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ABSTRACT 

The numerical Laplace transformation of discrete data has been discussed extensively in 

the petroleum literature in applications related to well-test analysis.  This approach has 

been shown to be a useful tool for the deconvolution of variable-rate pressure responses, 

although the success of this method heavily relies on the algorithms used to transform the 

discretely sampled data into the Laplace domain and then to invert these results (numeri-

cally) back into the time domain (Onur and Reynolds, 1998).  Onur and Reynolds [1998] 

note that the major limitation for the numerical Laplace transformation of discrete data is 

the need for an "extrapolation" of the data function in the real domain (both for "early" 

(near zero) times and "late" times (beyond existing data)). 

The most important distinction of the present work is that it focuses on rate functions, 

which are inherently decreasing and positive functions.  The fact that the function of 

interest is decreasing and positive is not an issue in terms of the mathematics of this 

scenario, but there are several challenges — e.g., the applicability of various extrapolation 

schemes.  Simply stated, the primary objective of this research is to examine the 

application of existing algorithms for discrete-data Laplace Transforms, and to develop an 

appropriate workflow utilizing the numerical Laplace transform of discrete data for the 

analysis and forecasting of well performance behavior. 
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The concept of this research is both simple and straightforward — for a given discrete data 

set of time and rate values, we use the Laplace transformation to generate the following: 

● The Laplace transform smoothed rate function: ˆ( )q t  

● The Laplace transform smoothed cumulative function: ˆ ( )Q t  

● The Laplace transform smoothed rate derivative function: ˆ ˆ( ) ( )dq' t q t
dt

=  

● A Laplace transform smoothed D-parameter function: 1ˆ ˆ( )  ( )
ˆ( )

dD t q t
q t dt
−

≡  

● A Laplace transform smoothed b-parameter function: 
1ˆ( )  ˆ ( )

db t
dt D t
 

≡  
 

 

The traditional approach to this problem is to use numerical integration (most typically, 

the Trapezoidal Rule) and numerical differentiation (most typically, the Bourdet 

(weighted difference) Algorithm).  We believe that the Laplace transform has the potential 

to generate smoother and more mathematically rigorous integration and differentiation.  

We know that this approach has been used on occasion for such analyses, but neither 

systematically nor exhaustively as we propose in this work. 
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1. INTRODUCTION 

1.1 Statement of the Problem 

In the last decade, unconventional reservoirs — specifically tight and ultra-tight (shale) 

reservoirs, have emerged as one of most significant petroleum resources in the world.  The 

time-rate relations of the wells producing from these types of reservoirs are characterized 

by an extended early transient period and a transitional period, rarely (if ever) is there a 

traditional boundary-dominated flow period.  Theoretically, these flow characteristics 

prevent the use of the conventional Arps hyperbolic time-rate decline model for 

performance forecasting.  We comment "theoretically" because the Arps hyperbolic model 

is regularly used for forecasting and reserves predictions of cases in unconventional 

reservoirs — despite its limitations. 

Several authors (e.g., Rushing [2007], Lee and Sidle [2010], and Yu [2013]) suggest that 

the Arps hyperbolic model will highly overestimate the EUR for wells in tight gas sands 

and shales.  To address the "overestimation" issue, several empirical time-rate decline 

models have been proposed to capture the characteristic time-rate behavior of wells in 

shale and tight reservoirs.  A sampling of the more popular of these time-rate models are: 

● Modified Hyperbolic Model (early hyperbolic, late exponential) 

● Power-Law Exponential Model (Ilk et al, 2008) 

● Logistic Growth Model (Clark, 2011) 

● Duong Model (Duong, 2011) 
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All the models presented above can generally be matched quite well (in general) to time-

rate data from wells in unconventional reservoirs — however, these relations yield a high 

variation in the production forecasts and in the predicted EUR values.  In other words, 

each of these relations can provide a very good, perhaps even excellent, match for a given 

set of time-rate data, but the subsequent extrapolations are highly variable due to the long-

term behavior of a given relation.  Ilk et al [2008] introduced a diagnostic plot known as 

the "qDb" plot where the analyst matches not only the rate [q(t)], but also the Arps D(t) 

and b(t) functions — simultaneously.  The qDb plot aids in flow regime identification 

(specific features can be observed), as well as in the model selection process (and model 

parameter identification) by observing the characteristics which are unique to a given 

model. 

Relative to this work, the computation of the Arps D(t) and b(t) functions requires 

numerical differentiation of the discrete time-rate data.  Time-rate data typically exhibit 

random noise and unfortunately, sometimes systematic noise, as well as features due to 

major changes in production operations.  Historically, the petroleum industry has relied 

on the "weighted difference" derivative algorithm proposed by Bourdet et al [1989].  The 

"Bourdet" algorithm is used primarily because of its simplicity (and hence, reliability), 

and it is worth noting that there are many other derivative algorithms that have been used 

as well (e.g., moving polynomial regressions, spline regressions, collocation formulae, 

etc.). 
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When working with data function that contains significant random noise, the resulting 

derivatives often exhibit oscillations as well as "tail" or "end-point" effects (i.e., erroneous 

features caused by the first or last point being significantly off-trend).  Such features lead 

to difficulties in interpretations, and in many cases such features can render a given data 

set uninterpretable. 

In this study, our overall goal is to develop a workflow using the Laplace transform of 

discrete data to improve the analysis of production performance for unconventional wells.  

One goal is to provide smooth and accurate q(t), D(t), and b(t) functions to enhance the 

diagnostic analysis of a given set of time-rate data.  We refer to the functions derived using 

our new workflow as the Laplace transform-smoothed functions.  To produce the Laplace 

transform smoothed rate function, the principle is as simple as to take the Laplace 

transform of discrete time-rate data using a piecewise data series, then to numerically 

invert this series back into the real time domain.  For the computation of the Laplace 

transform smoothed D(t) and b(t) functions, we have adapted the Laplace transform based 

differentiation algorithm proposed by Onur and Reynolds [1998].  In fact, Onur and 

Reynolds also proposed an approach that computes the integral function, which is also the 

basis for computing the Laplace transform smoothed cumulative production function in 

our work. 

The challenge of this work involves taking the Laplace transform of discrete data (i.e., 

production rate data).  Recall that the Laplace transform formula is an integral from t = 0 

to t = ∞, thus the knowledge of the function to be transformed is required across this 
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interval (i.e., 0 to ∞).  As for a discrete data set, interpolation and extrapolation of data are 

mandatory to obtain a proper approximating/represenative function to be transformed into 

the Laplace domain.  Although, there are several existing algorithms for the Laplace 

transformation of discrete data in petroleum literature, most of these methods were 

developed for use with well test data (i.e., pressure (drop) and sandface rate data) for well 

test analysis purposes, these methods might not be applicable for similar applications to 

production data.  For example, the algorithm proposed by Roumboutsos and Stewart 

[1988] assumes a zero-initial value and a straight-line interpolating function from t = 0 to 

t = t1 as a representative function on the left-hand side of discrete data set.  These 

assumptions are true for the pressure drop function but may not be true for the declining 

rate function. 

Moreover, well test data are typically acquired on a high frequency basis (e.g., minutes 

and hours), but production data are typically low frequency data (e.g., days or months).  

As such, we studied the effect of different data frequencies on Laplace transform smoothed 

functions.  In addition, we also consider: 

● Data extrapolation techniques for the Laplace transform computation. 

● The duration/history of the data (i.e., 3 years, 5 years, and 10 years). 

● Magnitude of data noise (i.e., Gaussian noise with 1 and 5 percent standard deviation). 

● Type of data function (i.e., increasing and decreasing data functions). 

Our expectation is that the proposed Laplace transform smoothing technique must produce 

results which are at least comparable — and at best, significantly better than the traditional 

differentiation and integration algorithms applied to this type of problem.  To confirm that 
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expectation we will test the Laplace transform smoothing technique against synthetic data 

created using the time-rate models previously mentioned (with and without data noise) 

and actual field production data. 

1.2 Objectives 

The primary objectives of this work are: 

● To investigate the characteristic behavior of the Laplace transform of selected time-

rate decline models (this is to develop a preliminary understanding of the nature of the 

"modern" time-rate (decline) curve models used for analysis of data from wells in 

unconventional reservoirs). 

● To develop and validate a methodology for utilizing the Laplace transform of discrete 

"time-rate" data sets to generate the smoothed rate, cumulative production, and 

associated derivative functions. 

The expected deliverables of this work are: 

● A workflow for using the numerical Laplace transformation of discrete "time-rate" 

data for the following tasks: 

— To provide a visualization of the rate function in the Laplace domain. 

— To generate the smoothed rate, cumulative, and associated derivative functions. 

— To utilize these functions in traditional diagnostic analyses (e.g., the qDb plot). 

● To provide clear demonstrations and exhaustive validation of the numerical Laplace 

transformation of discrete "time-rate" data. 

1.3 Validation and Application 

We validated the workflow using synthetic data sets generated from seven different types 

of empirical time-rate decline models.  Two synthetic data sets for each model were 

generated — a "perfect data set" (without data noise) and a noisy data set (with Gaussian 
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noise — 5% standard deviation).  We also validated the proposed method using field  data 

from four anonymous wells in unconventional reservoirs using the same methods as for 

the synthetic data cases. 

In each case, we compare the Laplace transform smoothed flowrate, D(t) function, b(t) 

function, and cumulative production to the model and/or the functions computed from 

conventional approaches (i.e., the Bourdet differentiation algorithm and the Trapezoidal-

rule integration algorithm) to analyze the accuracy and smoothness of the results. 

1.4 Summary and Conclusions 

We successfully developed a workflow utilizing the numerical Laplace transform of 

discrete "time-rate" data to produce accurate smoothed rate, rate derivative, D(t) function, 

b(t) function, and cumulative production functions.  The workflow involves a process to 

select a proper data extrapolation technique for the Laplace transformation process as well 

as the Stehfest "n" parameter for Laplace inversion.  As may be expected, the extrapolation 

technique and the selection of the Stehfest "n" parameter will be critical factors for this 

work. 

From tests using both synthetic and field data, we have observed that the Laplace 

transform method can produce more accurate and smoother rate derivative and cumulative 

production functions as compared to the conventional approaches (i.e., the Bourdet 

algorithm [1989] and the Trapezoidal based integration algorithm).  We also compared 

the use of rate and reciprocal of rate as the basis-functions to produce the required Laplace 

transform smoothed functions on a variety of data sets and found that the reciprocal of rate 
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approach is superior in most cases.  As noted above, the critical factors influencing the 

success of this method are the chosen extrapolation technique and the selection of the 

Stehfest "n" parameter utilized in Laplace inversion process. 
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2. LITERATURE REVIEW 

In this work, we study an application for the Laplace transformation of discrete data to be 

used for well performance analysis in unconventional reservoirs.  We first present an 

overview of the time-rate decline curve analysis models for both conventional and 

unconventional reservoirs.  The Laplace transformation of discrete data is then introduced 

as a mean to improve the analysis of unconventional well performance analysis (i.e., 

improving the computation and resolution of the data functions used on the qDb plot).  

Previous applications of the application of the Laplace transformation to discrete data as 

well as the algorithms typically used in reservoir engineering applications are summarized 

and discussed.  Lastly, some comments regarding the process of numerical Laplace 

inversion are provided. 

2.1 Time-Rate Decline Curve Analysis 

Time-rate data have been used extensively for over a century in the petroleum industry for 

decline curve analysis as a means of well production performance and reserves.  The main 

assumption for decline curve analysis is that the producing conditions do not change, 

hence the future behavior of the well will be governed by whatever trend or mathematical 

relationship is apparent in its past performance.  First comprehensive summary of decline 

curve analysis was given by Arps [1945], but as noted, there were a number of reference 

articles on extrapolation methods for production rates in the 1910s and 1920s.  In the Arps 

reference [1945], several types of decline curves were discussed and compared, and the 

well-known "loss-ratio" method was highlighted as a best practice. 
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The definitions of the loss-ratio and its derivative was first proposed by Johnson and 

Bollens [1927] as shown in Eqs. 2.1 and 2.2, respectively. 

1 ( )
( ) ( ) /

q t
D t dq t dt

≡ −  ................................................................................................. (2.1) 

1 ( )( )
( ) ( ) /

d d q tb t
dt D t dt dq t dt
   

≡ ≡ −   
   

 ....................................................................... (2.2) 

Arps [1945] also suggested the classification of decline curves based on their loss-ratio 

characteristics.  A constant loss-ratio yields an exponential decline and a constant 

derivative of the reciprocal of the loss-ratio (i.e., the b-parameter is constant) yields the 

basic hyperbolic decline relation. Consequently, the b-parameter can also be used for 

categorizing relations — b=0 yields the exponential decline relation and b=1 yields the 

harmonic type decline relation.  Cases where 0 < b < 1 are simply labelled as a hyperbolic 

decline relation. 

For conventional reservoirs, petroleum engineers have been using the hyperbolic decline 

curve model as an essential tool for predicting future well performance and estimating 

reserves for over 90 years due to its robustness and simplicity.  Petroleum engineers often 

deal with wells producing from various types of reservoirs and production scenarios which 

yield various declining characteristics.  To select an appropriate model, evaluators 

typically rely on statistical analyses to determine the value of b-parameter.  Despite the 

simplicity of the method, in many instances, due to poor quality or limited extent of time-
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rate data, statistical method can (and often do) lead to non-uniqueness of in the selected 

b-parameter, which results in unreliable forecasts and reserves estimates. 

Several authors such as Arps [1945] and Fetkovich [1990, 1996] attempted to determine 

the distribution of b-values for a specific reservoir type to provide guidelines that could 

yield fast and accurate forecasts.  Arps [1945] studied the b-value distribution of 149 oil 

fields and suggested that for 90 percent of the cases, the b-parameter is less than 0.5 (i.e., 

b < 0.5).  Fetkovich [1990, 1996] suggested using b-value less than 0.5 for a single-phase 

flow in homogeneous reservoir and using a range of 0.5 < b < 1 for a two-layer gas 

reservoir with no crossflow. 

Fetkovich also mentioned that by using statistical methods, b > 1 could be estimated from 

early-transient production rate data, and it is important to note for conventional reservoirs, 

this will lead to a significant overestimation of reserves.  In fact, Fetkovich specifically 

mentioned that b > 1 cases must be in transient flow, and by implication, we should not 

be using such relations for extrapolation.  However; for tight oil and shale reservoirs (so-

called "unconventional" reservoirs), transient flow behavior will dominate for decades.  

The question arises as to how to make production forecasts and estimate reserves in such 

cases, and the simple answer has been to apply a "terminal decline" to the traditional Arps 

hyperbolic decline relation.  There is nothing inherently wrong with using a terminal 

decline, actually just the opposite, this must be done — however; a terminal decline is 

largely empirical, and hence, subjective. 
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Consequently, several time-rate decline models have been developed in the last 10 or so 

years to better capture the production behavior of wells in unconventional reservoirs.  As 

noted, the most popular case is the "modified hyperbolic" model (i.e., the original Arps 

hyperbolic model with an exponential terminal decline). 

Returning to the discussion of traditional methods, a direct (graphical) approach to 

estimate the b-parameter was presented by Fetkovich [1980] where he proposed the use 

of a dimensionless type curve generated using b-values from 0 to 1.  Matching a field data 

set onto this type curve would provide the initial rate, the initial decline constant, and the 

b-parameter using the "best-fit" type curve.  For conventional reservoirs, this methodology 

dominated the practice in the 1970s and 1980s, but additional work was required as the 

methodology was augmented into "rate transient analysis" (i.e., fractured well models, 

horizontal well models, auxiliary functions, etc.). 

For unconventional reservoirs, a different approach should be used to predict well 

performance.  As mentioned earlier, wells in unconventional reservoirs exhibit extended 

(log-term) transient and transitional periods.  As a result, the time-rate data has "non-

hyperbolic" behavior (i.e., non-constant b-values) which prevents the use of the Arps 

hyperbolic models. 

Rushing [2007] tested the applicability of using Arps hyperbolic decline model with tight 

gas reservoirs.  He generated several time-rate data sets by varying the parameters in the 

tight-gas reservoir models.  Then, for each data set, he applied the Arps hyperbolic model 

and predicted EURs using various data intervals (e.g., 1, 5, 10, 20, and 50 years).  The 
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EURs were computed using the best fit b-value and then were compared to the true EUR 

obtained from the reservoir model.  The study suggests that b-values will decrease with 

time in low/ultra-low permeability reservoirs — in other words, reserves could be (and 

actually always will be) significantly overestimated using early-time production data.  

This study emphasizes the non-constant nature of the b-value for wells in unconventional 

reservoirs and that a thorough diagnostic process be used to determine an appropriate 

model.  Lee and Sidle [2010] and Yu [2013] also had similar comments on the issue of 

using high b-values to predict well performance of wells in unconventional reservoirs and 

that the error of the predicted EURs could be as much as 100 percent. 

Ilk [2008] studied the behavior of b-values over time [i.e., b(t) behavior] in tight gas sands.  

The study also suggests a "non-hyperbolic" behavior of these wells and Ilk commented 

that such behaviors could be derived from various sources — i.e., multilayer effects, 

extended transient flow behavior, and increasing contacted gas-in-place with time.  The 

diagnostic plot used in the study is the so-called "qDb" plot — which is a log-log plot of 

q(t) on the left axis plotted simultaneously with D(t) and b(t) on the right axis.  This 

"simultaneous" matching of q(t), D(t), and b(t) has an analog the pressure drop and 

pressure drop derivative plots from pressure transient analysis, and the use of multiple 

matching functions significantly reduces the non-uniqueness in this diagnostic-based 

analysis approach. 

Using the qDb plot, Ilk [2008] developed "rules" — for example; a constant b-parameter 

trend in the plot suggests a constant hyperbolic decline and a (power law) straight-line 
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declining trend of the D(t) function became the "power-law exponential" (or stretched 

exponential) type decline.  In addition, the qDb plot can be used to diagnostically estimate 

the model parameters for a given model (e.g., the modified-hyperbolic and the power-

law/stretched exponential models — and other models to be discussed later).  Okouma 

[2012] showed the application of this plot to determine an appropriate rate-decline relation 

for a broad selection of wells in unconventional (shale) reservoir systems. 

( / ) ( / )L L R R R L

R L

f t t f t tdf
dt t t

∆ ∆ ∆ + ∆ ∆ ∆
=

∆ + ∆
 ..................................................................... (2.3) 

Regarding the computation of D(t) and b(t) functions, we use the definitions of the loss-

ratio and its derivative in Eqs. 2.1 and 2.2 (respectively), both of which involve the 

derivative of q(t) function.  As mentioned earlier, typically, we use the differentiation 

algorithm proposed by Bourdet [1989] (Eq. 2.3).  The "Bourdet" algorithm is essentially 

a weighted finite-difference approach.  The Bourdet Algorithm does provide a level of 

smoothness to the computed derivative functions — however, many times the rate data 

are very noisy such that the results exhibit oscillations.  The level of smoothness can be 

manipulated by adjusting the smoothing parameter "L."  However, higher L-values lead to 

less accurate derivatives and larger end-point effects. 

Mattar et al [2008] showed an example that the b(t) function calculation can be severely 

affected by the Bourdet differentiation algorithm (as could be expected since the b(t) 

function is the time derivative of the 1/D(t) function).  Ilk [2008] presented one technique 

to address (but not resolve) the issue of oscillating D(t) and b(t) functions when they 
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reformulated these calculations in terms of the rate-cumulative production behavior (as 

opposed to using the "rate-time" derivative formulations).  Collins [2016] showed that the 

smoothing cubic spline algorithm (proposed by Pollock) provides an alternative approach 

that produces smooth D(t) and b(t) functions — however; being based on a cubic spline, 

this method will under-smooth (yielding oscillations) as well as over-smooth (removing 

small-scale features), depending on the selection of the spline smoothing criteria. 

2.2 Numerical Laplace Transform of Discrete Data  

As mentioned earlier, we are applying the existing Laplace transform algorithms to 

discrete time-rate data to generate various smoothed data functions using the Laplace 

transform smoothing methodology.  One goal is to provide an alternative computation 

method for rate derivative functions in order to produce smooth and accurate D(t) and b(t) 

functions.  We began by studying the literature related to the Laplace transformation of 

discrete data that will be discussed below. 

In reservoir engineering applications, the numerical Laplace transformation of discrete 

data has historically been used for deconvolution of well-test data, where this approach 

has been proven useful in the deconvolution of variable-rate pressure responses.  Recall 

that the convolution integral becomes a functional multiplication in the Laplace domain, 

hence the desire to use the Laplace transform as a deconvolution mechanism.  However, 

the success of the process relies on the algorithms to transform discrete data into the 

Laplace domain and to invert it back into real time space (Onur and Reynolds [1998]). 
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In addition to the deconvolution application, the Laplace transform of discrete data can be 

used to compute accurate and smooth pressure (drop) derivative for well-test analysis as 

proposed by Onur and Reynolds [1998].   

Lastly, the Laplace transform of discrete data have been used to build type curves in the 

Laplace domain.  Bourgeois and Horne [1993] introduced a concept to perform model 

recognition and reservoir parameter identification in the Laplace domain using a series of 

Laplace transform type curves.  They introduced a new expression in the Laplace domain 

called the "Laplace pressure."  The type curves of the dimensionless Laplace pressure and 

the reciprocal of the Laplace variable have characteristics similar to the dimensionless 

pressure type curves in the real time domain — however; the Laplace domain functions 

tend to be smoother as the integration of data is involved.  The "Laplace pressure" can be 

used in the same manner as the ordinary pressure type curves and can be used to address 

issues with noisy data (Bourgeois and Horne [1993]).  For reference, the "Laplace 

pressure" function is defined as: 

{ ( )} ( )s p t s p s=  ................................................................................................... (2.4) 

Recall that the Laplace transform is an integral defined from 0 to ∞, hence the function 

being integrated must be known (or represented) at those limits.  Thus, to transform a 

discrete data into the Laplace domain, we require an approximating or a representative 

function for the data set across the positive semi-infinite interval.  Generally, in all three 

applications mentioned earlier, we are transforming sampled pressure and rate data sets 

acquired from well testing which are available from t1 to tN (where t1 > 0 and tN < ∞).  
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Thus, to represent this type of data, interpolation techniques are used to approximate the 

function from t1 to tN, while extrapolation techniques are used to represent the functions 

from t = 0 to t1 and from tN to ∞. 

Kuchuk and Ayestaran [1985] tried several approximating functions for time-rate data to 

be used for the deconvolution based on the Laplace transform method (i.e., rational 

functions, power series, and exponential functions).  For pressure transient applications, 

specifically the analysis of radial flow data affected by wellbore storage effects, Kuchuk 

and Ayestaran concluded that an exponential function gives the best representation of the 

time-rate data, which is also in agreement with the work by van Everdingen and Hurst 

[1953]. 

Based on some of the work proposed by Kuchuk and Ayestaran [1985], Roumboutsos and 

Stewart [1988] developed a robust technique using the Laplace transform for the 

deconvolution in well test analysis.  It is worth mentioning that the Roumboutsos and 

Stewart algorithm has also been used for the estimation of cumulatives and derivatives.  

They proposed using a piecewise linear data function to approximate the discrete data, as 

well as linear extrapolation to represent the data function after the sampled data interval.  

The algorithm assumes a zero-initial value for the function to be transformed, as a result, 

an extrapolation prior to the sampled data interval is not required in this algorithm.  The 

Roumboutsos and Stewart Laplace transform expression is shown in Eq. 2.5 below. 

1
2 2

1

1 1( ) ( )i i N

N
st st st

i ext
i

f s m e e m e
s s

−− − −

=

= − +∑  ............................................................. (2.5) 
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It is noted that some symbolic expressions used in the Laplace transform formulations in 

this thesis report are altered from those in the original equations in literature such that they 

could be standardized across this document (e.g., in Eq. 2.5, mext is used instead of Nf  in 

the original document).  The constant, mext, shown in the second term on the right-hand 

side of Eq. 2.5 represents the slope of the extrapolated straight-line on the right end of 

discrete data set.  However; the means to acquire this slope was not specified in the 

Roumboutsos and Stewart work. 

In 1993, Bourgeois and Horne proposed an algorithm to transform pressure (loss) data into 

the Laplace domain for the purpose of model recognition in the Laplace domain using type 

curves.  For the early-time period (i.e., the time before the pressure measurement), 

Bourgeois and Horne suggest that the pressure data could be extrapolated linearly if 

wellbore storage is present.  For evaluations required within the measured data, linear 

interpolation is suggested.  Lastly, for the late-time period, Bourgeois and Horne suggest 

that the extrapolation model should follow the probable behavior of data as closely as 

possible.  In case of a closed outer boundary, then linear extrapolation can be used, just as 

proposed by Roumboutsos and Stewart [1988].  However, in most cases, a semi-log 

extrapolation is recommended (as an assumption of radial flow would prescribe).  A 

modification of the Roumboutsos and Stewart algorithm by considering this new 

extrapolation scheme (i.e., semi-log extrapolation for large times) is shown in Eq. 2.6.  

This relation assumes a stabilized derivative with respect to natural logarithmic of time as 
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the extrapolating slope of pressure response to infinite time.  The constant, mext, in Eq. 2.6 

represents that slope. 

1
12

1

1( ) ( ) ( )i i

N
st st ext

i N
i

mf s m e e E st
s s

−− −

=

= − +∑  ........................................................... (2.6) 

For the case of a build-up test, a semi-log extrapolation with respect to Horner time could 

be used instead (Bourgeois and Horne, 1993).  However, it was highlighted that even with 

a good extrapolation, there is a range for which the calculated Laplace transform is just 

simply the transform of the extrapolation.  The limit where the Laplace transform remains 

meaningful could be estimated from the rule: 

1/ Ns t>  .................................................................................................................. (2.7) 

Moreover, Bourgeois and Horne [1993] recommended a method to acquire the semi-log 

slope when working with field data (where field data always contains data noise).  The 

slope should be computed using an expression which is less sensitive to the last 

measurement.  A centered logarithmic finite-difference (e.g., a modification of the 

Bourdet algorithm) which computes the slope on the last 0.2 or even 0.4 log-cycle of data 

was recommended by Bourgeois and Horne [1993].  It is important to note that this 

approach is recommend for both flowrate and pressure measurements. 

Onur and Reynolds [1998] suggests using a log-linear extrapolation instead of a simple 

Cartesian straight-line trend as suggested by Roumboutsos and Stewart [1988].  For 

reference, Onur and Reynolds proposed the application of the numerical Laplace 
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transform for the calculation of pressure drop derivative (and pressure drop integral) 

functions.  As investigated extensively by Onur and Reynolds, the accuracy of the pressure 

derivative function is highly influenced by the extrapolation strategy used at both ends of 

data.  In addition, the "smoothness" of the derivative is a feature of the Gaver-Stehfest 

numerical Laplace inversion algorithm used to invert (or recover) the Laplace domain 

solution back to the real domain (Onur and Reynolds [1998]). 

Several algorithms were tested in the Onur and Reynolds study, including various types 

of interpolation and extrapolation schemes.  The interpolation functions tested are: 

piecewise linear, quadratic, and log-linear functions.  The extrapolation functions include 

linear, semi-log, and log-linear extrapolation functions.  In the case of the semi-log and 

log-linear extrapolations, two separate methods to estimate the extrapolation slopes were 

tested — numerical differentiation of the Lagrange interpolating polynomial (proposed by 

Bourgeois and Horne [1993]) and the least squares method (piecewise fitting of a 

polynomial). 

The recommended methodology proposed by Onur and Reynolds [1998] for the pressure 

derivative calculation using the Laplace transformation is given as follows: 

Step 1: The discrete data are approximated by a piecewise linear data function to form 

a functional representation between the first data point and the last data point.  

It provides similar accuracy level of the resulted pressure derivative function to 

a piecewise quadratic method however more simplified.  According to the Onur 

and Reynolds study, the piecewise log-linear interpolation approach gives 
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highly oscillatory unstable results and is more computational expensive than the 

others. 

Step 2: For the functional representation outside the data interval, log-linear extrapola-

tions on both sides using a least square fitting technique to determine the slopes 

are recommended.  A least squares straight-line fitting of the form ln f (t) = β ln 

t + ln α can be used to determine the constants of the extrapolating functions.  

The regressed intervals of 0.2 log-cycle after the first data point and 0.7 log-

cycle before the last data point are suggested to obtain accurate and representa-

tive extrapolations for noisy data.  The other extrapolation techniques used in 

their study show lower accuracy of the derivative functions on the right end. 

Step 3: The Laplace transform algorithm using the power-law data functions can be 

expressed in analytical form as shown in Eq. 2.8. 

( ) 11

1

1
1 1 1 2

2

1 1( ) ( , ) ( )
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N i i

ext
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st st stst

N i
i

ext
ext ext N

f s st f e f e m e e
s s s

st
s

υ

υ

α γ υ

α υ γ υ

−− − −−

=

= + − + −

+ Γ −

∑
 ........... (2.8) 

Step 4: The pressure derivative can be computed using the property of the Laplace 

transform of derivative function as shown in Eqs. 2.9 and 2.10.  The algorithm 

in Eq. 2.10 requires more computational time but it is more reliable than Eq. 

2.9. 
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1 1( ) ( ) { '( )} { ( )}
ln( )

d p t d p tt t p s t s p s
d t dt

− −∆ ∆
= = ∆ = ∆   ................................... (2.9) 

1( ) ( ){ ( ) }
ln( )

d p t d p sp s s
d t ds

−∆ ∆
= −∆ −  ......................................................... (2.10) 

It's worth noting that the Laplace transform algorithm presented by Onur and Reynolds 

was also claimed to work well for generation of integral functions and for con-

volution/deconvolution purposes (Onur and Reynolds [1998]). 

Al-Ajmi [2008] mentioned that there are several techniques suggested by LePage [1961] 

to numerically transform discrete data into the Laplace domain.  Polynomial fits (e.g., 

spline fittings) and other forms of piecewise functions (e.g., piecewise log-linear, piece-

wise quadratics) provide a general approach for representing the discrete data such that 

these data can be transformed through analytical techniques.  Al-Ajmi [2008] also noted 

that insufficient accuracy of extrapolation could lead to errors known as "tail" effects. 

Ahmadi [2012] suggest using a piecewise polynomial function called natural cubic spline 

to represent the discrete data for Laplace transform deconvolution process.  In 2017, 

Ahmadi [2017] proposed a new method using a unit impulse function as the representative 

function instead.  Both representative functions become zero outside the data interval and 

thus eliminate the requirement for extrapolation of discrete data on both ends. 
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2.3 Numerical Laplace Inversion 

As mentioned earlier, we require a numerical Laplace transform inversion algorithm to 

obtain smoothed data functions in the real domain, which is the main purpose of our study.  

In the petroleum literature, several numerical Laplace inversion algorithms have been 

proposed for convolution/deconvolution and for the computation of the pressure derivative 

functions.  The most popular (and most direct) algorithm is the Stehfest [1970] algorithm. 

For reference, Roumboutsos and Stewart [1988] also suggests using the Stehfest numerical 

Laplace inversion algorithm.  However, one limitation of the algorithm is that it requires 

a strongly continuous base function in the real domain.  When dealing with a functions 

containing discontinuities (e.g., the step rate function), the Durbin and Abate [1984] 

algorithm was recommended.  The Durbin and Abate method is based on Fourier analysis 

and takes much more computational time than the Stehfest method, and thus, is only used 

when circumstance require a more robust algorithm (e.g., for data with significant 

discontinuities). 

Similarly, Bourgeois and Horne [1993] also used the Stehfest algorithm to deconvolve 

pressure data.  When their Laplace transform deconvolution algorithm was tested with a 

field example, values of the Stehfest "n" parameter as low as 4 were used (as comment, 

n=4 is a very low value, not associated with highly accurate inversions). 

Onur and Reynolds [1998] compared three different numerical inversion algorithms 

including algorithms by Stehfest, Bellman et al [1996], and Crump [1976] to compute 

smooth pressure derivatives and pressure functions from a noisy pressure data set.  The 
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Gauss-quadrature method for Legendre polynomials is the basis for Bellman method and 

Fourier series techniques are the basis for the Crump method.  According to the Onur and 

Reynolds’ study, among the three algorithms, the Stehfest algorithm provided the 

smoothest and the most accurate pressure derivative and pressure functions.  Thus, two 

conclusions can be drawn from the Onur and Reynolds’ study.  First, the Stehfest 

algorithm should be the preferred method for Laplace transform smoothing efforts.  

Second, the results of any Laplace transform smoothing methodology will be a function 

of the numerical inversion process used.  While this may seem obvious, we can confirm 

these observations for our efforts as well. 

Al-Ajmi [2008] also commented on the use of the Stehfest algorithm for data smoothing 

applications and noted that it may cause a loss of accuracy and character if the inverted 

functions contain step-changes and/or discontinuities.  Al-Ajmi noted that Fourier-series 

based algorithms (e.g., Crump [1976] and Iseger [2006]) provide better accuracy of the 

inverted functions, especially those with discontinuities.  Lastly, Al-Ajmi noted that 

despite the accuracy of the Iseger algorithm, it yields oscillating results when applied to 

data set with significant quantities of data noise, and suggested that some form of 

conditioning or regularization might be required. 
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3. DEVELOPMENT AND EVALUATION OF THE LAPLACE TRANSFORM 

METHODOLOGY 

The main deliverable of this work is the development of a workflow for using the Laplace 

transformation of discrete "time-rate" data for the following tasks: 

● To generate the smoothed rate, cumulative, and associated derivative functions. 

● To utilize these functions in traditional diagnostic analyses (e.g., the qDb plot). 

This chapter introduces the theoretical foundation of the proposed workflow and 

summarizes the algorithms required to transform the discrete "time-rate" data into the 

Laplace domain.  The proposed workflow and algorithm then will be examined and 

evaluated using a synthetic data generated from Arps exponential decline model. 

3.1 Laplace Transform Smoothing and Functional Operations 

We propose using the Laplace transformation to smooth a time-rate data function and to 

obtain smooth derivatives and cumulative from the "Laplace transform smoothing" 

methodology.  The functions we propose to compute are referenced as follows: 

● The Laplace transform smoothed rate function: ˆ( )q t  

● The Laplace transform smoothed cumulative function: ˆ ( )Q t  

● The Laplace transform smoothed rate derivative function: ˆ ˆ( ) ( )dq' t q t
dt

=  
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Using the Laplace transform smoothed rate derivative function, we can use the definition 

of the loss-ratio in Eq. 2.1 to compute the Laplace transform smoothed D(t) function as 

defined in Eq. 3.1. 







1( ) ( )
( )

dD t q t
dtq t

≡ −  ................................................................................................ (3.1) 

Once the ( )D t  function is computed, we can compute the Laplace transform smoothed 

( )b t  function using the definition of the loss-ratio derivative from Eq. 2.2 as shown in Eq. 

3.2 below. 



1( )
( )

db t
dt D t

 
≡  

 
  ...................................................................................................... (3.2) 

From the available petroleum literature, we find that most of the existing Laplace 

transform algorithms for discrete data have been applied to the pressure (drop) function, 

which is an increasing data function.  Obviously, the rate function [q(t)] is continuously 

decreasing during production and we believe that there may be inherent differences in the 

application of these Laplace transform discrete data methods for increasing and decreasing 

functions.  Therefore, in addition to applying these methods to the time-rate data function 

[q(t)], we also use the reciprocal of rate data function [u(t) = 1/q(t)], which is an increasing 

data function, and may be more suitable for Laplace transform smoothing methodology. 



 

26 

 

The expressions for the Laplace transform smoothed rate function using the time-rate data 

function [q(t)] and the reciprocal of rate data function [u(t) = 1/q(t)] are shown 

(respectively) as: 



1( ) { ( )}q t q s−=       where ( ) { ( )}q s q t=   ............................................................... (3.3) 



1

1( )
{ ( )}

q t
u s−

=


     where ( ) { ( )} {1/ ( )}u s u t q t= =   ........................................... (3.4) 

The expressions for the Laplace transform smoothed rate derivative function is derived 

using the Laplace transform identity of derivative function shown in Eq. 3.5.  By using 

rate [q(t)] and its reciprocal [u(t)] as the basis-functions, we obtain the expressions for the 

Laplace transform smoothed rate derivative function as in Eqs. 3.6 and 3.7, respectively. 

'( ) ( ) ( 0)f s s f s f t= − =  .......................................................................................... (3.5) 

 

1'( ) ( ) { '( )}dq t q t q s
dt

−= =       where '( ) ( ) ( 0)q s sq s q t= − =  ................................. (3.6) 



2
1

1

1'( ) { '( )}
{ ( )}

q t u s
u s

−
−

 
= − 

 



     where '( ) ( ) ( 0)u s su s u t= − =  ........................ (3.7) 

Alternatively, we can use the Laplace transform identity of the derivative with respect to 

logarithmic time to obtain the Laplace transform smoothed derivative function.  This latter 

approach was introduced by Onur and Reynolds [1998] and they claimed this approach 

produces a smoother derivative function — however; this approach requires longer 
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computational times.  In this work, we experimented with this algorithm using a five-year 

monthly exponentially-declined time-rate data using rate as the basis-function.  We found 

that the resulting rate derivative function is comparable with the result derived using Eq. 

3.6 (at least for this experimental case).  As the results were quite similar, we chose to 

limit our study only to Eqs. 3.6 and 3.7.  However, we provide the detailed derivations of 

the alternate differentiation method introduced by Onur and Reynolds, as well as all the 

derivations of all the expressions in this section of the report (Section 3.1) in Appendix B 

of this thesis report. 

As for the Laplace transform smoothed cumulative production, this function can only be 

computed using the time-rate discrete data as the basis-function.  The Laplace transform 

identity of the integral is given by Eq. 3.8 and is used to derive the smoothed function in 

Eq. 3.9. 

0

( )( )
t f sf t dt

s
 

= 
 
∫  ................................................................................................ (3.8) 

 { }1 1 ( )( ) { ( )} q sQ t Q t
s

− −  
= =  

 
        where 

0

( ) ( )
t

Q t q t dt= ∫  ................................... (3.9) 

As for the numerical inversion algorithm, we decided to use the Gaver-Stehfest algorithm 

throughout this research work as it has a feature to smooth the function.  In fact, we expect 

the smoothing property is a contribution from both the Laplace transformation and the 

Laplace inversion process. 
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3.2 Laplace Transform Algorithms for Discrete "Time-Rate" Data 

As discussed earlier in the literature review section, there have been several algorithms 

developed to take the Laplace transform of discrete data.  The main differences among 

those algorithms are the functions used to approximate and/or represent the discrete data 

prior to being transformed into the Laplace domain.  Most data-approximation techniques 

presented in the literature can be subdivided into three parts that include: 

● The extrapolation/interpolation of data from: 0 to t1. 

● The interpolation of data from : t1 to tN. 

● The extrapolation of data from: tN to ∞. 

Thus, for the sake of simplicity to compare, derive, and explain the Laplace transform 

algorithms, we subdivided the Laplace transform integral (Eq. 3.10) into three regions as 

well (as shown in Eqs. 3.11 and 3.12).  Fig. 3.1 shows a schematic for the Laplace 

transform of discrete data being subdivided into three regions. 

0

{ ( )} ( ) ( ) stf t f s f t e dt
∞

−= = ∫  ................................................................................ (3.10) 

1

0 10

{ ( )} ( ) ( ) ( )
N

N

tt
st st st

t t t

f t f t e dt f t e dt f t e dt
∞

− − −

=

= + +∫ ∫ ∫  .............................................. (3.11) 

1 2 3{ ( )}f t P P P= + +  ............................................................................................. (3.12) 
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Figure 3.1 — Regions for the Computation of a Laplace Transform Data Expression. 
 
 
 
To clarify in words; P1, P2, and P3 can be defined as below. 

P1: The Laplace transform integral of the extrapolating function from t0 = 0 to t1 

P2: The Laplace transform integral of the interpolating function approximating the 

discrete data from t1 = 0 to tN 

P3: The Laplace transform integral of the extrapolating function from tN to ∞  

The previously developed Laplace transform algorithms for discrete data can be 

summarized in Table 3.1 below.  In Table 3.1, we note that the most popular 

approximating function for P2 computation appears to be the piecewise linear data 

function.  As noted by Onur and Reynolds [1998], the piecewise linear data function yields 

a more accurate (or at least on par) derivative function and takes shorter computational 

time compared to using the piecewise quadratic and log-linear functions.  As we also aim 

to produce derivative functions from the Laplace approach, we decided to use the 

piecewise linear method for P2 calculation throughout this research work. 
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Table 3.1 — Summary of the Approximating and Representative Functions for the 
Computation of the Laplace Transform of Discrete Data. 

 
 
 
  

Year Authors 
Data Approximation Algorithms for Laplace Transform of Discrete 

Data 
P1 P2 P3 

1983 Kucuk& 
Ayestaran 

N/A Flowrate: 
exponential, 
Pressure: 4th degree 
polynomial 

N/A 

1986 Guillot& 
Horne 

Linear extrapolation 
(due to WBS) 

1.) Piecewise step 
data 
2.) Cubic spline 
interpolations 

N/A 

1988 Roumboutsos
& Stewart 

Linear extrapolation Piecewise linear Linear extrapolation 

1993 Bourgeois& 
Horne 

Linear extrapolation 
(due to WBS)  

Piecewise linear 1.) Semi-log extrapolation 
(in general) 
2.) Linear extrapolation 
for closed outer boundary 
reservoir system 

1998 Onur& 
Reynolds  

1.) Linear 
extrapolation  
2.) Log-linear 
extrapolation 

1.) Piecewise linear  
2.) Piecewise 
quadratic  
3.) Piecewise Log-
linear  

1.) Linear extrapolation  
2.) Log-linear 
extrapolation 

2003 Mireles& 
Blasingame 

Linear extrapolation Piecewise linear Linear extrapolation 

2005 Ilk Flowrate: Piecewise constant, piecewise linear 
Unknown pressure derivative: B-spline 

2008 Al-ajmi 

1.) Linear 
extrapolation  
2.) Log-linear 
extrapolation 

Piecewise linear 1.) Linear extrapolation  
2.) Log-linear 
extrapolation 

2012 Ahmadi Zero Cubic spline Zero 

2017 Ahmadi Zero Unit impulse 
function 

Zero 
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The expression for P2 using a piecewise linear data approximating function is shown in 

Eq. 3.13.  Note that mi in Eq. 3.13 represents the straight-line slope from ti-1 to ti. 

11
2 1 2

2

1 1( ) ( )N i i

N
st st stst

N i
i

P f e f e m e e
s s

−− − −−

=

= − + −∑  .................................................... (3.13) 

where: 

( )i if f t=      and i=1, 2, 3, …, N ........................................................................... (3.14) 

For the P1 computation, most authors suggest using a linear and log-linear extrapolation/ 

interpolation of data.  In case that the initial value of data function is known (e.g., the 

pressure drop function always starts at zero), the interpolation of data to zero could be 

used.  However, in our case, we assume the initial production rate is not known.  Thus, an 

extrapolation on the left-hand side of data is required.  Moreover, as we are also using the 

reciprocal of rate as the basis-function (which is inherently an increasing and positive data 

function) in our computation, an extrapolation to negative values at t = 0 could happen.  

Thus, we assume that the initial value for the reciprocal of rate is equal to zero for this 

case. 

Similarly, the computation of P3 requires an extrapolation on the right-hand side of 

discrete data.  The extrapolation of time-rate data (which is inherently a decreasing and 

positive data function) on the right-hand side could extend to negative values at some point 

in time.  In this case, we terminate the extrapolating line at that time point and the 

functional values beyond this time point is assumed to be zero.  
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Based on Table 3.1, several types of extrapolating functions could be used to represent 

the data outside the data interval.  From literature study, we are convinced that to obtain 

an accurate Laplace transform of discrete data set, the extrapolation should follow the 

probable behavior of the data function in real-time space.  Thus, we propose a method to 

observe the behavior of time-rate data by plotting it on four different plotting scales which 

include Cartesian, Log-Log, Linear-Log and Log-Linear scales.  We could select a proper 

extrapolation technique by observing a straight-line behavior of data on these plots.  For 

example, in case that we observe the data exhibits a straight-line trend on the Log-Log 

plot, we should extrapolate the data using a straight-line function on a Log-Log scale.  

Since, we have four types of plots, we propose to use four different extrapolating functions 

which are essentially the straight-line extrapolations on those four plotting scales.  The 

governing equations for the straight-line extrapolations on the four plotting scales are 

summarized below (Eqs. 3.15 to 3.18). 

● Cartesian plot 

( )f t mt c= +  .......................................................................................................... (3.15) 

● Log-Log plot 

ln( ( )) ln( ) ln( )f t tβ α= +  ....................................................................................... (3.16) 

● Linear-Log plot (the abscissa axis (x-axis) is scaled logarithmically) 

( ) ln( )f t m t c= +  ................................................................................................... (3.17) 
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● Log-Linear plot (the ordinate axis (y-axis) is scaled logarithmically)  

ln( ( )) ln( )f t tβ α= +  ............................................................................................. (3.18) 

In Eqs. 3.15 and 3.17, the slope and intercept are represented by m and c; whereas, in Eqs. 

3.16 and 3.18, they are represented by β and ln(α).  Since, we aim to use this algorithm 

with production rate data which almost certainly contains data noise, we propose to use 

the method to obtain these extrapolating constants suggested by Onur and Reynolds 

[1998].  The method is a least-square regression of a few data points on both ends of the 

data set.  This method is superior to using derivative values because it prevents bias of the 

slope when dealing with noisy data set.  However, the least square method also has its own 

pitfall.  By using the least-square slope and intercept to create the extrapolating functions 

outside the data interval, there are always discontinuities at the first and the last time 

points.  To solve this issue, we replace the actual data points at both ends with the 

functional values obtained from the extrapolating functions. 

The expressions for P1 and P3 can be obtained by substituting those relations in Eqs. 3.15 

to 3.18 into the Laplace integral.  We have tried to derive P1 expressions using all four 

extrapolating functions, however, the expression using a straight-line function on a Linear-

Log scale could not be derived explicitly.  The P1 expressions using straight-line 

extrapolating functions on Cartesian, Log-Log, and Log-Linear scales are shown in Eqs. 

3.19, 3.20, and 3.21, respectively. 
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Straight-line extrapolation on Cartesian scale: 

( )1 1
1 0 1 12

1 1 (1 )st stP f f e m e
s s

− −= − + −      where 0 ( 0)f f t= =  .................................. (3.19) 

Straight-line extrapolation on Log-Log scale: 

1

1
1 1 1( , )P st

sυ
α γ υ=      where 1 1 1 0υ β= + >  ............................................................. (3.20) 

Straight-line extrapolation on Log-Linear scale: 

1 1( )1
1

1

[ 1]s tP e
s

βα
β

−= −
−

     where 1s β≠  ................................................................. (3.21) 

It is important to note that Eq. 3.20 is only applicable to the case where the straight-line 

slope on the Log-Log scale is more than minus one.  Thus, we limit the use of this 

formulation only to increasing data functions where the slopes are positive values 

(certainly exceeds minus one).  Lastly, the constants designated by m1 and β1 in Eqs. 3.19 

to 3.21 refer to the straight-line slope for the interval t < t1. 

Similarly, P3 expressions were derived using all four extrapolation schemes.  For each 

extrapolation scheme, we derived the expressions for increasing and decreasing functions, 

separately.  The reason is that some further modifications are required for the expressions 

for decreasing functions as we need to consider possible extrapolations to negative values.  

All the expressions for P3 are shown in Eqs. 3.22 to 3.28. 
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Straight-line extrapolation on Cartesian scale (for increasing data functions): 

3 2

1 1
N Nst st

N extP f e m e
s s

− −= +  .................................................................................... (3.22) 

Straight-line extrapolation on Cartesian scale (for decreasing data functions): 

/
3 2

1 1 (1 )N N N extst st sf m
N extP f e m e e

s s
− −= + −  .................................................................. (3.23) 

Straight-line extrapolation on Log-Log scale (for increasing data functions): 

3 [ ( ) ( , )]
ext

ext
ext ext NP st

sυ
α υ γ υ= Γ −      where 1 0ext extυ β= + >  .................................... (3.24) 

Straight-line extrapolation on Linear-Log scale (for increasing data functions): 

3 ( )NstN ext
i N

f mP e E st
s s

−= − −  .................................................................................. (3.25) 

Straight-line extrapolation on Linear-Log scale (for decreasing data functions): 

3 1[ ( ) ( )]NstN ext
i N i N

f mP e E st E st
s s

−
+= + − − −  ........................................................... (3.26) 

where 

/
1

N extf m
N Nt t e−
+ =  ...................................................................................................... (3.27) 
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Straight-line extrapolation on Log-Linear scale (for decreasing data functions): 

3
NstN

ext

fP e
s β

−=
−

     where exts β>  ....................................................................... (3.28) 

Note that the P3 expression using straight-line extrapolation on the Log-Log scale is only 

valid for increasing data function.  Similarly, the P3 expression using straight-line 

extrapolation on the Log-Linear scale is only valid for decreasing data function.  The time 

tN+1 represents the time point at which the extrapolated function extends to zero.  The 

constants designated by mext and βext in Eqs. 3.22 to 3.28 refer to the straight-line slope for 

the interval t > tN. 

To get a complete Laplace transform expression, we simply sum up P1, P2, and P3.  For 

example, in the case that we decide to use a piecewise linear interpolation and linear 

extrapolations on both ends.  The complete Laplace transform formulation can be 

expressed in Eqs. 3.29 and 3.30 for increasing and decreasing data functions, respectively.  

We call them as the modified Roumboutsos and Stewart algorithms as they use the same 

data approximation strategy as the original version except that they have different 

assumptions on the initial-value and the positive nature of the function being transformed. 

The modified Roumboutsos and Stewart algorithm with non-zero initial value is defined 

as (increasing data function): 

10
2 2

1

1 1( ) ( )i i N

N
st st st

i ext
i

ff s m e e m e
s s s

−− − −

=

= + − +∑  ..................................................... (3.29) 
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The modified Roumboutsos and Stewart algorithm with a large-time zero tendency 

extrapolation feature is given by (decreasing data function): 

10
2 2

1

1 1( ) ( ) (1 )
N

i i N ext

sfN
st st st m

i ext
i

ff s m e e m e e
s s s

−− − −

=

= + − + −∑  ....................................... (3.30) 

Lastly, the detailed derivations of all the Laplace transform expressions used in this 

research work are summarized in Appendix A of the thesis report. 

3.3 Proposed Workflow 

The workflow to compute the Laplace transform smoothed rate, rate derivative, and D(t) 

functions is demonstrated in Fig. 3.2.  The same workflow can be used to compute the 

Laplace transform smoothed cumulative production and b(t) functions by changing the 

basis-functions.  Table 3.2 suggests the basis-function to be used for each Laplace 

Transform smoothed function. 

 
 
 

Table 3.2 — Basis-Functions for the Computation of the Laplace Transform Smoothed 
Functions 

Laplace Transform  
Smoothed Function 

( )q t , '( )q t ,  ( )D t   ( )Q t  ( )b t  

Basis-Function ( )q t , ( ) 1 / ( )u t q t=  ( )q t  1/ ( )D t  
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The workflow can be explained briefly as below: 

Step 1: Plot the basis-functions on the four plotting scales. 

We start with plotting the basis-functions which are q(t) and 1/q(t) on four different types 

of plots to observe the data behavior near both endpoints.  The four types of plots include 

Cartesian, Log-Log, Linear-Log, and Log-Linear plots. 

Step 2: Determine NP1, NP3, lL, and lR to obtain a proper representative function 

of discrete data. 

An example Log-Log plot of the reciprocal of rate function versus time from an actual 

field data case is shown in Fig. 3.3.  From the Figure, we can see that the Log-Log type 

extrapolation on the left end and the Cartesian-type extrapolation on the right end are the 

best options for this data set.  In fact, we should consider all four plots, simultaneously.  

Regression ranges (lL and lR) of 1.3 and 0.1 were used in this example case.  The constant 

lR of 0.1 means that the data points in the last 10 percent of a log cycle were used in the 

regression to obtain the extrapolating constants on the right end.  After obtaining all four 

parameters (i.e., NP1, NP3, lL, and lR), we can compute the Laplace transform using the 

expressions presented in Section 3.2.   

Step 3: Adjust the Stehfest "n" parameter to obtain accurate and smooth Laplace 

transform smoothed functions. 

From graphical observation of the resulted smoothed function and the original function, 

we can determine a proper "n" parameter to be used.  In case of rate derivative and 
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cumulative production, the Laplace transform smoothed functions can be plotted against 

the functions computed using the conventional methods (i.e., Bourdet differentiation 

algorithm for rate derivative and Trapezoidal rule of integration for cumulative 

production) to determine a proper "n" parameter.  The principle is to balance between 

accuracy and smoothness of the resulted functions.  The larger "n" leads to more accurate 

but oscillated functions.  The parameter "n=8" is recommended by Onur and Reynold 

[1998] to be used for computing the smoothed derivative function as they result in a 

derivative function with adequate accuracy and smoothness when applied to noisy data. 

 
 
 

 

Figure 3.2 — Workflow for the Computation of a Laplace Transform of Discrete Data. 
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Figure 3.3 — An Example of Reciprocal of Rate versus Time Plot Used to Observed the 
Data Behavior and Select Extrapolation Types [Log-Log Plot]. 

 
 
 
The varying parameters in the workflow include: 

NP1: Type of the left-hand side extrapolating function 

NP3: Type of the right-hand side extrapolating function 

lL: Regression range for the left-hand side extrapolation 

lR: Regression range for the right-hand side extrapolation 

n: Stehfest "n" parameter 
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3.4 Evaluation of the Proposed Workflow 

In this section, we are evaluating the previously proposed workflow and algorithms.  To 

do so, we performed a sensitivity study on the following: 

● Data type for numerical Laplace transform computation. 

● Data frequency and spacing type. 

● The duration/history of the data. 

● Magnitude of data noise (i.e., Gaussian noise with 1 and 5 percent standard deviation). 

● Type of data function (i.e., increasing and decreasing data functions). 

As process, we compared and contrasted our functional and statistical experiments using 

the following plots: 

Plot 1: Plot of the Laplace transform of rate [ ( )q s ] versus the Laplace variable [s] plot: 

( ) { ( )}q s q t=   ............................................................................................ (3.31) 

Plot 2: Plot of the absolute percentage error for the numerically computed Laplace 

transform of rate [ ( )q s ] compared to the analytical solution versus the Laplace 

transform variable [s]. 

Plot 3: Plot of the Laplace transform rate function [ ( )sq s ] versus the reciprocal of the 

Laplace variable [1/s]: 

( ) { ( )}sq s s q t=   ......................................................................................... (3.32) 

Plot 4: Plot of the absolute percentage error for the numerically computed Laplace 

transform rate function [ ( )sq s ] compared to the analytical solution versus the 

reciprocal of the Laplace transform variable [1/s]. 
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Plot 5: Plot of the flowrate versus time functions for the Laplace transform smoothed rate 

functions, where the Laplace transform smoothed rate function is defined as: 

 { }1( ) ( )q t q s−=   ............................................................................................ (3.3) 

Plot 6: Plot of the percentage error of the Laplace transform smoothed rate functions 

compared to the actual rate versus time. 

Plot 7: Plot of the rate derivative versus time functions for the Laplace transform 

smoothed rate derivative functions, where the Laplace transform smoothed rate 

derivative function is defined as: 



1'( ) { ( ) ( 0)}q t sq s q t−= − =  .......................................................................... (3.6) 

Plot 8: Plot of the percentage error of the Laplace transform smoothed rate derivative 

functions compared to the rate derivative from the model versus time. 

Plot 9: Plot of the cumulative gas production versus time functions for the Laplace 

transform smoothed cumulative production functions, where the Laplace 

transform smoothed rate derivative function is defined as: 



1( ) { ( ) / }Q t q s s−=   ....................................................................................... (3.9) 

Plot10: Plot of the percentage error of the Laplace transform cumulative production 

functions compared to the cumulative production from the model versus time. 

For the base case of this sensitivity study, we used a five-year monthly synthetic time-rate 

data set generated from Arps exponential decline model.  The inputs used in the model is 

shown in Table 3.2. 
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Table 3.3 — Input Parameters for Synthetic Time-Rate Data. 

Model qi [MSCFD] Di [day-1] 

Arps Exponential Model 5000 1.65E-3 

 
 
 
The reason we used the exponential model because we could obtain the explicit solution 

of the Laplace transform of the exponential decline time-rate model.  The explicit solution 

is provided in Eq. 3.33.  As a result, we could compare the Laplace transform of rate [

( )q s ] and the Laplace transform rate [ ( )sq s ] functions computed form the discrete data 

(numerical solution) in each case to the analytical solution.  Then, the absolute percentage 

errors against the analytical values can be calculated to be used for the analysis of the 

accuracy and smoothness of each case. 

exp exp
1{ ( )} ( ) , 0i

i

q t q s q s
s D

= = >
+

  ..................................................................... (3.33) 

Moreover, we could derive the derivative and cumulative production functions of the 

exponential decline model in closed forms.  Thus, in the same manner, we could compare 

the numerically computed smoothed functions [  '( )q t , ( )Q t ] using the Laplace transform 

method in each case to the models. 

For the base method to derive those Laplace transform smoothed functions, the modified 

Roumboutsos and Stewart algorithm (Eq. 3.30) was used for the Laplace transform 

computation.  The Stehfest "n = 18" was used as the base value for the numerical inversion 



 

44 

 

process except for the case of noisy data sets.  Lastly, the extrapolating slopes were 

obtained from the last two data points on each end of the data set.  All the resulted plots 

are displayed in Appendix C of the report.  In the main text of the thesis report, we are 

only discussing the main study's results. 

3.4.1 Effects of Data Extrapolation Type 

Referring to Figs. C-1.1 to C-1.10, we could study the effect from using different 

extrapolation types in Laplace transformation process.  In this sensitivity case, we 

compared the base method (the modified Roumboutsos and Stewart algorithm) with the 

method using straight-line extrapolation on Log-Linear scale , which is in fact an 

exponential extrapolation.  Thus, the extrapolation of the base discrete data set (generated 

from Arps exponential model) using this extrapolation technique essentially provides a 

replicate of the model.  As a result, all the Laplace transform smoothed functions and also 

the Laplace transform function itself are very accurate compared to the models and the 

analytical solution, respectively.  The reduced accuracies of the smoothed functions in this 

case are only the contribution of using the piecewise linear data approximation during the 

data interval.  To confirm the above statement, we also computed the smoothed functions 

using the analytical Laplace transform solution (Eq. 3.33) for comparison.  We found that 

the errors of the smoothed functions computed using the analytical solution are very low 

(in the magnitude of 10-5 to 10-4) and should be the numerical errors from the numerical 

inversion process. 
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On the contrary, the smoothed functions (except the cumulative production function) 

computed using the base method deviate from the model in the late-time interval of the 

data (after 700-900 days).  This phenomenon is described in Onur and Reynolds' work as 

tail effects.  This is a result of improper extrapolations applied at both ends of the data.  

The absolute percentage errors of the derivative function become as high as ten percent in 

the last 100 days of the data interval.  From observation of the plots in Figs. C-1.1 to C-

1.10, we can conclude that the derivative function is the most sensitive to the extrapolation 

functions especially in late-time interval (judging from the highest absolute percentage 

errors).  The smoothed rate function and the Laplace transform of rate have similar error 

magnitude but less than those of the derivative function.  Lastly, the resulted smoothed 

cumulative production has negligible effect from changing the extrapolated functions. 

3.4.2 Effects of Data Frequency and Spacing Type 

Referring to Figs. C-2.1 to C-2.10, we could study the effect from different data spacing 

types and frequencies.  We consider the monthly sampling rate of our base case as a low 

frequency data.  The high frequency data set contains five data points per month.  The 

other data set is logarithmically spaced with 0.1 to 200 days between each sampling.  The 

smoothed functions computed from the high-frequency data set contain the least errors 

during the early and middle interval of data compared to those computed form the other 

two data sets.  This benefits from a better data approximation using the piecewise linear 

interpolation method in high-frequency data set.  However, in the late time interval, similar 

errors are present among all three data sets as a result of improper extrapolation trends 

(Cartesian straight-line extrapolations on exponentially declined data function).  The 
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logarithmically-spaced data set contains the highest error in late-time interval because the 

last two data points which contribute to the slope calculation are the furthest apart 

compared to the other two data sets.  Thus, the extrapolating slope is the most deviated 

from the true exponential decline trend. 

3.4.3 Effects of Duration/ History of the Data 

Referring to Figs. C-3.1 to C-3.10, we could study the effect from different data duration.  

We compared 3-year, 5-year (base case) and 10-year data sets.  Again, the accuracy of the 

smoothed functions in the early and middle time interval is adequate, however, the late-

time interval still contains high absolute percentage errors.  The highest errors of all three 

cases are in the same magnitude, however, come at different time.  The longer the data we 

have, the more delay the error come. 

3.4.4 Effects of Magnitude of Data Noise 

Referring to Figs. C-4.1 to C-4.10, we could study the effect from different magnitude of 

data noise.  We compared the data sets which contain no data noise, 1-percent Gaussian 

noise, and 5-percent Gaussian noise.  It is noted that for noisy data sets, the Stehfest "n=8" 

was used.  In the early and middle time interval, errors of the noised data cases are much 

higher compared to the case without noise.  Especially for the derivative functions, the 

early-time errors are nearly 100 percent for 5% Gaussian noised case. 

3.4.5 Effects of Type of Data Function 

Referring to Figs. C-5.5 to C-5.8, we compared the effects of using increasing and 

decreasing data function as the basis-functions.  In this case, we cannot compare Plot 1 to 
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Plot 4, Plot 9, and Plot 10, since the Laplace transform of rate and the cumulative function 

could not be computed from the reciprocal of rate data.  The Laplace transform smoothed 

rate and rate derivative functions deviates from the true value earlier when using the 

reciprocal function.  However, the maximum error magnitude is still much lower than the 

case using normal rate function.  The reason for lower error magnitude is not known.  

However, we suspect that it might be the same as for the other sensitivity cases where the 

Laplace transform smoothed functions contain less errors when the approximating/ 

extrapolating functions can better represent the model. 
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4. METHOD VALIDATION 

This section summarizes the validation of the proposed methodology using seven 

different types of synthetic data and four actual field production data. 

4.1 Method Validation with Synthetic Data 

In order to validate the developed Laplace transform workflow, we applied the workflow 

to synthetic datasets generated from seven different types of empirical time-rate decline 

models which are: 

● Arps Exponential Model [Arps, 1945] 

● Arps Hyperbolic Model [Arps, 1945] 

● Arps Harmonic Model [Arps, 1945] 

● Modified Hyperbolic Model [Robertson, 1988] 

● Power-Law Exponential Model [Ilk, 2008] 

● Duong Model [Duong, 2011] 

● Logistic Growth Model [Clark, 2011] 

Each synthetic data set contains five-year monthly production data.  Two synthetic 

datasets were generated from each model which are the perfect dataset (without data noise) 

and the noisy dataset (applied Gaussian noise with 5% standard deviation).  Thus, totally 

we are validating the method using 14 time-rate data sets. 

For each data set, we compare the Laplace transform smoothed functions (i.e., flowrate, 

D-parameter, b-parameter, and cumulative production) to the model to analyze the 

accuracy and smoothness of the resulted functions.  We also compare them with D-
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parameter, b-parameter, and cumulative production functions computed from the 

conventional approach (Bourdet differentiation and Trapezoidal-rule integration). 

As mentioned in the proposed workflow, we used two types of basis-functions which are 

the rate function and its reciprocal function.  Straight-line data interpolation was used for 

all cases to approximate discrete data set within the data interval.  For data extrapolation, 

we analyzed the characteristics of the basis-functions used in each case through 

observation of the data displayed on four different types of plots.  The most appropriate 

extrapolation strategies and regression ranges were selected and applied to the basis-

functions in each case for the computation of the smoothed functions. 

We use both qualitative and quantitative means to validate the method.  Quantitatively, 

we compare the mean absolute percentage errors of each computed functions to the 

models.  As for qualitative consideration, we produced the following plots in each case 

and observed the characteristics of each plot through time: 

Plot 1: Comparison plot of flowrates versus time 

1.a Model flowrate, 

1.b Synthetic flowrate, 

1.c Laplace transform smoothed flowrate using rate as the basis-function, and 

1.d Laplace transform smoothed flowrate using the 1/rate as the basis-function 

 
Plot 2: Comparison plot of the absolute percentage errors of flowrates versus time 

2.a Synthetic flowrate, 

2.b Laplace transform smoothed flowrate using rate as the basis-function, 

2.c Laplace transform smoothed flowrate using the 1/rate as the basis-function 



 

50 

 

Plot 3: Comparison plot of D-parameters versus time 

3.a Modelled D-parameter, 

3.b Bourdet derived  D-parameter (L=0.1), 

3.c Bourdet derived  D-parameter (L=0.25), 

3.d Laplace transform smoothed D-parameter using rate as the basis-function, 

3.e Laplace transform smoothed D-parameter using the reciprocal of rate as the 

basis-function 

 
Plot 4: Comparison plot of the absolute percentage errors of D-parameters versus time 

4.a Bourdet derived  D-parameter (L=0.1), 

4.b Bourdet derived  D-parameter (L=0.25), 

4.c Laplace transform smoothed D-parameter using rate as the basis-function, 

4.d Laplace transform smoothed  D-parameter using the reciprocal of rate as the 

basis-function 

 
Plot 5: Comparison plot of b-parameters versus time 

5.a Modelled b-parameter, 

5.b Bourdet derived  b-parameter (L=0.1), 

5.c Bourdet derived  b-parameter (L=0.25), 

5.d Laplace transform smoothed b-parameter using rate as the basis-function, 

5.e Laplace transform smoothed  b-parameter using the reciprocal of rate as the 

basis-function 

 
Plot 6: Comparison plot of the absolute percentage errors of b-parameters versus time 

6.a Bourdet derived  b-parameter (L=0.1), 

6.b Bourdet derived  b-parameter (L=0.25), 

6.c Laplace transform smoothed b-parameter using rate as the basis-function, 

6.d Laplace transform smoothed b-parameter using the reciprocal of rate as the 

basis-function 
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Plot 7: Comparison plot of cumulative production versus time 

7.a Modelled cumulative production, 

7.b Cumulative production computed from trapezoidal-rule integration, 

7.c Laplace transform smoothed cumulative production using rate as the basis-

function 

 
Plot 8: Comparison plot of the absolute percentage errors of cumulative production 

versus time 

8.a Cumulative production computed from trapezoidal-rule integration, 

8.b Laplace transform smoothed cumulative production using rate as the basis-

function 

 
All the plots mentioned above are included in Appendix D of the thesis report.  Figs. 4.1 

to 4.8 show a validation case with a time-rate data set generated from Duong time-rate 

model and corrupted with Gaussian noise using 5 percent standard deviation. 
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Figure 4.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and Laplace 
Transform Smoothed Flowrates using Rate and Reciprocal of Rate as the Basis 
Functions Versus Time [Duong Model (Noisy Data Case)]. 

 
 
 

 

Figure 4.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic Flowrate 
and Laplace Transform Smoothed Flowrates using Rate and Reciprocal of 
Rate as the Basis Functions Versus Time [Duong Model (Noisy Data Case)]. 
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Figure 4.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-
Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Duong Model (Noisy 
Data Case)]. 

 
 
 

 

Figure 4.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-Derived D-
Parameters and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate Functions as the Basis Functions Versus Time [Duong 
Model (Noisy Data Case)]. 
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Figs. 4.1 and 4.2 show that the Laplace transform smoothed algorithm can successfully 

smooth out the noisy data set with as high as 5 percent data noise.  The mean absolute 

percentage error reduces to less than 2 percent and the smoothed functions still maintain 

the original characteristic of discrete data very well. 

Figs. 4.3 and 4.4 show that the Laplace transform smoothed algorithm could produce very 

smooth and accurate D(t) functions from the noisy Duong time-rate data set.  However, 

we observe some "tail effects" at both end of the Laplace transform smoothed D(t) 

function generated using the rate function as the basis-function.  This is because the Duong 

time-rate model behaves more like a straight line on the Log-Log scale.  However, the 

algorithm for the straight-line extrapolation on the Log-Log scale is not applicable for 

decreasing functions such as the rate function.  In fact, it's not applicable for the case with 

a slope on the Log-Log scale less than minus one, however, as a precaution we avoid using 

it with decreasing functions.  Therefore, we used the closest extrapolation schemes which 

are the straight-line extrapolation on the Log-Linear scale and Linear-Log scale for the 

left-hand side and right-hand side extrapolations, respectively.  However, this limitation 

doesn't apply to the case using the reciprocal function (increasing function).  As a result, 

the tail effects are not present in the latter case. 

Overall, comparing to the Bourdet differentiation algorithm, the Laplace transform 

algorithm is still superior both in terms of smoothness and accuracy, especially at the early 

and late times.  From Figs. 4.3 and 4.4, we could observe deviations of the Bourdet 

derived D(t) functions from the true D(t) model.  This has been known as the "end-point 
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effect" which is the result of large smoothing parameter "L" used in the algorithm.  For 

example, if "L=0.25" is used, we could expect the deviation from the true model in the last 

25 percent of a log cycle in the computed derivative function. 

The mean absolute percentage errors of the D(t) functions computed using Laplace 

transform approach range from 1.6 to 3.8 percent while those of the Bourdet approach are 

as high as 10 percent ("L=0.25" case).  More importantly, the late-time deviations are less 

when the Laplace transform approach is used. 

Figs. 4.5 and 4.6 show that the Laplace transform smoothed algorithm could produce very 

smooth and accurate b(t) functions from the noisy Duong time-rate data set.  However, we 

could still observe "tail effect" in the case that uses rate function as the basis-function.  

This is something that could be expected though, because the previously derived D(t) 

functions were used as an input for b(t) computations. 

Figs. 4.7 and 4.8 show that the Laplace transform smoothed algorithm is superior in 

computing cumulative production functions compared to the conventional approach which 

uses the Trapezoidal rule of integration.  This is in fact a bit unfair because we use low-

frequency data for testing which is kind of the weakness of the Trapezoidal rule integration 

algorithm.  However, this data frequency is what we could expect in real life. 
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Figure 4.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-Parameters, 
and Laplace Transform Smoothed b-Parameters using Rate and Reciprocal of 
Rate as the Basis Functions Versus Time [Duong Model (Noisy Data Case)]. 

 
 
 

 

Figure 4.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-Derived b-
Parameters and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions versus Time [Duong Model (Noisy 
Data Case)]. 



 

57 

 

 

Figure 4.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-
Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Duong 
Model (Noisy Data Case)]. 

 
 
 

 

Figure 4.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-Integrated 
Cumulative Production and Laplace Transform Smoothed Cumulative 
Production using Rate as Basis Function versus Time [Duong Model (Noisy 
Data Case)]. 
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Table 4.1 — Input Parameters for Duong Model (Noisy Data Set) Case 

Basis Function: Time-Rate Data       

Laplace Smoothed Functions Rate & Cum. 
Production D-Parameter b-Parameter 

Basis Functions q(t) q(t) Smoothed 1/D(t) 
Numerical Laplace Transform Parameters       
  LHS Extrapolation Type (NP1) Log-Linear Log-Linear Log-Log 
  RHS Extrapolation Type (NP3) Linear-Log Linear-Log Log-Log 
  LHS Regression Range (lL) 0.43 0.43 1.30 
  RHS Regression Range (lR) 0.22 0.22 0.87 
Numerical Laplace Inversion Parameter       
  Stehfest "n" Parameter 8 6 4 

          
Basis Function: Time-Reciprocal of Rate Data       
Laplace Smoothed Functions Rate D-Parameter b-Parameter 
Basis Functions u(t) = 1/q(t) u(t) = 1/q(t) Smoothed 1/D(t) 
Numerical Laplace Transform Parameters       
  LHS Extrapolation Type (NP1) Log-Log Log-Log Log-Log 
  RHS Extrapolation Type (NP3) Log-Log Log-Log Log-Log 
  LHS Regression Range (lL) 0.87 0.87 1.30 
  RHS Regression Range (lR) 0.22 0.22 0.43 
Numerical Laplace Inversion Parameter       
  Stehfest "n" Parameter 6 6 6 

 
 
 
Table 4.1 shows the inputs we used to compute the Laplace transform smoothed functions 

in Figs. 4.1 to 4.8.  We used larger regression ranges for the computation of b(t) function 

as we observed tail effects in the basis function which are the D(t) functions computed 

previously. 

Table. 4.2 to 4.7 summarize and compare the resulted mean absolute percentage errors of 

each case.  However, it is noted that the mean absolute percentage errors of cumulative 

production were not calculated as it is more sensible to look at the development of errors 

through time.  
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Table 4.2 — Mean Absolute Percentage Errors of Flowrates in Perfect Data Cases. 

Models 
  

Mean Absolute Percentage Errors of 
Flowrates (%) 

Raw LP [q] LP [1/q] 
Arps Exponential Model 0 2.10E-02 2.27E-01 
Arps Hyperbolic Model 0 2.90E-02 2.75E-02 
Arps Harmonic Model 0 2.51E-02 6.33E-06 
Modified Hyperbolic Model 0 2.58E-02 3.20E-02 
Power-Law Exponential Model 0 6.56E-02 2.49E-02 
Duong Model 0 8.32E-02 2.05E-02 
Logistic Growth Model 0 1.28E-01 2.86E-02 

 
 
 

Table 4.3 — Mean Absolute Percentage Errors of D-Parameters in Perfect Data Cases. 

Models 

Mean Absolute Percentage Errors of  
D-Parameters (%) 

BD 
[L=0.10] 

BD 
[L=0.25] LP [q] LP [1/q] 

Arps Exponential Model 3.00E+00 1.02E+01 2.78E-02 1.18E+00 
Arps Hyperbolic Model 1.64E+00 5.38E+00 2.69E-01 2.40E-01 
Arps Harmonic Model 1.30E+00 3.79E+00 3.57E-01 6.22E-06 
Modified Hyperbolic Model 2.15E+00 3.24E+00 5.51E-01 7.15E-01 
Power-Law Exponential Model 2.13E-01 8.32E-01 1.09E+00 2.44E-01 
Duong Model 3.07E-01 9.13E-01 1.05E+00 1.23E-01 
Logistic Growth Model 6.49E-01 1.84E+00 8.37E-01 1.02E-01 

 
 
 

Table 4.4 — Mean Absolute Percentage Errors of b-Parameters in Perfect Data Cases. 

Models 

Mean Absolute Percentage Errors of  
b-Parameters (%) Remarks BD 

[L=0.10] 
BD 

[L=0.25] LP [q] LP [1/q] 

Arps Exponential Model 1.93E-01 2.70E-01 1.85E-03 3.40E-03 The figures are Mean 
Absolute Error (not %) 

Arps Hyperbolic Model 3.86E+01 5.43E+03 1.58E+00 5.69E-01   

Arps Harmonic Model 1.93E+01 2.69E+01 1.64E+00 1.76E-05   

Modified Hyperbolic Model 1.29E+01 1.11E+01 6.90E+00 7.96E+00 The figures exclude 
exponential tail 

Power-Law Exponential Model 1.36E+00 3.13E+00 1.42E+00 3.83E-01   

Duong Model 1.36E+00 2.79E+00 1.78E+00 4.30E-01   

Logistic Growth Model 2.42E+00 4.63E+00 2.54E+00 6.18E-01   
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Table 4.5 — Mean Absolute Percentage Errors of Flowrates in Noisy Data Cases. 

Models 
Mean Absolute Percentage Errors of 

Flowrates (%) 
Raw LP [q] LP [1/q] 

Arps Exponential Model 4.1 0.9 1.5 
Arps Hyperbolic Model 3.9 0.7 0.7 
Arps Harmonic Model 5.0 1.0 0.9 
Modified Hyperbolic Model 3.7 0.8 0.6 
Power-Law Exponential Model 3.7 1.1 0.7 
Duong Model 4.2 1.3 1.7 
Logistic Growth Model 2.9 1.0 0.9 

 
 
 

Table 4.6 — Mean Absolute Percentage Errors of D-Parameters in Noisy Data Cases. 

Models 

Mean Absolute Percentage Errors of 
D-Parameters (%) 

BD 
[L=0.10] 

BD 
[L=0.25] LP [q] LP [1/q] 

Arps Exponential Model 16.3 14.9 5.2 8.0 
Arps Hyperbolic Model 19.6 12.2 5.3 4.1 
Arps Harmonic Model 29.7 14.1 6.8 2.5 
Modified Hyperbolic Model 32.1 16.6 6.9 6.7 
Power-Law Exponential Model 20.4 8.3 7.8 2.0 
Duong Model 20.2 10.1 3.8 1.6 
Logistic Growth Model 6.4 3.9 4.1 2.7 

 
 
 

Table 4.7 — Mean Absolute Percentage Errors of b-Parameters in Noisy Data Cases. 

Models 

Mean Absolute Percentage Errors of  
b-Parameters (%) Remarks BD 

[L=0.10] 
BD 

[L=0.25] LP [q] LP [1/q] 

Arps Exponential Model 8.5 0.5 1.0 1.4 The figures are Mean 
Absolute Error (not %) 

Arps Hyperbolic Model 391.0 59.0 26.6 10.5   

Arps Harmonic Model 1310.0 58.3 42.8 10.3   

Modified Hyperbolic Model 1730.0 48.5 42.7 35.1 The figures exclude 
exponential tail 

Power-Law Exponential Model 89.9 15.5 10.1 3.8   

Duong Model 135.0 27.1 5.4 3.5   

Logistic Growth Model 42.4 9.5 6.7 6.0   
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4.1.1 Validation of Laplace Transform Smoothed Rate Function 

Table 4.1 and 4.4 suggest satisfactory results when using the developed Laplace 

transform workflow to produce smoothed rate functions in all the time-rate models both 

in perfect data and noisy data cases.  For the perfect data cases, the mean absolute 

percentage errors are less than 0.2 percent which is negligible.  For the noisy data cases, 

the mean absolute percentage errors reduce from 3 to 5 percent to less than 1.7 percent.  

In fact, apart from Arps exponential decline and Duong time-rate models, the errors reduce 

to less than 1 percent. 

4.1.2 Validation of Laplace Transform Smoothed D-Parameter Function 

By considering the mean absolute percentage errors in Table 4.2 and 4.5, the Laplace 

transform method provides more accurate D-parameter functions compared to the Bourdet 

approach both for perfect data and noisy data cases.  For the perfect data cases, the mean 

absolute percentage errors of the Laplace transform smoothed D-parameters are less than 

1.2 percent while those of the Bourdet D-parameters range from 0.2 to 10 percent.  For 

the noisy data cases, the mean absolute percentage errors of the Laplace transform 

smoothed D-parameters range from 2 to 8 percent while those of the Bourdet D-

parameters range from 4 to 32 percent. 

Another observation is that the Laplace transform method using the reciprocal of rate as 

the basis-function almost always gives better results except for Arps exponential cases.  

Especially for Arps harmonic cases, the use of reciprocal of rate provide exceptional 

results as the reciprocal of the harmonic rate decline function is a straight-line function. 
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From Table 4.2, we observed that the use of Bourdet approach with L=0.25 in perfect data 

cases give less accurate D-parameter results compared to L=0.1.  This is because the end 

point effects when using high smoothing parameter L.  In other words, the errors form the 

end point effects dominate the errors in the middle interval of the data when we are 

differentiating perfect data functions. 

From graphical observation of D-parameter plots [Plot 3 and 4] in Appendix D, the 

Laplace transform smoothed D-parameter functions contain less deviations at both ends 

compared to the Bourdet D-parameter functions.  Moreover, the Laplace transform 

approach using the reciprocal of rate as the basis-functions yield more accurate D-

parameter functions at both ends compared to using the rate as the basis-function. 

4.1.3 Validation of Laplace Transform Smoothed b-Parameter Function 

Table 4.3 and 4.6 suggest that the Laplace transform method provides more accurate b-

parameter functions compared to the Bourdet approach both for perfect data and noisy 

data cases.  For the perfect data cases, the mean absolute percentage errors of the Laplace 

transform smoothed b-parameters are less than 0.4 to 8 percent (excluding the Arps 

harmonic case which contains negligible error) while those of the Bourdet b-parameters 

(L=0.25) range from 2.8 to 26.9 percent (excluding the Arps hyperbolic case which 

contains very high error).  For the noisy data cases, the mean absolute percentage errors 

of the Laplace transform smoothed b-parameters range from 1 to 43 percent while those 

of the Bourdet b-parameters (L=0.25) range from 0.5 to 60 percent. 
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Similar to D-parameter function, the method using the reciprocal of rate as the basis-

function always gives more accurate b-parameter, especially when applied to Arps 

harmonic model case.   

Another advantage of the Laplace transform approach is that it could detect the abrupt 

change in the derivative value.  This is illustrated in the modified hyperbolic model cases, 

the Laplace transform approach could detect the abrupt change in b-value at the switching 

point that the Bourdet approach could not. 

4.1.4 Validation of Laplace Transform Smoothed Cumulative Production 

Function 

Based on the observation of the cumulative plots [Plot 7 and 8] in Appendix D, the 

Laplace transform approach is superior to the Trapezoidal rule approach in all cases.  This 

might be because the trapezoidal rule-integration approach yields inaccurate early-time 

integration for low-frequency data sets which are used in this validation exercise.  

However, this shows the strength of the Laplace transform approach to compute the 

integration of low-frequency discrete data set. 

In each synthetic data case, we have selected the most appropriate extrapolating functions 

based on graphical observation of the discrete data set.  From those 14 data sets, we found 

that the straight-line extrapolation on the Log-Linear scale was the most used for the rate 

functions while the straight-line extrapolations on the Log-Log scale and Cartesian scale 

were equally used for the reciprocal of rate functions.  When dealing with the noisy data 

sets, the regression range on the left-hand side of data (lL) is from 0.4 to 1.1, while on the 
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right-hand side, the data regression range (lR) is from 0.1 to 0.4.  The regression ranges 

used for the computation of b(t) function are as large as 1.7 and 0.9 for lL and lR, 

respectively.  The large regression range was used when the basis-function [Laplace 

transform smoothed 1/D(t)] is suspected to contain the tail effects. 

As mentioned earlier, in the process to obtain the Laplace transform smoothed functions, 

trial and errors of the Stehfest "n" parameters are required.  Using too high "n" value might 

yield an accurate but oscillating function.  However, using too low "n" value results in a 

very smooth but inaccurate function.  In each case, we trialed on the "n" parameter to 

obtain the function that is both accurate and reasonably smooth.  Table 4.8 summarizes 

the recommended ranges of Stehfest "n" parameters for the computation of smoothed 

functions using the proposed Laplace transform approach. 

 
 
 

Table 4.8 — Recommended Ranges of the Stehfest "n" Parameters for the Computation of 
Laplace Transform Smoothed Functions 

Laplace Transform Smoothed Functions q(t) and Q(t) D(t) b(t) 

Stehfest Parameter — Perfect Data Cases 16-18 16-18 12-20 
Stehfest Parameter — Noisy Data Cases 6-10 6-8 4-6 
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4.2 Method Validation with Actual Field Data 

In order to validate the developed Laplace transform workflow, we applied the method to 

the following actual field data sets: 

● Field Example 1: East Texas Gas Well (SPE 84287) 

● Field Example 2: Fractured Gas Well (SPE 132352) 

● Field Example 3: Fractured Gas Well (SPE 132352) 

● Field Example 4: Fractured Gas Well (SPE 132352) 

Each data set contains approximately five to seven years of daily production data.  

However, due to run-time limitation, we only use the first one thousand data points to 

compute the Laplace transform smoothed flowrate, D(t), and b(t) functions.  Prior to 

applying the Laplace transform smoothed approach, we edited the raw data by removing 

shut-in periods and other outliers which may cause high fluctuations in the resulted 

Laplace transform smoothed functions. 

In each case, we compare the resulted Laplace transform smoothed flowrates, D(t) and 

b(t), and cumulative production functions to the actual flowrate data, Bourdet derived D(t) 

and b(t) functions, and cumulative production computed using Trapezoidal integration 

rule, respectively.  In fact, we have two versions of the Bourdet derived D(t) and b(t) 

functions.  The first version was computed using only the first thousand data points and 

the second version was computed using all data points available in each data set (around 

1,800 to 2,500 data points).  By comparing the Laplace transform derived functions to the 

first version, we can assess the performance of the Laplace transform approach against the 

Bourdet approach.  As for the second version of D(t) and b(t) functions, which computed 



 

66 

 

from all data points using L=0.25, they would act like base lines for referencing purpose 

as we expect that they are more accurate compared to the other two (at least for the interval 

before 1000 days).  This is because the end-point effects would only occur during 1000 to 

1800 days for the 1800-point data set and 1400 to 2500 days for 2500-point data set.  Thus, 

the second version would be closest to the true functions. 

The accuracy and smoothness of the resulted curves could be observed and accessed 

through graphical observations of the following plots: 

Plot 1: Comparison plot of flowrates and cumulative production versus time 

1.a Raw flowrate,  

1.b (optional) Edited flowrate, 

1.c Laplace transform smoothed flowrate using flowrate as the basis function, 

1.d Laplace transform smoothed flowrate using the reciprocal of flowrate as the 

basis function, 

1.e (optional) Cumulative production computed from trapezoidal-rule integration 

approach, 

1.f (optional) Laplace transform smoothed cumulative production using flowrate 

as the basis function 

Plot 2: Comparison plot of flowrates and cumulative production versus time 

This plot is similar to Plot 1 except that the Laplace transform smoothed 

functions were computed using three Stehfest "n" values (6, 12 and 18). 

Plot 3: Comparison plot of D-parameters versus time 

3.a Bourdet derived D-parameter (L=0.25) (using all data points), 

3.b Bourdet derived D-parameter (L=0.10) (using the first thousand data points), 

3.c Bourdet derived D-parameter (L=0.25) (using the first thousand data points), 
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3.d Laplace transform smoothed D-parameter using flowrate as the basis function, 

3.e Laplace transform smoothed D-parameter using the reciprocal of flowrate as 

the basis function  

Plot 4: Comparison plot of D-parameters versus time 

This plot is similar to Plot 3 except that the Laplace transform smoothed 

functions were computed using three Stehfest "n" values (6, 12 and 18). 

Plot 5: Comparison plots of the extrapolations of flowrate data versus time in four 

different plotting scales (i.e., Cartesian, Log-Log, Linear-Log, Log-Linear 

scales) 

5.a Left and right-hand-side straight-line extrapolations on Cartesian scale, 

5.b Left and right-hand-side straight-line extrapolations on Log-Log scale, 

5.c Left and right-hand-side straight-line extrapolations on Linear-Log scale, 

5.d Left and right-hand-side straight-line extrapolations on Log-Linear scale, 

Plot 6: Comparison plots of the extrapolations of the reciprocal of flowrate data versus 

time in four different plotting scales, i.e. Cartesian, log-log, linear-log, log-linear 

scales 

This plot is similar to plot 5 except that they are for the reciprocal of flowrate 

data 

Plot 7: Comparison plot of b-parameters versus time 

7.a Bourdet derived b-parameter (L=0.25) (using all data points), 

7.b Bourdet derived b-parameter (L=0.10) (using the first thousand data points), 

7.c Bourdet derived b-parameter (L=0.25) (using the first thousand data points), 
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7.d Laplace transform smoothed b-parameter using flowrate as the basis function, 

7.e Laplace transform smoothed b-parameter using the reciprocal of flowrate as 

the basis function  

Plot 8: Comparison plot of b-parameters versus time 

This plot is similar to plot 7 except that the Laplace transform smoothed 

functions were computed using two Stehfest "n" values (4 and 6). 

Plot 9: Comparison plots of the extrapolations of the Laplace transform smoothed Loss-

ratio data function [ 1/ ( )D t ] computed using flowrate as the basis function 

versus time in four different plotting scales (i.e., Cartesian, log-log, linear-log, 

log-linear scales). 

This plot is similar to Plot 5 except that they are for 1/ ( )D t  computed using 

flowrate data as the basis function. 

Plot 10: Comparison plots of the extrapolations of the Laplace transform smoothed 

Loss-ratio data function [ 1/ ( )D t ] computed using the reciprocal of the flowrate 

as the basis function versus time in four different plotting scales (i.e., Cartesian, 

log-log, linear-log, log-linear scales). 

This plot is similar to Plot 5 except that they are for 1/ ( )D t  computed using the 

reciprocal of flowrate data as the basis function. 

We note that Plots 1, 3, and 7 use a "best fit" selected Stehfest "n" value to compute the 

Laplace transform smoothed functions. 

All the plots for all field data cases are included in Appendix E of the thesis report. 
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Figs. E-1.1 to E-1.10 show the application of the Laplace transform method to Field 

Example 1.  We observe that the Laplace transform approach is reasonably successful in 

applying to this data set.  The smoothed rate function can follow the actual data trend very 

well.  The Laplace transform smoothed D-parameter function is also on trend with the 

Bourdet derived D-parameter.  However, the Laplace transform approach is superior as it 

contains less deviation during the late time interval.  Similar to what we have seen in 

synthetic data case, the use of reciprocal of rate as the basis-function yield better results 

especially the smoothed D and b-parameters. 

Figs. E-2.1 to E-2.10 show the application of the Laplace transform method to Field 

Example 2.  Fig E-2.3 shows that the Laplace transform approach produces D(t) function 

with much less tail effect especially the one using the reciprocal of rate as the basis 

function.  Fig E-2.7 shows that the Laplace transform smoothed b(t) function is not very 

accurate at late time, however, comparing to the Bourdet approach, the method is still 

more accurate.  From this example case, we could recognize that even small deviation in 

the D(t) function lead to large deviation in b(t) function. 

Figs. E-3.1 to E-3.10 show the application of the Laplace transform method to Field 

Example 3.  Figs. E-3.3 and E-3.4 show that the Laplace transform smoothed D(t) 

function could detect the abrupt change in D(t) function very well especially when using 

high Stehfest "n" parameter.  Fig E-3.7 is another example that illustrate the superiority 

of using the reciprocal of rate function over the rate function itself.  The b(t) function 

generated from using the reciprocal of rate is very accurate even at the late-time interval 
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while the b(t) functions, which are computed using the Laplace transform approach with 

rate as the basis function and using the Bourdet approach with both low and high "L" 

parameters, contain large deviation at the late-time interval.  The Stehfest "n" = 18 was 

selected in this case for the computation of b(t) function because the original D(t) function 

is quite oscillated and using high "n" value would help capturing those changes. 

Figs. E-4.1 to E-4.10 show the application of the Laplace transform method to Field 

Example 4.  The D(t) functions computed in this case are all have similar accuracy (Figs. 

E-4.3 and E-4.3).  However, the Laplace transform approach could still produce more 

accurate b(t) function by using the reciprocal of rate function.  The Laplace transform 

smoothed b(t) function which computed using the rate function is on par with those 

computed form the Bourdet approach (Figs. E-4.7 and E-4.8). 

To conclude, we have seen no issue producing the smoothed rate functions from the 

Laplace transform approach.  However, we still observe "tail effects" in the computed D(t) 

and b(t) functions in all four field examples.  In most cases, using the reciprocal of rate 

functions provides more satisfactory results compared to using the rate functions 

themselves. 
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5. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

5.1 Summary 

We have developed and demonstrated the use of the Laplace transform to smooth, 

integrate, and differentiate time-rate data of the type used for production forecasting and 

reserves evaluation (using the qDb plot and the cumulative production plot).  Specifically, 

we have adapted, combined, and summarized the Laplace transform algorithms originally 

proposed for the analysis of well test data by Roumboutsos and Stewart [1988], Bourgeois 

and Horne [1993], and Onur and Reynolds [1998] for use with discrete "time-rate" 

(production) data.  All derivations for the Laplace transform expressions used in this study 

are summarized in Appendix A and Appendix B. 

We developed a new workflow to apply the Laplace transform approach for the representa-

tion of long-term production data using piecewise data models.  This Laplace transform-

based workflow is used to provide smoothed rate, rate derivative, D(t), b(t), and 

cumulative production functions from a set of discrete time-rate data.  Our approach 

includes: 

● Selection of the data extrapolation models for early and late-time portions of the 

discrete data (required for the Laplace transform smoothing methodology), 

● Determination of the extrapolating constants, and 

● Selection of the "best-fit" Stehfest "n" parameter for numerical inversion. 

The proposed workflow is specifically designed to be used with production rate and 

reciprocal rate data (the reciprocal rate function is used because it is an increasing function 
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and often has better Laplace transform characteristics than using the continuously 

decreasing rate function). 

As an evaluation of our procedures, we used 5 years of synthetic time-rate data presented 

on a monthly basis as the base case for our sensitivity study, where these data were 

generated using the Arps [1945] exponential time-rate decline model.  In our sensitivity 

study, we evaluate the effects of various factors — specifically: the data extrapolation 

model used for a given case, the data frequency/data spacing, duration of data, the 

magnitude of data noise, and type of data model used for a given scenario.  In this work 

we found that the data extrapolation model had the most influence on the accuracy of the 

results.  We also found (logically), that the less extrapolation we require (i.e., the larger 

range of data we have), the more accurate the smoothed results will be. 

From our scenario tests made using both synthetic and field data, the Laplace transform 

method has shown that it can produce more accurate (and smoother) rate derivative and 

cumulative production functions compared to the conventional approach proposed by 

Bourdet [1983].  We also compared the use of rate and reciprocal of rate as the basis-

functions to generate the Laplace transform smoothed data functions and found the 

reciprocal of rate to be superior in the majority of cases.  In summary, the data 

extrapolation model and Stehfest "n" parameter utilized in Laplace transform inversion 

process are the controlling factors for the proposed Laplace transform data smoothing 

methodology for "time-rate" data. 
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5.2 Conclusions 

In this work we establish the following conclusions regarding the Laplace Transform 

method for processing time-rate data: 

● The methodology does require some editing of the original time-rate data (selection 

and elimination of outliers, reduction to a manageable data set (e.g., <1000 points), 

and possible "re-zeroing" of data which have operational features (e.g., production 

shut-ins/restarts)). 

● For synthetic cases with added random noise, the proposed Laplace Transform-based 

methodology performed exceptionally well — including those cases where derivatives 

are required (e.g., the Arps D- and b- parameters as functions of time). 

● The methodology does require care in the extrapolation formulations.  Inappropriate 

extrapolations yield deviations in the resulting smoothed data functions (particularly 

during early and late-time periods, and we note that these are called "tail" or 

"endpoint" effects.  As would be expected, the smoothed rate derivative functions are 

the most sensitive to the given extrapolation scheme. 

● The straight-line extrapolation log-linear model appears to be the best overall 

extrapolation model for time-rate data.  As for the reciprocal of rate data, the Cartesian 

and log-log straight-line extrapolation models appear to work equally well. 

 
5.3 Recommendation for Future Work 

● The proposed methodology does require significant computational effort (the nature 

of the Laplace transform process for discrete data), and while this work is essentially 

just "integration," the size of a given dataset does present challenges for our present 

implementation of this methodology.  We believe it prudent to suggest that future work 

consider methods to manage very large to extremely large datasets (e.g., hundreds of 

thousands to tens of millions of data points).  While this is not "practical" in the sense 
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that most flowrates are reported hourly or daily, we envision a future where rates can 

and will be reported on at a sampling rate of a few seconds. 

● Although not used in this implementation, we can envision the use of "pre-smoothing" 

methods as well as "regularization" techniques for ensuring the robustness of the 

Laplace transformed data functions.  Such functions would be "smoother" and 

"stiffer," and potentially yield less detail in the computed data functions, but we 

recommend testing of such methods. 

● Lastly, we recommend consideration of other inversion techniques beyond the "Gaver-

Stehfest" and other such "sampling" algorithms for the numerical inversion of the 

Laplace transform function.  We believe that there may be additional benefit from 

using more rigorous numerical inversion schemes, and recommend pursuing such 

tasks. 
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NOMENCLATURE 

t  = Time, days 

( )f t  = Time function 

  = Laplace transform operator 

1−  = Inverse of Laplace transform operator 

( )f s  = Laplace transform of f(t) 

s  = Laplace variable, 1/day 

( )q t  = Rate function, MSCF/D for gas (STB/D for oil) 

( )q s  = Laplace Transform of rate function 

( )u t  = Reciprocal of rate function, [MSCF/D]-1 for gas ([STB/D]-1 for oil) 

( )u s  = Laplace Transform of reciprocal of rate function 

( )p t  = Pressure function, psi 

( )p s  = Laplace Transform of pressure function 

( )Q t  = Cumulative production function, MSCF for gas (STB for oil) 

D  = Reciprocal of loss ratio, 1/day 

b  = Loss ratio derivative, dimensionless 

n  = Parameter in the Stehfest inversion algorithm, dimensionless 

if  = Functional value at time ti 

L  = Smoothing parameter in Bourdet differentiation algorithm 
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im  = Straight-line cord slope from interval ti-1 to ti  

extm  = Slope of the right-hand side extrapolated lines 

β  = Slope of straight-line on Log-Log and Log-Linear scales  

α  = Intercept of straight-line on Log-Log and Log-Linear scales 

γ  = First Incomplete Gamma function 

Γ  = Gamma function, second Incomplete Gamma function 

N  = Total number of discrete data points 

ˆ( )q t  = Laplace transform smoothed rate function 

ˆ ( )Q t  = Laplace transform smoothed cumulative function 

ˆ '( )q t  = Laplace transform smoothed rate derivative function 

ˆ ( )D t  = Laplace transform smoothed D-parameter function 

ˆ( )b t  = Laplace transform smoothed b-parameter function 
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APPENDIX A 

DERIVATION OF THE EXPRESSIONS FOR NUMERICAL LAPLACE 

TRANSFORM OF DISCRETE DATA 

A.1 Introduction 

We are to derive and summarize the expressions for numerical Laplace transform of discrete data 

using several types of data approximation techniques.  Some data approximation techniques have 

been proposed elsewhere, however, for the sake of completeness; we re-derived and presented 

them here.  We start with the Laplace transform definition which is  

0

{ ( )} ( ) ( ) stf t f s f t e dt
∞

−= = ∫  ............................................................................................ (A-1) 

According to Eq. A-1, the knowledge of the function being transformed over the semi-infinite time 

interval, 0 t≤ ≤ ∞ , is required in the computation of the Laplace transform.  However, generally 

for the case of discrete data, a finite interval of data is known from 1t . to Nt .  As a result, 

extrapolations of data are required from 1t . to 0t and from Nt . to ∞ in order to represent the 

functional values outside the discrete data interval.  Thus, a simple and straightforward way to 

derive the Laplace transform expressions would be to separate the integral in Eq. A-1 into three 

integral terms as shown in Eq. A-2. 

1

0 10

( ) ( ) ( ) ( )
N

N

tt
st st st

t t t

f s f t e dt f t e dt f t e dt
∞

− − −

=

= + +∫ ∫ ∫  ................................................................ (A-2) 

We named the three integral parts in Eq. A-2 as P1, P2, and P3 respectively from the left to the 

right. 

1 2 3( )f s P P P= + +  .............................................................................................................. (A-3) 
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To clarify, 1P , 2P , and 3P  can be defined as below. 

1P : The Laplace transform integral of the extrapolated function from 0 0t =  to 1t  

2P : The Laplace transform integral of the interpolated function approximating the discrete 

data from 1t  to Nt  

3P : The Laplace transform integral of the extrapolated function from Nt  to ∞  

For 2P  computation, we used two types of data functions to approximate the discrete data from 1t  

to Nt .  Those are a piecewise linear data function and a piecewise log-linear data function.  For 1P  

and 3P  computation, several strategies have been discussed in the literature such as those in 

Roumboutsos and Stewart [1988], Bourgeois and Horne [1993], and Onur and Reynolds [1998].  

We studied those strategies and came up with a generalized technique using straight-line 

extrapolations on four different plotting scales, i.e. Cartesian, log-log, linear-log, and log-linear 

scales.  Tables A-1, A-2, and A-3 summarize the Laplace transform expressions using these data 

approximation and extrapolation techniques as a discrete data representation.  As we will be using 

these equations with time-rate discrete data function, all equations summarized in the tables are 

for positive functions.  If not specifically mentioned, they could be used for both increasing and 

decreasing positive functions. 
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Table A-1 — The expressions for P1 using various types of extrapolating functions 

Extrapolating 

Functions 
Expressions Equations 

Straight Line on 

Cartesian Scale 
( )1 1

1 0 1 12

1 1 (1 )st stP f f e m e
s s

− −= − + −  (A-16) 

Straight Line on  

Log-Log Scale 

Increasing Data Function  

1

1
1 1 1( , )P st

sυ
α γ υ=  (A-46) 

Only valid for 1 0υ >  which corresponds to 1 1β > −   

Straight Line on  

Log-Linear Scale 

1 1( )1
1

1

[ 1]s tP e
s

βα
β

−= −
−

 (A-84) 

For 1s β≠   

 

 

 

Table A-2 — The expressions for P2 using various types of approximating functions 

Approximating 

Functions 
Expressions Equations 

Piecewise Linear 

Data Function 
( ) 11

2 1 2
2

1 1 ( )N i i

N
st st stst

N i
i

P f e f e m e e
s s

−− − −−

=

= − + −∑  (A-14) 

Piecewise Log-Linear 

Data Function 

Increasing Data Function  

2 1
2

[ ( , ) ( , )]
i

N
i

i i i i
i

P st st
sυ
α

γ υ γ υ −
=

= −∑  (A-42) 

Only valid for 0iυ >  which corresponds to 1iβ > −   
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Table A-3 — The expressions for P3 using various types of extrapolating functions 

Extrapolating 

Functions 
Expressions 

Equation

s 

Straight Line on 

Cartesian Scale  

Decreasing Data Function  

/
3 2

1 1 (1 )N N N extst st sf m
N extP f e m e e

s s
− −= + −  (A-22) 

Increasing Data Function  

3 2

1 1
N Nst st

N extP f e m e
s s

− −= +  (A-17) 

Straight Line on Log-

Log Scale 

Increasing Data Function  

3 [ ( ) ( , )]
ext

ext
ext ext NP st

sυ
α

υ γ υ= Γ −  (A-51) 

Only valid for 0extυ >  which corresponds to

1extβ > −  
 

Straight Line on 

Linear-Log Scale 

Decreasing Data Function  
/

1
N extf m

N Nt t e−
+ =  (A-69) 

3 1[ ( ) ( )]NstN ext
i N i N

f mP e E st E st
s s

−
+= + − − −  (A-80) 

Increasing Data Function  

3 ( )NstN ext
i N

f mP e E st
s s

−= − −  (A-67) 

Straight Line on Log-

Linear Scale 

Decreasing Data Function  

3
NstN

ext

fP e
s β

−=
−

 (A-88) 

For exts β>   
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A.2 Derivation of the Laplace Transform Expression Using a Piecewise Linear Data 

Approximation 

We are to derive an expression for the numerical Laplace transform of discrete data using a 

piecewise linear data approximation.  This strategy was proposed by Roumboutsos and Stewart 

[1988] where the entire function in the semi-infinite domain will be approximated and represented 

by several connected straight-line cords, consequently, they could be transformed into the Laplace 

domain analytically. 

First, we are recalling the Laplace transform definition for discrete data from Eq. A-2. 

1

0 10

( ) ( ) ( ) ( )
N

N

tt
st st st

t t t

f s f t e dt f t e dt f t e dt
∞

− − −

=

= + +∫ ∫ ∫  ................................................................ (A-2) 

From Eq. A-2, we can see that we need the knowledge of ( )f t  from three data intervals.  The first 

and the third terms requires the knowledge of the function from 0 0t =  to 1t  and from Nt  to infinity, 

respectively.  We are using straight-line extrapolations to represent the function in those intervals.  

For the second term, the functional value of discrete data from 1t  to Nt  will be approximated by a 

piecewise linear data function.  To elaborate, the data function will be represented by several cords 

between the specified knot points ( 1 2 3, , ,..., Nt t t t ).  Each cord is a straight line with a slope of im  

where each im  represents the slope of the function from 1it −  to it .  The backward difference 

approach will be used to compute each im  as shown in Eq. A-4. 

1

1

i i
i

i i

f fm
t t

−

−

−
=

−
     ; 2,...,i N=  ............................................................................................... (A-4) 

where 

( )i if f t=      ; 1,2,...,i N=  

By rearranging Eq. A-4, we can determine the straight-line function between two knot-points from 

time 1it −  to it  ,which is represented by ( )if t , as in Eq. A-5. in 

1 1( ) ( )i i i if t f m t t− −= + −      ; 2,...,i N=  and 1i it t t− ≤ ≤ ....................................................... (A-5) 
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Eq. A-5 serves as an approximating function of discrete data from 1t  to Nt   

Similarly, the functional value from 0 0t =  to 1t  can also be represented by Eq. A-5 using 1i =  as 

shown in Eq. A-6.   

1 0 1 0( ) ( )f t f m t t= + −       ; 0 1t t t≤ ≤ .................................................................................... (A-6) 

For the time interval Nt  to infinity, we name the straight-line slope and function as extm  and 

1( )Nf t+ , respectively.  The function can be expressed as 

1( ) ( )N N ext Nf t f m t t+ = + −       ; 1N Nt t t +≤ ≤  ........................................................................ (A-7) 

The constant 1m  and extm  in Eq. A-6 and A-7 can be obtained from the least-square fittings of the 

last few data points from both ends of discrete data.  It is noted that in Eq. A-7 the infinite time is 

represented by 1Nt +  to make the equation generic.  In general, 1Nt +  only represents the infinite 

time, however, we are also deriving a case for decreasing rate data function where negative value 

is not allowed which makes 1Nt +  less than infinity.  The detail will be discussed later. 

By combining all three approximating functions from Eqs. A-5, A-6, and A-7, we obtain a 

piecewise linear approximating function used to represent our discrete data set which is 

1

1 1
1 2

( ) ( ) ( ) ( ) ( )
N N

i i N
i i

f t f t f t f t f t
+

+
= =

= = + +∑ ∑  ........................................................................... (A-8) 

Taking the Laplace transform on both sides of Eq. A-8 and using linearity property of the Laplace 

transform, we have 

{ } { }
1

1 1
1 2

{ ( )} ( ) ( ) ( ) ( )
N N

i i N
i i

f t f t f t f t f t
+

+
= =

   
= = + +   

   
∑ ∑      ......................................... (A-9) 

which can be rewritten as 

1

1 1
1 2

( ) ( ) ( ) ( ) ( )
N N

i i N
i i

f s f s f s f s f s
+

+
= =

= = + +∑ ∑  ...................................................................... (A-10) 
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where 

( ) { ( )}f s f t=      And     ( ) { ( )}i if s f t=  

Next, we are determining ( )if s which is the Laplace transform of each straight-line cord. 

First, we take the Laplace transform of Eq. A-5 which also serves as the general form of Eq. A-6 

and Eq. A-7, we get 

1

1 1( ) [ ( )]
i

i

t
st

i i i i i
t

f s f m t t e dt
−

−
− −= + −∫  ..................................................................................... (A-11) 

Integrating the right-hand side of Eq. A-11, we get  

( )1 1
1 2

1 1( ) ( )i i i ist st st st
i i i if s f e f e m e e

s s
− −− − − −

−= − + −  ............................................................. (A-12) 

Recalling another form of ( )f s from Eq. A-3 which is 

1 2 3( )f s P P P= + +  .............................................................................................................. (A-3) 

We know that 1P , 2P , and 3P are equivalent to 1( )f s , 
2

( )
N

i
i

f s
=
∑ , 1( )Nf s+  in Eq. A-10, respectively.  

Therefore, using the relation in Eq. A-12, we can derive 1P , 2P , and 3P  as in Eqs. A-13, A-14, and 

A-15, respectively. 

( )0 01 1
1 1 0 1 12

1 1( ) ( )st stst stP f s f e f e m e e
s s

− −− −= = − + −  .......................................................... (A-13) 

( ) 11
2 1 2

2 2

1 1( ) ( )N i i

N N
st st stst

i N i
i i

P f s f e f e m e e
s s

−− − −−

= =

= = − + −∑ ∑  .............................................. (A-14) 

( )1 1
3 1 1 2

1 1( ) ( )N N N Nst st st st
N N N extP f s f e f e m e e

s s
+ +− − − −

+ += = − + −  .......................................... (A-15) 
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The first term on the right-hand side of Eq. A-14 is the result of cancelling out the repetitive terms 

when the summation term is expanded. 

Since 0 0t = , Eq. A-13 becomes 

( )1 1
1 1 0 1 12

1 1( ) (1 )st stP f s f f e m e
s s

− −= = − + −  ..................................................................... (A-16) 

And since 1Nt + = ∞ , the exponential terms with 1Nt + in Eq. A-15 becomes zero, thus Eqs. A-15 

becomes 

3 1 2

1 1( ) N Nst st
N N extP f s f e m e

s s
− −

+= = +  ............................................................................... (A-17) 

Combining Eqs. A-14, A-16, and A-17 and rearranging, we have derived the expression for the 

numerical Laplace transform of discrete data using a piecewise linear data function, similar to 

what presented in Roumboutsos and Stewart [1988].  The expression is shown in Eq. A-18. 

10
2 2

1

1 1( ) ( )i i N

N
st st st

i ext
i

ff s m e e m e
s s s

−− − −

=

= + − +∑  ............................................................... (A-18) 

The main difference from R&S's equation is that they assumed 0 0f =  and thus the first term in 

Eq. A-18 is eliminated.  The zero initial-value assumption makes sense if we take the Laplace 

transform of pressure drop function which always starts at zero.  However, we would like to leave 

Eq. A-18 in generic form thus it could be applied to broader range of data type, e.g. decreasing 

discrete time-rate data function.  In our case, 0f  is an unknown value.  It will be obtained from 

the equation of the left-hand side extrapolation.  

Moreover, we also have further modification to the R&S's equation to be used specifically for 

time-rate discrete data.  When a time-rate data is being transformed, the right-hand side 

extrapolation should stop at 1( ) 0Nf t + =  to reflect the true nature of rate functions which could not 

be negative values.  The functional value after this point is assigned to be zero.  To determine 1Nt +

at which 1( ) 0Nf t + = , we firstly recall the relation of the straight-line slope in Eq. A-4, we have 
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1

1

i i
i

i i

f fm
t t

−

−

−
=

−
     ; 2,...,i N=  ............................................................................................... (A-4) 

Applying Eq. A-4 using 1i N= +  for the right-hand side extrapolation interval, we can derive the 

equation for the extrapolating slope on the R.H.S of data as 

1

1

N N
ext

N N

f fm
t t

+

+

−
=

−
 ............................................................................................................... (A-19) 

Rearranging Eq. A-19 and substituting 1 0Nf + = , we can determine the time at which the rate 

function reduces to zero which is 

1
N

N N
ext

ft t
m+ = −  ................................................................................................................. (A-20) 

Substituting 1Nt +  from Eq. A-20 and 1 0Nf + =  into Eq. A-15, we have 

( )3 2

1 1 ( )
N

N
N N ext

f
st s

st st m
N extP f e m e e

s s

− +
− −= + −  ...................................................................... (A-21) 

Rearranging, we have 

/
3 2

1 1 (1 )N N N extst st sf m
N extP f e m e e

s s
− −= + −  ............................................................................ (A-22) 

Hence, by assuming that the extrapolation tail stops at zero, the Laplace transform expression for 

decreasing discrete data becomes 

10
2 2

1

1 1( ) ( ) (1 )
N

i i N ext

sfN
st st st m

i ext
i

ff s m e e m e e
s s s

−− − −

=

= + − + −∑  ................................................. (A-23) 
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A.3 Derivation of the Laplace Transform Expression Using a Piecewise Log-Linear Data 

Approximation 

We are to develop the Laplace transform expression of discrete data using a piecewise log-linear 

data approximation.  In this approach, the discrete data function will be represented by cords 

between the specified knot points.  Each cord is a straight line in the log-log scale with a slope of 

iβ  computed from an expression in Eq. A-24 where iβ  represents the slope from time 1it −  to it . 

1

1

ln( / )
ln( / )

i i
i

i i

f f
t t

β −

−

=  ............................................................................................................... (A-24) 

where 

( )i if f t=  

Rearranging Eq. A-24, we have 

1 1ln( ) ln( ) ln( ) ln( )i i
i i i if f t tβ β
− −= − +  ..................................................................................... (A-25) 

By letting 1 1it − =  and replacing 1if −  with a constant iα , we get 

ln( ) ln( ) ln( )i
i i if t βα = −  .................................................................................................... (A-26) 

Exponentiating both sides, we get 

i

i
i

i

f
t βα =  ............................................................................................................................ (A-27) 

We can now compute an iα  from Eq. A-27. 

Next, we are considering Eq. A-26 which can be rearranged as 

ln( ) ln( ) ln( )i i i if tβ α= +  ................................................................................................... (A-28) 
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Eq. A-28 is in a form of straight-line equation having iβ  and ln( )iα  as the slope and the intercept, 

respectively.  Since, these two constants computed from if  and 1if − , they could be used for the 

constants for the function between time 1it −  to it .  The function could be written as 

ln( ( )) ln( ) ln( )i i if t tβ α= +      ; 1i it t t− ≤ ≤  ......................................................................... (A-28) 

Exponentiating both sides, we can obtain ( )if t  which is the function between two knot-points 

from time 1it −  to it  as shown in Eq. A-29. 

1( ) i i
i i if t t tβ υα α −= =      ; 1i it t t− ≤ ≤  ................................................................................... (A-29) 

Taking the Laplace transform of Eq. A-29, we can have the Laplace transform of each cord, ( )if s

, as 

1

1( ) [ ]
i

i

i

t
st

i i
t

f s t e dtυα
−

− −= ∫  ..................................................................................................... (A-30) 

Considering the limits in Eq. A-30 as well as arbitrary integrand, 1( ) i stI t t eυ − −= , we can rewrite 

the integral in Eq. A-30 as 

1

1 00

( ) ( ) ( ) ( )
i i

i i

t t

t t

I t dt I t dt I t dt I t dt
−

−

∞ ∞

= − −∫ ∫ ∫ ∫  ............................................................................. (A-31) 

From Gradshteyn& Ryzhik, using the integral definition of the Gamma function, we have 

1

0

( )i ist
it e dt sυ υ υ

∞
− −− = Γ∫  ...................................................................................................... (A-32) 

1 ( , )i i

i

st
i i

t

t e dt s stυ υ υ
∞

− −− = Γ∫  ................................................................................................. (A-33) 

1
1

1
0

( , )
i

i i

t
st

i it e dt s stυ υ γ υ
−

− −−
−=∫  .............................................................................................. (A-34) 
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It is important to note that, since we use the integral definition of the Gamma function to derive 

above three relations, they are only valid for 0iυ >  which corresponds to 1iβ > − . 

Substituting Eqs. A-32, A-33, and A-34 into Eq. A-31, we get 

1

1( ) [ ( ) ( , ) ( , )]
i

i

i

t

i i i i i
t

I t dt s st stυ υ υ γ υ
−

−
−= Γ − Γ −∫  ................................................................... (A-35) 

Substituting Eq. A-35 into Eq. A-30, we obtain 

1( ) [ ( ) ( , ) ( , )]
i

i
i i i i i if s st st

sυ
α

υ υ γ υ −= Γ − Γ −  ......................................................................... (A-36) 

The functions given in Eq. A-36 are 

1

0

( ) t vv e t dt
∞

− −Γ = ∫    is the Gamma function........................................................................ (A-37) 

0
( , ) ( 1)

!( )

v n
n

n

zv z
n v n

γ
+∞

=

= −
+∑    is the first Incomplete Gamma function ............................. (A-38) 

1

( , ) ( ) ( , )

t v

z

v z v v z

e t dt

γ
∞

− −

Γ = Γ −

= ∫
   is the second Incomplete Gamma function................................ (A-39) 

Using the relation in Eq. A-39, Eq. A-36 becomes 

1( ) [ ( , ) ( , )]
i

i
i i i i if s st st

sυ
α

γ υ γ υ −= −  ..................................................................................... (A-40) 

Next, we are recalling Eqs. A-3 and A-10 which are the expressions for the numerical Laplace 

transform of discrete data using a piecewise function. 

1 2 3( )f s P P P= + +  .............................................................................................................. (A-3) 
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1

1 1
1 2

( ) ( ) ( ) ( ) ( )
N N

i i N
i i

f s f s f s f s f s
+

+
= =

= = + +∑ ∑  ...................................................................... (A-10) 

where 

( ) { ( )}f s f t=      And     ( ) { ( )}i if s f t=  

From Eqs. A-3, A-10, and A-40, we can obtain P1, P2, and P3 as shown in Eqs. A-41, A-42, and 

A-43, respectively. 

1

1
1 1 1 1 1 0( ) [ ( , ) ( , )]P f s st st

sυ
α γ υ γ υ= = −  ............................................................................... (A-41) 

2 1
2 2

( ) [ ( , ) ( , )]
i

N N
i

i i i i i
i i

P f s st st
sυ
α

γ υ γ υ −
= =

= = −∑ ∑  .................................................................... (A-42) 

3 1 1( ) [ ( , ) ( , )]
ext

ext
N ext N ext NP f s st st

sυ
α

γ υ γ υ+ += = −  .................................................................. (A-43) 

Since 0 0t = , Eq. A-41 becomes 

1

1
1 1 1 1[ ( , ) ( ,0)]P st

sυ
α γ υ γ υ= − .............................................................................................. (A-44) 

Using the definition of the first incomplete Gamma function in Eq. A-38, we have 

1( ,0) 0γ υ =  ....................................................................................................................... (A-45) 

Substituting into Eq. A-44, we have 

1

1
1 1 1( , )P st

sυ
α γ υ=  ............................................................................................................... (A-46) 

Since 1Nt + = ∞ , Eq. A-43 becomes 

3 [ ( , ) ( , )]
ext

ext
ext ext NP st

sυ
α

γ υ γ υ= ∞ −  ...................................................................................... (A-47) 
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From the relation in Eq. A-39, we can change the first incomplete Gamma function to the second 

incomplete Gamma function.  Eq. A-47 becomes 

3 [ ( ) ( , ) ( ) ( , )]

[ ( , ) ( , )]

ext

ext

ext
ext ext ext ext N

ext
ext N ext

P st
s

st
s

υ

υ

α
υ υ υ υ

α
υ υ

= Γ −Γ ∞ −Γ + Γ

= Γ −Γ ∞
 ........................................................ (A-48) 

From the definition of the second incomplete Gamma function in Eq. A-39, we have 

( , ) 0extυΓ ∞ =  .................................................................................................................... (A-49) 

Substituting into Eq. A-48, we have 

3 ( , )
ext

ext
ext NP st

sυ
α

υ= Γ  ......................................................................................................... (A-50) 

Which is equivalent to 

3 [ ( ) ( , )]
ext

ext
ext ext NP st

sυ
α

υ γ υ= Γ −  ......................................................................................... (A-51) 

In conclusion, we can derive P1, P2, and P3 as shown in Eqs. A-46, A-42, and A-51, respectively. 

By combining three parts, we get the expression for the numerical Laplace transform of discrete 

data using a piecewise log-linear data function. 

1

1
1 1 1

2
( ) ( , ) [ ( , ) ( , )] [ ( ) ( , )]

i ext

N
i ext

i i i i ext ext N
i

f s st st st st
s s sυ υυ

α αα γ υ γ υ γ υ υ γ υ−
=

= + − + Γ −∑  .............. (A-52) 

As mentioned earlier, the expression in Eq. A-52 is only valid for the case where 1υ , iυ , and 

0extυ > .  In other words, the log-linear slope, 1β , iβ , and extβ , must be more than -1.  To avoid 

violating this limitation, we limit the use of Eq. A-52 only for increasing data function where only 

positive log-linear slopes are expected, e.g. the reciprocal of discrete time-rate data.  However, 

even with the reciprocal of rate function where the overall data trend increases with time and that 
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1β  and extβ  are certainly positive values, there is still a possibility that some iβ  can be negative 

and less than -1.  Thus, we propose to obtain 2P  only from the piecewise linear approach. 

We can obtain the expression which uses a piecewise linear data function to approximate the 

discrete data from 1t  to Nt .and a piecewise log-linear data function for the extrapolated intervals 

by combining three parts from Eqs. A-46, A-14, and A-51 for P1, P2 and P3 respectively.  The 

expression is shown below. 

( ) 11

1

1
1 1 1 2

2

1 1( ) ( , ) ( )

[ ( ) ( , )]

N i i

ext

N
st st stst

N i
i

ext
ext ext N

f s st f e f e m e e
s s s

st
s

υ

υ

α γ υ

α
υ γ υ

−− − −−

=

= + − + −

+ Γ −

∑
 .................................... (A-53) 

A.4 Derivation of the Laplace Transform Expressions of the Extrapolation Functions 

In this research work, we use four different types of extrapolation functions.  In the previous 

sections, we have already derived the Laplace transform expressions for two types which are 

straight-line extrapolations on Cartesian and log-log scales.  In this section, we are restating 1P  

and 3P  from those derivations and deriving the expressions for the remaining types which are 

straight-line extrapolations on linear-log and log-linear scales.  The governing equations for the 

straight-line extrapolations on four plotting scales are summarized below. 

 Cartesian plot 

( )f t mt c= +  .................................................................................................................... (A-54) 

 Log-log plot 

ln( ( )) ln( ) ln( )f t tβ α= +  .................................................................................................. (A-55) 

 Linear-log plot (the abscissa axis (x-axis) is scaled logarithmically) 

( ) ln( )f t m t c= +  .............................................................................................................. (A-56) 
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 Log-linear plot (the ordinate axis (y-axis) is scaled logarithmically)  

ln( ( )) ln( )f t tβ α= +  ........................................................................................................ (A-57) 

It is noted that the constants in each model can be determined by least-square straight-line fittings 

using first few data points on both ends of the discrete dataset. 

A.4.1 Straight-Line Extrapolation on a Cartesian Scale 

For the Cartesian straight-line extrapolation, the 1P  and 3P  expressions were provided earlier as 

shown in Eqs. A-13 and A-15. 

( )0 01 1
1 0 1 12

1 1 ( )st stst stP f e f e m e e
s s

− −− −= − + −  ..................................................................... (A-13) 

( )1 1
3 1 2

1 1 ( )N N N Nst st st st
N N extP f e f e m e e

s s
+ +− − − −

+= − + −  ......................................................... (A-15) 

Generally, we have 0 0t = , as a result, Eq. A-13 can be simplified to 

( )1 1
1 0 1 12

1 1 (1 )st stP f f e m e
s s

− −= − + −  ................................................................................. (A-16) 

By assuming that the extrapolation goes to the infinite time, the expression for P3 in Eq. A-15 can 

be modified to 

3 2

1 1
N Nst st

N extP f e m e
s s

− −= +  ............................................................................................... (A-17) 

When we are dealing with decreasing function, i.e. time-rate data, it makes sense to assume the 

extrapolated line on the right end stops at zero.  As a result, the expression for 3P  in Eq. A-15 

becomes 

/
3 2

1 1 (1 )N N N extst st sf m
N extP f e m e e

s s
− −= + −  ........................................................................... (A-22) 
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It is noted that 1m  and extm  can be obtained from the least-square regressions of the few data points 

on left and right ends of the dataset, respectively. 

A.4.2 Straight-Line Extrapolation on a Log-Log Scale 

The function for log-linear relation is recalled from Eq. A-55 

ln( ( )) ln( ) ln( )f t tβ α= +  .................................................................................................. (A-55) 

For the log-log straight-line extrapolation, the 1P  and 3P  expressions were provided earlier as 

shown in Eqs. A-46 and A-51. 

1

1
1 1 1( , )P st

sυ
α γ υ=  ............................................................................................................... (A-46) 

3 [ ( ) ( , )]
ext

ext
ext ext NP st

sυ
α

υ γ υ= Γ −  ......................................................................................... (A-51) 

It is noted that 1 1,α υ  and ,ext extα υ  can be obtained from the least-square regressions of the few 

data points on left and right ends of the dataset, respectively. 

A.4.3 Straight-Line Extrapolation on a Linear-Log Scale 

We are to develop the Laplace transform expression of the extrapolated function of the form 

( ) ln( )f t m t c= +  .............................................................................................................. (A-56) 

Recalling the Laplace transform expressions, we have 

1

0 10

( ) ( ) ( ) ( )
N

N

tt
st st st

t t t

f s f t e dt f t e dt f t e dt
∞

− − −

=

= + +∫ ∫ ∫  ................................................................ (A-2) 

1 2 3( )f s P P P= + +  .............................................................................................................. (A-3) 

We cannot determine the closed form of P1 and none could be found in the literature either.  Thus, 

we will consider only P3 in this study.  From Eq. A-2 and A-3, we know that 
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3 ( )
N

st

t

P f t e dt
∞

−= ∫  ............................................................................................................... (A-58) 

From Eq. A-56, we can determine the extrapolation on the right-hand side of data as 

( ) ln( / )N ext Nf t f m t t= +    For Nt t≥   .............................................................................. (A-59) 

Substituting Eq. A-59 into Eq. A-58, we get 

3 [ ln( / )]

ln( / )

N

N N

st
N ext N

t

st st
N ext N

t t

P e f m t t dt

f e dt m e t t dt

∞
−

∞ ∞
− −

= +

= +

∫

∫ ∫
 

3 ln( / )N

N

st stN
ext N

t

fP e m e t t dt
s

∞
− −= + ∫  .................................................................................. (A-60) 

Considering the second term on the right-hand side of Eq. A-60, we have 

ln( / ) [ ln( / )]
N N

st stext
ext N N

t t

mm e t t dt se t t dt
s

∞ ∞
− −= − −∫ ∫  ............................................................ (A-61) 

Integrating by parts by using the relation in Eq. A-62 

[ ]
b b

b
a

a a

udv uv vdu= −∫ ∫  ......................................................................................................... (A-62) 

By letting u  and v  terms in Eq. A-62 to be as below 

ln( / )
(1 / )

N

st

st

u t t
du t dt
v e
dv se dt

−

−

=
=

=

= −
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We have 

ln( / ) ([ln( / ) ] (1 / ) )

(1 / )

N

N N

N

st st stext
ext N N t

t t

stext

t

mm e t t dt t t e e t dt
s

m e t dt
s

∞ ∞
− − ∞ −

∞
−

= − −

=

∫ ∫

∫
 ......................................... (A-63) 

Transforming the integrating variable by letting 

@ ,
@ ,

N N

z st
dz sdt

t t z st
t z

=
=
= =
= ∞ = ∞

 

Eq. A-63 becomes 

ln( / )

( / )

N N

N

z
st zext

ext N
t z st

z
zext

z st

m s dzm e t t dt e
s z s

m e z dz
s

∞ =∞
− −

=

=∞
−

=

=

=

∫ ∫

∫
 ........................................................................ (A-64) 

From the definition of Exponential Integral function, we have 

( ) ( / )z
i

x

E x e z dz
∞

−− − = ∫  ..................................................................................................... (A-65) 

Using the definition in Eq. A-65, Eq. A-64 becomes 

ln( / ) ( )
N

st ext
ext N i N

t

mm e t t dt E st
s

∞
− = − −∫ .............................................................................. (A-66) 

Substituting Eq. A-66 into Eq. A-60, we have 

3 ( )NstN ext
i N

f mP e E st
s s

−= − −  ............................................................................................ (A-67) 
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In the case of decreasing rate function, the extrapolation should stop at zero to reflect the real 

characteristic of a rate function.  The time at which rate reaches zero can be determined using Eq. 

A-59.  By letting 1( ) 0Nf t + =  for 1Nt t += , we have 

10 ln( / )N ext N Nf m t t+= +      for 1N Nt t+ ≥  .......................................................................... (A-68) 

Rearranging, we have 

1

N

ext

f
m

N Nt t e
−

+ =      for 1N Nt t+ ≥  ............................................................................................ (A-69) 

We are assuming that functional value after 1Nt +  is zero.  Thus, we can modify Eq. A-58 to be 

1

3 ( )
N

N

t
st

t

P f t e dt
+

−= ∫  .............................................................................................................. (A-70) 

Recalling Eq. A-59, we have 

( ) ln( / )N ext Nf t f m t t= +      for 1N Nt t t+ ≥ ≥   ................................................................... (A-59) 

Substituting Eq. A-59 into Eq. A-70 we get 

1

1 1

1

1

3 [ ln( / )]

ln( / )

[ ] ln( / )

N

N

N N

N N

N

N

N

N

t
st

N ext N
t

t t
st st

N ext N
t t

t
tst stN
t ext N

t

P e f m t t dt

f e dt m e t t dt

f e m e t t dt
s

+

+ +

+

+

−

− −

− −

= +

= +

= − +

∫

∫ ∫

∫

 

1

1
3 [ ] ln( / )

N

N N

N

t
st st stN

ext N
t

fP e e m e t t dt
s

+

+− − −= − + ∫  ................................................................. (A-71) 

Considering the second term on the right-hand side of Eq. A-71, we can rewrite the term as 
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1

1

ln( / ) ln( / ) ln( / )
N

N N N

t
st st st

ext N ext N ext N
t t t

m e t t dt m e t t dt m e t t dt
+

+

∞ ∞
− − −= −∫ ∫ ∫  ............................... (A-72) 

The first term on the right-hand side of Eq. A-72, we have already derived in Eq. A-66.  Thus, we 

are considering the second term on the right-hand side of Eq. A-72.  We can rewrite the term as 

1 1

ln( / ) ln( / )
N N

st stext
ext N N

t t

mm e t t dt se t t dt
s

+ +

∞ ∞
− −− = −∫ ∫ ............................................................ (A-73) 

Integrating by parts by using the relation in Eq. A-62 

[ ]
b b

b
a

a a

udv uv vdu= −∫ ∫  ......................................................................................................... (A-62) 

By letting u  and v  terms in Eq. A-62 to be as below 

ln( / )
(1 / )

N

st

st

u t t
du t dt
v e
dv se dt

−

−

=
=

=

= −
 

Eq. A-73 becomes 

1

1 1

1

1

1

ln( / ) ([ln( / ) ] (1 / ) )

((0 ln( / ) ) (1 / ) )

N

N N

N

N

st st stext
ext N N t

t t

st stext
N N

t

mm e t t dt t t e e t dt
s

m t t e e t dt
s

+

+ +

+

+

∞ ∞
− − ∞ −

∞
− −

+

− = +

= − +

∫ ∫

∫
 

1

1 1

1ln( / ) ln( ) (1 / )N

N N

stst stext N ext
ext N

Nt t

m t mm e t t dt e e t dt
s t s

+

+ +

∞ ∞
−− −+− = − −∫ ∫  ................................... (A-74) 

Transforming the integrating variable in the second term on the right-hand side of Eq. A-74 by 

letting 
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1 1@ ,
@ ,

N N

z st
dz sdt

t t z st
t z

+ +

=
=
= =
= ∞ = ∞

 

Eq. A-74 becomes 

1

1 1

1ln( / ) ln( ) ( )N

N N

z z
stst ext N ext

ext N
Nt z st

m t m em e t t dt e dz
s t s z

+

+ +

∞ =∞ −
−− +

=

− = − −∫ ∫  .................................... (A-75) 

Recalling the definition of Exponential Integral function, we have 

( ) ( / )z
i

x

E x e z dz
∞

−− − = ∫  ..................................................................................................... (A-65) 

Using the definition in Eq. A-65, Eq. A-75 becomes 

1

1

1
1ln( / ) ln( ) ( )N

N

stst ext N ext
ext N i N

Nt

m t mm e t t dt e E st
s t s

+

+

∞
−− +

+− = − + −∫  ....................................... (A-76) 

Substituting Eq. A-76 into Eq. A-72, we have 

1

11

1

ln( / ) ln( / ) ln( )

( )

N

N

N N

t
stst st ext N

ext N ext N
Nt t

ext
i N

m tm e t t dt m e t t dt e
s t

m E st
s

+

+

∞
−− − +

+

= −

+ −

∫ ∫
 ..................................... (A-77) 

Recalling the relation in Eq. A-66 which is 

ln( / ) ( )
N

st ext
ext N i N

t

mm e t t dt E st
s

∞
− = − −∫ .............................................................................. (A-66) 

Substituting into Eq. A-77, we have 

1

11
1ln( / ) [ ln( ) ( ) ( )]

N

N

N

t
stst ext N

ext N i N i N
Nt

m tm e t t dt e E st E st
s t

+

+−− +
+= − − − + −∫  ............................. (A-78) 
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Substituting Eq. A-78 into Eq. A-71, we have the expression for P3 

1 11
3 1[ ] [ ln( ) ( ) ( )]N N Nst st stN ext N

i N i N
N

f m tP e e e E st E st
s s t

+ +− − −+
+= − + − − − + −  ............................ (A-79) 

We can further simplify the relation by using the relation in Eq. A-69 which is  

1

N

ext

f
m

N Nt t e
−

+ =      for 1N Nt t+ ≥   ........................................................................................... (A-69) 

Substituting into the third term on the right-hand side of Eq. A-79, we have 

3 1[ ( ) ( )]NstN ext
i N i N

f mP e E st E st
s s

−
+= + − − −  ...................................................................... (A-80) 

A.4.4 Straight-Line Extrapolation on a Log-Linear Scale 

We are to develop the Laplace transform expression of the extrapolated function of the form 

ln( ( )) ln( )f t tβ α= +  ........................................................................................................ (A-57) 

Exponentiating both sides, we get 

( ) tf t eβα=  ....................................................................................................................... (A-81) 

Recalling the Laplace transform expressions we have 

1

0 10

( ) ( ) ( ) ( )
N

N

tt
st st st

t t t

f s f t e dt f t e dt f t e dt
∞

− − −

=

= + +∫ ∫ ∫  ................................................................ (A-2) 

1 2 3( )f s P P P= + +  .............................................................................................................. (A-3) 

Firstly, we are considering 1P .  From Eqs. A-2 and A-3, we know that 

1

1
0

( )
t

stP f t e dt−= ∫  ................................................................................................................ (A-82) 
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From Eq. A-81, we can determine the extrapolated function on the left-hand side of data as 

1
1( ) tf t eβα=     for 1t t≤   ................................................................................................... (A-83) 

Substituting Eq. A-83 into Eq. A-82, we have 

1

1

1 1

( )
1 1

0

( )1
0

1

[ ]

t
s t

s t t

P e dt

e
s

β

β

α

α
β

−

−

=

=
−

∫
 

1 1( )1
1

1

[ 1]s tP e
s

βα
β

−= −
−

     for 1s β≠   ................................................................................. (A-84) 

Next, we are considering 3P .  Recalling Eq. A-58, we have 

3 ( )
N

st

t

P f t e dt
∞

−= ∫  ............................................................................................................... (A-58) 

From Eq. A-81, we can determine the extrapolated function on the right-hand side of data as 

( ) ext t
extf t eβα=      for Nt t≥   ............................................................................................. (A-85) 

Substituting Eq. A-85 into Eq. A-58, we get 

( )
3

( )[ ]

ext

N

ext

N

s t
ext

t

s text
t

ext

P e dt

e
s

β

β

α

α
β

∞
−

− ∞

=

=
−

∫
 

( )
3 [ ]ext Ns text

ext

P e
s

βα
β

−=
−

     for exts β>   .............................................................................. (A-86) 

From Eq. A-85, we know that 

ext Nt
N extf eβα= .................................................................................................................... (A-87) 
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Substituting Eq. A-87 into Eq. A-86, we have 

3
NstN

ext

fP e
s β

−=
−

     for exts β>  ........................................................................................ (A-88) 
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Nomenclature 

t  = Time, day 

( )f t  = Time function 

  = Laplace transform operator 

( )f s  = Laplace transform of f(t) 
s  = Laplace variable, 1/day 
m  = Straight-line cord slope 
i  = Number index of discrete data points 

N  = Total number of discrete data points 
c  = Straight-line cord constant 

β  = Slope of log-log straight line 
υ  = Constant related to slope of log-log straight line 
α  = Intercept of log-log straight line 
γ  = First Incomplete Gamma function 

Γ  = Gamma function, second Incomplete Gamma function 

iE  = Exponential Integral function 

I  = Arbitrary integrand 
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APPENDIX B 

DERIVATION OF THE LAPLACE TRANSFORM EXPRESSIONS FOR A 

SMOOTHED FUNCTION AND FUNCTIONAL OPERATIONS 

B.1 Introduction 

We derived the expressions for smoothing a time function and computing the derivative and the 

integral of a time function using the Laplace transform properties.  Although, in this research work, 

we focus on the time-rate discrete data function, we derived all the expressions in generic terms 

so that they would be applicable for any time functions.  In order to apply these expressions to a 

discrete time-rate data, the knowledge of numerical Laplace transform of discrete data described 

in Appendix A can be used.  We also derived the expressions for computing the reciprocal of the 

Loss-ratio (D-parameter) and the derivative of the Loss-ratio (b-parameter) from a time-rate data 

using the Laplace transform method. 

In our derivation, we used two types of basis-functions to be taken into the Laplace domain which 

are the time function itself and the reciprocal of the time function.  Table B-1 and B-2 summarize 

the derived expressions for the Laplace transform smoothed function, the Laplace transform 

derivative function, and the Laplace transform integral function using time function and its 

reciprocal as the basis functions, respectively.  The smoothed function can be obtained simply by 

taking the Laplace transform of the time function and invert it back into time space.  For the 

derivative and the integral computation, we use the identities of the Laplace transform of derivative 

and integral function, then we invert them back into time domain.  Detailed derivation will be 

provided later. 
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Table B-1 — Summary of the Expressions for the Laplace Transform Smoothed Function, the 
Laplace Transform Derivative Function, and the Laplace Transform Integral 
Function using Time Function as the Basis Function. 

 Expressions Eqs. 

Basis Functions ( )f t   

Laplace Transform Smoothed 

Functions 



1( ) { ( )}f t f s−=  

Where ( ) { ( )}f s f t=  

(B-1) 

 

Laplace Transform Derivative 

Functions (Method 1) 



1'( ) { '( )}f t f s−=  

Where '( ) ( ) ( 0)f s s f s f t= − =  

(B-8) 

 

Laplace Transform Derivative 

Functions (Method 2) 


11 ( )'( ) ( ) d f sf t f s s
t ds

−   = − − 
  

  (B-16) 

Laplace Transform Integral 

Functions 


1 ( )( ) f sF t
s

−   =  
  

  (B-45) 
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Table B-2 — Summary of the Expressions for the Laplace Transform Smoothed Function, the 
Laplace Transform Derivative Function, and the Laplace Transform Integral 
Function using the Reciprocal of Time Function as the Basis Function. 

 Expressions Eqs. 

Basis Functions ( ) 1 / ( )r t f t=   

Laplace Transform Smoothed 

Functions 



1

1( )
{ ( )}

f t
r s−

=


 

Where ( ) { ( )}r s r t=  

(B-3) 

 

Laplace Transform Derivative 

Functions (Method 1) 



2
1

1

1'( ) { '( )}
{ ( )}

f t r s
r s

−
−

 
= − 

 



 

Where '( ) ( ) ( 0)r s sr s r t= − =  

(B-20) 

 

Laplace Transform Derivative 

Functions (Method 2) 


2
1

1

1 1 ( )'( ) ( )
{ ( )}

d r sf t r s s
t dsr s

−
−

    = − − −  
    




 (B-28) 

Laplace Transform Integral 

Functions 
N/A  
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B.2 Derivation of the Expressions for the Laplace Transform Smoothed Function 

We can simply utilize the smoothing capability of the Laplace transform and the Laplace transform 

inversion to smooth the noisy data.  The expression can be found below. 



1 1( ) { { ( )}} { ( )}f t f t f s− −= =    ........................................................................................ (B-1) 

As a side note, in this work, our targeted time function is in a form of discrete time-rate data, e.g. 

daily production rate and monthly production rate.  The smoothness and accuracy of the smoothed 

function are dependent on the representativeness of the approximating function used in the 

numerical Laplace transformation process and the Stehfest "n" parameter used in the numerical 

Laplace inversion process.  The smaller "n" parameter yields less accurate but smoother function. 

Alternatively, we can use the reciprocal of time function instead of the time function itself. 

Let ( ) 1 / ( )r t f t= , we have 

1 { ( )} ( )
( )

r t r s
f t

 
= = 

 
   ................................................................................................... (B-2) 

The expression for the Laplace transform smoothed function would be as below. 



1 1

1 1( )
{ {1 / ( )}} { ( )}

f t
f t r s− −

= =
  

 .................................................................................... (B-3) 

B.3 Derivation of the Expressions for the Laplace Transform Derivative Function 

First, we will use time function as the basis function for the derivation.  The Laplace transform 

derivative function can be defined as 

{ }{ }1ˆ '( ) '( )f t f t−=   ......................................................................................................... (B-4) 

Alternatively, we can also use the relationship between derivative with respect to logarithmic time 

and time derivative as shown in Eq. B-5. 

ln( )
( ) 1 ( ) 1 ( ) 1'( ) ' ( )

ln( ) t
df t df t df tf t t f t

dt t dt t d t t
  = = = =     

 ........................................................... (B-5) 
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Then, we can define the Laplace transform derivative as 

 

ln( )
1'( ) ' ( )tf t f t
t

=  ................................................................................................................. (B-6) 

We call the expressions in Eq. B-4 and B-6, which will be used to compute Laplace transform 

derivative function, as method 1 and method 2, respectively. 

To derive the method 1 Laplace transform derivative expression, we use the property of the 

Laplace transform of derivative functions shown in Eq. B-7. 

{ } ( )'( ) '( ) ( ) ( 0)df tf t f s s f s f t
dt

 = = = − = 
 

    ............................................................... (B-7) 

Substituting in Eq. B-4, we have 

{ } { }1 1ˆ '( ) '( ) ( ) ( 0)f t f s s f s f t− −= = − =   ......................................................................... (B-8) 

Next, we are deriving the method 2.  Firstly, we recall the relation in Eq. B-6 

 

ln( )
1'( ) ' ( )tf t f t
t

=  ................................................................................................................. (B-6) 

It can be rewritten as 

1
ln( )

1

1ˆ '( ) { { ' ( )}}

1 { { '( )}}

tf t f t
t

tf t
t

−

−

=

=

 

 
 ................................................................................................... (B-9) 

We are to determine the Laplace transform of the logarithmic time derivative function on the right-

hand side of Eq. B-9.  First, we need to prove the identity in Eq. B-10 

( ){ ( )} d f stf t
ds

= −  ............................................................................................................ (B-10) 

From the definition of the Laplace transform, we know that 



 

111 

 

0

{ ( )} ( ) ( )stf t f s e f t dt
∞

−= = ∫  ............................................................................................ (B-11) 

Taking the derivative with respect to the Laplace variable, s , on both sides, we get 

0

0

( ) ( )

( ( ))

st

st

d f s d e f t dt
ds ds

e f t dt
s

∞
−

∞
−

=

∂
=

∂

∫

∫
 

0

( ) ( )std f s te f t dt
ds

∞
−= −∫  ...................................................................................................... (B-12) 

Using the Laplace transform definition in Eq. B-11, the expression in Eq. B-12 is equivalent to the 

expression in Eq. B-10.  This proves that the identity in Eq. B-10 is true.  Then, we can determine 

{ '( )}tf t  by letting ( ) '( )g t f t=  and using the relationship in Eq. B-10, we have 

( ){ '( )} { ( )} d g stf t tg t
ds

= = −   .......................................................................................... (B-13) 

Since, ( ) '( )g s f s= , we have 

'( ){ '( )} d f stf t
ds

= −  ......................................................................................................... (B-14) 

Substituting Eq. B-7 into Eq. B-14, we have 

'( ){ '( )}

{ ( ) ( 0)}

{ ( )}

d f stf t
ds

d s f s f t
ds
d s f s
ds

= −

= − − =

= −



 

( ){ '( )} ( ) d f stf t f s s
ds

= − −  .............................................................................................. (B-15) 
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Substituting Eq. B-15 into Eq. B-9, we obtain 

11 ( )ˆ '( ) ( ) d f sf t f s s
t ds

−   = − − 
  

  ........................................................................................ (B-16) 

We now have two derivative algorithms to compute using the property of the Laplace transform.  

Onur and Reynolds [1998] suggested that the algorithm in Eq. B-13 requires more computation 

time than the algorithm in Eq. B-8, however, it yields more reliable results. 

Next, we are considering the reciprocal of time function as the basis function for derivative 

computation.  To derive the expression for the derivative function using method 2, we firstly 

differentiate the reciprocal of time function. 

( ) 2

1 1 ( )( )
( ) ( ( ))

d d df tr t
dt dt f t f t dt

 
= = − 

 
 ............................................................................. (B-17) 

Rearranging, we get 

2( ) 1( ( ))
( )

df t df t
dt dt f t

 
= −  

 
 ............................................................................................... (B-18) 

From Eq. B-18, we can define the Laplace transform derivative function as 

 

2 1 1'( ) ( ( ))
( )

df t f t
dt f t

−
     = −    

     
   ................................................................................ (B-19) 

Redefining in terms of the reciprocal of time function, we have 

 { }
2

1
1

1'( ) '( )
{ ( )}

f t r s
r s

−
−

 
= − 

 



 ...................................................................................... (B-20) 

Using the relation in Eq. B-7 to determine the Laplace transform of the reciprocal function, we 

have 

'( ) ( ) (0)r s sr s r= −  ............................................................................................................ (B-21) 
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Substituting into Eq. B-20, we have 

2
1

1

1ˆ '( ) { ( ) ( 0)}
{ ( )}

f t sr s r t
r s

−
−

 
= − − = 

 



 ...................................................................... (B-22) 

Apart from the expression in Eq. B-22, we will prove it using the same concept which we used to 

derive Eq. B-16.  We are starting with the derivative of the basis function with respect to 

logarithmic time, in this case, we are using the reciprocal of time function as the basis function. 

Differentiating the reciprocal of time function with respect to logarithmic time, we have 

( )
2

( ) 1 1 ( )
ln ln ( ) ( ) ( ( ))

d r t d d t df tt
d t d t f t dt f t f t dt

   
= = = −   

   
 .................................................... (B-23) 

Rearranging, we get 

2( ) ( ( )) 1
( )

df t f t dt
dt t dt f t

   = −   
   

 ........................................................................................ (B-24) 

From Eq. B-24, we can define the Laplace transform derivative function as 





2
1( ( )) 1'( )

( )
f t df t t

t dt f t
−
     = −    

     
   ............................................................................. (B-25) 

Redefining in terms of the reciprocal of time function, we have 

 { }{ }
2

1
1

1 1'( ) '( )
{ ( )}

f t tr t
t r s

−
−

 
= −  

 
 


 ............................................................................. (B-26) 

Recalling Eq. B-15, we know that 

( ){ '( )} ( ) d f stf t f s s
ds

= − −  .............................................................................................. (B-15) 

Thus, we have 
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( ){ '( )} ( ) d r str t r s s
ds

= − −  ................................................................................................ (B-27) 

Substituting into Eq. B-26, we obtain 



2
1

1

1 1 ( )'( ) ( )
{ ( )}

d r sf t r s s
t dsr s

−
−

    = − − −  
    




 .................................................................. (B-28) 

In Eqs. B-16 and B-28, we require the derivative of ( )f s  and ( )r s with respect to the Laplace 

variable.  To derive that, we need to have an explicit form of ( )f s  and ( )r s which is shown 

exhaustively in Appendix A.  We showed several forms of the Laplace transform of discrete data 

using several types of approximating functions.  Here, we will provide an example of the derivative 

of ( )f s  using the piecewise linear approximation form of ( )f s  (Eq. B-29). 

Recalling the expression for the Laplace transform of a time function using the piecewise linear 

data approximating approach from Eq. A-19, we have 

10
2 2

1

1 1( ) ( ) (1 )
N

i i N ext

sfN
st st st m

i ext
i

ff s m e e m e e
s s s

−− − −

=

= + − + −∑  ................................................. (A-19) 

Differentiating both sides with the Laplace variable, we have 

1

1 1

0
2 2

1

0
12 2 3

1 1

2 3

1 1( ) ( ) (1 )

1 2( ) ( )

1 2

N

i i N ext

i i i i

N
N

sfN
st st st m

i ext
i

N N
st st st st

i i i i
i i

sf
st

mN
ext N

ext

fd d d df s m e e m e e
ds ds s ds s ds s

f m t e t e m e e
s s s

fm t e
s m s

−

− −

− − −

=

− − − −
−

= =

− +

   = + − + −           

= − + − + −

  
+ − +     

∑

∑ ∑

2 3

1 2
ext Nst

Nt e
s s

−
  − +     

 

1 10
12 2 3

1 1

2 3 2 3

1 2( ) ( ) ( )

1 2 1 2

i i i i

N
N

ext N

N N
st st st st

i i i i
i i

sf
st

m stN
ext N ext N

ext

fd f s m t e t e m e e
ds s s s

fm e t m e t
s m s s s

− −− − − −
−

= =

− +
−

= − + − + −

    + − + − +         

∑ ∑
 ................................ (B-29) 
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where 

( ), 0,1,2,...,i i if f t t N= = ; 

1

1

i i
i

i i

f fm
t t

−

−

−
=

−
 

B.4 Derivation of the Expressions for the Laplace Transform Derived D and b-Parameters 

Utilizing the Laplace transform derivative expressions derived earlier in Eq. B-8, B-16, B-22, and 

B-28, we can derive the expressions for computing D and b-parameters from a time-rate discrete 

data.  D and b-parameters could be computed using their definitions proposed by Johnson and 

Bollens [1928] in Eqs. B-30 and B-31, respectively. 

1 ( )
( ) ( ) /

q t
D t dq t dt

≡ −      Definition of the Loss-Ratio .......................................................... (B-30) 

1 ( )( )
( ) ( ) /

d d q tb t
dt D t dt dq t dt
   

≡ ≡ −   
   

     Definition of the Loss-Ratio Derivative ............... (B-31) 

For D-parameter computation, we can rearrange the relation in Eq. B-30 

1 ( )( )
( )

dq tD t
q t dt

≡ −  ............................................................................................................ (B-32) 

Rewriting with the Laplace transform accent to indicate that the function is computed using the 

Laplace transform method, we have 

1ˆ ˆ( ) '( )
ˆ( )

D t q t
q t

≡ −  .............................................................................................................. (B-33) 

Substituting the Laplace transform derivative expressions from Eqs. B-8, B-16, B-22, and B-28 

into Eq. B-33, we get four different expressions for D-parameter.  The first two expressions use 

time-rate data function as the basis function and the other two use the reciprocal of rate data as the 

basis function. 
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{ }
1

1

1ˆ ( ) { ( ) ( 0)}
( )

D t sq s q t
q s

−

−
≡ − − =


 ........................................................................... (B-34) 

11 1 ( )ˆ ( ) ( )
ˆ( )

d q sD t q s s
q t t ds

−   ≡ − − − 
  

  ................................................................................ (B-35) 

1
1

1ˆ ( ) { ( ) ( 0)}
{ ( )}

D t su s u t
u s

−
−

≡ − =


............................................................................... (B-36) 



1
1

1 1 ( )( ) ( )
{ ( )}

du sD t u s s
t dsu s

−
−

  ≡ − − 
  




 .......................................................................... (B-37) 

where ( )q t  is the rate function and ( ) { ( )}q s q t= ; 

And ( ) 1 / ( )u t q t=  and ( ) { ( )} {1 / ( )}u s u t q t= =   

For b-parameter computation, we can use the definition in Eq. B-31 

1( )
( )

db t
dt D t
 

≡  
 

 ................................................................................................................ (B-31) 

Considering the D-parameter derived from the Laplace method earlier, we have 



1( )
( )

db t
dt D t

 
≡  

  
 ................................................................................................................ (B-38) 

Taking the Laplace transform on both sides, we have 



1( )
( )

db s
dt D t

   =       
  ........................................................................................................ (B-39) 

Where ( ) { ( )}b s b t= , 

Recalling the relation in Eq. B-7, we have 
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{ } ( )'( ) '( ) ( ) ( 0)df tf t f s s f s f t
dt

 = = = − = 
 

    ............................................................... (B-7) 

Using the relation in Eq. B-7, Eq. B-39 becomes 

 

1 1( )
( ) ( 0)

b s s
D t D t

  = − 
=  

  ............................................................................................. (B-40) 

Taking the Laplace inversion, we obtain the expression for the Laplace transform derived b-

parameter as below. 

 

1 1 1 1( ) { ( )}
( ) ( 0)

b t b s s
D t D t

− −
     = = −   

=    

     ................................................................. (B-41) 

B.5 Derivation of the Expression for the Laplace Transform Integral Function 

We are deriving the expression for integrating a time function using the property of the Laplace 

transform.  The basis function for this case is only limited to the time-function itself.  The 

reciprocal function does not work out in this case.  First, we are defining the integral function as 

0

( ) ( )
t

F t f t dt= ∫  .................................................................................................................. (B-42) 

Taking the Laplace transform on both sides of Eq. B-42, we have 

0

{ ( )} { ( ) }
t

F t f t dt= ∫   ...................................................................................................... (B-43) 

Using the property of the Laplace transform of integral functions,  

( ){ ( )} f sF t
s

=  ................................................................................................................. (B-44) 

Where ( ) { ( )}f s f t=  
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Applying the inverse Laplace transform, we obtain the expression for the Laplace transform 

integral function as 

 { }1 1 ( )( ) { ( )} f sF t F t
s

− −   = =  
  

    .................................................................................... (B-45) 
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Nomenclature 

t  = Time, day 

,f g  = Time function 

'f  = Derivative of a time function 

F  = Integral of a time function 

r  = Reciprocal of a time function 

  = Laplace transform operator 
1−  = Inverse of Laplace transform operator 

( )f s  = Laplace transform of f(t) 
s  = Laplace variable, 1/day 
q  = Rate function, Mscf/day for gas(bbl/day for oil) 
u  = Reciprocal of rate function, [Mscf/day]-1 for gas([bbl/day]-1 for oil) 

D  = Reciprocal of loss ratio, 1/day 

b  = Loss ratio derivative, dimensionless 
n  = Parameter in the Stehfest inversion algorithm, dimensionless 
m  = Cord slope 

extm  = Slope of the right-hand side extrapolate line 

N  = Total number of discrete data points 

f  = The Laplace transform smoothed function 

 'f  = The Laplace transform derivative function 

F  = The Laplace transform integral function 

D  = The Laplace transform derived D-parameter 

b  = The Laplace transform derived b-parameter 
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APPENDIX C 

SENSITIVITY CASES 

The goal of this work is to study the effects of various data characteristics to the resulted Laplace 

transform smoothed functions, i.e. Laplace transform smoothed rate function, Laplace transform 

smoothed derivative function, and Laplace transform smoothed integral function.  We used a five-

year monthly synthetic time-rate data generated from Arps exponential decline model as the base 

case.  For the base case,  the so-called modified Roumboutsos and Stewart Laplace transform 

algorithm is used.  We aim to study the effects of the following: 

• Data extrapolation type for numerical Laplace transform computation 

• Data frequency and spacing type 

• Data extent 

• Data noise 

• Data function type [increasing data function versus decreasing data function] 
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C.1 Effects of Data Extrapolation Types 

 
Figure C-1.1 — Comparison Plot of the Laplace Transform of the Synthetic Flowrate 

Using Analytical Solution, Numerical Solution with Cartesian Straight-Line 
Extrapolation, and Numerical Solution with Log-Linear Straight-Line 
Extrapolation Versus Laplace Transform Variable. 

 
 

 
Figure C-1.2 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform of the Synthetic Flowrate Using Numerical Solution with Cartesian 
Straight-Line Extrapolation and Numerical Solution with Log-Linear Straight-
Line Extrapolation Versus Laplace Transform Variable 
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Figure C-1.3 — Comparison Plot of the Laplace Transform Rates Using Analytical 

Solution, Numerical Solution with Cartesian Straight-Line Extrapolation, and 
Numerical Solution with Log-Linear Straight-Line Extrapolation Versus 
Reciprocal of Laplace Transform Variable 

 
 

 
Figure C-1.4 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Rates Using Numerical Solution with Cartesian Straight-Line 
Extrapolation and Numerical Solution with Log-Linear Straight-Line 
Extrapolation Versus Reciprocal of Laplace Transform Variable 
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Figure C-1.5 — Comparison Plot of the Laplace Transform Smoothed Flowrates Using 

Analytical Solution, Numerical Solution with Cartesian Straight-Line 
Extrapolation, and Numerical Solution with Log-Linear Straight-Line 
Extrapolation Versus Time 

 
 

 
Figure C-1.6 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Flowrates Using Analytical Solution, Numerical 
Solution with Cartesian Straight-Line Extrapolation, and Numerical Solution 
with Log-Linear Straight-Line Extrapolation Versus Time 
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Figure C-1.7 — Comparison Plot of the Laplace Transform Smoothed Rate Derivatives 

Using Analytical Solution, Numerical Solution with Cartesian Straight-Line 
Extrapolation, and Numerical Solution with Log-Linear Straight-Line 
Extrapolation Versus Time 

 
 

 
Figure C-1.8 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Rate Derivatives Using Analytical Solution, Numerical 
Solution with Cartesian Straight-Line Extrapolation, and Numerical Solution 
with Log-Linear Straight-Line Extrapolation Versus Time 
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Figure C-1.9 — Comparison Plot of the Laplace Transform Smoothed Cumulative 

Production Using Analytical Solution, Numerical Solution with Cartesian 
Straight-Line Extrapolation, and Numerical Solution with Log-Linear 
Straight-Line Extrapolation Versus Time 

 
 

 
Figure C-1.10 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Cumulative Production Using Analytical Solution, 
Numerical Solution with Cartesian Straight-Line Extrapolation, and 
Numerical Solution with Log-Linear Straight-Line Extrapolation Versus Time 
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C.2 Effects of Data Frequency and Spacing Type 

 
Figure C-2.1 — Comparison Plot of the Analytical Laplace Transform, the Numerical 

Laplace Transform of High-Frequency Data, Low-Frequency Data, and 
Logarithmically-Spaced Data Versus Laplace Transform Variable. 

 
 

 
Figure C-2.2 — Comparison Plot of the Absolute Percentage Errors of the Numerical 

Laplace Transform of High-Frequency Data, Low-Frequency Data, and 
Logarithmically-Spaced Data Versus Laplace Transform Variable 
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Figure C-2.3 — Comparison Plot of the Analytical Laplace Transform Rate, the 

Numerical Laplace Transform Rates of High-Frequency Data, Low-Frequency 
Data, and Logarithmically-Spaced Data Versus Reciprocal of Laplace 
Transform Variable 

 
 

 
Figure C-2.4 — Comparison Plot of the Absolute Percentage Errors of the Numerical 

Laplace Transform Rates of High-Frequency Data, Low-Frequency Data, and 
Logarithmically-Spaced Data Versus Reciprocal of Laplace Transform 
Variable 
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Figure C-2.5 — Comparison Plot of the Laplace Transform Smoothed Flowrates Using 

Analytical Solution, Numerical Solution of High-Frequency Data, Low-
Frequency Data, and Logarithmically-Spaced Data Versus Time 

 
 

 
Figure C-2.6 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Flowrates Using Analytical Solution, Numerical 
Solution of High-Frequency Data, Low-Frequency Data, and Logarithmically-
Spaced Data Versus Time 
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Figure C-2.7 — Comparison Plot of the Laplace Transform Smoothed Rate Derivatives 

Using Analytical Solution, Numerical Solution of High-Frequency Data, Low-
Frequency Data, and Logarithmically-Spaced Data Versus Time 

 
 

 
Figure C-2.8 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Rate Derivatives Using Analytical Solution, Numerical 
Solution of High-Frequency Data, Low-Frequency Data, and Logarithmically-
Spaced Data Versus Time 
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Figure C-2.9 — Comparison Plot of the Laplace Transform Smoothed Cumulative 

Production Using Analytical Solution, Numerical Solution of High-Frequency 
Data, Low-Frequency Data, and Logarithmically-Spaced Data Versus Time 

 
 

 
Figure C-2.10 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Cumulative Production Using Analytical Solution, 
Numerical Solution of High-Frequency Data, Low-Frequency Data, and 
Logarithmically-Spaced Data Versus Time 
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C.3 Effects of Data Extent 

 
Figure C-3.1 — Comparison Plot of the Analytical Laplace Transform, the Numerical 

Laplace Transform of 3-Year Data, 5-Year Data, and 10-Year Data Versus 
Laplace Transform Variable. 

 
 

 
Figure C-3.2 — Comparison Plot of the Absolute Percentage Errors of the Numerical 

Laplace Transform of 3-Year Data, 5-Year Data, and 10-Year Data Versus 
Laplace Transform Variable 
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Figure C-3.3 — Comparison Plot of the Analytical Laplace Transform Rate, the 

Numerical Laplace Transform Rates of 3-Year Data, 5-Year Data, and 10-
Year Data Versus Reciprocal of Laplace Transform Variable 

 
 

 
Figure C-3.4 — Comparison Plot of the Absolute Percentage Errors of the Numerical 

Laplace Transform Rates of 3-Year Data, 5-Year Data, and 10-Year Data 
Versus Reciprocal of Laplace Transform Variable 
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Figure C-3.5 — Comparison Plot of the Laplace Transform Smoothed Flowrates Using 

Analytical Solution, Numerical Solution of 3-Year Data, 5-Year Data, and 10-
Year Data Versus Time 

 
 

 
Figure C-3.6 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Flowrates Using Analytical Solution, Numerical 
Solution of 3-Year Data, 5-Year Data, and 10-Year Data Versus Time 
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Figure C-3.7 — Comparison Plot of the Laplace Transform Smoothed Rate Derivatives 

Using Analytical Solution, Numerical Solution of 3-Year Data, 5-Year Data, 
and 10-Year Data Versus Time 

 
 

 
Figure C-3.8 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Rate Derivatives Using Analytical Solution, Numerical 
Solution of 3-Year Data, 5-Year Data, and 10-Year Data Versus Time 
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Figure C-3.9 — Comparison Plot of the Laplace Transform Smoothed Cumulative 

Production Using Analytical Solution, Numerical Solution of 3-Year Data, 5-
Year Data, and 10-Year Data Versus Time 

 
 

 
Figure C-3.10 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Cumulative Production Using Analytical Solution, 
Numerical Solution of 3-Year Data, 5-Year Data, and 10-Year Data Versus 
Time 
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C.4 Effects of Data Noise 

 
Figure C-4.1 — Comparison Plot of the Analytical Laplace Transform, the Numerical 

Laplace Transform of Data Without Noise, Data with 1-Percent Gaussian 
Noise, and Data with 5-Percent Gaussian Noise Versus Laplace Transform 
Variable. 

 
 

 
Figure C-4.2 — Comparison Plot of the Absolute Percentage Errors of the Numerical 

Laplace Transform of Data Without Noise, Data with 1-Percent Gaussian 
Noise, and Data with 5-Percent Gaussian Noise Versus Laplace Transform 
Variable 
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Figure C-4.3 — Comparison Plot of the Analytical Laplace Transform Rate, the 

Numerical Laplace Transform Rates of Data Without Noise, Data with 1-
Percent Gaussian Noise, and Data with 5-Percent Gaussian Noise Versus 
Reciprocal of Laplace Transform Variable 

 
 

 
Figure C-4.4 — Comparison Plot of the Absolute Percentage Errors of the Numerical 

Laplace Transform Rates of Data Without Noise, Data with 1-Percent 
Gaussian Noise, and Data with 5-Percent Gaussian Noise Versus Reciprocal 
of Laplace Transform Variable 
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Figure C-4.5 — Comparison Plot of the Laplace Transform Smoothed Flowrates Using 

Analytical Solution, Numerical Solution of Data Without Noise, Data with 1-
Percent Gaussian Noise, and Data with 5-Percent Gaussian Noise Versus Time 

 
 

 
Figure C-4.6 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Flowrates Using Analytical Solution, Numerical 
Solution of Data Without Noise, Data with 1-Percent Gaussian Noise, and 
Data with 5-Percent Gaussian Noise Versus Time 
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Figure C-4.7 — Comparison Plot of the Laplace Transform Smoothed Rate Derivatives 

Using Analytical Solution, Numerical Solution of Data Without Noise, Data 
with 1-Percent Gaussian Noise, and Data with 5-Percent Gaussian Noise 
Versus Time 

 
 

 
Figure C-4.8 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Rate Derivatives Using Analytical Solution, Numerical 
Solution of Data Without Noise, Data with 1-Percent Gaussian Noise, and 
Data with 5-Percent Gaussian Noise Versus Time 
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Figure C-4.9 — Comparison Plot of the Laplace Transform Smoothed Cumulative 

Production Using Analytical Solution, Numerical Solution of Data Without 
Noise, Data with 1-Percent Gaussian Noise, and Data with 5-Percent Gaussian 
Noise Versus Time 

 
 

 
Figure C-4.10 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Cumulative Production Using Analytical Solution, 
Numerical Solution of Data Without Noise, Data with 1-Percent Gaussian 
Noise, and Data with 5-Percent Gaussian Noise Versus Time 
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C.5 Effects of Data Function Type (Increasing Data Function vs Decreasing Data Function) 

 
Figure C-5.1 — Comparison Plot of the Laplace Transform Smoothed Flowrates Using 

Analytical Solution, Numerical Solution of Rate Data, and Reciprocal of Rate 
Data Versus Time 

 
 

 
Figure C-5.2 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Flowrates Using Analytical Solution, Numerical 
Solution of Rate Data, and Reciprocal of Rate Data Versus Time 
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Figure C-5.3 — Comparison Plot of the Laplace Transform Smoothed Rate Derivatives 

Using Analytical Solution, Numerical Solution of Rate Data, and Reciprocal 
of Rate Data Versus Time 

 
 

 
Figure C-5.4 — Comparison Plot of the Absolute Percentage Errors of the Laplace 

Transform Smoothed Rate Derivatives Using Analytical Solution, Numerical 
Solution of Rate Data, and Reciprocal of Rate Data Versus Time 
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APPENDIX D 

METHOD VALIDATION WITH SYNTHETIC TIME-RATE DATA 

Thirteen method validation cases are presented in this appendix including: 

• Arps exponential model (perfect data case) 

• Arps exponential model (noisy data case) 

• Arps hyperbolic model (perfect data case) 

• Arps hyperbolic model (noisy data case) 

• Arps harmonic model (perfect data case) 

• Arps harmonic model (noisy data case) 

• Modified hyperbolic model (perfect data case) 

• Modified hyperbolic model (noisy data case 

• Power-law exponential model (perfect data case) 

• Power-law exponential model (noisy data case) 

• Duong model (perfect data case) 

• Logistic growth model (perfect data case) 

• Logistic growth model (noisy data case) 
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D.1 Arps Exponential Model (Perfect Data Case) 

 
Figure D-1.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Arps Exponential Model (Perfect Data 
Case)]. 

 
 

 
Figure D-1.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Exponential 
Model (Perfect Data Case)]. 
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Figure D-1.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Exponential 
Model (Perfect Data Case)]. 

 
 

 
Figure D-1.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Arps Exponential Model (Perfect Data Case)]. 
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Figure D-1.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Exponential 
Model (Perfect Data Case)]. 

 
 

 
Figure D-1.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Arps 
Exponential Model (Perfect Data Case)]. 
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Figure D-1.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Exponential Model (Perfect Data Case)]. 

 
 

 
Figure D-1.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Exponential Model (Perfect Data Case)]. 
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Table D-1 — Input Parameters for Arps Exponential Model (Perfect Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Straight Line
LHS Regression Range (lL) 0.35 0.35 1.09
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 16 16 14

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Log Log-Log Straight Line
LHS Regression Range (lL) 0.35 0.35 1.09
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 16 6

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.2 Arps Exponential Model (Noisy Data Case) 

 
Figure D-2.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Arps Exponential Model (Noisy Data 
Case)]. 

 
 

 
Figure D-2.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Exponential 
Model (Noisy Data Case)]. 
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Figure D-2.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Exponential 
Model (Noisy Data Case)]. 

 
 

 
Figure D-2.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Arps Exponential Model (Noisy Data Case)]. 
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Figure D-2.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Exponential 
Model (Noisy Data Case)]. 

 
 

 
Figure D-2.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Arps 
Exponential Model (Noisy Data Case)]. 
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Figure D-2.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Exponential Model (Noisy Data Case)]. 

 
 

 
Figure D-2.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Exponential Model (Noisy Data Case)]. 
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Table D-2 — Input Parameters for Arps Exponential Model (Noisy Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Straight Line
LHS Regression Range (lL) 0.87 0.87 0.87
RHS Regression Range (lR) 0.17 0.17 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 10 8 16

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Log Log-Log Straight Line
LHS Regression Range (lL) 0.87 0.87 1.74
RHS Regression Range (lR) 0.04 0.04 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 10 8 12

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.3 Arps Hyperbolic Model (Perfect Data Case) 

 
Figure D-3.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Arps Hyperbolic Model (Perfect Data 
Case)]. 

 
 

 
Figure D-3.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Hyperbolic 
Model (Perfect Data Case)]. 
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Figure D-3.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Hyperbolic 
Model (Perfect Data Case)]. 

 
 

 
Figure D-3.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Arps Hyperbolic Model (Perfect Data Case)]. 
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Figure D-3.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Hyperbolic 
Model (Perfect Data Case)]. 

 
 

 
Figure D-3.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Arps 
Hyperbolic Model (Perfect Data Case)]. 
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Figure D-3.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Hyperbolic Model (Perfect Data Case)]. 

 
 

 
Figure D-3.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Hyperbolic Model (Perfect Data Case)]. 
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Table D-3 — Input Parameters for Arps Hyperbolic Model (Perfect Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Straight Line
LHS Regression Range (lL) 0.35 0.35 1.74
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 14

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Striaght Line Striaght Line Straight Line
RHS Extrapolation Type (NP3) Log-Log Log-Log Straight Line
LHS Regression Range (lL) 0.35 0.35 1.74
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 6

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.4 Arps Hyperbolic Model (Noisy Data Case) 

 
Figure D-4.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Arps Hyperbolic Model (Noisy Data Case)]. 

 
 

 
Figure D-4.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Hyperbolic 
Model (Noisy Data Case)]. 
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Figure D-4.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Hyperbolic 
Model (Noisy Data Case)]. 

 
 

 
Figure D-4.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Arps Hyperbolic Model (Noisy Data Case)]. 
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Figure D-4.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Hyperbolic 
Model (Noisy Data Case)]. 

 
 

 
Figure D-4.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Arps 
Hyperbolic Model (Noisy Data Case)]. 
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Figure D-4.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Hyperbolic Model (Noisy Data Case)]. 

 
 

 
Figure D-4.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Hyperbolic Model (Noisy Data Case)]. 
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Table D-4 — Input Parameters for Arps Hyperbolic Model (Noisy Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Straight Line
LHS Regression Range (lL) 1.09 1.09 0.87
RHS Regression Range (lR) 0.09 0.09 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 10 6 4

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Striaght Line Striaght Line Straight Line
RHS Extrapolation Type (NP3) Log-Log Log-Log Straight Line
LHS Regression Range (lL) 1.09 1.09 1.74
RHS Regression Range (lR) 0.09 0.09 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 10 6 4

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.5 Arps Harmonic Model (Perfect Data Case) 

 
Figure D-5.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Arps Harmonic Model (Perfect Data Case)]. 

 
 

 
Figure D-5.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Harmonic 
Model (Perfect Data Case)]. 
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Figure D-5.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Harmonic 
Model (Perfect Data Case)]. 

 
 

 
Figure D-5.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Arps Harmonic Model (Perfect Data Case)]. 
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Figure D-5.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Harmonic 
Model (Perfect Data Case)]. 

 
 

 
Figure D-5.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Arps 
Harmonic Model (Perfect Data Case)]. 
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Figure D-5.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Harmonic Model (Perfect Data Case)]. 

 
 

 
Figure D-5.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Harmonic Model (Perfect Data Case)]. 
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Table D-5 — Input Parameters for Arps Harmonic Model (Perfect Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Straight Line
LHS Regression Range (lL) 0.35 0.35 1.30
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 14

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Straight Line Straight Line Straight Line
RHS Extrapolation Type (NP3) Straight Line Straight Line Straight Line
LHS Regression Range (lL) 0.35 0.35 1.30
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 12 12

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.6 Arps Harmonic Model (Noisy Data Case) 

 
Figure D-6.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Arps Harmonic Model (Noisy Data Case)]. 

 
 

 
Figure D-6.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Harmonic 
Model (Noisy Data Case)]. 
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Figure D-6.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Harmonic 
Model (Noisy Data Case)]. 

 
 

 
Figure D-6.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Arps Harmonic Model (Noisy Data Case)]. 
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Figure D-6.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Arps Harmonic 
Model (Noisy Data Case)]. 

 
 

 
Figure D-6.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Arps 
Harmonic Model (Noisy Data Case)]. 
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Figure D-6.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Harmonic Model (Noisy Data Case)]. 

 
 

 
Figure D-6.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Arps 
Harmonic Model (Noisy Data Case)]. 
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Table D-6 — Input Parameters for Arps Harmonic Model (Noisy Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Straight Line
LHS Regression Range (lL) 0.87 0.87 0.87
RHS Regression Range (lR) 0.22 0.22 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 6 6 6

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Striaght Line Striaght Line Straight Line
RHS Extrapolation Type (NP3) Striaght Line Striaght Line Straight Line
LHS Regression Range (lL) 1.30 1.30 1.74
RHS Regression Range (lR) 0.43 0.43 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 6 4 4

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.7 Modified Hyperbolic Model (Perfect Data Case) 

 
Figure D-7.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Modified Hyperbolic Model (Perfect Data 
Case)]. 

 
 

 
Figure D-7.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Modified Hyperbolic 
Model (Perfect Data Case)]. 
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Figure D-7.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Modified Hyperbolic 
Model (Perfect Data Case)]. 

 
 

 
Figure D-7.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Modified Hyperbolic Model (Perfect Data Case)]. 
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Figure D-7.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Modified Hyperbolic 
Model (Perfect Data Case)]. 

 
 

 
Figure D-7.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Modified 
Hyperbolic Model (Perfect Data Case)]. 
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Figure D-7.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Modified 
Hyperbolic Model (Perfect Data Case)]. 

 
 

 
Figure D-7.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Modified 
Hyperbolic Model (Perfect Data Case)]. 
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Table D-7 — Input Parameters for Modified Hyperbolic Model (Perfect Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Linear-Log
LHS Regression Range (lL) 0.35 0.35 1.30
RHS Regression Range (lR) 0.01 0.01 0.01

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 20

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Straight Line Straight Line Straight Line
RHS Extrapolation Type (NP3) Straight Line Straight Line Linear-Log
LHS Regression Range (lL) 0.35 0.35 1.30
RHS Regression Range (lR) 0.01 0.01 0.01

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 20

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.8 Modified Hyperbolic Model (Noisy Data Case) 

 
Figure D-8.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Modified Hyperbolic Model (Noisy Data 
Case)]. 

 
 

 
Figure D-8.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Modified Hyperbolic 
Model (Noisy Data Case)]. 
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Figure D-8.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Modified Hyperbolic 
Model (Noisy Data Case)]. 

 
 

 
Figure D-8.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Modified Hyperbolic Model (Noisy Data Case)]. 
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Figure D-8.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Modified Hyperbolic 
Model (Noisy Data Case)]. 

 
 

 
Figure D-8.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Modified 
Hyperbolic Model (Noisy Data Case)]. 
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Figure D-8.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Modified 
Hyperbolic Model (Noisy Data Case)]. 

 
 

 
Figure D-8.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Modified 
Hyperbolic Model (Noisy Data Case)]. 
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Table D-8 — Input Parameters for Modified Hyperbolic Model (Noisy Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Straight Line
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Linear-Log
LHS Regression Range (lL) 0.78 0.78 1.30
RHS Regression Range (lR) 0.22 0.22 0.01

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 8 8 6

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Striaght Line Striaght Line Straight Line
RHS Extrapolation Type (NP3) Striaght Line Striaght Line Linear-Log
LHS Regression Range (lL) 0.78 0.78 1.30
RHS Regression Range (lR) 0.22 0.22 0.01

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 8 8 6

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.9 Power-Law Exponential Model (Perfect Data Case) 

 
Figure D-9.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Power-Law Exponential Model (Perfect 
Data Case)]. 

 
 

 
Figure D-9.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Power-Law 
Exponential Model (Perfect Data Case)]. 
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Figure D-9.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Power-Law 
Exponential Model (Perfect Data Case)]. 

 
 

 
Figure D-9.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Power-Law Exponential Model (Perfect Data Case)]. 
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Figure D-9.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Power-Law 
Exponential Model (Perfect Data Case)]. 

 
 

 
Figure D-9.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Power-Law 
Exponential Model (Perfect Data Case)]. 
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Figure D-9.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Power-Law 
Exponential Model (Perfect Data Case)]. 

 
 

It is noted that a closed form for cumulative production of Power-law exponential model does 
not exist.  We estimated cumulative production in Figure D-9.7 by using trapezoidal rule 
integration with very fine logarithmically-spaced time-grid rate data.  As a result, we cannot 
compute the errors of cumulative production using the trapezoidal integration approach and 
Laplace transform smoothed approach. 
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Table D-9 — Input Parameters for Power-Law Exponential Model (Perfect Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Log-Log
RHS Extrapolation Type (NP3) Linear-Log Linear-Log Log-Log
LHS Regression Range (lL) 0.35 0.35 1.74
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 16

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Log Log-Log Log-Log
RHS Extrapolation Type (NP3) Log-Log Log-Log Log-Log
LHS Regression Range (lL) 0.35 0.35 1.74
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 16

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.10 Power-Law Exponential Model (Noisy Data Case) 

 
Figure D-10.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Power-Law Exponential Model (Noisy Data 
Case)]. 

 
 

 
Figure D-10.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Power-Law 
Exponential Model (Noisy Data Case)]. 
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Figure D-10.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Power-Law 
Exponential Model Noisy Data Case)]. 

 
 

 
Figure D-10.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Power-Law Exponential Model (Noisy Data Case)]. 
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Figure D-10.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Power-Law 
Exponential Model (Noisy Data Case)]. 

 
 

 
Figure D-10.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Power-Law 
Exponential Model (Noisy Data Case)]. 
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Figure D-10.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Power-Law 
Exponential Model (Noisy Data Case)]. 

 
 

As described in the previous section for the perfect data case of power-law exponential model, 
the errors plot cannot be computed. 
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Table D-10 — Input Parameters for Power-Law Exponential Model (Noisy Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Log-Log
RHS Extrapolation Type (NP3) Linear-Log Linear-Log Log-Log
LHS Regression Range (lL) 0.43 0.43 1.74
RHS Regression Range (lR) 0.22 0.22 0.87

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 6 6 4

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Log Log-Log Log-Log
RHS Extrapolation Type (NP3) Log-Log Log-Log Log-Log
LHS Regression Range (lL) 0.87 0.87 1.74
RHS Regression Range (lR) 0.43 0.43 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 6 6 6

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.11 Duong Model (Perfect Data Case) 

 
Figure D-11.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Duong Model (Perfect Data Case)]. 

 
 

 
Figure D-11.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Duong Model 
(Perfect Data Case)]. 
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Figure D-11.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Duong Model 
(Perfect Data Case)]. 

 
 

 
Figure D-11.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Duong Model (Perfect Data Case)]. 
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Figure D-11.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Duong Model 
(Perfect Data Case)]. 

 
 

 
Figure D-11.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Duong 
Model (Perfect Data Case)]. 
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Figure D-11.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Duong 
Model (Perfect Data Case)]. 

 
 

 
Figure D-11.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Duong 
Model (Perfect Data Case)]. 
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Table D-11 — Input Parameters for Duong Model (Perfect Data Set) Case. 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Log-Log
RHS Extrapolation Type (NP3) Linear-Log Linear-Log Log-Log
LHS Regression Range (lL) 0.35 0.35 1.09
RHS Regression Range (lR) 0.01 0.01 0.35

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 16

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Log Log-Log Log-Log
RHS Extrapolation Type (NP3) Log-Log Log-Log Log-Log
LHS Regression Range (lL) 0.35 0.35 0.87
RHS Regression Range (lR) 0.01 0.01 0.17

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 18

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.12 Logistic Growth Model (Perfect Data Case) 

 
Figure D-12.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Logistic Growth Model (Perfect Data 
Case)]. 

 
 

 
Figure D-12.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Logistic Growth 
Model (Perfect Data Case)]. 
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Figure D-12.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Logistic Growth 
Model (Perfect Data Case)]. 

 
 

 
Figure D-12.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Logistic Growth Model (Perfect Data Case)]. 
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Figure D-12.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Logistic Growth 
Model (Perfect Data Case)]. 

 
 

 
Figure D-12.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Logistic 
Growth Model (Perfect Data Case)]. 
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Figure D-12.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Logistic 
Growth Model (Perfect Data Case)]. 

 
 

 
Figure D-12.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Logistic 
Growth Model (Perfect Data Case)]. 
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Table D-12 — Input Parameters for Logistic Growth Model (Perfect Data Set) Case 

 
  

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Log-Log
RHS Extrapolation Type (NP3) Log-Linear Log-Linear Straight Line
LHS Regression Range (lL) 0.35 0.35 0.87
RHS Regression Range (lR) 0.01 0.01 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 16

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Straight Line Straight Line Log-Log
RHS Extrapolation Type (NP3) Log-Log Log-Log Straight Line
LHS Regression Range (lL) 0.35 0.35 0.87
RHS Regression Range (lR) 0.01 0.01 0.22

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 18 18 16

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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D.13 Logistic Growth Model (Noisy Data Case) 

 
Figure D-13.1 — Comparison Plot of the Modelled Flowrate, Synthetic Flowrate, and 

Laplace Transform Smoothed Flowrates using Rate and Reciprocal of Rate as 
the Basis Functions Versus Time [Logistic Growth Model (Noisy Data Case)]. 

 
 

 
Figure D-13.2 — Comparison Plot of the Absolute Percentage Errors of the Synthetic 

Flowrate and Laplace Transform Smoothed Flowrates using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Logistic Growth 
Model (Noisy Data Case)]. 
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Figure D-13.3 — Comparison Plot of the Modelled D-Parameters, Bourdet-Derived D-

Parameters, and Laplace Transform Smoothed D-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time Logistic Growth 
Model (Noisy Data Case)]. 

 
 

 
Figure D-13.4 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived D-Parameters and Laplace Transform Smoothed D-Parameters using 
Rate and Reciprocal of Rate Functions as the Basis Functions Versus Time 
[Logistic Growth Model (Noisy Data Case)]. 
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Figure D-13.5 — Comparison Plot of the Modelled b-Parameters, Bourdet-Derived b-

Parameters, and Laplace Transform Smoothed b-Parameters using Rate and 
Reciprocal of Rate as the Basis Functions Versus Time [Logistic Growth 
Model (Noisy Data Case)]. 

 
 

 
Figure D-13.6 — Comparison Plot of the Absolute Percentage Errors of the Bourdet-

Derived b-Parameters and Laplace Transform Smoothed b-Parameters using 
Rate and Reciprocal of Rate as the Basis Functions versus Time [Logistic 
Growth Model (Noisy Data Case)]. 
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Figure D-13.7 — Comparison Plot of the Modelled Cumulative Production, Trapezoidal-

Integrated Cumulative Production, and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Logistic 
Growth Model (Noisy Data Case)]. 

 
 

 
Figure D-13.8 — Comparison Plot of the Absolute Percentage Errors of Trapezoidal-

Integrated Cumulative Production and Laplace Transform Smoothed 
Cumulative Production using Rate as Basis Function versus Time [Logistic 
Growth Model (Noisy Data Case)]. 
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Table D-13 — Input Parameters for Logistic Growth Model (Noisy Data Set) Case. 

 
 
 

Basis Function: Time-Rate Data
Laplace Smoothed Functions Rate & Cum. Production D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Log-Linear Log-Linear Log-Log
RHS Extrapolation Type (NP3) Log-Linear Linear-Log Straight Line
LHS Regression Range (lL) 0.43 0.43 1.74
RHS Regression Range (lR) 0.22 0.22 0.87

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 14 14 4

Basis Function: Time-Reciprocal of Rate Data
Laplace Smoothed Functions Rate D-Parameter b-Parameter
Basis Functions
Numerical Laplace Transform Parameters

LHS Extrapolation Type (NP1) Straight Line Straight Line Log-Log
RHS Extrapolation Type (NP3) Log-Log Log-Log Straight Line
LHS Regression Range (lL) 0.65 0.65 1.30
RHS Regression Range (lR) 0.43 0.43 0.43

Numerical Laplace Inversion Parameter
Stehfest "n" Parameter 10 10 4

𝑞 𝑡 𝑞 𝑡 1/𝐷 𝑡

1/𝐷 𝑡1/𝑞 𝑡 1/𝑞 𝑡
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APPENDIX E 

METHOD VALIDATION WITH ACTUAL FIELD TIME-RATE DATA 

The actual field datasets include: 

• Field Example 1: East Texas Gas Well (SPE 84287) 
• Field Example 2: Fractured Gas Well (SPE 132352) 
• Field Example 3: Fractured Gas Well (SPE 132352) 
• Field Example 4: Fractured Gas Well (SPE 132352) 
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E.1 Field Example 1: East Texas Gas Well (SPE 84287) 

 

 
Figure E-1.1 — Comparison Plot of Raw and Laplace Transform Smoothed Flowrates 

and Cumulative Production Using a Selected Stehfest “n” Value Versus Time 
[Field Example 1: East Texas Gas Well (SPE 84287)] [Log-Log Plot] 
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Figure E-1.2 — Comparison Plot of Raw and Laplace Transform Smoothed Flowrates 

and Cumulative Production Using Various Stehfest “n” Values Versus Time 
[Field Example 1: East Texas Gas Well (SPE 84287)] [Log-Log Plot] 
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Figure E-1.3 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

D-Parameters Using a Selected Stehfest “n” Value Versus Time [Field 
Example 1: East Texas Gas Well (SPE 84287)] [Log-Log Plot] 
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Figure E-1.4 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

D-Parameters Using Various Stehfest “n” Values Versus Time [Field Example 
1: East Texas Gas Well (SPE 84287)] [Log-Log Plot] 
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Figure E-1.7 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

b-Parameters Using a Selected Stehfest “n” Value Versus Time [Field 
Example 1: East Texas Gas Well (SPE 84287)] [Log-Log Plot] 
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Figure E-1.8 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

b-Parameters Using Various Stehfest “n” Values Versus Time [Field Example 
1: East Texas Gas Well (SPE 84287)] [Log-Log Plot] 
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E.2 Field Example 2: Fractured Gas Well (SPE 132352) 

 

 
Figure E-2.1 — Comparison Plot of Raw and Laplace Transform Smoothed Flowrates 

and Cumulative Production Using a Selected Stehfest “n” Value Versus Time 
[Field Example 2: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-2.2 — Comparison Plot of Raw and Laplace Transform Smoothed Flowrates 

and Cumulative Production Using Various Stehfest “n” Values Versus Time 
[Field Example 2: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-2.3 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

D-Parameters Using a Selected Stehfest “n” Value Versus Time [Field 
Example 2: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-2.4 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

D-Parameters Using Various Stehfest “n” Values Versus Time [Field Example 
2: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-2.7 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

b-Parameters Using a Selected Stehfest “n” Value Versus Time [Field 
Example 2: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-2.8 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

b-Parameters Using Various Stehfest “n” Values Versus Time [Field Example 
2: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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E.3 Field Example 3: Fractured Gas Well (SPE 132352) 

 

 
Figure E-3.1 — Comparison Plot of Raw and Laplace Transform Smoothed Flowrates 

and Cumulative Production Using a Selected Stehfest “n” Value Versus Time 
[Field Example 3: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-3.2 — Comparison Plot of Raw and Laplace Transform Smoothed Flowrates 

and Cumulative Production Using Various Stehfest “n” Values Versus Time 
[Field Example 3: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-3.3 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

D-Parameters Using a Selected Stehfest “n” Value Versus Time [Field 
Example 3: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-3.4 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

D-Parameters Using Various Stehfest “n” Values Versus Time [Field Example 
3: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-3.7 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

b-Parameters Using a Selected Stehfest “n” Value Versus Time [Field 
Example 3: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-3.8 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

b-Parameters Using Various Stehfest “n” Values Versus Time [Field Example 
3: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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E.4 Field Example 4: Fractured Gas Well (SPE 132352) 

 

 
Figure E-4.1 — Comparison Plot of Raw and Laplace Transform Smoothed Flowrates 

and Cumulative Production Using a Selected Stehfest “n” Value Versus Time 
[Field Example 4: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-4.2 — Comparison Plot of Raw and Laplace Transform Smoothed Flowrates 

and Cumulative Production Using Various Stehfest “n” Values Versus Time 
[Field Example 4: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-4.3 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

D-Parameters Using a Selected Stehfest “n” Value Versus Time [Field 
Example 4: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-4.4 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

D-Parameters Using Various Stehfest “n” Values Versus Time [Field Example 
4: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-4.7 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

b-Parameters Using a Selected Stehfest “n” Value Versus Time [Field 
Example 4: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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Figure E-4.8 — Comparison Plot of Bourdet Derived and Laplace Transform Smoothed 

b-Parameters Using Various Stehfest “n” Values Versus Time [Field Example 
4: Fractured Gas Well (SPE 132352)] [Log-Log Plot] 
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