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ABSTRACT

Uncertainty propagation through coupled multiphysics systems is often intractable due to com-

putational expense. In this work, we present a novel methodology to enable uncertainty analysis of

expensive coupled systems. The approach consists of offline discipline level analyses followed by

an online synthesis that results in accurate approximations of full coupled system level uncertainty

analyses. Coupling is handled by an efficient procedure for approximating the map from system

inputs to fixed point sets that makes use of state of the art `1-minimization techniques and cut high

dimensional model representations. The methodology is demonstrated on an analytic numerical

example and a fire detection satellite system where it is shown to perform well as compared to

brute force Monte Carlo simulation.
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1. INTRODUCTION AND LITERATURE REVIEW∗

1.1 Introduction

In an effort to create higher performing aerospace systems, many new technologies seek to

exploit interactions among coupled disciplines. Often, there is great uncertainty associated with

the analysis of such new capabilities, which must be taken into account. To properly quantify this

uncertainty, high fidelity computational tools are essential given that the design emphasis is on

the identification of synergistic emerging phenomena that likely cannot be captured adequately by

low fidelity tools. For systems with feedback coupling, uncertainty propagation with expensive

computational models can be computationally prohibitive. Thus, there is a critical need for the

development of efficient methods for incorporating high fidelity information in the uncertainty

analysis of feedback coupled multiphysics systems.

The uncertainty analysis for coupled multiphysics systems requires the propagation of uncer-

tainty from model inputs to model outputs. There are many sources of uncertainty that should be

considered for such an analysis. For computational models, these include, parametric uncertainty,

parametric variability, code uncertainty, and model discrepancy [3]. Here, we focus on parametric

uncertainty and note that much of what we propose can be extended to handle the other forms of

uncertainty. Often, multiphysics simulations are composed of initially independent disciplinary

computational models. These models are coupled via some set of variables that are involved in

calculations required for more than one disciplinary analysis. For such systems, the task of un-

certainty analysis can be challenging for many reasons. For example, disciplinary models may

be housed in different locations, analysis capabilities may run on different platforms and have

significantly different runtimes, and the sheer number of disciplines can make the process diffi-

cult to manage. Uncertainty analysis for such coupled systems usually begins by composing the

disciplinary models and creating a capability to perform techniques such as fixed point iteration

to ensure compatibility of shared coupling variables. This step is burdensome from the perspec-

∗Reprinted from Ref. [2]
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tive of managing the entire system and also from the significant computational expense that arises

from such iterative approaches. For uncertainty analysis, the propagation of thousands of samples

through a fixed point iteration process is almost certainly computationally prohibitive.

To mitigate these issues in the uncertainty analysis of expensive to evaluate coupled systems,

we propose an efficient decoupling of multiphysics systems followed by a compositional uncer-

tainty analysis that constructs results from discipline level model evaluations as if they were drawn

from the full coupled system. The work builds off of Refs. [4, 5, 6, 7, 8], where decomposition-

based methodologies are presented for both feed-forward and feedback coupled systems. The work

presented here is a natural extension of Ref. [5] for the case of coupled systems under parametric

uncertainty.

The key features of our work include an offline/online approach to uncertainty analysis of

coupled systems that results in significant computational savings. Further, the methodology pre-

sented here enables the rapid and accurate replacement of a given disciplinary model with another,

perhaps higher fidelity or more trusted disciplinary model. This is an important concept in mul-

tifidelity methods, were many models can potentially be used. A full exploration of this alternate

model drop-in capability is a topic for future work and discussed in Section 4.1. Here, our approach

builds from offline uncertainty analyses of each individual discipline. In an online phase, the fixed

point sets of the coupled system are identified in a goal-oriented manner following the approach

of [9]. This approach uses `1-minimization and cut high dimensional model representations to en-

sure as few samples as possible are used in finding the fixed point sets. Once this is accomplished,

the map from inputs to fixed point sets is used to quantify online the correct joint densities that

should have been used in the offline discipline level uncertainty analyses. Importance reweighting

is then used via the Radon-Nikodym derivative (density ratio) of the offline and online densities.

The result is a full coupled system uncertainty analysis at the expense of only a few online model

evaluations. We demonstrate the full methodology on a known analytical example problem and on

a multidisciplinary fire detection satellite system.

The rest of the paper is organized as follows. Section 1.2 presents background on related work

2



as well as a discussion of the general problem setup. The methodology is presented in Section 2.1.

In Section 3.1 we present the demonstrations, and in Section 4.1 we discuss opportunities for future

work. Conclusions are drawn in Section 5.1.

1.2 Background

Previous work on multidisciplinary uncertainty analysis has focused on approximations such as

surrogate modeling and simplified representations of system uncertainty. The use of surrogates for

disciplinary models in a composed system can provide computational savings, as well as simplify

the task of integrating components [10]. Approximate representations of uncertainty, such as using

mean and variance information in place of a full probability distribution have been used to avoid

the need to propagate uncertainty between disciplines. Such simplifications are commonly used

in uncertainty-based multidisciplinary design optimization methods as a way to avoid a system-

level uncertainty analysis [11]. These approaches include implicit uncertainty propagation [12],

reliability-based design optimization [13], robust moment matching [14, 15, 16], advanced mean

value method [17], collaborative reliability analysis using most probable point estimation [18], and

a multidisciplinary first-order reliability method [19].

Other recent work has focused on exploiting the structure of a given multidisciplinary sys-

tem. Ref. [1] presents a likelihood-based approach to decouple feedback loops, thus reducing

the problem to a feed-forward system. Dimension reduction and measure transformation to re-

duce the dimensionality and propagate the coupling variables between coupled components have

been performed in a coupled feedback problem with polynomial chaos expansions [20, 21, 22].

Coupling disciplinary models by representing coupling variables with truncated Karhunen-Loève

expansions, has been studied for multiphysics systems [23]. A hybrid method that combines Monte

Carlo sampling and spectral methods for solving stochastic coupled problems has also been pro-

posed by Refs. [24] and [25].

Our approach builds on the work of Refs. [4, 5, 6], where the challenges of uncertainty analysis

for feed-forward multidisciplinary systems were dealt with using a decomposition-based approach.

Without loss of generality, the emphasis in this paper is on a system of two coupled disciplines.

3



Extensions to systems with more complex architectures do not require any modifications to our

methodology, but will incur more computational expense due to the need to resolve more coupling

variables. In the case considered here, each discipline takes in a system-level input and a feedback

coupled variable. Such a system is shown notionally in Fig. 1.1a, where two disciplines share two

variables. The discipline outputs are a system-level quantity of interest and a dependent variable

for the other discipline in the system. Parametric uncertainty is associated with the input vector

to the system. A standard method for finding the joint distribution of the quantities of interest

under uncertainty would be to implement a nonlinear equation solver, such as fixed point iteration,

for a distribution of uncertain inputs x = (x1, x2, . . . , xd). This direct approach requires several

individual discipline evaluations for each input sample, xi, several thousand of which may be

required for accurate statistical analysis. Expensive, high-fidelity disciplines can quickly render

this approach intractable for large sample sizes. Solving the system of variables in its coupled

state, as in Fig. 1.1a, while costly, incorporates the dependent nature of the discipline inputs and

outputs in the resulting joint density of the quantities of interest.

(a) Coupled State (b) Decoupled State

Figure 1.1: System of coupled disciplines. On the left is a fully coupled system and on the right is
a decomposed, or decoupled system that does not require any iterative resolution of the coupling
variables.

Evaluating each discipline independently in a decoupled state, as in Fig. 1.1b, will produce

independent distributions of the quantities of interest. This result is practical to achieve, but does

4



not reflect the reality of the inherently coupled multiphysics system and will produce inaccurate

results. However, if there exist a bank of previously evaluated “offline” samples for each decoupled

discipline, we can assign weights to those samples to reflect the dependence in the full coupled

system. Our goal is to find these importance weights that reflect the dependence in the system with

minimal full system-level evaluations. We will compare the accuracy of the quantities of interest

when the method is applied to that of brute force Monte Carlo simulation.
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2. METHODOLOGY∗

2.1 Methodology

The goal of our method is to take advantage of existing samples from previous evaluations of

each discipline in a decoupled state. Examining each discipline individually, the inputs can be

either system-level stochastic variables or intermediate variables that are the output of another dis-

cipline in the system. The outputs of the decoupled discipline are assumed to be a system-level

quantity of interest. The intermediate coupling variables are considered independent when they

are inputs to disciplines in a decoupled state, although they are dependent on other disciplines

when considered as part of the larger system of disciplines. The quantities of interest found at

the discipline level could have different probability densities from those found at the system level,

which account for dependent interactions between disciplines. Our method accounts for depen-

dent system-level interactions between disciplines in the system by assigning weights to existing

discipline-level evaluations. The result is an accurate approximation of system-level quantities of

interest without new model evaluations. If our system features feedback coupling between dis-

ciplines, then a full system evaluation may involve many more individual discipline evaluations

than would be required in an equivalent decoupled setup. Thus, to enable taking advantage of

previously computed discipline level samples, our objective is also to find accurate approxima-

tions of the fixed point sets of the coupling variables with minimal full system evaluations, thereby

reducing the required online computational expense.

In the following subsections, the ingredients of our overall approach are presented. These

ingredients include cut high dimensional model representations, compressed sensing via `1-

minimization, kernel density estimation, and importance reweighting. We conclude this section

with a high level algorithm that outlines the steps of our process.

∗Reprinted from Ref. [2]
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2.1.A Approximation of Coupling Variable Fixed Point Sets for Decoupling Multidisci-

plinary Systems

Our goal here is to identify the map from system inputs to resolved coupling variables. We

seek to do this with as few samples (each of which requires a fixed point iteration) as possible.

Following [9], we achieve this by building cut high dimensional model representations with only

univariate and bivariate terms. To build these terms, we use `1-minimization with a controllable

error tolerance. Each technique is described below.

2.1.A.1 Cut High Dimensional Model Representations

The most general high dimensional model representation (HDMR) is given as [26, 27, 28]

f(x1, x2, . . . , xd) = f0 +
d∑
j=1

fj(xj) +
d∑
j<l

fj,l(xj, xl) + · · ·+ f1,2,...,d(x1, x2, . . . , xd) (2.1)

=
∑
u⊆D

fu(xu), (2.2)

where D := {1, 2, . . . , d} denotes the set of input indices, u is a multi-index, and individual terms

in each summand are referred to as subfunctions. Assuming that a map between inputs and fixed

points in the coupling variable space has low superposition dimension simplifies the problem into

an effective superposition dimension [29]. This dimension is defined as the smallest integer, ds,

such that some specified percentage of the variability of the function is captured by all terms in the

HDMR with ds or less variables. Here, we assume ds = 2, and thus, consider only univariate and

bivariate subspaces in the input space.

The specific form of the HDMR we use here is the cut-HDMR. This particular HDMR makes

use of a Dirac measure, which establishes a “cut vector”, also referred to as an “anchor point”. If

the cut vector, which is user defined and often a nominal point in the input space, is given as xc,

and the value of the function at the cut vector is defined as f0 = f(xc), then the ds = 2 cut-HDMR
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subfunctions can be written as

fj(xj) = f(xj;x
c \ xj)− f0 (2.3)

fj,l(xj, xl) = f(xj, xl;x
c \ xj, xl)− fi − fj − f0, (2.4)

for all j, l ∈ D, where (xj;x
c \ xj) refers to the cut vector with the jth entry free to vary. The

approximation constructed by univariate and bivariate subfunctions can then be written as

f(x1, x2, . . . , xd) ≈ f̂(x1, x2, . . . , xd) = f0 +
d∑
j=1

fj(xj) +
d∑
j<l

fj,l(xj, xl). (2.5)

2.1.A.2 Sparse Representation of Each Subfunction via `1-Minimization

The individual subfunctions may be calculated using fixed point iterations, which is a compu-

tationally expensive task. In our approach we achieve this by finding sparse representations to each

subfunction in Eqs. 2.3 and 2.4. This is done by interrogating each subspace along the univariate

directions from the cut vector and likewise with the bivariate terms. Thus, each term in Eq. (2.5)

will have its own sparse representation.

Following Ref. [30], we provide a concise overview of the technique as applied to function

approximation using compressed sensing. Let us represent individual subfunctions as g. The

general concept is that the fixed point sets in coupled systems can be approximated well by a

sparse representation in some functional basis. If this is the case, then the coefficient vector in the

functional basis requires only a few nonzero entries. For a given set of basis functions, {ψk}Nk=1,

we assume that the individual subfunctions, g, can be represented as a linear combination

g = Ψc, (2.6)

where Ψ is an N × N matrix with columns, ψk, and c is an N × 1 vector of coefficients. If g is

sparse in the basis, Ψ, then c will consist of many values that are effectively zero. The function

8



is called S-sparse in Ψ if there exists a c ∈ RN with only S << N nonzero entries. Samples

of the signal, g, are obtained by another linear operator, Φ, which is an M × N measurement

matrix, where M < N . A requirement of compressed sensing is that Φ and Ψ be as incoherent as

possible, which is accomplished in practice by randomly sampling the inputs of the system, which

is equivalent to randomly sampling from a larger set of input-output samples. Then the sampled

signal is

b = Φg, (2.7)

which in our context, is justM fixed point solutions of our computational model. That is,M differ-

ent input sets whose associated coupling variables are found via fixed point iteration. The purpose

of compressed sensing is then to recover the sparsest signal, Ψc, that produces the measurements

g. This can be written as an optimization problem as

ĉ = arg min
c∈RN

‖c‖0 subject to b = ΦΨc, (2.8)

where ‖c‖0 is defined as the number of nonzero entries in c. Finding a solution to this problem

would require enumeration of all possibilities and is thus of combinatorial complexity. However,

using compressed sensing, we can achieve this by the convex relaxation of Eq. 2.8 by using the l1

norm to find the coefficients as

ĉ = arg min
c∈RN

‖c‖1 subject to b = ΦΨc, (2.9)

where, ‖c‖1 =
∑N

k=1 |ck|. With enough measurements, if g is sparse in Ψ, then it can nearly always

be reconstructed from b using Eq. (2.9), as g ≈ Ψĉ [31]. Equation (2.9) can be implemented as a

linear program, for which many efficient solution algorithms exist.

If the function to be approximated is sparse in a given basis representation, then Eq. (2.9) can

used to find the representation with remarkably few samples. However, if the appropriate basis

representation is not known (or does not exist) the method will fail to find a useful approximation.
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Thus, we propose to use a more goal-oriented version of `1-minimization from the compressed

sensing field. Specifically, we consider the case where some error is permitted in the final approx-

imation by instead solving

ĉ = arg min
c∈RN

||c||1 subject to ||ΦΨc− b||2 ≤ ε. (2.10)

Here, ε > 0 is a predetermined level of acceptable error in the approximation. By tailoring this er-

ror term to our specific problem we are eventually ensured of finding a sparse approximation to the

fixed point sets without having to gather any more data from the full coupled system. We focus our

efforts on univariate and bivariate subspaces and assume the underlying maps are approximately

additive to ensure computational efficiency.

2.1.B Kernel Density Estimation for Density Ratio Approximation

A key feature of our work is the reweighting of offline samples of discipline level inputs and

outputs. Prior to the identification of the coupled system fixed point sets, the joint distributions

of these disciplines are unknown. Thus, independent joint densities, referred to as the proposal

density, are used for uncertainty propagation through each discipline. To reweight these samples

with the correct input distributions, or target distributions, we estimate the correct joint density

using a general multivariate kernel density estimator trained with samples propagated through the

learned map from inputs to resolved coupling variables discussed previously. Following Ref. [32],

the general multivariate kernel density estimator we implement is given as

f̂(x) =
1

n|H|

n∑
i=1

K
(
H−1(x− xi)

)
, (2.11)

where H is the bandwidth estimator and has the form of a d × d nonsingular matrix, K is a

kernel function, K : Rd → R1. Our multivariate implementation uses a product kernel, which

is the product of one-dimensional kernels for each dimension: K(x) = k(x1)k(x2) · · · k(xd). In

this case, the bandwidth matrix H is a diagonal matrix with the elements of each dimension’s
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bandwidth on the diagonal.

For large samples, the choice of kernel has less impact on the accuracy of the estimate than the

choice of bandwidth. We used a standard Gaussian kernel, N (0, 1), for the multivariate density

estimate. A topic of future work is to explore the use of different kernels for the density estimate,

such as the Epanechnikov kernel, 3
4
(1 − t2), which is more computationally efficient while sac-

rificing some accuracy and has only finite support [32]. For multivariate density estimates with

multivariate normal kernels, the reference rule [32] for calculating bandwidth, hj , for each input

variable j is

hj = σj

(
4

n(d+ 2)

)1/(d+4)

, (2.12)

where n is the number of samples, d is the number of variables, and σj is the standard deviation

for variable j. We use the kernel density estimate to estimate the joint probability density values

of the joint density derived from the cut-HDMR evaluated at the offline sample points. The result

is a vector of joint density values that becomes the target distribution in the importance weighting

step.

The importance weights for the offline samples are calculated by dividing the target density

by the proposal density at each offline sample point. To calculate the statistics of the quantities of

interest, the weights must be normalized such that
∑n

i w(xi) = 1. The weights are normalized by

dividing each one by the sum of the weight vector as

w(xi) ∝
π(xi)

p(xi)
=⇒ w(xi) =

[ n∑
i

π(xi)

p(xi)

]−1
π(xi)

p(xi)
, (2.13)

where xi is the vector of offline samples, π(·) is the target density from the kernel density estimate,

and p(·) is the proposal density from the previously acquired offline sample data.

2.1.C Estimate Statistics For Quantities of Interest and Find Joint Densities

Once we have the vector of normalized weights, w = [w(x1), w(x2), . . . , w(xn)]>, we can di-

rectly approximate the first and second moments of the quantities of interest [33, 34]. The deriva-

tion of the equation to calculate the mean for the weighted quantity of interest begins with the

11



expectation of the quantity of interest, q(x), evaluated with respect to the target distribution π(x)

given as

Eπ[q(x)] =

∫
Π

π(x)q(x)dx =

∫
P

π(x)

p(x)
q(x)p(x)dx, (2.14)

where P is the support of the proposal density, Π is the support of the target distribution, and

the target distribution is absolutely continuous with respect to the proposal distribution. We can

evaluate this integral with Monte Carlo simulation as

Eπ[q(x)] ≈ 1

n

n∑
i=1

w(xi)qoff(xi), (2.15)

where qoff represents the offline samples of the given quantity of interest. Similarly, we can estimate

the variance of the quantity of interest as

Varπ [q(x)] =
n∑
i

[
w(xi)

(
qoff(xi)

)2]− [ n∑
i

w(xi)qoff(xi)

]2

. (2.16)

The approximated distribution and density of the quantities of interest can be obtained via the

weighted empirical distribution function. The weighted empirical cumulative distribution function

(CDF) is calculated from the offline quantity of interest data, qoff, and the weight vector, w, as

Fw(t) =
1

n

n∑
i=1

wiI(xi ≤ t). (2.17)

Here, wi is the importance weight for the ith sample, n is the number of random samples, and I(·)

is the maximum convention heavyside step function defined as

I(xi ≤ ti) =


1 ifxi ≤ ti,∀i ∈ 1, 2, . . . , d

0 otherwise.
(2.18)

Ref. [35] contains a proof that shows that as n → ∞, the weighted empirical CDF of the pro-

posal distribution converges to the desired target distribution. Once the CDF is obtained, it can be

12



Algorithm 1 Estimate Quantities of Interest in Coupled System using High Dimen-
sion Model Representation and Importance Weights (HDMR+IW)

1: Gather existing data ("offline") of decoupled, discipline-level samples. Data
samples should include the quantity of interest from the discipline.

2: Construct high dimensional model representation surrogate model for interme-
diate coupling variables for the system disciplines. One HDMR surrogate is
created for each coupling variable.

3: Use HDMR surrogate to generate approximations ("online") for coupling vari-
ables at desired x system inputs.

4: Use a kernel density estimate to find target joint density π(xi) at offline data
points xi from step 1. Calculate proposal density p(xi) from known offline
joint distributions.

5: Calculate normalized importance weights using Eq. (2.13).

6: Propagate importance weights to quantities of interest from offline data sam-
ples. Estimate the mean and variance of quantities of interest with Eqs. (2.15)
and (2.16). The weighted empirical cumulative distribution function is calcu-
lated from Eq. (2.17).

smoothed and then differentiated to get the respective probability density function.

2.1.D Algorithm

The full step-by-step process of obtaining the dependent quantities of interest from the coupled

system is described in Algorithm 1. The only full coupled system evaluations occur in Step 2

during the construction of the cut-HDMR surrogate model. The remaining computations only

involve statistical analysis of the resulting data sets. If the coupled system in question is a high-

fidelity multiphysics model, then the combined statistical computations are computationally cheap

compared to a full system evaluation.
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3. RESULTS∗

3.1 Results

In this section we apply our cut high dimensional model representation plus importance weight-

ing methodology (HDMR+IW) to estimate the quantities of interest from two coupled disciplines

of a system. The estimates are validated from the results of Monte Carlo sampling. The method is

implemented on an analytical example and a fire detection satellite system example.

3.1.A Analytical Example

The example presented here is based upon a three discipline analytical problem first described

in Ref. [36]. Subsequently, Ref. [37] used a modified version of this model that only uses the two

main disciplines. Our model uses the two disciplines with feedback coupling and each discipline

will only have one stochastic input for each discipline. The remaining inputs in the model in

Ref. [37] are set equal to one. The system used in the analysis is shown in Fig. 3.1 has x1, x2 ∼

N (1, 0.1) as stochastic inputs, y12 and y21 as coupling variables, and q1 and q2 as system quantities

of interest. The offline distributions were chosen to be normal distributions with equal means

but wider support than the distributions of the known system variables. The offline distributions

were as follows: x1,off ∼ N (1, 0.5) and y21,off ∼ N (11.9, 1.225) as inputs for discipline 1, and

x2,off ∼ N (1, 0.5) and y12,off ∼ N (8.9, 1.225) as inputs for discipline 2.

Monte Carlo runs were used as a truth model to validate the results of our HDMR+IW method-

ology. One thousand samples were used for the Monte Carlo simulation, which required each dis-

cipline to be evaluated 14,999 times as part of fixed point iteration convergence. The cut-HDMR

calculation used 8 samples on the cut vector in Eqs. (2.3), (2.4) and used up to 10th degree Legen-

dre polynomials for the basis functions in Eq. (2.5). The amount of times the cut-HDMR process

does a full system evaluation is dependent upon the dimension of the system input and the number

of samples used on the cut vector. For the analytical problem presented, the HDMR+IW method

∗Reprinted from Ref. [2]
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Figure 3.1: Analytical system example

Table 3.1: Results of analytical example

Method mean(y12) std(y12) mean(y21) std(y21) mean(q1) std(q1) mean(q2) std(q2)

MC 9.66e+0 2.79e−1 1.27e+1 3.10e−1 5.03e−1 2.01e−1 2.40e+0 9.64e−2
HDMR+IW 9.63e+0 3.04e−1 1.26e+1 3.34e−1 4.82e−1 2.04e−1 2.40e+0 1.03e−1

Offline 8.90e+0 1.22e+0 1.19e+1 1.23e+0 4.97e−1 1.00e+0 2.40e+0 4.99e−1

required 81 full system samples which resulted in each discipline being evaluated 1,199 times.

The means and standard deviations for each coupling variable and quantity of interest in the

analytical example are displayed in Table 3.1. The MC method represents the Monte Carlo evalu-

ations of the system. The HDMR+IW method is Algorithm 1 described in Section 2.1. The offline

method represents the statistics of the previously available offline samples for each discipline. The

statistics for the offline quantities of interest were calculated from the result of the evaluation of

the offline input samples in a decoupled state shown in Fig. 1.1b.

The results show that the HDMR+IW method was able to successfully shift the distribution of

the existing offline samples to match that of the Monte Carlo “truth” method. The impact of the

importance weights can be more easily observed in the empirical cumulative distribution functions

presented in Fig. 3.2. The HDMR+IW method took advantage of the existing offline samples

from decoupled discipline evaluations and, with only an additional 81 coupled system evaluations,
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weighted those offline samples to closely approximate the truth model.

Figure 3.2: Cumulative distribution function of coupling variables y12 and y21, and quantities of
interest q1 and q2 of analytical system example.

3.1.B Fire Detection Satellite Example

In the second demonstration, our HDMR+IW methodology is implemented on a coupled fire

detection satellite model. The model is derived from Ref. [38] and reduces the original three dis-

cipline system down to the two coupled disciplines, which is shown in Fig. 3.3. The system has

eight stochastic input variables with defined distributions displayed in Table 3.2. The system equa-

tions and constant parameters are listed in Ref. [38, 1]. The system has three coupling variables:

power of the attitude control system, PACS, maximum moment of inertia, Imax and the minimum

moment of inertia, Imin. In a standard system evaluation, the values for these variables are found

through a fixed point iteration scheme. There are three quantities of interest that are outcomes of

the system. The quantity of interest for the attitude control discipline is the total torque, τtot. The

power discipline has two quantities of interest: the total power output, Ptot and the area of the solar

array, Asa.
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Figure 3.3: Fire detection satellite model

The offline input samples for the coupling variables were determined by first running a sepa-

rate Monte Carlo simulation on the fire satellite system to view the empirical distributions under

coupled conditions. Each coupling variable’s offline distribution was then set to be Gaussian with

the same mean as the empirical data and a standard deviation multiplied by a constant in order to

increase the support for the offline samples. The multiplicative constant was set to 1.75 so that the

offline distributions would have the necessary support to overlap the samples generated through

the Monte Carlo simulation, which we take as the online “truth” model. The same 1.75 constant

was used to increase the standard deviation of the system inputs to define their offline distributions.

Table 3.2 lists the online and offline input distributions for the fire detection satellite example. One

hundred thousand samples were drawn from the offline samples and sent once through the individ-

ual disciplines in the manner shown in Fig. 1.1b to create 100,000 offline samples of the quantities

of interest.
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Table 3.2: Fire detection satellite input variables as modified from Ref. [1]

Random Variable Symbol Online Offline Units

Power other than attitude control Pother N (1000, 50) N (1000, 87.5) W

Average solar flux Fs N (1400, 20) N (1400, 35) W/m2

Deviation of moment axis θ N (15, 1) N (15, 1.75) deg

Moment arm for radiation torque Lsp N (2, 0.4) N (2, 0.7) m

Reflectance factor q N (0.5, 0.1) N (0.5, 0.175)

Residual dipole of spacecraft RD N (5, 1) N (5, 1.75) A·m2

Moment arm for aerodynamic torque La N (2, 0.4) N (2, 0.7) m

Drag coefficient Cd N (1, 0.3) N (1, 0.535)

Power attitude control system PACS - N (130, 26.4) W

Maximum moment of inertia Imax - N (6613, 31.9) kg ·m2

Minimum moment of inertia Imin - N (5116, 32.2) kg ·m2

The increased number of input and coupling variables raises the dimensionality of the kernel

density estimate from 4 in the analytical example to 11 in the fire detection satellite model. In

this case, the approximation was still reasonable, however, systems with a higher number of input

and coupling variables could be susceptible to convergence issues with high dimensional kernel

density estimates [32, 39].

Since the fire satellite model takes 8 stochastic inputs to the coupled system, the cut-HDMR

process would require significantly more function evaluations to generate the approximations. We

reduced the cut-HDMR’s expense by lowering the number of cut vector samples from 8 to 6.

Ref. [9] demonstrates empirically that the approximation error does not marginally improve with

more than 6 samples in the cut vector. Further, most bivariate terms result in negligible improve-

ment in the overall approximation and thus, can not be computed. This would result in substantial

savings (possibly only 48 total evaluations) if this information were known a priori. A careful
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study of this is a topic of future work. Using the new cut samples with both univariate and bi-

variate terms, the HDMR+IW method required 1,009 system evaluations and 3,027 evaluations of

each individual discipline. The Monte Carlo “truth” model required 10,000 system evaluations and

30,128 evaluations of each discipline.

The empirical cumulative distribution functions of the coupling variables produced by Algo-

rithm 1 and the Monte Carlo simulation are shown in Fig. 3.4.

Figure 3.4: Fire Satellite: cumulative distribution functions of coupling variables: power other
than attitude control, PACS, maximum moment of inertia, Imax and minimum moment of inertia,
Imin.

Similarly, the results for the fire satellite model quantities of interest are shown in Fig. 3.5.
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Figure 3.5: Fire Satellite: cumulative distribution functions of quantities of interest: total power,
Ptot, area of solar array, Asa and total torque τtot.

The resulting mean and standard deviation of the coupling variables are displayed in Table 3.3,

while the statistics for the quantities of interest are shown in Table 3.4.

Table 3.3: Results of fire satellite example, coupling variables

Method mean(PACS) std(PACS) mean(Imax) std(Imax) mean(Imin) std(Imin)

MC 1.299e+2 2.552e+1 6.611e+3 3.151e+1 5.114e+3 3.182e+1
HDMR+IW 1.294e+2 2.738e+1 6.612e+3 3.462e+1 5.116e+3 3.535e+1

Offline 1.302e+2 4.617e+1 6.613e+3 5.580e+1 5.116e+3 5.612e+1

Table 3.4: Results of fire satellite example, quantities of interest

Method mean(Ptot) std(Ptot) mean(Asa) std(Asa) mean(τtot) std(τtot)

MC 1.130e+3 5.525e+1 1.186e+1 6.067e−1 1.166e−2 4.254e−3
HDMR+IW 1.131e+3 5.938e+1 1.187e+1 6.522e−1 1.147e−2 4.639e−3

Offline 1.130e+3 9.940e+1 1.187e+1 1.087e+0 1.177e−2 7.462e−3
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The HDMR+IW method provided a good approximation to the truth model with a full order

of magnitude decrease in the required number of full system evaluations. The importance weights

shifted the offline empirical distribution functions close to the Monte Carlo results, though with

some noticeable error near the extremes of the distributions. The kernel density estimate is suf-

ficient, though future work could explore using different bandwidth values or kernel functions.

The importance weights similarly shifted the empirical distribution functions of the quantities of

interest in Fig. 3.5. The total torque, τtot, approximation has some error near left hand side of the

distribution. The torque value is always positive, and most likely does not resemble a Gaussian

distribution near zero, potentially introducing the error due to the use of the multivariate Gaussian

kernel function in the density estimate. The discrepancy in the total torque approximation can also

be seen in the sufficient statistics. The offline mean value of the total torque is slightly closer to the

truth model than the approximation’s mean value as seen in Table 3.4. Additional work is needed

to quantify the error, which is necessary when determining the minimum tolerance of HDMR+IW

approximation. The ε value in Eq. (2.10) can also be reduced to force a closer approximation if

necessary.

The offline and online marginal joint densities of Asa and τtot are shown in Fig. 3.6. The

contours were plotted using a separate bivariate kernel density estimate with a Gaussian kernel

function. A subset of the offline samples are shown in red on the left plot on top of the offline

density contours in red. The online density contours are in blue. The right plot shows how the

importance weighting step emphasizes the offline samples that exist at the center of the online

density. The samples are plotted with their size proportional to the weight they were given.
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Figure 3.6: Illustration of importance weighting offline samples for the joint density of fire satellite
model quantities of interest: area of the solar array, Asa, and total torque, τtot.
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4. FUTURE WORK

4.1 Future Work

In this section we discuss the areas of opportunity for future work improving this approximation

method. We review a multi-fidelity setup of the coupled system as well as an analysis of the system

configuration.

4.1.A Multi-fidelity Analysis

This methodology for utilizing a library of decoupled offline samples lends itself to multi-

fidelity analysis. We consider the prospect of redoing the system-level analysis after swapping

in an equivalent higher fidelity discipline, seen in Fig. 4.1. If we wished to redo the analysis to

obtain new values for the quantities of interest using the multi-fidelity full system model, we would

still need to perform cut-HDMR, density estimation of the approximated coupling variables, and

importance weighting the existing offline samples. This process assumes that a library exists of

decoupled evaluations of the high-fidelity discipline, similar to our original setup. Note that full

multi-fidelity system evaluations are still only performed at the cut-HDMR step, so we need only

evaluate the high-fidelity discipline for the required number of online samples.

4.1.B Network Topology Analysis

The effectiveness of the HDMR+IW method of approximating the output quantities of interest

is dependent upon the structure of the system. The location of the intermediate coupling variables

and arrangement of disciplines with feedback coupling will determine the number of online full

system evaluations required to build the cut-HDMR surrogate models. The HDMR+IW method

utilizes an offline library of discipline-level sample distributions to compose an approximation

for a system-level quantity of interest. It is possible that certain network topology arrangements

are less favorable to HDMR+IW approximations than using direct surrogate models for system-

level quantities of interest. A network analysis of generic multidisciplinary systems with varying

amounts of feed-forward and feed-back coupling between disciplines could provide insight on
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Figure 4.1: High-fidelity drop-in discipline replacement for fire satellite problem

whether a particular system’s design is more favorable to HDMR+IW approximations as opposed

to other surrogate methods.
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5. CONCLUSIONS∗

5.1 Conclusions

We have demonstrated a method to approximate the statistics of quantities of interest derived

from coupled multiphysics systems. The method takes advantage of existing discipline-level, de-

coupled samples through a procedure involving high dimensional model representation, kernel

density estimates, and importance weighting the offline sample distributions. We were able to

achieve a good approximation for the quantities of interest for a Monte Carlo simulation with an

order of magnitude fewer full coupled system evaluations. This method is an inexpensive, effective

way to propagate uncertainty in the inputs to a coupled system.

This work has also created several avenues for future research. In particular, a careful study

of when bivariate terms may be ignored in the cut-HDMR approximations could result in even

more substantial computational savings. A study of the impact of the error tolerance in the `1-

minimization could also lead to more savings, albeit with more approximation error, which may be

deemed acceptable. This work has also created a rapid capability for seeing the results from modi-

fying the discipline level input distributions. The online mapping would not need to be recomputed

in this case and only new importance weights would be required. This creates the possibility for

studying the sensitivity to input distributions without any further model evaluations. Lastly, this

work has created the potential to quickly drop-in a new disciplinary model if it has been previously

evaluated offline. All that is required is the online approximation of the new map from inputs to

resolved coupling variables. This ability is quite practical, particularly in situations where certain

decision makers prefer to use their models over other available options that have already been

implemented in a given system.

∗Reprinted from Ref. [2]
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