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ABSTRACT 

 

Deep neural networks (DNN) have been widely applied in sensor fusion, providing 

an end-to-end solution for fusion of features extracted from multiple sensory inputs. A 

class of new sensor fusion networks based on DNN called gating architectures proposed 

in recent years improves the prediction performances over the conventional fusion 

mechanisms employed in convolutional neural networks (CNNs). However, experimental 

results show that the gating architectures are not always robust and sometimes even under-

perform conventional fusion methods. 

In this work, the limitations of existing gating architectures are discussed and 

analyzed. Through experiments, we demonstrate that gating architectures fail to learn 

correct fusion weights for sensory inputs, showing the inconsistency between fusion 

weights and corresponding qualities of sensory inputs, and hence limit the prediction 

performance. We propose an improved fusion architecture by introducing the auxiliary 

path model to regulate the fusion weights in the gating architecture. We also provide in-

depth studies on the regularization mechanisms to show that the improvements on 

performances are achieved by the more robustly learnt fusion weights. 

Evaluations are performed under two different public datasets. We generate 

comprehensive sensor failure schemes, where the proposed architecture significantly 

outperforms a baseline non-gating architecture and one existing gating architecture. We 

also build up a sensor fusion hardware platform: a robot car, which is equipped with 
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multiple sensors. The robot will be further developed and adopted as a hardware platform 

for evaluating the proposed sensor fusion architecture. 
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1. INTRODUCTION:  

 

1.1 Sensor Fusion 

 Sensor fusion has been a popular topic to be studied in both industry and research. 

The definition of sensor fusion is to build up a more robust and dependable multi-model 

system by combining multiple sources of sensory data. The meaning of robustness and 

dependability in our work can be discussed under two different cases. Firstly, with all 

sensory inputs data clean, individual sensors cannot contribute enough information 

themselves, and the information provided through these sensors are not full mutually 

dependent. In this case, designing a smart fusion method can allow each sensor to provide 

its own useful information as complementary information for other sensors and therefore 

the integrated system can receive an overall boosted performance, which cannot be 

achieved through individual sensors. Secondly, with one or multiple sensors corrupted, a 

good sensor fusion technique shall to some extent compensate for the losses brought by 

corrupted sensors through correctly utilizing information provided by sensors that are 

working properly. Many complicated sensor failure situations can be studied here. For 

example, the numbers of corrupted sensors in different examples are not fixed. In this 

work, we create multiple sensor failure cases to fully evaluate the proposed sensor fusion 

architecture. 

 Sensor fusion has been studied in some works. Sensors such as Inertial 

measurement units (IMUs) have already been embedded into portable devices, providing 

the information for activity recognition. There are some sensor fusion algorithms proposed 
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to solve human activity recognition problems (Dehzangi, Taherisadr, & ChangalVala, 

2017) (Zhao & Zhou, 2017) (Gravina, Alinia, Ghasemzadeh, & Fortino, 2017) (Yurtman 

& Barshan, 2017). (Ramachandram & Taylor, 2017) gives a survey on fusion 

architectures.  

1.2 Deep Neural Networks for Sensor Fusion 

Convolutional neural networks. Convolutional neural network (CNN) (LeCun 

& Bengio, 1995) is a class of deep neural network (DNN). Different from regular neural 

networks, CNN adopts the idea of weight sharing, which significantly stimulates the 

efficiency of neural network and reduces the number of tunable parameters within the 

network. The idea of convolutional neural network comes from the connectivity pattern 

of neurons within human brain. More specifically, the idea is inspired by the functioning 

of visual cortex: single neuron only responds to stimuli within a limited vision field named 

receptive field. The visual information are generated through multiple overlappings of 

such receptive fields.  Therefore, CNN is widely applied in analyzing visual image, doing 

calculations like classification and regression. A basic CNN consists of a sequence of 

layers, mainly includes: convolutional layer, pooling layer, and fully-connected layer. 

A convolutional layer consists of several filters, as in Fig. 1, where the input to this 

convolutional layer is of size 5 × 5 × 2 . There are two filters for this layer: 𝑤0  and  

𝑤1 with sizes of (2 ×  2 ×  2). The convolution calculation is then performed between 

filters and input: calculation on dot product are performed between filters and 

corresponding channels of inputs. As in Fig. 1, filter share weights during one convolution, 

which means that for one input example, there are only 16 tunable parameters. 
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Figure 1. Filters in a convolutional neural network 

 

 

The output of convolutional layer will usually be fed into an activation function to 

increase the learnability of non-linear functions of CNN. A pooling layer ( also named as 

subsampling layer) is often inserted after a convolutional layer. The idea is to further 

reduce the sizes of features in order to reduce the number of tunable parameter and 

computational cost. Max-pooling is the most popular choice. 

Convolutional neural network has been widely studied and applied in various 

fields. With its strong learning abilities, convolutional neural network is capable of dealing 

with many difficult problems. For example, traditional computer vision subjects such as 

object detection, object segmentation can be solved by convolutional neural networks with 

better performances than conventional methods. Since CNN saves the number of tunable 

parameters by weight sharing, neural networks can be built in very deep layers with still 

acceptable computational costs. Many classical image recognition architectures and the 
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resultant architectures have been developed such as AlexNet  (Krizhevsky, Sutskever, & 

Hinton, 2012) and VGG (Simonyan & Zisserman, 2014). For 2D object detection, 

architectures like R-CNN (Girshick R. a., 2014), SPPNet (K, X, & S, 2014), Fast R-CNN 

(Girshick R. , 2015), Faster R-CNN (Ren, He, Girshick, & Sun, 2015), SSD (Liu, et al., 

Springer) and YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016)  produce good 

results.  

Deep neural networks for sensor fusion. The applications of deep neural 

networks to sensor fusion provide the problem with an end-to-end solution. For example, 

sensory inputs such as cameras and LIDARs can be fused to produce better image 

recognition performances on deep neural networks (Jain, et al., 2016) (Bohez, et al., 2017) 

(Kim, et al., 2018) (Chen, Ma, Wan, Li, & Xia, 2017) (Wei, Cagle, Reza, Ball, & Gafford, 

2018) (Garcia, Martin, De La Escalera, & Armingol, 2017) (Karpathy, et al., 2014) (Mees, 

Eitel, & Burgard, 2016). In (Chen, Ma, Wan, Li, & Xia, 2017), a sensor fusion architecture 

for 3D object detection based on deep convolutional neural network is proposed, where 

KITTI dataset (Geiger, Andreas, Lenz, & Urtasun., 2012) is adopted. Sensory data 

captured by LIDAR and camera located on testbed car consists of LIDAR bird view, 

LIDAR front view and RGB images. The architecture also compares three traditional 

fusion methods in deep neural networks: early fusion, late fusion, and deep fusion. As 

shown in Fig. 2. The idea of early fusion shown in Fig. 2(a) is to fuse the sensory features 

in early stage of DNN. Here fusion is done by simply concatenating different features. 

Fig. 2(b) demonstrates the late fusion, where fusion is  done after sensory inputs have been 

pre-processed by early-stage intermediate layers. Deep fusion method splits fusion into 
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different stages: features are first blended through element-wise mean, then three copies 

of features are fed into corresponding intermediate layers, whose outputs are fused again. 

Repeat the fusion-and-split step for three times to get the fused data. 

 

 

 

Figure 2. Three traditional fusion schemes in deep neural network. (a) 

Scheme of early fusion. (b) Scheme of late fusion. (c) Scheme of deep fusion.  

 

 

Situations of sensor failures are not taken into consideration and no related 

analyzation is presented in this work. However, a resilient sensor fusion architecture 
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requires the sensor fusion architecture to be robust under both clean sensory inputs and 

sensor failures. 

Previous work. A sensor fusion architecture of multiple deep experts is proposed 

in (Mees, Eitel, & Burgard, 2016), where multiple sensory inputs are first processed 

individually through convolutional neural networks to get the classification results. The 

outputs of classifiers are fused through weighted-sum by first extracting the fusion weights 

from multiple experts. A NetGated architecture is proposed in (Patel, Choromanska, 

Krishnamurthy, & Khorrami, 2017), where sensory inputs from camera and LIDAR 

equipped on a robot car are pre-processed by convolutional layers and fully-connected 

(FC) layers. The pre-processed features are then fed into a fusion weight extracting 

architecture to generate the fusion weights of two sensory inputs. The outputs of last early-

stage FC layers are being weighted by fusion weights to compute the weighted sum as the 

fused feature. The fused feature is then processed by another FC layer to get the steering 

commands of the robot car’s. More details about NetGated architecture will be discussed 

in following sections. A similar gating architecture is proposed in (Kim, et al., 2018), 

where fusion weights are extracted by first concatenating all sensory features and then 

processed by convolutional layers. Then fusion weights are multiplied with corresponding 

features and added up to produce fused feature maps. 

Our contributions on sensor fusion algorithm. Gating architecture shows the 

improvements on robustness and prediction performances of deep neural networks 

especially under sensor failure cases comparing with traditional fusion methods without 

gating architecture. However, there are still some cases where the gating architectures 
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underperform the conventional non-gating architectures. For the black-box nature of deep 

neural network, it is difficult to give a clear analysis on the relationships between qualities 

of sensory inputs, fusion weights and the resulting performances. 

Based on the previous works on gating architecture and their observed limitations, 

we proposed an optimized gating architecture which improves the robustness as well as 

resulting prediction performances with both clean and corrupted sensory inputs. 

The contributions of this works are as follows: 

● Propose a sensor fusion architecture called ARGate, which adopts the 

auxiliary path model to regularize the fusion weights of gating architecture 

in order to more robustly represent the qualities of corresponding sensory 

inputs (Zhao, Shim, Li, Zhang, & Li, 2019) . 

● Based on ARGate, two regularization techniques are proposed: weight 

sharing, regularization on fusion weight. Equipped with proposed 

regularization techniques, ARGate shows significant improvements on 

performances and robustness under both clean sensory inputs and sensor 

failures. 

● In-depth analysis is provided regarding to the functionalities of ARGate 

and NetGated, which explains the limitations of gating networks, as well 

as the effectiveness of fusion weights regularization to the improvements 

of prediction accuracy. 
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● Baseline models and proposed ARGate architectures are evaluated under 

two public datasets: HAR (Anguita, Ghio, Oneto, Parra, & Reyes Ortiz, 

2013) and CAD-60 (Sung, Ponce, Selman, & Saxena, 2012).  

To finish this work, I have close co-operations with my groupmates Mr. Yang Li 

and Mr. Myung Seok Shim. My divisions on the work include: proposing the ARGate 

and regularization techniques weight sharing,  fusion weight regularization, analyzation 

on the mechanism of NetGated architecture and ARGate. I also experimentally shed 

light on the responsibilities of auxiliary-model regularization on the performance 

improvements and implement the all experiments on HAR dataset and part of the results 

on CAD-60 dataset.  

1.3 Deep Neural Networks on Mobile Robot Car 

Machine learning algorithms have been widely used on mobile robot car. In 

(Mahadevuni & Li, 2017), a reinforcement learning algorithm based on spiking neural 

network is proposed and simulated on mobile robot car. Different types of sensors have 

also been implemented on robots. In (Patel, Choromanska, Krishnamurthy, & Khorrami, 

2017), camera and Lidar embedded on a mobile robot capture sensory data for the deep 

learning sensor fusion architecture, providing the robot with the knowledge of surrounding 

environments and hence helping make string commands. 

In our work, I build up the sensor fusion hardware platform: a robot car equipped 

with multiple sensors as the basic testbed of our sensor fusion architecture in the future, 

this work is finished together with my former groupmate: Mr. Amarnath Mahadevuni. 

My divisions of work include: setting up FSM and PRU.  
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The rest part of this thesis is organized as follows: 

Section 2 presents background of gating architecture, limitations and basic 

information about the multi-sensor mobile robot car. Section 3 introduces the ARGate 

architecture, corresponding regularization techniques and implementation details of 

mobile robot car. Section 4 introduces experimental settings and dataset. Section 5 

illustrates the experimental results. Section 6 is the conclusion. 
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2. BACKGROUND AND PROBLEM 

 

2.1 CNN Fusion Architecture 

 We implement the state-of-art CNN fusion architecture with traditional fusion 

method: element-wise mean. As shown in Fig. 3. 

 

 

 

Figure 3. CNN baseline fusion architecture 

 

 

 Where “M” represents element-wise mean. Sensory inputs from Sensor 1 and 

Sensor 2 are first processed through convolutional layers and early fully connected 

layers “FC-1” and “FC-2”. Fusion is done by calculating the element-wise mean value of 

outputs of “FC-1” and “FC-2”. Then decision is made by going through another “FC-

out” layer. 
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2.2 Gated Architecture 

In (Patel, Choromanska, Krishnamurthy, & Khorrami, 2017), gated architecture is 

proposed in order to deal with sensor failures in a sensor fusion system whose aim is to 

enhance the performance of an unmanned ground vehicle. The vehicle is embedded with 

a camera and a LIDAR. The proposed gated architecture is called NetGated. Data from 

each sensor are first processed through multiple convolutional layers and fully connected 

layers individually in order to get the extracted features. Instead of applying fusion 

methods such as element-wise-mean or concatenation, fusion is done by feeding features 

into a gating architecture to calculate the scalar values that represent the qualities of 

corresponding sensory inputs. The network fuses the data from two sensors with the scalar 

values as weighting parameters. In this work, we name the scalar values as fusion weights. 

Fig. 4 demonstrates more details about the idea of NetGated. 

 

 

 

Figure 4. NetGated Architecture 
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As in Fig. 4, there are two input sensors in this system: Sensor 1 and Sensor 2. 

Sensory inputs of two sensors are first processed by convolutional layers(yellow) and 

fully connected(FC) layers(blue) separately. Features output from “FC-1” and “FC-2” 

are then concatenated to be further processed by the FC-con layer, whose result consists 

of two scalar values representing qualities of Sensor 1 and Sensor 2, named as “Fusion 

Weight1” and “Fusion Weight 2”. Fusion weights are then multiplied with output 

features of “FC-1” and “FC-2” to perform the weighted sum of two features as the fused 

data. The fused data are then fed into the last decision-making layer “FC-out” to produce 

the final decision. 

2.3 Limitations of Gated Architecture 

In NetGated Architecture, fusion weights should reflect the qualities of 

corresponding sensory inputs. If information provided by each sensory input contributes 

equally to the final prediction performance, the optimal effect of fusion weights should 

be: fusion weights of all sensors have similar values when all sensory inputs are clean. If 

one sensor x is corrupted while the rest sensors are clean, the fusion weight of sensor x 

should be much smaller than those of the rest sensors.  

However, the gating architecture often shows the inconsistency between fusion 

weights and sensory qualities. Through our experimental results, we observe that fusion 

weights are sometimes fail to consistently represent the qualities of corresponding 

sensors. For example, in our implementation of NetGated Architecture under HAR 

dataset, the network has nine input channels, among which body_acc_x , body_gyro_x 

are fixed as corrupted inputs, whose inputs are pure Gaussian noise with no information. 
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When we print out the values of fusion weights of nine channels, fusion weight of 

body_acc_x is the largest among all fusion weights. This result shows that fusion 

weights sometimes tend to be unstable and behave inconsistently with qualities or 

importance of corresponding sensory inputs. We also cast doubt that the poor prediction 

accuracy might be related to the inconsistent fusion weights. 

2.4 Analysis  

Based on the inconsistency of fusion weights mentioned in last section, we 

propose a tentative analysis. In Fig. 4, the output features of  “FC-1” and “FC-2” are first 

concatenated before “FC-con”. If the concatenation layer is removed, and two fusion 

weights are extracted separately from two features generated by “FC-1” and “FC-2”, it 

would be hard for the neural network to learn the “comparative importance” of Sensor 1 

and Sensor 2.  If Fusion Weight 1 is greater than Fusion Weight 2, we still cannot 

confirm that whether Sensor 1 is more important or better in quality than Sensor 2, 

because the values of Fusion Weight 1 only represent the quality or importance of 

Sensor 1 comparing with itself, same for Sensor 2. 

However, concatenating the features may bring another problem. As in Fig. 5, 

Feature 1 and Feature 2 are first concatenated, and we expect corresponding Fusion 

Weight 1 to represent quality of Feature 1. But the outputs of concatenation layer are 

fully connected with “FC-con”, which means that information from Feature 1 and 

Feature 2 are mixed here. As in Fig. 4, red and green lines represent data flowing from 

Feature 1 and Feature 2 to first output neuron of FC-con, while black and blue lines 

represent data flowing from Feature 1 and 2 to second output neuron of FC-con. Fusion 
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Weight 1 contains information from both Feature 1 and Feature 2 and same thing for 

Fusion Weight 2.  

 

 

 

Figure 5. Mixture of data inside NetGated 

 

 

This explains the reason why corrupted sensor may have larger fusion weights 

than clean sensor.  

2.5 Control of Mobile Robot Car 

In order to build up a sensor fusion hardware platform. With Amarnath 

Mahadevuni, we implemented a robot car. The robot car is designed to have multiple 

sensors, including USB camera, ultrasonic sensors and digital compass. The robot is able 

to move to the preset target, detect its surroundings. If there are obstacles detected, the 

robot is able to recognize the obstacles and avoid them. This hardware platform is able to 
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gather distance information by 5 ultrasonic sensors and direction information captured by 

digital compass. The “brain” of mobile robot is the single-board processor Beaglebone 

black. The robot is powered by eight 1.5Volts batteries. Motion is controlled by two servo 

motors. 

BeagleBone Black. BeagleBone Black is a powerful single-board processor 

powered by Texas Instruments. The Beaglebone Black is equipped with an AM335x ARM 

processor and 2 32-bit PRU microcontrollers. One of the reasons that BeagleBone Black 

is very suitable for multi-sensor system is because of its large number of pin headers: 2*46 

pin headers for analog/digital inputs/outputs, which enable us to get enough devices 

connected. Devices can get connected through 𝐼2C, GPIO and so on. The BeagleBone 

Black also has one USB host, Ethernet connection and HDMI port. BeagleBone ships with 

Linux kernel 3.8. Fig. 6 shows a general view of BeagleBone Black on the implemented 

robot car: 

 

 

 

Figure 6. Robot car 
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Ultrasonic sensor. We adopt 5 HC-SR04 ultrasonic sensors to detect the distance 

information for the robot car. Five ultrasonic sensors are placed on the robot with intervals 

of 45°. As shown in Fig. 6. 

As shown in Fig. 7, the unit vector on y axis indicates the direction that the robot 

is moving to, which is calculated by the digital compass. 

 

 

 

Figure 7. Distributions of 5 ultrasonic sensors on mobile robot 

 

 

One ultrasonic sensor named Front is located here which detects the distance 

information right in front of the robot. There are also two ultrasonic sensors located on the 

two sides of the robot: Left, Right, aiming to detect the distance information on the two 
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sides of mobile robot. In case distance information may be missed between Front and Left 

and Right, two additional sensors are located as in Fig. 7 named Left45 and Right45, 

respectively. 

 

 

 

Figure 8. Timing diagram of HC-SR04. 

 

 

For each single ultrasonic sensor, there are four signals: Trigger, Echo, VDD and 

GND. 

Trigger is the output pin, which is used to send out a small TTL pulse with a high 

level of 10uS to trigger the ultrasonic sensor into working mode. The sensor sends out a 

serials of sonic burst to the outside environment. Echo is the input pin of ultrasonic senor 

to receive the echoes of sonic burst. After echo is received, the length of high level of 

echo pulse will be translated into distance information. The HC-SR04 is powered by 

5Volts DC voltage.  

The distance information returned by the ultrasonic sensor is 5 Volts, however 

the voltage of GPIO pins on BeagleBone Black can only receive 3.3 Volts signals, 
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therefore we build up a simple circuit to divide voltage from 5V to 3.3V with three 

1Kohms resisters. 

Digital Compass HMC5883L. The Honleywell HMC5883L is a multi-chip 

module with the capable of magnetic sensing embedded with the interface of digital 

signals for compassing. The HMC5883L can be implemented through 𝐼2C bus.  Digital 

Compass is implemented in order to help robot find the direction. An certain angle is set 

as the target direction for the robot. The 3-axis magnetic direction information returned 

by the compass is transformed into angle information to help robot calculate the difference 

between its current heading and the target heading. 

 Finite State Machine(FSM). Finite State Machine(FSM) is adopted to handle 

the basic motion control of the robot car. The state machine includes three states: Go-to-

Goal, PRE-Wall-Follow and Wall-Follow. 

 

 

 

Figure 9. Finite State Machine 
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 In Go-to-Goal state, distances information returned by of 𝑛 out of 5 ultrasonic 

sensors are less than 35cm,  where 𝑛 ∈ {0, 1} meaning that less than 2 sensors detect the 

obstacles, representing the situations when robot is on the clear route towards the target 

direction. PID controller is implemented here to control the robot to move towards the 

target. 

Pre-Wall-Follow. In our implementation, the surfaces of obstacles are assumed 

to be flattened. Therefore we name this state as Pre-Wall-Follow. When there are over 1 

ultrasonic sensors returning distance information less or equal to 35cm, the robot enters 

the Pre-Wall-Follow state. The robot will stop and begin to adjust the heading to be in 

parallel with the wall. Therefore the next job is to compute the direction of the wall. 

 

 

 

Figure 10. Calculate the direction of obstacle 
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As shown in Fig. 10, a coordinate system is built up on the robot, the vector from 

the center of robot to the Left sensor is defined as positive x axis, the direction from the 

center of the robot to the Front represents the positive y axis. 

The angles between each sensor according to positive x axis are: 

0°, 45°, 90°, 135°, 180°. The distance values returned by all five sensors are the norms of 

the five vectors: 𝑑0⃗⃗⃗⃗ , 𝑑1⃗⃗⃗⃗ , 𝑑2⃗⃗⃗⃗ , 𝑑3⃗⃗⃗⃗  𝑎𝑛𝑑 𝑑4⃗⃗⃗⃗ . As in Fig. 10, when distance values returned by 

 𝑑2⃗⃗⃗⃗  𝑎𝑛𝑑 𝑑3⃗⃗⃗⃗  are less than 35cm, the robot enters PRE-WALL-FOLLOW state. In our 

implementation, the robot turns left to avoid the obstacle, therefore the direction of the 

wall can be computed as 𝑑𝑤⃗⃗⃗⃗  ⃗ = 𝑑2⃗⃗⃗⃗ − 𝑑3⃗⃗⃗⃗ . Since the heading of robot is represented as the 

unit vector of 𝑑2⃗⃗⃗⃗ :  𝑑𝑐⃗⃗⃗⃗ =
𝑑2⃗⃗⃗⃗  ⃗

|𝑑2⃗⃗⃗⃗  ⃗|
, which is (0, 1), as the green arrow in Fig. 10. The robot 

need to adjust its heading by the difference between 𝑑𝑤⃗⃗⃗⃗  ⃗ and 
𝑑2⃗⃗⃗⃗  ⃗

|𝑑2⃗⃗⃗⃗  ⃗|
. The xy coordinate of 

vector 𝑑2⃗⃗⃗⃗  can be computed as: 

{
𝑥2 =  𝑑2⃗⃗⃗⃗  ∙ cos (2 ∗ 45

°)

𝑦2 = 𝑑2⃗⃗⃗⃗  ∙ sin (2 ∗ 45
°)

 

Similar calculation of coordinates of 𝑑3⃗⃗⃗⃗ : 

{
𝑥3 = 𝑑3⃗⃗⃗⃗  ∙ cos (3 ∗ 45

°) 

𝑦3 = 𝑑3⃗⃗⃗⃗  ∙ sin (3 ∗ 45
°)

 

Coordinates of 𝑑𝑤⃗⃗⃗⃗  ⃗ are: 

{
𝑥𝑤 =  𝑥2 − 𝑥3
𝑦𝑤 =  𝑦2 − 𝑦3

 

Angle that needs to be adjusted: 
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𝜃 = arccos (
𝑑𝑤⃗⃗⃗⃗  ⃗ ∙ 𝑑𝑐⃗⃗⃗⃗ 

|𝑑𝑤⃗⃗⃗⃗  ⃗| ∙ |𝑑𝑐⃗⃗⃗⃗ |
) = arccos (

𝑥𝑤 ∙ 0 +  𝑦𝑤 ∙ 1

√(𝑥𝑤2 + 𝑦𝑤2) ∙ 1
) 

Then the robot adjust its heading by 𝜃 , as the brown arrow in Fig. 10. If there is no 

distance value from any ultrasonic sensor that is less than 35cm, the robot goes back to 

Go-to-Goal state. Otherwise the robot enters the Wall-Follow state. 

 

 

 

Figure 11. Adjust the heading in Pre-Wall-Follow state 

 

 

Wall-Follow. In Wall-Follow state whenever there are more than two ultrasonic 

sensors returning the distance values less than 35cm as the robot moving alongside of 

the obstacle, the robot calculates the heading of obstacle. 
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If the difference between its current heading and the new direction is less than 3°, 

the robot continue its previous heading. Else, the robot goes back to Pre-Wall-Follow 

state to adjust its heading according to the new direction of wall. As shown in Fig. 12. 

 

 

 

Figure 12. Wall-Follow state 

 

 

 After implementing the FSM, an experimental problem occurs: the robot often 

bumps into the obstacle where it should make turns and follow the wall. A few 

assumptions are considered: firstly, the ultrasonic sensors are not working properly. 

Secondly, the robot moves too fast for ultrasonic sensors to catch the obstacles. In order 
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to verify the first assumption, we put obstacles next to the robot when it’s not moving 

and run the distance detection program, the ultrasonic sensors can accurately return the 

distance information of obstacles. Therefore, it is clear for us that the robot needs the 

distance information in real-time. 
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3. SOLUTIONS 

 

3.1 Auxiliary Paths 

In (Chen, Ma, Wan, Li, & Xia, 2017), an auxiliary path architecture is applied in 

the fusion layers to help further improve the prediction performance. As shown in 

Fig.13. 

 

 

 

Figure 13. Auxiliary model 
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In Fig. 13, each Multi-Modal Input represents sensory input of one sensor. We 

name the top three channels as “Main Model” and the bottom three channels as 

“Auxiliary-Path-Model”. M in blue represents the fusion method of “element-wise 

mean”. Multi-Task Loss of main model consists of the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥  function to do object 

classification and a 3𝐷 𝐵𝑜𝑥 𝑅𝑒𝑔  for the regression of 3-D bounding boxes. Multi-

Modal Inputs are also processed through three additional channels called Auxiliary 

Paths, each layer on auxiliary paths share weights with corresponding layer in main 

model. The total loss function for this architecture is: 

Total Loss = Multi Task Loss +∑(𝑆𝑜𝑓𝑡𝑚𝑎𝑥 + 3𝐷 𝐵𝑜𝑥 𝑅𝑒𝑔)𝑖

3

𝑖=1

 

Where Multi-Task Loss represents the loss function of main model, and 

(𝑆𝑜𝑓𝑡𝑚𝑎𝑥 + 3𝐷 𝐵𝑜𝑥 𝑅𝑒𝑔)𝑖 is the classification loss and regression loss of the 𝑖 − 𝑡ℎ 

auxiliary path. The optimizer should optimize both main model and auxiliary path 

model. 

According to the experimental results in (Chen, Ma, Wan, Li, & Xia, 2017), 

prediction performance is improved by 1.8% on 3D object detection, and 6.3% on 2D 

object detection based on KITTI validation dataset after the implementation of auxiliary 

path model.  

A tentative analysis of the function of auxiliary paths is as follows: through 

weight sharing and including loss functions of auxiliary paths into the total loss function, 

the optimizer has to consider both main model and auxiliary path model. There’s no 

fusion step in auxiliary paths, therefore layers on auxiliary paths are to some extent 
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regularizing layers in main model to prevent them from getting overfitted in the deep 

fusion architecture. 

Based on the idea of auxiliary paths, we propose our own fusion architecture. 

3.2 Auxiliary Paths on Selected Channels 

We introduce the idea of auxiliary paths into gating architecture. For the problem 

of fusion weight inconsistency mentioned above, one reason might be because the gating 

architecture is not fully trained, so that fusion weights need to receive some extra 

guidance to get further trained, in order to correctly represent the importance of 

corresponding sensory inputs. Therefore based on the auxiliary path idea mentioned in 

last section, we set the auxiliary path as the competitor of the main model, whose job is 

to “push” gating architecture to “force” dataflow within NetGated architecture to get 

“less mixed” so that fusion weights can be more consistently representing qualities of 

sensory inputs.  

 

 

Figure 14. Auxiliary-model on selected channels 
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Following this idea we implement the NetGated architecture with auxiliary-

model as shown in Fig. 14. Beyond the NetGated network, three additional channels 

with inputs of Sensor 1, 2 and 3 are added as auxiliary paths. The sensory inputs are 

processed through convolutional/pooling layers and fully connected layers with the same 

sizes as in main model, no weight sharing is implemented here. In order to boost the 

accuracy of main model by auxiliary paths, we design the following loss function: 

Loss𝑡𝑜𝑡𝑎𝑙 =  

{
 
 

 
 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + ∑𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖

𝑛

𝑖=1

,      𝑖𝑓 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ min(𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖)

𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + ∑𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖

𝑛

𝑖=1

,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

（1）    

Where i  is the 𝑖 − 𝑡ℎ auxiliary path, 𝛼 is a user-specified weighting factor, 

min(𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖) is the minimum value of all the loss functions of auxiliary paths.  

As shown in  the equation of Loss𝑡𝑜𝑡𝑎𝑙 above, when 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ min (𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖), 

corresponding to cases when main model performs worse than the auxiliary path with 

minimum loss function, then  𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 is multiplied with a factor 𝛼 , which is set to be 

5 in our experiments, in order to raise the weighting of 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 in total loss comparing 

with 𝐿𝑜𝑠𝑠𝑎𝑢𝑥. And hence main model will be more emphasized during training. This 

loss function treats auxiliary paths as competitors to the main modal. 

However, based on our experimental experiences, the prediction accuracy of a 

NetGated architecture of multiple sensors is always better than architectures using single 

sensors as the current settings of auxiliary path model. For this reason, the auxiliary 

paths architecture shown in Fig. 14 is not competitive enough for the main modal. 
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Which also means in Loss𝑡𝑜𝑡𝑎𝑙, the condition of 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ min (𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑖) may never 

occurs. Therefore we need to find a more competitive design of auxiliary paths. 

 

 

 

Figure 15. Auxiliary-model based on NetGated architecture with selected channels 

 

 

Based on the analyzations above, the optimal choice of auxiliary path is the 

NetGate architecture with part of sensory inputs among all the sensors. As shown in Fig. 

15.  
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In Fig. 15, we consider a sensor failure situation when Sensor 1 is corrupted, the 

noises brought by Sensor 1 are mixed up with clean sensory inputs of Sensor 2 and 

Sensor 3, and therefore bringing the prediction accuracy down. If the negative influence 

brought by noises on Sensor 1 is large enough that the performance of main model may 

be worse than the performance of NetGate architecture with Sensor 2 and Sensor 3 as 

inputs, then setting auxiliary path as the NetGated architecture of Sensor 2 and Sensor 3 

will be a competitive choice.  

Then Loss𝑡𝑜𝑡𝑎𝑙 is designed as: 

Loss𝑡𝑜𝑡𝑎𝑙 =  {
𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + 𝐿𝑜𝑠𝑠𝑎𝑢𝑥,      𝑖𝑓 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥

  𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + 𝐿𝑜𝑠𝑠𝑎𝑢𝑥 ,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
   (2) 

Where 𝛼 (set as 5) is the user-specified weighting factor to adjust the weighting 

between 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 and 𝐿𝑜𝑠𝑠𝑎𝑢𝑥. If main modal performs worse than the auxiliary path 

model, more weighting will be put on 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛. In this design, the auxiliary path need 

to be selected based on previous knowledge of the noisy channel. Which sometimes may 

not be available. Through experimental results, fusion weights show more consistency 

with qualities of sensory data. 

3.3 Weight Sharing 

Auxiliary path on selected channels architecture mentioned in last section 

requires the previous knowledge of the noisy channel, otherwise we can’t design the 

proper auxiliary path model. It also has limitations when multiple channels are 

corrupted, even the performance of NetGated network with inputs of all the clean 

channels is not competitive enough to the main model. 
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Therefore, we propose the Auxiliary Regulated Gate (ARGate) architecture with 

weight sharing. As shown in Fig. 16. Assuming there are two auxiliary paths, parameters 

of convolutional layers and early fully connected layers in main modal are shared with 

those of corresponding layers of auxiliary paths. In order to avoid the pre-knowledge of 

noisy channels, the loss function is designed as follows: 

Loss𝑡𝑜𝑡𝑎𝑙 =  𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + ∑ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘𝐾

𝑘=1       (3), 

 

 

 

Figure 16. Auxiliary Regulated Gate with Weight Sharing 

 

 

 where 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 and 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘  are the loss functions of the main model and the 

𝑘 − 𝑡ℎ auxiliary path, respectively. 𝛼 represents an user-defined weighting parameter. 
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 Since we need to consider the losses of all auxiliary paths in the total loss 

function, the convolutional layers and early fully connected layers of auxiliary paths can 

use the corresponding sensory inputs to get good classification performances, it might be 

a more effective regulator to share weights with corresponding layers in the main model 

to “internally” force the “FC-con” layer to generate consistent fusion weights, to avoid 

the information mixed-up inside the “FC-con” layer , instead of externally forcing the 

main model to get further trained by competitors mentioned in last section. 

 The weight sharing model improves the qualities of fusion weights as well as the 

prediction performances. More detailed results will be shown in section Evaluation. 

3.4 Fusion Weights Regularization 

Even though the ARGate-WS architecture shows improvements in performances 

under some sensor failure cases, we observed that there are still cases when one or 

multiple sensors are corrupted, weight sharing fails to provide the improvements. The 

reason lies in the fact that auxiliary path model with corrupted inputs are not capable of 

providing the main model with positive information to boost the performance. Therefore, 

we further explore the additional regularization of auxiliary paths over main model, 

details can be seen in Fig. 17. 

 The idea of this architecture is a technique called Fusion Weight 

Regularization(FWR). The basic idea is that the loss functions of auxiliary paths show 

the same trend to qualities of sensory inputs as the fusion weights do. As in Fig. 17, if 

Sensor 1 fails with inputs of Gaussian noise while Sensor 2 is clean, the value of 

Loss_aux1 will be much larger than that of Loss_aux2. If we introduce an inverse 



 

32 

 

 

 

function of Loss_aux, the output value will have the same relevance of sensor quality as 

fusion weights do. Therefore we design the loss function below to use losses of auxiliary 

paths to regularize fusion weights of main model: 

Loss𝑡𝑜𝑡𝑎𝑙 =  𝛼 ∙  𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 +  𝛽 ∙ ∑ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘𝐾

𝑘=1 + ∑ (𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 − 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘 2̂
)
2

𝐾
𝑘=1     (4), 

where β is another user-specified weighting parameter, 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘  represents the value of 

fusion weight of the k-th input sensor, which is also the k-th output of “FC-con” layer. 

The inverse function of auxiliary path loss is designed as 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
2

.  

 

 

 

Figure 17. Auxiliary Regulated Gate with Weight Sharing and Fusion Weight 

Regularization.  
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Since the fusion weights is normalized using 𝐿2 norm and then softmax 

normalization, we implement the same normalization method on 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
2

.  

The 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 2̂

reprensents the normalized 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
2

. L2 normalize 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
2

 

between [-1,1], softmax further normalize the value between [0,1]. We name the above 

architecture with both weight sharing and weight regularization as ARGate-WS-FWR. 

 ARGate-WS-FWR utilize auxiliary paths to regularize main model in two steps, 

first step is to use weight sharing(WS) in convolutional layers and early fully connected 

layers. Second step is to use loss functions of auxiliary paths to regularize the fusion 

weights of main model. Detailed experimental results will be shown. 

3.5 Auxiliary Loss Weighting 

Loss functions of auxiliary paths are in the total loss function of ARGate-WS and 

ARGate-WS-FWR. However, if one or multiple sensors corrupt, then their large loss 

functions may dominate other terms in total loss functions, the performances of network 

may be degraded because of this. In (Zhao, Shim, Li, Zhang, & Li, 2019) fusion weights 

are extracted from main model as shown in purple dashed arrow in Fig. 18 to perform 

the Auxiliary Loss Weighting(ALW) to auxiliary paths to constraint the loss functions of 

auxiliary paths. The new loss function is designed as: 

Loss𝑡𝑜𝑡𝑎𝑙 =  𝛼 ∙  𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 +  𝛽 ∙ ∑ 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 ∙ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘𝐾
𝑘=1 + ∑ (𝑤𝑓𝑢𝑠𝑖𝑜𝑛

𝑘 −𝐾
𝑘=1

 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 2̂

)2 (5) 

where fusion weights of main model 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘  are multiplied with auxiliary path loss 

𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 . The idea is that if the 𝑘 − 𝑡ℎ sensor fails while the rest sensors are all  
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Figure 18. Full ARGate arthictecure (ARGate-F) 

 

 

functioning, the pure noisy inputs would generate a large 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 , which will dominate 

the total loss function Loss𝑡𝑜𝑡𝑎𝑙. The qualities of sensory inputs can be represented by 

fusion weights of main model, therefore applying 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘  as a weighting term to multiply 

with 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘  would be a solution to this issue.  

3.6 Programmable Real-Time Unit 

Two Programmable Real-Time Units (PRU) are embedded in BeagleBone Black, 

which is designed specifically for handling real-time computing. 
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Figure 19. Programmable Real-Time Unit  

 

 

Programmable real-time unit (PRU) is a fast (200-MHz, 32-bit) processor with 

the input/output accession of single-cycle instructions to a number of the pins, it also has 

the accession to the memory of the main processor on BeagleBone Black (AM3358).   

Advantages of PRU can be concluded as follows: 

⚫ Based on RISC,  no pipeline, no branch latency, most instructions can be finished 

within 1 clock cycle, making execution predictable, suitable for real-time 

processing. 

⚫ Runs in parallel with host AM335x processor.  
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Figure 20. PRU interrupt controller (INTC) 

 

 

Fig. 20 shows the architecture of interrupt controller of PRU. System Events 32 

to 63 are generated by PRU0/1. We first connect 5 ultrasonic sensors  to PRU0/1, then 

map the events of Echo pins of 5 ultrasonic sensors receiving the distance information to 

5 system events between 32 to 63. Then the 5 system events are further mapped to 5 

channels in PRU INTC. On the host processor, 5 interrupts are mapped to 5 PRU events 

on host board through Host Mapping of Channels. Through this two-step mapping, we 

can map events generated on two PRUs to the PRU events recognized by the host 

processor. Since distance detection program on PRU and control program on host 

processor are running in parallel. Our control program can read the distance information 

in real-time. 
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We implement the assembly code according to PRU assembly instruction set to 

directly get control of the reading and writing of registers and to generate interrupts. For 

each ultrasonic sensor, we first activate Trigger signal, and send out the sonic burst. 

Whenever the Echo register receives the data, save the data into memory of PRUs, and 

an interrupt is generated. Same steps for 5 ultrasonic sensors are done in sequence.  

Device Tree file defines the modes of pins which we are going to use on  

BeagleBone Black. For example: 

0x030 0x07 /* P8_12 gpio1[12] GPIO44 out pulldown Mode: 7 */ 

Bit 0-2 - Mode.  Bit 3 with a value of 1 represents disable Pulling, of 0 stands for 

enable Pulling. Bit 4 with a value of 1 means Pull up, of 0 stands for Pull down. 

Bit 5 with a value of 1 means Input, 0 means Output 

        Control file running on host processor calls functions to initialize PRU, open 

PRU, PRU events mapping, memory  mapping, and wait for interrupts from PRU. 

Pypruss library is adopted to call C functions in python codes. 

 After applying PRU to handle real-time distance information computing, the 

latency problem is solved and the robot can successfully stop and adjust its heading to 

follow the obstacles. 
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4. EXPERIMENTAL SETTINGS 

 

4.1 Basic Settings 

We compare the performances of fusion CNN baseline (Chen, Ma, Wan, Li, & 

Xia, 2017), the baseline gating architecture: NetGated  (Patel, Choromanska, 

Krishnamurthy, & Khorrami, 2017) and the proposed auxiliary-model ARGate 

architectures. All architectures are evaluated based on two public datasets for human 

activity recognition: HAR (Anguita, Ghio, Oneto, Parra, & Reyes Ortiz, 2013) and 

CAD-60 (Sung, Ponce, Selman, & Saxena, 2012). We implement ADAM optimizer, the 

value of learning rate is 0.001. The loss functions of baseline, NetGated, ARGate is 

cross-entropy. Simulation are performed on Ubuntu 16.04, programming language is 

selected as Python 2.7 based on Pytorch 0.4.0 (Paszke, et al., 2017) , programs are 

simulated on NVIDIA TITAN Xp GPUs. 

4.2 Datasets 

Human Activity Recognition(HAR) Dataset. The Human Activity 

Recognition(HAR) dataset (Anguita, Ghio, Oneto, Parra, & Reyes Ortiz, 2013) includes 

data captured by an accelerometer and a gyroscope sensor embedded on smartphones, 

which are carried out on 30 volunteers. Data are gathered by the sensors at a rate of 

50Hz, 50% overlapped sliding windows with 128 readings which split the raw data into 

different examples. Labels include six human activities: Walking, Walking Upstairs, 

Walking Downstairs, Sitting, Standing, Laying. Data from each type of sensor are 

captured in forms of 3-axial. To be more specifically, the dataset includes 3-axial total 
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acceleration (total_acc_x, total_acc_y, total_acc_z) data, 3 -axial body acceleration 

(body_acc_x, body_acc_y, body_acc_z) data and 3 -axial body gyroscope data 

(body_gyro_x, body_gyro_y, body_gyro_z). Where body acceleration signals are 

obtained by subtracting gravity acceleration from the total acceleration.  

 In the implementation of this work, the nine data are defined as nine sensory 

inputs. Sensory inputs for all 9 channels are distributed between [-1, 1]. There are 7352 

training examples and 2947 testing examples. 

The CAD-60 Dataset. In (Sung, Ponce, Selman, & Saxena, 2012) the dataset of 

CAD-60 is introduced, which contains 60 videos of human activities captured by Kinect 

device from Microsoft. The Kinect is equipped with a RGB camera and a depth sensor. 

Videos record 14 human activities of 4 people. Each video is preprocessed into RGB 

images, skeletal data and Depth images. 

A preprocessing code is provided by the dataset to extract 5 features from raw 

RGB images, skeletal data and Depth images, including skeletal HOG of the depth 

image, skeletal, skeletal RGB HOG, and depth HOG. 5 extracted features are treated as 

5 sensory inputs. The “new person” scheme in (Sung, Ponce, Selman, & Saxena, 2012) 

is adopted in our implementation which uses the three people’s data for training and the 

rest people’s data for testing. 
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4.3 Network Configurations 

 Training for all models in HAR dataset takes 200 epochs,  the batch size is 16. 

Under CAD-60 dataset, training takes 100 epochs, batch size is 128. 

 CNN Baseline in HAR Dataset. Before fusion, CNN baseline has following 

layers to extract features from each sensory input before fusion: C(16,3,1) − P −

FC(256) − FC(256), here C(n, f, s) is a 1-D convolutional layer, the layer has n filters 

with sizes of f, the convolution stride is s. P stands for a max-pooling layer, the sliding 

window for pooling is non-overlapped with the size of  2. FC(n) stands for a FC layer. 

ReLU is selected as the activation function. After sensory inputs of all 9 channels are 

processed, the 9 outputs are fused through element-wise mean. Fused data are then fed 

into three additional FC layers: FC(128) − FC(64) − FC(6). Where the classification 

decision is made by the last FC(6) layer with a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 classifier. 

 NetGated in HAR Dataset. In order to compare with CNN baseline in the 

number of tunable parameters fairly, each sensory inputs is processed through a simpler 

structure in NetGated model: C(16,3,1) − P − FC(256). As shown in Fig. 13, the 

extracted features from 9 FC layers are first concatenated and then processed through a 

structure of FC(256) − FC(9). FC(9) generates fusion weights of features of all 

channels. Before fed into next layer, fusion weights are normalized in order to match the 

corresponding physical meaning. The normalized fusion weights are used to weight the 

outputs of the last early FC layers:  FC(256) to perform a weighted sum to get the fused 

data. The fused data are processed with two additinal FC layers: FC(256) − FC(6). 
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 ARGate in HAR Dataset. As in Fig. 17, convolutional and FC layers for 

auxiliary paths are added. Weight sharing is performed between each convolutional and 

early FC layer in auxiliary path and corresponding convolutional and FC layers in the 

main model. The output features of these FC layers are fed into another FC(6) layer to 

generate the classification decision of auxiliary paths. The outputs of the last early 

FC(256) layer in the main model are concatenated and processed through FC layers 

FC(256) − FC(9). After the weighted sum, different from NetGated, the fused feature is 

processed through only one FC(6) layer to get the classification decision for fair 

comparison in terms of number of parameters.  

CNN Baseline in CAD-60 Dataset. In CAD-60 dataset, before fusion, sensory 

inputs of skeletal feature channels are processed through three convolutional layers and 

one FC layer. While for skeletal HOG on RGB, input features are processed through 

three convolutional layers with different sized and one FC layer (FC-600) . Same 

number of convolutional layers with different sizes and a FC(600) for skeletal HOG on 

depth, RGB HOG, and depth HOG. Since sensory inputs for RBG HOG and depth HOG 

are small in sizes, therefore no max-pooling layers are employed on those two channels. 

The output features from last five FC(600) layers are fused through element-wise mean, 

the fused features are further processed by four fully connected layers to get the 

classification decision. 

NetGated in CAD-60 Dataset. Same early feature extraction schemes are 

implemented in NetGated as in CNN Baseline. The outputs of last early FC(600) are 

first concatenated and then fed into FC(3000) and a FC(5) to extract the normalized 
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fusion weights of five features. The fused data are calculated through weighted sum of 

extracted features with their corresponding fusion weights. The fused data are further 

processed through FC(1200) and a FC(14) for the classification. 

ARGate in CAD-60 Dataset. Same setups are implemented in early feature 

extraction before fusion in main model of ARGate as in baseline CNN and NetGated. As 

in NetGated, five extracted features are concatenated and fed into FC(3000) and 

FC(5) to extract fusion weights. After normalization of fusion weights, features are 

again fused through weight sum of output features from five last early FC layers, then 

fused feature is processed through FC(200) − FC(14). FC(14) generates the 

classification decision. For early feature extraction layers, weight sharing is performed 

between auxiliary paths and corresponding layers in main model. The output features of 

last early FC layers are fed directly into FC(200) − FC(14) for final outputs of auxiliary 

paths, which are introduced to regularize fusion weights. 

The total number of tunable parameters in baseline CNN, NetGated and ARGate 

are 2619136, 2594236, 2594236, respectively. In ARGate, α is set as 5.0 in (3), and α, β 

in (4) are set to be 
1

9
,
5

9
, respectively. 

4.4 Fusion Weight Normalization 

In (Patel, Choromanska, Krishnamurthy, & Khorrami, 2017), after fusion weights are 

generated from “FC-con” layer as shown in Fig.12, there’s no normalization step for 

fusion weights. In our implementation, we normalize fusion weights for both NetGated 

and proposed ARGate models in order to enable fusion weights to have the physical 

meaning of weighting parameter. Normalization steps consist of 3 steps. Firstly, fusion 



 

43 

 

 

 

weights 𝑤𝑓𝑢𝑠𝑖𝑜𝑛  are normalized by L2 to be distributed between [-1, 1]. Secondly, in 

order to enlarge the differences between small fusion weights which represent low 

qualities of corresponding sensory inputs and large fusion weights, we perform:  

𝑤𝑓𝑢𝑠𝑖𝑜𝑛
′ = (𝑙𝑛𝑜𝑟𝑚

2 (𝑤𝑓𝑢𝑠𝑖𝑜𝑛) + 1) ∗ 2     (6), 

where fusion weights normalized by L2 norm are first transformed to be distributed 

between [0, 2], and then stretch to be between [0, 4]. Thirdly, in order normalize fusion 

weights to be distributed between [0,1] and have a sum of 1, we perform softmax  

normalization: 

𝑤𝑓𝑢𝑠𝑖𝑜𝑛,𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑓𝑢𝑠𝑖𝑜𝑛
′ )     (7), 

where 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
′  represent the normalized results from step 2. Through the 3-step 

normalization, each scalar fusion weight is capable of interpreting the quality or 

importance of corresponding sensory features as a weighting parameter. 

4.5 Sensor Failures 

In this section we design sensor failure schemes on training and testing for HAR and 

CAD-60 datasets, trying to compare the robustness of CNN baseline, NetGated and 

proposed ARGate architecture in comprehensive failure schemes. 

Values of sensory input data in two datasets are distributed between [-1, 1]. In order 

to simulate the inputs when sensors corrupt and produce no information but pure noise, 

we consider three types of noise distributions: zero, uniform and Gaussian. More 

specifically, inputs of failing sensors are modeled by generate sensory inputs with values 

of zero, noise following a uniform distribution U(−1,1) and Gaussian distribution 

Ν(0,1). 
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In training and testing sets of both datasets,  
1

3
  data of each set are randomly selected 

as clean, while the rest  
2

3
  are set as corrupted by one or multiple sensors based on one of 

the failing schemes below: 

Fixed failing assignment. Fixed failing assignment simulates the situations when 

certain one or multiple sensors fail permanently. We define 𝑛𝑓𝑐𝑙𝑒𝑎𝑛  as the number of 

clean channels among total number of n sensors. The rest sensors are assumed to have 

permanent failure in both training and testing sets. 

Random failing assignment. Instead of fixing the corrupted sensors in fixed failing 

assignment, random failing assignment randomly select failing sensors to better simulate 

the random sensor failure cases in reality. For each example, we randomly select  𝑛𝑟𝑐𝑙𝑒𝑎𝑛 

channels as clean channels, while the reset n − 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 channels are defined as 

corrupted. Same implementations are performed in both training and testing sets, where 

sensor failure situations may vary example by example. 

Test generalized failing assignment. Since sensor failures may have various cases 

which cannot be all included in training dataset, thus in reality we need to consider cases 

that the neural networks haven’t met before. Therefore we design the sensor failure 

assignment when test sets contain corrupted examples with a different number of 

corrupted sensors comparing with the number of failing examples in training sets. Which 

also means that examples in test set has  higher variations on sensor failures than those 

in training set. 
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5. EVALUATIONS 

 

 

 

5.1 Distribution of Fusion Weight  

 In order to further study the functioning of weight sharing(WS), fusion weight 

regularization(FWR), we examine the fusion weight distribution in NetGated, ARGate-

WS and ARGate-WS-FWR. We picked distribution of fusion weight of total_acc_y in 

HAR dataset under random failing assignment when n𝑟𝑐𝑙𝑒𝑎𝑛=1, which means eight out 

of nine sensory inputs are randomly selected to be corrupted in each example. To better 

demonstrate the effects of proposed architecture, examples are split into two sets: one 

with corrupted total_acc_y, the other set includes examples when inputs on total_acc_y 

are clean. As in Fig. 21, (a), (b) and (c) display the fusion weight distributions of the first 

subset for NetGated, ARGate-WS and ARGate-WS-FWR, respectively. While Fig. 

21(d),(e) and (f) display the distribution of fusion weights for examples in the second 

situation mentioned above. 

 From the aspects of physical meaning of fusion weights, if the model is properly 

trained, the fusion weight values of a clean sensory inputs should be much greater than 

those of failing sensory inputs. In Fig. 21(a), (b) and (c), when total_acc_y is corrupted, 

a peak is shown around a value of 0.38 in the fusion weight distribution of NetGated, 

which is not shown in ARGate-WS and ARGate-WS-FWR.  ARGate-WS significantly 

reduce the most large fusion weight values comparing with NetGated. Moreover, 

comparing with Fig. 21(b) where there are still some fusion weights with values larger 

than 0.38, most fusion weights are constrained within a small range around 0.06 to 0.08 
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in Fig. 21(c), which also demonstrates the effectiveness of fusion weight 

regularization(FWR). For clean examples, one can expect that values of fusion weights 

of  total_acc_y should be larger for the clean examples than the corrupted examples as in 

first subset. 

 

 

Figure 21. Distributions of fusion weights of input examples on channel total_acc_y 

based on NetGated, ARGate-WS and ARGate-WS-FWR, failing scheme is random 

failing sensor assignment, 𝒏𝒓𝒄𝒍𝒆𝒂𝒏 is set as 1. (a), (b) and (c) demonstrate the 

distributions of fusion weights for corrupted sensory inputs on channel total_acc_y 

based on NetGated, ARGate-WS and ARGate-WS-FWR. (d), (e) and (f) are the 

fusion weight distributions of clean sensory inputs on total_acc_y. 

 

 



 

47 

 

 

 

 As shown in Fig. 21(d), the distribution of fusion weights in NetGated has a peak 

around a small value of 0.05, which takes a large proportion of total fusion weights. 

While in Fig. 21(e), the percentage of fusion weights with very low values reduced by 

ARGate-WS, another peak between 0.2 and 0.3 appears. In Fig. 21(f), ARGate-WS-

FWR further reduced the second peak in Fig. 21(e). 

 With this random failing sensor assignment when 𝑛𝑟𝑐𝑙𝑒𝑎𝑛=1, the NetGated, 

ARGate-WS and ARGate-WS-FWR have the prediction accuracies of 62.90%, 65.69% 

and 66.09%, respectively. Combining with distributions of fusion weight in Fig. 20, 

weight sharing(WS) learns a more robust fusion weights than NetGated, and fusion 

weight regularization(FWR) further improves the qualities of fusion weights, hence 

showing the best performance. 

5.2 Results on the HAR Dataset 

Fixed Failing Assignment. Fixed falling assignment proposed in last section is 

adopted here to evaluate the performances of CNN Baseline, NetGated and proposed 

ARGate-WS-FWR. We perform two cases: 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 5 , when 𝑏𝑜𝑑𝑦_𝑡𝑜𝑡𝑎𝑙_𝑎𝑐𝑐_𝑥, 

𝑏𝑜𝑑𝑦_𝑎𝑐𝑐_𝑥 and 𝑏𝑜𝑑𝑦_𝑔𝑦𝑟𝑜_𝑥 are set to be corrupted sensors, and 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 6, when 

𝑏𝑜𝑑𝑦_𝑎𝑐𝑐_𝑧 and 𝑏𝑜𝑑𝑦_𝑔𝑦𝑟𝑜_𝑥 fail. All failing sensors have inputs following uniform 

distribution between -1 and 1. 

Table. 1 shows the performances of three models under two fixed failing 

assignments in HAR dataset. NetGated shows a improvements over Baseline CNN up to 

1.6%, and ARGate-WS-FWR always shows the best performance and can further 

improve the performances of NetGated up to 2.37%. 
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Table 1.  Prediction accuracies under HAR dataset  with fixed failing assignment.  

Number of Clean 

Channels 

Baseline NetGated ARGate-WS-

FWR 

𝒏𝒇𝒄𝒍𝒆𝒂𝒏 = 𝟓 87.68% 89.28% 90.97% 

𝒏𝒇𝒄𝒍𝒆𝒂𝒏 = 𝟔 80.59% 81.94% 84.31% 

 

 

Table 2. Prediction accuracies under HAR dataset with clean and random failing 

sensor assignment. 

Number of  

Clean 

Channels 

Failure 

Model Baseline NetGated 

ARGate-

WS 

ARGate-

WS-FWR 

All Clean - 94.06% 94.50% 94.96% 95.09% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 8 

Zero 93.02% 93.17% 94.66% 94.04% 

Uniform 92.35% 92.20% 92.45% 92.46% 

Gaussian 92.94% 93.28% 94.97% 94.35% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 5 

Zero 88.36% 87.95% 88.63% 88.83% 

Uniform 86.73% 86.80% 88.53% 89.17% 

Gaussian 88.41% 89.04% 89.52% 90.07% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 1 

Zero 71.56% 71.12% 74.38% 74.44% 

Uniform 62.06% 62.90% 65.69% 66.09% 

Gaussian 69.67% 70.54% 71.83% 72.58% 

 

 

Random Failing Assignment. In order to evaluate models under random sensor 

assignments, we create comprehensive sensor failure situations with combinations of the 
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number of clean channels and failure models. We randomly choose clean sensors with 

the number of 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 ∈ {1, 5, 8}.  

 

Three failure models are being considered: corrupted sensory inputs with zero 

values, corrupted inputs following uniform distribution between -1 and 1, and Gaussian 

distribution Ν(0,1). 4 models are implemented and compared: baseline CNN, NetGated, 

proposed ARGate-WS and ARGate-WS-FWR. When all nine sensors are clean, NetGate 

shows an improvement on prediction accuracy of 0.44% over the baseline CNN, while 

improvements over baseline generated by ARGate-WS and ARGate-WS-FWR are 0.9%, 

1.03%, respectively. ARGate-WS-FWR always shows improvements over baseline and 

NetGated, and is generally outperforming ARGate-WS, which demonstrates the 

effectiveness of weight sharing(WS) and fusion weight regularization(FWR). 

Particularly when 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 1, with Uniform failure model, ARGate-WS-FWR 

outperforms the baseline, NetGated, ARGate-WS by 4.03%, 3.19%, and 0.4%, 

respectively. 

Testing Generalized Failing Sensor Assignment. We implement failing sensor 

assignment for model generalization as in Table. 3. In first column, (a, b)(c, d) 

represents that the number of failing channels in training dataset in each example is 

randomly selected from [a, b], while the range of the number of corrupted channels in 

testing set is between [c, d]. With this set-up, we aim to simulate situations when sensor 

failure scenario in test set is more complicated than those in training set, and even 

situations when cases in testing set are completely different from those in training set.  
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Table 3.  Prediction accuracies under HAR dataset with testing generalized failing 

sensor assignment. 

Number of Failing 

Channels 
Baseline NetGated 

ARGate-WS-

FWR 

(1,2)(3,8) 72.91% 72.75% 76.87% 

(1,3)(4,8) 70.98% 70.78% 75.09% 

(1,4)(5,8) 69.38% 69.53% 72.41% 

 

 

 

In Table. 3, when the number of failing channels is (1, 2)(3, 8) and (1, 3)(4, 8), NetGated 

even performs worse than baseline, but ARGate-WS-FWR always shows the best 

performance, generating improvements up to 4.11% and 4.31% over Baseline and 

NetGated, respectively. 

5.3 Results on the CAD-60 Dataset 

  Fixed Failing Sensor Assignment. In CAD-60 dataset, we consider cases when 

𝑛𝑓𝑐𝑙𝑒𝑎𝑛  equals 1 and 4, respectively. When 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 1, RGB HOG, skeletal features,  

Depth HOG and skeletal HOG features on Depth Image are simulated to be corrupted 

sensors. When 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 4, the channel skeletal channel is fixed as corrupted channel. 

As shown in Table. 4, NetGated performs the worst, but ARGate-WS-FWR always 

shows the best performance. 
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Table 4. Prediction accuracies under CAD-60 dataset with fixed failing sensor 

assignment. 

Number of 

Clean Channels 

Baseline NetGated ARGate-WS-

FWR 

𝒏𝒇𝒄𝒍𝒆𝒂𝒏 = 1 60.60% 59.98% 65.09% 

𝒏𝒇𝒄𝒍𝒆𝒂𝒏 = 4 64.15% 61.72% 72.34% 

 

 

 

Random Failing Sensor Assignment. Here the number of randomly failing 

sensors 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 𝜖 {1,2, 3, 4}. We also compare the baseline, NetGated, the proposed 

ARGate-WS, ARGate-WS-FWR. As can be seen in Table. 5, when all input sensors are 

clean, ARGate-WS-FWR improves the performance of baseline, NetGated, ARGate-WS 

by 0.36%, 0.8% and 0.22%, respectively. As for other failure scenarios, ARGate-WS-

FWR generally shows the best performance.  NetGated performs worse than baseline,  

ARGate-WS and ARGate-WS-FWR improve the performance over baseline and 

NetGated in most cases. The largest improvement appears when 𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 4. ARGate-

WS-FWR outperforms the baseline and NetGated by 9.05% and 13.68%, respectively. 
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Table 5. Prediction accuracies under CAD-60 dataset with clean and random 

failing sensor assignment. 

Number 

of Clean 

Channels 

Failure 

Model Baseline NetGated 

ARGate-

WS 

ARGate-

WS-

FWR 

All Clean - 87.01% 86.57% 87.15% 87.37% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 4 

Zero 71.91% 68.87% 75.01% 78.67% 

Uniform 69.76% 65.13% 75.07% 78.81% 

Gaussian 71.55% 73.81% 73.91% 75.74% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 3 

Zero 72.91% 65.48% 71.93% 71.47% 

Uniform 69.38% 67.61% 72.58% 71.96% 

Gaussian 88.41% 89.04% 89.52% 90.07% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 2 

Zero 67.94% 67.98% 65.18% 64.41% 

Uniform 64.98% 62.98% 66.07% 66.59% 

Gaussian 67.41% 66.55% 64.62% 66.96% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 1 

Zero 59.07% 28.18% 57.43% 59.89% 

Uniform 61.42% 57.10% 60.10% 61.35% 

Gaussian 57.44% 57.75% 57.39% 57.55% 

 

 

 

Testing generalized failing sensor assignment. We also generate the simulations 

for failing sensor assignment for model generalization, as shown in Table. 6. 

As shown in Table. 6, NetGated model in most cases underperforms the baseline 

model, while ARGate-WS-FWR always shows the best performance. 
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Table 6. Prediction accuracies under CAD-60 dataset with testing generalized 

failing sensor assignment. 

Number of Failing 

Channels 
Baseline NetGated 

ARGate-WS-

FWR 

(1,4)(2,4) 64.08% 63.71% 67.86% 

(2,3)(2,8) 55.36% 55.16% 58.01% 

(2,4)(1,4) 60.77% 61.05% 62.04% 

 

 

 

The results in Table. 6 shows that proposed ARGate model shows the best 

generalization ability under CAD-60 dataset. 
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6. CONCLUSION 

 

In this work, we first implemented the hardware platform for sensor fusion, the robot 

car, and solved the real-time distance detection problem through PRU. On the algorithm 

design side, we clarified the limitations of traditional fusion methods as well as gating 

architectures. We proposed the more robust ARGate architecture together with two 

regularization techniques. The experimental results on two public dataset show the 

significant improvements on prediction accuracy, especially under sensor failure 

schemes. Our future work will be on the application of ARGate architecture to sensor 

fusion of more complicated sensory inputs. A camera will be implemented on the robot 

car in order to facilitate a more comprehensive sensor fusion network on it. 
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