

HARDWARE TESTBED AND DEEP NEURAL NETWORKS FOR

MULTI-MODAL SENSOR FUSION

A Thesis

by

CHENYE ZHAO

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Peng Li

Committee Members, Weiping Shi

 Shuiwang Ji

Head of Department, Miroslav Begovic

May 2019

Major Subject: Computer Engineering

Copyright 2019 Chenye Zhao

ii

ABSTRACT

Deep neural networks (DNN) have been widely applied in sensor fusion, providing

an end-to-end solution for fusion of features extracted from multiple sensory inputs. A

class of new sensor fusion networks based on DNN called gating architectures proposed

in recent years improves the prediction performances over the conventional fusion

mechanisms employed in convolutional neural networks (CNNs). However, experimental

results show that the gating architectures are not always robust and sometimes even under-

perform conventional fusion methods.

In this work, the limitations of existing gating architectures are discussed and

analyzed. Through experiments, we demonstrate that gating architectures fail to learn

correct fusion weights for sensory inputs, showing the inconsistency between fusion

weights and corresponding qualities of sensory inputs, and hence limit the prediction

performance. We propose an improved fusion architecture by introducing the auxiliary

path model to regulate the fusion weights in the gating architecture. We also provide in-

depth studies on the regularization mechanisms to show that the improvements on

performances are achieved by the more robustly learnt fusion weights.

Evaluations are performed under two different public datasets. We generate

comprehensive sensor failure schemes, where the proposed architecture significantly

outperforms a baseline non-gating architecture and one existing gating architecture. We

also build up a sensor fusion hardware platform: a robot car, which is equipped with

iii

multiple sensors. The robot will be further developed and adopted as a hardware platform

for evaluating the proposed sensor fusion architecture.

iv

DEDICATION

To my families, my professors, my friends.

v

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Peng Li, and my committee

members, Dr. Weiping Shi, and Dr. Shuiwang Ji, for their guidance and support

throughout the course of this research.

Thanks also go to my group members, my friends and the department faculty and

staff for making my time at Texas A&M University a great experience.

Finally, thanks to my mother and father for their encouragement and to my

girlfriend for her patience and love.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis (or) dissertation committee chaired by

Professor Peng Li of the Department of Electrical Computer Engineering.

This work is a collaborator work. Parts of the work were done by Yang Li in the

Electrical Computer Engineering Department. Section 2.2 is partially done by Mr.

Amarnath Mahadevuni. Section 6.3 was partially done by Mr. Yang Li and Mr. Myung

Seok Shim. All other work conducted for the thesis (or) dissertation was completed by

Chenye Zhao independently.

Funding Sources

This is made possible by NPRP grant # NPRP 8-274-2-107 from the Qatar National

Research Fund (a member of Qatar Foundation). The statements made herein are solely

the responsibility of the authors.

vii

TABLE OF CONTENTS

Page

ABSTRACT ii

DEDICATION iv

ACKNOWLEDGEMENTS v

CONTRIBUTORS AND FUNDING SOURCES vi

TABLE OF CONTENTS vii

LIST OF FIGURES ix

LIST OF TABLES xi

1. INTRODUCTION 1

 1.1 Sensor Fusion 1

 1.2 Deep Neural Networks for Sensor Fusion 2

 1.2 Deep Neural Networks on Mobile Robot Car 8

2. BACKGROUND AND PROBLEM 10

 2.1 CNN Fusion Architecture 10

 2.2 Gated Architecture 11

 2.3 Limitations of Gated Architecture 12

 2.4 Analysis 13

 2.5 Control of Mobile Robot Car 14

3. SOLUTIONS 24

 3.1 Auxiliary Paths 24

 3.2 Auxiliary Paths on Selected Channels 26

 3.3 Weight Sharing 29

 3.4 Fusion Weights Regularization 31

 3.5 Auxiliary Loss Weighting 33

 3.6 Programmable Real-Time Unit 34

4. EXPERIMENTAL SETTINGS 38

viii

 4.1 Basic Settings 38

 4.2 Datasets 38

 4.3 Network Configurations 40

 4.4 Fusion Weight Normalization 42

 4.5 Sensor Failures 43

5. EVALUATIONS 45

 5.1 Distribution of Fusion Weight 45

 5.2 Results on the HAR Dataset 47

 5.3 Results on the CAD-60 Dataset 50

6. CONCLUSION 54

REFERENCES 55

ix

LIST OF FIGURES

Page

Figure 1 Filters in a convolutional neural network 3

Figure 2 Three traditional fusion schemes in deep neural network 5

Figure 3 CNN baseline fusion architecture 10

Figure 4 NetGated Architecture 11

Figure 5 Mixture of data inside NetGated 14

Figure 6 Robot car 15

Figure 7 Distributions of 5 ultrasonic sensors on mobile robot 16

Figure 8 Timing diagram of HC-SR04 17

Figure 9 Finite State Machine 18

Figure 10 Calculate the direction of obstacle 19

Figure 11 Adjust the heading in Pre-Wall-Follow state 21

Figure 12 Wall-Follow state 22

Figure 13 Auxiliary model 24

Figure 14 Auxiliary model on selected channels 26

Figure 15 Auxiliary model based on NetGated architecture with selected channels 28

Figure 16 Auxiliary Regulated Gate with Weight Sharing 30

Figure 17 Auxiliary Regulated Gate with Weight Sharing and Fusion Weight

Regularization 32

Figure18 Full ARGate architecure (ARGate-F) 34

Figure 19 Programmable Real-Time Unit 35

x

Figure 20 PRU interrupt controller (INTC) 36

Figure 21 Distributions of fusion weights of input examples on channel total_acc_y

based on NetGated, ARGate-WS and ARGate-WS-FWR, failing scheme is random

failing sensor assignment, 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 is set as 1 46

xi

LIST OF TABLES

 Page

Table 1 Prediction accuracies under HAR dataset with fixed failing assignment. 48

Table 2 Prediction accuracies under HAR dataset with clean and random failing

sensor assignment. 48

Table 3 Prediction accuracies under HAR dataset with testing generalized failing

sensor assignment. 50

Table 4 Prediction accuracies under CAD-60 dataset with fixed failing assignment. 51

Table 5 Prediction accuracies under CAD-60 dataset with clean and random failing

assignment. 52

Table 6 Prediction accuracies under CAD-60 dataset with testing generalized failing

sensor assignment. 53

1

1. INTRODUCTION:

1.1 Sensor Fusion

 Sensor fusion has been a popular topic to be studied in both industry and research.

The definition of sensor fusion is to build up a more robust and dependable multi-model

system by combining multiple sources of sensory data. The meaning of robustness and

dependability in our work can be discussed under two different cases. Firstly, with all

sensory inputs data clean, individual sensors cannot contribute enough information

themselves, and the information provided through these sensors are not full mutually

dependent. In this case, designing a smart fusion method can allow each sensor to provide

its own useful information as complementary information for other sensors and therefore

the integrated system can receive an overall boosted performance, which cannot be

achieved through individual sensors. Secondly, with one or multiple sensors corrupted, a

good sensor fusion technique shall to some extent compensate for the losses brought by

corrupted sensors through correctly utilizing information provided by sensors that are

working properly. Many complicated sensor failure situations can be studied here. For

example, the numbers of corrupted sensors in different examples are not fixed. In this

work, we create multiple sensor failure cases to fully evaluate the proposed sensor fusion

architecture.

 Sensor fusion has been studied in some works. Sensors such as Inertial

measurement units (IMUs) have already been embedded into portable devices, providing

the information for activity recognition. There are some sensor fusion algorithms proposed

2

to solve human activity recognition problems (Dehzangi, Taherisadr, & ChangalVala,

2017) (Zhao & Zhou, 2017) (Gravina, Alinia, Ghasemzadeh, & Fortino, 2017) (Yurtman

& Barshan, 2017). (Ramachandram & Taylor, 2017) gives a survey on fusion

architectures.

1.2 Deep Neural Networks for Sensor Fusion

Convolutional neural networks. Convolutional neural network (CNN) (LeCun

& Bengio, 1995) is a class of deep neural network (DNN). Different from regular neural

networks, CNN adopts the idea of weight sharing, which significantly stimulates the

efficiency of neural network and reduces the number of tunable parameters within the

network. The idea of convolutional neural network comes from the connectivity pattern

of neurons within human brain. More specifically, the idea is inspired by the functioning

of visual cortex: single neuron only responds to stimuli within a limited vision field named

receptive field. The visual information are generated through multiple overlappings of

such receptive fields. Therefore, CNN is widely applied in analyzing visual image, doing

calculations like classification and regression. A basic CNN consists of a sequence of

layers, mainly includes: convolutional layer, pooling layer, and fully-connected layer.

A convolutional layer consists of several filters, as in Fig. 1, where the input to this

convolutional layer is of size 5 × 5 × 2 . There are two filters for this layer: 𝑤0 and

𝑤1 with sizes of (2 × 2 × 2). The convolution calculation is then performed between

filters and input: calculation on dot product are performed between filters and

corresponding channels of inputs. As in Fig. 1, filter share weights during one convolution,

which means that for one input example, there are only 16 tunable parameters.

3

Figure 1. Filters in a convolutional neural network

The output of convolutional layer will usually be fed into an activation function to

increase the learnability of non-linear functions of CNN. A pooling layer (also named as

subsampling layer) is often inserted after a convolutional layer. The idea is to further

reduce the sizes of features in order to reduce the number of tunable parameter and

computational cost. Max-pooling is the most popular choice.

Convolutional neural network has been widely studied and applied in various

fields. With its strong learning abilities, convolutional neural network is capable of dealing

with many difficult problems. For example, traditional computer vision subjects such as

object detection, object segmentation can be solved by convolutional neural networks with

better performances than conventional methods. Since CNN saves the number of tunable

parameters by weight sharing, neural networks can be built in very deep layers with still

acceptable computational costs. Many classical image recognition architectures and the

4

resultant architectures have been developed such as AlexNet (Krizhevsky, Sutskever, &

Hinton, 2012) and VGG (Simonyan & Zisserman, 2014). For 2D object detection,

architectures like R-CNN (Girshick R. a., 2014), SPPNet (K, X, & S, 2014), Fast R-CNN

(Girshick R. , 2015), Faster R-CNN (Ren, He, Girshick, & Sun, 2015), SSD (Liu, et al.,

Springer) and YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) produce good

results.

Deep neural networks for sensor fusion. The applications of deep neural

networks to sensor fusion provide the problem with an end-to-end solution. For example,

sensory inputs such as cameras and LIDARs can be fused to produce better image

recognition performances on deep neural networks (Jain, et al., 2016) (Bohez, et al., 2017)

(Kim, et al., 2018) (Chen, Ma, Wan, Li, & Xia, 2017) (Wei, Cagle, Reza, Ball, & Gafford,

2018) (Garcia, Martin, De La Escalera, & Armingol, 2017) (Karpathy, et al., 2014) (Mees,

Eitel, & Burgard, 2016). In (Chen, Ma, Wan, Li, & Xia, 2017), a sensor fusion architecture

for 3D object detection based on deep convolutional neural network is proposed, where

KITTI dataset (Geiger, Andreas, Lenz, & Urtasun., 2012) is adopted. Sensory data

captured by LIDAR and camera located on testbed car consists of LIDAR bird view,

LIDAR front view and RGB images. The architecture also compares three traditional

fusion methods in deep neural networks: early fusion, late fusion, and deep fusion. As

shown in Fig. 2. The idea of early fusion shown in Fig. 2(a) is to fuse the sensory features

in early stage of DNN. Here fusion is done by simply concatenating different features.

Fig. 2(b) demonstrates the late fusion, where fusion is done after sensory inputs have been

pre-processed by early-stage intermediate layers. Deep fusion method splits fusion into

5

different stages: features are first blended through element-wise mean, then three copies

of features are fed into corresponding intermediate layers, whose outputs are fused again.

Repeat the fusion-and-split step for three times to get the fused data.

Figure 2. Three traditional fusion schemes in deep neural network. (a)

Scheme of early fusion. (b) Scheme of late fusion. (c) Scheme of deep fusion.

Situations of sensor failures are not taken into consideration and no related

analyzation is presented in this work. However, a resilient sensor fusion architecture

6

requires the sensor fusion architecture to be robust under both clean sensory inputs and

sensor failures.

Previous work. A sensor fusion architecture of multiple deep experts is proposed

in (Mees, Eitel, & Burgard, 2016), where multiple sensory inputs are first processed

individually through convolutional neural networks to get the classification results. The

outputs of classifiers are fused through weighted-sum by first extracting the fusion weights

from multiple experts. A NetGated architecture is proposed in (Patel, Choromanska,

Krishnamurthy, & Khorrami, 2017), where sensory inputs from camera and LIDAR

equipped on a robot car are pre-processed by convolutional layers and fully-connected

(FC) layers. The pre-processed features are then fed into a fusion weight extracting

architecture to generate the fusion weights of two sensory inputs. The outputs of last early-

stage FC layers are being weighted by fusion weights to compute the weighted sum as the

fused feature. The fused feature is then processed by another FC layer to get the steering

commands of the robot car’s. More details about NetGated architecture will be discussed

in following sections. A similar gating architecture is proposed in (Kim, et al., 2018),

where fusion weights are extracted by first concatenating all sensory features and then

processed by convolutional layers. Then fusion weights are multiplied with corresponding

features and added up to produce fused feature maps.

Our contributions on sensor fusion algorithm. Gating architecture shows the

improvements on robustness and prediction performances of deep neural networks

especially under sensor failure cases comparing with traditional fusion methods without

gating architecture. However, there are still some cases where the gating architectures

7

underperform the conventional non-gating architectures. For the black-box nature of deep

neural network, it is difficult to give a clear analysis on the relationships between qualities

of sensory inputs, fusion weights and the resulting performances.

Based on the previous works on gating architecture and their observed limitations,

we proposed an optimized gating architecture which improves the robustness as well as

resulting prediction performances with both clean and corrupted sensory inputs.

The contributions of this works are as follows:

● Propose a sensor fusion architecture called ARGate, which adopts the

auxiliary path model to regularize the fusion weights of gating architecture

in order to more robustly represent the qualities of corresponding sensory

inputs (Zhao, Shim, Li, Zhang, & Li, 2019) .

● Based on ARGate, two regularization techniques are proposed: weight

sharing, regularization on fusion weight. Equipped with proposed

regularization techniques, ARGate shows significant improvements on

performances and robustness under both clean sensory inputs and sensor

failures.

● In-depth analysis is provided regarding to the functionalities of ARGate

and NetGated, which explains the limitations of gating networks, as well

as the effectiveness of fusion weights regularization to the improvements

of prediction accuracy.

8

● Baseline models and proposed ARGate architectures are evaluated under

two public datasets: HAR (Anguita, Ghio, Oneto, Parra, & Reyes Ortiz,

2013) and CAD-60 (Sung, Ponce, Selman, & Saxena, 2012).

To finish this work, I have close co-operations with my groupmates Mr. Yang Li

and Mr. Myung Seok Shim. My divisions on the work include: proposing the ARGate

and regularization techniques weight sharing, fusion weight regularization, analyzation

on the mechanism of NetGated architecture and ARGate. I also experimentally shed

light on the responsibilities of auxiliary-model regularization on the performance

improvements and implement the all experiments on HAR dataset and part of the results

on CAD-60 dataset.

1.3 Deep Neural Networks on Mobile Robot Car

Machine learning algorithms have been widely used on mobile robot car. In

(Mahadevuni & Li, 2017), a reinforcement learning algorithm based on spiking neural

network is proposed and simulated on mobile robot car. Different types of sensors have

also been implemented on robots. In (Patel, Choromanska, Krishnamurthy, & Khorrami,

2017), camera and Lidar embedded on a mobile robot capture sensory data for the deep

learning sensor fusion architecture, providing the robot with the knowledge of surrounding

environments and hence helping make string commands.

In our work, I build up the sensor fusion hardware platform: a robot car equipped

with multiple sensors as the basic testbed of our sensor fusion architecture in the future,

this work is finished together with my former groupmate: Mr. Amarnath Mahadevuni.

My divisions of work include: setting up FSM and PRU.

9

The rest part of this thesis is organized as follows:

Section 2 presents background of gating architecture, limitations and basic

information about the multi-sensor mobile robot car. Section 3 introduces the ARGate

architecture, corresponding regularization techniques and implementation details of

mobile robot car. Section 4 introduces experimental settings and dataset. Section 5

illustrates the experimental results. Section 6 is the conclusion.

10

2. BACKGROUND AND PROBLEM

2.1 CNN Fusion Architecture

 We implement the state-of-art CNN fusion architecture with traditional fusion

method: element-wise mean. As shown in Fig. 3.

Figure 3. CNN baseline fusion architecture

 Where “M” represents element-wise mean. Sensory inputs from Sensor 1 and

Sensor 2 are first processed through convolutional layers and early fully connected

layers “FC-1” and “FC-2”. Fusion is done by calculating the element-wise mean value of

outputs of “FC-1” and “FC-2”. Then decision is made by going through another “FC-

out” layer.

11

2.2 Gated Architecture

In (Patel, Choromanska, Krishnamurthy, & Khorrami, 2017), gated architecture is

proposed in order to deal with sensor failures in a sensor fusion system whose aim is to

enhance the performance of an unmanned ground vehicle. The vehicle is embedded with

a camera and a LIDAR. The proposed gated architecture is called NetGated. Data from

each sensor are first processed through multiple convolutional layers and fully connected

layers individually in order to get the extracted features. Instead of applying fusion

methods such as element-wise-mean or concatenation, fusion is done by feeding features

into a gating architecture to calculate the scalar values that represent the qualities of

corresponding sensory inputs. The network fuses the data from two sensors with the scalar

values as weighting parameters. In this work, we name the scalar values as fusion weights.

Fig. 4 demonstrates more details about the idea of NetGated.

Figure 4. NetGated Architecture

12

As in Fig. 4, there are two input sensors in this system: Sensor 1 and Sensor 2.

Sensory inputs of two sensors are first processed by convolutional layers(yellow) and

fully connected(FC) layers(blue) separately. Features output from “FC-1” and “FC-2”

are then concatenated to be further processed by the FC-con layer, whose result consists

of two scalar values representing qualities of Sensor 1 and Sensor 2, named as “Fusion

Weight1” and “Fusion Weight 2”. Fusion weights are then multiplied with output

features of “FC-1” and “FC-2” to perform the weighted sum of two features as the fused

data. The fused data are then fed into the last decision-making layer “FC-out” to produce

the final decision.

2.3 Limitations of Gated Architecture

In NetGated Architecture, fusion weights should reflect the qualities of

corresponding sensory inputs. If information provided by each sensory input contributes

equally to the final prediction performance, the optimal effect of fusion weights should

be: fusion weights of all sensors have similar values when all sensory inputs are clean. If

one sensor x is corrupted while the rest sensors are clean, the fusion weight of sensor x

should be much smaller than those of the rest sensors.

However, the gating architecture often shows the inconsistency between fusion

weights and sensory qualities. Through our experimental results, we observe that fusion

weights are sometimes fail to consistently represent the qualities of corresponding

sensors. For example, in our implementation of NetGated Architecture under HAR

dataset, the network has nine input channels, among which body_acc_x , body_gyro_x

are fixed as corrupted inputs, whose inputs are pure Gaussian noise with no information.

13

When we print out the values of fusion weights of nine channels, fusion weight of

body_acc_x is the largest among all fusion weights. This result shows that fusion

weights sometimes tend to be unstable and behave inconsistently with qualities or

importance of corresponding sensory inputs. We also cast doubt that the poor prediction

accuracy might be related to the inconsistent fusion weights.

2.4 Analysis

Based on the inconsistency of fusion weights mentioned in last section, we

propose a tentative analysis. In Fig. 4, the output features of “FC-1” and “FC-2” are first

concatenated before “FC-con”. If the concatenation layer is removed, and two fusion

weights are extracted separately from two features generated by “FC-1” and “FC-2”, it

would be hard for the neural network to learn the “comparative importance” of Sensor 1

and Sensor 2. If Fusion Weight 1 is greater than Fusion Weight 2, we still cannot

confirm that whether Sensor 1 is more important or better in quality than Sensor 2,

because the values of Fusion Weight 1 only represent the quality or importance of

Sensor 1 comparing with itself, same for Sensor 2.

However, concatenating the features may bring another problem. As in Fig. 5,

Feature 1 and Feature 2 are first concatenated, and we expect corresponding Fusion

Weight 1 to represent quality of Feature 1. But the outputs of concatenation layer are

fully connected with “FC-con”, which means that information from Feature 1 and

Feature 2 are mixed here. As in Fig. 4, red and green lines represent data flowing from

Feature 1 and Feature 2 to first output neuron of FC-con, while black and blue lines

represent data flowing from Feature 1 and 2 to second output neuron of FC-con. Fusion

14

Weight 1 contains information from both Feature 1 and Feature 2 and same thing for

Fusion Weight 2.

Figure 5. Mixture of data inside NetGated

This explains the reason why corrupted sensor may have larger fusion weights

than clean sensor.

2.5 Control of Mobile Robot Car

In order to build up a sensor fusion hardware platform. With Amarnath

Mahadevuni, we implemented a robot car. The robot car is designed to have multiple

sensors, including USB camera, ultrasonic sensors and digital compass. The robot is able

to move to the preset target, detect its surroundings. If there are obstacles detected, the

robot is able to recognize the obstacles and avoid them. This hardware platform is able to

15

gather distance information by 5 ultrasonic sensors and direction information captured by

digital compass. The “brain” of mobile robot is the single-board processor Beaglebone

black. The robot is powered by eight 1.5Volts batteries. Motion is controlled by two servo

motors.

BeagleBone Black. BeagleBone Black is a powerful single-board processor

powered by Texas Instruments. The Beaglebone Black is equipped with an AM335x ARM

processor and 2 32-bit PRU microcontrollers. One of the reasons that BeagleBone Black

is very suitable for multi-sensor system is because of its large number of pin headers: 2*46

pin headers for analog/digital inputs/outputs, which enable us to get enough devices

connected. Devices can get connected through 𝐼2C, GPIO and so on. The BeagleBone

Black also has one USB host, Ethernet connection and HDMI port. BeagleBone ships with

Linux kernel 3.8. Fig. 6 shows a general view of BeagleBone Black on the implemented

robot car:

Figure 6. Robot car

16

Ultrasonic sensor. We adopt 5 HC-SR04 ultrasonic sensors to detect the distance

information for the robot car. Five ultrasonic sensors are placed on the robot with intervals

of 45°. As shown in Fig. 6.

As shown in Fig. 7, the unit vector on y axis indicates the direction that the robot

is moving to, which is calculated by the digital compass.

Figure 7. Distributions of 5 ultrasonic sensors on mobile robot

One ultrasonic sensor named Front is located here which detects the distance

information right in front of the robot. There are also two ultrasonic sensors located on the

two sides of the robot: Left, Right, aiming to detect the distance information on the two

17

sides of mobile robot. In case distance information may be missed between Front and Left

and Right, two additional sensors are located as in Fig. 7 named Left45 and Right45,

respectively.

Figure 8. Timing diagram of HC-SR04.

For each single ultrasonic sensor, there are four signals: Trigger, Echo, VDD and

GND.

Trigger is the output pin, which is used to send out a small TTL pulse with a high

level of 10uS to trigger the ultrasonic sensor into working mode. The sensor sends out a

serials of sonic burst to the outside environment. Echo is the input pin of ultrasonic senor

to receive the echoes of sonic burst. After echo is received, the length of high level of

echo pulse will be translated into distance information. The HC-SR04 is powered by

5Volts DC voltage.

The distance information returned by the ultrasonic sensor is 5 Volts, however

the voltage of GPIO pins on BeagleBone Black can only receive 3.3 Volts signals,

18

therefore we build up a simple circuit to divide voltage from 5V to 3.3V with three

1Kohms resisters.

Digital Compass HMC5883L. The Honleywell HMC5883L is a multi-chip

module with the capable of magnetic sensing embedded with the interface of digital

signals for compassing. The HMC5883L can be implemented through 𝐼2C bus. Digital

Compass is implemented in order to help robot find the direction. An certain angle is set

as the target direction for the robot. The 3-axis magnetic direction information returned

by the compass is transformed into angle information to help robot calculate the difference

between its current heading and the target heading.

 Finite State Machine(FSM). Finite State Machine(FSM) is adopted to handle

the basic motion control of the robot car. The state machine includes three states: Go-to-

Goal, PRE-Wall-Follow and Wall-Follow.

Figure 9. Finite State Machine

19

 In Go-to-Goal state, distances information returned by of 𝑛 out of 5 ultrasonic

sensors are less than 35cm, where 𝑛 ∈ {0, 1} meaning that less than 2 sensors detect the

obstacles, representing the situations when robot is on the clear route towards the target

direction. PID controller is implemented here to control the robot to move towards the

target.

Pre-Wall-Follow. In our implementation, the surfaces of obstacles are assumed

to be flattened. Therefore we name this state as Pre-Wall-Follow. When there are over 1

ultrasonic sensors returning distance information less or equal to 35cm, the robot enters

the Pre-Wall-Follow state. The robot will stop and begin to adjust the heading to be in

parallel with the wall. Therefore the next job is to compute the direction of the wall.

Figure 10. Calculate the direction of obstacle

20

As shown in Fig. 10, a coordinate system is built up on the robot, the vector from

the center of robot to the Left sensor is defined as positive x axis, the direction from the

center of the robot to the Front represents the positive y axis.

The angles between each sensor according to positive x axis are:

0°, 45°, 90°, 135°, 180°. The distance values returned by all five sensors are the norms of

the five vectors: 𝑑0⃗⃗⃗⃗ , 𝑑1⃗⃗⃗⃗ , 𝑑2⃗⃗⃗⃗ , 𝑑3⃗⃗⃗⃗ 𝑎𝑛𝑑 𝑑4⃗⃗⃗⃗ . As in Fig. 10, when distance values returned by

 𝑑2⃗⃗⃗⃗ 𝑎𝑛𝑑 𝑑3⃗⃗⃗⃗ are less than 35cm, the robot enters PRE-WALL-FOLLOW state. In our

implementation, the robot turns left to avoid the obstacle, therefore the direction of the

wall can be computed as 𝑑𝑤⃗⃗⃗⃗ ⃗ = 𝑑2⃗⃗⃗⃗ − 𝑑3⃗⃗⃗⃗ . Since the heading of robot is represented as the

unit vector of 𝑑2⃗⃗⃗⃗ : 𝑑𝑐⃗⃗⃗⃗ =
𝑑2⃗⃗⃗⃗ ⃗

|𝑑2⃗⃗⃗⃗ ⃗|
, which is (0, 1), as the green arrow in Fig. 10. The robot

need to adjust its heading by the difference between 𝑑𝑤⃗⃗⃗⃗ ⃗ and
𝑑2⃗⃗⃗⃗ ⃗

|𝑑2⃗⃗⃗⃗ ⃗|
. The xy coordinate of

vector 𝑑2⃗⃗⃗⃗ can be computed as:

{
𝑥2 = 𝑑2⃗⃗⃗⃗ ∙ cos (2 ∗ 45

°)

𝑦2 = 𝑑2⃗⃗⃗⃗ ∙ sin (2 ∗ 45
°)

Similar calculation of coordinates of 𝑑3⃗⃗⃗⃗ :

{
𝑥3 = 𝑑3⃗⃗⃗⃗ ∙ cos (3 ∗ 45

°)

𝑦3 = 𝑑3⃗⃗⃗⃗ ∙ sin (3 ∗ 45
°)

Coordinates of 𝑑𝑤⃗⃗⃗⃗ ⃗ are:

{
𝑥𝑤 = 𝑥2 − 𝑥3
𝑦𝑤 = 𝑦2 − 𝑦3

Angle that needs to be adjusted:

21

𝜃 = arccos (
𝑑𝑤⃗⃗⃗⃗ ⃗ ∙ 𝑑𝑐⃗⃗⃗⃗

|𝑑𝑤⃗⃗⃗⃗ ⃗| ∙ |𝑑𝑐⃗⃗⃗⃗ |
) = arccos (

𝑥𝑤 ∙ 0 + 𝑦𝑤 ∙ 1

√(𝑥𝑤2 + 𝑦𝑤2) ∙ 1
)

Then the robot adjust its heading by 𝜃 , as the brown arrow in Fig. 10. If there is no

distance value from any ultrasonic sensor that is less than 35cm, the robot goes back to

Go-to-Goal state. Otherwise the robot enters the Wall-Follow state.

Figure 11. Adjust the heading in Pre-Wall-Follow state

Wall-Follow. In Wall-Follow state whenever there are more than two ultrasonic

sensors returning the distance values less than 35cm as the robot moving alongside of

the obstacle, the robot calculates the heading of obstacle.

22

If the difference between its current heading and the new direction is less than 3°,

the robot continue its previous heading. Else, the robot goes back to Pre-Wall-Follow

state to adjust its heading according to the new direction of wall. As shown in Fig. 12.

Figure 12. Wall-Follow state

 After implementing the FSM, an experimental problem occurs: the robot often

bumps into the obstacle where it should make turns and follow the wall. A few

assumptions are considered: firstly, the ultrasonic sensors are not working properly.

Secondly, the robot moves too fast for ultrasonic sensors to catch the obstacles. In order

23

to verify the first assumption, we put obstacles next to the robot when it’s not moving

and run the distance detection program, the ultrasonic sensors can accurately return the

distance information of obstacles. Therefore, it is clear for us that the robot needs the

distance information in real-time.

24

3. SOLUTIONS

3.1 Auxiliary Paths

In (Chen, Ma, Wan, Li, & Xia, 2017), an auxiliary path architecture is applied in

the fusion layers to help further improve the prediction performance. As shown in

Fig.13.

Figure 13. Auxiliary model

25

In Fig. 13, each Multi-Modal Input represents sensory input of one sensor. We

name the top three channels as “Main Model” and the bottom three channels as

“Auxiliary-Path-Model”. M in blue represents the fusion method of “element-wise

mean”. Multi-Task Loss of main model consists of the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function to do object

classification and a 3𝐷 𝐵𝑜𝑥 𝑅𝑒𝑔 for the regression of 3-D bounding boxes. Multi-

Modal Inputs are also processed through three additional channels called Auxiliary

Paths, each layer on auxiliary paths share weights with corresponding layer in main

model. The total loss function for this architecture is:

Total Loss = Multi Task Loss +∑(𝑆𝑜𝑓𝑡𝑚𝑎𝑥 + 3𝐷 𝐵𝑜𝑥 𝑅𝑒𝑔)𝑖

3

𝑖=1

Where Multi-Task Loss represents the loss function of main model, and

(𝑆𝑜𝑓𝑡𝑚𝑎𝑥 + 3𝐷 𝐵𝑜𝑥 𝑅𝑒𝑔)𝑖 is the classification loss and regression loss of the 𝑖 − 𝑡ℎ

auxiliary path. The optimizer should optimize both main model and auxiliary path

model.

According to the experimental results in (Chen, Ma, Wan, Li, & Xia, 2017),

prediction performance is improved by 1.8% on 3D object detection, and 6.3% on 2D

object detection based on KITTI validation dataset after the implementation of auxiliary

path model.

A tentative analysis of the function of auxiliary paths is as follows: through

weight sharing and including loss functions of auxiliary paths into the total loss function,

the optimizer has to consider both main model and auxiliary path model. There’s no

fusion step in auxiliary paths, therefore layers on auxiliary paths are to some extent

26

regularizing layers in main model to prevent them from getting overfitted in the deep

fusion architecture.

Based on the idea of auxiliary paths, we propose our own fusion architecture.

3.2 Auxiliary Paths on Selected Channels

We introduce the idea of auxiliary paths into gating architecture. For the problem

of fusion weight inconsistency mentioned above, one reason might be because the gating

architecture is not fully trained, so that fusion weights need to receive some extra

guidance to get further trained, in order to correctly represent the importance of

corresponding sensory inputs. Therefore based on the auxiliary path idea mentioned in

last section, we set the auxiliary path as the competitor of the main model, whose job is

to “push” gating architecture to “force” dataflow within NetGated architecture to get

“less mixed” so that fusion weights can be more consistently representing qualities of

sensory inputs.

Figure 14. Auxiliary-model on selected channels

27

Following this idea we implement the NetGated architecture with auxiliary-

model as shown in Fig. 14. Beyond the NetGated network, three additional channels

with inputs of Sensor 1, 2 and 3 are added as auxiliary paths. The sensory inputs are

processed through convolutional/pooling layers and fully connected layers with the same

sizes as in main model, no weight sharing is implemented here. In order to boost the

accuracy of main model by auxiliary paths, we design the following loss function:

Loss𝑡𝑜𝑡𝑎𝑙 =

{

 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + ∑𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖

𝑛

𝑖=1

, 𝑖𝑓 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ min(𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖)

𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + ∑𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖

𝑛

𝑖=1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

（1）

Where i is the 𝑖 − 𝑡ℎ auxiliary path, 𝛼 is a user-specified weighting factor,

min(𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖) is the minimum value of all the loss functions of auxiliary paths.

As shown in the equation of Loss𝑡𝑜𝑡𝑎𝑙 above, when 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ min (𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖),

corresponding to cases when main model performs worse than the auxiliary path with

minimum loss function, then 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 is multiplied with a factor 𝛼 , which is set to be

5 in our experiments, in order to raise the weighting of 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 in total loss comparing

with 𝐿𝑜𝑠𝑠𝑎𝑢𝑥. And hence main model will be more emphasized during training. This

loss function treats auxiliary paths as competitors to the main modal.

However, based on our experimental experiences, the prediction accuracy of a

NetGated architecture of multiple sensors is always better than architectures using single

sensors as the current settings of auxiliary path model. For this reason, the auxiliary

paths architecture shown in Fig. 14 is not competitive enough for the main modal.

28

Which also means in Loss𝑡𝑜𝑡𝑎𝑙, the condition of 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ min (𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖) may never

occurs. Therefore we need to find a more competitive design of auxiliary paths.

Figure 15. Auxiliary-model based on NetGated architecture with selected channels

Based on the analyzations above, the optimal choice of auxiliary path is the

NetGate architecture with part of sensory inputs among all the sensors. As shown in Fig.

15.

29

In Fig. 15, we consider a sensor failure situation when Sensor 1 is corrupted, the

noises brought by Sensor 1 are mixed up with clean sensory inputs of Sensor 2 and

Sensor 3, and therefore bringing the prediction accuracy down. If the negative influence

brought by noises on Sensor 1 is large enough that the performance of main model may

be worse than the performance of NetGate architecture with Sensor 2 and Sensor 3 as

inputs, then setting auxiliary path as the NetGated architecture of Sensor 2 and Sensor 3

will be a competitive choice.

Then Loss𝑡𝑜𝑡𝑎𝑙 is designed as:

Loss𝑡𝑜𝑡𝑎𝑙 = {
𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + 𝐿𝑜𝑠𝑠𝑎𝑢𝑥, 𝑖𝑓 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥

 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + 𝐿𝑜𝑠𝑠𝑎𝑢𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Where 𝛼 (set as 5) is the user-specified weighting factor to adjust the weighting

between 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 and 𝐿𝑜𝑠𝑠𝑎𝑢𝑥. If main modal performs worse than the auxiliary path

model, more weighting will be put on 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛. In this design, the auxiliary path need

to be selected based on previous knowledge of the noisy channel. Which sometimes may

not be available. Through experimental results, fusion weights show more consistency

with qualities of sensory data.

3.3 Weight Sharing

Auxiliary path on selected channels architecture mentioned in last section

requires the previous knowledge of the noisy channel, otherwise we can’t design the

proper auxiliary path model. It also has limitations when multiple channels are

corrupted, even the performance of NetGated network with inputs of all the clean

channels is not competitive enough to the main model.

30

Therefore, we propose the Auxiliary Regulated Gate (ARGate) architecture with

weight sharing. As shown in Fig. 16. Assuming there are two auxiliary paths, parameters

of convolutional layers and early fully connected layers in main modal are shared with

those of corresponding layers of auxiliary paths. In order to avoid the pre-knowledge of

noisy channels, the loss function is designed as follows:

Loss𝑡𝑜𝑡𝑎𝑙 = 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + ∑ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘𝐾

𝑘=1 (3),

Figure 16. Auxiliary Regulated Gate with Weight Sharing

 where 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 and 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 are the loss functions of the main model and the

𝑘 − 𝑡ℎ auxiliary path, respectively. 𝛼 represents an user-defined weighting parameter.

31

 Since we need to consider the losses of all auxiliary paths in the total loss

function, the convolutional layers and early fully connected layers of auxiliary paths can

use the corresponding sensory inputs to get good classification performances, it might be

a more effective regulator to share weights with corresponding layers in the main model

to “internally” force the “FC-con” layer to generate consistent fusion weights, to avoid

the information mixed-up inside the “FC-con” layer , instead of externally forcing the

main model to get further trained by competitors mentioned in last section.

 The weight sharing model improves the qualities of fusion weights as well as the

prediction performances. More detailed results will be shown in section Evaluation.

3.4 Fusion Weights Regularization

Even though the ARGate-WS architecture shows improvements in performances

under some sensor failure cases, we observed that there are still cases when one or

multiple sensors are corrupted, weight sharing fails to provide the improvements. The

reason lies in the fact that auxiliary path model with corrupted inputs are not capable of

providing the main model with positive information to boost the performance. Therefore,

we further explore the additional regularization of auxiliary paths over main model,

details can be seen in Fig. 17.

 The idea of this architecture is a technique called Fusion Weight

Regularization(FWR). The basic idea is that the loss functions of auxiliary paths show

the same trend to qualities of sensory inputs as the fusion weights do. As in Fig. 17, if

Sensor 1 fails with inputs of Gaussian noise while Sensor 2 is clean, the value of

Loss_aux1 will be much larger than that of Loss_aux2. If we introduce an inverse

32

function of Loss_aux, the output value will have the same relevance of sensor quality as

fusion weights do. Therefore we design the loss function below to use losses of auxiliary

paths to regularize fusion weights of main model:

Loss𝑡𝑜𝑡𝑎𝑙 = 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + 𝛽 ∙ ∑ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘𝐾

𝑘=1 + ∑ (𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 − 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘 2̂
)
2

𝐾
𝑘=1 (4),

where β is another user-specified weighting parameter, 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 represents the value of

fusion weight of the k-th input sensor, which is also the k-th output of “FC-con” layer.

The inverse function of auxiliary path loss is designed as 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
2

.

Figure 17. Auxiliary Regulated Gate with Weight Sharing and Fusion Weight

Regularization.

33

Since the fusion weights is normalized using 𝐿2 norm and then softmax

normalization, we implement the same normalization method on 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
2

.

The 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 2̂

reprensents the normalized 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
2

. L2 normalize 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
2

between [-1,1], softmax further normalize the value between [0,1]. We name the above

architecture with both weight sharing and weight regularization as ARGate-WS-FWR.

 ARGate-WS-FWR utilize auxiliary paths to regularize main model in two steps,

first step is to use weight sharing(WS) in convolutional layers and early fully connected

layers. Second step is to use loss functions of auxiliary paths to regularize the fusion

weights of main model. Detailed experimental results will be shown.

3.5 Auxiliary Loss Weighting

Loss functions of auxiliary paths are in the total loss function of ARGate-WS and

ARGate-WS-FWR. However, if one or multiple sensors corrupt, then their large loss

functions may dominate other terms in total loss functions, the performances of network

may be degraded because of this. In (Zhao, Shim, Li, Zhang, & Li, 2019) fusion weights

are extracted from main model as shown in purple dashed arrow in Fig. 18 to perform

the Auxiliary Loss Weighting(ALW) to auxiliary paths to constraint the loss functions of

auxiliary paths. The new loss function is designed as:

Loss𝑡𝑜𝑡𝑎𝑙 = 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + 𝛽 ∙ ∑ 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 ∙ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘𝐾
𝑘=1 + ∑ (𝑤𝑓𝑢𝑠𝑖𝑜𝑛

𝑘 −𝐾
𝑘=1

 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 2̂

)2 (5)

where fusion weights of main model 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 are multiplied with auxiliary path loss

𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 . The idea is that if the 𝑘 − 𝑡ℎ sensor fails while the rest sensors are all

34

Figure 18. Full ARGate arthictecure (ARGate-F)

functioning, the pure noisy inputs would generate a large 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 , which will dominate

the total loss function Loss𝑡𝑜𝑡𝑎𝑙. The qualities of sensory inputs can be represented by

fusion weights of main model, therefore applying 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 as a weighting term to multiply

with 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 would be a solution to this issue.

3.6 Programmable Real-Time Unit

Two Programmable Real-Time Units (PRU) are embedded in BeagleBone Black,

which is designed specifically for handling real-time computing.

35

Figure 19. Programmable Real-Time Unit

Programmable real-time unit (PRU) is a fast (200-MHz, 32-bit) processor with

the input/output accession of single-cycle instructions to a number of the pins, it also has

the accession to the memory of the main processor on BeagleBone Black (AM3358).

Advantages of PRU can be concluded as follows:

⚫ Based on RISC, no pipeline, no branch latency, most instructions can be finished

within 1 clock cycle, making execution predictable, suitable for real-time

processing.

⚫ Runs in parallel with host AM335x processor.

36

Figure 20. PRU interrupt controller (INTC)

Fig. 20 shows the architecture of interrupt controller of PRU. System Events 32

to 63 are generated by PRU0/1. We first connect 5 ultrasonic sensors to PRU0/1, then

map the events of Echo pins of 5 ultrasonic sensors receiving the distance information to

5 system events between 32 to 63. Then the 5 system events are further mapped to 5

channels in PRU INTC. On the host processor, 5 interrupts are mapped to 5 PRU events

on host board through Host Mapping of Channels. Through this two-step mapping, we

can map events generated on two PRUs to the PRU events recognized by the host

processor. Since distance detection program on PRU and control program on host

processor are running in parallel. Our control program can read the distance information

in real-time.

37

We implement the assembly code according to PRU assembly instruction set to

directly get control of the reading and writing of registers and to generate interrupts. For

each ultrasonic sensor, we first activate Trigger signal, and send out the sonic burst.

Whenever the Echo register receives the data, save the data into memory of PRUs, and

an interrupt is generated. Same steps for 5 ultrasonic sensors are done in sequence.

Device Tree file defines the modes of pins which we are going to use on

BeagleBone Black. For example:

0x030 0x07 /* P8_12 gpio1[12] GPIO44 out pulldown Mode: 7 */

Bit 0-2 - Mode. Bit 3 with a value of 1 represents disable Pulling, of 0 stands for

enable Pulling. Bit 4 with a value of 1 means Pull up, of 0 stands for Pull down.

Bit 5 with a value of 1 means Input, 0 means Output

 Control file running on host processor calls functions to initialize PRU, open

PRU, PRU events mapping, memory mapping, and wait for interrupts from PRU.

Pypruss library is adopted to call C functions in python codes.

 After applying PRU to handle real-time distance information computing, the

latency problem is solved and the robot can successfully stop and adjust its heading to

follow the obstacles.

38

4. EXPERIMENTAL SETTINGS

4.1 Basic Settings

We compare the performances of fusion CNN baseline (Chen, Ma, Wan, Li, &

Xia, 2017), the baseline gating architecture: NetGated (Patel, Choromanska,

Krishnamurthy, & Khorrami, 2017) and the proposed auxiliary-model ARGate

architectures. All architectures are evaluated based on two public datasets for human

activity recognition: HAR (Anguita, Ghio, Oneto, Parra, & Reyes Ortiz, 2013) and

CAD-60 (Sung, Ponce, Selman, & Saxena, 2012). We implement ADAM optimizer, the

value of learning rate is 0.001. The loss functions of baseline, NetGated, ARGate is

cross-entropy. Simulation are performed on Ubuntu 16.04, programming language is

selected as Python 2.7 based on Pytorch 0.4.0 (Paszke, et al., 2017) , programs are

simulated on NVIDIA TITAN Xp GPUs.

4.2 Datasets

Human Activity Recognition(HAR) Dataset. The Human Activity

Recognition(HAR) dataset (Anguita, Ghio, Oneto, Parra, & Reyes Ortiz, 2013) includes

data captured by an accelerometer and a gyroscope sensor embedded on smartphones,

which are carried out on 30 volunteers. Data are gathered by the sensors at a rate of

50Hz, 50% overlapped sliding windows with 128 readings which split the raw data into

different examples. Labels include six human activities: Walking, Walking Upstairs,

Walking Downstairs, Sitting, Standing, Laying. Data from each type of sensor are

captured in forms of 3-axial. To be more specifically, the dataset includes 3-axial total

39

acceleration (total_acc_x, total_acc_y, total_acc_z) data, 3 -axial body acceleration

(body_acc_x, body_acc_y, body_acc_z) data and 3 -axial body gyroscope data

(body_gyro_x, body_gyro_y, body_gyro_z). Where body acceleration signals are

obtained by subtracting gravity acceleration from the total acceleration.

 In the implementation of this work, the nine data are defined as nine sensory

inputs. Sensory inputs for all 9 channels are distributed between [-1, 1]. There are 7352

training examples and 2947 testing examples.

The CAD-60 Dataset. In (Sung, Ponce, Selman, & Saxena, 2012) the dataset of

CAD-60 is introduced, which contains 60 videos of human activities captured by Kinect

device from Microsoft. The Kinect is equipped with a RGB camera and a depth sensor.

Videos record 14 human activities of 4 people. Each video is preprocessed into RGB

images, skeletal data and Depth images.

A preprocessing code is provided by the dataset to extract 5 features from raw

RGB images, skeletal data and Depth images, including skeletal HOG of the depth

image, skeletal, skeletal RGB HOG, and depth HOG. 5 extracted features are treated as

5 sensory inputs. The “new person” scheme in (Sung, Ponce, Selman, & Saxena, 2012)

is adopted in our implementation which uses the three people’s data for training and the

rest people’s data for testing.

40

4.3 Network Configurations

 Training for all models in HAR dataset takes 200 epochs, the batch size is 16.

Under CAD-60 dataset, training takes 100 epochs, batch size is 128.

 CNN Baseline in HAR Dataset. Before fusion, CNN baseline has following

layers to extract features from each sensory input before fusion: C(16,3,1) − P −

FC(256) − FC(256), here C(n, f, s) is a 1-D convolutional layer, the layer has n filters

with sizes of f, the convolution stride is s. P stands for a max-pooling layer, the sliding

window for pooling is non-overlapped with the size of 2. FC(n) stands for a FC layer.

ReLU is selected as the activation function. After sensory inputs of all 9 channels are

processed, the 9 outputs are fused through element-wise mean. Fused data are then fed

into three additional FC layers: FC(128) − FC(64) − FC(6). Where the classification

decision is made by the last FC(6) layer with a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 classifier.

 NetGated in HAR Dataset. In order to compare with CNN baseline in the

number of tunable parameters fairly, each sensory inputs is processed through a simpler

structure in NetGated model: C(16,3,1) − P − FC(256). As shown in Fig. 13, the

extracted features from 9 FC layers are first concatenated and then processed through a

structure of FC(256) − FC(9). FC(9) generates fusion weights of features of all

channels. Before fed into next layer, fusion weights are normalized in order to match the

corresponding physical meaning. The normalized fusion weights are used to weight the

outputs of the last early FC layers: FC(256) to perform a weighted sum to get the fused

data. The fused data are processed with two additinal FC layers: FC(256) − FC(6).

41

 ARGate in HAR Dataset. As in Fig. 17, convolutional and FC layers for

auxiliary paths are added. Weight sharing is performed between each convolutional and

early FC layer in auxiliary path and corresponding convolutional and FC layers in the

main model. The output features of these FC layers are fed into another FC(6) layer to

generate the classification decision of auxiliary paths. The outputs of the last early

FC(256) layer in the main model are concatenated and processed through FC layers

FC(256) − FC(9). After the weighted sum, different from NetGated, the fused feature is

processed through only one FC(6) layer to get the classification decision for fair

comparison in terms of number of parameters.

CNN Baseline in CAD-60 Dataset. In CAD-60 dataset, before fusion, sensory

inputs of skeletal feature channels are processed through three convolutional layers and

one FC layer. While for skeletal HOG on RGB, input features are processed through

three convolutional layers with different sized and one FC layer (FC-600) . Same

number of convolutional layers with different sizes and a FC(600) for skeletal HOG on

depth, RGB HOG, and depth HOG. Since sensory inputs for RBG HOG and depth HOG

are small in sizes, therefore no max-pooling layers are employed on those two channels.

The output features from last five FC(600) layers are fused through element-wise mean,

the fused features are further processed by four fully connected layers to get the

classification decision.

NetGated in CAD-60 Dataset. Same early feature extraction schemes are

implemented in NetGated as in CNN Baseline. The outputs of last early FC(600) are

first concatenated and then fed into FC(3000) and a FC(5) to extract the normalized

42

fusion weights of five features. The fused data are calculated through weighted sum of

extracted features with their corresponding fusion weights. The fused data are further

processed through FC(1200) and a FC(14) for the classification.

ARGate in CAD-60 Dataset. Same setups are implemented in early feature

extraction before fusion in main model of ARGate as in baseline CNN and NetGated. As

in NetGated, five extracted features are concatenated and fed into FC(3000) and

FC(5) to extract fusion weights. After normalization of fusion weights, features are

again fused through weight sum of output features from five last early FC layers, then

fused feature is processed through FC(200) − FC(14). FC(14) generates the

classification decision. For early feature extraction layers, weight sharing is performed

between auxiliary paths and corresponding layers in main model. The output features of

last early FC layers are fed directly into FC(200) − FC(14) for final outputs of auxiliary

paths, which are introduced to regularize fusion weights.

The total number of tunable parameters in baseline CNN, NetGated and ARGate

are 2619136, 2594236, 2594236, respectively. In ARGate, α is set as 5.0 in (3), and α, β

in (4) are set to be
1

9
,
5

9
, respectively.

4.4 Fusion Weight Normalization

In (Patel, Choromanska, Krishnamurthy, & Khorrami, 2017), after fusion weights are

generated from “FC-con” layer as shown in Fig.12, there’s no normalization step for

fusion weights. In our implementation, we normalize fusion weights for both NetGated

and proposed ARGate models in order to enable fusion weights to have the physical

meaning of weighting parameter. Normalization steps consist of 3 steps. Firstly, fusion

43

weights 𝑤𝑓𝑢𝑠𝑖𝑜𝑛 are normalized by L2 to be distributed between [-1, 1]. Secondly, in

order to enlarge the differences between small fusion weights which represent low

qualities of corresponding sensory inputs and large fusion weights, we perform:

𝑤𝑓𝑢𝑠𝑖𝑜𝑛
′ = (𝑙𝑛𝑜𝑟𝑚

2 (𝑤𝑓𝑢𝑠𝑖𝑜𝑛) + 1) ∗ 2 (6),

where fusion weights normalized by L2 norm are first transformed to be distributed

between [0, 2], and then stretch to be between [0, 4]. Thirdly, in order normalize fusion

weights to be distributed between [0,1] and have a sum of 1, we perform softmax

normalization:

𝑤𝑓𝑢𝑠𝑖𝑜𝑛,𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑓𝑢𝑠𝑖𝑜𝑛
′) (7),

where 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
′ represent the normalized results from step 2. Through the 3-step

normalization, each scalar fusion weight is capable of interpreting the quality or

importance of corresponding sensory features as a weighting parameter.

4.5 Sensor Failures

In this section we design sensor failure schemes on training and testing for HAR and

CAD-60 datasets, trying to compare the robustness of CNN baseline, NetGated and

proposed ARGate architecture in comprehensive failure schemes.

Values of sensory input data in two datasets are distributed between [-1, 1]. In order

to simulate the inputs when sensors corrupt and produce no information but pure noise,

we consider three types of noise distributions: zero, uniform and Gaussian. More

specifically, inputs of failing sensors are modeled by generate sensory inputs with values

of zero, noise following a uniform distribution U(−1,1) and Gaussian distribution

Ν(0,1).

44

In training and testing sets of both datasets,
1

3
 data of each set are randomly selected

as clean, while the rest
2

3
 are set as corrupted by one or multiple sensors based on one of

the failing schemes below:

Fixed failing assignment. Fixed failing assignment simulates the situations when

certain one or multiple sensors fail permanently. We define 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 as the number of

clean channels among total number of n sensors. The rest sensors are assumed to have

permanent failure in both training and testing sets.

Random failing assignment. Instead of fixing the corrupted sensors in fixed failing

assignment, random failing assignment randomly select failing sensors to better simulate

the random sensor failure cases in reality. For each example, we randomly select 𝑛𝑟𝑐𝑙𝑒𝑎𝑛

channels as clean channels, while the reset n − 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 channels are defined as

corrupted. Same implementations are performed in both training and testing sets, where

sensor failure situations may vary example by example.

Test generalized failing assignment. Since sensor failures may have various cases

which cannot be all included in training dataset, thus in reality we need to consider cases

that the neural networks haven’t met before. Therefore we design the sensor failure

assignment when test sets contain corrupted examples with a different number of

corrupted sensors comparing with the number of failing examples in training sets. Which

also means that examples in test set has higher variations on sensor failures than those

in training set.

45

5. EVALUATIONS

5.1 Distribution of Fusion Weight

 In order to further study the functioning of weight sharing(WS), fusion weight

regularization(FWR), we examine the fusion weight distribution in NetGated, ARGate-

WS and ARGate-WS-FWR. We picked distribution of fusion weight of total_acc_y in

HAR dataset under random failing assignment when n𝑟𝑐𝑙𝑒𝑎𝑛=1, which means eight out

of nine sensory inputs are randomly selected to be corrupted in each example. To better

demonstrate the effects of proposed architecture, examples are split into two sets: one

with corrupted total_acc_y, the other set includes examples when inputs on total_acc_y

are clean. As in Fig. 21, (a), (b) and (c) display the fusion weight distributions of the first

subset for NetGated, ARGate-WS and ARGate-WS-FWR, respectively. While Fig.

21(d),(e) and (f) display the distribution of fusion weights for examples in the second

situation mentioned above.

 From the aspects of physical meaning of fusion weights, if the model is properly

trained, the fusion weight values of a clean sensory inputs should be much greater than

those of failing sensory inputs. In Fig. 21(a), (b) and (c), when total_acc_y is corrupted,

a peak is shown around a value of 0.38 in the fusion weight distribution of NetGated,

which is not shown in ARGate-WS and ARGate-WS-FWR. ARGate-WS significantly

reduce the most large fusion weight values comparing with NetGated. Moreover,

comparing with Fig. 21(b) where there are still some fusion weights with values larger

than 0.38, most fusion weights are constrained within a small range around 0.06 to 0.08

46

in Fig. 21(c), which also demonstrates the effectiveness of fusion weight

regularization(FWR). For clean examples, one can expect that values of fusion weights

of total_acc_y should be larger for the clean examples than the corrupted examples as in

first subset.

Figure 21. Distributions of fusion weights of input examples on channel total_acc_y

based on NetGated, ARGate-WS and ARGate-WS-FWR, failing scheme is random

failing sensor assignment, 𝒏𝒓𝒄𝒍𝒆𝒂𝒏 is set as 1. (a), (b) and (c) demonstrate the

distributions of fusion weights for corrupted sensory inputs on channel total_acc_y

based on NetGated, ARGate-WS and ARGate-WS-FWR. (d), (e) and (f) are the

fusion weight distributions of clean sensory inputs on total_acc_y.

47

 As shown in Fig. 21(d), the distribution of fusion weights in NetGated has a peak

around a small value of 0.05, which takes a large proportion of total fusion weights.

While in Fig. 21(e), the percentage of fusion weights with very low values reduced by

ARGate-WS, another peak between 0.2 and 0.3 appears. In Fig. 21(f), ARGate-WS-

FWR further reduced the second peak in Fig. 21(e).

 With this random failing sensor assignment when 𝑛𝑟𝑐𝑙𝑒𝑎𝑛=1, the NetGated,

ARGate-WS and ARGate-WS-FWR have the prediction accuracies of 62.90%, 65.69%

and 66.09%, respectively. Combining with distributions of fusion weight in Fig. 20,

weight sharing(WS) learns a more robust fusion weights than NetGated, and fusion

weight regularization(FWR) further improves the qualities of fusion weights, hence

showing the best performance.

5.2 Results on the HAR Dataset

Fixed Failing Assignment. Fixed falling assignment proposed in last section is

adopted here to evaluate the performances of CNN Baseline, NetGated and proposed

ARGate-WS-FWR. We perform two cases: 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 5 , when 𝑏𝑜𝑑𝑦_𝑡𝑜𝑡𝑎𝑙_𝑎𝑐𝑐_𝑥,

𝑏𝑜𝑑𝑦_𝑎𝑐𝑐_𝑥 and 𝑏𝑜𝑑𝑦_𝑔𝑦𝑟𝑜_𝑥 are set to be corrupted sensors, and 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 6, when

𝑏𝑜𝑑𝑦_𝑎𝑐𝑐_𝑧 and 𝑏𝑜𝑑𝑦_𝑔𝑦𝑟𝑜_𝑥 fail. All failing sensors have inputs following uniform

distribution between -1 and 1.

Table. 1 shows the performances of three models under two fixed failing

assignments in HAR dataset. NetGated shows a improvements over Baseline CNN up to

1.6%, and ARGate-WS-FWR always shows the best performance and can further

improve the performances of NetGated up to 2.37%.

48

Table 1. Prediction accuracies under HAR dataset with fixed failing assignment.

Number of Clean

Channels

Baseline NetGated ARGate-WS-

FWR

𝒏𝒇𝒄𝒍𝒆𝒂𝒏 = 𝟓 87.68% 89.28% 90.97%

𝒏𝒇𝒄𝒍𝒆𝒂𝒏 = 𝟔 80.59% 81.94% 84.31%

Table 2. Prediction accuracies under HAR dataset with clean and random failing

sensor assignment.

Number of

Clean

Channels

Failure

Model Baseline NetGated

ARGate-

WS

ARGate-

WS-FWR

All Clean - 94.06% 94.50% 94.96% 95.09%

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 8

Zero 93.02% 93.17% 94.66% 94.04%

Uniform 92.35% 92.20% 92.45% 92.46%

Gaussian 92.94% 93.28% 94.97% 94.35%

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 5

Zero 88.36% 87.95% 88.63% 88.83%

Uniform 86.73% 86.80% 88.53% 89.17%

Gaussian 88.41% 89.04% 89.52% 90.07%

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 1

Zero 71.56% 71.12% 74.38% 74.44%

Uniform 62.06% 62.90% 65.69% 66.09%

Gaussian 69.67% 70.54% 71.83% 72.58%

Random Failing Assignment. In order to evaluate models under random sensor

assignments, we create comprehensive sensor failure situations with combinations of the

49

number of clean channels and failure models. We randomly choose clean sensors with

the number of 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 ∈ {1, 5, 8}.

Three failure models are being considered: corrupted sensory inputs with zero

values, corrupted inputs following uniform distribution between -1 and 1, and Gaussian

distribution Ν(0,1). 4 models are implemented and compared: baseline CNN, NetGated,

proposed ARGate-WS and ARGate-WS-FWR. When all nine sensors are clean, NetGate

shows an improvement on prediction accuracy of 0.44% over the baseline CNN, while

improvements over baseline generated by ARGate-WS and ARGate-WS-FWR are 0.9%,

1.03%, respectively. ARGate-WS-FWR always shows improvements over baseline and

NetGated, and is generally outperforming ARGate-WS, which demonstrates the

effectiveness of weight sharing(WS) and fusion weight regularization(FWR).

Particularly when 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 1, with Uniform failure model, ARGate-WS-FWR

outperforms the baseline, NetGated, ARGate-WS by 4.03%, 3.19%, and 0.4%,

respectively.

Testing Generalized Failing Sensor Assignment. We implement failing sensor

assignment for model generalization as in Table. 3. In first column, (a, b)(c, d)

represents that the number of failing channels in training dataset in each example is

randomly selected from [a, b], while the range of the number of corrupted channels in

testing set is between [c, d]. With this set-up, we aim to simulate situations when sensor

failure scenario in test set is more complicated than those in training set, and even

situations when cases in testing set are completely different from those in training set.

50

Table 3. Prediction accuracies under HAR dataset with testing generalized failing

sensor assignment.

Number of Failing

Channels
Baseline NetGated

ARGate-WS-

FWR

(1,2)(3,8) 72.91% 72.75% 76.87%

(1,3)(4,8) 70.98% 70.78% 75.09%

(1,4)(5,8) 69.38% 69.53% 72.41%

In Table. 3, when the number of failing channels is (1, 2)(3, 8) and (1, 3)(4, 8), NetGated

even performs worse than baseline, but ARGate-WS-FWR always shows the best

performance, generating improvements up to 4.11% and 4.31% over Baseline and

NetGated, respectively.

5.3 Results on the CAD-60 Dataset

 Fixed Failing Sensor Assignment. In CAD-60 dataset, we consider cases when

𝑛𝑓𝑐𝑙𝑒𝑎𝑛 equals 1 and 4, respectively. When 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 1, RGB HOG, skeletal features,

Depth HOG and skeletal HOG features on Depth Image are simulated to be corrupted

sensors. When 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 4, the channel skeletal channel is fixed as corrupted channel.

As shown in Table. 4, NetGated performs the worst, but ARGate-WS-FWR always

shows the best performance.

51

Table 4. Prediction accuracies under CAD-60 dataset with fixed failing sensor

assignment.

Number of

Clean Channels

Baseline NetGated ARGate-WS-

FWR

𝒏𝒇𝒄𝒍𝒆𝒂𝒏 = 1 60.60% 59.98% 65.09%

𝒏𝒇𝒄𝒍𝒆𝒂𝒏 = 4 64.15% 61.72% 72.34%

Random Failing Sensor Assignment. Here the number of randomly failing

sensors 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 𝜖 {1,2, 3, 4}. We also compare the baseline, NetGated, the proposed

ARGate-WS, ARGate-WS-FWR. As can be seen in Table. 5, when all input sensors are

clean, ARGate-WS-FWR improves the performance of baseline, NetGated, ARGate-WS

by 0.36%, 0.8% and 0.22%, respectively. As for other failure scenarios, ARGate-WS-

FWR generally shows the best performance. NetGated performs worse than baseline,

ARGate-WS and ARGate-WS-FWR improve the performance over baseline and

NetGated in most cases. The largest improvement appears when 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 4. ARGate-

WS-FWR outperforms the baseline and NetGated by 9.05% and 13.68%, respectively.

52

Table 5. Prediction accuracies under CAD-60 dataset with clean and random

failing sensor assignment.

Number

of Clean

Channels

Failure

Model Baseline NetGated

ARGate-

WS

ARGate-

WS-

FWR

All Clean - 87.01% 86.57% 87.15% 87.37%

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 4

Zero 71.91% 68.87% 75.01% 78.67%

Uniform 69.76% 65.13% 75.07% 78.81%

Gaussian 71.55% 73.81% 73.91% 75.74%

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 3

Zero 72.91% 65.48% 71.93% 71.47%

Uniform 69.38% 67.61% 72.58% 71.96%

Gaussian 88.41% 89.04% 89.52% 90.07%

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 2

Zero 67.94% 67.98% 65.18% 64.41%

Uniform 64.98% 62.98% 66.07% 66.59%

Gaussian 67.41% 66.55% 64.62% 66.96%

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 1

Zero 59.07% 28.18% 57.43% 59.89%

Uniform 61.42% 57.10% 60.10% 61.35%

Gaussian 57.44% 57.75% 57.39% 57.55%

Testing generalized failing sensor assignment. We also generate the simulations

for failing sensor assignment for model generalization, as shown in Table. 6.

As shown in Table. 6, NetGated model in most cases underperforms the baseline

model, while ARGate-WS-FWR always shows the best performance.

53

Table 6. Prediction accuracies under CAD-60 dataset with testing generalized

failing sensor assignment.

Number of Failing

Channels
Baseline NetGated

ARGate-WS-

FWR

(1,4)(2,4) 64.08% 63.71% 67.86%

(2,3)(2,8) 55.36% 55.16% 58.01%

(2,4)(1,4) 60.77% 61.05% 62.04%

The results in Table. 6 shows that proposed ARGate model shows the best

generalization ability under CAD-60 dataset.

54

6. CONCLUSION

In this work, we first implemented the hardware platform for sensor fusion, the robot

car, and solved the real-time distance detection problem through PRU. On the algorithm

design side, we clarified the limitations of traditional fusion methods as well as gating

architectures. We proposed the more robust ARGate architecture together with two

regularization techniques. The experimental results on two public dataset show the

significant improvements on prediction accuracy, especially under sensor failure

schemes. Our future work will be on the application of ARGate architecture to sensor

fusion of more complicated sensory inputs. A camera will be implemented on the robot

car in order to facilitate a more comprehensive sensor fusion network on it.

55

REFERENCES

Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes Ortiz, J. L. (2013). A public

domain dataset for human activity recognition using smartphones. ESANN.

Bohez, S., Verbelen, T., De Coninck, E., Vankeirsbilck, B., Simoens, P., & Dhoedt, B.

(2017). Sensor fusion for robot con- trol through deep reinforcement learning. In

Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference

on, (pp. 2365–2370).

Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-view 3d object detection

network for autonomous driving. CVPR (pp. volume 1, pp. 3). IEEE.

Dehzangi, O., Taherisadr, M., & ChangalVala, R. (2017). Imu-based gait recognition

using convolutional neural networks and multi-sensor fusion. Sensors,

17(12):2735.

Garcia, F., Martin, D., De La Escalera, A., & Armingol, J. M. (2017). Sensor fusion

methodology for vehicle detection. IEEE Intelligent Transportation Systems

Magazine, 9(1): 123–133.

Geiger, Andreas, Lenz, P., & Urtasun., R. (2012). Are we ready for autonomous driving?

the kitti vision benchmark suite. Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on. IEEE.

Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on

computer vision.

Girshick, R. a. (2014). Rich feature hierarchies for accurate object detection and

semantic segmentation. Proceedings of the IEEE conference on computer vision

and pattern recognition.

Gravina, R., Alinia, P., Ghasemzadeh, H., & Fortino, G. (2017). Multi-sensor fusion in

body sensor networks: State-of- the-art and research challenges. Information

Fusion, 35: 68–80.

Jain, A., Koppula, H. S., Soh, S., Raghavan, B., Singh, A., & Saxena, A. (2016).

Brain4cars: Car that knows before you do via sensory-fusion deep learning

architecture. arXiv preprint arXiv, 1601.00740.

K, H., X, Z., & S, R. (2014). Spatial pyramid pooling in deep convolutional networks for

visual recognition. European conference on computer vision. Cham: Springer.

56

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014).

Large-scale video classification with convolutional neural networks. In

Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, (pp. 1725–1732).

Kim, J., Koh, J., Kim, Y., Choi, J., Hwang, Y., & Choi, J. W. (2018). Robust deep multi-

modal learning based on gated information fusion network. arXiv preprint arXiv,

1807.06233.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing

systems, 1097-1105.

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time

series. . The handbook of brain theory and neural networks, 3361(10).

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C.

(Springer). Ssd: Single shot multibox detector. In European conference on

computer vision, 21-37.

Mees, O., Eitel, A., & Burgard, W. (2016). Choosing smartly: Adaptive multimodal

fusion for object detection in changing environments. In Intelligent Robots and

Systems (IROS), 2016 IEEE/RSJ International Conference on (pp. 151–156).

IEEE.

Ordonez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural

networks for multimodal wearable activity recognition. Sensors, 16(1):115.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., . . . Lerer, A.

(2017). Automatic differentiation in pytorch. NIPS-W.

Patel, N., Choromanska, A., Krishnamurthy, P., & Khorrami, F. (2017). Sensor modality

fusion with cnns for ugv au- tonomous driving in indoor environments. In

International Conference on Intelligent Robots and Systems (IROS). IEEE.

Ramachandram, D., & Taylor, G. W. (2017). Deep multimodal learning: A survey on

recent advances and trends. IEEE Signal Processing Magazine, 34(6):96–108.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:

Unified, real-time object detection. Proceedings of the IEEE conference on

computer vision and pattern recognition., (pp. 779-788).

57

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. In Advances in neural information

processing systems , 91-99.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv, 1409.1556.

Sung, J., Ponce, C., Selman, B., & Saxena, A. (2012). Unstructured human activity

detection from rgbd images. In Robotics and Automation (ICRA) (pp. 842-849).

2012 IEEE International Conference on.

Wei, P., Cagle, L., Reza, T., Ball, J., & Gafford, J. (2018). Lidar and camera detection

fusion in a real-time industrial multi-sensor collision avoidance system. .

Electronics, 7(6):84.

Yurtman, A., & Barshan, B. (2017). Activity recognition invariant to sensor orientation

with wearable motion sensors. Sensors, 17(8):1838.

Zhao, C., Shim, M. S., Li, Y., Zhang, X., & Li, P. (2019). Deep Neural Networks with

Auxiliary-Model Regulated Gating for Resilient Multi-Modal Sensor Fusion.

arXiv preprint arXiv:1901.10610 (2019).

Zhao, Y., & Zhou, S. (2017). Wearable device-based gait recog- nition using angle

embedded gait dynamic images and a convolutional neural network. Sensors,

17(3):478.

