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ABSTRACT

Clean underwater images have a variety of applications in marine research, autonomous under-

water vehicles and so on. The task of enhancing underwater images is especially difficult because

of the diversity with which they are captured. For example, images captured in deep waters look

different than those captured in shallow waters. Thus it is difficult to obtain clean underwater im-

ages due to lack of a algorithm which handles this diversity. Through our work, we aim to handle

this diversity by learning the scene specific features of the images while discarding the features

denoting the water type and generate clean underwater images through these learned domain ag-

nostic features. We train our model on a dataset synthesized using NYU Depth Dataset V2 [1].

Our model outperforms quantitative metrics of existing methods for almost all water types and also

generalizes well on real world datasets. Performance of underwater images on high level vision

taks like object detection also shows improvement after preprocessing with our model.
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NOMENCLATURE

UIE-DAL Underwater Image Enhancement using Domain-Adversarial
Learning

SSIM Structural Similarity Index

PSNR Peak Signal to Noise Ratio

CNN Convolutional Neural Networks

GAN Generative Adversarial Networks

AOD-Net All-In-One Dehazing Network

NYU New York University

UIEBD Underwater Image Enhancement Benchmark Dataset

PCA Principal Component Analysis
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1. INTRODUCTION

Figure 1.1: Underwater Image Enhancement using Domain-Adversarial Learning (UIE-DAL).
From left to right, input image from [2] and our corresponding UIE-DAL output.

Underwater images have an application in many systems such as underwater robotics, au-

tonomous underwater vehicles, marine research and so on. However, the quality of the images

acquired for such applications is mostly degraded due to various factors. One of the major factors

for this degradation is the wavelength dependent light attenuation over the depth of the object in

the scene. For example, red light is absorbed at a higher rate in water than blue or a green light

as shown in figures 1.2 and 1.3. Hence we see a blueish or a greenish tint in an underwater scene.

Another factor causing degradation is the scattered light due to the presence of small particles in

water which adds a homogeneous background noise to the image. This can be seen in figure 1.4.

Apart from these factors, one major reason for a lack of a good underwater image enhancement

solution is the diversity of underwater image scenes. We can see this diversity in images captured

in different types of waters. For example, underwater scenes in deep waters look different than

those in shallow waters or scenes captured in clear water versus those captured in muddy water.

This can be seen in figure 1.5. Such diversity makes it harder to provide a single solution or train

a single model for underwater image enhancement. [7] propose one solution by training different
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models for different underwater images. But models trained on single water type don’t generalize

well and there is no limit to the number of distinct water types to train a model for each of them.

Thus these images fail at many vision tasks such as object detection, classification, segmentation

and so on which causes a need to process these underwater images and enhance their quality.

Figure 1.2: Absorption of different colors at different depths in water. From left to right - before
diving, diving at a depth of 5 m and diving at a depth of 15 m. Reprinted from [3].

Figure 1.3: Different wavelengths of light are attenuated at different rates in water. The blue color
travels the longest in the water due to its shortest wavelength. Reprinted from [3].

Another challenge in the underwater image enhancement problem is the lack of real world

datasets with clean images to train models. People have synthesized underwater image datasets
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Figure 1.4: Natural light enters from air to an underwater scene point x. The light reflected prop-
agates distance d(x) to the camera. The radiance perceived by the camera is the sum of two com-
ponents: the background light formed by multiscattering and the direct transmission of reflected
light. Reprinted from [3].

Figure 1.5: Diversity of underwater scenes. Images are captured in (from left to right) coastal
water, deep oceanic water and muddy water. Reprinted from [4], [5] and [6] respectively.

in the past to address this challenge. [7] synthesize such a dataset with clean images pairs for 10

types of water defined by [8]. Samples from such a dataset can be seen in figure 1.6. We use their

technique to synthesize a similar dataset to train our model. The task of enhancing underwater

images is therefore difficult and has its own unique challenges.

Through this thesis, we propose a solution which would generalize the underwater image en-

hancement to a certain level. We train a single model over a dataset of multiple underwater image

types to generate clean underwater scenes for them. We do so by learning water type agnostic

3



Figure 1.6: Underwater image dataset synthesized in [7].

features of underwater scenes using adversarial training to generate the clean underwater scenes.
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2. BACKGROUND AND RELATED WORK

Previous work attempting to solve the underwater image enhancement problem was mainly

done using physics-based approaches. [9] tried to solve this problem by explicitly modeling the

refraction in water. [10] incorporates the inherent properties of the underwater medium such as

attenuation, scattering, and the volume scattering function in order to simulate image formation.

[11] define an underwater image formation model which is given as

Uλ(x) = Iλ(x)Tλ(x) +Bλ(1− Tλ(x)) (2.1)

where λ is the wavelength of the light reaching the camera, Uλ(x) is the underwater image,

Iλ(x) is the clean image, Tλ(x) is the fraction of the light reaching the camera after reflecting from

point x in the scene and Bλ is the homogeneous background light of the scene. Tλ(x) is further

given as

Tλ(x) = 10−βλd(x) =
Eλ(x, d(x))

Eλ(x, 0)
= Nλ(d(x)) (2.2)

where βλ is the wavelength dependent medium attenuation coefficient, Eλ(x, d(x)) is the en-

ergy of a light beam from point x after it passes through a medium, Nλ(d(x)) is the normalized

residual energy ratio for every unit of depth covered.

The above physical model is similar to that of image dehazing, except that the medium attenua-

tion coefficient is wavelength dependent in this case where as in dehazing it does not depend on the

light wavelengths. Hence, image dehazing techniques perform poorly for underwater images. We

saw this trend empirically, when we trained AOD-Net [12] over underwater images. This model

has been used by many approaches like [7], [13] to solve the underwater image enhancement prob-

lem. [7] use the above model to generate a synthetic dataset of 10 water types which we use in

our work. The details of the synthetic dataset generation are given in section 3.1.1. [13] tries to

improve on the above model by computing attenuation coefficients in the 3D RGB space.

In recent years, deep learning [14] techniques like Convolutional Neural Networks (CNN)
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[15] and Generative Adversarial Networks (GAN) [16] have been very effective at solving vision

problems. Naturally, these techniques have then been used for underwater image enhancement.

[17] trains a GAN to learn the mapping from underwater to clean images. [7] train multiple CNN

models, each for different water type in their dataset, to get enhanced images. However, these

methods fail to provide a single solution which handles the diversity of underwater images along

with generating their clean versions.
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3. METHODOLOGY

3.1 Datasets

Building a real world dataset of a degraded underwater image and its clean version is difficult as

it is hard to obtain them. Hence, previous method have tried to synthesize underwater images from

their clean versions. We train our model on such a synthesized dataset built using the technique

mentioned in [7]. In order to see the applicability of our model, we then test our model on a real

world dataset.

3.1.1 Synthetic Underwater Images

Figure 3.1: Underwater images synthesized using [7].

We use the NYU-v2 RGB-D dataset [1] to provide us with clean images as it also contains the

depth information required to generate the corresponding synthetic images. The synthetic images

are generated using the image formation model described before and given by equations 2.1 and

2.2. We generate 6 images of different water types for each image by using different values of

Nλ for the respective color channels as given in table 3.1. We combine similar image types 1 and

3, I and IA and IB, II and III to reduce the proximity between different water types. This makes

the nuisance classifier training easy as it is able to distinguish between different water types more

easily. The synthesized 6 types of images for a given image can be seen in figure 3.1. We select

the first 1000 of the NYU depth dataset which contains 1449 images. For each image, and for each
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of its 6 water types, we augment the dataset by generating 6 images with random Bλ and d(x)

parameters. Thus the total size for this dataset is 1000x6x6, i.e. 36,000 images.

Types I IA IB II III 1 3 5 7 9
blue 0.982 0.975 0.968 0.94 0.89 0.875 0.8 0.67 0.5 0.29
green 0.961 0.955 0.95 0.925 0.885 0.885 0.82 0.73 0.61 0.46
red 0.805 0.804 0.83 0.8 0.75 0.75 0.71 0.67 0.62 0.55

Table 3.1: Nλ values to generate 10 types of water images. Reprinted from [7].

3.1.2 Real-world Underwater Images

We use Underwater Image Enhancement Benchmark Dataset built by [2] as our real world

underwater image dataset. The dataset consists of 890 underwater images but does not have corre-

sponding ground truth images.

3.2 Model architecture

3.2.1 Overview

One of our main goals, apart from generating a clean underwater image, is to train a single

model for multiple water types. [7] do so by training a different model for each water type. To

train a single model, we first try to get a domain agnostic encoding for the given input water type

image. That means, for the same underwater scene, captured in different water types, the latent

vector Z extracted from an encoder E for that scene should be the same for all water types. That

way the decoder or the generator G is able to reconstruct a clean image of the scene from only

the scene specific features while discarding the domain specific features. Both E and G are neural

networks in our model.

To do so, we introduce a novel application of a nuisance classifier D along with E and G.

The nuisance classifier is a neural network which aims to classify the water type of the given

input image from its extracted latent vector Z from the encoder. However, we also introduce

8



an adversarial loss [16] over the encoder using the nuisance classifier. Our formulation of the

adversarial loss forces the encoder to generate Z such that the nuisance classifier outputs a uniform

distribution over the possible water types. Thus, the adversarial loss combined with the nuisance

loss forces the encoding to be agnostic of the input water type. The full architecture can be seen in

figure 3.2.

Figure 3.2: Our model architecture.

3.2.2 Losses

Our model consists of three losses, namely, the reconstruction loss LR, the nuisance loss LN

and the adversarial loss LA. These losses force the model to generate a clean image while dis-

carding the features denoting the water type. Detailed information about all the three losses can be

found below.
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3.2.2.1 Reconstruction loss

We compute a reconstruction loss LR, which is the mean squared error between the image

generated by G and the clean image label Y for the given input image X . This reconstruction

loss is backpropagated to update both G and E. The reconstruction loss is given by the following

equation

LR(X, Y ) =
1

N
.

N∑
i=1

|G(Z)i − Yi|2 (3.1)

where Z = E(X) and N is the number of pixels.

3.2.2.2 Nuisance loss

We compute a nuisance loss LN , which is the cross entropy between the predicted water type

from D, for the latent vector Z of the input image X , and the target water type C. This nuisance

loss is backpropagated to only to update D. The nuisance loss is given as

LN(X,C) = −
M∑
c=1

yc logD(Z)c (3.2)

where yc = 1 if c = C else yc = 0, Z = E(X) and M is the number of classes.

3.2.2.3 Adversarial loss

We compute an adversarial loss [16] LA, which is the cross entropy with uniform distribution

of the predicted distribution of water types from D, for the latent vector Z of the input image X .

This adversarial loss is backpropagated to only to update E. The adversarial loss is given as

LA(X) = − 1

M

M∑
c=1

logD(Z)c (3.3)

where Z = E(X) and M is the number of classes.

Our training strategy involves jointly training all the modules by using the above losses. At

each iteration, we first backpropagate the reconstruction loss, then backpropagate the adversarial
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loss and finally backpropagate the nuisance loss.

3.2.3 Training procedure

We train our model by following a procedure which prioritizes the adversarial training of the

encoder while also makes sure that the nuisance classifier is strong enough. Keeping the nuisance

classifier strong is critical for good adversarial training of the encoder. Algorithm 1 shows the

training procedure we follow.

Algorithm 1 Training procedure of our model
Given an encoder E, decoder G and nuisance classifier D

Compute valG ← Cross validation SSIM score for G

while valG < thresholdG do
Update E and G using LR

end

for n training epochs do

if valG < thresholdG then
Update E using LR and LA, G using LR

else if valD < thresholdD then
Update D using LN

else
Update E using LR and LA, G using LR

end

Compute valG, valD ← Cross validation SSIM score for G, Cross validation accuracy for D

end

3.2.4 Experimental details

We train our model on the synthetic dataset generated by following technique in section 3.1.1.

The specifications of the machine on which the model was trained are - Intel i7 6700 HQ processor,
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8 GB RAM, NVIDIA GeForce GTX 960M 4GB graphics card.

We use U-Net [18] as our encoder-decoder architecture. U-Net is useful as the skip connections

between encoder and decoder provide local and global information for decoder to generate clean

images. Also, it is a fully convolutional neural network which means it can handle images of

varying sizes. The U-Net architecture can be seen in figure 3.3. Our nuisance classifier D is a

convolutional neural network which predicts probability of 6 classes. Its architecture can be seen

in figure 3.4.

Figure 3.3: U-Net architecture.
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Figure 3.4: Nuisance classifier architecture.
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4. RESULTS

4.1 Qualitative results on Underwater NYU Depth Dataset

We use the last 3000 images as the test set from our synthesized dataset of 36,000 images.

Figure 4.1 shows some visual results of our model on the test set of Underwater NYU Depth

Dataset which we synthesized in section 3.1.1. We can visually see that results are pretty good and

that the output images recover even the minute details from the degraded input images.

Figure 4.1: Results of our model on underwater NYU Depth Dataset.

4.2 Quantitative results for 10 Jerlov water types

We also compute quantitative evaluation metrics like SSIM [19] and PSNR for the generated

images of different Jerlov water types [8] with respect to their clean counterparts. As seen in table

4.1, our model outperforms other methods for almost all water types.

4.3 Qualitative results on a real world dataset

We also test our model on a real world dataset to see the transferabiltiy of our model to different

datasets. Figure 4.2 shows some visual results of our model on the Underwater Image Enhance-
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SSIM

Water Type RAW RED UDCP ODM UIBLA UWCNN UIE-DAL
1 0.7065 0.7406 0.7629 0.724 0.6957 0.8558 0.9313
3 0.5788 0.6639 0.6614 0.6765 0.5765 0.7951
5 0.4219 0.5934 0.4269 0.6441 0.4748 0.7266 0.9364
7 0.2797 0.5089 0.2628 0.5632 0.3052 0.607 0.9353
9 0.1794 0.3192 0.1624 0.4178 0.2202 0.492 0.925
I 0.8621 0.8816 0.8264 0.8172 0.7449 0.9376 0.9129
II 0.8716 0.8837 0.8387 0.8251 0.8017 0.9236 0.9235
III 0.7526 0.7911 0.7587 0.7546 0.7655 0.8795

PSNR

1 15.535 15.596 15.757 16.085 15.079 21.79 28.4488
3 14.688 12.789 14.474 14.282 13.442 20.251
5 12.142 11.123 10.862 14.123 12.611 17.517 28.6697
7 10.171 9.991 9.467 12.266 10.753 14.219 28.5793
9 9.502 11.62 9.317 9.302 10.09 13.232 27.6551
I 17.356 19.545 18.816 18.095 17.488 25.927 27.1015
II 20.595 20.791 17.204 17.61 18.064 24.817 28.1602
III 16.556 16.69 14.924 16.71 17.1 22.633

Table 4.1: Comparison of our model (UIE-DAL) with SSIM, PSNR values of previous methods.
Higher values mean better results. Bold values show the best performer. Values of the previous
methods are reprinted from [7].

ment Benchmark Dataset (UIEBD) built by [2]. Here we see that the model performs well and is

able to generalize on image distributions different than that of the training images. Handling such

diversity is one of our main goals apart from generating clean underwater images.

4.4 Comparison with U-Net without adversarial loss

We compare our model with vanilla U-Net without the adversarial loss. To see if we are indeed

learning the domain agnostic features, we plot first two principal components of the encoding Z for

both the vanilla U-Net and U-Net with the adversarial loss. We color the points once by the water

types and once by the image content for the same set of images. The plotted PCA components can

be seen in figures 4.3 and 4.4 respectively.

It can be seen from figures 4.3 and 4.4 that we are indeed learning domain agnostic features

using adversarial loss. The encoding Z is clustered by the water types in vanilla U-Net, whereas it

is clustered by the image content in U-Net with adversarial loss.
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Figure 4.2: Results of our model on the real world UIEBD Dataset.

Figure 4.3: Visualizing first two PCA components of the encoding Z learnt by U-Net without
adversarial loss. (a) Colors points with same water type, (b) Colors points with same content

We also visually and quantitatively compare both the models. Figure 4.5 shows us the visual

results of the models on both the synthetic Underwater NYU Depth Dataset and real world UIEBD

Dataset. Table 4.2 shows us the quantitative comparison.

We can see from both Figure 4.5 and Table 4.2 that U-Net with adversarial loss outperforms

vanilla U-Net. U-Net with adversarial loss is able to learn domain agnostic features and hence also

16



Figure 4.4: Visualizing first two PCA components of the encoding Z learnt by U-Net with ad-
versarial loss (UIE-DAL). (a) Colors points with same water type, (b) Colors points with same
content.

Figure 4.5: Comparison of U-Net with and without adversarial loss. Figures (a), (c) show results
on synthetic data, where as (b), (d) show results on real world data

generates images with rich color quality than vanilla U-Net.

4.5 Object detection on enhanced images

We run object detection experiments on the images generated by our model to see if they can

help in different underwater vision tasks. We run YOLO v3 [20] object detector on the degraded
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SSIM

Water Type U-Net UIE-DAL (Ours)
1

0.8691 0.9313
3
5 0.8733 0.9364
7 0.8687 0.9353
9 0.8614 0.925
I 0.8385 0.9129
II

0.8385 0.9235
III

PSNR

1
21.6283 28.4488

3
5 22.6119 28.6697
7 22.5754 28.5793
9 22.5263 27.6551
I 22.3236 27.1015
II

21.8279 28.1602
III

Table 4.2: Our comparison with SSIM, PSNR values of U-Net without adversarial loss. Higher
values mean better results. Bold values show the best performer.

and underwater images. We observe that object detection is better on the images generated by our

model compared to the degraded underwater images of the synthesized Underwater NYU Depth

Dataset. However, we get mixed results when we run the object detector on the real world UIEBD

Dataset. Figure 4.6 shows the results of YOLO v3.
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Figure 4.6: Object detection results on (a) Synthesized underwater NYU Depth Dataset and (b)
UIEBD real world dataset. Results were good for the synthetic dataset where as the real world
dataset had mixed results.
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5. FUTURE WORK

We also plan to run our model on different datasets like Marine Hydrodynamics Laboratory

(MHL) and Jamaica datasets collected by [21] and compute quantitative metrics like quantitative

evaluation of color restoration using the dataset and method provided by [22] for them.

Some generated images from the real world dataset have reddish tones on them. We plan to

eliminate them by doing a GAN-like training by adding a discriminator.

We also plan on experimenting with different model architectures, for example, using SegNet

[18] for the encoder-generator module.
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6. CONCLUSION

Through this thesis we were able to provide a novel solution for underwater image enhancement

which outperforms a lot of the previous methods both qualitatively and quantitatively. The goal of

the thesis was to provide a generalized solution which could handle the diversity of the underwater

images as well as generating quality clean images for them. Our model was successful in doing so

by learning domain agnostic features of multiple water types and then generating a clean version

of the image from those features. We also showed that the model was able to generalize well on

the unseen real world data. Also, object detection results showed that preprocessing underwater

images with our model before high level vision tasks improves the task performance.
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