few administrators, we note that the most popular route that schools
took to implement the program was to reallocate elective course blocks to physical education. Therefore, it does
not appear that many schools reduced time for math and reading as a result of the program. Instead, students would
spend a semester in PE instead of courses such as art, theater, computer programming, or choir. Unfortunately,
since our data do not contain any information on student courseload, we are unable to observe changes in student
schedules.

11 Economically disadvantaged students are indicated as students that: (i) are eligible for free or reduced-price meals,
(ii) are from a family with an annual income at or below the poverty line, (iii) are eligible for public assistance,
and/or (iv) received any need-based financial assistance.

12 Funding for eligible schools was determined by a fixed amount ($1,500) plus a proportional amount ranging from
$11-$32 per 6th-8th grade student, depending on the school year.
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athletics or construction projects. During the first three years of the program, over 60% of schools

spent money on traditional equipment, while, on average, 15% and 24% of schools added staff

and classes, respectively. Nearly all of the participating schools reported that after receiving grant

money they were able to provide opportunities for students to participate in physical activity at

least 30 minutes a day or 225 minutes per two weeks (Texas Education Agency, 2011).

2.3 Empirical Approach

This section describes the data and approach we use to estimate the causal effects of the Texas

Fitness Now program on student health, fitness, test scores, discipline, and attendance.

2.3.1 Data

Data on fitness outcomes are from a statewide testing assessment for physical fitness, known

as the FITNESSGRAM c© test. These data are collected by health educators in the spring of each

school year and are available from school years spanning 2007-2013. Given confidentiality con-

cerns, FITNESSGRAM c© data are available only by school, gender, and grade in the spring of

each academic year. Notably, this limitation of the data means that we are unable to examine dif-

ferences in physical ability across race, ethnicity, or fitness level. Students are tested in six main

areas: body composition, aerobic capacity, upper body strength and endurance, abdominal strength

and endurance, flexibility, and trunk extensor strength and flexibility.

Given their age and gender, results are measured relative to a range of acceptable scores for

each test, known as the “healthy fitness zone" (HFZ). The HFZ is intended to reflect the level of

fitness needed for good health. Students are not informed of the HFZ cutoff intentionally as a way

to motivate them to perform their best. Since a majority of students are able to achieve their HFZ

for all tests, any failures signal a need for more frequent exercise.

See Figure A.10 for an official chart of healthy fitness zones for each fitness test, by age and

gender. For body composition, HFZ levels represent a healthy weight. However, FITNESSGRAM c©

additionally indicates where students “need improvement"; these upper ranges correspond to over-

weight or obesity. Otherwise, HFZ ranges are intended to represent a typical level of fitness by age
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and gender. For example, according to Figure A.10, a 13-year-old girl would need to complete 18

curl-ups and 7 push-ups to pass the corresponding fitness tests.

We additionally analyze effects of physical education on student performance and classroom

behavior at the student level using data from the Education Research Center at UT-Austin. These

data include student demographics, including economically disadvantaged status, as well as raw

test scores, attendance, and disciplinary behavior for the full population of students enrolled in

a Texas public school from school years spanning 2006-2011. One of the main advantages of

these data is that we are able to examine effects on individual test scores and attendance as well

as student discipline and suspensions, which are unavailable in the publicly available, school-level

data. Additionally, these data allow us to analyze heterogeneous effects by subgroups, such as

grade or gender. Moreover, we are able to rule out compositional changes in student cohorts across

schools due to the policy, which allows us to test for student attrition. To study effects of TFN

on middle-school students, we limit our sample to the population of Texas students in grades 6, 7,

and/or 8 for the school years of the program (2007-2008 to 2010-2011).

Summary statistics for student characteristics and outcomes are presented in Table A.7. Testing

performance rates for reading and mathematics standardized tests, known as the Texas Assessment

of Knowledge and Skills (TAKS) tests, are defined as whether a student met or exceeded the

passing standard set by the state in the corresponding school year. Mean passing rates for math

and reading TAKS tests range from 71-83 percent.

We categorize student-level disciplinary action into three main outcomes: total number of inci-

dents, whether or not the student ever misbehaved, and total days of suspension in a given school

year. On average, a student is reprimanded for one disciplinary incident per school year; however,

only 27% of students misbehave in a given school year.

Attendance outcomes are based on mean student attendance rates for the entire school year.

Student attendance rates are calculated by dividing the total number of days a student was present

by the total number of eligible school days. As shown in Table A.7, attendance in any given year
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is very high (above 95%).13 That said, any measured changes in attendance rates are likely to be

small.

2.3.2 Identification strategy

Measuring the causal effects of Texas Fitness Now presents many challenges. For example,

eligible schools self-select into TFN, and may additionally receive funding from other government

programs, such as Title I, or the National School Lunch Program. Schools with the most motivated

and ambitious faculty may therefore be those that choose to participate, and any estimated positive

effects will overstate the benefits of the program.

To overcome such challenges and estimate effects of Texas Fitness Now, we use a regression

discontinuity design (RDD). This strategy exploits the cutoff in program eligibility, the percent of

economically disadvantaged students, to identify the causal effects of increased physical education

requirements. Our approach is motivated by the idea that characteristics related to behaviors and

outcomes of interest are likely to vary smoothly through this threshold. Thus, any discontinuity

in fitness, test performance, discipline, or attendance can be reasonably attributed to the change in

the physical education curricula. We operationalize this identification strategy by estimating:

ys = θEDcutoff + f(EDpcts) + λt + ψg + ηs (2.1)

where ys is an average measure of student fitness, for school s or academic performance, atten-

dance, and discipline outcomes for student s, f is a function of the percent of economically dis-

advantaged students for school s in school year 2006-2007, and EDcutoff is a binary indicator

for whether a school s meets the first year eligibility cutoff, as listed in Table A.1. Because the

program spans four years and multiple grade levels, we additionally include year fixed effects, λt

in all specifications, and in some specifications we include grade fixed effects, ψg.14 We control

13 Notably, days suspended do not count as an absence.
14 As suggested by Lee and Card (2008) we use data on baseline covariates, including student race, ethnicity, gender,

and economically disadvantaged status and school characteristics, such as student population, only to test the va-
lidity of the RD design, although below we additionally discuss results from models in which we add student-level
demographic controls.
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for the percent of economically disadvantaged students, normalized to zero, (running variable) lin-

early and allow it to vary on either side of the eligibility cutoff. Following Lee and Card (2008),

we present standard errors that are clustered on the running variable, although we note that our

estimates are not sensitive to this choice.15

Although, in practice, school eligibility for TFN was reevaluated each year, we use only the

first year of eligibility criteria (the percent of economically disadvantaged students in 2006-2007)

to define a school’s position relative to the qualifying cutoffs in each year. In holding each school’s

eligibility constant across all years, we prevent the possibility of strategic schools manipulating

their position across the threshold over time. Estimates based on this approach should yield more

conservative estimates than those that depend on the yearly definition of treatment; however, we

note that estimates for our preferred specifications are statistically similar for all outcomes using

either approach.16

Our preferred specifications show estimates from all four school years, 2007-2008 to 2010-

2011, using a bandwidth of 15 on either side of the cutoff. Given that the cutoff was expanded

from 75 to 60 halfway through the program, we consider this bandwidth to be the largest possible

range that exploits the variation in eligibility criteria, although we present estimates for a range of

bandwidths in Figure A.13.17

The identifying assumption for this research design is that characteristics related to outcomes

of interest vary smoothly through the treatment threshold. Since eligibility for Texas Fitness Now

15 We cluster on the running variable since the percent of economically disadvantaged students is rounded to the
nearest tenth of a percentage point, although estimates are robust to clustering at the school level. Specifically,
estimates on overall fitness levels and test scores remain statistically insignificant, while we estimate a statistically
significant decrease in attendance rates and increase for all discipline outcomes at the full bandwidth of 15.

16 We additionally note that the percent of economically disadvantaged students in a given school is highly correlated
across years, and schools are unable to choose which students attend.

17 A one-sided bandwidth greater than 15 would contain schools which may have been treated every year in the
program. However, these schools, which contain a large proportion of economically disadvantaged students, may
not be an appropriate comparison group for schools that fall just short of program participation after the expansion
in eligibility. For example, a school with 80 percent economically disadvantaged students would be eligible for
the program in the first two years, given the cutoff of 75, and we would effectively be comparing these students to
those in schools with 70 percent economically disadvantaged students. However, when eligibility is expanded to
60, if we included this school in our analysis, we would estimate a local average treatment effect that effectively
compares these same students to those in schools with 40 percent economically disadvantaged students. Therefore,
we exploit the 15 percentage point expansion in program eligibility to estimate the local average treatment effects
for students in schools that would not have already been treated prior to this criteria change.
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is based on a school’s previous year’s percent of economically disadvantaged students, this feature

helps to assuage concerns that the identification assumption may not hold.18 Additionally, because

schools likely do not have control over which students move into or out of their school district

in any given year, manipulation of the running variable is unlikely. We test for this possibility,

as suggested by McCrary (2008), in several ways. First, we confine the percent of economically

disadvantaged students by school to be that of the first year program criteria, which eliminates

the possibility for schools to move across the cutoff in subsequent years. In doing so, we estimate

intent-to-treat effects, which will likely understate the true effects of the program.19 Second, we test

for discontinuities of several school characteristics, such as race, gender and ethnic composition

as well as total number of students fitness tested across the eligibility threshold to address the

possibility that unqualified schools close to the cutoff were systematically different than those

that barely qualified for funding. Third, we show that the percent of economically disadvantaged

students does not exhibit a discontinuity at either the 60% or 75% cutoff, which provides some

support for the notion that the State of Texas chose these cutoffs arbitrarily and schools were not

able to manipulate around them. Fourth, we present evidence that student selection into or out of

program-eligible schools is not driving our results by providing estimates of the number of schools

that a student attends during the sample period. Fifth, we estimate Equation 1 for all outcome

variables using pre-period data from 2006 to show that any estimated effects for 2007-2011 are a

result of the program, and not an existing feature of the data.

With any education-based school reform, it is important to consider whether there are additional

grants available for schools that meet this same cutoff, which may lead to additional treatments that

affect academic outcomes but are unrelated to physical fitness. Indeed, Title I funding, which is

set aside for schools with at least 40% of economically disadvantaged students is a major source

18 Schools are required to report the percent of economically disadvantaged students in October of the current school
year. The Texas Comptroller announced original TFN eligibility cutoffs in June 2007, which suggests that schools
were unaware of the threshold when reporting students statistics to the TEA in the previous year.

19 Effects are similar when allowing for school eligibility status to vary across treatment years; we estimate no statisti-
cally significant effect on test scores, which corresponds to Columns 3 and 6 in Table A.3, an increase in disciplinary
incidents of 0.07, which corresponds to Column 3 in Table A.4, and a decrease in attendance rates of 0.002, which
corresponds to Column 3 in Table A.5.
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of school funding and provides an average of $630,000 dollars to Texas schools each year. We

provide evidence in Figure A.11 that this cutoff is not sharp, as many schools with small shares of

economically disadvantaged students still receive Title I funds.20

Texas did initiate two performance incentive programs in 2006, the Governor’s Educator Ex-

cellence Grant (GEEG) and the Texas Educator Excellence Grant (TEEG), as a way to increase

quality of education through higher pay for school personnel and professional development. Al-

though one component of eligibility for funds was based on the number of economically disadvan-

taged students, schools also were required to display acceptable testing performance. Due to this

additional requirement, over 200 schools below our treatment threshold participated in these two

grant programs, indicating that additional grant funding was continuous through the TFN eligibil-

ity cutoff. Furthermore, few middle schools participated in these two programs; over half of TEEG

and GEEG funds went to Texas high schools, which are not included in our sample. Importantly,

neither program used the 60 or 75 percent economically disadvantaged as a funding criteria.21 Fi-

nally, we note that to the extent that these other school resources improve academic performance

and/or attendance, any negative findings of TFN on performance would be understated.22

2.4 Main Results

2.4.1 Effects of Texas Fitness Now eligibility on funding

Figure A.1 presents the estimate for the main measure of TFN participation: total grant money

awarded. Here we present residual means plots (accounting for year and grade fixed effects) using

3 percentage point bins as well as the respective discontinuity estimates from Equation 1. In all

figures the running variable (the percent of economically disadvantaged students) is normalized to

20 Similarly, there exist community standards for the National School Lunch Program, in which a school with many
economically disadvantaged students are eligible for funds to provide lunch to all students. However, to participate
in this program, schools receive funds on a phase-in rate, starting at the 42.5 percent economically disadvantaged
student cutoff. Therefore, we would not observe a discontinuity of funds at the 60 or 75 percent cutoffs due to this
program. Moreover, the Community Eligibility Provision was rolled out in Texas in 2013, which should mitigate
any concern that discontinuities in school lunch funding is driving our results.

21 Additionally, we find no evidence of an existing discontinuity at the TFN eligibility threshold on total school
funding and total operational expenses (p > 0.8).

22 To our knowledge, there are no other grants that utilized the same economically disadvantaged cutoffs during our
sample period.
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zero due to the fact that this cutoff changed in 2009.

As shown in Figure A.1, we estimate statistically significant discontinuities in funding based

on the eligibility cutoff, although we note that this criteria is not sharp.23 Specifically, schools that

met the eligibility criteria received, on average, approximately $10,600 in TFN funding, which

corresponds to approximately $15 per student. We note that, while $15 per student does not seem

like a large intervention, this represents about a 6% increase in total per pupil instructional spending

and is 17 times the average Texas middle-school PE budget. Moreover, cost-benefit analyses of

similar physical activity interventions estimate spending requirements of only approximately $4

per student to increase physical activity to 30 minutes per day and subsequently decrease obesity

by 0.02 BMI units over two years (Barrett et al., 2015). Furthermore, the $15 per student average

includes some schools that did not receive any TFN funding; however, take-up of the program was

high with approximately 88-95 percent of eligible Texas schools both applying and receiving the

grant in a given year.

2.4.2 Effects of Texas Fitness Now on fitness

Since the intent of TFN was to improve fitness outcomes and reduce obesity for middle-school

students, in this section we present estimated discontinuities for body composition and physical fit-

ness outcomes, including measured tests for BMI, body fat, aerobic activity, strength and flexibility.

Importantly, these data are only available by school, grade, and gender, and are not obtainable at

the individual level.

TFN participation stipulated that students attend PE class every day for at least 30 minutes.

Since a majority of schools in Texas do not have requirements for the length of PE class, and

many schools do not require students to attend PE for all three years of middle school, this was

likely a noticeable change in curricula for many students (CDC, 2007). Indeed, a large majority

of schools (82-87 percent) reported being able to restructure curriculum to meet this requirement

23 Although eligibility was intended to limit funding only to middle schools, eligibility was also extended to alternative
schools with any grade level. About 6 percent of Texas schools that received funding did not contain students in
6th, 7th, or 8th grades. We do not include any of these schools in our analyses.
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(Texas Education Agency, 2011).24,25

We first show effects of TFN on body composition. Importantly, the data do not include in-

formation on student-level BMI calculations; we only have information on the percent of students

with a healthy BMI, students that are at-risk, or are overweight, and students that have high-risk,

or are obsese. Figure A.2 shows residuals means plots for the percent of students with a healthy

body-mass index using 3 percentage point bins.26 This figure shows some support for the notion

that TFN was ineffective at reducing BMI for low-income students.

In Table A.2, we display the corresponding point estimates. Each column is a separate regres-

sion, and each regression uses data for all 6th, 7th, and 8th graders in Texas from school years

2007-2008 to 2010-2011. In Column 1, we first estimate the optimal (bias-corrected) bandwidth

and polynomial order, as suggested by Calonico et al. (2016). This procedure specifies one-sided

optimal bandwidths ranging from 5.3 to 13.5 and first-order polynomials for all outcomes. In Col-

umn 2 we adopt a bandwidth of 12, for comparison, while in Column 3 we display estimates using

a bandwidth of 15, which is the full bandwidth using the expansion in eligibility criteria in 2009.

As shown in Column 1, we estimate that TFN led to approximately a 2.2 percentage point

reduction in the percent of students with a healthy BMI. This could be due to several reasons.

For example, if students are working out more, they could be counteracting the effects of physical

activity by eating more calories. Or, perhaps students are more tired and therefore less likely to

play sports at home or participate in after-school activities. Another possibility is that students face

bullying or hardship in the locker room and become discouraged or give up trying to lose weight.

However, estimates in Columns 2 and 3 are statistically insignificant, indicating that the program

likely had no effect on student BMI. Based on the estimates in Table A.2, we can rule out effects

of a 0.03 percentage point increase of students with a healthy BMI, or a 0.46% increase.27

24 In Texas middle schools that have a physical education requirement, there is no requirement for everyday physical
activity. Students are required to attend PE class the equivalent of 225 minutes per two weeks or 30 minutes per
day for four semesters, but may choose which semesters to participate.

25 Since the TEA does not maintain records on block schedule schools, we are unable to test differences between
students with an A/B class schedule and students with 7-8 class periods every day.

26 Notably, Texas schools that use FITNESSGRAM c© as a measure of physical fitness have flexibility to choose which
measure of body composition to report- over 75 percent report BMI.

27 Another possibility is that, given the metrics of “healthy", “at-risk", and “high-risk", it is possible that TFN had an
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We also note that there is heterogeneity across student preferences for physical fitness; there-

fore, it may be more informative to analyze the effects of daily PE classes on students that are

overweight versus students that are obese. We present estimates and their corresponding 95% con-

fidence intervals across a range of bandwidths for these respective groups of students in Figure

A.3. Across all bandwidths, we find that the number of obese students decreased as a result of the

program, which implies that although the intervention was ineffective at helping students reach a

healthy BMI overall, and may have increased weight for some students, such policies may be able

to help the heaviest individuals lose weight.

Importantly, although it may be difficult for school-mandated PE classes to affect BMI in an

economically meaningful way, we may expect that overall physical fitness levels would improve.

To observe effects of TFN on a broad measure of fitness, we construct a school-level variable for

the average number of fitness tests passed and present these estimates in Columns 4-6 of Table A.2.

These tests include aerobic activity, strength and flexibility and do not include measures of BMI.

Estimates shown in Table A.2 are precise enough to rule out even small increases in the number of

tests passed (1.9 percent), implying that TFN did not marginally increase fitness levels, on average.

Finally, we test for more specific indicators of physical fitness, measured by FITNESSGRAM c©

tests, and present results in Figure A.12. These tests include aerobic capacity, strength, and flex-

ibility.28,29 Estimates for all fitness outcomes are statistically insignificant and indicate that TFN

had little to no effect on aerobic capacity, strength, or flexibility among middle-school students.

These estimates are similar in magnitude across all bandwidths.30

average, positive effect on BMI, but this effect was not large enough to move students into or out of the various
categories.

28 FITNESSGRAM c© provides opportunities for schools to test strength and flexibility in a variety of ways. These
tests include curl-ups, trunk lift, 90 degree push-ups, pull-ups, flexed arm hang, sit and reach, and shoulder
stretch. See http://pyfp.org/doc/fitnessgram/fg-07-muscular.pdf for a description the ob-
jectives, scoring, and instructions for each test.

29 In testing aerobic activity, schools have the option to complete the pacer test or have students complete a mile run
without stopping. Nearly 75% of schools opt for the pacer test over the mile run. The pacer test, also known as the
progressive aerobic cardiovascular endurance run, is a multistage shuttle run designed to test endurance and aerobic
capacity by requiring students to run across a 20-meter space at a specified and increasing pace, making the test
increasingly more difficult as time progresses.

30 While many reports have pointed to the positive outcomes for fitness, especially for young girls, we find no major
differential effects of TFN on physical fitness outcomes by gender (TEA, 2011). See Table A.8 for effects of TFN
on body composition, aerobic capacity, and strength and flexibility for girls.
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Contrary to von Hippel and Bradbury (2015), we find little evidence that TFN improved student

fitness levels. However, we note that it is possible that TFN failed to encourage students that were

already relatively healthy to marginally pass more fitness tests, but was able to target those students

with the worst levels of physical fitness. We also note that, while, on average, TFN did not reduce

the number of overweight students, if daily PE classes increase physical activity for sedentary

adolescents, students may still gain other, unobserved, independent health benefits (Institute of

Medicine, 2012).

2.4.3 Effects of Texas Fitness Now on test scores

Given the potential for changes in PE curricula to affect student focus and achievement, we now

examine the effects on academic outcomes. Specifically, the State of Texas measures academic

performance for grades 3-12 based on passing rates for reading and mathematics on standardized

tests, known as the Texas Assessment of Knowledge and Skills (TAKS) tests.31 TAKS subject

tests measure knowledge on the state-mandated curriculum objectives and consist of multiple-

choice questions scored by a computer. Scores are scaled and the passing score levels change

slightly from year to year depending on the test’s level of difficulty. According to data from the

Texas Education Agency on state testing, TAKS attendance and completion is 99-100% for all

years during the sample period.

For students, the TAKS test represents a high-stakes test that they must sit for once a year in

the spring. If a student does not pass either the math or reading exams at the end of the 8th grade

year, they are not permitted to advance to high school. If a student fails either exam in the 6th or

7th grade, they may advance grades, but are required to take additional remedial courses to catch

up to the knowledge level of their peers. We focus our analyses on exams that students must take

every year, namely math and reading.32

31 From 2012-14 the TAKS test was phased out, as Texas switched to the State of Texas Assessments of Academic
Readiness (STARR) test. Therefore, we do not analyze any longer-term effects of TFN on school years 2011-2012
or 2012-2013, after the program had ended due to concerns of comparability.

32 While some middle-school students are required to additionally test for writing, social studies and science in some
years, we limit the analysis to reading and mathematics TAKS scores, given that all students take these tests each
year from 3rd-11th grade. When estimating effects for these alternative subject tests, we find no evidence that PE
investments affect the percent of students that pass.
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In Figure A.4 we present evidence that TFN did little to improve student performance, as

measured by TAKS passing rates and raw test scores. Mirroring these findings, Table A.3 displays

estimates on passing rates for math and reading TAKS scores from a baseline specification derived

from Equation 1, controlling for grade and year fixed effects.33 Passing grades are determined by

the Texas Education Agency, and are measured by the number of questions answered correctly

compared to the passing standard set by the state in the corresponding year. We additionally

show estimates for whether students received a “commended" recognition, a distinction of high

achievement that only 20-33% of students receive in a given year, and the number of questions the

student answered correctly, i.e. the raw TAKS scores.34

Although the TEA reports that daily PE requirements have the potential to increase test scores,

we find little evidence to support this finding (TEA, 2011). Estimates across all columns of Ta-

ble A.3 indicate statistically insignificant effects of TFN on both math and reading scores. These

effects are consistent across specifications and are precise enough to rule out effects on math and

reading passing rates of 0.56% and 0.36% percent or larger, respectively.35 Therefore, our find-

ings suggest that investments in physical education do not negatively (or positively) affect overall

student performance, which is consistent with previous studies on adolescent physical activity.36

Since TFN was geared towards helping economically disadvantaged students, and since we

may expect fitness interventions to affect students differently by gender, we additionally analyze

33 In all specifications using individual-level data we control for year and grade fixed effects, although we note that
our results are not sensitive to the inclusion of grade controls.

34 Specifically, the State of Texas designates a students’ score to be “commended" if they score at least 2100 out of
2400 scaled points.

35 These effects are relatively small when compared to effects found using first-order academic interventions. For
comparison, assignment to smaller class sizes in the well-known Tennessee STAR experiment in grades K-3 in-
creased student test scores in grades 6-8 by 3.6-6.0 percentile points (Schanzenbach, 2007). Similarly, students in
grades 4-8 lotteried into New York City charter schools gained 12 and 9 percent of a standard deviation each year
on math and English test scores, respectively (Hoxby et al., 2009). Our estimates suggest that students spending up
to 2.5 hours more per week in PE gain less than 0.4 percentile points in math, with smaller effects for reading, or
less than 0.9 percent of a standard deviation increase.

36 For other studies that analyze the effects of physical education interventions on student performance, see Dills et
al. (2011), and Cawley et al. (2013), von Hippel and Bradbury (2015). In particular, Dills et al. (2011) estimates
a value-added model and finds that weekly PE classes have no statistically significant or economically significant
impact on test scores for elementary-aged children. Cawley et al. (2013) uses the Early Childhood Longitudinal
Study, Kindergarten Cohort and instruments for child PE time, according to state policies. They find no evidence of
spillovers of PE on test scores for elementary school children. von Hippel and Bradbury (2015) uses school-level
data to study TFN and finds no effect of the grant program on academic achievement.
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how TFN affected test scores for students across these subgroups in Table A.9.37 Effects for fe-

males and economically disadvantaged students are positive and statistically similar to estimates

of the overall sample, suggesting that these estimates are not driven by one particular group.38

2.4.4 Effects of Texas Fitness Now on disciplinary action

Although there is little evidence to suggest that mandatory PE classes affect student health and

fitness, such initiatives may affect student behavior in a number of ways. First, it’s possible that

PE classes encourage restless students to expel nervous energy, allowing them to focus more on

coursework, and be less disruptive throughout the day. However, if students become more tired

throughout the day due to the increase in physical activity and/or have strong preferences against

such classes, we would expect an increase in misbehavior. In Figure A.5 and Table A.4, we provide

some evidence to suggest the latter.

Before discussing statistical evidence of TFN on disciplinary action, we first present visual

evidence that mandatory PE requirements affect student behavior in the classroom. Figure A.5

displays the effect of TFN on the total number of student disciplinary incidents, proportion of

student offenders, and total days suspended. Each figure shows large, positive discontinuities at

the eligibility cutoff. Overall, the set of results in Figure A.5 indicate that daily PE requirements

lead to more recorded instances of student misbehavior.39

Table A.4 shows additional estimates from regressions with smaller bandwidths. Models with

optimally-chosen bandwidths (Columns 1, 4, and 7) as well as models with a one-sided bandwidth

37 We also provide estimates for the effect of TFN on test scores by grade in Table A.10. We find no statistically
different effects of daily PE requirements by grade level.

38 We could also measure the effects of TFN on test performance, discipline, and attendance by race and ethnicity,
however, we do not include these subsamples in our main analyses for two reasons. First, we are unable to examine
effects of TFN on fitness by race and ethnicity. Second, we estimate a small and statistically significant discontinuity
at the 10% level for some outcomes one year before the program (p ≥0.09), although we do not find such a
discontinuity in aggregate outcomes. These effects yield some concerns that the RD model may be misspecified
when looking at some subgroups, thus we omit any analysis by race and ethnicity throughout the paper.

39 Arguably, we may expect schools that hired more staff to be able to report more disciplinary incidents due to in-
creases in monitoring. Unfortunately, we do not have data on school-level expenditures from the TFN grant funding
and are unable to speak to this mechanism directly. However, we acknowledge that the increases in disciplinary ac-
tion that we observe in the data are not borne entirely by a small population of schools, which lends some evidence
to the argument that these effects are at least partially student-driven. Moreover, only 7 percent of TFN schools
added staff from 2008-2010, indicating that monitoring is unlikely to be responsible our results.
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of 12 (Columns 2, 5, and 8) yield statistically similar but insignificant estimates. Therefore, despite

the proposition that PE classes incite student focus and good behavior, we show no evidence that

TFN reduced classroom disruptions. However, we do present some evidence in Columns 3, 6, and

9 that daily compulsory PE requirements may actually increase instances of classroom misbehav-

ior. Estimates from a model with the full bandwidth indicate that TFN resulted in a statistically

significant increase of 0.15 incidents for each student, on average, which corresponds to an increase

in disciplinary action of about 15.6%, or 73 per school year.

Notably, this measure could represent an increase on either the intramargin or inframargin;

that is, either students that were already likely to misbehave did so more frequently, or there were

more instances of new offenders. We investigate the extent to which one of these effects is driving

the total effect in Columns 4-6 of Table A.4, which presents the proportion of total students that

caused a classroom disruption. In Column 6, we estimate that TFN increased the proportion of

misbehaving students by 0.02, or 7.4%. Therefore, we report suggestive evidence that daily PE

classes for middle-school students may not only lead to more disciplinary action but also encourage

more students to act out.

Finally, as a way to analyze the intensity of student misbehavior, we investigate how many days

students were suspended as a result of disciplinary infractions and present results in Columns 7-9.

Although estimates are not statistically significant across all bandwidths, estimates in Column 9

indicate that TFN increased the number of days suspended by 23.7 percent. In terms of class time,

this corresponds to about 0.84 fewer days of traditional coursework for misbehaving students in

TFN-eligible schools, as compared to students in the non-eligible middle schools.40

One explanation of these findings is that mandatory PE classes increase bullying in school.

Although the ERC student-level data does not contain information on where the instances of dis-

ciplinary action occurred, it is possible that more frequent interaction in the locker room leads to

more teasing and fighting throughout the school day. Given that nearly all cases of US school

40 We additionally provide estimates of disciplinary action by grade in Table A.10 as well as by gender and economi-
cally disadvantaged status in Table A.9. While estimates are larger in magnitude for 8th graders, estimates are not
statistically different at the 1% level across grades, gender, or economic status. Similar to findings in Table A.4,
estimates are less precise at smaller bandwidths.
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infractions occur in the classroom, (e.g. 60 percent of major offenses and over 70 percent of minor

offenses (Gion et al., 2014)), it may also be possible that both classroom and locker room bully-

ing increases as a result of more PE days, but the lack of visibility from teachers in gym escapes

punishment. These implications are especially worrisome, given that such bullying can be coun-

terproductive to the goals of physical education programs, as children who are criticized for their

physical skills or ostracized in gym class perform worse in school and experience a decrease in

physical health and fitness in the long run (Jensen et al., 2013).

2.4.5 Effects of Texas Fitness Now on attendance

If students’ preferences for physical education differ from that of other school subjects, increas-

ing PE requirements may affect incentives for student attendance. We test this hypothesis in Figure

A.6 and Table A.5. In Table A.5, Column 1 shows estimates from a model based on Equation 1

that uses a MSE-RD estimated optimal bandwidth. Estimates are similar across columns and indi-

cate that TFN did not encourage students to attend school more frequently. Although the baseline

attendance rates are high, for some bandwidths we observe a statistically significant decrease in

attendance rates for students in TFN-eligible schools as a result of the program. Estimates across

Columns 2-3 in Table A.5 indicate that mandatory PE classes reduce attendance for all students

by 0.30 percentage points, or 0.31 percent. These findings suggest that, at best, investments in

physical education do not cause students to change their decision to come to school; at worst, daily

PE mandates could discourage some students from attending class.41

In Tables A.9 and A.10, we additionally explore discontinuities in average attendance rates for

different student subgroups, including gender, economic status, and grade across the cutoff. We

find that effects on attendance are larger for economically disadvantaged students, although effects

are not statistically different from the full sample. We find no differential effects by gender (Table

A.9) or grade (Table A.10).

These findings suggest that in low-income schools, mandatory PE classes could potentially

41 Notably, student suspensions do not factor into attendance as an absence. Therefore, it’s not the case that the
increase in disciplinary action is driving the reduction in attendance rates.
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discourage student attendance. Four arguments support this idea: (i) overweight or unathletic

students may fear being ostracized or face bullying in the locker room, and would rather skip

school than face hardship, (ii) students may fear activities such as running and jumping are too

difficult and prefer not to exercise at school, (iii) adolescents concerned for their appearance may

not want to look sweaty or untidy during the school day, and/or (iv) middle-school students do not

enjoy engaging in movement or physical activity.

It is well-documented that preferences for physical activities and recreation change as students

mature. Accordingly, adolescents’ overall level of physical activity decreases significantly in 7th

and 8th grade at a critical time of physical and cognitive development, especially among girls, with

only 17% meeting the daily activity guideline by age 15 (Nader et al., 2008). Given that physical

activity after elementary school progressively decreases, the drop in attendance could reflect taste-

based preferences for sitting in a classroom over exercising at school (Butt et al., 2011). However,

taken with the positive effects of disciplinary action reported in the previous section, TFN may

have increased bullying enough to discourage some students from attending school.42 In either

case, to the extent that attendance is crucial for attaining knowledge, paramount for a student’s

academic success, or is beneficial for emotional or social growth, the effects discussed above are

of considerable consequence.

2.4.6 Robustness checks

As discussed in Section 3, we perform a number of robustness checks to provide additional

support for the identification assumption. There may be some concerns that schools just above

the eligibility cutoff are systematically different than schools just below the cutoff. For exam-

ple, if schools that participate in TFN have a different composition of students, our findings may

be picking up differential behavioral reactions to PE requirements across students. Moreover, if

schools receiving TFN funding want to report improved fitness scores as a way to motivate future

42 We also acknowledge that one plausible alternative explanation is that injuries could result from increased physical
exertion that also lead to more student absences. While we cannot directly address this issue using available data,
according to conversations with PE coaches at various Texas high schools, injuries in class are not particularly
common. Furthermore, the general policy is that injured students with a doctor’s note would be allowed to sit on
the sidelines and theoretically would not be expected to miss more than one class day due to an injury.
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state funding opportunities, coaches may encourage the out-of-shape students to sit out of class on

testing days (although this technically violates FITNESSGRAM c© rules), which would overstate

any positive fitness results in schools just above the eligibility threshold. To test for randomness

in the eligibility cutoff, we estimate effects of the percent of economically disadvantaged students

in the 2006-2007 school year on the total number of students, the total number of students fitness

tested, the percent of female students, the percent of black students, the percent of Hispanic stu-

dents, and the percent of economically disadvantaged students in our sample and present these

results in Figure A.7. Across all outcomes these estimates are statistically insignificant at the 5%

level, providing some support that schools on either side of the cutoff are similar on measurable

characteristics.43

While we do estimate a statistically significant effect at the 10% level of nearly 4 percentage

points for the proportion of black students at the cutoff (t = 1.75), we note that controlling for

demographics yields estimates that are nearly identical. In particular, estimated effects from our

preferred specification for attendance and all discipline outcomes are statistically similar at the 1%

level when including controls for race and ethnicity. Moreover, we similarly estimate a statistically

significant discontinuity of 3 percentage points in the proportion of black students prior to the

program’s initiation, but do not estimate significant effects for student outcomes in this period,

implying that any changes observed in fitness, academic performance, attendance, and discipline

after 2006 is a result of the intervention and not racial composition.

In Figure A.8, we additionally test for the density of the running variable, the percent of eco-

nomically disadvantaged students. To the extent that schools are aware of the eligibility cutoff and

can manipulate this threshold, there will be a discontinuity in the number of schools in each bin.

Estimates indicate that there is no discontinuity in the number of schools just above and just below

the cutoff, suggesting schools did not manipulate the cutoff to receive TFN funding. Similarly,

Figure A.14 shows the average number of schools that a single student enrolled in during the four-

year sample period to test for student attrition. Estimates are statistically insignificant across all

43 We also note that, when replicating figures similar to Figure A.13, estimates on all school characteristics are statis-
tically insignificant at the 5% level across all possible bandwidths.
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bandwidths, indicating that students did not actively manipulate around the TFN eligibility cutoff.

Next, in Figure A.9, we present evidence that any discontinuities in test scores, disciplinary

incidents, and attendance are the result of the program, and not preexisting anomalies in the data.

To this end, we replicate our findings from Equation 1, limiting our sample to the school year

before the TFN program began, 2006-2007. We estimate no statistically significant discontinuities

in test rates, disciplinary incidents, or attendance rates, which provides additional support for the

notion that investments in PE programs, and not other factors, are driving our main results.

Finally, we note that since our procedure to determine the optimal bandwidth and polynomial

order does not relax our assumption of linear fit and uniform weighting on either side of the cutoff,

we have additionally analyzed how our estimates change under different functional forms and show

these results in Table A.6. When we impose second- and third-order polynomial fits into our main

regression equation, we observe that, while the magnitude of the estimates remain consistent, the

significance of the estimates decreases dramatically. Notably, since the choice of polynomial order

seems to have a large impact on precision, this may indicate that using higher-order polynomials

causes us to overfit the data. Similarly, using triangular kernel weights (Column 4) estimates yield

similar effects for attendance as compared to the baseline results in Column 1, and estimates for

discipline remain similar in magnitude.

2.5 Discussion and Conclusion

This paper analyzes the effects of increased physical education requirements on student health,

fitness, academic performance, and student misbehavior. Using a regression discontinuity ap-

proach, we estimate that school-level interventions mandating daily PE classes do not lead to over-

all improvements in student fitness, including cardiovascular endurance, strength, and flexibility.

In particular, although the goal of TFN was to reduce BMI, we show empirically that the program

was ineffective at achieving this goal, on average, although we provide some evidence to indicate

that TFN was effective at reducing BMI for the most at-risk students.

Moreover, we find that TFN did not lead to positive spillover effects in the classroom, including

improvements in math and reading passing rates. However, we present some evidence that daily
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PE may be detrimental to student behavior, resulting in increases in disciplinary incidents and

reductions in attendance. Given the current recommendations of daily compulsory PE by agencies

such as the CDC as well as the US Surgeon General, these findings can better inform policymakers

of the effectiveness and potential unintended consequences of such policies for adolescents.

Unfortunately, a limitation of the available data is the inability to accurately test for all the

possible mechanisms that explain these results in the classroom. One potential explanation is that

requiring students to spend more time in PE class only reduces time spent in other electives, like

theater and choir. Alternatively, if students experience diminishing returns to learning, we may

expect that as long as the time spent in PE class does not disproportionately take away from one

particular academic subject, test performance should be unaffected. In either case, because stu-

dents are not significantly reducing learning time in math and reading during the day, they perform

similarly on standardized tests. Given that, in some cases, we estimate adverse consequences in

attendance and disciplinary incidents, the null average effect for test scores seems surprising. One

might expect disruptions in class or absences to lead to less learning overall. Although our results

point to no effect on student learning, we acknowledge another possibility: athletically inclined

students enjoy PE classes and perform better on exams, while those that are most negatively ef-

fected by the program perform worse. In this scenario, we would similarly estimate a zero effect

on test scores, although we would expect the policy implications to vary based on the composition

of students. However, we note that we do not find evidence of such heterogeneous effects across

student subgroups of grade, gender, and economic status.

While these explanations are important to consider in terms of student achievement, they do not

explain why we observe a decrease in attendance rates and an increase in disciplinary behavior for

students at TFN-eligible schools. One mechanism that explains both negative student behaviors

is the possibility that adolescents strongly dislike PE class due to social stigma. For example,

overweight and obese children face strong social barriers and social isolation from their peers

(Latner and Stunkard, 2003; Janssen et al., 2004). The physical demand of PE class along with

the potential for increased teasing or bullying, either in the locker room or during class, may
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incentivize some students to act out or skip classes altogether. This is an especially important issue

if interest in school and academic performance for affected students declines in the long run.

We conclude that despite the frequent and recent recommendations for more physical activity

in schools, standard PE classes are not effective in improving students well-being and may even

be detrimental. Given that the TFN program was the second-largest grant program in the United

States at the time of its conception, our findings have important policy implications for school

spending and time allocation. In terms of cost-effectiveness, we posit that the $37 million in

funding would have likely been better spent on programs such as school-based health centers if the

end goal is to improve student health (Guo et al., 2010), and/or Head Start or tutoring programs

that have been proven to improve student performance and close the achievement gap for low-

income students (Gibbs et al., 2011). Lastly, there is scope for more work to be done on testing

potential mechanisms to determine why and how physical education classes might lead to negative

outcomes for middle-school students.
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3. THE EFFECT OF OWN-GENDER JURIES ON CONVICTIONS

3.1 Introduction

A central right of the accused in the U.S. criminal justice system is the right to a trial before

an impartial jury. This right is enshrined in the 6th amendment of the Bill of Rights to the U.S.

Constitution, and was inherited from the Magna Carta, which guaranteed that no man be punished

without "the lawful judgment of his peers." There are ongoing concerns, however, about the actual

impartiality of juries in general, and whether jurors favor those similar to themselves in particular.

These concerns have resulted in court rulings that prohibit excluding potential jurors on the basis of

race, ethnicity, or sex (Batson v. Kentucky, 1986; J.E.B. v. Alabama, 1994). However, while recent

research has documented bias in favor of own-race defendants (Anwar, Bayer and Hjalmarsson,

2012), there is little evidence on whether modern juries favor own-gender defendants. The purpose

of this paper is to test whether own-gender juries affect criminal conviction rates and sentencing

outcomes.

The primary difficulty in doing so is that seated juries are the outcome of a nonrandom jury

selection process over which prosecutors, defense attorneys, and jurors have significant influence.

As a result, it is difficult to distinguish the effect of own-gender juries from confounding factors,

such as defense attorney quality, that lead some cases to have more jurors of the same gender as the

defendant. To overcome this selection problem, we use the randomization of the initial juror pool,

and the random ordering of potential jurors within that pool, to predict the proportion of female

jurors seated on the jury. This enables us to use only the variation in jury gender due to the fact

women are (randomly) assigned to some jury pools more than others, and women are (randomly)

assigned lower numbers in the ordering of some jury pools than in others. Because the seated

jury consists of the first six or twelve ordered jurors who are not excluded by either a challenge

for cause or a peremptory challenge (i.e., a challenge for which no reason must be given), this

variation is orthogonal to other determinants of trial outcomes. We use this quasi-random variation
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in jury gender to identify own-gender effects by differencing out the impact of defendant and jury

gender, similar to studies on racial bias (e.g., Price and Wolfers, 2010; Shayo and Zussman, 2011;

West, 2017).

To implement this research design, we use a new data set on juror characteristics and conviction

and sentencing outcomes for Palm Beach and Hillsborough counties, which are the third and fourth

most populous counties in Florida. These data include all felony and misdemeanor trials over a

two year period, and contain detailed information on defendant characteristics as well as case

characteristics measured at both the charge and trial levels. Importantly, the data also include

demographic information on potential jurors and the randomly-assigned ordering of each potential

juror within the jury pool. Using this ordering and the empirical probabilities that jurors assigned

a given number are seated on the jury, we predict the expected proportion of women on each

jury, thereby isolating the as-good-as-random variation in the gender composition of seated juries.

Importantly, we show that the predicted proportion of women on the jury is strongly predictive

of the gender composition of the seated jury. We also show that this variation is uncorrelated

with defendant and case characteristics, and with expected conviction rates of male and female

defendants as predicted using exogenous characteristics.

Results provide strong evidence of own-gender juries on conviction rates for drug offenses.

Estimates indicate that a one standard deviation increase in own-gender jurors (∼10 percentage

points) results in a 18 percentage point reduction in conviction rates on drug charges. Importantly,

this effect is significant at the five percent level even after performing the multiple inference ad-

justment proposed by Anderson (2008). We also show that this change in jury gender composition

leads to a 13 percentage point reduction in the likelihood of being sentenced to jail. In contrast, we

find no evidence of effects for driving, property, or violent crime offenses. We hypothesize that the

large effects for drug offenses are consistent with a model in which jurors are more likely to exhibit

bias in cases where they have significant disagreements with U.S. law. However, we emphasize

that we cannot rule out other explanations for the heterogeneity in own-gender effects. In addition,

we present suggestive evidence that effects are driven largely by cases in which the jury reaches a
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verdict, as opposed to cases in which a plea deal is reached prior to the trial.

To our knowledge, this is the first paper to use random variation in own-gender juries to ex-

amine effects on convictions in modern criminal courts. In doing so, the paper contributes to two

literatures. The first is the broad literature examining gender bias in education, labor, housing, and

product markets.1 In addition, this paper complements a smaller body of research examining the

impact of judge and jury characteristics on criminal trial outcomes. It is most similar to Anwar,

Bayer and Hjalmarsson (2012) and Flanagan (2018), who show that having own-race jurors af-

fects felony conviction rates. It is also related to Anwar, Bayer and Hjalmarsson (forthcoming),

who show that while the introduction of women on English juries in 1919 had no effect on overall

conviction rates, it resulted in additional convictions for sex offenses and for violent crime cases

with female versus male victims.2 This paper differs from Anwar, Bayer and Hjalmarsson (2012)

and Flanagan (2018) in that we focus on jury gender, rather than jury race. In addition, it differs

from Anwar, Bayer and Hjalmarsson (Forthcoming) in that we focus on the effect of jury gender in

a modern context in which effects might well be significantly different than in 1919. Finally, our

study differs from all three of these papers in that we observe potential juror order, rather than only

the overall proportion of jurors by race or gender. This is critical when looking at the impact of

jury gender, as the law of large numbers ensures that even moderately sized jury panels will have

little variation in average jury gender.

In assessing the role of jurors in affecting male versus female sentencing outcomes, this paper

also complements a growing literature that documents and explains gender differences in sen-

tencing (Bindler and Hjalmarsson, 2017; Butcher, Park and Piehl, 2017). More generally, this

study relates to a broader literature on the impact of judge gender (Johnson, 2014; Knepper, 2018;

1 For example, see Abrevaya and Hamermesh (2012); Ayres and Siegelman (1995); Bagues and Esteve-Volart (2010);
Bagues, Sylos-Labini and Zinovyeva (2017); Breda and Ly (2015); Dahl and Moretti (2008); De Paola and Scoppa
(2015); Goldin and Rouse (2000); Lavy (2008); Neumark, Bank and Van Nort (1996); Moss-Racusin, Dovidio,
Brescoll, Graham and Handelsman (2012)

2 While we focus on the effect of own-gender juries in this paper, we also examine the effect of jury gender compo-
sition on overall conviction rates. Results are shown in Appendix Table A1, in which we regress an indicator for
conviction on our measure of expected proportion women on the jury. Overall, we find no evidence that additional
female jurors are more or less likely to convict overall.
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Schanzenbach, 2005; Steffensmeier and Hebert, 1999) and other judge and jury characteristics.3

Finally, in documenting how defendants who draw opposite-gender juries are more likely to be

convicted and sentenced, this paper also complements recent papers documenting unfairness in

conviction and sentencing based on other factors (Eren and Mocan, 2018; Philippe and Ouss,

2017).

The results of this study have important implications. First, they suggest that even in settings

where participants are actively reminded of the importance and necessity of being fair and impar-

tial, sizeable gender biases can still occur. In addition, we note that there is strong evidence that

higher conviction and incarceration rates lead to increased recidivism and worsened labor mar-

ket outcomes (Aizer and Doyle Jr, 2015; Mueller-Smith, Forthcoming). As a result, our findings

suggest that drawing an opposite-gender jury can impose significant long-run costs on defendants.

3.2 Background and Data

3.2.1 The assignment of potential jurors to the jury pool and the voir dire process

As described above, a critical feature of our research design is the random assignment of resi-

dents to panels of potential jurors, and the random ordering of residents within each panel. In the

Florida counties we study, county court offices randomly mail jury summons to residents who have

a driver’s license or identification card. Potential jurors arrive at the courthouse on the assigned day

and enter their information into a computer system. Each potential juror is then randomly assigned

to a case. In addition, within each case each potential juror is assigned a number.

The potential jurors for a given case are then escorted to the courtroom for the voir dire, or

jury questioning, process. As described by U.S. Supreme Court Justice Rehnquist, "Voir dire

examination serves to protect [the right to an impartial jury] by exposing possible biases, both

known and unknown, on the part of the jurors. Demonstrated bias in the responses to questions

on voir dire may result in a juror’s being excused for cause; hints of bias not sufficient to warrant

challenge for cause may assist parties in exercising their peremptory challenges" (McDonough

3 Examples include Anwar, Bayer and Hjalmarsson (2014; 2015); Mitchell, Haw, Pfeifer and Meissner (2005); Cohen
and Yang (forthcoming); Depew, Eren and Mocan (2017); and George (2001).
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Power Equipment, Inc. v. Greenwood, 1984, page 464). Prosecutors and defense attorneys are

allowed unlimited challenges for cause, though meeting the requirements for removing a potential

juror is difficult, and such requests are not always granted by the judge. In Hillsborough and Palm

Beach Counties, each side is typically allowed up to three peremptory challenges to remove jurors

they believe unlikely to be favorable toward their side of the case. The final jury thus consists of

the first six or twelve jurors not struck by either side, beginning with the potential juror assigned

number one. Any remaining potential jurors are then excused or returned to jury services to be

reassigned.

3.2.2 Data

We obtained detailed administrative data for all misdemeanor and felony cases that were as-

signed potential juror pools in preparation for trial in Palm Beach and Hillsborough Counties from

2014 to 2016.4 These are the third and fourth largest counties in Florida, respectively, each with

a 2016 population of over 1.3 million people. Importantly, these data include comprehensive in-

formation on the voir dire process along with case attributes. Specifically, we observe the pool of

jurors randomly assigned to each case including name, seat number, and outcome of the selection

process.

Data from Hillsborough County also include the gender of potential jurors, as well as date of

birth, race, and address. For Palm Beach County, we infer gender on the basis of the first name.

We do so using an online application programming interface called genderize.io. The application

predicts gender based on first name using a large dataset comprised of user profiles from several

major social networks. Using this approach, we are able to predict probabilistic genders for 92% of

potential jurors. For the names that we do not predict, we assign 0.5 to the female gender indicator

variable under the assumption that the missing name is equally likely to be male or female. To

verify the accuracy of this approach to inferring gender, we compare predicted gender to actual

observed gender in Hillsborough County, and find that we accurately predict gender 94.38% of the

4 There are 32 cases in Palm Beach County and 1 case in Hillsborough County where there should be a jury panel
but the information was not in the case file. Only two of these cases involve drug related charges.
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time. We then combine potential juror order and the gender of each potential juror to predict the

number of women we would expect to serve, on average, for each trial.

From these data we are able to compute empirical probabilities of being seated on the jury

for each spot in the order in the jury panel.5 To do so, we let the probability vary by size of the

potential jury pool and the number of jurors being selected. Standard juries in Florida consist of

six jurors, though the judge may decide to seat 12 jurors in some cases. Importantly, this decision

is made prior to the assignment of the jury pool, and thus should not affect the internal validity of

our approach. These probabilities are shown in Figure B.1, where panel a shows the probability

of being seated on the jury for six-person juries, and panel b shows the same for twelve-person

juries. For example, for six-person jury trials with a panel size of 20 or less, the probability of

being selected for the jury is around 40 percent for the first 10 or so potential jurors, and then

declines to around 20 percent for the 20th-ordered potential juror. By comparison, for 12-person

juries selected from panels of 50 to 100 potential jurors, the probability of being seated ranges

from 25 to 30 percent for the first 40 jurors to close to zero for the potential juror assigned last

(e.g., 100th) in the jury pool.

To predict the number of women that will be seated on the jury, we interact the estimated prob-

abilities shown in Figure B.1 with a gender indicator variable equal to one for females.6 Summing

this over the pool of potential jurors gives the expected number of females seated. Since trials in

our data consist of both six and 12 person juries, we divide by the jury size to get the expected

proportion of females. This enables us to make meaningful comparisons across jury panel sizes.

In Section 3.1 we demonstrate that the predicted proportion of women on the jury is highly cor-

related with the actual proportion of women on the jury. In addition, in Section 3.2 we show that

the expected proportion of women on the jury is uncorrelated with case and charge characteristics,

5 In some cases, a second panel of potential jurors was used. Our understanding is this sometimes occurred because
the first panel did not result in enough seated jurors, and sometimes because the judge chose not use the first panel
at all for some reason. However, we still observe the first (and subsequent) juror panels in those cases, and we order
the jurors accordingly. For example, if each of the first two panels had 50 potential jurors, we assign number 51 to
the the first ordered juror in the second panel, and number 100 to the last juror in that second panel. We do so even
if no jurors from the first panel were seated on the jury.

6 The probability of a potential juror being female is used for panels in Palm Beach County.
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which is consistent with random assignment to panels and random ordering within panels.

For each case in our data, we observe the charges brought against the defendant and the out-

come of each charge including verdict and sentencing. Our primary outcome of interest is an

indicator for whether the defendant is convicted of the charge. Importantly, our data include guilty

and innocent verdicts issued for all cases for which a jury panel was assigned in preparation for

trial. For example, we observe guilty pleas that arise after the jury pool was assigned as well as

verdicts found by the jury. This precludes the possibility of selection bias, since some cases settle

after the prosecutor or defense attorney observes the composition of the potential jury pool or the

actual seated jury. In addition, we note that for some charges in Florida, a verdict can be given

in which adjudication is withheld. In that case the defendant is assigned a term of probation, and

upon successful completion of that term is spared a conviction on his or her record. This is the

outcome in only 3.56 percent of all charges in our sample, and only 4.05 percent of drug charges.

For the main analysis we treat this outcome as guilty, though in Table B.7 we show that estimates

are similar if we instead classify it as not guilty. Our second outcome of interest is whether and for

how long a defendant is sentenced to be incarcerated upon the conclusion of the trial. We define

this outcome at the trial level, rather than charge level, since the sentences of individual charges

are often served concurrently. In each case we observe the defendant’s gender and race along with

additional case characteristics including the severity of charges and the judge assigned to the case.

Finally, we note that because the purpose of this paper is to examine the effect of own-gender

juries, we exclude cases linked to charges in which fewer than 10 percent of defendants are female.

Consequently, we only consider cases that involve a drug, driving, property, or violent crime. In

addition, we limit violent crimes to domestic crimes, assaults, and robberies. This is due to the low

number of female defendants in other violent crime categories, such as sexual assault and murder,

which gives us very little variation in defendant gender.

Summary statistics are shown in Table B.1, where Panel A shows characteristics at the trial

level, and Panel B shows characteristics at the charge level. We have a total of 1,542 cases/defendants,

representing 3,055 separate charges. Sixty-seven percent of defendants are convicted of at least
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one charge, while men are convicted at somewhat higher rates than women (67 versus 63 per-

cent). Across all cases, on average defendants are sentenced to 1,673 days in jail, though men are

sentenced for significantly longer than women (1,931 versus 268 days).7 Sixteen percent of our

defendants are female, 48 percent are white, and the average age is 37.

3.3 Methods

In order to identify the effects of own-gender juries, we use a generalized difference-in-differences

approach. Specifically, we estimate the following linear probability model:

Convictct =β1DefFemalet + β2E(PropFemale)t + β3DefFemaleXE(PropFemale)t

+Xt + Countyt + CountyXCrimect + εct

(3.1)

where the outcome of interest Convictct is a binary variable equal to one if the defendant

is convicted guilty of charge c in trial t. DefFemalet an indicator variable equal to 1 if the

defendant in trial t is female, controls for differences in conviction based on defendant gender.

Similarly, E(PropFemale)t, the expected proportion of females seated on the jury for trial t,

accounts for differences in the decision to convict due to the gender of jurors. The coefficient of

interest, β3, measures the effect of own-gender juries on the outcome. Xt is the set of control

variables at the trial level including defendant’s age and race, the total number of charges against

the defendant, if the case involves a violent charge, the predicted age of the jury pool, and judge

gender. All specifications include county fixed effects along with county-by-crime fixed effects

when considering more than one crime category. Observations are weighted by the inverse of the

total number of charges in a trial.

Robust standard errors are clustered at the defendant level to allow for errors to be correlated

across charges and trials for a given defendant. In addition, because we also test for the presence of

own-gender juries by crime severity (felony vs. misdemeanor), and by crime type (drug, driving,

property, and violent), we also report False Discovery Rate (FDR) adjusted Q-values. These are

7 We assign a sentence of zero days to those defendants who are sentenced to time served.
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computed using the method proposed by Anderson (2008), and adjust for the fact that we examine

effects on conviction for six different categories of crime.8 These are interpreted similarly to

p-values from a two-tailed test, and explicitly adjust for the increased likelihood of estimating

extreme coefficients when making multiple comparisons.

In addition, we also test whether the effect of own-gender juries on conviction translates to

differences in sentencing, which is decided by a judge rather than the jury. For that reason, we

focus primarily on the category of charges for which we find an effect on conviction. Due to

the discrete nature of prison sentences, the presence of many zero observations, and the wide

dispersion of sentence lengths, we estimate the effect of own-gender juries on the distribution of

sentences using binary indicators. This is done at the trial level as the sentences for individual

charges are often served concurrently. Formally we estimate the following ordinary least squares

regression for each binary sentence length:

AtleastXDayst =β1DefFemalet + β2E(PropFemale)t + β3DefFemaleXE(PropFemale)t

+Xt + Countyt + CountyXCrimet + εt

(3.2)

where AtleastXDayst is a binary indicator for X days sentenced in trial t with X starting with

at least 1 day and increasing by 6 month increments to 10 years. The covariates are defined as in

the previous equation where β3 is interpreted as the degree of own gender juries. We allow for

correlation in errors among trials with the same defendant by clustering at the defendant level.

The intuition of this generalized difference-in-differences approach is to compare the difference

in how male and female defendants are judged by less-female juries to the difference in how male

and female defendants are judged by more-female juries. This approach allows more-female juries

to convict at different rates than more-male juries, so long as this difference is constant across male

and female defendants. Equivalently, we allow male defendants to be "more guilty" than female

8 While we also test for sentencing effects, the focus of the paper and therefore the multiple inference adjustment
is on convictions. This is because in these counties, conviction is the only outcome over which juries have direct
control. In these counties, sentencing decisions are made by judges based on those conviction outcomes.
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defendants, though we require that this difference in underlying guilt be similar for more-male and

more-female juries.

The identifying assumption of this approach is that while male defendants may have different

underlying likelihood of conviction than female defendants, in the absence of a treatment effect

the difference in their conviction rates should be the same for more-male juries as for more-female

juries. This assumption could be violated in a couple of different ways. The first is if our measure

of jury gender is correlated with other factors that affect conviction rates. For example, if skilled

defense attorneys are able to strike opposite-gender jurors at higher-than-average rates, then we

might observe lower conviction rates when there are more same-sex jurors and falsely attribute it

to own-gender juries. To overcome this problem, we construct a measure of expected jury gender

composition that is based on the random assignment of individuals to jury pools and the random

ordering of individuals within the jury pool. We show that this measure of jury gender is both

strongly correlated with the composition of the seated jury, and is orthogonal to other observed

determinants of conviction rates such as defendant and case characteristics. We also show that the

difference in the guilt propensity of male and female defendants, as predicted using all exogenous

characteristics, does not vary with the gender composition of the jury.

The second way in which the identification assumption can fail is if female jurors tend to be

more likely to convict defendants of certain crimes (or when certain other crimes are also being

charged), and if those crimes are disproportionately committed by certain genders. For example,

if women are more likely to convict on a theft charge when a violent crime was also committed

at the same time, and if male defendants are more likely than female defendants to be charged

with both theft and violent crime, this approach could overstate the effect of own-gender juries.

Similarly, if women are more likely than men to convict blacks, and if there is a higher proportion

of black male defendants than black female defendants, then our estimated could be biased. To

address this possibility, we show the robustness of our estimates to the inclusion of controls that

interact the (expected) gender composition of the jury with various case characteristics, such as

race and whether the defendant is also being charged with a violent crime. In addition, we include
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controls that interact the gender composition of the jury with other defendant characteristics, such

as race. If the inclusion of these interactions were to result in a decline in our estimate of interest, it

suggests that at least some of the effect is due not to own-gender bias, but to differential treatment

of some other defendant characteristic correlated with defendant gender.

3.4 Results

3.4.1 Correlation between expected jury gender and actual jury gender

We begin by demonstrating that our measure of jury gender, which is the expected proportion

of women on the jury based on the random potential juror assignments and orderings, is predictive

of actual jury composition. Note that in contrast to the main analysis, this exercise can only be

performed for those cases in which a jury was seated for the trial. The underlying data are shown

in Figure B.2, which graphs the actual proportion of women seated on the jury against the expected

proportion of women seated. It shows strong positive correlations for both 6-person juries and 12-

person juries. In both cases the slope is close to one, suggesting that our (exogenous) measure of

jury gender composition is strongly correlated with observed jury gender composition.

Regression results are shown in Table B.2. Specifically, we estimate an equation of the same

form as equation (1) above in that we regress the actual proportion of females on the predicted

proportion of females, along with county-by-crime fixed effects. Results are consistent with Fig-

ure B.2 in showing strong correlations between actual and expected gender composition. Column

1 shows a correlation of 0.949, significant at the 1 percent level, for all case types. The remaining

columns show that this correlation remains strong for felonies, misdemeanors, and cases that in-

clude infractions related to drugs, driving, property crime, and violent crime. Correlations range

from 0.860 for driving cases to 1.042 for misdemeanor cases. All estimates are statistically sig-

nificant at the 1 percent level. As a result, it is clear that the combination of more women being

assigned to a jury pool and being assigned earlier in the ordering leads to large subsequent differ-

ences in the actual gender composition of the seated jury.
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3.4.2 Exogeneity tests of the measure of expected jury gender composition

The validity of our empirical approach depends in large part on the assumption that predicted

jury gender composition is uncorrelated with confounding factors. While we expect this assump-

tion to hold based on our understanding of how potential jurors are assigned to and ordered within

jury pools, we can also provide some empirical evidence. To do so, we regress exogenous defen-

dant and case characteristics on the expected proportion of jurors who are female. These charac-

teristics include jury panel size as well as defendant gender, race, age, the number of offenses, and

whether the defendant is being charged with a felony, drug, driving, property, or violent crime. In

addition, we also test whether average juror age (available only for Hillsborough County) or judge

gender is correlated with our measure of the expected proportion of women on the jury.

Results are shown in Table B.3, with estimates at the trial level shown in Panel A, and at the

charge level in Panel B. Overall, there is little evidence that these exogenous characteristics are

correlated with our measure of expected jury gender composition. Of the 24 estimates shown,

two are significant at the 10 percent level, and one is significant at the five percent level, which

is consistent with random chance. This contrasts with results from the same exercise using actual

proportion of women on the seated jury, rather than our measure of expected jury gender com-

position. In that exercise, the results of which are shown in Appendix Table B.9, nine of the 24

estimates are significant at the 10 percent level, and three are significant at the five percent level.9

This reflects the fact that the actual proportion of women seated for the jury is the outcome of the

non-random jury selection process.

In addition, we also provide another test. The intuition of the test is to use all of the exogenous

case and defendant characteristics shown in Table B.3, along with county-by-crime fixed effects,

to predict conviction rate for each charge for each individual. This predicted conviction rate is

thus a linear combination of all observable characteristics about that case and individual, where

the weights are optimally chosen to best predict the likelihood of being convicted on that charge.

9 In cases where no jury is seated, we assign actual proportion female to be the expected proportion female. If we
instead limit the sample to those trials in which jurors were seated, six estimates are significant at the 10 percent
level with five estimates significant at the 5 percent level.
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We graph these predicted conviction rates for male and female defendants against our measure of

expected jury gender composition. Our identifying assumption requires that the difference in the

underlying propensity for guilt of male and female defendants be orthogonal to jury gender.

Results for all charges are shown in Figure B.3a. The symbols represent local averages for

charges against male and female defendants, and are grouped into 10 equal-sized bins. In addition,

we fit separate lines to the underlying data for male and female defendants. Figure B.3a shows that

while male defendants are predicted to be found guilty more often than female defendants, this

difference is constant across jury gender. This suggests that there is little reason, based on observ-

able case and defendant characteristics, to expect a nonzero difference-in-differences estimate in

the absence of an effect of own-gender juries.

Results in Figure B.3b show predicted conviction rates for drug charges, where we later show

large effects of own-gender juries. Results are similar to Figure B.3a in that while male defendants

are predicted to have higher conviction rates than female defendants, this difference does not vary

with expected jury gender. This is consistent with the identifying assumption, and suggests that

any nonzero difference-in-difference estimate of the effect of jury gender will be due to the effect

of jury gender, rather than some confounding factor.

3.4.3 Effect of own-gender juries on conviction rates

Next, we turn to estimating the effect of jury gender on convictions. Before presenting formal

estimates, we first show the raw data. Figure B.4 graphs the conviction rates of male and female

defendants against the expected proportion of females on the jury. Results for all charges are

shown in Figure B.4a. It shows that the conviction rates of male defendants are relatively flat

as the expected proportion of female jurors increases. By comparison, the conviction rates of

females seem to decline somewhat as the expected proportion of female jurors increases, though

the difference in slopes is relatively subtle.

Conviction rates for drug offenses are shown in Figure B.4b. Conviction rates for male de-

fendants appear to increase somewhat as the expected proportion of female jurors increases. In

contrast, conviction rates of female defendants decline sharply as the expected proportion of fe-
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male jurors increases. The locally averaged conviction rates for female defendants facing juries

with an expected proportion of females less than 0.5 range between 60 and 100 percent. By com-

parison, locally averaged conviction rates for juries expected to be more than half female range

from 20 to 50 percent. In short, female defendants are much less likely to be convicted of a drug

charge as the jury is more female, while if anything men are more likely to be convicted as the jury

is more female.

Estimation results are shown in Table B.4. All specifications control for the expected proportion

of female jurors as well as an indicator for whether the defendant is female. In addition, all spec-

ifications control for county-by-crime fixed effects. Column 1 shows the estimate of own-gender

juries for all crimes. The coefficient is -0.247 and is not statistically significant. The magnitude

of the coefficient implies that a 10 percentage point change in the expected gender of the jury is

associated with a 2.47 percentage point reduction in the conviction rate.

Column 2 additionally controls for other defendant and case characteristics such as the defen-

dant’s age and race, judge gender, the number of charges in the case, and whether the defendant

was also charged with a violent crime such as assault. Consistent with the identifying assumption,

the coefficient changes little to -0.256 and remains insignificant.

As discussed earlier, a major threat to identification is the possibility that more male or more

female juries are responding not to defendant gender, but to a feature of the case or defendant that

is systematically correlated with defendant gender. For example, if women convict at higher rates

for all charges when the defendant is also charged with a violent crime, and if male defendants

are more likely to be charged with violent crimes along with other crimes, then we can estimate

a nonzero own-gender effect even if women apply this standard equally across all defendants. In

order to address this concern, in the third column we examine the robustness to our estimate to

the inclusion of controls that interact case characteristics with defendant gender and the expected

proportion of female jurors. Specifically, we include interactions of the proportion of female jurors

with defendant race, age, judge gender, number of charges in the case, whether the individual is

being charged with a violent crime, and whether the defendant is being charged with a felony. This
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allows for the possibility that jurors are responding differentially to defendant characteristics that

may be correlated with defendant gender.

Results from a specification that includes these pairwise interactions are shown in column 3 of

Table B.4. As shown there, the coefficient of interest becomes somewhat larger at -0.329, though

is still statistically insignificant.

Columns 4-6 of Table B.4 show results for felonies. Estimates range from -0.321 to -0.468,

though none are statistically significant at conventional levels. Similarly, results in columns 7 âĂŞ

9 show results for misdemeanor charges. Again, all estimates are negative ranging from -0.469

to -0.485 and none are statistically significant. Importantly, due to the fact that we report results

for several different subcategories of crime, we also report False Discovery Rate (FDR) adjusted

Q-values for each estimate in Table B.4. These are computed using the method proposed by

Anderson (2008), and adjust for the fact we examine a total of six subcategories of crime (felony,

misdemeanor, drug, driving, property, and violent). The adjusted Q-values, which are interpreted

similarly to two-sided p-values, range from 0.531 to 0.657 for the estimates in columns 4-9.

Next, we examine effects by category of the criminal charge. Specifically, we examine ef-

fects on conviction for driving, property, violent, and drug crime charges. Results are shown in

Table B.5. The format is similar to Table B.4 in that the first column for each category includes

only county fixed effects, the second column adds controls for defendant and case characteristics,

and the third column adds controls for interactions between jury gender and defendant and case

characteristics.

Results in columns 1-9 suggest there is little evidence that own-gender juries affect convictions

for driving, property, or violent crimes. In contrast, results in columns 10-12 indicate there is

strong evidence of own-gender juries on conviction for drug charges. The estimate of -2.205 in

column 10 suggests that a 10 percentage point change in the expected own-gender composition

of the jury results in a 22 percentage point reduction in the conviction rate of defendants. Adding

controls changes the estimate only slightly to -2.192, and further adding interaction controls results

in an estimate of -1.815. All estimates are statistically significant at the one percent level. More
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importantly, FDR-adjusted Q-values are 0.002, 0.002, and 0.078, respectively. This indicates that

even after accounting for the multiple statistical tests across the six major categories of crime

charges in Tables B.4 and B.5, the coefficients in columns 10-12 of Table B.5 are sufficiently

extreme as to be unlikely to arise due to chance.

To put these estimates in perspective, we note that Anwar, Bayer and Hjalmarsson (2012)

estimate that the impact of having one black potential juror in the jury pool (and thus likely less

than a 10 percentage point increase in the expected proportion of jurors that are black) results in a

16 percentage point reduction in the conviction rates for black defendants.

3.4.4 Effects of own-gender juries on sentencing decisions

Next, we turn to the question of whether own-gender juries affect sentencing. While one may

expect increased convictions to result in additional incarceration, we note that this link is a pri-

ori ambiguous for two reasons. The first is that the additional convictions may be for charges

that do not result in incarceration. In addition, while juries make conviction decisions, in these

counties judges decide sentencing. On the one hand, if judges treat all convictions similarly, we

would expect to observe own-gender effects on sentencing for drug cases. On the other hand, if

judges exercise discretion in sentencing based on either the facts of the case or even on the gender

composition of the jury, we may not see evidence of own-gender effects in sentencing outcomes.

Results are shown in Figure B.5, with panels a and b showing results for all cases and drug

cases, respectively. Each panel shows estimates of the effect of own-gender juries in which the

outcome of interest is whether the defendant was sentenced for at least one day, at least six months,

at least one year, at least 18 months, etc., up to at least 10 years. Results for all cases shown in

Figure B.5a indicate that while there is some evidence that own-gender juries resulted in reduced

sentences — especially on the left-hand side of the distribution — none of the estimates are sta-

tistically significant.

Results in Figure B.5b indicate there is a statistically significant decline in the likelihood of

receiving a sentence of at least one day. Estimates for the effect on longer sentences are positive

but not statistically significant. This suggests that juries are less likely to convict those own-gender
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defendants who might otherwise be convicted and sentenced to relatively short sentences.

These results are shown more formally in Table 6, which shows estimates of the effect of own-

gender juries on the probability of being sentenced to at least some jail time. Consistent with

Figure B.5a, estimates in columns 1-3 for all charges are negative but not statistically significant.

In contrast, estimates for cases that include at least one drug charge shown in columns 4-6 range

from -1.264 to -1.453, and are all statistically significant at conventional levels. These estimates

imply that a 10 percentage point change in the expected gender composition of the jury results in

a 13 to 15 percentage point change in the likelihood of being sentenced to jail or prison.

These findings have several important implications. First, they suggest that own-gender juries

do lead to differences in sentencing outcomes, even when sentencing decisions are made by judges.

This mean that judges are either unwilling or unable to exercise discretion in an effort to offset the

effect of jury gender composition on conviction decisions. In addition, the effects on sentencing

imply that not only does drawing an opposite-gender jury lead to a criminal record, but it also

leads to increased incarceration. Existing research on the effect of conviction and incarceration on

recidivism and employment suggests that this results in significant long-term harm to defendants

on drug charges (Aizer and Doyle Jr, 2015; Mueller-Smith, Forthcoming).

3.5 Robustness

As discussed earlier, a major threat to identification of own-gender jury effects is the possibil-

ity that jurors of a given gender are responding not to the defendant’s gender, but to some other

defendant or case characteristic correlated with defendant gender. We test for this by including

interactions of jury gender with the number of charges in the case, whether there was a charge for

a violent crime in the case, judge gender, and defendant race and age. Results in column 12 of

Table B.5 indicate our estimates are robust to the inclusion of these interactions, which provides

evidence that the effects are due to the interaction of jury and defendant gender and not something

else. However, one may also be concerned that jurors of different gender could respond differently

to the type of drug charge in the case, which could be correlated with defendant gender. To test

for this, we additionally include interactions of expected jury gender with indicators for marijuana
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possession, possession of other drugs, and possession of drug paraphernalia, where drug trafficking

is the excluded group. Results are shown in column 2 of Table B.7, where column 1 replicates our

main estimate for drug charges of -1.815 from column 12 of Table B.5. Results in column 2 show

that including these interactions increases the magnitude of the estimate to -2.092. This provides

further evidence that the effects shown are due to the interaction of defendant and jury gender,

rather than the interaction of jury gender with some other characteristic correlated with defendant

gender.

In addition, we also test the robustness of our estimates to different specifications as well as

to alternative ways of constructing our predicted jury gender measure. In column 3 of Table B.7

we estimate the effect controlling for predicted juror age, which we only observe in Hillsborough

County. The estimate is similar at -2.296, and is significant at the five percent level. Column 4

shows the estimate from our main specification when we classify outcomes in which adjudication

was withheld as not guilty rather than guilty, which occurs in 4.05 percent of the drug charges. The

magnitude of the estimate is reduced slightly to -1.659, but is still statistically significant at the 5

percent level.

In columns 5-7 of Table B.7, we estimate the own-gender jury effect when we classify the

gender of potential jurors differently. Specifically, we classify jurors for whom we could not iden-

tify gender using genderize.io as either all female (column 5) or all male (column 6), respectively,

rather than as having an equal likelihood of being male as female. Estimates are similar in magni-

tude and significance at -1.614 and -1.844, respectively. In addition, in column 7 we classify the

gender of jurors based on the names and genders recorded in Florida by the Social Security Ad-

ministration. The resulting estimate is -1.749, which is similar to the baseline estimate of -1.815.

Finally, in columns 8-10 of Table B.7 we show that our estimate of own-gender juries is robust

to alternative methods of predicting jury gender. In column 8 we estimate the effect when we do

not smooth the probability of being seated on the jury for a given jury and panel size using a local

linear estimation with epanechnikov kernel, as we did for our main results. Instead, we use the raw

probability that a juror assigned that number in a panel in a given range was seated on the jury. The
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estimate is -1.681 and is significant at the five percent level. The estimated effect is also similar

if we use probit instead of local linear estimation, as shown by the estimate of -1.887 in column

9. The same is true when we use a local linear smoother but do not condition on jury panel size

(-1.698), as shown in column 10.

In summary, we find no evidence that our estimated effect of own-gender juries on convictions

in drug cases is due to male or female jurors responding differentially to a characteristic correlated

with defendant gender, rather than defendant gender itself. In addition, we find that this own-

gender effect is robust to alternative ways of defining the outcome and predicting jury gender.

3.6 Discussion and Interpretation

There are several potential mechanisms through which own-gender juries could have such large

effects on conviction and sentencing outcomes. The first is that seated jurors may exhibit own-

gender bias when making conviction decisions on drug charges. Given that we do not observe true

guilt, it is difficult for us to assess which jurors — male or female — are biased, and in what

direction. But under this interpretation, the results would be due to male and/or female jurors

being either too lenient to own-gender defendants, being too tough (i.e., wrongfully convicting) on

opposite-gender defendants, or both.

Relatedly, effects could be due to the expectation of juror bias in criminal drug trials. For exam-

ple, a defendant may be more likely to accept an otherwise unappealing plea deal if the expected

jury composition is largely opposite-gender. It is also possible that prosecutors or defendants

falsely believe jurors will engage in gender bias during the trial, resulting in a change in plea deal

behavior prior to the start of the trial.

Finally, an increase in the number of opposite-gender jurors could lead the defense to use

their peremptory challenges on opposite-gender potential jurors. This would mean the attorney

would have fewer peremptory challenges to use on other unfavorable jurors, thereby weakening the

defendant’s chances at acquittal. However, we note that doing so would violate the legal standard

set by Batson v. Kentucky (1986) and J.E.B. v. Alabama (1994). In addition, the fact that predicted

jury gender is so highly correlated with actual jury gender provides empirical evidence that the
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attorneys are unable to significantly offset random changes in expected jury gender.

Data limitations make it difficult for us to distinguish between these potential mechanisms

with any certainty. However, to shed some light on this question, we estimate effects separately

for cases that did and did not get to trial.10 Results are shown in Appendix Table A3, which shows

that both sets of point estimates are statistically significant at the one percent level. However, the

magnitude of the effect for charges decided by jury is twice as large as the effect when the case was

decided prior to the conclusion of the trial. We interpret this as suggestive evidence that effects are

largely driven by changes during or after the trial, such as gender bias by juries. We note, however,

that selection into whether a case goes to trial after the jury panel is assigned makes it difficult to

interpret these differences with certainty.

A second question regarding the interpretation of this studyâĂŹs findings relates to the strength

of the effects for drug charges compared to driving, property, and violent crime. Unfortunately,

our data are not well-suited for explaining this difference across crime types. We speculate it is

because even though Americans are supportive of existing and even stronger penalties for DUIs,

violent crime, and property crime, Americans are critical of the prosecution of drug crimes. For

example, recent surveys indicate that 40 percent of Americans believe the prison sentences for

non-violent drug crimes are too harsh, and 64 percent support the full legalization of marijuana

(YouGov/Huffington Post, 2015; Gallup News Service, 2017). Two-thirds of American adults

believe the government should focus more on treatment for illegal users, compared to only 26

percent who believe more focus should be on prosecuting illegal users (Pew Research Center,

2014). A nontrivial proportion of Americans even disagree with the prosecution of "harder" drug

crimes; 16 percent favor decriminalization of cocaine possession, and 9 percent favor legalization

(Morning Consult, 2016). This shift in attitudes on drug laws is also reflected in recent state policy

changes regarding drug possession.11 These views are particularly relevant given the drug charges

10 For this analysis we exclude the 67 cases representing 150 charges where the records did not indicate whether the
case was decided by trial or prior to the start of the trial.

11 The National Conference of State Legislatures (NCSL) reports that from 2011 to 2016, at least nine states have
lowered some drug possession crimes from felonies to misdemeanors, and another nine have reduced mandatory
sentences for some drug offenders (National Conference of State Legislatures , NCSL). In addition, as of 2018
over 20 states have decriminalized certain marijuana possession offenses (National Organization for the Reform of
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in our sample, over 58 percent of which are for possession of drugs or drug paraphernalia without

intent to distribute.

In contrast, there is little to no public support for weakening the enforcement of non-drug laws,

and significant support for even strengthening enforcement. While surveys of Americans’ percep-

tions of non-drug offense prosecution are less common, what evidence there is contrasts sharply

with views on drug crime enforcement. For example, only 11 and 1 percent of adults believe that

the sentences typically given for non-violent property crimes and violent crimes, respectively, are

too harsh (Huffington Post/YouGov, 2013). As a result, we interpret this study’s findings as most

consistent with a model in which jurors fairly enforce the laws with which they mostly agree, but

disproportionately favor own-group defendants when deciding whether to enforce laws with which

they might not agree. That is, while a juror may be willing and able to convict out-group defendants

who break a law with which the juror disagrees, she is perhaps less willing to convict in-group de-

fendants of the same crime. We emphasize, however, that there could be other explanations for the

difference in results for across crime types.

3.7 Conclusion

In this study, we test for the effect of own-gender juries on conviction and sentencing outcomes.

To overcome potential bias due to nonrandom jury selection, we exploit the fact that potential jurors

are randomly assigned to jury pools for each case, and are randomly ordered within each jury pool.

This enables us to predict the gender composition of each jury for each case set to go to trial,

thereby isolating the as-good-as-random variation in jury gender. We combine this variation with

variation in defendant gender to estimate the effect of own-gender juries.

Results provide strong evidence that own-gender juries result in lower conviction rates for drug

offenses. We estimate that a ten percentage point change in the expected own-gender composition

of the jury results in a 18 percentage point decline in conviction rates on drug charges. A similar

change in jury gender results in a 13 percentage point reduction in the likelihood of being sentenced

Marijuana Laws , NORML). While Florida is not among the states making these changes, jurors there are likely
experiencing similar shifts in their views about drug laws.
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to at least some jail time. These are large effects, though we note this is consistent with prior

research on the effect of juror race (Anwar, Bayer and Hjalmarsson, 2012).12

We hypothesize that the reason we see such strong own-gender effects for drug charges but not

others is because many Americans disapprove of the prosecution of drug crimes. We emphasize,

however, that we cannot rule out other interpretations. Similarly, while we show evidence that

effects are largest for cases that go to trial, it is difficult for us to determine which part of our effect

is due to gender bias by jurors when deciding to convict, and what is due to changes in the offering

or acceptance of plea deals based on perceptions of jury bias.

Our results are important for the debate over the use of peremptory challenges in selecting a

jury. By documenting the significant harm that can arise to defendants who draw opposite-gender

juries, we highlight the potential benefits to the prosecution of removing same-gender individuals

from the jury pool. Similarly, defendants in drug cases stand to benefit greatly if their attorneys

are able to successfully remove opposite-gender jurors from the jury pool. As a result, our results

provide support for recent court rulings that disallow prosecutors or defense attorneys to strike

potential jurors from the jury pool on the basis of gender.

In addition, our results add evidence to a growing literature documenting own-gender bias in

decision-making. Our findings suggest that such bias can arise even in settings where the objective

of impartiality is heavily emphasized and protected. Specifically, throughout the juror selection

process the necessity of being impartial and fair is actively pressed on potential jurors. In addition,

the process explicitly allows for both sides to remove potential jurors from the jury if they are

shown or believed to be unfair. We find that even in this process, the similarity in gender of the

jury to the defendant has a significant effect on conviction and sentencing outcomes.

12 They find that one black individual in the jury pool — and thus in expectation much less than one black juror on
the seated jury âĂŞ results in a 16 percentage point change in conviction rates.

49



4. THE IMPACT OF ECONOMIC OPPORTUNITY ON CRIMINAL BEHAVIOR:

EVIDENCE FROM THE FRACKING BOOM

4.1 Introduction

Since Becker (1968), crime has been viewed as the outcome of rational individuals weighing

costs and benefits of legal and illegal forms of employment. Thus, if individuals face improved

labor markets, the returns to legal activity increase and individuals should substitute away from

illegal activities. Yet, local economic booms are often associated with increases in crime (Grinols

and Mustard, 2006; Freedman and Owens, 2016; ?). Several theories can rationalize this phe-

nomenon including increases in criminal opportunities, access to disposable income for activities

that complement crime, and population changes. However, the extent to which each of these theo-

ries explains this puzzle is unclear, especially since changes in crime are typically observed at an

aggregate level.

The purpose of this paper is to address this puzzle by estimating the effect of local economic

opportunity on the criminal behavior of residents who already lived in the area prior to the eco-

nomic boom. By focusing on the criminal behavior of existing residents, I distinguish the effect

of economic opportunity from the effect of the compositional changes in the population caused by

in-migration during the boom. This is important, as people tend to leave as labor market conditions

worsen and migrate to areas during economic expansions. I do so by using the recent boom in hy-

draulic fracturing in North Dakota as a large, exogenous shock to an individual’s relative returns to

legal versus illegal behavior. This approach, combined with the focus on the behavior of residents

already living there prior to the start of hydraulic fracturing, enables me to identify the effect of

economic opportunity on individual criminal behavior.

I identify effects using a difference-in-differences framework comparing counties located in

the shale play, to counties not located in the shale play over time. Importantly, I measure the

impact on residents, separating out migration effects, using information on local residents prior
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to the economic shock. The sharp increase in hydraulic fracturing activity in the United States is

an ideal economic shock for several reasons. First, areas were affected based on the formation of

the shale play beneath the Earth’s surface. Second, the shock was largely unforeseen, as fracking

suddenly became a viable method due to a combination of technological innovations (Wang and

Krupnick, 2013; Crooks, 2015). Together, these support the assumption that fracking affected local

labor markets for reasons unrelated to prior local conditions and household behaviors, overcoming

common critiques of the difference-in-differences design.1 Third, hydraulic fracturing was large

enough to affect the entire local economy in many areas. Finally, the shock affected predominately

low-skill jobs, a population of policy interest.

Studying the effect at the individual level requires detailed data on hydraulic fracturing activ-

ities, criminal behavior, and local residents in North Dakota.2 I identify residents in each county

from printed directories in the early 2000s before the in-migration associated with production ac-

tivities. As an important measure of criminal behavior, I obtained detailed administrative data on

the universe of criminal cases filed in the state from 2000 to 2017. I also observe which residents

signed a lease and received royalty payments during this period. This enables me to not only iden-

tify the effect of improved labor market opportunities, but also isolate differential effects of those

receiving large, non-labor income shocks and those that do not. Matching these datasets makes it

possible to study the effect of local economic shocks on the criminal behavior of local residents.

This is an important advantage given the large migration effects that have been documented in

response to economic conditions in general, and to fracking in particular (Wilson, 2017).

Results indicate that the start of the economic expansion — defined as the period when com-

panies began leasing mineral rights and investing in the area — led to a statistically significant

0.44 percentage point (22 percent) reduction in criminal behavior by local residents. Effects are

largest for drug-related crimes, though I also see some less precisely estimated declines in other

1 For example, see Besley and Case (2000) for discussion about policy endogeneity in difference-in-differences
frameworks.

2 North Dakota is well suited for this analysis as it was the third-slowest-growing state in 2000, and increased its real
gross domestic product 115% by the end of the fracking boom in 2016 (U.S. Bureau of Economic Analysis, 2018).
Also, it is the second largest crude oil producing state in the United States.
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crimes. The effect is smaller once production began, with a 0.27 percentage point decrease in the

likelihood of committing a crime and not consistently statistically significant. This suggests that

changes during the production period, such as increased income or changes in peer composition,

offset some of the effect of improved job opportunities.

In addition, I exploit variation in mineral rights ownership and royalty income to assess the

extent to which effects are driven by labor market opportunities versus non-labor income shocks.

Results indicate that the reduction in crime seems to be driven by non-leaseholders. This is consis-

tent with those not receiving income through alternative means being more responsive to increased

job opportunities. However, I note that the effect sizes are not statistically distinguishable.

To my knowledge, this is the first paper to identify effects of economic shocks on individuals’

criminal behavior separate from the effect of migration. In doing so, it contributes to two bodies of

literature. First, it contributes to the literature showing how aggregate crime changes in response

to plausibly exogenous shocks to economic conditions (e.g., Dix-Carneiro, Soares and Ulyssea,

Forthcoming; Axbard, 2016; Grinols and Mustard, 2006; Gould, Weinberg and Mustard, 2002;

Raphael and Winter-Ebmer, 2001; Evans and Topoleski, 2002; Montolio, 2018; Grieco, 2017).

These studies generally show aggregate crime is inversely related with economic conditions, with

some exceptions.

In particular, this paper complements a subset of this literature that has documented the role

of criminal opportunity and income inequality in explaining the observed increases in aggregate

crime that arise during economic expansions (e.g., Mejia and Restrepo, 2016; Cook, 1986). For

example, Freedman and Owens (2016) study the effect of BRAC funding in San Antonio on crime

using individual-level data. They find an increase in property-related crime in neighborhoods with

a high composition of construction workers, those most likely to benefit from the economic shock,

and that crime is more likely to be committed by individuals with a prior criminal record, and

thus unable to be employed by the project. In a similar way, this paper documents that once one

accounts for population changes that accompany economic expansions, one observes the expected

relationship between improved job opportunity and individual crime. Together, the findings of
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those papers and this paper suggest that both criminal opportunity as well as shifts in population

can explain the puzzling finding that aggregate crime shifts during economic expansions.

Second, this study contributes to the growing literature on the effects of fracking, which has

transformed many regions in the United States. Specifically, crime has generally been shown to

increase in areas with fracking activities (Alexander and Smith, 2017; Andrews and Deza, 2018;

Komarek, 2017; Bartik, Currie, Greenstone and Knittel, 2016).3 However, the increase could be

driven by changes in the population of workers moving to the area or an individual’s response

to the changing economic conditions. I measure a similar increase in aggregate cases filed in

fracking counties, but find that local residents in the county are actually less likely to commit crime

when exposed to relatively stronger labor market conditions. This is consistent with predictions

of the economic theory of crime when the returns to legal employment increase, and indicates that

fracking has reduced individuals’ propensity to commit crime.4

Finally, while the primary purpose of this study is to examine the role of economic expansions

on the criminal behavior of local residents, this study’s findings on aggregate crime also speak to

the literature on (im)migration and crime. Immigration to the United States and Western Europe

typically increases in response to improved relative economic opportunity in those countries. Many

worry that the immigration to high-income countries could increase crime rates, though some

recent empirical evidence suggests this fear may be misplaced (Bell, Fasani and Machin, 2013;

Chalfin, 2015; Spenkuch, 2013; Miles and Cox, 2014; Butcher and Piehl, 2007).5 Results on

aggregate crime presented here indicate that the migration of mostly young, American men does

lead to increased crime overall. Thus, changing the composition of a local population can be an

3 Alternatively, Feyrer, Mansur and Sacerdote (2017) do not find statistically significant evidence of an increase in
crime across all counties with fracking.

4 This is also consistent with empirical evidence documenting a similar inverse relationship between recidivism and
economic conditions (e.g., Agan and Makowsky, 2018; Yang, 2017; Galbiati, Ouss and Philippe, 2018; Schnepel,
2017), as well as increased lifetime criminal behavior for cohorts graduating high school in harsher economic
conditions (Bell, Bindler and Machin, Forthcoming)

5 While the overall evidence on this question is mixed, Bell, Fasani and Machin (2013) finds no effect on violent
crime and mixed effects on property crime, Chalfin (2015) shows an increase in aggravated assaults, but decreases
in other crimes, and Spenkuch (2013) reports small increases in crime, particularly financial crime. Relatedly, Miles
and Cox (2014) finds no effect of a deportation policy on local crime. Moreover, Butcher and Piehl (2007) shows
that immigrants typically have lower crime rates than do native-born residents potentially due to a combination of
heavy screening of would-be migrants, and self-selection of those migrants.
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important driver of criminal activity, although the effects may depend heavily on who the migrants

are. Since young men are a particularly crime-prone population, economic booms that attract this

group may be more likely to lead to higher crime rates.

4.2 Background

Advances in hydraulic fracturing contributed greatly to the recent oil boom in the United States.

From 2000 to 2015, oil produced from fractured wells increased from 2% to over 50% of domestic

production, increasing total oil production faster than at any other point in time (EIA 2018a). It

suddenly became more profitable due to a breakthrough in directional drilling, hydraulic fracturing

technologies, and seismic imaging (Wang and Krupnick, 2013; Crooks, 2015). Hydraulic fractur-

ing involves injecting fluids at a high pressure into a shale play in order to crack the rock formation

and extract tight oil and shale gas.6 This process allowed mineral resources to be extracted from

shale plays that were previously not economically viable.

Notably, the Bakken formation in North Dakota, smaller only than the Permian and Eagle Ford

formation in Texas in crude oil production, is one such formation. Figure C.1 shows the 17 counties

that produce oil and gas in North Dakota, classified by production levels as either a core (major)

or balance (minor) county.7 Four counties make up the major fracking counties producing 80% of

North Dakota’s oil from 2000-2017, with the remaining 13 producing 20%.

Companies leased the mineral rights required for production from individuals or agencies in

exchange for a portion of total revenue. Figure C.2a plots the number of leases signed by house-

holds in North Dakota each year from 2000 to 2017. It is clear that lease signing spiked in 2004

signaling when companies first began investing in hydraulic fracturing in North Dakota. Similarly,

Figure C.2b graphs total oil production in North Dakota showing that production lagged leasing by

a few years, starting to increase in 2008. From 2008 to 2017, North Dakota produced oil valued at

6 The Energy Information Administration defines a shale play as a “fine-grained sedimentary rock that forms when
silt and clay-size mineral particles are compacted, and it is easily broken into thin, parallel layers. Black shale
contains organic material that can generate oil and natural gas, which is trapped within the rock’s pores" (2018). I
focus on oil production as North Dakota’s production is typically only 10-20% gas, with the rest being oil.

7 Figure is reprinted from North Dakota’s Oil and Gas by Report North Dakota Labor Market Information (2018).
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an estimated $2,904,191 million dollars.8

Perhaps unsurprisingly, the presence of hydraulic fracturing activities has had a substantial im-

pact on local labor markets. Feyrer, Mansur and Sacerdote (2017) estimate that every one million

dollars of new production generates 0.78 jobs and $66,000 in wages in counties with a shale play

across the United States.9 Similarly, in response to the stronger labor markets, Wilson (2017) es-

timates that the in-migration of workers increased the baseline population in fracking counties by

12% on average in North Dakota. Additionally, individuals who also owned mineral rights re-

ceived 10-20% percent of production revenues through royalty payments. As I show in the next

section, I estimate that the average leaseholder earned a royalty of $11,000 per month, which is a

substantial non-labor income shock.

Figure C.3 shows that prior to the fracking boom, counties in North Dakota are relatively

similar in terms of per capita income, total jobs, population, and total officers. The leasing period,

when residents first knew of the fracking boom, was characterized by slight increases in per capita

income, total jobs, and population (2004 to 2008). Oil production began ramping up in 2008 and

is the more labor-intensive period. This is when companies began offering high paying jobs and

moving in a large number of workers, often into camps due to housing shortages. It is also the

period when the majority of households that had signed a lease received royalty payments and

increases in overall crime were reported. This is reflected in the data, as Figure C.3 shows fracking

counties experienced large increases in income, jobs, population, and police officers during the

post-2008 production period. While the economic opportunities continued through this period,

counties changed in several other ways as well. As a result, in my analysis I will estimate the

effect of expected economic opportunity that occurs after signing but before drilling, as well as the

effect of drilling. I expect the former will pick up the effect of job opportunities both expected and

realized, while the latter will measure the effect of job opportunities along with large population

8 This estimate is calculated based on total monthly oil production in North Dakota and the monthly North Dakota
oil first purchase price.

9 Other papers estimating increases in wages and employment from fracking activities include Bartik, Currie, Green-
stone and Knittel (2016); Allcott and Keniston (2017); Fetzer (2014); Maniloff and Mastromonaco (2014); Weber
(2014) and Gittings and Roach (2018) to name a few.
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and income changes.

Economic theory predicts that the labor market changes from fracking activities may affect

crime in several ways. First, the additional jobs and higher wages should induce individuals to

substitute away from illegal activities now that the returns to legal activities are higher. Alterna-

tively, the large cash transfers — via royalty payments — to some households may lead to more

crime through increased income inequality and opportunity of crime. Additionally, the increased

income through either royalties or higher wages could affect crime by easing financial constraints

or providing more disposable income to consume goods that may complement crime (e.g. alcohol).

Finally, the large migration effects observed in the production period are likely to affect crime both

through population increases and compositional changes.

There are three main advantages of studying the effect of positive economic shocks on crime

in this context. First, the sudden increase in hydraulic fracturing activities creates plausibly exoge-

nous variation in exposure to improved labor market conditions. Second, I am able to distinguish

the effect on crime by the existing population from aggregate effects which include individual

changes in behavior as well as compositional changes. Specifically, I am able to focus my analysis

on households already living in the area using directory files in each county to identify residents.

Finally, I can study how these residents respond to changes in economic opportunity as well as

the economic opportunity plus the subsequent influx of people and income by examining both the

earlier leasing period and the more labor-intensive production period.

4.3 Data

For this analysis, it is necessary to identify residents in years prior to the fracking boom to

account for migration. To do this, I collect a list of all rural residents for each county in North

Dakota prior to 2008 from the Great Plains Directory Service.10 Households listed in these direc-

tories represent roughly 20% of all households in North Dakota during this time. The directory

10 All counties are included except Cass, Grand Forks, Pembina, and Traill, which are not covered by the Great Plains
Directory Service during this time.
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information includes the name, address, and city of all rural residents.11 In total, there are 31,169

households defined by resident last name, street number, city, and zip code. I consider this to be

the universe of households for which I match to lease and crime data using a Levenshtein index.12

One potential concern with identifying residents is that some people may have moved into

fracking counties prior to the large in-migration associated with the production period. For exam-

ple, strategic households may move in advance to have first access to housing or jobs. However, to

be recorded in the resident directories, any movers would have to move into the rural areas. If this

were the case, we would expect to see an increase in property sales prior to the production period. I

show in Figure C.8 that property sales in fracking counties remain similar to sales in non-fracking

counties throughout the leasing period. Thus, the residents in directory files are likely all long-time

residents of the county.

All leases spanning from 2000 to 2017 in North Dakota are collected from Drilling Info, a

private company designed to aid companies participating in all steps of mineral production. Data

include name and address of the grantor, company listed as grantee, number of acres leased, royalty

rate, and date of record. Production data at the county- and well-level are collected from the

North Dakota Department of Mineral Resources. I use these datasets to approximate the amount

of monthly oil production from a given well that is attributed to an individual leaseholder. This

amount is dollarized using the North Dakota Crude Oil First Purchase Price to estimate the amount

leaseholders receive in the form of royalty payments.13

The State of North Dakota Judicial Branch provided restricted administrative data on all crim-

11 Notably, residents living within city limits are not included in the directories and thus are not considered in this
analysis.

12 I allow matches with a string distance of 2 or less. In practice, this means two strings are matched across datasets
if there are only two changes that need to be made to the concatenated string of last name, street number,city, and
zip code in order for them to be exact matches. In Table C.6, I show that main results are robust to this index.

13 Each well in North Dakota is assigned a spacing unit which defines the area of land surrounding the well with
rights to production. These boundaries are determined in court hearings at the request of the proposed well operator
and based on recommendation of geologists. By matching leaseholders to spacing units, I define the proportional
interest in monthly production for each leaseholder based on acres leased. The dollar value is calculated using the
monthly North Dakota Crude Oil First Purchase Price which I subtract $10/barrel to account for post production
costs, namely transportation. I deduct 10% for severance tax, as North Dakota collects 5% for gross production in
lieu of property tax on mineral rights and 5% for oil extraction. Leaseholders then get a fraction of depending on
their negotiated royalty rate, typically 12-18%.
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inal cases filed in North Dakota from 2000 to 2017. Importantly, data include identifying informa-

tion including the name, date of birth, and address of individuals charged with a crime. This allows

me to link to residential files and identify crime committed by local residents. I also observe the

file date, specific charges filed, disposition of each charge, sentence received, and county of filing

for every case.

There are two main advantages to using cases filed as a measure of criminal behavior. First, it

is considerably more serious than 911 calls or arrests, as an individual has officially been charged

with a crime. This is reflected by the fact that only 61% of all arrest charges in North Dakota

were filed by the prosecutor’s office over the last five years (North Dakota Attorney General Office

2018). As a result, charges filed are arguably a less noisy measure of criminality than the other

possible alternatives. Additionally, the State of North Dakota specifically advises employers not to

ask about prior arrests as "an arrest does not mean that someone actually committed a crime" (North

Dakota Department of Labor and Human Rights 2018). Second, since cases filed are recorded in an

administrative database, they do not suffer from voluntary reporting practices or a lack of coverage,

particularly in areas that are sparsely populated. Additionally, these data report information on all

charges, including offenses which are often not tracked in other commonly used datasets such as

drug charges or driving while under the influence.

Summary statistics are shown in Table C.1. Close to 20% of households are ever charged with

a crime from 2000 to 2017 (Table C.1, Panel A). The types of charges filed for this population,

namely rural residents, are summarized in Panel C. The majority of crimes are misdemeanors

(∼90%), with driving-, drug-, and property-related charges making up roughly 38%, 17%, and

14.5% of all charges, respectively. Smaller crime categories representing less than 10% of all

charges, such as assault (4%), are grouped together in other charges. Of these households, roughly

20% sign a lease and may receive royalty payments during this period (Table C.1). Close to 40% of

leaseholders in my sample actually received payments during this period, with the average lease-

holder receiving $11,000 per month. These royalty payments can be thought of as an additional

treatment over the local economic shock, as some residents in fracking counties receive large,
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additional lump sums of money while others do not.

4.4 Methodology

4.4.1 Main analysis

The unexpected rise in fracturing activities coupled with spatial variation in the shale play pro-

vide a plausibly exogenous shock to local economic conditions. Using a generalized difference in

differences framework, I compare the criminal behavior of residents in counties within the shale

play to residents in counties outside the shale play before and after the fracking boom.14 Given the

timing of fracking activities and subsequent changes in affected counties, I consider the effects sep-

arately in each period: leasing (2004 to 2008) and production (2008 to 2017). Formally, I estimate

the effects of local economic shocks on criminal behavior with the following linear probability

model:

CriminalBehaviorht = αh + γt

+ θ1FrackingCountyXPostLease+ θ2FrackingCountyXPostProductionht + εht

(4.1)

where criminal behavior is a binary indicator for whether a case was filed for household h in

year t.15 In some specifications, criminal behavior is separated into the four largest crime cat-

egories: property, driving, drug and other. Household fixed effects, αh, account for any static

differences in the propensity to commit crime across households. Year fixed effects, λt, control for

factors that affect criminal behavior for all households in a given year, such as the Great Reces-

sion. FrackingCountyXPostLeaseht and FrackingCountyXPostProductionht are indicator

variables equal to 1 for households in fracking counties during the leasing period and during the

production period, respectively. Here, θ1 and θ2 are the coefficients of interest measuring the dif-

ference in criminal behavior of residents in fracking counties relative to residents in non-fracking

14 I also report aggregate county-level estimates of equation 1 in appendix Figure C.10 for comparison.
15 Since the dependent variable is binary, I additionally show results using a logistic regression in Table C.7. I also

show results for the intensive margin using both the number of individual cases filed and the total number of charges
in a given year using the Inverse Hyperbolic Sine (IHS) transformation and Poisson models.
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counties in each of the treatment periods.

The assumption behind this approach is that residents’ criminal behavior in fracking counties

would have changed similarly over time with residents’ criminal behavior in non-fracking counties,

absent hydraulic fracturing activities. I check this assumption in several ways. First, I provide

visual evidence that treated and control counties are tracking prior to any treatment. Relatedly, I

formally test for pre-divergence using the above regression model with an indicator for the treated

group one year before treatment. Additionally, I allow counties to trend differently over time

by including county-specific linear time trends. I also include interactions between pre-treatment

controls and year effects. In doing this, I allow for counties with different levels of observable

characteristics, such as per capita income, to respond differentially to year-to-year shocks.

In all models, robust standard errors are clustered at the county level, allowing errors to be

correlated within a county over time. I also report permutation-based inference for the primary

specification when considering all crime, similar in spirit to Abadie, Diamond and Hainmueller

(2010) for inference when using the synthetic control method. For this, I randomly assign treatment

to 17 counties and compare the estimated coefficient to 1000 placebo estimates to compute p-

values. In addition, I report False Discovery Rate (FDR) Adjusted Q-values when estimating

effects separately by crime type (property, driving, drug, and other) following Anderson (2008).

FDR Adjusted Q-values correct for the increased likelihood of rejecting the null hypothesis when

making multiple comparisons, and are interpreted similar to p-values.

Given that some counties have larger shocks than others, detected effects could be driven solely

by counties with more extreme local shocks. However, it is beneficial to know if smaller eco-

nomic shocks also affect criminal behavior. Therefore, I also consider heterogeneous effects by

the amount of fracking activity experienced by a county. Specifically, I estimate the treatment ef-

fect for the four major oil and gas producing counties as defined by the Labor Market Information

Center, namely Dunn, McKenzie, Mountrail, and Williams, separate from the effect in the thirteen

minor fracking counties.
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4.4.2 Effects by leaseholder status

Finally, I examine the potentially differential effects of fracking on leaseholders and non-

leaseholders. As previously discussed, some households receive large sums of money in the form

of royalty payments while others do not. This creates the potential for increased crime due to

changes in both income inequality and criminal opportunities. I consider leaseholders and non-

leaseholders within fracking counties as separate treated groups, comparing each of them to res-

idents in non-fracking counties. To the extent that signing or not signing a lease and receiving

royalty payments is also a form of treatment, this strategy separates the effect on the two groups

living in fracking areas. Formally, I estimate the following regression model:

CriminalBehaviorht = αh + λt

+ β1LeaseHolderXPostLeaseht + β2LeaseHolderXPostProductionht

+ φ1NonLeaseholderXPostLeaseht + φ2NonLeaseholderXPostProductionht + εht

(4.2)

where variables are defined as in equation 1. Now, β1 and β2 measure the change in criminal ac-

tivity by leaseholders in fracking counties compared to residents in non-fracking counties during

fracking activities. They capture both the effect of job opportunities and the additional income

received by leaseholders in the form of royalty payments. Similarly, φ1 and φ2 measure changes

in criminal activity by non-leaseholders in fracking counties to residents in non-fracking counties.

Alternatively, they capture the effect of higher wages and job opportunities, along with any po-

tential effect of not receiving royalty payments for non-leaseholders. As in the previous models,

equation 2 is estimated using two periods: leasing starting in 2004 and production beginning in

2008. Notably, leaseholders receive a small signing bonus upfront with royalty payments closely

following production, as leaseholders receive a percentage of production revenues.
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4.5 Results

4.5.1 Main results

I begin by estimating the overall effect of local economic shocks on crimes committed by

residents. As noted above, I consider only the population of residents prior to the fracking boom

in North Dakota. In doing so, I am able to exclude all crimes committed in the county by new

workers who migrated to the relatively stronger labor markets. In this way, I can distinguish the

effect of the economic shock from the impact of the changing demographics on overall crime rates.

First, I graph the estimated divergence over time in crimes committed by residents in fracking

and non-fracking counties, relative to the difference between the two sets of counties in 2000 and

2001. Figure C.4 plots the dynamic difference-in-differences estimates for all crimes, controlling

for household and year fixed effects. Importantly, there is no evidence of divergence prior to the

start of the fracking boom in 2004. This supports the identifying assumption that absent hydraulic

fracturing activities, residents in fracking counties would have experienced similar changes in

criminal behavior as residents not in fracking counties. Additionally, the figure indicates that the

probability of being charged with a crime falls in fracking counties when leasing starts, then rises

some during the production process. This suggests economic opportunity is reducing crime, but the

effect seems to be offset at least somewhat by the indirect effects that accompany oil production.

For example, the production period also includes interactions with new workers and increases

in disposable income from royalty payments or high-paying drilling jobs. I report the average

treatment effects for each period in Table C.2.

Starting with the leasing period, Column 1 indicates an initial drop of 0.44 percentage points in

overall crime by residents in fracking counties relative to residents in non-fracking counties. This

translates to a 22% drop in cases filed and is statistically significant at the 1% level. Moreover,

the permutation-based p-value is less that 1% with 1 out of 1000 placebo estimates less than -

0.0044, shown graphically in Figure C.11. In Column 2, I formally test for pre-divergence and

find no evidence of it, with the coefficient on the lead indicator being close to zero, -0.0009, and
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statistically insignificant. In column 3, I allow for county-specific linear trends. This allows for

both observable and unobservable county characteristics to change linearly over time. If results

are driven by fracking counties being on a different path than non-fracking areas, then adding

a county-specific linear trend should absorb the treatment effect. However, results indicate the

coefficient increases slightly to -0.50 percentage points. Finally, counties with different baseline

populations, total jobs, officers, per capita income, and production may respond differentially to

year-to-year shocks. For example, if fracking counties also tend to be smaller in population then

detected effects could be a result of small counties differentially responding to yearly shocks. In

Column 4, I allow these observable characteristics in 2000 to differentially affect criminal behavior

each year. The magnitude remains stable at -0.50 percentage points. Notably, all coefficients are

statistically significant at the 1% level, and the estimated effect is robust to the inclusion of various

controls and a lead term.

Overall, estimates in Table C.2 are consistent with Figure 4 in showing that while there is a

significant drop in criminality initially, the drop is somewhat diminished in the production pe-

riod. Column 1 indicates a 0.27 percentage point reduction in cases filed for residents in fracking

counties compared to residents in non-fracking counties, although not statistically significant at

conventional levels. The permutation-based p-value is marginally significant at 8.8%, with 88 of

the 1000 placebo estimates less than or equal to the estimated coefficient. Moving across columns

2 through 4, coefficients remain negative ranging from -0.18 to -0.43 percentage points, and only

two of which are significant at the 10 percent level. It appears as though the reduction in criminal

behavior from the boost in economic activity may be at least somewhat offset by additional effects

on criminal behavior during the production period. This could be due to the effects of in-migration

such as peer effects and increased social interaction (Glaeser, Sacerdote and Scheinkman, 1996;

Ludwig and Kling, 2007; Bernasco, de Graaff, Rouwendal and Steenbeek, 2017), or to an increase

in the number of bars and illegal markets.16

To better understand the type of crime affected by local economic shocks, I present treatment

16 This is graphically depicted in Figure C.9 with a large increase in the average total number of liqour licenses per
county in counties with major fracking activity.
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effects separately for financial-related crimes (e.g. theft, criminal mischief, fraudulent checks),

driving-related crimes (e.g. DUIs, reckless driving), drug-related crimes (e.g. possession), and

other crimes (e.g. assault, resisting arrest, criminal conspiracy). The dynamic difference-in-

differences estimates, controlling for household and year fixed effects, are plotted for each crime

type in Figure C.5. Notably, the figures show that residents in fracking and non-fracking counties

do not diverge prior to the fracking boom in these types of crime. However, residents exposed

to fracking activities change their criminal behavior relative to residents in non-fracking counties

in response to the economic shock. Results show relatively large reductions in driving, drug, and

other offenses after the leasing period. However, this reduction is diminished once production

starts.

I follow the same format as Table C.2 reporting average treatment effects for each period in

Table C.3, with panels for each crime type and reported FDR Q-values for statistical inference.

Panel A indicates a -0.06 to -0.16 percentage point decrease in property cases filed during the

leasing period, and a -0.11 to -0.20 percentage point decrease during the production period. Simi-

larly, estimates are negative for driving-related cases during the leasing (-0.21 to -0.22 percentage

points) and production period (-0.02 to -0.09 percentage points). Panel C shows a decrease in drug

cases filed of -0.20 to -0.28 percentage points during the leasing period, and a reduction of 0.04

to -0.15 percentage points during the production period. Finally, all other crimes have a similar

negative effect during the leasing period ranging from -0.15 to -0.25, with a smaller effect once

production began ranging from -0.04 to -0.22 percentage points. All coefficients are fairly robust

to the inclusion of controls and a lead term.

Because I consider four types of crime, I also report statistical significance of these estimates

using the Adjusted False Discovery Rate Q-values proposed in Anderson (2008). These values

correct for the increased chance of rejecting the null hypothesis when making multiple compar-

isons for two treatments across four groups (eight categories). The negative effects on driving and

property cases are generally not statistically significant once corrected for multiple comparisons.

However, the effect on drug cases filed during the leasing period is sufficiently large across all
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specifications in Column 1 through 4 as to not have occurred by chance with Q-values of 0.076,

0.049, 0.062, and 0.052, respectively, and no statistical effect during the production period. The

effect on all other cases is less robust with two of the four FDR Q-values less than 0.10 during the

leasing period, again with no estimated effect once production began.

For comparison, I also report the effect of hydraulic fracturing activities on aggregate changes

in cases filed per 1000 persons. Appendix Figure C.10 plots the dynamic coefficients from the

county level model of equation 1, with county and year fixed effects, for all cases and by case type.

Again, counties do not diverge prior to fracking activities. However, estimates indicate increases

in total cases filed, as well as drug, driving, assault, and all other cases during the fracking periods,

specifically during production, which is consistent with prior literature.

Additionally, I test whether the migrants entering the fracking counties were committing crimes

at higher rates than the native population. This enables me to speak directly to a question of

interest in the immigration literature of whether those moving into an area are more criminogenic

in general. I measure the propensity to commit crime for a subset of those moving into the county.

Specifically, I calculate the crime rate using the number of cases filed with an out-of-state address

over the number of migrant tax exemptions filed in the county. Similarly, I do the same for all

crime committed by those with an address in North Dakota and the number of non-migrant tax

exemptions in the county, fixing the total as of 2000. I find that the crime rate from 2004-2015 is

higher for those moving into the county at 17%, as measured by crime committed by out-of-state

individuals, compared to a rate of 7% for in-state individuals.17

Taken together, findings provide strong evidence of a reduction in residents’ criminal behavior

during the leasing period; these effects seem to be partially reduced by other effects during the

production period. While all crime types are negative, results are primarily driven by drug-related

17 Notably, this can be thought of as a conservative estimate. First, the crime rate for people moving into the county
only considers crime from out-of-state individuals even though there is some in-migration to fracking counties from
other areas in North Dakota. This also means that any additional crimes committed by those that move into the
county from within the state are being considered as crimes committed by non-migrants for this exercise. Second,
migrant and non-migrant tax exemptions are based on whether there is a change in filing county and state. The
denominator for out of state is the total of all inflows from 2000 through 2015 to be conservative. Similarly, I fix
the total number of non-migrants in each county at the total in 2000 for each year as migrants that move into the
area will be counted as non-migrants in their second year residing in the county.
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crimes. This contrasts the county-level results, suggesting that compositional changes play an

important role in the criminal response to economic conditions. Put differently, this suggests that

the aggregate increases seen are due largely to additional crimes committed by those who move

into the area. In contrast, the effect of the economic opportunity itself seems to have a negative

effect on overall crime.

4.5.2 Results by intensity

Results thus far have treated all counties on the shale play as receiving the same economic

shock. However, some counties experience much larger economic shocks than others, particularly

the four major oil and gas producing counties. Specifically, the oil production in each of these four

counties was greater than the amount produced in the other 13 counties combined over this time

period. To estimate the differential effect by treatment intensity, I report estimates from equation

1 separately for major and minor fracking counties in Table C.4. Following the same format as

Table 2, I first discuss estimates for minor and major fracking counties during the leasing period,

2004 to 2008. Estimates in Column 1 indicate a 0.39 percentage point decrease in cases filed

by residents in counties with minor fracking activity and a 0.55 percentage point decrease in the

major fracking counties, significant at the 5% and 10% level respectively. This represents a 19.5%

reduction in cases filed in counties with minor fracking activity and a 27.5% reduction in the major

fracking counties. The estimated effect is stable to the inclusion of a lead indicator, county specific

trends, and allowing for time-shocks that vary with levels of pre-period observables. Estimates in

Columns 2 to 4 range from a 0.39 to 0.44 percentage point decline in minor fracking counties and

0.60 to 0.75 in major fracking counties. All estimates are significant at conventional levels.

During the production period, estimates for minor fracking counties are similar in magnitude

ranging from a 0.19 to 0.40 percentage point reduction in cases filed, although marginally signifi-

cant. Estimates for major fracking counties are smaller in magnitude during the production period

relative to the leasing period (-0.07 to -0.62 percentage points), and not consistently significant at

conventional levels.

As expected, the effect is larger in magnitude for the major fracking counties than in minor
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fracking counties initially, although coefficients are not statistically different. Importantly, this

demonstrates that the effect is not driven solely by the four large fracking counties, as counties

experiencing more modest economic shocks also see a significant reduction in crime. Additionally,

the effect seems to fade more dramatically in the major fracking counties which also experience

larger population and income changes during the production period. This is consistent with the

interpretation that it is the other consequences of the in-migration, such as peer effects, and income

that lead to a diminished reduction in crime for residents.

4.5.3 Results by lease-holder status

In addition to the local economic shock, some residents in fracking counties also receive a

large positive income shock in the form of oil royalties during the production period. Recall that

the average household that signs a lease receives over $10,000 dollars per month from royalty

payments. These payments may affect the decision to commit crime both for the leaseholder and

the non-leaseholder as payments increase disposable income for illegal activities by leaseholders

while increasing the income inequality and criminal opportunities for non-leaseholders. In Table

C.5, I estimate the extent to which the fracking activities may differentially affect residents using

equation 2.

Estimates for lease-holders are all negative during leasing (-0.21 to -0.28 percentage points)

and production (-0.08 to -0.27 percentage points), although none are significant at conventional

levels. Estimates for non-lease-holders range from -0.66 to -0.70 percentage points during the

leasing period and are all significant at the 1% level. During the production period, estimates

range from -0.34 to -0.59 for non-lease holders, with three of the four estimates significant at the

5% level. While these estimates are not statistically different from each other, it is clear that the

overall reductions in crime shown in Table 5 are primarily driven by reductions in crime by those

who do not receive royalty payments. This suggests that it is the increase in job opportunities that

reduces crime, rather than income per se. Moreover, the effect of job opportunities seems to be

stronger than the effect of increased criminal opportunities.
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4.6 Discussion

In summary, I find that crime decreases during the leasing period in response to improved job

opportunities, and that the effect is partially reduced once drilling activities escalate throughout the

production period. Importantly, the effect is not driven by the four largest oil producing counties,

and the fact that the effect shrinks more in these counties suggest that other factors related to

production contribute to offsetting the effect of improved labor market conditions. Additionally,

I find that effects are strongest for non-leaseholders and persist into the production period. This

is consistent with those not receiving alternative income streams being most sensitive to the job

opportunities.

One concern in interpreting the results described above is that the differences over time may

be due to changes in the number of police. Becker (1968) and others highlight that the probability

of detection factors into an individual’s decision to commit crime, which is also echoed in the

lab (Harbaugh, Mocan and Visser, 2013). Moreover, empirical evidence has shown that crime

decreases in response to increased police presence (di Tella, 2004; Machin and Marie, 2011).

To test for changes in the police force, I estimate the main model at the county level with total

police officers as the outcome of interest. Figure 6a, indicates that change in the amount of police

officers was negligible during the leasing period. As a result, changes in police are unlikely to be

driving the significant reduction in crime observed during the leasing period. However, changes in

police are potentially part of the treatment during the production period, although this is difficult

to disentangle from other factors that changed during that period. Similarly, reductions in police

resources from population increases may lead to fewer reported cases filed (Vollaard and Hamed,

2012). Figure 6b shows little evidence of changes in the population from 2004 to 2008, with large

increases during the more labor-intensive production period. Again, population changes are less

of a concern during the leasing period, but are likely to be a part of the treatment effects after 2008

as previously discussed.

Relatedly, a concern may be that people identified as residents may have moved out of the

county or, more importantly, the State of North Dakota during the fracking periods. This could be
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an issue if changes in crime are simply from not observing the criminal behavior of an individual

that moved out of the state. Anecdotally, it seems improbable that residents would dispropor-

tionately move out of fracking counties as economic conditions improved. I empirically check for

evidence of out-migration using the number of tax exemptions that move out of a county each year.

I find no evidence of differential out-migration during the initial leasing period and only signs of

out-migration toward the end of the production period when those that had moved into the county

begin leaving as shown in Figure C.7

While I am not able to directly test for the mechanism underlying the decrease in crime from

improved economic opportunities, I suggest two potential pathways. First, it is possible that de-

creases in crime are the result of an incapacitation effect, as individuals become occupied with

legal work and thus have less time for criminal activities. This is similar to school having an

incapacitation effect on juvenile crime (Jacob and Lefgren, 2003). A second explanation is that

residents may no longer feel the need to engage in activities related to crime, such as drug use,

given their improved economic outlook. This is consistent with work by Case and Deaton (2015;

2017) and Autor, Dorn and Gordon (Forthcoming), who document an increasing number of deaths

from drugs, alcohol and suicide associated with deteriorating economic conditions. This is also

consistent with Becker (1968) which predicts individuals are less likely to engage in criminal ac-

tivity if they have more to lose if apprehended. As a result, a more positive outlook on economic

conditions, whether expected or realized, may also lower crime.

4.7 Conclusion

This paper studies the effect of local economic shocks on individualsâĂŹ decisions to com-

mit crime. Specifically, I exploit the recent boom in hydraulic fracturing activities as a plausibly

exogenous shock to local economic conditions. Using detailed administrative data on all criminal

cases filed in North Dakota from 2000 to 2017, I estimate the effect of increased job opportunities

on criminal behavior. An important strength of this study is that by focusing the analysis on all

rural residents already living in the area prior to fracking, I can distinguish the effect of improved

economic opportunity from the effect of population inflows on aggregate crime.
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Results indicate that, consistent with the existing literature, aggregate crime increased in frack-

ing counties relative to non-fracking counties. This was particularly true during the more labor-

intensive fracking activities. However, local residents engage in less criminal activity at the start of

the boom with a smaller effect in later years. Effects are largest and most robust for drug offenses,

and are shown across all counties with fracking activity. Additionally, I show that effects are most

pronounced for residents that do not also receive royalty payments. Taken together, results suggest

that residents reduce their criminal activity in response to improved job opportunities, but that other

changes from local economic shocks, such as peer composition, seems to reduce this effect. This

is consistent with economic opportunities reducing crime and highlights the role of compositional

changes on the aggregate effects on crime.
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5. SUMMARY AND CONCLUSIONS

In this dissertation, I have presented three essays which provide empirical evidence to inform

social and policy motivated questions covering a variety of topics in labor economics. The first

essay in Section 2 documents the effects of a physical education grant program mandating daily

PE attendance which was targeted toward low-income middle schools. Causal effects are esti-

mated by exploiting the eligibility threshold for the grant using a regression discontinuity design.

Results indicate that the program was not effective at improving student fitness or achievement.

However, there is some evidence that the program may have been detrimental to student behavior

with increases in disciplinary infractions and decreases in attendance.

The role of own-gender bias in criminal jury trials is examined in Section 3. Given that jurors

are selected, the gender composition of the potential jury pool, which is both randomly assigned

and ordered, is used to isolate the effect of gender and overcome any potential selection bias.

Intuitively, trials that have a larger share of women randomly assigned earlier in the potential jury

pool are quasi-randomly more likely to have women on the final seated jury. This allows for the

effect of having more women or men on a jury to be estimated with a focus on the differential

effects when the defendant is male or female. Findings show that a standard deviation increase in

the share of own-gender jurors results in a significant decrease in the likelihood of conviction and

being sentenced to any time in jail for drug-related charges only.

The final chapter, presented in Section 4, studies how individuals respond to improved eco-

nomic opportunity with respect to their criminal behavior. To do so, I exploit the recent fracking

boom in North Dakota as a source of exogenous variation in local economic conditions. I identify

residents living in the area prior to changes in conditions and study their behavioral response to

the improved labor markets relative to residents living in areas not exposed to hydraulic fracturing

activities. In doing so, I am able to separate changes in aggregate crime which includes individual

changes in behavior as well as changes in population. While fracking activities are associated with

overall increases in local crime, I find a significant decrease in crime committed by those who
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were already living in the area that now face better economic conditions. Moreover, these effects

are most pronounced for drug-related charges and for non-leaseholders suggesting individuals are

responding more to the increased job opportunities than income per se.

Together these studies help inform policies related to health, education, the criminal justice

system, discrimination, stimulus programs, and hydraulic fracturing. As data becomes increasingly

available, it is possible to shape more useful policies using rigorous economic research which I

hope I am able to contribute to with these and future studies.

72



REFERENCES

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller, “Synthetic control methods for
comparative case studies: Estimating the effect of CaliforniaâĂŹs tobacco control program,”
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APPENDIX A

FIGURES AND TABLES FOR SECTION 2

A.1 Figures

Figure A.1: The Effect of Eligibility on Funding

Notes: Funding data for the Texas Fitness Now (TFN) program from 2007-2011 is from the Texas Education Agency,
grants division. Entitlement is calculated as the total grant allowance per school year. Each figure plots means of
residuals (after differencing out year and grade fixed effects) in 3 percentage point bins and linear fits of the outcome
listed. “Estimated Discontinuity" reports estimates from a linear regression, specified in Equation 1, using uniform
kernel weights and allowing the slopes to vary on each side of the threshold. The sample includes all Texas schools
with students in grades 6, 7, and/or 8.
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Figure A.2: The Effect of Texas Fitness Now on Physical Fitness

Percent of Students with a Healthy BMI

Average Number of Fitness Tests Passed

Notes: School-level data on fitness outcomes is from FITNESSGRAM c© data provided by the Texas Education
Agency (TEA). Each figure plots means of residuals (after differencing out year fixed effects) in 3 percentage point
bins and linear fits of the outcome listed. “Estimated Discontinuity" reports estimates from a linear regression, spec-
ified in Equation 1, using uniform kernel weights and allowing the slopes to vary on each side of the threshold. The
sample includes students in Texas in grades 6, 7, and/or 8 from school years spanning 2007-2011.
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Figure A.3: Analyzing Changes in BMI for Overweight and Obese Students

Percent of Overweight Students Percent of Obese Students

Notes: School-level data on fitness outcomes is from FITNESSGRAM c© data provided by the Texas Education
Agency (TEA). Each figure plots means of residuals (after differencing out year fixed effects) in 3 percentage point
bins and linear fits of the outcome listed. “Estimated Discontinuity" reports estimates from a linear regression, spec-
ified in Equation 1, using uniform kernel weights and allowing the slopes to vary on each side of the threshold. The
sample includes students in Texas in grades 6, 7, and/or 8 from school years spanning 2007-2011.
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Figure A.4: The Effect of Texas Fitness Now on Test Scores

Pass Rate Math TAKS Test Pass Rate Reading TAKS Test

Commended Performance Math TAKS Test Commended Performance Reading TAKS Test

Raw Score Math TAKS Test Raw Score Reading TAKS Test

Notes: Student-level data on test scores is from the Education Research Center at UT-Austin. Each figure plots means
of residuals (after differencing out year and grade fixed effects) in 3 percentage point bins and linear fits of the outcome
listed. “Estimated Discontinuity" reports estimates from a linear regression, specified in Equation 1, using uniform
kernel weights and allowing the slopes to vary on each side of the threshold. The sample includes Texas students in
grades 6, 7, and 8 from school years spanning 2007-2011.
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Figure A.5: The Effect of Texas Fitness Now on Disciplinary Action

Total Disciplinary Actions Proportion of Students with Disciplinary Action

Days Suspended

Notes: Student-level data on disciplinary outcomes is from the Education Research Center at UT-Austin. Each figure
plots means of residuals (after differencing out year and grade fixed effects) in 3 percentage point bins and linear fits
of the outcome listed. “Estimated Discontinuity" reports estimates from a linear regression, specified in Equation 1,
using uniform kernel weights and allowing the slopes to vary on each side of the threshold. The sample includes Texas
students in grades 6, 7, and 8 from school years spanning 2007-2011.
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Figure A.6: The Effect of Texas Fitness Now on Attendance

Attendance Rate for All Students

Notes: Student-level data on attendance is from the Education Research Center at UT-Austin. Each figure plots means
of residuals (after differencing out year and grade fixed effects) in 3 percentage point bins and linear fits of the outcome
listed. “Estimated Discontinuity" reports estimates from a linear regression, specified in Equation 1, using uniform
kernel weights and allowing the slopes to vary on each side of the threshold. The sample includes Texas students in
grades 6, 7, and 8 from school years spanning 2007-2011.
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Figure A.7: Testing Discontinuity of School Composition

Total Students Number of Students Fitness Tested

Percent Female Percent Black

Percent Hispanic Percent Economically Disadvantaged

Notes: Data on school characteristics is from the Education Research Center at UT-Austin. Data on the total number of
students fitness tested is from the TEA’s Academic Excellence Indicator System. Each figure plots means of residuals
(after differencing out year and grade fixed effects) in 3 percentage point bins and linear fits of the outcome listed.
“Estimated Discontinuity" reports estimates from a linear regression, specified in Equation 1, using uniform kernel
weights and allowing the slopes to vary on each side of the threshold. The sample includes Texas students in grades 6,
7, and 8 from school years spanning 2007-2011.
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Figure A.8: Testing the Density of Number of Bins

Notes: Data on student characteristics is from the Education Research Center at UT-Austin. Data on school char-
acteristics is from the Texas Education Agency’s Academic Excellence Indicator System. “Estimated Discontinuity"
reports estimates from a linear regression, specified in Equation 1, using uniform kernel weights and allowing the
slopes to vary on each side of the threshold. The sample includes Texas students in grades 6, 7, and/or 8 from school
years spanning 2007-2011.
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Figure A.9: Testing Discontinuities in the Pre-Period

Pass Math TAKS, 2006 Pass Reading TAKS, 2006

Total Disciplinary Incidents, 2006 Proportion Disciplined, 2006

Days Suspended, 2006 Attendance Rate, 2006

Notes: Student-level data on disciplinary action, attendance rates, and TAKS scores is from the Education Research
Center at UT-Austin. Each figure plots means of residuals (after differencing out year and grade fixed effects) in 3
percentage point bins and linear fits of the outcomes listed. “Estimated Discontinuity" reports estimates from a linear
regression, specified in Equation 1, using uniform kernel weights and allowing the slopes to vary on each side of the
threshold. The sample includes all students in Texas schools in grades 6, 7, and 8 from the 2006-2007 school year.

91



A.2 Tables

Table A.1: Texas Fitness Now Funding Schedule

School Year ED Cutoff Schools Eligible Amount Granted

2007-2008 75% 605 $10,000,000
2008-2009 75% 575 $9,378,914
2009-2010 60% 981 $8,875,670
2010-2011 60% 1125 $8,500,000

Notes: Data on TFN funding and grantee awards is from the Texas Education Agency, Grants Division. ED cutoff
represents the percent of economically disadvantaged students required in the previous year to be eligible for TFN
funding. Total funding is approximately $37 million and average funding per school is $11,000.
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Table A.2: Effects of Texas Fitness Now on Physical Fitness

Healthy Number of
BMI Tests Passed

(1) (2) (3) (4) (5) (6)
%ED > Cutoff -2.19* -1.42 -1.22 0.00 0.01 -0.00

(1.19) (0.88) (0.77) (0.07) (0.05) (0.04)

Bandwidth 6.9 12 15 5.8 12 15

Observations 1591 2769 3473 1378 2840 3555

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. School-by-grade
data from the FITNESSGRAM c© test for school years spanning 2007-2011 is from the Texas Education Agency.
Each coefficient is generated by a separate regression of Equation 1 using the listed fitness outcome as the dependent
variable, controlling for year fixed effects. Standard errors are clustered on the running variable and are reported
in parentheses. “%ED" represents the percent of economically disadvantaged students in the year prior to program
introduction. The sample includes Texas students in grades 6, 7, or 8.
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Table A.3: Effects of Texas Fitness Now on Standardized Test Scores

Math TAKS Reading TAKS

(1) (2) (3) (4) (5) (6)

Panel A. Pass Test
%ED > Cutoff 0.005 0.006 0.004 0.011 0.004 0.003

(0.008) (0.011) (0.010) (0.012) (0.007) (0.006)

Bandwidth 8.9 12 15 11.2 12 15

Observations 737,503 1,002,403 1,289,442 923,137 1,002,373 1,289,364

Panel B. Commended Performance
%ED > Cutoff 0.008 0.001 -0.003 0.0003 0.002 0.002

(0.009) (0.010) (0.008) (0.010) (0.010) (0.008)

Bandwidth 10.9 12 15 8.2 12 15

Observations 893,230 1,002,403 1,289,442 674,118 1,002,373 1,289,364

Panel C. Raw Score
%ED > Cutoff 0.152 0.090 0.011 0.216 0.172 0.093

(0.248) (0.315) (0.278) (0.326) (0.206) (0.178)

Bandwidth 8.0 12 15 11.0 12 15

Observations 663,142 999,023 1,285,172 905,681 998,993 1,285,094

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Student-level
testing data for school years spanning 2007-2011 is from Education Research Center at UT-Austin. Each coefficient
is generated by a separate regression of Equation 1 using the listed academic performance outcome as the dependent
variable, controlling for year and grade fixed effects. A student passes an exam if they meet the standards for the test
for that year. Standard errors are clustered on the running variable and are reported in parentheses. “%ED" represents
the percent of economically disadvantaged students in the year prior to program introduction. The sample includes all
students in Texas students in grades 6, 7, or 8.
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Table A.4: Effects of Texas Fitness Now on Disciplinary Action

Total Proportion of Total
Disciplinary Incidents Students Disciplined Days Suspended

(1) (2) (3) (4) (5) (6) (7) (8) (9)

%ED > Cutoff 0.080 0.075 0.149* 0.005 0.012 0.021* 0.703 0.616 0.836*
(0.133) (0.101) (0.090) (0.019) (0.015) (0.013) (0.580) (0.541) (0.459)

Bandwidth 7.8 12 15 7.4 12 15 10.1 12 15

Observations 656,604 1,010,648 1,299,744 624,046 1,010,648 1,299,744 832,261 1,010,648 1,299,744

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Student-level data for
school years spanning 2007-2011 is from Education Research Center at UT-Austin. Each coefficient is generated by
a separate regression of Equation 1 using the listed discipline outcome as the dependent variable, controlling for year
and grade fixed effects. Standard errors are clustered on the running variable and are reported in parentheses. “%ED"
represents the percent of economically disadvantaged students in a given year. The sample includes Texas students in
grades 6, 7, or 8.
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Table A.5: Effects of Texas Fitness Now on Attendance

(1) (2) (3)

%ED > Cutoff -0.002 -0.003** -0.003**
(0.002) (0.002) (0.001)

Bandwidth 8.9 12 15

Observations 750,912 1,008,485 1,297,023

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Student-level data for
school years spanning 2007-2011 is from Education Research Center at UT-Austin. Each coefficient is generated by a
separate regression of Equation 1, controlling for year and grade fixed effects. Student-level attendance rates are cal-
culated by dividing the total number of days students were present by the total number of school days. Standard errors
are clustered on the running variable and are reported in parentheses. “%ED" represents the percent of economically
disadvantaged students in a given year. The sample includes Texas students in grades 6, 7, or 8.
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Table A.6: Testing Alternative Specifications

Triangular
Linear Fit Quad Fit Cubic Fit Kernel

(1) (2) (3) (4)
Panel A. Pass Math TAKS
%ED > Cutoff 0.003 0.005 0.009 0.004

(0.006) (0.010) (0.012) (0.007)

Observations 1,289,364 1,289,364 1,289,364 1,289,364

Panel B. Pass Reading TAKS
%ED > Cutoff 0.004 0.013 0.027 0.008

(0.005) (0.009) (0.010) (0.001)

Observations 1,289,442 1,289,442 1,289,442 1,289,442

Panel C. Total Disciplinary Incidents
%ED > Cutoff 0.149* 0.012 0.099 0.092

(0.069) (0.127) (0.148) (0.010)

Observations 1,299,744 1,299,744 1,299,744 791,258

Panel D. Proportion Disciplined
%ED > Cutoff 0.0214* 0.002 0.012 0.013

(0.013) (0.021) (0.028) (0.015)

Observations 1,299,744 1,299,744 1,299,744 1,299,744

Panel E. Days Suspended
%ED > Cutoff 0.836* 0.412 0.752 0.666

(0.451) (0.670) (0.746) (0.512)

Observations 1,299,744 1,299,744 1,299,744 1,299,744

Panel F. Attendance Rate
%ED > Cutoff -0.003** -0.002 0.001 -0.003*

(0.001) (0.002) (0.002) (0.001)

Observations 1,297,023 1,297,023 1,297,023 1,297,023

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Individual-level
data on Texas middle school students from 2007-2011 is from the Education Research Center at UT-Austin. Each
coefficient is generated by a separate regression of Equation 1 using the listed outcome as the dependent variable.
Each regression includes year and grade fixed effects and reports results from a full one-sided bandwidth of 15.
Column 1 replicates the baseline results for comparison. Columns 2 and 3 allow for the days from the cutoff to vary
quadratically and cubically (in addition to on either side of the threshold), respectively. Column 4 fits the model using
a triangular kernel instead of uniform kernel. Standard errors are clustered on the running variable and are reported
in parentheses. “%ED" represents the percent of economically disadvantaged students in the year prior to program
introduction.
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A.3 Additional Results

Figure A.10: Healthy Fitness Zone Standards

Notes: Data on FITNESSGRAM c© standards for Healthy Fitness Zone are from the Cooper Institute. See http:
//www.cooperinstitute.org/healthyfitnesszone for more information.
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Figure A.11: Title 1 Funding by Percent Economically Disadvantaged

Notes: Data on district-level Title 1 funding by funding source are from the Texas Education Agency Public Educa-
tion Information Management Systems Reports. Title I funds are aimed at schools with at least 40% economically
disadvantaged students.
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Figure A.12: The Effect of Texas Fitness Now on Physical Fitness

Pushup Test Curlup Test

Sit and Reach Test Shoulder Test

Pacer Test Percent Fail All Tests

Notes: School-level data on fitness outcomes is from FITNESSGRAM c© data provided by the Texas Education
Agency (TEA). Each figure plots means of residuals (after differencing out year fixed effects) in 3 percentage point
bins and linear fits of the outcome listed. “Estimated Discontinuity" reports estimates from a linear regression, spec-
ified in Equation 1, using uniform kernel weights and allowing the slopes to vary on each side of the threshold. The
sample includes students in Texas in grades 6, 7, and/or 8 from school years spanning 2007-2011.
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Figure A.13: Effect of Varying Bandwidth on Estimates

Percent of Students with Healthy BMI Average Number of Fitness Tests Passed

Attendance Rate Total Disciplinary Incidents

Pass Math TAKS Test Pass Reading TAKS Test

Notes: School-level data on BMI and physical fitness is from FITNESSGRAM c© data provided by the Texas Edu-
cation Agency (TEA). Individual-level data on test scores, discipline, and attendance is from the Education Research
Center at UT-Austin. Each panel reports estimates and their corresponding 95% confidence intervals from linear re-
gressions, using uniform kernel weights and allowing the slopes to vary on each side of the threshold, for a range of
different bandwidths. The sample includes Texas students in grades 6, 7, or 8 from school years spanning 2007-2011.
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Figure A.14: Testing Student Attrition

Notes: Individual-level data on school enrollment is from the Education Research Center at UT-Austin. The sample
includes Texas students in grades 6, 7, and 8 from school years 2007-2008 to 2010-2011.
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Table A.7: Summary Statistics

Mean St. Dev. Min Max

School Characteristics

Total Number of Students Enrolled 515 337 1 1,816
Amount Entitled by Texas Fitness Now Grant 5,024.02 9,706.64 0 62,442
Percent Economically Disadvantaged 70.6 45.6 0 100
Percent Female 48.6 50.0 0 100
Percent White 22.4 26.18 0 100
Percent Black 17.0 37.6 0 100
Percent Hispanic 57.4 49.5 0 100
Charter School 0.04 0.19 0 1

Health and Fitness Outcomes

Percent Healthy BMI 63.41 12.06 0 100
Percent Healthy Body Fat 73.77 21.50 0 100
Percent Pass Pacer Test 58.01 22.62 0 100
Percent Complete Mile Run 60.82 23.61 0 100
Percent Pass Push-Up Test 73.57 16.67 0 100
Percent Pass Curl up Test 79.49 16.68 0 100
Percent Pass Sit and Reach Test 64.56 25.00 0 100
Percent Pass Shoulder Test 72.44 13.66 0 100
Percent Pass All Fitness Tests 22.87 15.77 0 88
Percent Fail All Fitness Tests 1.08 2.52 0 71

Academic Outcomes
Math TAKS Passing Rate 0.71 0.45 0 1
Reading TAKS Passing Rate 0.83 0.38 0 1
Math TAKS Commended Rate 0.20 0.40 0 1
Reading TAKS Commended Rate 0.33 0.47 0 1
Math TAKS Raw Score 31.70 11.91 0 50
Reading TAKS Raw Score 35.24 11.74 0 48
Total Disciplinary Incidents 0.96 0.44 0 97
Proportion of Students Disciplined 0.27 2.65 0 1
Total Days Suspended 3.54 15.59 0 910
Attendance Rate 0.96 0.05 0.01 1

Notes: Individual-level data on student characteristics and academic outcomes, including economically disadvantaged
status, race, ethnicity, test scores, discipline, and attendance are from the Education Research Center at UT-Austin.
Data on fitness outcomes are from the standardized fitness testing program, FITNESSGRAM c©, are from the Texas
Education Agency (TEA). Texas Fitness Now grant entitlements data are from the publicly-available list of grantee
awards provided by the TEA. Entitlements per student for each school are calculated using the total amount of funding
divided by enrollment. The sample includes Texas students in grades 6, 7, or 8 from school years spanning 2007-2011.
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Table A.8: Effects of Funding Cuts on Physical Fitness- Females

Healthy Number of
BMI Tests Passed

(1) (2) (3) (4) (5) (6)

%ED > Cutoff -0.92 -0.59 -0.31 -0.28 -0.12 0.05
(1.56) (1.14) (1.03) (0.20) (0.17) (0.15)

Bandwidth 7.6 12 15 7.7 12 15

Observations 1455 2762 3454 1774 2762 3454

Pacer Test Mile Run

%ED > Cutoff 1.49 1.61 1.36 3.62 2.16 1.60
(2.01) (1.91) (1.72) (3.76) (2.73) (2.45)

Bandwidth 11.0 12 15 6.9 12 15

Observations 1617 1783 2265 689 1278 1578

Push-Up Test Curl Up Test

%ED > Cutoff -0.56 0.47 1.07 0.01 -0.59 0.03
(2.10) (1.54) (1.40) (1.93) (1.32) (1.21)

Bandwidth 6.5 12 15 5.8 12 15

Observations 1369 2560 3193 1302 2753 3443

Sit and Reach Shoulder Stretch

%ED > Cutoff -1.64 -1.10 -0.44 0.96 0.54 0.11
(3.34) (2.87) (2.59) (1.31) (1.20) (1.08)

Bandwidth 9.8 12 15 10.2 12 15

Observations 1120 1419 1780 1540 1811 2265

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. School-by-grade
data from the FITNESSGRAM c© test for school years spanning 2007-2011 is from the Texas Education Agency.
Each coefficient is generated by a separate regression of Equation 1 using the listed fitness outcome as the dependent
variable, controlling for year fixed effects. Standard errors are clustered on the running variable and are reported
in parentheses. “%ED" represents the percent of economically disadvantaged students in the year prior to program
introduction. The sample includes all female Texas students in grades 6, 7, or 8.
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Table A.9: Effects of Texas Fitness Now on Academic Outcomes, by Subgroup

Economically
All Female Disadvantaged
(1) (2) (3)

Panel A. Pass Math TAKS
%ED > Cutoff 0.004 0.004 0.003

(0.010) (0.011) (0.011)
Observations 1,289,442 627,388 890,987

Panel B. Pass Reading TAKS
%ED > Cutoff 0.003 0.003 0.004

(0.006) (0.006) (0.007)
Observations 1,289,364 627,394 891,311

Panel C. Total Disciplinary Incidents
%ED > Cutoff 0.149* 0.106 0.178*

(0.090) (0.069) (0.103)
Observations 534,882 631,916 918,294

Panel D. Proportion of Students Disciplined
%ED > Cutoff 0.0214* 0.0170 0.0241*

(0.013) (0.012) (0.016)
Observations 1,299,744 631,916 918,294

Panel E. Number of Days Suspended
%ED > Cutoff 0.836* 0.512** 1.007*

(0.451) (0.257) (0.516)
Observations 1,299,744 631,916 918,294

Panel F. Attendance Rate
%ED > Cutoff -0.003** -0.003** -0.004***

(0.001) (0.001) (0.002))
Observations 1,297,023 630,652 916,543

Bandwidth 15 15 15

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Data on test scores,
disciplinary action, and attendance rates for 6th, 7th, and 8th graders is from the Education Research Center at UT-
Austin for school years spanning 2007-2011. Each coefficient is generated by a separate regression of Equation 1 using
the listed outcome as the dependent variable, controlling for year and grade fixed effects. Standard errors are clustered
on the running variable and are reported in parentheses. “%ED" represents the percent of economically disadvantaged
students in the year prior to program introduction.
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Table A.10: Effects of Texas Fitness Now on Academic Outcomes, by Grade

All Grades 6th Grade 7th Grade 8th Grade
(1) (2) (3) (4)

Panel A. Pass Math TAKS
%ED > Cutoff 0.004 0.006 0.002 0.002

(0.010) (0.012) (0.012) (0.012)
Observations 1,289,442 431,679 433,930 423,833

Panel B. Pass Reading TAKS
%ED > Cutoff 0.003 0.000 0.006 0.001

(0.0062) (0.007) (0.007) (0.006)
Observations 1,289,364 431,677 433,926 423,761

Panel C. Total Disciplinary Incidents
%ED > Cutoff 0.149* 0.113 0.128 0.209*

(0.090) (0.075) (0.110) (0.118)
Observations 1,299,744 433,046 435,958 430,760

Panel D. Proportion of Students Disciplined
%ED > Cutoff 0.021* 0.017 0.020 0.027

(0.013) (0.012) (0.016) (0.015)
Observations 1,299,744 433,046 435,938 430,760

Panel E. Number of Days Suspended
%ED > Cutoff 0.836* 0.440 0.897 1.202*

(0.451) (0.280) (0.548) (0.615)
Observations 1,299,744 433,046 435,938 430,760

Panel F. Attendance Rate
%ED > Cutoff -0.003** -0.002** -0.003** -0.004**

(0.001) (0.001) (0.002) (0.002)
Observations 1,297,023 432,117 435,077 429,829

Bandwidth 15 15 15 15

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Data on test scores,
disciplinary action, and attendance rates for 6th, 7th, and 8th graders is from the Education Research Center at UT-
Austin for school years spanning 2007-2011. Each coefficient is generated by a separate regression of Equation 1
using the listed outcome as the dependent variable, controlling for year fixed effects. Standard errors are clustered on
the running variable and are reported in parentheses. “%ED" represents the percent of economically disadvantaged
students in the year prior to program introduction.
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APPENDIX B

FIGURES AND TABLES FOR SECTION 3

B.1 Figures

Figure B.1: Probability Seated

(a) Jury Trials with 6 Jurors

(b) Jury Trials with 12 Jurors

Notes: Each line is fit with a local linear polynomial at each panelist position using an epanechnikov kernel with
varying Rule-of-Thumb (ROT) bandwidths. Figure 1a from smallest to largest panel size uses a one-sided bandwidth
of 1,1,2,2, and 10. Figure 1b from smallest to largest panel size uses a one-sided bandwidth of 4, 6, and 14.
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Figure B.2: Correlation between Actual Jury Gender Composition and Expected Gender Compo-
sition
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Figure B.3: Predicted Conviction Rates for Male and Female Defendants

(a) All Charges

(b) Drug Charges Only

Notes: For each charge, we predict the probability of conviction using all observable characteristics. The line repre-
sents a linear fit across all predicted conviction rates.
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Figure B.4: Actual Conviction Rates for Male and Female Defendants

(a) All Charges

(b) Drug Charges Only

Notes: Each figure graphs the actual conviction rates for male and female defendants against the expected gender
composition of the jury. Observations are grouped such that each circle represents an equal number of charges.
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Figure B.5: Estimated Effects of Own-Gender Juries on Sentencing

(a) All Cases

(b) Drug-Related Cases Only

Notes: Each estimate shown represents the effect of own-gender juries on total sentencing in the case. The outcomes
of interest, from left to right, are a set of indicators for sentenced to at least one day, sentenced to at least six months,
1 year, 1.5 years, 2 years, etc., up to at least 10 years. Figure 4a includes all drug, driving, property, and violent crime
cases. Figure 4b restricts to cases with at least one drug charge.
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B.2 Tables
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Table B.1: Summary Statistics

Panel A: By Case

All Male Female Felony Misdem. Driving Property Violent Drug

Outcomes
Conviction Rate 0.67 0.67 0.63 0.68 0.65 0.75 0.75 0.60 0.75

Total days sentenced 1673 1931 268 2376 105 451 2251 2772 841
(5373) (5789) (1126) (6330) (595) (3158) (5495) (7440) (1780)

P(sentenced ≥ 1 days) 0.42 0.45 0.27 0.50 0.26 0.34 0.54 0.43 0.50

P(sentenced ≥ 1 years) 0.27 0.30 0.09 0.37 0.04 0.10 0.40 0.31 0.35

P(sentenced ≥ 5 years) 0.16 0.19 0.04 0.23 0.01 0.04 0.25 0.23 0.13

Case Characteristics

Defendant female 0.16 0.00 1.00 0.13 0.21 0.19 0.17 0.13 0.14

Defendant white 0.48 0.47 0.56 0.43 0.59 0.68 0.43 0.41 0.38

Defendant age 36.86 37.13 35.36 36.55 37.55 37.76 36.40 35.94 37.41
(12.52) (12.77) (10.96) (12.66) (12.18) (12.09) (13.46) (12.70) (11.29)

Number of Charges 2.36 2.45 1.85 2.51 2.01 2.43 2.95 2.31 2.84
(2.14) (2.26) (1.09) (2.26) (1.78) (1.93) (2.94) (1.93) (2.67)

Violent charge in case 0.47 0.49 0.38 0.57 0.25 0.07 0.27 1.00 0.10

Felony charge in case 0.69 0.71 0.57 1.00 0.00 0.37 0.84 0.83 0.74

Judge female 0.33 0.32 0.38 0.37 0.25 0.29 0.30 0.38 0.35

Jury Characteristics

Actual Prop Female 0.46 0.45 0.48 0.45 0.47 0.47 0.45 0.45 0.44
(0.24) (0.24) (0.24) (0.25) (0.23) (0.23) (0.24) (0.24) (0.26)

E(Proportion Female) 0.51 0.51 0.52 0.51 0.52 0.52 0.52 0.51 0.51
(0.10) (0.10) (0.11) (0.10) (0.10) (0.10) (0.09) (0.10) (0.11)

Predicted Average Juror Age 45.00 45.09 44.45 45.02 44.91 44.56 45.20 45.05 44.82
(3.49) (3.50) (3.42) (3.56) (3.22) (3.38) (3.22) (3.55) (3.59)

Observations 1542 1302 240 1063 479 414 377 711 249

Panel B: By Charges

Outcomes
Conviction Rate 0.53 0.54 0.50 0.56 0.47 0.52 0.57 0.50 0.58

Case Characteristics

Defendant female 0.13 0.00 1.00 0.11 0.19 0.18 0.11 0.12 0.13

Defendant white 0.51 0.49 0.60 0.44 0.67 0.71 0.46 0.40 0.48

Defendant age 37.38 37.50 36.58 36.69 39.01 37.97 37.64 35.41 40.41
(13.36) (13.70) (10.83) (13.53) (12.80) (12.31) (15.13) (12.26) (13.75)

Number of Charges 4.22 4.49 2.45 4.47 3.62 3.26 5.78 3.30 5.34
(4.88) (5.16) (1.37) (4.91) (4.75) (2.42) (6.45) (3.59) (6.42)

Violent charge in case 0.43 0.43 0.37 0.54 0.16 0.09 0.18 1.00 0.09

Felony charge in case 0.70 0.72 0.57 1.00 0.00 0.29 0.90 0.87 0.72

Judge female 0.32 0.31 0.40 0.35 0.28 0.30 0.28 0.37 0.33

Jury Characteristics

Actual Prop Female 0.46 0.46 0.45 0.45 0.48 0.47 0.48 0.44 0.45
(0.24) (0.24) (0.24) (0.25) (0.22) (0.21) (0.24) (0.24) (0.29)

E(Proportion Female) 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.51 0.50
(0.10) (0.09) (0.10) (0.09) (0.10) (0.10) (0.09) (0.10) (0.10)

Predicted Average Juror Age 44.85 44.92 44.42 44.86 44.81 44.55 44.69 45.05 44.78
(3.46) (3.46) (3.42) (3.49) (3.23) (3.27) (3.60) (3.36) (3.55)

Observations 3055 2647 408 2152 903 789 740 1056 479
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Table B.2: Correlation between Actual Jury Gender Composition and Expected Gender Composi-
tion

All Felony Misdemeanor Driving Property Violent Drug

(1) (2) (3) (4) (5) (6) (7)

E(Prop Fem) 0.947*** 0.901*** 1.040*** 0.857*** 0.857*** 1.008*** 0.919***
(0.058) (0.074) (0.085) (0.113) (0.141) (0.080) (0.153)

Observations 1542 1063 451 414 377 711 249
F stat 33 17 21 35 29 80 25

Notes: Each column represents a separate regression. Columns 2 - 4 restrict the sample to cases with at least one
charge in that category. All regressions include county fixed effects and columns 1-3 include county-by-crime fixed
effects. Robust standard errors are in parentheses.
*p<0.10, **p<0.05, ***p<0.01
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Table B.3: Exogeneity Tests

Panel A: Trial-Level Case has at least one charge that is classified as:

female white age avg juror age panel size judge female number charges felony driving property violent drug

E(Prop Fem) 0.082 0.177 -2.249 -1.114 -0.640 -0.043 -0.018 -0.019 -0.016 0.217** -0.043 -0.086
(0.098) (0.122) (3.228) (1.071) (3.268) (0.117) (0.387) (0.095) (0.112) (0.103) (0.127) (0.096)

Observations 1542 1542 1542 839 1542 1542 1542 1542 1542 1542 1542 1542

Panel B: Charge-Level

female white age avg juror age panel size judge female number charges felony driving property violent drug

E(Prop Fem) 0.075 0.175 -2.025 -0.936 -1.205 -0.027 0.075 -0.053 -0.015 0.164* -0.039 -0.094
(0.099) (0.123) (3.266) (1.079) (3.237) (0.118) (0.412) (0.096) (0.106) (0.094) (0.124) (0.086)

Observations 3056 3056 3056 1498 3056 3056 3056 3056 3056 3056 3056 3056

Notes: Each column in each panel reports estimates from a separate regression in which we regress observable characteristics on the expected proportion of females
on the jury. Columns 1 - 7 include county-by-crime fixed effects, and columns 8 - 12 include county fixed effects. The first three columns show results for defendant
characteristics. Standard errors are in parentheses and are clustered at the defendant level.
*p<0.10, **p<0.05, ***p<0.01
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Table B.4: Effect of Own-Gender Juries on Conviction Rates, by Severity

All Charges Felony Charges Misdemeanor Charges

(1) (2) (3) (4) (5) (6) (7) (8) (9)

E(Prop Fem)xDef_Fem -0.247 -0.247 -0.328 -0.323 -0.327 -0.468 -0.474 -0.483 -0.470
(0.306) (0.307) (0.309) (0.418) (0.419) (0.408) (0.410) (0.411) (0.421)

(0.42049) (0.42001) (0.28894) (0.43976) (0.43495) (0.25230) (0.24789) (0.23991) (0.26461)

Observations 3056 3056 3056 1726 1726 1726 1330 1330 1330

Mean Dependent Variable 0.54 0.54 0.54 0.54 0.54 0.54 0.52 0.52 0.52

Def & Jury Gender Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
County Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes Yes
CountyXCrime Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Additional Controls No Yes Yes No Yes Yes No Yes Yes
Interactions No No Yes No No Yes No No Yes

Notes:All specifications include controls for defendant gender and expected gender composition of the jury, as well
as county-by-crime fixed effects. Additional controls include defendant age, the number of charges in the case,
and indicators for defendant’s race, judge’s gender, and whether there was charge for a violent crime in the case.
Interactions include controls for each of those characteristics interacted with the expected proportion of female jurors.
Standard errors are in parentheses and are clustered at the defendant level. False discovery rate (FDR) adjusted
Q-values adjust for multiple inference given the six subcategories of crime examined. They are constructed using the
method proposed by Anderson (2008) and are interpreted as two-sided p-values.
*p<0.10, **p<0.05, ***p<0.01
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Table B.5: Effect of Own-Gender Juries on Conviction Rates, by Crime Type

Driving Charges Property Charges Violent Charges Drug Charges

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

E(Prop Fem)xDef_Fem 0.154 0.118 0.070 0.610 0.540 0.543 -0.392 -0.297 -0.237 -2.194*** -2.185*** -1.804**
(0.510) (0.505) (0.540) (0.666) (0.677) (0.635) (0.498) (0.513) (0.505) (0.596) (0.596) (0.723)

(0.763167) (0.815713) (0.897007) (0.360900) (0.425471) (0.393430) (0.431619) (0.562634) (0.638804) (0.000290) (0.000304) (0.013337)

Observations 789 789 789 740 740 740 1057 1057 1057 479 479 479
Mean Dependant Variable 0.55 0.55 0.55 0.53 0.53 0.53 0.50 0.50 0.50 0.64 0.64 0.64

Def & Jury Gender Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes Yes No Yes Yes No Yes Yes No Yes Yes
Interactions No No Yes No No Yes No No Yes No No Yes

Notes: All specifications include controls for defendant gender and expected gender composition of the jury, as well
as county fixed effects. Additional controls include defendant age, the number of charges in the case, and indicators
for defendant’s race, judge’s gender, and whether there was charge for a violent crime in the case. Interactions include
controls for each of those characteristics interacted with the expected proportion of female jurors.
Standard errors are in parentheses and are clustered at the defendant level. False discovery rate (FDR) adjusted
Q-values adjust for multiple inference given the six subcategories of crime examined. They are constructed using the
method proposed by Anderson (2008) and are interpreted as two-sided p-values.
*p<0.10, **p<0.05, ***p<0.01
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Table B.6: Effect of Own-Gender Juries on Being Sentenced to Jail

All Charges Drug Charges

(1) (2) (3) (4) (5) (6)

E(Prop Fem)xDef_Fem -0.296 -0.220 -0.284 -1.453** -1.432* -1.264*
(0.304) (0.296) (0.299) (0.719) (0.756) (0.704)

(0.3307) (0.4578) (0.3411) (0.0445) (0.0596) (0.0740)

Observations 1534 1534 1534 245 245 245
Mean Dependant Variable 0.41 0.41 0.41 0.49 0.49 0.49

Def & Jury Gender Controls Yes Yes Yes Yes Yes Yes
County Fixed Effect Yes Yes Yes Yes Yes Yes
Controls No Yes Yes No Yes Yes
Interactions No No Yes No No Yes

Notes: All specifications include controls for defendant gender and expected gender composition of the jury, as well
as county fixed effects. Additional controls include defendant age, the number of charges in the case, and indicators
for defendant’s race, judge’s gender, and whether there was charge for a violent crime in the case. Interactions include
controls for each of those characteristics interacted with the expected proportion of female jurors and defendant’s
gender.
Standard errors are in parentheses.
*p<0.10, **p<0.05, ***p<0.01
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Table B.7: Robustness of Estimates of Own-Gender Juries on Conviction Rates - Drug Charges
Only

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

E(Prop Fem)XDef_Fem -1.815** -2.092*** -2.296** -1.659** -1.614** -1.844** -1.749** -1.681** -1.887*** -1.698**
(0.724) (0.772) (0.889) (0.743) (0.639) (0.757) (0.698) (0.718) (0.723) (0.693)

Observations 479 479 295 479 479 479 479 479 479 479
Mean Dependant Variable 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64

Def & Jury Gender Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Control Interactions Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Drug Type Interactions No Yes No No No No No No No No
Juror Age Control & Interaction No No Yes No No No No No No No
Adjudication Withheld=Not Guilty No No No Yes No No No No No No
Missing Genders half half half half female male half half half half
Predicted Genders API API API API API API SS API API API
Pr(Seated) LL LL LL LL LL LL LL Raw Probit LL
Pr(Seated|Panelsize) Yes Yes Yes Yes Yes Yes Yes Yes Yes No

Notes: Standard errors are in parentheses and are clustered at the defendant level.
*p<0.10, **p<0.05, ***p<0.01
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B.3 Additional Results

Table B.8: Effect of Own-Gender Juries on Conviction Rates

All Felony Misdemeanor Drug Driving Property Violent

(1) (2) (3) (4) (5) (6) (7)

E(Prop Fem) -0.110 -0.131 -0.018 0.130 -0.425* -0.049 0.002
(0.114) (0.146) (0.159) (0.195) (0.243) (0.181) (0.290)

Observations 3055 1725 1330 789 740 1056 479

Notes: Each column represents a separate regression. Columns 1 - 3 include county-by-crime fixed effects, and
columns 4 - 7 include county fixed effects. Standard errors are in parentheses and are clustered at the defendant level.
*p<0.10, **p<0.05, ***p<0.01
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Table B.9: Exogeneity Tests with Actual Proportion of Female Jurors

Panel A: Trial-Level Case has at least one charge that is classified as:

female white age avg juror age panel size judge female number charges felony driving property violent drug

Actual Proportion Female 0.090* 0.137** -0.536 -1.089* 8.672 -0.007 0.081 -0.007 0.002 0.102* -0.120* 0.010
(0.050) (0.068) (1.865) (0.606) (6.585) (0.065) (0.301) (0.051) (0.060) (0.056) (0.069) (0.052)

Observations 1542 1542 1542 839 1542 1542 1542 1542 1542 1542 1542 1542

Panel B: Charge-Level

female white age avg juror age panel size judge female number charges felony driving property violent drug

Actual Prop Female 0.090* 0.138** -0.265 -1.071* 8.530 -0.009 0.068 0.002 -0.003 0.113** -0.100 -0.007
(0.050) (0.068) (1.877) (0.603) (6.674) (0.065) (0.302) (0.051) (0.059) (0.050) (0.068) (0.047)

Observations 3055 3055 3055 1497 3055 3055 3055 3055 3055 3055 3055 3055

Notes: Each column in each panel reports estimates from a separate regression in which we regress observable characteristics on the actual proportion of females
on the seated jury. Columns 1 - 7 include county-by-crime fixed effects, and columns 8 - 12 include county fixed effects. The first three columns show results for
defendant characteristics. Standard errors are in parentheses and are clustered at the defendant level. Standard errors are in parentheses and are clustered at the
defendant level.
*p<0.10, **p<0.05, ***p<0.01
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Table B.10: Effect of Own-Gender Juries on Conviction Rates, by Jury Trial Status

Non-Trial Jury Trial

(1) (2) (3) (4) (5) (6)

E(Prop Fem)xDef_Fem -2.419*** -2.522*** -2.960** -5.760*** -6.416*** -5.637**
(0.663) (0.717) (1.393) (1.309) (1.314) (2.491)

Observations 177 177 177 165 165 165
Mean Dependant Variable 0.64 0.64 0.64 0.64 0.64 0.64

Def & Jury Gender Controls Yes Yes Yes Yes Yes Yes
County Fixed Effect Yes Yes Yes Yes Yes Yes
Controls No Yes Yes No Yes Yes
Interactions No No Yes No No Yes

Notes: All specifications include controls for defendant gender and expected gender composition of the jury, as well
as county fixed effects. Additional controls include defendant age, the number of charges in the case, and indicators
for defendant’s race, judge’s gender, and whether there was charge for a violent crime in the case. Interactions include
controls for each of those characteristics interacted with the expected proportion of female jurors.
Standard errors are in parentheses and are clustered at the defendant level.
*p<0.10, **p<0.05, ***p<0.01
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APPENDIX C

FIGURES AND TABLES FOR SECTION 4

C.1 Figures

Figure C.1: Fracking Counties reprinted from North Dakota Labor Market Information (2018)

Source: Labor Market Information, Job Service North Dakota
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Figure C.2: Leasing and Production

(a) Leases

(b) Production

Notes: All leases in North Dakota are collected from Drilling Info for 2000-2017. Only leases matched to rural
residents in the early 2000s are depicted in the figure above, as this is the sample of leases used in the analysis.
Monthly county production data are from North Dakota Department of Mineral Resources.
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Figure C.3: County Demographics by Fracking Region

(a) Per Capita Income (b) Total Jobs

(c) Population (d) Total Police Officers

Notes: Data on income and jobs are from Bureau of Economic Analysis. Population is calculated using the number
of migrant and non-migrant tax exemptions from the Internal Revenue Service. Police employment data are from the
Uniform Crime Reporting Program: Police Employee (LEOKA) Data.

125



Figure C.4: Dynamic Difference-in-Difference Estimates of the Effect of Fracking on Crime

Notes: Dynamic difference-in-differences estimates from equation 1. Standard errors are clustered at the county-level
and 95% confidence intervals are shown. Data are from the State of North Dakota Judicial Branch from 2000-2017.
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Figure C.5: Dynamic Difference-in-Difference Estimates of the Effect of Fracking on Crime, by
Crime Type

(a) theft (b) driving

(c) drug (d) other

Notes: Dynamic difference-in-differences estimates from equation 1 with household and year fixed effects. Standard
errors are clustered at the county-level and 95% confidence intervals are shown. Data are from the State of North
Dakota Judicial Branch from 2000-2017.
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Figure C.6: Dynamic Difference-in-Difference Estimates of the Effect of Fracking on Police and
Population

(a) Population

(b) Total Officers

Notes: Dynamic difference-in-differences estimates from equation 1 at the county-level. Standard errors are clustered
at the county-level and 95% confidence intervals are shown. Data are from Internal Revenue Service and Uniform
Crime Reporting Program Data [United States]: Police Employee (LEOKA).
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Figure C.7: Estimates of the Effect of Fracking on Out-Migration

Notes: Dynamic difference-in-differences estimates from Equation 1 with county and year fixed effects. Standard
errors are clustered at the county-level and 95% confidence intervals are shown. Outcome is defined as total number
of out-migration exemptions. An exemption is classified as a migrant if it is filed in a different county than in the the
previous year. The exemption would be an out-migrant for the county of filing in the previous year and an in-migrant
for the county of filing in the current year. Data on all exemptions is from the Internal Revenue Service.
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C.2 Tables

Table C.1: Summary Statistics

All Fracking County Non-Fracking County Lease Holder Non-Lease Holder

Panel A: Household

Case ever filed 0.20 0.20 0.20 0.22 0.19

Lease holder 0.21 0.42 0.08 1.00 0.00

Monthly Payment 1141.23 1262.10 143.73 10945.82 0.00
(9907.74) (10325.90) (2930.07) (28886.64) (0.00)

Number of months 5.29 8.04 0.83 50.78 0.00
(22.11) (25.94) (8.73) (48.77) (0.00)

Observations 31169 6964 21394 6436 24733

Panel B: Household-Year

Case filed 0.0232 0.0219 0.0238 0.0283 0.0218
Drug charge 0.0047 0.0035 0.0050 0.0060 0.0043
Driving charge 0.0132 0.0129 0.0134 0.0166 0.0124
Theft charge 0.0043 0.0041 0.0045 0.0048 0.0042
Other charge 0.0085 0.0081 0.0088 0.0105 0.0080

Observations 561042 125352 385092 115848 445194

Panel C: Charges

Charges per case 1.14 1.11 1.15 1.15 1.14
(0.60) (0.50) (0.64) (0.58) (0.61)

Felony charge 0.10 0.09 0.11 0.11 0.10
Driving charge 0.44 0.45 0.42 0.44 0.44
Drug charge 0.17 0.13 0.18 0.18 0.17
Theft charge 0.17 0.17 0.17 0.15 0.17
Assault charge 0.04 0.03 0.04 0.04 0.04
Other charge 0.30 0.30 0.30 0.31 0.30
Male 0.78 0.77 0.79 0.78 0.79
Age 34.38 33.86 34.37 33.90 34.55

(14.30) (14.02) (14.35) (13.81) (14.47)

Observations 23091 4746 16583 6076 17015
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Table C.2: Estimates of the Effect of Fracking on Crime

1 2 3 4

Fracking Co X Post Lease -0.0044*** -0.0048*** -0.0050*** -0.0050**
(0.0015) (0.0017) (0.0017) (0.0019)

Fracking Co X Post Prod -0.0027 -0.0031* -0.0043* -0.0018
(0.0020) (0.0019) (0.0025) (0.0022)

Pre Lease -0.0009
(0.0014)

Observations 561078 561078 561078 561078
Mean Dependent Variable 0.02 0.02 0.02 0.02

Household & Year FE Y Y Y Y
Lead N Y N N
County Trends N N Y N
Pre-Period County Controls X Year N N N Y

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Standard errors are
in parentheses and clustered at the county level. County controls include per capita income, total jobs, population,
total officers, and production in 2000.
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Table C.3: Estimates of the Effect of Fracking on Crime, by Crime Type

1 2 3 4
Panel A: Property Case Filed

Fracking Co X Post Lease -0.0011 -0.0006 -0.0012 -0.0016**
(0.0008) (0.0010) (0.0009) (0.0007)

Adjusted FDR Q-values [0.316] [0.519] [0.242] [0.119]

Fracking Co X Post Prod -0.0016** -0.0011 -0.0020* -0.0016*
(0.0007) (0.0007) (0.0011) (0.0009)

Adjusted FDR Q-values [0.076] [0.316] [0.191] [0.211]

Pre Lease 0.0008
(0.0008)

Observations 561078 561078 561078 561078
Mean Dependant Variable 0.004 0.004 0.004 0.004

Panel B: Driving Case Filed

Fracking Co X Post Lease -0.0021* -0.0020 -0.0020* -0.0022
(0.0012) (0.0015) (0.0012) (0.0016)

Adjusted FDR Q-values [0.188] [0.374] [0.195] [0.292]

Fracking Co X Post Prod -0.0009 -0.0008 -0.0008 -0.0002
(0.0012) (0.0012) (0.0017) (0.0015)

Adjusted FDR Q-values [0.535] [0.519] [0.651] [0.879]

Pre Lease 0.0001
(0.0013)

Observations 561078 561078 561078 561078
Mean Dependant Variable 0.013 0.013 0.013 0.013

Panel C: Drug Case Filed

Fracking Co X Post Lease -0.0021** -0.0020*** -0.0028*** -0.0024***
(0.0009) (0.0007) (0.0010) (0.0009)

Adjusted FDR Q-values [0.076] [0.049] [0.062] [0.052]

Fracking Co X Post Prod 0.0003 0.0004 -0.0015 -0.0001
(0.0005) (0.0005) (0.0012) (0.0005)

Adjusted FDR Q-values [0.535] [0.519] [0.254] [0.875]

Pre Lease 0.0001
(0.0008)

Observations 561078 561078 561078 561078
Mean Dependant Variable 0.005 0.005 0.005 0.005

Panel D: Other Case Filed

Fracking Co X Post Lease -0.0020** -0.0022** -0.0025** -0.0015
(0.0009) (0.0011) (0.0010) (0.0011)

Adjusted FDR Q-values [0.076] [0.192] [0.062] [0.292]

Fracking Co X Post Prod -0.0010 -0.0011 -0.0022 -0.0004
(0.0012) (0.0012) (0.0014) (0.0012)

Adjusted FDR Q-values [0.535] [0.519] [0.208] [0.875]

Pre Lease -0.0003
(0.0009)

Observations 561078 561078 561078 561078
Mean Dependant Variable 0.008 0.008 0.008 0.008

Household & Year FE Y Y Y Y
Lead N Y N N
County Linear Trends N N Y N
Pre-Period County Controls X Year N N N Y

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Standard errors are
in parentheses and clustered at the county level. County controls include per capita income, total jobs, population,
total officers, and production in 2000.
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Table C.4: Estimates of the Effect of Fracking on Crime, by Intensity

1 2 3 4

Minor Fracking County X Post Lease -0.0039** -0.0044*** -0.0039** -0.0044**
(0.0015) (0.0016) (0.0017) (0.0021)

Major Fracking County X Post Lease -0.0055* -0.0060* -0.0075*** -0.0070**
(0.0030) (0.0032) (0.0028) (0.0032)

Minor Fracking County X Post Prod -0.0035* -0.0040** -0.0036 -0.0019
(0.0021) (0.0019) (0.0030) (0.0023)

Major Fracking County X Post Prod -0.0007 -0.0012 -0.0062** -0.0016
(0.0034) (0.0035) (0.0026) (0.0032)

Pre Lease -0.0009
(0.0014)

Observations 561078 561078 561078 561078
Mean Dependent Variable 0.02 0.02 0.02 0.02

Household & Year FE Y Y Y Y
Lead N Y N N
County Linear Trends N N Y N
Pre-Period County Controls X Year N N N Y

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Standard errors are
in parentheses and clustered at the county level. County controls include per capita income, total jobs, population,
total officers, and production in 2000.
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Table C.5: Estimates of the Effect of Fracking on Crime, by Lease Status

1 2 3 4

Lease HH X Post Lease -0.0021 -0.0026 -0.0028 -0.0023
(0.0019) (0.0021) (0.0020) (0.0023)

Lease HH X Post Prod -0.0008 -0.0012 -0.0027 0.0007
(0.0023) (0.0021) (0.0026) (0.0026)

Non-Lease HH X Post Lease -0.0066*** -0.0070*** -0.0070*** -0.0068***
(0.0018) (0.0020) (0.0020) (0.0020)

Non-Lease HH X Post Prod -0.0046** -0.0050** -0.0059** -0.0034
(0.0021) (0.0021) (0.0027) (0.0021)

Pre Lease -0.0009
(0.0014)

Observations 561078 561078 561078 561078
Mean Dependent Variable 0.02 0.02 0.02 0.02

Household & Year FE Y Y Y Y
Lead N Y N N
County Linear Trends N N Y N
Pre-Period County Controls X Year N N N Y

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Standard errors are
in parentheses and clustered at the county level. County controls include per capita income, total jobs, population,
total officers, and production in 2000.
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C.3 Additional Results

Figure C.8: Estimates of the Effect of Fracking on Real Estate

(a) Total Sales

(b) Price

Notes: Dynamic difference-in-differences estimates from Equation 1 with county and year fixed effects. Standard
errors are clustered at the county-level and 95% confidence intervals are shown. Outcome is defined as total sales in
each county and total sale values. Data on all property sales are from the North Dakota State Board of Equalization.
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Figure C.9: Average Total Number of Liqour Licenses per County by Fracking Region

Notes: Data on all liqour licenses in the State of North Dakota are provided by the North Dakota Attorney General’s
office from 2007-2018. Average total number of of licenses per county by fracking region are plotted.
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Figure C.10: Estimates of the Effect of Fracking on Aggregate Crime, Residents and Non-
Residents

Notes: Dynamic difference-in-differences estimates from equation 1 with county and year fixed effects. Standard
errors are clustered at the county-level and 95% confidence intervals are shown. Outcome is defined as cases filed per
1000 persons with population measured using IRS tax exemptions in each year.
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Figure C.11: Placebo Tests

(a) Placebo Estimates for Any Case during Leasing Period

(b) Placebo Estimates for Any Case during Production Period

Notes: Figure plots the density of 1000 estimates from equation 1 with fracking status randomly assigned to 17
counties. The red line in Figure A.2a depicts the main estimate during leasing period, -0.0044, with 1 estimate less
than or equal to it. Similarly, in Figure A.2b the estimate during production period, -0.0027, is drawn in red with 88
estimates less than or equal to it.
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Table C.6: Case Filed, Robustness to Levenshtein Index

1 2 3 4

Fracking Co X Post Lease -0.0044*** -0.0044*** -0.0035** -0.0031**
(0.0015) (0.0015) (0.0013) (0.0012)

Fracking Co X Post Production -0.0009 -0.0027 -0.0032* -0.0032*
(0.0026) (0.0020) (0.0018) (0.0016)

Observations 562500 561132 560592 560340
Mean Dependent Variable 0.02 0.02 0.02 0.02

Household & Year FE Y Y Y Y
Levenshtein Distance 3 2 1 0

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Standard errors are
in parentheses and clustered at the county level. Levenshtein Distance is the number of string edits permitted when
match households using last name, street number, city, and zip code. Column 1 allows for three string edits when
matching households, which is one more than what is used throughout the paper. Column 2 replicates Column 1 from
Table 2 with two string edits as a baseline specification. Column 2 and 3 restrict to matches with a string distance of
one or zero, respectively.
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Table C.7: Estimates of the Effect of Fracking on Crime, Robust to Functional Form and Intensive
Margin

Dependant Variable Any Case Number of Cases Number of Charges

1 2 3 4 5 6

Fracking Co X Post Lease -0.0044*** -0.2102*** -0.0059*** -0.2399*** -0.0059*** -0.1927***
(0.0015) (0.0781) (0.0019) (0.0768) (0.0019) (0.0671)

Fracking Co X Post Prod -0.0027 -0.1476 -0.0036 -0.1823** -0.0039* -0.1517*
(0.0020) (0.1052) (0.0022) (0.0877) (0.0022) (0.0852)

Observations 561042 110034 561042 110052 561042 110052
Mean Dependent Variable 0.02 0.02 0.04 0.04 0.04 0.04

Household & Year FE Y Y Y Y Y Y
Ordinary Least Squares Y N N N N N
Logit N Y N N N N
Inverse Hyperbolic Sine N N Y N Y N
Poisson N N N Y N Y

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Standard errors are
in parentheses and clustered at the county level. Column 1 replicates the main findings from Table C.2 using a linear
probability model. Column 2 estimates the effect of fracking on whether or not a case was filed in a given year using
a logistic regression. Columns 3 and 4 show results for the number of cases filed using the Inverse Hyperbolic Sine
(IHS) transformation and Poisson model, respectively. Similarly, in columns 5 and 6 the effect on number of charges
filed is shown for both IHS and Poisson models.
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