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ABSTRACT 

Following the turn of the millennium, the role of asymmetric covalent 

organocatalysis has developed into a scalable, synthetic paradigm galvanizing the 

synthetic community toward utilization of these methods for more practical, metal–free 

syntheses of natural products. A myriad of reports on asymmetric organocatalytic modes 

of substrate activation relying on small, exclusively organic molecules are delineating 

what has now become the multifaceted field of organocatalysis paving the way to a vast 

array of reaction types. 

α,β–Unsaturated acylammonium salts, generated in situ from commodity acid 

chlorides and a chiral isothiourea organocatalyst, comprise a new and versatile family of 

chiral dienophiles for the venerable Diels–Alder (DA) cycloaddition. Their reactivity is 

unveiled through a highly diastereo– and enantioselective Diels–Alder/lactonization 

organocascade that generates cis– and trans–fused bicyclic γ– and δ–lactones bearing up 

to five contiguous stereocenters. Moreover, the first examples of DA–initiated, 

stereodivergent organocascades are described delivering complex oxa–bridged trans–

fused tricyclic γ–lactams found in bioactive compounds. An evaluation of various 

experimental and computational parameters was performed in order to derive a more 

detailed understanding of what renders this process selective. The utility of this 

methodology is showcased through a concise approach to the core structures of 

glaciolide, isatisine A and nonpeptidyl ghrelin–receptor inverse agonists, and formal 

syntheses of indoprofen, dihydrocompactin, fraxinellone, trisporic acids, and trisporols. 
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CHAPTER I 

INTRODUCTION: THE EVER–EXPANDING ROLE OF ASYMMETRIC 

COVALENT ORGANOCATALYSIS IN SCALABLE,                              

NATURAL PRODUCT SYNTHESIS* 

 

1.1 A Brief Historical Perspective 

“I will therefore call it the ‘catalytic force’ and I will call ‘catalysis’ the 

decomposition of bodies by this force, in the same way that we call by ‘analysis’ the 

decomposition of bodies by chemical affinity.” 

These famous observations by the Swedish chemist Jöns Jakob Berzelius of the 

University of Stockholm in 1835 sparked a new era of catalysis [1a]. The first 

organocatalytic transformation was reported in 1860 by Justus von Liebig in conversion 

of cyanogen to oxamide in the presence of aqueous acetaldehyde [1b]. The historic roots 

of the first asymmetric organocatalytic reaction date back to 1912, when two German 

chemists Bredig and Fiske reported that addition of hydrogen cyanide to benzaldehyde 

catalyzed by the cinchona alkaloids yields cyanohydrins in ~10% ee [1c]. The use of 

amino acids as catalysts for aldol and condensation reactions of acetaldehyde was first 

documented in 1931 by Fischer and Marschall [1d]. In 1936, Kuhn1e found that 

ammonium carboxylates of optically active amines effectively catalyze the aldol 

                                                

*Reprinted with permission from “The Ever–Expanding Role of Asymmetric Covalent 
Organocatalysis in Scalable, Natural Product Synthesis” by M. E. Abbasov and D. 
Romo, 2014. Nat. Prod. Rep., 31, 1318–1327, Copyright [2014] by Royal Society of 
Chemistry. 
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reaction. The analogies in the catalytic action of enzymes and organic substances were 

recognized as early as 1928 by the German chemist Wolfgang Langenbeck [1f]. In 1949, 

Langenbeck revealed the conceptual difference between covalent and non–covalent 

catalysis, and coined the term “organic catalysis” [1g] Pracejus reported the first 

enantioselective synthesis of esters in 1960 from phenyl methyl ketene and methanol 

using 1 mol% O–acetylquinine as catalyst in a quite remarkable 93% yield and 74% ee 

[1h,i]. In 1971, the discovery of L–proline as catalyst for the intramolecular asymmetric 

aldol cyclodehydration was exemplified in the Hajos–Parrish–Eder–Sauer–Wiechert 

reaction [1j,k]. Surprisingly, the viability of small organic molecules as organocatalysts 

in asymmetric reactions remained subcritical and over the next few decades, the area of 

asymmetric organocatalysis was heavily overlooked with a paucity of isolated reports 

[2]. However in 2000, two pioneering reports by List, Lerner, Barbas [3] and MacMillan 

[4] reignited the modern age of organocatalysis triggering the “gold rush” in the last 

decade. MacMillan coined the term “organocatalysis” which is defined as the 

acceleration of a chemical transformation through addition of a substoichiometric 

amount of an organic compound which does not contain a metal atom [4]. The 

operational simplicity, robustness, low–cost, availability, chemical efficiency and non–

toxicity render organocatalysis advantageous over metal and enzyme catalysis. 

Organocatalysis remains a vital pillar and popular strand of contemporary asymmetric 

catalysis research and is now well established in academia and industrial sectors. A 

myriad of excellent reviews have permeated the chemical community since 2010 in this 

highly topical field covering many discrete areas of organocatalysis [5]. Regrettably, it is 
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impossible to report every contribution to this rapidly growing field; therefore, a cross–

section of the most recent developments in asymmetric covalent organocatalysis is 

described in this thesis to provide a flavour of the exciting advances in this area and 

specifically their growing impact in scalable natural product synthesis. 

 

1.2 Classification of Asymmetric Modes of Activation in Organocatalysis 

The classification of asymmetric modes of activation in organocatalytic reactions 

is challenging. A general distinction can be made between organocatalytic processes that 

form covalent intermediates between catalyst and substrate and processes that rely on 

non-covalent interactions (Figure 1.1). 

 

Figure 1.1 Classification of asymmetric modes of activation in organocatalysis [64]. 
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Further differentiation within each category can be made on the basis of the mode of 

substrate activation: highest occupied molecular orbital (HOMO) activation (e.g., 

enamine, N–heterocyclic carbene catalysis, etc.) or lowest unoccupied molecular orbital 

(LUMO) activation (e.g., iminium, acylammonium, etc.). It should be noted that a single 

organocatalyst can promote reactions by several modes of activation and thus can be 

classified a multifunctional catalyst [6]. 

An iminium activation mode exploits the reversible condensation of a chiral 

secondary or primary amine catalyst (e.g., L–proline, MacMillan's imidazolidinones, 

cinchona-derived primary amines, etc.) with an α,β–unsaturated aldehyde or ketone to 

form an iminium ion intermediate. This system effectively lowers the LUMO energy of 

the π–system and thus enhances its reactivity toward nucleophiles. This strategy has 

been successfully employed in various types of asymmetric transformations [7]. 

In the case of saturated carbonyl systems, the LUMO energy lowering induced 

by the formation of an iminium ion intermediate increases the acidity of the α–proton, 

enabling facile deprotonation and leads to the generation of the enamine. The resultant 

enolate, with an effectively elevated HOMO energy, augments its reactivity toward 

electrophiles. This activation mode has led to the development of a vast number of 

asymmetric α–functionalizations of aldehydes and ketones with carbon– and 

heteroatom–based electrophiles [8]. This concept has been extended to unsaturated 

carbonyl systems resulting in the discovery of dienamine [9], trienamine [10], and more 

recently tetraenamine [11] activation modes. 



 

 5 

In phosphine catalysis, a conjugate addition to an activated carbon–carbon 

double or triple bond by a chiral tertiary phosphine organocatalyst forms a β–

phosphonium enolate, β–phosphonium dienolate, or vinyl phosphonium ylide as reactive 

intermediates. These zwitterionic species react with a broad array of nucleophiles 

(LUMO activation mode) and electrophiles (HOMO activation mode) to generate 

diverse carbo– and heterocyclic molecular architectures [12]. 

Acylammonium catalysis is initiated by the nucleophilic attack of a chiral tertiary 

amine catalyst with an activated carboxylic acid derivative (e.g., acid halide, anhydride) 

to form an acylammonium ion intermediate. This activation mode effectively lowers the 

LUMO energy of the carbonyl system thus enhancing its reactivity toward nucleophiles. 

Several acyl–transfer organocatalysts have been developed for asymmetric 

acylammonium–catalyzed transformations [13], including trans–esterifications, kinetic 

resolutions, desymmetrizations, and Steglich rearrangements. Organocatalysts utilized 

include Fu’s chiral ferrocenyl PPY catalyst [14], Vedejs’ TADMAP catalyst [15], 

Okamoto’s annulated benzothiazolylidenamine catalysts [16] and Birman’s 

dihydroimidazole CF3–PIP [17] and isothiourea–based BTM [18] and HBTM [19] 

catalysts. Furthermore, this activation concept has recently been extended to unsaturated 

carbonyl systems prompting a diverse array of previously undisclosed complexity–

generating organocascades [20]. 

In ammonium enolate catalysis, the nucleophilic enolate equivalent (HOMO 

activation mode) is generated either by addition of a chiral tertiary amine catalyst to a 

ketene or via direct α–deprotonation of an acylammonium species. This activation mode 
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has led to the development of numerous asymmetric α–functionalizations with carbon– 

and heteroatom–based electrophiles [21a] and prompted a spate of elegant, scalable 

syntheses [21b,c]. Further exploration of this activation concept unveiled yet another 

reactive intermediate, zwitterionic ammonium dienolate, generated in situ by a direct γ–

deprotonation of unsaturated acylammonium ions enabling a variety of asymmetric 

annulations [22]. 

In N–heterocyclic carbene (NHC) catalysis, the nucleophilic attack of the 

carbene catalyst (e.g., thiazolium, triazolium salts) on the carbonyl carbon (typically 

aldehydes) forms the initial adduct that leads to the Breslow intermediate through an 

external base deprotonation of the carbene–aldehyde adduct. This acyl anion equivalent 

can then react with different electrophiles, including another carbonyl compound as in 

the benzoin reaction, with Michael acceptors in the Stetter reaction, with activated or 

unactivated double and triple bonds without electron–withdrawing groups, or with alkyl 

halides. This unique mode of HOMO activation takes advantage of the inversion of 

classical reactivity (umpolung) and offers a broad range of unconventional 

transformations [23]. 

 

1.3  Recent Developments in the Iminium/Enamine Catalysis: Synopses of 
Examples Including Formal Syntheses 

 
Jørgensen [9a] recently introduced a new dual activation mode of α,β–

unsaturated aldehydes 1, via dienamine formation, and activation of nitro–olefins 2, via 

hydrogen–bonding, affording fully substituted cyclobutanes 4 by an organocatalytic 
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formal [2 + 2]–cycloaddition catalyzed by a computationally designed catalyst 3 (Figure 

1.2a). In other work, Jørgensen [10c] utilized trienamine–activated dienes, generated in 

situ from α,β,γ,δ–dienyl aldehydes 5 and chiral aminocatalyst 7, in thio–Diels–Alder 

reactions with thiocarbonyls 6 to access highly enantioenriched dihydrothiopyrans 8 

(Figure 1.2b). 

 

Figure 1.2 Recent examples of asymmetric iminium/enamine catalysis [64]. 
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In 2012, Maruoka and co–workers [24] developed the first diastereo– and 

enantioselective direct Mannich reaction (Figure 1.2c) of N–protected α–

aminoacetaldehydes 9 with N–protected imines 10 catalyzed by L–proline (11). This 

organocatalytic process delivers optically active vicinal diamines 12, motifs present in a 

number of natural products and useful chiral catalysts. More recently, List [25] disclosed 

the first amino– catalyzed α–alkylation of racemic α–branched aldehydes 13 with 

benzyl bromide (14) as alkylating agent via enamine catalysis (Figure 1.2d). Using a 

sterically demanding proline–derived catalyst 15, enantiomerically enriched α–alkylated 

aldehydes with quaternary stereogenic centers were obtained in good yields and high 

enantioselectivities. 

Maruoka successfully demonstrated the synthetic utility of the developed 

Mannich reaction in the formal synthesis of (–)-agelastatin A, a potent antitumor marine 

alkaloid (Figure 1.3). 

 

Figure 1.3 Application of diamine 12 towards the formal synthesis of (–)-agelastatin A 
[64]. 
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Mannich product, diamine 12, was converted to diene 17 in 3 steps. Treatment of 17 

with Hoveyda–Grubbs second–generation catalyst afforded cyclopentene 18, which was 

converted in one pot to cyclopentanone 19, an intermediate previously used in the 

synthesis of (–)-agelastatin A. 

 

1.4 MacMillan’s Total Synthesis of (–)-Vincorine 

In 2013, Horning and MacMillan [26a] reported a concise, enantioselective total 

synthesis of (–)-vincorine, an akuammiline alkaloid containing a tetracyclic cage–like 

core with a strained seven–membered azepanyl ring system. Various members of this 

alkaloid family are known to exhibit anti–cancer activity and glycine receptor 

antagonism. A prominent feature of the synthesis is a scalable, organocatalytic Diels–

Alder/iminium cyclization cascade, the general synthetic strategy for representative 

polycyclic indole alkaloids [26b], initiated by a highly enantioselective endo Diels–

Alder reaction between diene 20 and in situ generated α,β–unsaturated iminium 

dienophile 24 delivering cycloadduct 25 (Figure 1.4). 
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Figure 1.4 MacMillan’s total synthesis of (–)-vincorine [64]. 
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Subsequent, Brønsted acid–mediated conversion of 25 to iminium 26 prompted 

intramolecular 5–exo cyclization by the pendant carbamate group to generate the 

tetracyclic adduct 23, on gram scale (>1 g), bearing three of four stereocenters found in 

vincorine including the all–carbon quaternary center. Final seven–membered azepanyl 

ring annulation was accomplished by 7–exo–dig radical cyclization initiated with an 

unusual acyl telluride precursor 27 under thermal conditions providing allene 29. The 

authors postulate C–Te bond homolysis and loss of carbon monoxide to generate alkyl 

radical 28. Selective terminal hydrogenation from the less hindered face of the allene 

functionality furnished (–)-vincorine as a single olefin isomer in nine total steps and 9% 

overall yield. 

 

1.5 Recent Developments in N–Heterocyclic Carbene Catalysis: Synopses of 
Examples Including Formal Syntheses 

 
In 2012, Bode [27a] disclosed a new class of NHC–catalyzed annulations of 

trisubstituted α,β–unsaturated aldehydes 30 and cyclic N–sulfonylimines 31 (Figure 

1.5a) operating through the catalytic generation of α,β–unsaturated acyl azoliums in the 

presence of catalyst 32 and oxidant 33. Scheidt and co–workers [27b] developed a 

highly selective synthesis of γ–butyrolactones through a formal [3 + 2] annulation 

(Figure 1.5b) of α,β–unsaturated aldehydes 35 and acyl phosphonates 36 catalyzed by a 

computationally designed, C1–symmetric biaryl-saturated imidazolium catalysts 37. 

Rovis27c recently developed a novel chiral N–heterocyclic carbene catalyst 41 that favors 

a homoenolate pathway over the established acyl anion (Stetter) pathway. 
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Figure 1.5 Recent examples of asymmetric N–heterocyclic carbene catalysis [64]. 
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This enabled a novel coupling between α,β–unsaturated aldehydes 39 and nitroalkenes 

40 to access a diverse array of syn–δ–nitroesters 42 (Figure 1.5c). More recently, Chi 

and co–workers [27d] disclosed the first N–heterocyclic carbene catalyzed [3 + 4] 

cycloaddition of α,β–unsaturated aldehydes 43 and azomethine imines 44 to generate 

dinitrogen–fused seven–membered heterocycles 46 (Figure 1.5d). In this process, NHC 

catalyst 45 also enables a highly effective kinetic resolution of racemic azomethine 

imines 44. 

Activation of the otherwise inert β–sp3 carbon of saturated esters as nucleophiles 

has recently been achieved by Chi and co–workers [28] utilizing NHC catalyst 49. This 

methodology delivers a diverse set of optically active substrates including 

cyclopentenes, γ–butyrolactones and γ–lactams (e.g., 50, Figure 1.6). Chi then 

established the utility of this methodology employing saturated ester 47 and hydrazone 

48 to provide a concise, formal asymmetric synthesis of (S)–rolipram, a potent 

phosphodiesterase inhibitor (Figure 1.6). The synthesis of 51, a key intermediate 

previously employed in the synthesis of (S)–rolipram, was achieved in 5 steps from γ–

lactam 50. 



 

 14 

 

Figure 1.6 Application of γ–lactam 50 towards the formal synthesis of (S)–rolipram 
[64]. 
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Figure 1.7 Scheidt’s total syntheses of (–)-bakkenolides I, J, and S [64]. 
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intriguing retro–aldol/aldol sequence (via formation of transient aldehyde 57) to afford 

the desired diastereomer, (–)-bakkenolide S. The authors hypothesized that this 

thermodynamically favoured process is driven by hydrogen bonding between the C9 

secondary alcohol and the γ–spirobutyrolactone carbonyl oxygen. Finally, conversion to 

(–)-bakkenolides I and J was accomplished by direct acylation of (–)-bakkenolide S with 

isobutyryl and isovaleryl chlorides, respectively. These natural products possess a wide 

spectrum of biological activity including antifeedant effects, platelet aggregation 

inhibition, and potent inhibitory activity against a variety of tumor cell lines. 

 

1.7 Recent Developments in Phosphine Catalysis: Synopses of Examples 
Including Formal Syntheses 

 
The Lu group [30a] broadened the potential of chiral peptide–based phosphines 

60 for catalysis of allene–alkylimine [3 + 2] annulations (Figure 1.8a) leading to 

synthetically valuable optically pure five–membered N–heterocycles (e.g., 61). Recently, 

Barbas [30b] utilized C2–symmetric phospholane 64 to promote an expeditious 

assembly of complex polysubstituted spirocyclopentenebenzofuranones 65 (Figure 1.8b) 

consisting of three contiguous stereocenters, including an all–carbon quaternary carbon. 

In their recent studies, Fu and co–workers [30c] reported the first examples of intra– and 

intermolecular γ–umpolung additions of nitrogen nucleophiles to allenoates and 

alkynoates (Figure 1.8c) with spirophosphepine 67 found to be the optimal catalyst. 

More recently, Lu [30d] disclosed the first asymmetric phosphine–catalyzed Michael 
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addition (Figure 1.8d) mediated by a chiral phosphine 71 that was presumed to promote 

additional catalyst–substrate interactions through hydrogen bonding. 

 

Figure 1.8 Recent examples of asymmetric phosphine catalysis [64]. 
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Lu and co–workers demonstrated the utility of the asymmetric allene–alkylimine 

[3 + 2] methodology by a concise formal asymmetric synthesis of (+)-

trachelanthamidine (Figure 1.9). 

 

 

Figure 1.9 Application of dihydropyrroline 61 towards the formal synthesis of (+)-
trachelanthamidine [64]. 
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of the pyrroline (+)-77 to the cyclization precursor 78, AgOTf–mediated intramolecular 

spiroalkylation delivered the desired indolenine 79.  

 

Figure 1.10 Kwon’s total synthesis of (+)-ibophyllidine [64]. 
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desired pentacyclic framework 80 in 80% yield over two steps. Overall, the first 

enantioselective synthesis of (+)-ibophyllidine was accomplished in 15 steps and 13% 

overall yield through enantioselective phosphine-based catalysis. 

 

1.9 Recent Developments in Acylammonium/Ammonium Enolate Catalysis: 
Synopses of Examples Including Formal Syntheses 

 
The Smith [22b] group recently utilized in situ activated β,γ–unsaturated 

alkenoic acids 81 through mixed anhydride formation, as ammonium dienolate 

precursors in an enantioselective formal [2 + 2] cycloaddition with N–tosyl aldimines 82 

promoted by a chiral isothiourea HBTM–2.1 (83) catalyst (Figure 1.11a). Building on 

early work by Fu, who demonstrated the potential of acid fluorides and unsaturated 

acylammonium catalysis for a tandem allylsilane/ene reaction [20a], Smith recently 

demonstrated the utility of mixed anhydrides and unsaturated acylammoniums for the 

enantioselective synthesis of enol lactones 87 (Figure 1.11b) [20b]. In our own studies in 

this area, the full potential of the latent, triply reactive, α,β–unsaturated acylammonium 

catalysis was realized employing acid chlorides (e.g., 88, 92) and carboxylic acids in a 

rapid assembly of complex cyclopentanes [20d] 95 (Figure 1.11d) and in a further 

extension, N–heterocycles [20c] 91 (Figure 1.11c). Furthermore, we very recently 

demonstrated the utility of these chiral α,β–unsaturated acylammonium salts as 

competent chiral dienophiles in a Diels–Alder/lactonization (DAL) organocascade [20e] 

(Figure 1.11e). 
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Figure 1.11 Recent examples of asymmetric acylammonium/ammonium enolate 
catalysis [64]. 
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The utility of the DAL methodology was validated through a short, 

enantioselective synthesis of cyclohexenone (–)-100 from cycloadduct 99. Bicyclic 

lactone 100 was previously employed in racemic form for the synthesis of (±)-

fraxinellonone, a degraded limonoid that displays moderate antifeedant and 

ichthyotoxicity activity, in addition to (±)-trisporic acid and (±)-trisporols, naturally 

occurring fungal pheromones derived from β–carotene (Figure 1.12). 

 

Figure 1.12 Application of bicyclic γ–lactone 99 towards the formal syntheses of 
fraxinellonone, trisporic acids, and trisporols [64]. 
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Figure 1.13 Romo’s total synthesis of (–)-curcumanolide A and (–)-curcumalactone 
[64]. 
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tricyclic β–lactone (–)-103 via a proposed bicyclic boat–like transition–state 

arrangement (as depicted in Figure 1.13). Furthermore, the ability to perform a Baeyer–

Villiger oxidation in the presence of a β–lactone (–)-103 led to the ring–expanded δ–

lactone 104 and set the stage for a key dyotropic rearrangement. This rare dyotropic 

process, involving a fused bis–lactone 104 possessing both β– and δ–lactone moieties, 

enabled rapid access to the core structure 105 of curcumanolide A and curcumalactone. 

Our current mechanistic understanding of the transition state for this transformation, 

based on computational studies by the Tantillo group, involves a nearly concerted, 

stereospecific, “double SN2” 1,2–bis–acyl migration process (as shown in Figure 1.13) 

delivering the bridged, spiro–γ–butyrolactone 105 [32c]. The described enantioselective 

total synthesis of curcumanolide A and curcumalactone was accomplished in 11 and 12 

steps, respectively, and employed scalable, ammonium enolate organocatalysis. 

Although racemic, a recent application of the NCAL methodology by Weinreb 

deserves mention given that it was performed on >2 g scale and utilized as a key step for 

constructing the cis–2–azadecalin found in the indole alkaloids, (±)-alstilobanine A and 

E, and (±)-angustilodine [33]. 

 

1.11 Conclusions and Perspective 

In the past decade, the field of asymmetric covalent organocatalysis has seen 

tremendous progress. This thesis has briefly illustrated the power of these 

organocatalytic reactions, which have become a prevalent and highly efficient tool in 

organic chemistry. The discovery and implementation of new reactivities and 
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organocatalysts led to a considerable surge in reaction efficiency and selectivity. Indeed, 

the discovery of novel activation modes for substrates employing secondary amine 

catalysis, N–heterocyclic carbine catalysis, phosphine catalysis, and tertiary amine 

catalysis has enabled rapid construction of molecular complexity with excellent levels of 

stereocontrol and simple operational procedures employing non–heavy metal catalysts. 

These advances have led to many successful and imaginative applications of asymmetric 

covalent organocatalysis in the field of scalable natural product synthesis. Despite 

significant innovations in this highly topical area, there still remain many challenges and 

opportunities ahead. Certainly, the relatively high catalyst loading (e.g., 10 and 20 

mol%) in many cases leaves room for future improvement. Furthermore, the discovery 

of novel modes of substrate activation, especially of commodity chemicals, will drive 

further advances in the area of organocatalysis enabling unusual disconnections and 

more practical procedures. Based on the diversity of recently developed activation 

modes involving covalent organocatalysis, numerous organocascade sequences can be 

envisaged and will undoubtedly be applied to more ambitious synthetic targets. Given 

these advances, we further anticipate powerful strategies for the scalable synthesis of 

biologically relevant molecules including bioactive natural products and 

pharmaceuticals, providing invaluable tools for continued advances in biology. 

However, realizing these goals in earnest, necessitates not only the discovery but also 

invention of new modes of reactivity, that either exposes or amplifies both the innate and 

sometimes hidden reactivity of organic substrates, which in turn contributes to further 
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developments in chemical synthesis logic. This principle finds its full expression in the 

words of the epitome of the artist–scientist, Leonardo da Vinci: 

“Where nature finishes producing its own species, man begins, using natural 

things and with the help of this nature, to create an infinity of species.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 27 

CHAPTER II  

ACYLAMMONIUM SALTS AS DIENOPHILES IN                                       

DIELS–ALDER/LACTONIZATION ORGANOCASCADES* 

 

2.1 Background and Significance 

 Transformations that rapidly generate complex and structurally diverse molecular 

architectures are essential components of modern organic chemistry [34]. In this regard, 

the Diels–Alder (DA) cycloaddition is arguably the most versatile and powerful 

transformation in chemical synthesis [35]. In particular, catalytic asymmetric DA 

reactions are unparalleled in their ability to rapidly and efficiently generate optically 

active, architecturally complex, and densely functionalized heterocycles and carbocycles 

from simple achiral substrates [36]. Furthermore, enantioselective organocatalytic DA 

variants have recently been established using iminium [37], enamine [38], bifunctional 

acid–base catalysis [39], and hydrogen–bonding catalysis [40]. MacMillan and co–

workers employed both α,β–unsaturated aldehydes [37a] and ketones [37b] in 

cycloadditions through iminium–activated chiral dienophiles, whereas α,β–unsaturated 

aldehydes [40b] and indolinones [40c] were activated through hydrogen–bonding 

catalysis by Rawal and Barbas, respectively. Surprisingly, however, simple acid 

chlorides have yet to be successfully employed in organocatalyzed DA reactions. Herein, 

                                                

*Reprinted with permission from “Acylammonium Salts as Dienophiles in Diels–
Alder/Lactonization Organocascades” by M. E. Abbasov, Brandi M. Hudson, Dean J. 
Tantillo and D. Romo, 2014. J. Am. Chem. Soc., 136, 4492–4495, Copyright [2014] by 
American Chemical Society. 
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we report the first enantioselective organocatalytic DA reactions with α,β–unsaturated 

acid chlorides activated in situ by a chiral isothiourea catalyst. 

The potential of α,β–unsaturated acylammonium catalysis was first realized by 

Fu in asymmetric, net [3+2] annulations leading to diquinanes [41a]. Building on this 

early work, Smith recently employed mixed anhydrides as α,β–unsaturated 

acylammonium precursors for the direct synthesis of dihydropyranones and 

dihydropyridones [41b]. Furthermore, we demonstrated the full potential of chiral, triply 

reactive, α,β–unsaturated acylammonium salts for the rapid assembly of complex 

cyclopentanes [41c] and optically active γ–lactams and piperidones [41d]. Inspired by 

these studies, we sought to explore the reactivity of α,β–unsaturated acylammonium 

salts as dienophiles in DA reactions anticipating that these intermediates might emulate 

the electronic properties of activated dienophiles. 

To test the reactivity of α,β–unsaturated acylammonium salts as dienophiles, we 

targeted the synthesis of cis– and trans–fused bicyclic γ– and δ–lactones which are 

ubiquitous structural motifs found in bioactive terpenoids and pharmaceuticals (Figure 

2.1a). We envisioned that this bicyclic architecture could be constructed in a single 

operation by a Diels–Alder/lactonization (DAL) cascade between acylammonium salts, 

generated in situ from acid chlorides or carboxylic acids (activated in situ) 1, a chiral 

tertiary amine organocatalyst, and rationally designed dienes 2 (Figure 2.1b). We 

recognized the potential for further stereochemical diversity if racemic dienes bearing a 

pendant carbinol, e.g., (±)-2 (R6 ≠ R7), could participate in an unprecedented DA-

initiated, stereodivergent [42] organocascade.  
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Figure 2.1 (a) Selected natural products and pharmaceuticals containing or derived from 
cis– or trans–fused bicyclic γ– or δ–lactones. (b) The described organocatalytic Diels–
Alder/lactonization cascade sequence [65]. 
 

This process could proceed through catalyst control during the DA step, independent of 

the resident stereocenter, and the subsequent lactonization step would generate 

diastereomeric lactones 3 with distinct topologies that could facilitate chromatographic 

separation, a common challenge for stereodivergent processes. 

 

2.2 Optimization Studies of the DAL 

 We initiated our studies of the DAL organocascade with a Danishefsky diene 2a 

bearing a tethered tertiary alcohol to minimize competitive acylation while providing 
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greater reactivity and synthetic versatility [43]. In the absence of a nucleophilic 

promoter, a significant background DAL proceeds with ethyl fumaroyl chloride (1a) to 

afford an inseparable mixture of endo/exo diastereomers of bicyclic γ–lactones 3a and 

3a′ in 21% yield (Supporting Information (SI), Table S1). 

 

Table 2.1 Selected Optimization Studies of the DALa 

 
aYields of isolated, purified products; endo/exo ratios determined by 1H NMR analysis; 
ee determined by chiral–phase HPLC and only shown for endo diastereomer (see SI for 
details). Reaction conditions: (a) 1a, 2a, 2,6–lutidine, CH2Cl2; (b) 1b, 2b, (–)-BTM, 
CH2Cl2; (c) 1b, 2b, DTBP, (–)-BTM. DTBP = 2,6–di–tert–butylpyridine [65]. 
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A catalyst screen revealed that chiral isothioureas [44] were superior (Table 2.1a) with 

best results obtained using benzotetramisole, (–)-BTM [44b]. Extending addition times 

of 1a through syringe pump addition ensured high enantioselectivity (Table S1, entries 

9, 11) presumably by enabling the asymmetric DAL to compete effectively with the 

racemic background pathway. Further optimization studies revealed that endo/exo 

selectivity was highly dependent on the Brønsted base and also that pendant primary 

alcohols were tolerated. Thus, we next screened various Brønsted bases with diene 2b, 

acid chloride 1b, and (−)-BTM as catalyst (Table 2.1b). Generally, pyridine bases 

afforded superior levels of enantioselectivity (Table S2, entries 6–15), while substantial 

steric bulk adjacent to the pyridine nitrogen suppressed formation of the exo 

diastereomer with concomitant reduction in yield (Table S2, entry 8). Use of a shuttle 

base [45] was successful and delivered 3b in 64% yield (95% de, 99% ee). Finally, a 

solvent screen revealed that chlorinated solvents provided the highest levels of 

diastereo– and enantioselectivity (Table 2.1c; Table S3, entries 8–10). 

 

Table 2.2 Scope of the Enantioselective DAL 

 The scope of the DAL was studied under optimized conditions with dienes 2b–f 

and commercially available acid chlorides 1a–d possessing varying electronic and steric 

properties. Diastereoselectivities were consistent (>19:1 endo/exo), while 

enantioselectivities ranged from 91 to 99% ee (Table 2.2).  
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Table 2.2 Enantioselective DAL Organocascadea 

 
aYields refer to isolated, purified products; endo/exo ratios determined by 1H NMR 
analysis; ee determined by chiral–phase HPLC. †(–)-BTM (10 mol%) was used. ‡(+)-
BTM (20 mol%) was used. §(–)-BTM (5 mol%) was used [65]. 
 

Cis–fused bicyclic γ–lactones 3b–h were readily obtained from (E)-dienes with both α– 

and β–substituted acid chlorides. Use of crotonoyl chloride (1c) and methacryloyl 

chloride (1d) led to less reactive acylammonium dienophiles, as reflected in reduced 
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yields of cycloadducts (–)-3g and (–)-3h; however, enantioselectivity was maintained. 

Use of a (Z,Z)–configured diene 2e produced the trans–fused bicyclic γ–lactone (+)-3i in 

48% yield (99% ee) despite the unfavorable conformation that typically impedes 

effective cycloaddition [46]. Variation in tether length of the pendant alcohol as in diene 

2f (n = 1) afforded the bicyclic δ–lactone (+)-3j in 54% yield (92% ee). Use of the 

enantiomeric isothiourea catalyst, (+)-BTM, provided the enantiomeric lactone (+)-3f in 

71% yield (96% ee). Lowered catalyst loadings of 10 and 5 mol% gave cis– and trans–

fused bicyclic γ–lactones (–)-3c and (+)-3i with similar levels of enantioselectivity but 

diminished yields. In these cases, lower yields were due to decomposition of dienes and 

irreversible acylation of the tethered alcohol moiety leading to dienyl esters (e.g., see SI, 

p S120). The preparative utility of the DAL was demonstrated by two gram–scale 

reactions affording 1.4 g of (–)-3c (68% yield) and 4.0 g of (–)-3d (84% yield). 

 

2.4 Stereodivergent DAL Organocascade 

 Given the terminal lactonization step, we reasoned that a stereodivergent 

resolution of a racemic diene possessing a pendant stereogenic carbinol using the DAL 

strategy would be feasible. Indeed, reaction of racemic diene (±)-2g bearing a pendant, 

secondary alcohol delivered readily separable fused, tricyclic γ–lactones (–)-3k (50% 

yield, 99% ee) and (–)-3k' in (35% yield, 99% ee) which are useful intermediates toward 

compactin [47] and forskolin [48]. The stereochemistry of (–)-3k and (–)-3k′ was 

assigned by X–ray analysis; in the latter case following cleavage with 4–

bromobenzylamine (Table 2.3a, insets; Figures S1 and S2). 
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Table 2.3 Stereodivergent DAL Organocascadesa 

 
aYields and ratios of isolated, purified products; ee determined by chiral–phase HPLC. 
Insets are single crystal X–ray structures in ORTEP format (50% probability; TIPS and 
4–bromobenzyl groups are removed for clarity). Reaction conditions: 4–
BrC6H4CH2NH2, THF, 23 °C, 36 h (73%). †Reaction performed with carboxylic acid 1e 
activated in situ by TsCl (SI, p S134) [65]. 
 

During optimization studies, we noted the profound impact of the Brønsted base on 

endo/exo selectivities, and sought access to trans–fused bicyclic lactones through 

judicious combination of a Lewis and Brønsted base to enhance exo selectivity. Indeed, 

use of 2,6–lutidine (3.0 equiv) with (–)-BTM and diene 2b altered the endo/exo 

selectivity to furnish readily separable cis– and trans–fused bicyclic γ–lactones (–)-3c 
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(37%, 99% ee) and (+)-3c′ (35%, 99% ee) (Table 2.3b). We cannot speculate regarding 

the origins of this Brønsted base dependence at this time, however we are investigating 

this phenomena further through both experimentation and computation. We also studied 

in situ activated carboxylic acids in this context, to expand the substrate repertoire of the 

DAL, and found that activation of mono–ethyl fumarate (1e) with TsCl afforded (–)-3c 

and (+)-3c′ with identical enantiopurity but slightly reduced yields. The absolute 

configuration of bicyclic γ–lactone (+)-3c′ was determined by X–ray anomalous 

dispersion (Figure S3). These data, in conjunction with detailed 2D NMR analysis and 

both predicted and calculated (vide infra) lowest energy transition states, enabled 

assignment of relative and absolute configurations of cycloadducts 3b–j. 

 

2.5 Synthetic Utility 

 We next sought to demonstrate the utility of the enantioenriched lactones 

obtained through the DAL (Figure 2.2). Bicyclic γ–lactone (–)-3d was converted to α,α–

dimethyl lactone (–)-4 corresponding to the core of glaciolide [49a], a degraded and 

rearranged diterpenoid, via regioselective α–methylation. Direct α–selenylation of silyl 

enol ether (–)-3h followed by oxidative elimination delivered enone (–)-5, an 

intermediate previously employed as a racemate toward fraxinellonone [49b], and the 

fungal pheromones, trisporic acids and trisporols [49c]. 
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Figure 2.2 Synthetic utility of bicyclic γ–lactones [65]. 

 

 

2.6 Postulated Reaction Pathway for the DAL 

 To understand the origins of the enantio– and diastereoselectivity induced by (–)-

BTM, all four possible transition state structures (TSSs) for the catalyzed DAL were 

compared to each other and to background DA cycloadditions proceeding directly with 

acid chloride. Analysis of the lowest energy conformations of each TSS indicates a 

kinetic preference (1–2 kcal/mol) for endo approach (Figure 2.3) and an even larger 

preference (>5 kcal/mol) for approach of diene from the bottom face of the dienophile 

opposite the phenyl substituent of (–)-BTM, leading to the observed major enantiomer. 
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Figure 2.3 Calculated transition structures for the DA step of the DAL optimized at the 
M06–2X/6–31G(d) level with an implicit solvent model [SMD (dichloromethane)]. 
Gibbs free energies in kcal/mol shown are relative to the reactants. Selected bond 
distances are shown (Å) [65]. 
 

 

This selectivity model is predicated on a preference for a close contact between the 

carbonyl oxygen and sulfur atom of the catalyst restricting rotation about the C–N bond 

of the acylammonium salt (see inset, Figure 2.4). Such a preference is indeed found in 

isolation (2.81 Å) and in the TSSs (2.81 and 2.77 Å, endo/exo, respectively). The 

apparent S–O attraction for isothiourea catalysts [50] appears in this case to be driven by 

a combination of orbital interactions (probed with NBO), in particular, lone pairS ↔ 

σ*C–H/σC–H interactions that disfavor the alternative conformation with a O–C–N–C 

dihedral angle of 180°. Furthermore, the catalyzed DA reaction is predicted to have a 

lower activation barrier than the background reaction.  

A postulated reaction pathway is illustrated in Figure 2.4. Reaction of acid 

chloride 1a with (–)-BTM forms acylammonium salt 6 that undergoes endo–selective 

intermolecular DA with diene 2b to form an initial, catalyst–bound cycloadduct 7. The 
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presumed tetrahedral intermediate 8 then enters a shuttle deprotonation cycle in which 

catalytic 2,6–lutidine relays its proton to stoichiometric K3PO4 and undergoes 

intramolecular lactonization to form 3e and regenerate the catalyst. 

 

 

Figure 2.4 Postulated reaction pathway for the DAL [65]. 
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2.7 Conclusions 

 In summary, we have unveiled a new and versatile family of chiral dienophiles, 

α,β–unsaturated acylammonium salts, that undergo enantioselective and stereodivergent 

DAL organocascades rapidly generating complex and stereochemically diverse 

scaffolds. This scalable process proceeds under mild conditions, provides excellent 

relative and absolute stereocontrol, and utilizes readily prepared dienes, commodity acid 

chlorides, and commercially available organocatalysts. A prominent feature of the 

described methodology is the use of a DA reaction to initiate an organocascade; a 

strategy with limited precedent [51]. The utility of the DAL was demonstrated by 

conversion of the derived bicyclic lactones to several core structures of natural products 

constituting formal syntheses in some cases. Computational results suggest kinetic 

preference for an endo TS with enantiocontrol ascribed to stereoelectronic and 

conformational preferences of the acylammonium salt dienophiles. Further applications 

and mechanistic investigations are underway to delineate the scope of this methodology. 
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CHAPTER III  

STEREODIVERGENT, DIELS–ALDER–INITIATED ORGANOCASCADES 

EMPLOYING ACYLAMMONIUM CATALYSIS 

 

3.1 Background and Significance 

 The development of efficient transformations that provide expedient and 

selective access to the full stereochemical array of compounds with multiple 

stereocenters remains a notable challenge in chemical synthesis [52]. Such 

stereodivergent processes have particular impact beyond the realm of synthetic 

chemistry. The specificity of action and biological properties of an organic molecule 

correlate to its structural complexity and well–defined three–dimensional architecture 

and directly depend on its stereochemical configuration [53]. Essentially, the ability to 

access all stereoisomeric permutations of a natural product or lead candidate allows 

complete evaluation of stereochemical structure–activity relationships. Access to the 

complete set of stereoisomers of a given scaffold from the same substrate has been 

previously realized for conjugate addition [54], Mannich reaction [55], intramolecular 

allylic substitution [56], deracemization [57], sulfa–Michael addition [58], 

hydrohydroxyalkylation [59], and most recently an elegant example involving α–

allylation of aldehydes was reported by Carreira [60]. Prospectively, the complex 

stereoselectivity issues inherent to DA cycloaddition provide an opportunity to address 

the most significant limitation of asymmetric catalytic variants of this venerable 

transformation: when applied towards generating complex chiral molecules with 



 

 41 

multiple stereocenters in a single operation, chemists cannot selectively access the full 

matrix of stereoisomers using a single chiral organocatalyst. Enantiomeric pair of a 

chiral catalyst individually provides the mirror image products (complementary 

enantioselectivity); however, researchers are still unable to modulate the sense of 

diastereoselectivity (control over the relative stereochemistry) in DA cycloadditions 

using a single chiral catalyst. 

Comparably, synthetic methods that efficiently transform racemic mixtures into 

complex enantioenriched products are important components of modern organic 

chemistry but remain scarce [61]. These include underutilized stereodivergent processes, 

which convert racemates to non–enantiomeric products [62]. Catalytic asymmetric 

variants of these reactions employing racemic substrates represent an unexploited 

strategy toward accessing a full complement of stereoisomers, wherein both optical 

antipodes of a starting material react with a catalytically activated intermediate to furnish 

non–enantiomeric products. Sarpong recently described an elegant example of a 

stereodivergent process applied to natural product synthesis [63], however majority of 

these reactions suffer from the crucial practical issue of inseparable, diastereomeric 

products [62]. 

We have recently reported a new concept for covalent [64] asymmetric, organocatalytic 

LUMO–lowering acylammonium activation of α,β–unsaturated acid chlorides and 

carboxylic acids as competent dienophiles and demonstrated its applicability in the 

Diels–Alder/lactonization organocascade [65]. The potential of α,β–unsaturated 

acylammonium catalysis (Figure 3.1) was first demonstrated by Fu employing α,β–
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unsaturated acyl fluorides in a net [3 + 2] annulation promoted by a chiral 4-

pyrrolidinopyridine catalyst [66]. 

 

Figure 3.1 The ever–expanding potential of covalent α,β–unsaturated acylammonium 
organocascade catalysis. 
 

Building on this early work, the Smith group [67] recently utilized α,β–

unsaturated mixed anhydrides in an enantioselective tandem Michael–enol–

lactonization. Furthermore, we demonstrated the full potential of chiral, triply reactive, 

α,β–unsaturated acylammonium salts derived from commodity acid chlorides for the 

rapid assembly of complex cyclopentanes through a nucleophile–catalyzed Michael–
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aldol–β–lactonisation organocascade (NCMAL) [68]. Optically active γ–lactams and 

piperidones could also be rapidly synthesized through a Michael–proton transfer–

lactamization  (NCMPL) [69] process utilizing these intermediates. Most recently, 

Matsubara described the first example of a highly enantioselective net [4 + 3] 

cycloaddition to afford 1,5-benzothiazepines by utilizing α,β–unsaturated 

acylammonium intermediates generated by a chiral isothiourea catalyst [70]. 

Despite its rich history, utility [71], simplicity of operation, and continued 

evolution of strategies that broaden the scope and improve the stereoselectivity of the 

venerable Diels–Alder (DA) reaction, this cycloaddition arguably remains the most 

versatile and powerful transform in chemical synthesis [72]. In particular, catalytic 

asymmetric DA reactions are unparalleled in their ability to rapidly and efficiently 

generate optically active, architecturally complex, and densely functionalized 

heterocycles and carbocycles from simple achiral substrates. Furthermore, 

enantioselective organocatalytic DA variants have recently been established using 

iminium [73], enamine [74], bifunctional acid-base catalysis [75], and hydrogen–

bonding catalysis [76]. MacMillan and coworkers employed both α,β–unsaturated 

aldehydes [73a] and ketones [73b] in cycloadditions through iminium–activated chiral 

dienophiles 2, whereas unsaturated aldehydes [76a] and indolinones [76b] were activated 

through hydrogen–bonding catalysis 3 by Rawal and Barbas, respectively (Figure 3.2a). 

Surprisingly, it was not until our recent report that a method for utilizing α,β–

unsaturated acid chlorides 5 or carboxylic acids as dienophiles for organocatalytic 

asymmetric DA reactions has been successfully established. However, more importantly, 
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our initial results have unveiled the first example of DA–initiated, stereodivergent 

organocascade (Figure 3.2b) delivering complex and stereochemically diverse scaffolds 

found in bioactive compounds with excellent relative and absolute stereocontrol [65]. 

 

Figure 3.2 (a) Representative activation modes of α,β–unsaturated carbonyl com-
pounds for organocatalytic asymmetric DA reactions. Formation of acylammonium–
activated dienophiles 1 from acid chlorides or in situ activated carboxylic acids enables 
organocatalytic LUMO–lowering activation for DA cycloadditions. (b) The seminal 
example of DA–mediated, stereodivergent resolution of the racemic diene (±)-4 
employing α,β–unsaturated acylammonium salt, generated in situ from acid chloride 5 
and isothiourea catalyst, (S)-(–)-BTM. 
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With potential applications for diversity–oriented synthesis (DOS), we have 

implemented a synergistic combination of a chiral isothiourea catalyst capable of 

exercising high relative and absolute stereocontrol and a Brønsted base impacting 

endo/exo selectivities enabling stereodivergent access to the full array of stereoisomeric 

cycloadducts in our initial findings [65]. The increasing importance of DOS to access 

structurally complex and diverse small–molecule libraries [77] is premised on its value 

for drug discovery [78], chemical genetics [79] and identification of small–molecule 

modulators of challenging biological targets [80]. In particular, synthetic methods that 

rapidly generate stereochemical complexity [81] are important for drug lead discovery 

and a recent success for drug development is exemplified by the antimalarial agent, 

NITD609, currently in Phase IIa clinical trials [82]. Furthermore, natural product–

inspired libraries are providing higher success rates in identifying more potent and drug–

like molecules [83]. 

In our ongoing studies to unravel the Lewis base–Brønsted base synergy, we 

observed certain trends pertaining to diastereocontrol that, based upon the observed 

temperature–independence, could culminate in a hierarchical set of empirically derived, 

practical guidelines allowing for both prediction and tenability of diastereoselectivity. 

Most known asymmetric reactions possess temperature–dependent 

diastereodifferentiation and thus are performed at low temperatures due to their strategic 

design to induce sufficient ∆∆H‡ by steric repulsion, structural strain, or electronic 

interaction in the transition states. Conversely, from a synthetic viewpoint, entropy–

controlled asymmetric transformations with sufficient ∆∆S‡ are preferable due to their 
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independence of the reaction temperature. However, entropy–driven diastereoselective 

reactions remain particularly scarce. To date, only two reports have demonstrated the 

principle of entropy–controlled stereoselectivity, which include an intramolecular [2 + 2] 

cycloaddition of a chiral pentanediol tether [84] and a vinylation of a cyclic chiral 

nitrone [85]. To our knowledge, entropy–driven diastereodifferentiation in an 

organocatalyzed transformation have yet to be shown. 

Intrigued by this possibility and operational simplicity of our highly asymmetric 

stereodivergent organocascade, we conducted a thorough study to optimize the reaction 

conditions and further delineate the substrate scope. Herein, we demonstrate the ability 

of a single chiral organic small molecule, the isothiourea–based tertiary amine, to 

catalyze highly enantio– and diastereoselective DA–initiated organocascades. We have 

found that the function of the catalyst can be modulated to induce diastereodivergent 

pathways by applying an external stereoelectronic stimulus. By judiciously choosing 

particular Brønsted bases, we can switch the enforced sense of diastereoinduction, thus 

potentially allowing access to all possible diastereoisomeric cycloadducts. The present 

study suggests the potential of the stereoelectronic effects to induce sufficient 

differential activation entropy and reveal a new aspect for designing asymmetric 

transformations. While the applicability of this concept has been demonstrated as 

mentioned above, questions remain as to the exact nature of active catalytic species and 

the role of Brønsted base in the enantio– and diastereodetermining step of the 

organocascade. In fact, it has thus far remained unclear whether a species corresponding 
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to catalyst–Brønsted base amalgam is actually involved in the catalytic process. Here we 

report the results of experiments and computations that shed light on these questions. 

 

3.2 Substrate Scope of the Stereodivergent DAL 

To explore the potential of α,β–unsaturated acylammonium salts as competent 

dienophiles for the stereodivergent Diels–Alder/lactonization organocascade, we 

targeted the synthesis of complex, γ–substituted cis–fused bicyclic γ–lactones, 

ubiquitous and privileged structural motifs found in biologically active natural products 

(Figure 3.3b), potentially accessible in a single operation (7→8→11) (Figure 3.3a). 

Conventional strategies toward complex γ–substituted bicyclic γ–lactones typically 

require multistep processes involving exo–selective diastereoselective intramolecular 

DA cycloadditions (7→10→11) employing optically active dienes [86] including those 

obtained by enzymatic resolution [87] (7→9→10). Toward introducing stereochemical 

complexity to the described strategy, we utilized racemic dienes bearing a pendant 

carbinol, e.g. (±)-7 (R6 ≠ R7) to open possibilities for a stereodivergent lactonization. 

This strategy has the potential to generate up to four new stereocenters through catalyst 

control independent of the resident stereocenter, and the subsequent lactonization step 

would deliver diastereomeric polycyclic adducts with distinct topologies that may 

facilitate separation. 
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Figure 3.3 (a) Comparison of conventional strategies (7→10→11) toward complex, γ–
substituted optically active bicyclic γ–lactones 11 with the described single–operation, 
Diels–Alder/lactonization (DAL) organocascade (7→8→11). Use of racemic dienes (±)-
7 bearing a pendant carbinol stereocenter (denoted with a red circle) enables a 
diastereodivergent organocascade that introduces up to four additional stereocenters 
through catalyst control independent of the resident stereocenter. (b) Selected structures 
of naturally occurring and biologically active terpenoids containing γ–substituted, cis–
fused bicyclic γ–lactones. 
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We initiated our scope survey of the stereodivergent DAL organocascade with 

the racemic silyloxydiene (±)-13a bearing a pendant, secondary benzylic alcohol and 

ethyl fumaroyl chloride (12a) in the presence of (S)-(–)-BTM to deliver a readily 

separable 1.5:1 diastereomeric mixture of bicyclic γ-lactones (–)-14a (99% ee) and (+)-

14a’ (98% ee) in 48% and 31% yield, respectively (Table 3.1). Similarly, diene (±)-13b 

bearing a pendant, tertiary benzylic alcohol afforded cycloadducts (+)-14b (41% yield, 

99% ee) and (+)-14b’ (23% yield, 99% ee) on gram–scale as a separable 1.8:1 

diastereomeric mixture bearing four contiguous stereocenters, including a quaternary 

carbon. In contrast, racemic silyloxydiene (±)-13c possessing a (Z,Z)–configured diene, 

a pendant secondary benzylic alcohol, and an n–propyl substituent provided trans–fused 

bicyclic γ–lactone (+)-14c as a single diastereomer with five contiguous stereocenters in 

40% yield (99% ee) despite the cis-substituent that typically impedes effective 

cycloaddition [88]. To the best of our knowledge, there is no report to date of an 

asymmetric, catalytic DA cycloaddition with a cis–substituent diene that occurs at 

ambient temperature (23 ºC) [89]. We also targeted more complex polycycles through 

this stereodivergent DAL process by use of the racemic monocyclic diene (±)-13d 

bearing a secondary cyclohexanol. Cycloaddition of this diene with crotonoyl chloride 

(12b) gave the fused, tricyclic 6,6,5–system on gram–scale as separable diastereomers (–

)-14d and (–)-14d’ in 35% (99% ee) and 24% yield (99% ee), respectively. The absolute 

configuration of crystalline cycloadduct (–)-6a was previously determined 

unambiguously by X–ray analysis while cycloadduct (–)-6a’ required ring opening of γ-

lactone with 4–bromobenzylamine (Figure 3.2b).  
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Table 3.1 Diels–Alder mediated stereodivergent resolution of racemic dienes employing 
α,β–unsaturated acylammonium saltsa 

 
aUnless otherwise specified, all reactions performed with dienes (±)-13a–d (1.0 equiv.), 
acid chlorides 12a,b (1.5 equiv.), K3PO4 (3.0 equiv.), 2,6–lutidine (20 mol%), and (S)-(–
)-BTM (20 mol%) at 23 ºC for 18 h. Yields and diastereomeric ratios are based on 
isolated, purified cycloadducts. Enantiomeric excess was determined by chiral–phase 
HPLC (see Supplemental Figure S3). 
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This structural information in conjunction with 2D NMR analysis enabled assignment of 

the relative and absolute con-figurations of cycloadducts 14a–d and 14a’–d’. In general, 

lower yields observed in these cases were due to decomposition of dienes and 

irreversible acylation of the tethered alcohol moiety (e.g. (±)-S10, see Supplemental p. 

216). While more sterically demanding α,β– and β,β–disubstituted acid chlorides and 

non–oxygenated dienes required extended reaction times, elevated temperatures, or 

higher catalyst loadings to achieve synthetically useful yields. 

 

3.3 Asymmetric Organocatalytic Diels–Alder Cycloaddition of Furanyl Dienes  

 Toward expanding the breadth of this strategy, we then explored the utility of 

achiral furanyl dienes bearing a pendant amine to study the potential for terminal 

lactamization, and more importantly, to address a long–standing unsolved problem of 

asymmetric organocatalytic DA cycloaddition of furans (Figure 3.4, 15→16→20). 

Cycloadditions of furans are notably reversible due to their intrinsic aromaticity, and 

hence additional activation techniques, such as Lewis–acid catalysis and high–pressure 

chemistry, are required to obtain a sufficient amount of the desired adducts. 

Furthermore, the lability of the cycloadducts, even at relatively low temperatures, as well 

as the sensitivity to acidic conditions of both furans and cycloadducts, typically 

necessitate immediate post–modification and preclude the use of ambient conditions and 

strong Lewis–acids. In fact, only two examples of catalytic asymmetric DA reactions of 

furans have been effectively (67–94% yield, 97–99% ee, 4–7.3:1 endo/exo) exemplified 

by Evans [90] (15→18→20) and Corey [91] (15→19→20) utilizing chiral 
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bis(oxazoline)Cu(II) and oxazaborolidium Lewis–acid catalysts, respectively. The 

former method is restricted to the reaction temperature of –78 ºC, due to rapid 

equilibration at higher temperatures, thus permitting isolation of the kinetic product 

mixture favoring endo cycloadduct, while the latter is limited to 2,2,2–trifluoroethyl 

acrylate as the only suitable dienophile with practical efficacy.  

 

Figure 3.4 Comparison of asymmetric, Lewis–acid catalyzed and previously attempted 
organocatalytic DA cycloaddition of furans with the described single–operation, Diels–
Alder/lactamization (DAL) organocascade. 
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Recently, Kotsuki [92] attempted the first asymmetric organocatalytic DA reaction of 

furans catalyzed by 50 mol% D–proline (15→17→20) under high–pressure (0.8 GPa), 

unfortunately however, with insufficient yields (26%) and impractical enantio– (20% ee) 

and diastereoselectivities (1.4:1 exo/endo). Low reactivity of furan, poor conversions and 

the occurrence of side reactions have made this approach problematic. We therefore 

reasoned that a furan with a pendant, stereoelectronically–tuned amine 15 would initially 

participate in a reversible intermolecular DA cycloaddition with α,β–unsaturated 

acylammonium salt 1, followed by a terminal, irreversible intramolecular lactamization 

step thus permitting the formation of the thermodynamic exo cycloadduct. We initiated 

our studies of the nucleophile–catalyzed Diels–Alder/lactamization (DAL) 

organocascade with the furfuryl sulfonamide 21 (Figure 3.5), readily obtained in a single 

step from inexpensive commercially available materials (see Supplementary). For the 

initial dienophile precursor, we chose commercially available acryloyl chloride (22) in 

order to impede the anticipated racemic background cycloaddition. 

 

Figure 3.5 The first successful example of highly enatio– and diastereoselective 
organocatalytic DA cycloaddition of the furanyl diene by means of Diels–
Alder/lactamization organocascade. 
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Our initial reaction conditions involved generation of the α,β–unsaturated 

acylammonium dienophile in CH2Cl2 at ambient temperature (23 ºC) utilizing 

inexpensive Levamisole hydrochloride (10 mol%) as a nucleophilic promoter with 20 

mol% 2,6–lutidine as a shuttle base [93] and potassium phosphate (K3PO4, 3.0 equiv.) as 

stoichiometric insoluble base. To our delight, the reaction generated the oxa–bridged 

trans–fused tricyclic γ–lactam 23 in 76% yield and 91% ee as a single thermodynamic 

exo diastereomer. Remarkably, this tricyclic γ–lactam was stored at ambient 

temperatures (23 ºC) for an extended amount of time without racemization. To 

determine substrate generality and the influence of N–substituent groups on 

enantioselectivity of this process, several dienes 24a–i with varying electronic and steric 

properties were evaluated (Table 3.2) under the optimized reaction conditions with 

highly reactive, doubly–activated ethyl fumaroyl chloride (12a). A single exo 

diastereomer was generated in each case, as determined by 1H NMR analysis of the 

crude reaction mixtures. Predictably, furanyl diene 24a containing sterically–demanded 

triphenylmethyl (trityl) group, failed to undergo resultant organocascade (entry 1, Table 

3.2) with the acylammonium salt derived from isothiourea (S)-(–)-BTM and ethyl 

fumaroyl chloride (12a). Similarly, furanyl dienes 24b–d possessing tert–

butyloxycarbonyl (Boc), benzoyl (Bz), and 4,5–dibromofuranoyl groups, respectively, 

did not afford the corresponding oxa–bridged trans–fused tricyclic γ–lactams 25b–d 

(entries 2–4, Table 3.2), presumably due to delocalization of the nitrogen lone pair onto 

the oxygen, thus rendering amides 24b–d much less nucleophilic. 
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Table 3.2 Optimization of the asymmetric Diels–Alder/lactamization cascade with ethyl 
fumaroyl chloridea 

 
aScreening studies were performed with dienes 23a–i (1.0 equiv.), ethyl fumaroyl 
chloride (12a, 1.2 equiv.), (S)-(–)-BTM and base (1.0 equiv.) in CH2Cl2 (0.1 M). †All 
yields refer to isolated, purified yields of cycloadducts. Diastereomeric (endo/exo) ratios 
were determined by 1H–NMR (500 MHz) analysis of the crude reaction mixture. 
Enantiomeric excess (ee) was determined by chiral–phase HPLC. ‡Acid chloride 12a 
was added as a solution in CH2Cl2 by syringe pump over 5 h. 
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Conversely, highly nucleophilic benzylamine 24e generated the desired cycloadduct 25e 

in 92% yield (entry 5, Table 3.2), however with a complete loss of enantioinduction, 

suggesting the initial N–acylation followed by an intramolecular DA cycloaddition as a 

plausible racemic background pathway. We next screened several para–substituted 

sulfonamides 24f–i in search for a tunable substituent. As anticipated, in the absence of a 

nucleophilic promoter, a substantial background DAL proceeds with ethyl fumaroyl 

chloride (12a) to afford a single exo–diastereomer of racemic tricyclic γ–lactam (±)-25f 

in 28% yield (entry 6, Table 3.2). The effect of para–substituted sulfonamides on 

enantioselectivity of the described organocascade follows the order: NO2 < CF3 < Me < 

OMe (entries 7–10, Table 3.2). This trend presumably reflects the electron–donor ability 

of these substituents toward reducing the acidity of corresponding sulfonamides [94] and 

consequently preventing undesirable N–acylation/intramolecular DA pathway. Lowered 

catalyst loading of 20 mol% (S)-(–)-BTM delivered the tricyclic γ-lactam 25h (entry 11, 

Table 3.2) with comparable yield (86%) but diminished enantiocontrol (42% ee). Efforts 

to improve enantioinduction through use of a sterically unhindered Brønsted base were 

successful with pyridine as stoichiometric base provided 25h in 88% yield (83% ee, 

entry 12, Table 3.2). Extending addition times of the acid chloride 12a (entry 13, Table 

3.2) ensured high enantioselectivity (85% yield, 92% ee) presumably by enabling the 

asymmetric DAL process to compete effectively with the racemic background pathway. 

During the course of optimization, we began to realize that a facile 

cycloreversion reaction between furanyl diene and an isothiourea–bound acylammonium 

salt could provide a new, straightforward and metal–free catalytic approach toward 
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enantio– and diastereomerically pure heteropolycyclic scaffolds from their readily 

accessible achiral counterparts. This presented us with an attractive opportunity to 

envisage an efficient dynamic kinetic asymmetric transformation (DYKAT) type IV 

process [95], wherein epimerization of depicted diastereomers ERR, ESS, ERS, and ESR 

proceeds through reversible destruction of both centers yielding two achiral 

intermediates C and D (Figure 3.6a). To date, only two case studies of DYKAT type IV 

have been reported: Córdova’s proline–catalyzed one–pot, two–step, polyketide sugar 

synthesis [96], and Griengl’s one-pot, multienzymatic synthesis of 2–amino–1–

phenylethanol from glycine and benzaldehyde [97]. Therefore, as depicted in Figure 

3.6b, we postulated that a dynamic cycloreversion of the initial kinetic endo intermediate 

ERSRR (endo) to thermodynamically stable exo intermediate ESRRR (exo) would occur 

through a retro–Diels–Alder/Diels–Alder (rDA/DA) sequence driven by an intrinsically 

favorable cycloreversion of furans (ERSRR (endo) ↔ C+D ↔ ESRRR (exo)), followed by a 

subsequent termination by irreversible spontaneous lactamization (preferentially ESRRR 

(exo) → FSRRR). In particular, the isothiourea catalyst could serve dual catalytic role to 

mediate both the enantioselective forward cycloaddition and the in situ cycloreversion of 

short–lived, diastereomeric acylammonium intermediates. The realization of an efficient 

DYKAT type IV process with a chiral tertiary amine–catalyzed organocascade is 

conceptually appealing and adds a new dimension to the repertoire of what remains 

among the most challenging, yet desirable, goals in catalytic asymmetric synthesis. 
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Figure 3.6 (a) DYKAT type IV. ERS/ESR and ERR/ESS are enantiomeric pairs of initial 
diastereomeric adducts; FRS/FSR and FRR/FSS are enantiomeric pairs of final 
diastereomeric products; kRR′, kRS′, kSR′, and kSS′ are equilibration rates of formation 
ERS/ESR and ERR/ESS; kRR’’, kRS’’, kSR’’, and kSS’’ are rates of irreversible formation of 
FRS/FSR and FRR/FSS. (b) Representative organocatalyzed DYKAT type IV process 
proceeding through retro–Diels–Alder/Diels–Alder/lactamization cascade sequence.  
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Furthermore, the striking simplicity, excellent diastereo– and enantioselectivity, and 

high yield render this approach as a promising protocol for de novo synthesis of 

heteropolycyclic scaffolds with multiple stereo-centers. 

 

3.4 Synthetic Applications 

 Synthetic applications towards biologically relevant targets are the ultimate 

validation for the development of any methodology. By way of demonstration, several 

case studies were chosen in order to highlight the utility of the DAL strategy (Figure 

3.7). First, reduction of tricyclic lactone (–)-14d followed by desilylation under 

thermodynamic conditions, set the desired trans–decalin ring system found in bicyclic 

keto–diol (+)-26, a compound previously utilized in racemic form for the synthesis of 

(+)-dihydrocompactin [98], a potent hypocholesterolemic agent, first isolated by a group 

at Merck in 1981 [99], and related to the well known statin drugs, lovastatin (Mevacor®) 

and simvastatin (Zocor®). In another application, acid–catalyzed aromatization of the 

oxa–bridged bicyclo[2.2.1] system followed by N–detosylation of the amide (+)-23 

delivered a versatile isoindolinone (27, Figure 3.7b) previously employed to access the 

indoprofen, a nonsteroidal anti–inflammatory drug and cyclooxygenase inhibitor that 

was recently found to upregulate the survival motor neuron protein [100]. This showcase 

approach further enables the production of an expensive isoindolinone (27, 500 $/g, 

Sigma–Aldrich #CDS020611) from a cheap commercial furfurylamine (0.15 $/g, Alfa–

Aesar #B23975) and offers DAL organocascade as an expedient method for 

modification of biomass–derived furans to high–value materials.  
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Figure 3.7 (a) Application of the tricyclic γ–lactone (–)-14d to a formal synthesis of (+)-
dihydrocompactin. (b) Conversion of the tricyclic γ–lactam (+)-23 to a versatile 
isoindolinone 27 previously employed to access indoprofen. (c) Epoxidation of the 
tricyclic γ–lactam (+)-25i to a fully substituted cyclohexane bearing four fused rings 
with six contiguous stereocenters. Transformation of (+)-25i to a fully substituted 
tetrahydrofuran (–)-30 representing the core structure of the natural product, isatisine A. 
Inset is a single crystal X–ray structure in ORTEP format (50% probability, see 
Supplemental Figure S2). 
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Nonpeptidyl ghrelin–receptor inverse agonists with IC50 values of <100 nM were 

recently disclosed by 7TM Pharma [101] and contain oxa–bridged tricyclic γ–lactams as 

a central core structure reminiscent of optically active (+)-25i. The representative 

racemic compound depicted in Figure 3.7c was subjected to in vivo assays to determine 

its effect on weight loss in rats and was found to result in a ca. 20% weight loss relative 

to controls. As a further demonstration of this point, (+)-25i was readily converted in a 

single step to a fully substituted tetrahydrofuran (–)-29 corresponding to the core 

structure of the natural product, (–)-isatisine A. This was achieved by a tandem 

ozonolytic cleavage of the olefin followed by in situ Wittig olefination with methyl 

(triphenylphosphoranylidene)acetate. The acetonide derivative of the natural product (–)-

isatisine A, shown in Figure 3.7c, is an artifact during the isolation that was found to 

exhibit cytotoxicity against C8166 with CC50 = 302 µM and anti–HIV activity of EC50 = 

37 µM [102]. Finally, epoxidation of the tricyclic γ–lactam (+)-25i furnished a fully 

substituted cyclohexane bearing four fused rings with six contiguous stereogenic centers 

as crystalline needles and permitted unambiguous assignment of the absolute 

configuration of (+)-25i by X–ray analysis (see Supplementary Figure S2). 

 

3.5 Effects of Brønsted Base on Acylammonium Salt Formation and Initial 
Diels–Alder Step 

 
During our previous screening studies, we determined that certain tertiary–amine 

Brønsted bases exerted a profound effect on endo/exo selectivity. We concluded that 

base likely plays a dual role of facilitating deprotonation of the pendant alcohol during 
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lactonization and ensuring the free–base form of the catalyst, however certain tertiary–

amine Brønsted bases can act as Lewis base catalysts leading to racemic product [103]. 

Thus, we next considered the extent to which a Brønsted base could effectively compete 

with a chiral catalyst in the formation of corresponding acylammonium salt. 

Consequently, these achiral acylammonium dienophiles would enable the racemic DAL 

process to compete effectively with asymmetric pathway. Our quantum chemical 

calculations on acylammonium salt formation between ethyl fumaroyl chloride (12a) 

and various tertiary–amine Brønsted bases indicate, as shown in Figure 3.8a, that only 

pyridine and triethylamine (Et3N) with energy barriers of 12.4 and 13.1 kcal/mol, 

respectively, would plausibly compete with the (S)-(–)-BTM catalyst (13.0 kcal/mol). 

However, both reactions are endergonic, with reverse energy barriers of only 7.1–9.5 

kcal/mol, and thus are readily reversible [104]. With these results in hand, we next 

sought to provide support from experimental screen of selected Brønsted bases 

employing acid chloride 12a with (S)-(–)-BTM as catalyst (Figure 3.8b) and indeed as 

expected Et3N, pyridine and even Hünig’s base (iPr2NEt) led to greatly reduced 

enantioselectivity (60–85% ee) compared to 2,6–lutidine (99% ee) and 2,6–di–tert–

butylpyridine (DTBP, 99% ee) by enabling the racemic background pathway to compete 

effectively with the asymmetric DAL process.  
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Figure 3.8 (a) Comparison of acylammonium salt formation between (S)-(–)-BTM 
catalyst and various tertiary–amine Brønsted bases. Free energies of transition state 
structures (TSSs) and products shown in kcal/mol relative to energies of separated 
reactants were computed using SMD(DCM)–M06–2X/6–31G(d). (b) Base screening 
studies were performed with acid chloride 12a (1.2 equiv) and (S)-(–)-BTM (20 mol%) 
in CH2Cl2 (0.1 M). All yields refer to isolated, purified yields of cycloadducts. 
Diastereomeric (endo/exo) ratios were determined by 1H NMR (500 MHz) analysis of 
the crude reaction mixture. Enantiomeric excess was determined by chiral–phase HPLC 
and is only shown for the major (endo) diastereomer (ee values for the exo diastereomer 
were similar). 
 

Interestingly, acylammonium salt formations through chloride ion exchange reactions 

with both (S)-(–)-BTM and tertiary–amine Brønsted bases proceeded by an apparent π 

attack on the carbonyl π bond with no discernible tetrahedral intermediates (Figure 3.9a) 
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typical of an addition–elimination pathway; instead, these reactions proceeded by a 

concerted SN2–type mechanism. Considerable difference between the energies of a 

carbonyl π bond and a carbon–oxygen σ bond contribute to the reluctance to form a 

tetrahedral intermediate.54 Computational results in this study fully corroborated earlier 

modeling on intermediacy of tetrahedral species [105]. To gain further insights into the 

extent of LUMO–lowering activation upon acylammonium salt formation, revealed 

during our previous studies, we postulated that such activation would originate from 

inductive effects propagated through the σ–framework, which could ultimately be 

revealed through reduced electron density at the β–carbon [106]. We therefore 

performed 1H–13C gHMQC experiment and measured the 13C NMR chemical shifts in 

CDCl3 at 23°C for the acylammonium salt 30 formed through chloride ion exchange 

reaction of the acid chloride 12a with the Lewis base, (S)-(–)-BTM (Figure 3.9b). 

However, no significant change in the chemical shift of the β–carbon of acylammonium 

30 (δ 136.7 ppm) was observed compared to the acid chloride 12a (δ 136.8 ppm). 

Further investigation into the chemical shift of the carbonyl carbon revealed slight 

upfield shift in 30 (δ 163.6 ppm) compared to the acid chloride 12a (δ 164.1 ppm) 

suggestive of shielding effect from steric impediment at the carbonyl carbon induced by 

the isothiourea catalyst, (S)-(–)-BTM. Thus, isothiourea–catalyzed acylammonium 

formation may not lead to dramatic LUMO–lowering activation, as previously 

suggested, but rather a significant decrease in nucleophilic substitution at carbonyl 

carbon enabling DA–initiated organocascade. 
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Figure 3.9 (a) Calculated TSSs (I–VI) for the formation of acylammonium salts with 
various Brønsted bases optimized at the M06–2X/6–31G(d) level with an implicit 
solvent model [SMD (dichloromethane)]. Selected bond distances are shown (Å). (b) 
Section of the 1H–13C gHMQC NMR spectrum of the acylammonium salt 30 in CDCl3 
formed from a 1:1 mixture of (S)-(–)-BTM and ethyl fumaroyl chloride 12a. 
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(Table 3.3). On the basis of these findings, we concluded that only a BTM–bound 

acylammonium dienophile with an exergonic profile possesses sufficient activation 

energy barrier to undergo the initial DA cycloaddition. Intriguingly, acylammonium salts 

derived from DTBP, Et3N and iPr2NEt may undergo DA cycloaddition via a stepwise 

mechanism.  

 

Table 3.3 Comparison of free energies for the initial DA cycloaddition between BTM–
bound acylammonium dienophile and various Brønsted bases. 
 

 
 

 

3.6 Effects of Brønsted Base on the Origins of the Diastereoselectivity in the 
Diels–Alder–Initiated Cascades 

  
Based upon aforementioned computations and experiments suggesting that a 

Brønsted base cannot compete effectively with a chiral isothiourea catalyst in either the 

acylammonium formation or the initial Diels–Alder cycloaddition, we sought to compute 

an explicit Brønsted base model and to elucidate the stereoelectronic effects it triggers 

on the TSSs implicated in the initial Diels–Alder step. On the basis of previous studies 

a. Energies computed with SMD(DCM)–M06–2X/6–31G(d) and shown in kcal/mol relative to separated reactants.

b. Energies computed with SMD(DCM)–M06–2X/6–31G(d) and  shown in kcal/mol relative to preformed acylammonium and diene
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[107], we envisaged a complex formation through a hydrogen–bond network between 

tertiary–amines Brønsted base and the alcohol moiety of silyloxydiene. To gain further 

insights into the extent of hydrogen–bond formation between the Brønsted base and the 

diene, we postulated that such interaction could be detected by an increased electron 

density at the carbinol–carbon of diene due to inductive effects propagated through the 

σ–framework. We therefore performed standard 13C NMR (500 MHz) experiments in 

CD2Cl2 (0.1 M) at 23 ºC and measured the changes in chemical shifts of the 

silyloxydienyl carbinol–carbon upon immediate mixing with an equimolar amount of a 

Brønsted base and their spectra were compared to the spectrum of the free diene 31 

(Figure 3.10a). 13C NMR spectrum of an equimolar mixture of 31 and DTBP in the 

absence and presence of DTBP are rather similar (Figure 3.10b) indicating that a 

complex does not form under these conditions. This is also supported by the virtually 

unchanged chemical shift (62.56 ppm) of the carbinol–carbon (Δδ = +0.02), relative to 

free 31 (62.54 ppm). The inability of the nitrogen atom in DTBP to participate in 

hydrogen–bonding is rationalized as due to steric hindrance [108] induced by adjacent 

tert–butyl substituents and is largely responsible for the very low relative basicity [109]. 

On the contrary, the corresponding 13C NMR spectrum for an equimolar mixture of 31 

and pyridine shows pronounced upfield change in the chemical shift (Δδ = –0.22 ppm) 

for the carbinol–carbon (Figure 3.10c) signifying formation of a hydrogen–bonded 

complex.  
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Figure 3.10 Sections of the 13C NMR (500 MHz) spectra in CD2Cl2 at 23 ºC of an 
equimolar mixture of (a) diene 31 and (b) DTBP, (c) pyridine, (d) 2,6–lutidine, (e) Et3N. 
 

 

The extent of complexation was particularly evident in the 13C NMR spectrum of 31 and 

2,6–lutidine mixture by a profound upfield change in the chemical shift (Δδ = –0.44 

ppm) of the carbinol–carbon (Figure 3.10d). 13C NMR spectrum of an equimolar mixture 

of 31 and Et3N (Figure 3.10e) equally indicated complex formation with an upfield 

chemical shift of 62.04 ppm, relative to free 31 (62.54 ppm). These upfield shifts 

qualitatively correlate with hydrogen–bond strength and Brønsted basicity, suggestive of 

the potential bimolecular complexation, for which the pKa values (in DMSO) and Δδ 
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explicit bimolecular hydrogen–bond complex involving silyloxydiene 32 and 2,6–

lutidine (Figure 3.11).  

 

Figure 3.11 Free energies and enthalpies (shown in bold, italic) are in kcal/mol relative 
to separated reactant species calculated at SMD(DCM)–M06–2X/6–31G(d). An explicit 
base (2,6–lutidine) was modeled to study stereoelectronic effects on TSSs involved in 
the initial DA cycloaddition (values inside parentheses represent free energies without 
explicit base).  
 

Therefore, a manual conformational search, sampling numerous possible orientations of 

the 2,6–lutidine, generated two lowest energy conformers corresponding to the endo and 

exo TSSs (Figure 3.12). Indeed, computational studies indicate that 2,6–lutidine can 

participate in hydrogen–bonding with the terminal alcohol of the diene and 
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simultaneously engage in CH–π and π–π stacking interactions with the benzotetramisole 

moiety of the BTM–bound acylammonium salt. 

 

Figure 3.12 Optimized TSSs leading to endo and exo cycloadducts showing π–π 
stacking and CH–π interactions between BTM–bound acylammonium salt and 
hydrogen–bonded Brønsted base–diene complex. Select bond distances are shown (Å). 
 

Remarkably, these interactions selectively lower the energy barrier for the TSS leading 

to exo cycloadduct (12.0→10.3 kcal/mol) [114]. In contrast, the energy barrier for the 

TSS leading to endo cycloadduct is reduced by only 0.7 kcal/mol (10.7→10.0 kcal/mol). 

TSendo TSexoCalculated transition structures

Hydrogen–bond, π–π stacking, and CH–π interactions
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These results do not conflict with our previous findings on the origin of 

enantioselectivity and bear important implications for catalyst design; however, sticking 

similarity in energies (0.3 kcal/mol) between TSSs leading to endo and exo cycloadducts 

(ΔΔGTSS) led us to question the origin of the observed diastereoselectivity (>19:1 

endo/exo) in these reactions. 

 

3.7 Entropy–Controlled Diastereodifferentiation in Diels–Alder–Initiated 
Cascades 

 
On the basis of these computations, we decided to probe the implications of 

enthalpy and entropy in diastereodifferentiation. While the predicted diastereoselectivity 

for the base–complexed DA cycloaddition in Figure 3.11 is larger when entropy is 

neglected; the opposite was found to be true for the base–free reaction (Figure 3.13a). 

For the latter, almost no diastereoselectivity is predicted on the basis of enthalpy alone 

for the asymmetric reaction, irrespective of computational model. However, differences 

in free energy barriers varied based on the model chemistry. Our confidence in the 

validity of these results led us to consider the possibility that the diastereoselectivity was 

not controlled by enthalpy (i.e., predicted ΔΔHs are insignificant), but rather by entropy. 

A point of caution, however, should be expressed regarding the computation of entropy 

in quantum chemical computations [115] and the accuracy of computing dispersion in-

teractions [116].  
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Figure 3.13 (a) Free energies and enthalpies of TSSs from the racemic background and 
asymmetric DA cycloadditions computed with SMD(DCM)–M06–2X/6–31G(d). 
Energies shown in kcal/mol relative to separated reactants. (b) Plots of yield and 
enantiomeric excess as a function of temperature. Enantiomeric excess was determined 
by chiral–phase HPLC and is only shown for the major (endo) diastereomer (ee values 
for the exo diastereomer were similar). (c) Eyring plot of ln(endo/exo) as a function of 
103 T–1. The abscissa was extended to T→∞ to obtain the y–intercept. Differential 
activation parameters are ∆∆H‡ = 0.068 kcal·mol–1 and ∆∆S‡ = 2.28 kcal·mol–1·K–1. 

a

b

c
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To minimize these uncertainties, we next investigated the potential of DAL 

organocascades that may have sufficient ∆∆S‡, the diastereodifferentiating ability over a 

wide range of temperatures. Plots of yield and enantiomeric excess as a function of 

temperature (Figure 3.13b) indicate profound dominance of the background racemic 

reaction at the extremities of both curves, likely due to inefficient acylammonium 

formation at temperatures below –20 ºC and adequately competent background reaction 

above 50 ºC. We next set about a systematic study of the dependence of 

diastereoselection on temperature in the range from –78 to +80 °C. Reactions were 

analyzed after 18 h, and the relative endo/exo ratios and the enantioselectivity were 

concurrently determined by chiral–phase HPLC of the crude products mixture. The 

chemical yields were determined after flash chromatography on silica gel. Plot of the 

ln(endo/exo) as a function of 103 T–1 (K–1) are shown in Figure 3.13c. The Eyring 

treatment of the reaction rates of independent processes that generate diastereomers in 

asymmetric reaction provides a differential activation enthalpy (∆∆H‡) and entropy 

(∆∆S‡) as shown in eq 1.  

ln kR
kS
=
–(ΔHR

‡ – ΔHS
‡ )

RT
+
(ΔSR

‡ – ΔSS
‡ )

R
=
–ΔΔH ‡

RT
+
ΔΔS‡

R
                  (1) 

Applying eq 1 to results of Figure 3.13c, we may easily calculate for our reaction that 

∆∆H‡ = 0.068 kcal·mol–1 and ∆∆S‡ = 2.28 kcal·mol–1·K–1. The “flat” temperature 

dependency observed in this temperature range (∆T = 160 ºC) clearly demonstrates that 

the reaction is predominantly stereocontrolled by the differential activation entropy, 

∆∆S‡. In our reaction system, the dominance of entropic factors in the –78→+80 °C 
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temperature interval suggests that steric interactions between acylammonium salt and the 

approaching diene along the two dienyl diastereotopic faces do not play a significant role 

in determining the diastereochemical outcome of the reaction. The effective induction of 

∆∆S‡ in this case can be explained as follows. Formation of a six–membered 

cyclohexene ring from intermolecular DA cycloaddition between flexible silyloxydiene 

and acylammonium salt requires a great loss of entropy, the degree of which largely 

depends on the conformational property of both substrates. The accompanying large 

entropy loss would result in enough difference in entropy between the two 

diastereomeric states from the influence of the chirality on the cycloadducts. This 

difference is carried over to the transition states to give ∆∆S‡. 

 

 

3.8 Switching Diastereoselection and Achieving the Full Matrix of Possible 
Stereoisomeric Products 

 
Based upon aforementioned computations suggesting selective stabilization of 

the exo TSS by CH–π and π–π stacking interactions, we reasoned that judicious 

installation of an electron–withdrawing substituent onto the C7 position of the 

benzothiazole moiety would enhance interactions to a Brønsted base by withdrawing 

electron density from the π–cloud of the substituted benzotetramisole ring, reducing the 

repulsive electrostatic and steric interaction with the non–substituted pyridine ring [117]. 

Conversely, an electron–donating substituent would donate electron density into the π–

system and diminish the π–stacking interaction, thus potentially altering endo/exo 
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selectivity. In addition, a closer analysis of the optimized TSSs revealed a potential for 

an n→π* interaction between the hydroxyl group and imidazolium cation in both exo 

(3.04 Å) and endo (2.79 Å) TSSs (Figure 3.14a). We targeted a highly electron 

withdrawing nitro group and an electron–donating pyrrolidinyl group, reminiscent of a 

potent nucleophilic 4–pyrrolidinopyridine (4–PPY) catalyst, as two potential substituents 

at the C7 position on the benzothiazole moiety due to their synthetic practicality. As 

expected, the calculated electrostatic potential (ESP) surfaces for proposed catalysts 

(Figure 3.14b) revealed an enlarged positive ESP region over the imidazole portion in 7–

nitrobenzotetramisole, presenting an opportunity to perturb the energy of the TSSs by 

stabilizing the n→π* interaction, and thus potentially altering endo/exo selectivity. The 

synthesis of these catalysts commenced with nitration of a cheap commercial 2–

chlorobenzothiazole (32, 0.95 $/g, AK Scientific # S750) with a mixture of concentrated 

sulfuric acid and fuming nitric acid to provide 33 [118], which was used directly in the 

next step without further purification (Figure 3.14c). Employing Smith’s recently 

improved, scalable two–step protocol [119], nitrothiazole 33 was subjected to the 

reaction with (R)-phenylglycinol in neat ethyldiisopropylamine and furnished alcohol 34 

without chromatographic isolation. 

  



 

 76 

 

Figure 3.14 (a) Rational catalyst design potentially capable of switching 
diastereoselection in DAL organocascade, and TSSs depicting potential energy 
stabilization by n→π* interaction optimized with SMD(DCM)–M06–2X/6–31G(d) level 
of theory with an implicit Brønsted base (2,6–lutidine) model. Selected bond distances 
are shown (Å). (b) Calculated ESP plots for BTM, NBTM and PBTM. (c) Preparative 
synthesis of electronically tuned NBTM and PBTM catalysts. 
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Treating 34 with methanesulfonyl chloride and heating a dichloromethane solution of the 

resultant mesylate at reflux in the presence of triethylamine and methanol overnight 

provided >1.7 grams of 7–nitrobenzotetramisole, (R)-(+)-NBTM, as the sole product in 

36% yield over three steps after chromatography. The nitro group was readily reduced 

with iron powder in ethanol under catalytic quantities of hydrochloric acid to afford the 

corresponding amine, which then underwent reductive amination with 2,5–

dimethoxytetrahydrofuran (DMTHF) and sodium borohydride in presence of catalytic 

sulfuric acid [120] and formed the desired pyrrolidinylbenzotetramisole, (R)-(+)-PBTM 

in 75% yield over two steps. 

Given the ability to access both endo and exo transition states using particular 

Brønsted bases, we studied the potential of a fully stereodivergent variant of the DAL 

with a racemic diene to access all possible stereoisomers of a particular family of 

cycloadducts. Employing racemic silyloxydiene (±)-35 bearing a pendant secondary 

benzylic alcohol, ethyl fumaroyl chloride (12a), and (S)-(–)-BTM (20 mol%) with 2.0 

equiv. of 2,6–lutidine, four chromatographically separable diastereomers (–)-36 (27% 

yield, 98% ee), (+)-36’ (22% yield, 99% ee), (+)-36’’ (25% yield, 99% ee) and (–)-36’’’ 

(18% yield, 97% ee) were produced in 92% combined yield (entry 1, Table 3.4). This 

reaction could be readily performed on a preparative scale with only 10 mol% (S)-(–)-

BTM providing 76% combined yield (see Supplementary p. 216). Probing commercial 

pyridines with electron–withdrawing substituents, such as 2– and 3–bromopyridine, and 

2,6–dibromopyridine, was ineffective toward formation of the de-sired cycloadducts 

presumably due to reduced basicity.  
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Table 3.4 Rapid access to a fully separable stereoisomeric complement of a given 
scaffold obtained by base and catalyst permutation for diversity–oriented synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Reactions were performed with diene (±)-35 (1.0 equiv.), acid chloride 12a (1.5 equiv.), 
base (2.0 equiv.) and catalyst (20 mol%) at 23 ºC for 18 h. Yields and diastereomeric 
ratios are based on isolated, purified cycloadducts. Enantiomeric excess was determined 
by chiral–phase HPLC (see Supplemental Figure S3, pp. 267–279). *Employed in free–
base form. Inset is a single crystal X–ray structure in ORTEP format (50% probability; 
TIPS and 4–bromobenzyl groups are removed for clarity, see Supplemental Figure S1). 
a4–BrC6H4CH2NH2, THF, 23 ºC, 36 h (46%). 
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In contrast, pyridines with electron–donating groups, such as 3– and 4–methoxypyridine, 

caused merely negligible deviations in diastereoselection. To our surprise, 2,4,6–tri–tert–

butylpyridine (TTBP) selectively suppressed formation of the exo I diastereomer, (+)-36’ 

(entry 2, Table 3.4), whereas 2,6–di–tert–butyl–4–methylpyridine (DTBMP) deterred 

formation of both exo I and II diastereomers, (+)-36’ and (+)-36’’ (entry 3, Table 3.4). In 

addition, 2,6–di–tert–butylpyridine (DTBP) imposed preferential formation of both endo 

I and exo II diastereomers, (–)-36 and (+)-36’’, in 29% and 20% yields, respectively 

(entry 4, Table 3.4). Intrigued by these permutations, we next sought to exploit our 

synthetic, electronically–tuned benzotetramisole–derived catalysts in conjunction with 

various substituted pyridine bases. Accordingly, highly nucleophilic, electron–rich (R)-

(+)-PBTM catalyst accelerated the formation of corresponding cycloadducts, likely due 

to exceedingly rapid formation of the resultant acylammonium salt, however without 

noticeable deviations in diastereoselection. In contrast, serendipitous permutation of the 

(R)-(+)-NBTM catalyst and 2–phenylpyridine selectively impeded reactivity of the (R)-

enantiomer of (±)-35, consequently resulting in formation of both exo II and endo II, 

diastereomers, (+)-36’’ and (–)-36’’’, in 26% and 19% yields, respectively (entry 5, 

Table 3.4). To our delight, a single exo II diastereomer, (+)-36’’, was obtained in 18% 

yield (99% ee) by permutation of (R)-(+)-NBTM and 2,6–di–tert–butylpyridine (entry 6, 

Table 3.4). In addition, a single endo I diastereomer, (–)-36, was obtained in 22% yield 

(99% ee) by a combination of 2,6–di–tert–butylpyridine with a free–base form of 

Levamisole·HCl (entry 7, Table 3.4). The relative and absolute configuration of a 

derivative of (+)-36’’ was confirmed by X–ray analysis (see Supplementary Figure S1) 
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and together with comparative 2D NMR analysis enabled assignment of the relative and 

absolute configurations of (–)-36, (+)-36’ and (–)-36’’’.  It should be noted that use of 

(Z)-(±)-35 and the use of catalyst antipodes would theoretically enable access to the 

remaining diastereomeric and enantiomeric members (16 total) of this family of 

cycloadducts. Despite uncertainty about their origin, these preliminary results suggest 

that the judicious choice of a designer catalyst and the Brønsted base could be used in 

tandem to switch the sense of the diastereoselection in stereodivergent Diels–Alder–

initiated organocascades, thereby affording the enantioenriched cycloadducts on 

demand.  

 

3.9 Conclusions 

 In conclusion, factors affecting the selectivity of stereodivergent, Diels–Alder–

initiated organocascades were investigated systematically with a view to understanding, 

predicting, and tuning the stereochemical outcome. An evaluation of various 

experimental and computational parameters were performed in order to derive a more 

detailed understanding of what renders this process selective. The substrate scope of the 

stereodivergent organocascade has been extended to tethered secondary and tertiary 

racemic alcohols leading to the corresponding optically active γ–substituted cis– and 

trans–fused bicyclic γ–lactones in good yields with excellent enantiocontrol. The long–

standing obstacle was surmounted in the first highly enatio– and diastereoselective 

organocatalytic DA cycloaddition of furan–tethered achiral sulfonamides, which led to 

the generation of oxa–bridged trans–fused tricyclic γ–lactams guided by a rare example 
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of dynamic kinetic asymmetric transformation (DYKAT) type IV. Computations 

indicated that benzotetramisole–derived acylammonium formation proceeded by an 

exergonic, concerted SN2–type mechanism without discernible tetrahedral intermediate 

typical of an addition–elimination pathway. Detailed computations in corroboration with 

spectroscopic studies provided insights into the role of Brønsted base and revealed the 

formation of a hydrogen–bonded complex that permitted selective lowering of the 

energy barrier in the exo transition state through n→π*, CH–π and π–π stacking 

interactions. Synergistic evaluation of computed free energies and enthalpies of TSSs in 

conjunction with observed temperature independence in the –78→+80 °C interval and 

experimentally obtained values for ∆∆H‡ (0.068 kcal·mol–1) and ∆∆S‡ (2.28 kcal·mol–

1·K–1) demonstrated that the reaction is predominantly stereocontrolled by the 

differential activation entropy, ∆∆S‡. The combined results described herein have 

allowed us to put forth the full catalytic cycle. While the described organocascade 

demonstrates admirable scope, it has clear limitations. The utility of this methodology 

was show-cased through the formal syntheses of the nonsteroidal anti–inflammatory 

agent indoprofen and a member of the fungus–derived and widely marketed statin drugs 

(+)-dihydrocompactin, and the concise approaches to the core structures of the natural 

product isatisine A and the nonpeptidyl ghrelin–receptor inverse agonist. Lastly, we have 

documented the possibility of using a single chiral organocatalyst to fully control the 

stereochemical outcome of the stereodivergent Diels–Alder–initiated organocascade. We 

found that the judicious combination of Lewis and Brønsted bases can alter the sense of 

diastereoselection. We are currently undertaking further mechanistic investigations to 
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fully understand the origins of this tunable diastereoselectivity. On the basis of our 

current findings, we envisage that programming the function of a catalyst using 

stereoelectronic stimuli may provide new synthetic opportunities and conceptual 

perspectives for confronting major challenges associated with the synthesis of all 

possible stereoisomers of a particular constitutional family of chiral molecules that 

cannot be addressed by traditional approaches. Further studies to investigate the 

stereoselectivity principles described in this report and applications toward natural 

product synthesis are ongoing in our laboratories and will be reported in due course. 
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SUMMARY 

 

In summary, we have unveiled a new and versatile family of chiral dienophiles, 

α,β–unsaturated acylammonium salts, that undergo enantioselective and stereodivergent 

DAL organocascades rapidly generating complex and stereochemically diverse 

scaffolds. This scalable process proceeds under mild conditions, provides excellent 

relative and absolute stereocontrol, and utilizes readily prepared dienes, commodity acid 

chlorides, and commercially available organocatalysts. A prominent feature of the 

described methodology is the use of a DA reaction to initiate an organocascade; a 

strategy with limited precedent. The utility of the DAL was demonstrated by conversion 

of the derived bicyclic lactones to several core structures of natural products constituting 

formal syntheses in some cases. Computational results suggest kinetic preference for an 

endo TS with enantiocontrol ascribed to stereoelectronic and conformational preferences 

of the acylammonium salt dienophiles. Further applications and mechanistic 

investigations are underway to delineate the scope of this methodology. 

The factors affecting the selectivity of stereodivergent, Diels–Alder–initiated 

organocascades were investigated systematically with a view to understanding, 

predicting, and tuning the stereochemical outcome. An evaluation of various 

experimental and computational parameters were performed in order to derive a more 

detailed understanding of what renders this process selective. The substrate scope of the 

stereodivergent organocascade has been extended to tethered secondary and tertiary 

racemic alcohols leading to the corresponding optically active γ–substituted cis– and 
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trans–fused bicyclic γ–lactones in good yields with excellent enantiocontrol. The long–

standing obstacle was surmounted in the first highly enatio– and diastereoselective 

organocatalytic DA cycloaddition of furan–tethered achiral sulfonamides, which led to 

the generation of oxa–bridged trans–fused tricyclic γ–lactams guided by a rare example 

of dynamic kinetic asymmetric transformation (DYKAT) type IV. Computations 

indicated that benzotetramisole–derived acylammonium formation proceeded by an 

exergonic, concerted SN2–type mechanism without discernible tetrahedral intermediate 

typical of an addition–elimination pathway. Detailed computations in corroboration with 

spectroscopic studies provided insights into the role of Brønsted base and revealed the 

formation of a hydrogen–bonded complex that permitted selective lowering of the 

energy barrier in the exo transition state through n→π*, CH–π and π–π stacking 

interactions. Synergistic evaluation of computed free energies and enthalpies of TSSs in 

conjunction with observed temperature independence in the –78→+80 °C interval and 

experimentally obtained values for ∆∆H‡ (0.068 kcal·mol–1) and ∆∆S‡ (2.28 kcal·mol–

1·K–1) demonstrated that the reaction is predominantly stereocontrolled by the 

differential activation entropy, ∆∆S‡. The combined results described herein have 

allowed us to put forth the full catalytic cycle. While the described organocascade 

demonstrates admirable scope, it has clear limitations. The utility of this methodology 

was show-cased through the formal syntheses of the nonsteroidal anti–inflammatory 

agent indoprofen and a member of the fungus–derived and widely marketed statin drugs 

(+)-dihydrocompactin, and the concise approaches to the core structures of the natural 

product isatisine A and the nonpeptidyl ghrelin–receptor inverse agonist. Lastly, we have 
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documented the possibility of using a single chiral organocatalyst to fully control the 

stereochemical outcome of the stereodivergent Diels–Alder–initiated organocascade. We 

found that the judicious combination of Lewis and Brønsted bases can alter the sense of 

diastereoselection. We are currently undertaking further mechanistic investigations to 

fully understand the origins of this tunable diastereoselectivity. On the basis of our 

current findings, we envisage that programming the function of a catalyst using 

stereoelectronic stimuli may provide new synthetic opportunities and conceptual 

perspectives for confronting major challenges associated with the synthesis of all 

possible stereoisomers of a particular constitutional family of chiral molecules that 

cannot be addressed by traditional approaches. Further studies to investigate the 

stereoselectivity principles described in this report and applications toward natural 

product synthesis are ongoing in our laboratories and will be reported in due course. 
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APPENDIX A                                                                                             

SUPPORTING INFORMATION 

 
General Procedures 

All non-aqueous reactions were performed under a nitrogen atmosphere in oven-

dried glassware. Dichloromethane (CH2Cl2), tetrahydrofuran (THF), diethyl ether 

(Et2O), acetonitrile (CH3CN) and toluene (PhMe) were dried by passing through 

activated alumina (solvent purification system). Diisopropylethylamine (EtN(iPr)2) and 

triethylamine (Et3N) were distilled from calcium hydride prior to use. Other solvents and 

reagents were used as received from commercially available sources. Deuterated 

solvents were purchased from Cambridge Isotopes and used as received.  1H NMR 

spectra were measured at 500 MHz and referenced relative to residual chloroform (7.26 

ppm) or benzene (7.16 ppm) and were reported in parts per million. Coupling constants 

(J) were reported in Hertz (Hz), with multiplicity reported following usual convention: s, 

singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triplets; dq, 

doublet of quartets; qd, quartet of doublets; td, triplet of doublets; tt, triplet of triplets; 

ddd, doublet of doublet of doublets; ddt, doublet of doublet of triplets; ddq, doublet of 

doublet of quartets; dddd, doublet of doublet of doublet of doublets; ddddt, doublet of 

doublet of doublet of doublet of triplets; ddquint, doublet of doublet of quintets; m, 

multiplet, br s, broad singlet. 13C NMR spectra were measured at 125 MHz and 

referenced relative to residual chloroform (77.23 ppm) or benzene (128.06 ppm) and 

were reported in parts per million (ppm). Flash column chromatography was performed 

with 60Å Silica Gel (230-400 mesh) as stationary phase on an automated flash 

chromatography system (EtOAc/hexanes as eluent unless indicated otherwise). High-

resolution mass spectra (ESI) were obtained through the Laboratory for Biological Mass 

Spectrometry (Texas A&M University). Thin Layer Chromatography (TLC) was 

performed using glass-backed silica gel F254 (Silicycle, 250 µm thickness). 

Visualization of developed plates was performed by fluorescence quenching or by 

treating with Seebach’s1 staining solution. Fourier Transform Infrared (FTIR) spectra 
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were recorded as thin films on NaCl plates. Optical rotations were recorded on a 

polarimeter at 589 nm employing a 25 mm cell. High Performance Liquid 

Chromatography (HPLC) was performed on a chromatographic system using various 

chiral columns (25 cm) as noted. X-ray diffraction was obtained by the X-ray Diffraction 

Laboratory at Texas A&M University. (R)-(–)-HBTM,2 TMSQD3 and BzQN4 were 

synthesized according to literature procedures. (S)-(–)-BTM and (R)-(+)-BTM were 

purchased from TCI chemicals and used as received. (DHQ)2PHAL, (S)-(–)-Tetramisole 

and (–)-Tröger’s base were purchased from Sigma-Aldrich and used as received. (R)-

(+)-PPY* was purchased from Strem chemicals and used as received. All unsaturated 

acid chlorides were purchased from Sigma-Aldrich and used as received without further 

purification.  

 

Abbreviation List 

DBU  =   1,8-diazabicyclo[5.4.0]undec-7-ene 

EtN(iPr)2  =   N,N-diisopropylethylamine 

Et3N  =   triethylamine 

DTBP  =   2,6-di-tert-butylpyridine 

DIBAl-H  =   diisobutylaluminum hydride 

TIPSOTf  =   triisopropylsilyl trifluoromethanesulfonate 

TBHP  =   tert-butyl hydroperoxide 

Rh2(cap)4 =   dirhodium tetracaprolactamate 

TsCl =   4-toluenesulfonyl chloride 

TASF  =   tris(dimethylamino)sulfonium difluorotrimethylsilicate 

(R)-(–)-HBTM =   (R)-(–)-homobenzotetramisole 

(S)-(–)-BTM =   (S)-(–)-benzotetramisole 

TMSQD  =   O-trimethylsilyl quinidine 

BzQN  =   O-benzoyl quinine 

(DHQ)2PHAL =   Hydroquinine 1,4-phthalazinediyl diether 

(R)-(+)-PPY* =   (R)-4-pyrrolidinopyrindinyl(pentamethylcyclopentadienyl)iron 
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CHAPTER II 

 

Preparation of S3, S4, S7, S8, S11, S12, S14, S15, S17, S18, 2a-f, and (±)-2g: 

 

 
(E)-ethyl 4-oxopent-2-enoate (S3): (E)-ethyl 4-oxopent-2-enoate S3 was prepared by a 

modified reported procedure.5 To a solution of 1-(triphenylphosphoranylidene)-2-

propanone S1 (21.0 g, 65.9 mmol, 1.0 equiv.) and ethyl glycolate S2 (7.5 mL, 79.2 

mmol, 1.2 equiv.) in anhydrous CH2Cl2 (220 mL) was added MnO2 (57.5 g, 661.3 mmol, 

10.0 equiv.) and vigorously stirred at ambient temperature (23 ºC) for 30 h. The mixture 

was filtered through a short pad of celite and the filtrate was concentrated using rotary 

evaporation. The residue was then diluted with cold Et2O (100 mL), filtered through a 

plug of celite and washed with additional Et2O (50 mL). The filtrate was concentrated by 

rotary evaporation and purified by an automated flash chromatography system (5 → 

20% EtOAc/hexanes) providing 7.68 g (82% yield) of ketoester S3 as a pale yellow 

liquid: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.38; 1H NMR (500 MHz, CDCl3): δ 6.99 (d, 

J = 16.1 Hz, 1H), 6.62 (dd, J = 16.1, 0.4 Hz, 1H), 4.24 (qd, J = 7.1, 0.4 Hz, 2H), 2.34 (s, 

3H), 1.30 (td, J = 7.1, 0.5 Hz, 3H); 13C NMR (125 MHz; CDCl3): δ 197.7, 165.5, 140.0, 

131.7, 61.5, 28.2, 14.2; IR (thin film): 2985, 1726, 1703, 1687 cm-1; HRMS (ESI+) m/z 

calcd for C7H10LiO3 [M+Li]+: 149.0790, found: 149.0784. 

 

 
(E)-ethyl 4-((triisopropylsilyl)oxy)penta-2,4-dienoate (S4): To a solution of ketoester 

S3 (2.25 g, 15.8 mmol, 1.0 equiv.) in anhydrous Et2O (32 mL) at 0 ºC was added Et3N 

(4.4 mL, 31.6 mmol, 2.0 equiv.) dropwise. After stirring for 10 min, TIPSOTf (5.1 mL, 

PPh3
O

+ CO2EtHO
O CO2Et

MnO2, CH2Cl2
23 ºC, 30 h

(82%)
S2S1 S3

TIPSO CO2Et

TIPSOTf, Et3N
Et2O, 0 ºC, 2 h

(99%)

S4
O CO2Et

S3
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18.9 mmol, 1.2 equiv.) was added over a period of 30 min. The reaction was stirred for 2 

h at 0 ºC then quenched with a saturated aqueous solution of NaHCO3 (30 mL). The 

aqueous layer was extracted with Et2O (2 ✕ 50 mL) and the combined organic extracts 

were then washed with brine (50 mL). The organic layer was then dried over anhydrous 

MgSO4, filtered, and concentrated by rotary evaporation. The residue was purified by an 

automated flash chromatography system (0.5 → 10% EtOAc/hexanes) providing 4.70 g 

(99% yield) of diene S4 as a clear colorless liquid: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 

0.73; 1H NMR (500 MHz, CDCl3): δ 7.07 (d, J = 15.2 Hz, 1H), 6.18 (d, J = 15.2 Hz, 

1H), 4.62 (dd, J = 1.3, 0.5 Hz, 1H), 4.61 (dd, J = 1.2, 0.6 Hz, 1H), 4.21 (q, J = 7.1 Hz, 

2H), 1.30 (t, J = 7.1 Hz, 3H), 1.28–1.20 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H); 13C NMR 

(125 MHz; CDCl3): δ 167.3, 154.0, 142.6, 119.2, 101.8, 60.6, 18.1 (6), 14.4, 12.9 (3); IR 

(thin film): 2946, 2869, 1719, 1638, 1593 cm-1; HRMS (ESI+) m/z calcd for C16H31O3Si 

[M+H]+: 299.2037, found: 299.2054. 

 

 
(E)-2-methyl-5-((triisopropylsilyl)oxy)hexa-3,5-dien-2-ol (2a): To a solution of diene 

S4 (5.20 g, 17.4 mmol, 1.0 equiv.) in anhydrous Et2O (60 mL) at 0 ºC was added 

MeMgBr (3.0 M solution in Et2O, 13.4 mL, 40.2 mmol, 2.3 equiv.) was added over a 

period of 1 h. The reaction was stirred for 2 h at 23 ºC then quenched with a saturated 

aqueous solution of NH4Cl (30 mL). The aqueous layer was extracted with Et2O (2 ✕ 50 

mL) and the combined organic extracts were then washed with brine (30 mL). The 

organic layer was then dried over anhydrous MgSO4, filtered, and concentrated by rotary 

evaporation. The residue was purified by an automated flash chromatography system 

(0.5 → 15% EtOAc/hexanes) providing 3.47 g (70% yield) of silyloxydiene alcohol 2a 

as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.35; 1H NMR (500 MHz; 

CDCl3): δ 6.18 (d, J = 15.4 Hz, 1H), 6.05 (d, J = 15.4 Hz, 1H), 4.31 (s, 1H), 4.28 (s, 

1H), 1.34 (s, 6H), 1.26–1.21 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H); 13C NMR (125 MHz; 

TIPSO

MeMgBr, Et2O
0 → 23 ºC, 3 h

(70%)

2aS4

TIPSO CO2Et
OH
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CDCl3): δ 155.1, 138.2, 124.8, 95.2, 70.8, 29.9 (2), 18.2 (6), 12.9 (3); IR (thin film): 

3374, 2945, 2868, 1591 cm-1; HRMS (ESI+) m/z calcd for C16H33O2Si [M+H]+: 

285.2250, found: 285.2242. 

 

 
(E)-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-ol (2b): To a solution of diene S4 (4.70 

g, 15.7 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (120 mL) at -78 ºC was added DIBAl-H 

(1.0 M solution in CH2Cl2, 47.0 mL, 3.0 equiv.) dropwise. The reaction was stirred for 2 

h then carefully quenched in sequence with H2O (1.9 mL), 15% aqueous NaOH (1.9 

mL), and H2O (4.7 mL). The dry ice/acetone bath was removed and the mixture was 

allowed to warm up to ambient temperature (23 ºC) on its own accord. Subsequently, 

anhydrous MgSO4 was added and the reaction mixture was vigorously stirred for 30 

min, filtered through a pad of celite and concentrated by rotary evaporation. The residue 

was purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) 

providing 3.78 g (94% yield) of silyloxydiene alcohol 2b as a pale yellow oil: TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.32; 1H NMR (500 MHz, CDCl3): δ 6.19 (dt, J = 15.2, 

5.4 Hz, 1H), 6.09 (dt, J = 15.2, 1.4 Hz, 1H), 4.31 (d, J = 0.5 Hz, 1H), 4.27 (d, J = 0.4 Hz, 

1H), 4.24 (d, J = 5.2 Hz, 2H), 1.27–1.20 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H); 13C NMR 

(125 MHz; CDCl3): δ 154.8, 129.2, 129.0, 95.1, 63.1, 18.2 (6), 12.9 (3); IR (thin film): 

3318, 2945, 2868, 1662, 1591 cm-1; HRMS (ESI+) m/z calcd for C14H29O2Si [M+H]+: 

257.1937, found: 257.1926. 

 

 
Methyl (E)-3-methyl-4-oxopent-2-enoate (S7): To a solution of 2,3-butanedione S5 

(2.6 mL, 30.0 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (150 mL) was added methyl 

TIPSO

DIBAl-H, CH2Cl2
-78 ºC, 2 h

(94%)

2bS4

TIPSO CO2Et
OH

O
O + CO2MePh3P O CO2Me

CH2Cl2
23 ºC, 30 h

(55%)

S6S5 S7
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(triphenylphosphoranylidene)acetate S6 (10.0 g, 30.0 mmol, 1.0 equiv.) and stirred at 

ambient temperature (23 ºC) for 30 h. The mixture was filtered through a short pad of 

celite and the filtrate was concentrated using rotary evaporation. The residue was then 

diluted with cold Et2O (80 mL), filtered through a plug of celite and washed with 

additional Et2O (40 mL). The filtrate was concentrated by rotary evaporation and 

purified by an automated flash chromatography system (5 → 20% EtOAc/hexanes) 

providing 2.34 g (55% yield) of ketoester S7 as a clear colorless oil: TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.45; 1H NMR (500 MHz, CDCl3): δ 6.56 (q, J = 1.5 Hz, 

1H), 3.77 (s, 3H), 2.36 (s, 3H), 2.19 (d, J = 1.5 Hz, 3H); 13C NMR (125 MHz; CDCl3): δ 

199.9, 166.7, 150.9, 126.1, 51.9, 26.3, 13.2; IR (thin film): 2955,1728, 1687, 1642 cm-1; 

HRMS (ESI+) m/z calcd for C7H10LiO3 [M+Li]+: 149.0790, found: 149.0797. 

 

 
Methyl (E)-3-methyl-4-((triisopropylsilyl)oxy)penta-2,4-dienoate (S8): To a solution 

of ketoester S7 (2.34 g, 16.5 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (60 mL) at 0 ºC 

was added Et3N (5.7 mL, 41.2 mmol, 2.5 equiv.) dropwise. After stirring for 10 min, 

TIPSOTf (5.3 mL, 19.8 mmol, 1.2 equiv.) was added over a period of 30 min. The 

reaction was stirred for 2 h at 0 ºC then quenched with a saturated aqueous solution of 

NaHCO3 (30 mL). The aqueous layer was extracted with Et2O (2 ✕ 50 mL) and the 

combined organic extracts were then washed with brine (50 mL). The organic layer was 

then dried over anhydrous MgSO4, filtered, and concentrated by rotary evaporation. The 

residue was purified by an automated flash chromatography system (0.5 → 10% 

EtOAc/hexanes) providing 3.79 g (77% yield) of diene S8 as a yellow oil: TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.76; 1H NMR (500 MHz, CDCl3): δ 6.39 (d, J = 0.6 Hz, 

1H), 4.80 (d, J = 1.9 Hz, 1H), 4.56 (d, J = 1.9 Hz, 1H), 3.71 (s, 3H), 2.28 (d, J = 1.2 Hz, 

3H), 1.28-1.20 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H).13C NMR (125 MHz; CDCl3): δ 168.1, 

156.6, 149.8, 115.8, 96.2, 51.2, 18.2 (6), 14.6, 12.9 (3); IR (thin film): 2947, 2869, 1722, 

TIPSO CO2Me

TIPSOTf, Et3N
CH2Cl2, 0 ºC, 2 h

(77%)O CO2Me

S7 S8
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1629, 1597 cm-1; HRMS (ESI+) m/z calcd for C16H31O3Si [M+H]+: 299.2042, found: 

299.2029. 

 

 
(E)-3-methyl-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-ol (2c): To a solution of diene 

S8 (7.5 g, 25.1 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (180 mL) at -78 ºC was added 

DIBAl-H (1.0 M solution in CH2Cl2, 72.0 mL, 3.0 equiv.) dropwise. The reaction was 

stirred for 2 h at -78 ºC then carefully quenched in sequence with H2O (2.9 mL), 15% 

aqueous NaOH (2.9 mL), and H2O (7.2 mL). The dry ice/acetone bath was removed and 

the mixture was allowed to warm up to ambient temperature (23 ºC) on its own accord. 

Subsequently, anhydrous MgSO4 was added and the reaction mixture was vigorously 

stirred for 30 min, filtered through a pad of celite and concentrated by rotary 

evaporation. The residue was purified by an automated flash chromatography (5 → 20% 

EtOAc/hexanes) providing 4.88 g (75% yield) of silyloxydiene alcohol 2c as a clear 

colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.30; 1H NMR (500 MHz, C6D6): δ 

6.44 (tt, J = 6.48, 0.55 Hz, 1H), 4.45 (d, J = 1.2 Hz, 1H), 4.36 (d, J = 0.9 Hz, 1H), 4.06 

(d, J = 6.3 Hz, 2H), 1.62 (d, J = 0.9 Hz, 3H), 1.23-1.18 (m, 3H), 1.14 (d, J = 6.2 Hz, 

18H); 13C NMR (125 MHz; C6D6): δ 157.7, 132.6, 128.1, 91.1, 59.8, 18.4 (6), 13.5, 13.2 

(3); IR (thin film): 3320, 2945, 2868, 1593 cm-1; HRMS (ESI+) m/z calcd for 

C15H31O2Si [M+H]+: 271.2093, found: 271.2092. 

 

 
(E)-2,4-dimethyl-5-((triisopropylsilyl)oxy)hexa-3,5-dien-2-ol (2d): To a solution of 

diene S8 (1.0 g, 3.2 mmol, 1.0 equiv.) in anhydrous Et2O (10 mL) at 0 ºC was added 

MeMgBr (3.0 M solution in Et2O, 2.5 mL, 7.4 mmol, 2.3 equiv.) over a period of 1 h. 

TIPSO

DIBAl-H, CH2Cl2
-78 ºC, 2 h

(75%)

2cS8

TIPSO CO2Me
OH

TIPSO

MeMgBr, Et2O
0 → 23 ºC, 3 h

(69%)

2dS8

TIPSO CO2Me
OH
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The reaction was stirred for 2 h at 23 ºC then quenched with a saturated aqueous solution 

of NH4Cl (5 mL). The aqueous layer was extracted with Et2O (2 ✕ 10 mL) and the 

combined organic extracts were then washed with brine (5 mL). The organic layer was 

then dried over anhydrous MgSO4, filtered, and concentrated by rotary evaporation. The 

residue was purified by an automated flash chromatography system (0.5 → 15% 

EtOAc/hexanes) providing 0.65 g (69% yield) of silyloxydiene alcohol 2d as a clear 

colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.48; 1H-NMR (500 MHz; CDCl3): δ 

6.25 (s, 1H), 4.47 (s, 1H), 4.29 (s, 1H), 2.02 (s, 3H), 1.40 (s, 6H), 1.27-1.20 (m, 3H), 

1.09 (d, J = 7.5 Hz, 18H).; 13C NMR (125 MHz; CDCl3): δ 158.0, 134.6, 132.8, 91.2, 

71.2, 31.4 (2), 18.2 (6), 14.0, 12.9 (3); IR (thin film): 3406, 2945, 2868, 1664, 1593 cm-

1; HRMS (ESI+) m/z calcd for C17H35O2Si [M+H]+: 299.2406, found: 299.2420. 

 

 
Ethyl (Z)-3-methyl-4-oxooct-2-enoate (S11): To a solution of 2,3-heptanedione S9 

(16.8 mL, 120.0 mmol, 1.2 equiv.) in anhydrous CH2Cl2 (250 mL) was added ethyl 

(triphenylphosphoranylidene)acetate S10 (35.0 g, 100.0 mmol, 1.0 equiv.) and stirred at 

ambient temperature (23 °C) for 30 h. The mixture was filtered through a short pad of 

celite and the filtrate was concentrated using rotary evaporation. The residue was then 

diluted with cold Et2O (200 mL), filtered through a plug of celite and washed with 

additional Et2O (50 mL). The filtrate was concentrated by rotary evaporation and 

purified by an automated flash chromatography system (5 → 15% EtOAc/hexanes) 

providing 10.15 g (51% yield) of ketoester S11 as a pale yellow oil: TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.59; 1H NMR (500 MHz, CDCl3): δ 6.52 (q, J = 1.5 Hz, 

1H), 4.22 (q, J = 7.1 Hz, 2H), 2.68 (t, J = 7.4 Hz, 2H), 2.20 (d, J = 1.5 Hz, 3H), 1.62-

1.56 (m, 2H), 1.36-1.28 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.4 Hz, 3H); 13C 

NMR (125 MHz; CDCl3): δ 202.6, 166.4, 150.8, 125.3, 60.8, 38.1, 26.4, 22.4, 14.3, 

O
O

+ CO2EtPh3P O

CO2Et
CH2Cl2

23 ºC, 30 h

(51%)

S10S9 S11
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14.0, 13.5; IR (thin film): 2961, 2936, 1725, 1687 cm-1; HRMS (ESI+) m/z calcd for 

C11H18LiO3 [M+Li]+: 205.1416, found: 205.1424. 

 

 
Ethyl (2Z,4Z)-3-methyl-4-((triisopropylsilyl)oxy)octa-2,4-dienoate (S12): To a 

solution of ketoester S11 (3.51 g, 17.7 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (60 mL) 

at 0 ºC was added Et3N (3.7 mL, 26.6 mmol, 1.5 equiv.) dropwise. After stirring for 10 

min, TIPSOTf (5.7 mL, 21.2 mmol, 1.2 equiv.) was added over a period of 30 min. The 

reaction was stirred for 2 h at 0 ºC. The mixture was then allowed to warm up to ambient 

temperature (23 ºC) on its own accord and stirred for 22 h. The reaction was quenched 

with a saturated aqueous solution of NaHCO3 (30 mL). The aqueous layer was extracted 

with Et2O (2 ✕ 50 mL) and the combined organic extracts were then washed with brine 

(50 mL). The organic layer was then dried over anhydrous MgSO4, filtered, and 

concentrated by rotary evaporation. The residue was purified by an automated flash 

chromatography system (5 → 25% CH2Cl2/hexanes) providing 1.75 g (28% yield) of 

diene S12 as a pale yellow oil: TLC (CH2Cl2:hexanes, 1:4 v/v): Rf = 0.41; 1H NMR (500 

MHz, CDCl3): δ 6.11 (d, J = 0.5 Hz, 1H), 5.18 (t, J = 7.2 Hz, 1H), 4.16 (q, J = 7.1 Hz, 

2H), 2.27 (d, J = 0.8 Hz, 3H), 2.15 (q, J = 7.4 Hz, 2H), 1.40 (q, J = 7.5 Hz, 2H), 1.27 (t, 

J = 7.1 Hz, 3H), 1.21-1.14 (m, 3H), 1.09 (d, J = 1.9 Hz, 18H), 0.92 (t, J = 7.3 Hz, 3H). 
13C NMR (125 MHz; CDCl3): δ 167.7, 152.1, 151.3, 115.8, 114.8, 59.7, 28.7, 22.7, 18.1 

(6), 15.4, 14.5, 14.1, 13.9 (3); IR (thin film): 2960, 2869, 1716, 1623 cm-1; HRMS 

(MALDI+) m/z calcd for C20H39O3Si [M+H]+: 355.2668, found: 355.2644. 

 

 

 

TIPSOTf, Et3N, CH2Cl2
0 → 23 ºC, 24 h

(28%) TIPSO

CO2Et

S12

O

CO2Et

S11
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(2Z,4Z)-3-methyl-4-((triisopropylsilyl)oxy)octa-2,4-dien-1-ol (2e): To a solution of 

diene S12 (1.1 g, 3.1 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (25 mL) at -78 ºC was 

added DIBAl-H (1.0 M solution in CH2Cl2, 9.3 mL, 3.0 equiv.) dropwise. The reaction 

was stirred for 2 h at -78 ºC then carefully quenched in sequence with H2O (0.37 mL), 

15% aqueous NaOH (0.37 mL), and H2O (0.93 mL). The dry ice/acetone bath was 

removed and the mixture was allowed to warm up to ambient temperature (23 ºC) on its 

own accord. Subsequently, anhydrous MgSO4 was added and the reaction mixture was 

vigorously stirred for 30 min, filtered through a pad of celite and concentrated by rotary 

evaporation. The residue was purified by an automated flash chromatography (5 → 20% 

EtOAc/hexanes) providing 0.80 g (84% yield) of silyloxydiene alcohol 2e as a clear 

colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.36; 1H NMR (500 MHz, CDCl3): δ 

5.95 (td, J = 6.8, 0.8 Hz, 1H), 4.84 (t, J = 7.1 Hz, 1H), 4.26 (d, J = 6.8 Hz, 2H), 2.11 (q, 

J = 7.4 Hz, 2H), 1.79 (d, J = 1.1 Hz, 3H), 1.38 (dq, J = 14.9, 7.4 Hz, 2H), 1.21-1.16 (m, 

3H), 1.10 (d, J = 6.8 Hz, 18H), 0.91 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz; CDCl3): δ 

151.3, 135.8, 124.5, 110.9, 59.9, 28.4, 23.0, 18.2 (6), 14.3, 14.2, 14.0 (3); IR (thin film): 

3332, 2959, 2868, 1626 cm-1; HRMS (ESI+) m/z calcd for C18H37O2Si [M+H]+: 

313.2563, found: 313.2571. 

 

 
Methyl (E)-2,2-dimethyl-5-oxohex-3-enoate (S14): To a solution of 1-(triphenyl-

phosphoranylidene)-2-propanone S1 (4.32 g, 13.6 mmol, 1.3 equiv.) in anhydrous PhMe 

(35 mL) was added methyl 2,2-dimethyl-3-oxopropanoate S13 (1.36 g, 10.5 mmol, 1.0 

equiv.), which was freshly prepared from methyl 2,2-dimethyl-3-hydroxypropionate6 

and used immediately without purification, and the mixture was refluxed (115-120 ºC) 

TIPSO

2e

TIPSO

CO2Et

S12

OHDIBAl-H, CH2Cl2
-78 ºC, 2 h

(84%)

O
PPh3 O

CO2Me
O

CO2Me

H PhMe
reflux, 24 h

(86%)
+

S1 S13 S14
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for 24 h. The mixture was filtered through a short pad of celite and the filtrate was 

concentrated using rotary evaporation. The residue was then diluted with cold Et2O (25 

mL), filtered through a plug of celite and washed with additional Et2O (10 mL). The 

filtrate was concentrated by rotary evaporation and purified by an automated flash 

chromatography system (5 → 20% EtOAc/hexanes) providing 1.52 g (86% yield) of 

ketoester S14 as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.26; 1H NMR 

(500 MHz, CDCl3): δ 6.92 (d, J = 16.3 Hz, 1H), 6.05 (d, J = 16.3 Hz, 1H), 3.68 (s, 3H), 

2.25 (s, 3H), 1.34 (s, 6H); 13C NMR (125 MHz; CDCl3): δ 198.7, 175.4, 150.4, 128.8, 

52.6, 44.8, 27.3, 24.6 (2); IR (thin film): 2983, 2954, 1734, 1702, 1681, 1626 cm-1; 

HRMS (ESI+) m/z calcd for C9H14LiO3 [M+Li]+: 177.1103, found: 177.1108. 

 

 
(E)-2,2-dimethyl-5-((triisopropylsilyl)oxy)hexa-3,5-dien-1-ol (2f): To a solution of 

ketoester S14 (1.52 g, 8.9 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (45 mL) at 0 ºC was 

added Et3N (1.5 mL, 10.7 mmol, 1.2 equiv.) dropwise. After stirring for 10 min, 

TIPSOTf (2.6 mL, 9.6 mmol, 1.1 equiv.) was added over a period of 30 min. The 

reaction was stirred for 2 h at 0 ºC then quenched with a saturated aqueous solution of 

NaHCO3 (20 mL). The aqueous layer was extracted with Et2O (2 ✕ 50 mL) and the 

combined organic extracts were then washed with brine (50 mL). The organic layer was 

then dried over anhydrous MgSO4, filtered, and concentrated by rotary evaporation to 

afford crude diene S15 as a pale yellow oil. The crude material was of sufficient purity 

to be carried on directly to the next step (Note: purification of this compound led to 

extensive loss of material on SiO2). 

To a solution of crude diene S15 in anhydrous THF (64 mL) at 0 ºC was added 

LiAlH4 (2.0 M solution in THF, 4.5 mL, 1.1 equiv.) dropwise. The reaction was stirred 

for 30 min at 0 ºC then allowed to warm up to ambient temperature (23 ºC) and stirred 

for 30 min. The reaction was then cooled to 0 ºC and carefully quenched in sequence 

TIPSO

2f

O
CO2Me

S14

TIPSOTf, Et3N
CH2Cl2, 0 ºC, 2 h

OH

TIPSO
CO2Me

S15

LiAlH4, THF
0 → 23 ºC, 1 h

(69% over 2 steps)
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with 0.36 mL H2O, 0.36 mL 15% aqueous NaOH, and 0.90 mL H2O. The ice bath was 

removed and the mixture was allowed to warm up to ambient temperature (23 ºC) on its 

own accord. Subsequently, anhydrous MgSO4 was added and the reaction mixture was 

vigorously stirred for 30 min, filtered through a pad of celite and concentrated by rotary 

evaporation. The residue was purified by an automated flash chromatography (5 → 20% 

EtOAc/hexanes) providing 1.83 g (69% yield over 2 steps) of silyloxydiene alcohol 2f as 

a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.29; 1H NMR (500 MHz, 

CDCl3): δ 6.00 (d, J = 15.6 Hz, 1H), 5.89 (dd, J = 15.6, 0.8 Hz, 1H), 4.29 (s, 1H), 4.25 

(s, 1H), 3.35 (s, 2H), 1.27-1.19 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H), 1.05 (s, 6H); 13C 

NMR (125 MHz; CDCl3): δ 155.2, 137.5, 127.0, 94.5, 71.7, 38.4, 23.9 (2), 18.2 (6), 12.9 

(3); IR (thin film): 3377, 2948, 2870, 1593 cm-1; HRMS (ESI+) m/z calcd for 

C17H35O2Si [M+H]+: 299.2406, found: 299.2413. 

 

 
3-acetylcyclohex-2-en-1-one (S17): 3-acetylcyclohex-2-en-1-one S17 was prepared by 

a modified reported procedure.7 To a solution of 1-acetyl-1-cyclohexene S16 (5.2 mL, 

40.3 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (150 mL) was added in sequence K2CO3 

(2.78 g, 20.2 mmol, 0.5 equiv.), Rh2(cap)4 (42 mg, 0.064 mmol, 0.0016 equiv.) and 

TBHP (5.0-6.0 M solution in decane, 40.0 mL, 201.5 mmol, 5.0 equiv.). The reaction 

mixture was exposed to air and vigorously stirred at ambient temperature (23 ºC) for 2 h. 

The mixture was filtered through a short pad of SiO2 and the filtrate was concentrated 

using rotary evaporation. Purification by an automated flash chromatography system (5 

→ 20% EtOAc/hexanes) afforded 2.42 g (44% yield) of diketone S17 as a yellow oil: 

TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.20; 1H NMR (500 MHz, CDCl3): δ 6.55 (t, J = 1.7 

Hz, 1H), 2.49 (td, J = 6.0, 1.7 Hz, 2H), 2.44 (t, J = 6.8 Hz, 2H), 2.38 (s, 3H), 2.01 (dt, J 

= 13.1, 6.4 Hz, 2H); 13C NMR (125 MHz; CDCl3): δ 201.5, 200.2, 154.7, 132.5, 38.0, 

O

S16

O

S17

O

Rh2(cap)4, K2CO3
TBHP, CH2Cl2

23 ºC, 2 h

(44%)
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26.2, 23.4, 22.0; IR (thin film): 2955, 1681 cm-1; HRMS (ESI+) m/z calcd for C8H10LiO2 

[M+Li]+: 145.0841, found: 145.0838. 

 

 
3-(1-((triisopropylsilyl)oxy)vinyl)cyclohex-2-en-1-one (S18): To a solution of diketone 

S17 (3.28 g, 23.7 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (100 mL) at 0 ºC was added 

EtN(iPr)2 (9.1 mL, 52.2 mmol, 2.2 equiv.) dropwise. After stirring for 10 min, TIPSOTf 

(7.7 mL, 28.5 mmol, 1.2 equiv.) was added over a period of 30 min. The reaction was 

stirred for 2 h at 0 ºC. The mixture was then allowed to warm up to ambient temperature 

(23 ºC) on its own accord and stirred for 22 h. The reaction was quenched with a 

saturated aqueous solution of NaHCO3 (50 mL). The aqueous layer was extracted with 

Et2O (2 ✕ 50 mL) and the combined organic extracts were then washed with brine (50 

mL). The organic layer was then dried over anhydrous MgSO4, filtered, and 

concentrated by rotary evaporation. The residue was purified by an automated flash 

chromatography system (5 → 15% EtOAc/hexanes) providing 4.94 g (71% yield) of 

diene S18 as a yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.49; 1H NMR (500 

MHz, CDCl3): δ 6.44 (s, 1H), 4.83 (dd, J = 2.1, 0.5 Hz, 1H), 4.61 (dd, J = 2.1, 0.5 Hz, 

1H), 2.48 (td, J = 6.1, 1.3 Hz, 2H), 2.40 (t, J = 6.7 Hz, 2H), 2.06-2.01 (m, 2H), 1.28-1.23 

(m, 3H), 1.09 (d, J = 7.3 Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 200.9, 155.2, 155.1, 

124.6, 96.9, 37.7, 25.6, 22.7, 18.2 (6), 12.9 (3); IR (thin film): 2945, 2867, 1669 cm-1; 

HRMS (ESI+) m/z calcd for C17H31O2Si [M+H]+: 295.2093, found: 295.2116. 

 

 

 

TIPSOTf, EtN( iPr)2
CH2Cl2, 0 → 23 ºC, 24 h

(71%)
O

S17

O
TIPSO
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O
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3-(1-((triisopropylsilyl)oxy)vinyl)cyclohex-2-en-1-ol ((±)-2g): To a solution of diene 

S18 (3.11 g, 10.6 mmol, 1.0 equiv.) in absolute EtOH (105 mL) and anhydrous CH2Cl2 

(105 mL) at 0 ºC was added CeCl3•7H2O (4.33 g, 11.6 mmol, 1.1 equiv.) in one portion. 

After stirring for 20 min, NaBH4 (1.0 g, 26.4 mmol, 2.5 equiv.) was added portionwise 

over a period of 30 min. The reaction was stirred for 30 min at 0 ºC then quenched with 

a saturated aqueous solution of NaHCO3 (20 mL). The aqueous layer was extracted with 

CH2Cl2 (2 ✕ 80 mL) and the combined organic extracts were then washed with brine (20 

mL). The organic layer was then dried over anhydrous MgSO4, filtered, and 

concentrated by rotary evaporation. The residue was purified by an automated flash 

chromatography system (5 → 15% EtOAc/hexanes) providing 2.75 g (88% yield) of 

silyloxydiene alcohol (±)-2g as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 

0.46; 1H NMR (500 MHz, CDCl3): δ 6.30-6.30 (m, 1H), 4.41 (dt, J = 1.6, 0.5 Hz, 1H), 

4.33-4.30 (m, 1H), 4.28 (d, J = 1.6 Hz, 1H), 2.22-2.15 (m, 1H), 2.13-2.07 (m, 1H), 1.91-

1.86 (m, 1H), 1.83-1.76 (m, 1H), 1.65-1.51 (m, 2H), 1.28-1.20 (m, 3H), 1.10 (d, J = 6.7 

Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 156.2, 136.3, 126.8, 91.1, 66.5, 31.9, 25.1, 

19.5, 18.3 (6), 13.0 (3); IR (thin film): 3333, 2943, 2867, 1662, 1593 cm-1; HRMS 

(ESI+) m/z calcd for C17H33O2Si [M+H]+: 297.2250, found: 297.2264. 

 
DAL optimization studies (Tables S1-S3): 

 

NOTE: The relative and absolute configuration of trans-fused bicyclic γ-lactone (+)-3c’ 

was unambiguously assigned by X-ray analysis using anomalous dispersion (see Figure 

S3). Based on this structure, detailed 2D NMR analysis, and computational studies (see 

Figure S6) which predict the endo transition state as the lowest energy pathway, we 

NaBH4, CeCl3•7H2O
EtOH/CH2Cl2 (1:1)

0 ºC, 1 h

(88%)
TIPSO

S18

O
TIPSO

(±)-2g

OH
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propose the relative and absolute configurations of bicyclic γ-lactones 3a and 3a’ as 

shown in Table 1a. 

 

Catalyst screening studies for the enantioselective DAL process (Table S1): Into a 

dried, 2-mL clear-glass vial (12 ✕ 32 mm) equipped with a magnetic stir bar was added 

silyloxydiene alcohol 2a (28 mg, 0.10 mmol, 1.0 equiv.), catalyst (0.020 mmol, 20 

mol%), 2,6-lutidine (35 mL, 0.30 mmol, 3.0 equiv.) and anhydrous CH2Cl2 (1.0 mL, to 

make final concentration of silyloxydiene alcohol 0.1 M) at ambient temperature (23 ºC). 

With vigorous stirring, ethyl fumaroyl chloride 1a (16 mL, 0.12 mmol, 1.2 equiv.) was 

added dropwise. After stirring for 18 h at ambient temperature (23 ºC), the reaction 

mixture was concentrated by rotary evaporation and purified by an automated flash 

chromatography (5 → 20% EtOAc/hexanes) to afford an inseparable 1.5:1 mixture of 

endo/exo diastereomers (as judged by 1H NMR) of bicyclic γ-lactones 3a and 3a’ as a 

clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.47. (HPLC data is provided for 

the 1.5:1 mixture of endo/exo diastereomers) Enantiomeric excess was determined by 

chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel 

OD-H column: hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 10.3 

min, tminor = 10.9 min; tminor = 12.7 min, tmajor = 19.4 min. Absolute stereochemistry was 

assigned by analogy to bicyclic γ-lactone (+)-3c’. (NMR data is provided for the 1.5:1 

mixture of endo/exo diastereomers) 1H NMR (500 MHz; CDCl3): δ 4.78 (s, 1.0H), 4.67 

(dd, J = 3.3, 2.3 Hz, 1.5H), 4.22-4.06 (m, 5.1H), 3.45 (dd, J = 7.6, 2.3 Hz, 1.5H), 3.25-

3.22 (m, 2.4H), 2.96-2.93 (m, 1.6H), 2.90-2.85 (m, 0.9H), 2.43 (d, J = 16.8 Hz, 1.5H), 

2.34 (ddt, J = 17.4, 6.5, 2.5 Hz, 1.5H), 2.17-2.08 (m, 2.9H), 1.43 (s, 3.1H), 1.42 (s, 

3.3H), 1.32 (s, 4.6H), 1.29 (s, 4.4H), 1.24-1.19 (m, 7.4H), 1.13-1.07 (m, 7.7H), 1.03-1.00 

(m, 45.3H). 13C NMR (125 MHz; CDCl3): δ 176.4, 174.2, 172.9, 172.1, 152.8, 150.9, 

101.2, 99.3, 86.2, 84.7, 61.17, 61.16, 46.9, 42.7, 41.5, 40.3, 38.3, 30.5, 30.1, 28.0, 27.6, 

27.5, 24.3, 21.0, 17.9 (12), 14.16, 14.08, 12.57 (3), 12.48 (3); IR (thin film): 2945, 2868, 

1778, 1769, 1739, 1732, 1666, 1645 cm-1; HRMS (ESI+) m/z calcd for C22H39O5Si 

[M+H]+: 411.2567, found: 411.2576.  
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Base screening studies for the enantioselective DAL process (Table S2): Into a dried, 

2-mL clear-glass vial (12 ✕ 32 mm) equipped with a magnetic stir bar was added 

silyloxydiene alcohol 2b (26 mg, 0.10 mmol, 1.0 equiv.), (S)-(–)-BTM (5.0 mg, 0.020 

mmol, 20 mol%), base (0.30 mmol, 3.0 equiv.) and anhydrous CH2Cl2 (1.0 mL, to make 

final concentration of silyloxydiene alcohol 0.1 M) at ambient temperature (23 ºC). With 

vigorous stirring, acryloyl chloride 1b (10 mL, 0.12 mmol, 1.2 equiv.) was added 

TIPSO

2a

OH

+

3a (endo)

TIPSO

O

O

CO2Et

H

H

TIPSO

O

O

CO2Et

H

H
+

3a' (exo)

catalyst (20 mol%)

2,6-lutidine (3.0 equiv.)
CH2Cl2 (0.1 M)

23 ºC, 18 h

N

S N

N

N

Fe
MeMe

Me Me

Me

N

H

TMSO

N

OMe

OBz

OMe

N

H

NH

S N

N

N

H

N

OMe

N N
O ON

H

N

MeO

N N

Me Me
N

S N

TMSQd  (A) (DHQ)2PHAL (B) BzQn  (C)

(–)-Troger's base (E) (R)-(–)-HBTM (F) (S)-(–)-Tetramisole (G) (S)-(–)-BTM (H)

(R)-(+)-PPY* (D)

H

HH
H

entry 

1
2
3
4
5
6
7
8
9

10
11

catalyst (20 mol%) 

–
A
B
C
D
E
F
G
G
H
H

temperature (ºC) 

23
23
23
23
23
23
23
23
23
23
23

dr (endo/exo)¶

1.2 : 1
1.5 : 1
1.5 : 1
1.5 : 1
1.5 : 1
1.5 : 1
1.5 : 1
1.5 : 1
1.5 : 1
1.5 : 1
1.5 : 1

% ee (endo)§,‡

0
2
4
7

10
11
82
90
95
92
99

yield (%)Ø

21
40
31
34
52
35
56
64
60
63
58

Table S1. Catalyst screening studies for the enantioselective DAL process.

¶ Determined by 1H NMR analysis of the crude reaction mixture. § Determined by chiral HPLC analysis. ‡ Enantiomeric 
excess of the major 3a (endo) diastereomer. Ø Isolated yield of the 1.5:1 diastereomeric mixture. † Ethyl fumaroyl 
chloride 1a  in CH2Cl2 (0.3 mL) was added over a period of 5 h by syringe pump addition.

†

†

:

Cl

O

1a

EtO2C
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dropwise. After stirring for 18 h at ambient temperature (23 ºC), the reaction mixture 

was filtered through a short pad of celite and the filtrate was concentrated using rotary 

evaporation. The crude mixture was analyzed by 1H NMR (500 MHz) and purified by an 

automated flash chromatography (5 → 20% EtOAc/hexanes) to afford bicyclic γ-lactone 

(–)-3b. All spectral data matched that reported henceforth. 

 

 

TIPSO

2b
OH

+

(–)-3b

TIPSO

O

O
H

H(S)-(–)-BTM (20 mol%)

base (3.0 equiv.)
CH2Cl2 (0.1 M), 23 ºC, 18 h

entry 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

base 

–
K2CO3
Et3N
EtN( iPr)2
DBU
pyridine
2,6-lutidine
2,6-di-tert-butylpyridine
K3PO4/2,6-lutidine (20 mol%)
2-phenylbenzimidazole
2-phenylquinoline
benzo[h]quinoline
acridine
1,10-phenanthroline
8-(tosylamino)quinoline
2,6-diphenylpyridine

dr (endo/exo)¶

n.d.
n.d.

2.4 : 1
2.4 : 1
2.1 : 1
3.2 : 1
1 : 1

>19 : 1
>19 : 1
1.7 : 1
12 : 1
2.8 : 1
2.8 : 1
4.4 : 1
6.5 : 1

n.d.

ee (%)§,‡

n.d.
n.d.
60
65
11
85
99
99
99
84
96
96
99
97
96
n.d.

conversion (%)†,¶

<5
<5

>95 (60)
>95 (55)
>95 (30)
>95 (46)
>95 (68)
>95 (43)
>95 (64)

>95
>95
>95
>95
>95
>95
<5

Table S2. Base screening studies for the enantioselective DAL process.

¶ Determined by 1H NMR analysis of the crude reaction mixture. § Determined by chiral 
HPLC analysis. ‡ Enantiomeric excess of the major (–)-3b (endo) diastereomer. † Yields in 
parentheses refer to isolated yields. n.d. = not determined.

NtBu tBu NPh Ph

2,6-di-tert-butylpyridine 2,6-diphenylpyridine
N

H
N

2-phenylbenzimidazole

N

benzo[h]quinoline

N

2-phenylquinoline

Ph

N

acridine

N

N

1,10-phenanthroline

N

NHTs

8-(tosylamino)quinoline

Ph

Cl

O

1b
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Solvent screening studies for the enantioselective DAL process (Table S3): Into a 

dried, 2-mL clear-glass vial (12 ✕ 32 mm) equipped with a magnetic stir bar was added 

silyloxydiene alcohol 2b (26 mg, 0.10 mmol, 1.0 equiv.), (S)-(–)-BTM (5.0 mg, 0.020 

mmol, 20 mol%), 2,6-di-tert-butylpyridine (0.30 mmol, 3.0 equiv.) and anhydrous 

solvent (1.0 mL, to make final concentration of silyloxydiene alcohol 0.1 M) at ambient 

temperature (23 ºC). With vigorous stirring, acryloyl chloride 1b (10 mL, 0.12 mmol, 

1.2 equiv.) was added dropwise. After stirring for 18 h at ambient temperature (23 ºC), 

the reaction mixture was filtered through a short pad of celite and the filtrate was 

concentrated using rotary evaporation. The crude mixture of bicyclic γ-lactone (–)-3b 

was analyzed by 1H NMR (500 MHz) and chiral HPLC. All spectral data matched that 

reported henceforth. 

 

entry 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

solvent 

PhMe†,€

PhH†,€

Et2O†,€

1,4-dioxane†

THF†

EtOAc†

DME†,€

CHCl3
CH2Cl2
DCE
acetone†

DMF
DMSO∆

MeCN

dr (endo/exo)Ø

8.3 : 1
11.7 : 1
2.8 : 1
n.d.
n.d.
n.d.

>19 : 1
>19 : 1
>19 : 1
>19 : 1

n.d.
3.7 : 1

n.d.
2.1 : 1

ee (%)‡,§

92
92
48

n.d.
n.d.
n.d.
78
97
99
93
n.d.
36
n.d.
67

¶ The values for relative polarity are normalized from measurements of solvent shifts of 
absorption spectra and were extracted from Christian Reichardt, Solvents and Solvent 
Effects in Organic Chemistry, Wiley-VCH Publishers, 3rd ed., 2003. Ø Determined by 1H 
NMR analysis of the crude reaction mixture. ‡ Determined by chiral HPLC analysis.
§ Enantiomeric excess of the major (–)-3b (endo) diastereomer. † Instantaneous formation 
of precipirate (insoluble acylammonium salt) upon addition of acid chloride. € Reaction 
mixture became homogeneous over a period of 18 h. ∆ Instantaneous exothermic reaction 
upon addition of acid chloride. n.d. = not determined.

TIPSO

2b
OH

+

(–)-3b

TIPSO

O

O
H

H(S)-(–)-BTM (20 mol%)

DTBP (3.0 equiv.)
solvent (0.1 M), 23 ºC, 18 h

Table S3. Solvent screening studies for the enantioselective DAL process.

relative polarity¶ 

0.099
0.111
0.117
0.164
0.207
0.228
0.231
0.259
0.309
0.327
0.355
0.386
0.444
0.460

Cl

O

1b
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Representative procedure for the enantioselective DAL process as described for 

bicyclic γ-lactone (–)-3b: 

 

NOTE: The relative and absolute configuration of trans-fused bicyclic γ-lactone (+)-3c’ 

was unambiguously assigned by X-ray analysis using anomalous dispersion (see Figure 

S3). Based on this structure, detailed 2D NMR analysis, and computational studies (see 

Figure S6) which predict the endo transition state as the lowest energy pathway, we 

propose the relative and absolute configurations of bicyclic lactones 3b–j as shown in 

Figure 2.1. 

 

 
(3aS,7aR)-5-((triisopropylsilyl)oxy)-3a,6,7,7a-tetrahydroisobenzofuran-1(3H)-on ((–

)-3b): To an oven-dried, 25-mL round-bottomed flask equipped with a magnetic stir bar 

was added silyloxydiene alcohol 2b (144 mg, 0.56 mmol, 1.0 equiv.), (S)-(–)-BTM (28 

mg, 0.11 mmol, 20 mol%), 2,6-lutidine (13 mL, 0.11 mmol, 20 mol%), K3PO4 (0.36 g, 

1.68 mmol, 3.0 equiv.) and anhydrous CH2Cl2 (4.0 mL, to make final concentration of 

silyloxydiene alcohol 0.1 M) at ambient temperature (23 ºC). With vigorous stirring, 

acryloyl chloride 1b (68 mL, 0.84 mmol, 1.5 equiv.) in CH2Cl2 (1.6 mL) was added over 

a period of 5 h by syringe pump addition. After stirring for an additional 13 h, the 

reaction mixture was filtered through a pad of celite and concentrated by rotary 

evaporation. Purification by an automated flash chromatography (5 → 20% 

EtOAc/hexanes) afforded a single diastereomer (as judged by 1H NMR) of bicyclic γ-

lactone (–)-3b (107 mg, 62% yield, 94% ee) as a clear colorless oil: TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.34; α[ ]D
17.7 = –52.31 (c = 1.30, CHCl3). Enantiomeric 

excess was determined by chiral HPLC analysis in comparison with authentic racemic 

material using a Chiralcel OD-H column: hexanes:iPrOH = 98:02, flow rate 0.5 mL/min, 

TIPSO

O

O
H

H

TIPSO

2b
OH

(S)-(–)-BTM (20 mol%) 

2,6-lutidine (20 mol%)
K3PO4 (3.0 equiv.)

CH2Cl2 (0.1 M), 23 ºC, 18 h
(62% yield, >19:1 endo/exo, 94% ee)

+

(–)-3b

Cl

O

1b
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λ = 210 nm: tmajor = 15.9 min, tminor = 17.9 min; 94% ee. Absolute stereochemistry was 

assigned by analogy to bicyclic γ-lactone (+)-3c’. 1H NMR (500 MHz; CDCl3): δ 4.77-

4.77 (m, 1H), 4.33 (dd, J = 8.8, 5.9 Hz, 1H), 3.99 (dd, J = 8.8, 2.0 Hz, 1H), 3.17-3.13 

(m, 1H), 2.75 (dt, J = 7.6, 4.0 Hz, 1H), 2.22-2.14 (m, 2H), 2.03-1.97 (m, 1H), 1.87-1.80 

(m, 1H), 1.15-1.11 (m, 3H), 1.06 (dd, J = 7.1, 2.9 Hz, 18H); 13C NMR (125 MHz; 

CDCl3): δ 178.6, 153.8, 102.2, 73.2, 37.7, 35.6, 26.2, 20.7, 18.0 (6), 12.7 (3); IR (thin 

film): 2944, 2867, 1775, 1665 cm-1; HRMS (ESI+) m/z calcd for C17H30LiO3Si [M+Li]+: 

317.2124, found: 317. 2119. 

 

 
Ethyl (3aS,4S,7aS)-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydroiso-

benzofuran-4-carboxylate ((–)-3c): Prepared according to the representative procedure 

using silyloxydiene alcohol 2b (1.44 g, 5.6 mmol, 1.0 equiv.), (S)-(–)-BTM (283 mg, 1.1 

mmol, 20 mol%), 2,6-lutidine (0.13 mL, 1.1 mmol, 20 mol%), K3PO4 (3.6 g, 16.8 mmol, 

3.0 equiv.) in anhydrous CH2Cl2 (40 mL, to make final concentration of silyloxydiene 

alcohol 0.1 M) and ethyl fumaroyl chloride 1a (0.97 mL, 7.3 mmol, dissolved in 16 mL 

CH2Cl2, 1.3 equiv.) at ambient temperature (23 ºC). Upon completion (as judged by 

TLC), the reaction mixture was purified by an automated flash chromatography (5 → 

20% EtOAc/hexanes) to afford a single diastereomer (as judged by 1H NMR) of bicyclic 

γ-lactone (–)-3c (1.46 g, 68% yield, 99% ee) and ester S19 (0.41 g, 19% yield) shown 

below. 

(–)-3c: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.49; α[ ]D
22.1= –81.33 (c = 

3.00, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 15.4 min, tmajor = 

TIPSO

O

O
H

H

TIPSO

2b
OH

+

(–)-3c

CO2Et
(S)-(–)-BTM (20 mol%) 

2,6-lutidine (20 mol%)
K3PO4 (3.0 equiv.)

CH2Cl2 (0.1 M), 23 ºC, 18 h
(68% yield, >19:1 endo/exo, 99% ee)

[gram scale]

Cl

O

1a
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18.1 min; 99% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ-

lactone (+)-3c’. 1H NMR (500 MHz; CDCl3): δ 4.73 (t, J = 2.5 Hz, 1H), 4.37 (dd, J = 

8.8, 5.6 Hz, 1H), 4.22-4.09 (m, 2H), 4.03 (d, J = 8.8 Hz, 1H), 3.30-3.26 (m, 2H), 3.20 

(dd, J = 7.3, 2.3 Hz, 1H), 2.49 (dd, J = 17.7, 1.4 Hz, 1H), 2.39 (ddt, J = 17.7, 6.9, 2.4 Hz, 

1H), 1.25 (t, J = 7.1 Hz, 3H), 1.16-1.09 (m, 3H), 1.04 (d, J = 6.4 Hz, 18H); 13C NMR 

(125 MHz; CDCl3): δ 177.2, 172.9, 151.3, 101.7, 73.3, 61.3, 39.4, 37.8, 34.1, 27.9, 17.9 

(6), 14.1, 12.6 (3); IR (thin film): 2945, 2867, 1773, 1732, 1668 cm-1; HRMS (ESI+) m/z 

calcd for C20H34NaO5Si [M+Na]+: 405.2068, found: 405.2088. 

 

Ethyl ((E)-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-yl) 

fuma-rate (S19): pale yellow oil; TLC (EtOAc:hexanes, 1:9 

v/v): Rf = 0.78. 1H NMR (500 MHz; CDCl3): δ 6.92-6.80 (m, 

2H), 6.16-6.08 (m, 2H), 4.77 (d, J = 4.8 Hz, 2H), 4.37 (s, 1H), 

4.32 (s, 1H), 4.26 (q, J = 7.1 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H), 1.27-1.20 (m, 3H), 1.10 

(d, J = 7.3 Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 165.1, 164.8, 154.3, 134.1, 133.5, 

132.3, 123.1, 96.3, 65.1, 61.5, 18.2 (6), 14.3, 12.9 (3); IR (thin film): 2946, 2869, 1727, 

1594 cm-1; HRMS (ESI+) m/z calcd for C20H34LiO5Si [M+Li]+: 389.2336, found: 

389.2332. 

 

Use of a lower catalyst loading for the DAL (10 mol%) as described for bicyclic g-

lactone (–)-3c: This reaction was performed according to the procedure described above 

for (–)-3c with the exception that a lower catalyst loading (10 vs. 20 mol%), a lower 

“shuttle” base loading (10 vs. 20 mol%) and a longer addition time (10 vs. 5 h) were 

employed. Silyloxydiene alcohol 2b (100 mg, 0.39 mmol, 1.0 equiv.), (S)-(–)-BTM (10 

mg, 0.039 mmol, 10 mol%), 2,6-lutidine (4.5 mL, 0.039 mmol, 10 mol%), K3PO4 (248 

mg, 1.2 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (3.0 mL, to make final concentration of 

silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (68 mL, 0.51 mmol, 

dissolved in 0.9 mL CH2Cl2, 1.3 equiv.). The solution of ethyl fumaroyl chloride 1a was 

added by syringe pump over 10 h and the reaction was allowed to stir for 8 h at ambient 

TIPSO

O O

CO2Et

S19
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temperature (23 ºC). Upon completion (as judged by TLC), the reaction mixture was 

purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a 

single diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (–)-3c (59 mg, 40% 

yield, 98% ee) and ester S19 (34 mg, 23% yield). Enantiomeric excess was determined 

by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel 

OD-H column: hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 15.3 

min, tmajor = 18.2 min; 98% ee. All spectral data matched that reported above. 

 

 
(3aR,7aR)-4-methyl-5-((triisopropylsilyl)oxy)-3a,6,7,7a-tetrahydroisobenzofuran-

1(3H)-one ((–)-3d): Prepared according to the representative procedure using 

silyloxydiene alcohol 2c (4.0 g, 14.8 mmol, 1.0 equiv.), (S)-(–)-BTM (747 mg, 2.9 

mmol, 20 mol%), 2,6-lutidine (0.34 mL, 2.9 mmol, 20 mol%), K3PO4 (9.4 g, 44.4 mmol, 

3.0 equiv.) in anhydrous CH2Cl2 (130 mL, to make final concentration of silyloxydiene 

alcohol 0.1 M) and acryloyl chloride 1b (1.8 mL, 22.2 mmol, dissolved in 18 mL 

CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). Upon completion (as judged by 

TLC), the reaction mixture was purified by an automated flash chromatography (5 → 

20% EtOAc/hexanes) to afford a single diastereomer (as judged by 1H NMR) of bicyclic 

γ-lactone (–)-3d (4.03 g, 84% yield, 99% ee) as a clear colorless oil: TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.37; α[ ]D
20.3= –87.50 (c = 1.60, CHCl3). Enantiomeric 

excess was determined by chiral HPLC analysis in comparison with authentic racemic 

material using a Chiralcel AS-H column: hexanes:iPrOH = 99:01, flow rate 1.0 mL/min, 

λ = 210 nm: tmajor = 10.3 min, tminor = 11.5 min; 99% ee. Absolute stereochemistry was 

assigned by analogy to bicyclic γ-lactone (+)-3c’. 1H NMR (500 MHz; CDCl3): δ 4.32 

(dd, J = 9.0, 6.5 Hz, 1H), 4.14 (dd, J = 9.0, 3.1 Hz, 1H), 3.04-3.01 (m, 1H), 2.77 (dt, J = 

TIPSO

O

O
H

H

TIPSO

2c
OH

(S)-(–)-BTM (20 mol%) 

2,6-lutidine (20 mol%)
K3PO4 (3.0 equiv.)

CH2Cl2 (0.1 M), 23 ºC, 18 h
(84% yield, >19:1 endo/exo, 99% ee)

[gram scale]
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7.7, 5.0 Hz, 1H), 2.24-2.17 (m, 1H), 2.13-2.08 (m, 1H), 2.07-2.01 (m, 1H), 1.86-1.79 (m, 

1H), 1.66 (s, 3H), 1.14-1.09 (m, 3H), 1.06 (dd, J = 6.6, 2.1 Hz, 18H); 13C NMR (125 

MHz; CDCl3): δ 178.9, 146.8, 107.7, 71.2, 40.6, 38.5, 27.0, 21.2, 18.1 (6), 14.2, 13.3 

(3); IR (thin film): 2944, 2867, 1775, 1677 cm-1; HRMS (ESI+) m/z calcd for 

C18H32NaO3Si [M+Na]+: 347.2018, found: 347.2024. 

 

 
Ethyl (3aS,4S,7aR)-7-methyl-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexa-

hydroisobenzofuran-4-carboxylate ((–)-3e): Prepared according to the representative 

procedure using silyloxydiene alcohol 2c (50 mg, 0.19 mmol, 1.0 equiv.), (S)-(–)-BTM 

(9.3 mg, 0.037 mmol, 20 mol%), 2,6-lutidine (4.3 mL, 0.037 mmol, 20 mol%), K3PO4 

(98 mg, 0.46 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (1.0 mL, to make final 

concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (37 mL, 

0.28 mmol, dissolved in 0.9 mL CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). 

Upon completion (as judged by TLC), the reaction mixture was purified by an 

automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single 

diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (–)-3e (67 mg, 92% yield, 

99% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:4 v/v): Rf = 0.62; α[ ]D
20.2 = –

78.86 (c = 3.50, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis 

in comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 98:02, flow rate 0.4 mL/min, λ = 210 nm: tmajor = 20.0 min, tminor = 

21.3 min; 99% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ-

lactone (+)-3c’. 1H NMR (500 MHz; CDCl3): δ 4.33 (dd, J = 9.1, 6.0 Hz, 1H), 4.23-4.20 

(m, 1H), 4.20-4.08 (m, 2H), 3.24 (ddd, J = 7.5, 3.2, 1.2 Hz, 1H), 3.22-3.20 (m, 1H), 

3.19-3.16 (m, 1H), 2.51 (ddq, J = 17.1, 2.4, 1.2 Hz, 1H), 2.43 (ddquint, J = 17.1, 6.5, 2.3 
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Hz, 1H), 1.63 (t, J = 0.9 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.16-1.10 (m, 3H), 1.05 (dd, J 

= 6.9, 3.3 Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 177.5, 172.8, 144.2, 107.4, 71.0, 

61.3, 40.0, 39.2, 38.0, 28.5, 18.0 (6), 14.1, 13.9, 13.2 (3); IR (thin film): 2945, 2868, 

1777, 1732, 1679 cm-1; HRMS (ESI+) m/z calcd for C21H37O5Si [M+H]+: 397.2410, 

found: 397.2432. 

 

 
Ethyl (3aS,4S,7aR)-1,1,7-trimethyl-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-

hexahydroisobenzofuran-4-carboxylate ((–)-3f): Prepared according to the 

representative procedure using silyloxydiene alcohol 2d (30 mg, 0.10 mmol, 1.0 equiv.), 

(S)-(–)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-lutidine (2.3 mL, 0.020 mmol, 20 

mol%), K3PO4 (64 mg, 0.30 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (0.7 mL, to make 

final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (20 

mL, 0.15 mmol, dissolved in 0.3 mL CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). 

Upon completion (as judged by TLC), the reaction mixture was purified by an 

automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single 

diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (–)-3f (25 mg, 74% yield, 

98% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.35; α[ ]D
18.4 = –

25.60 (c = 2.50, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis 

in comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.6 min, tminor = 

13.6 min; 98% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ-

lactone (+)-3c’. 1H NMR (500 MHz; CDCl3): δ 4.17 (q, J = 7.1 Hz, 2H), 3.37 (ddd, J = 

9.1, 6.3, 0.9 Hz, 1H), 3.10 (q, J = 5.9 Hz, 1H), 2.92 (d, J = 9.5 Hz, 1H), 2.50 (ddd, J = 

16.4, 5.6, 1.2 Hz, 1H), 2.30 (ddt, J = 16.4, 5.4, 1.8 Hz, 1H), 1.65 (s, 3H), 1.52 (s, 3H), 
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1.34 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.15-1.10 (m, 3H), 1.08 (d, J = 6.8 Hz, 18H); 13C 

NMR (125 MHz; CDCl3): δ 176.5, 172.9, 145.5, 107.1, 87.5, 61.3, 49.3, 42.0, 40.5, 

30.4, 30.3, 25.3, 18.1 (6), 17.0, 14.3, 13.3 (3); IR (thin film): 2945, 2868, 1768, 1735, 

1671 cm-1; HRMS (ESI+) m/z calcd for C23H41O5Si [M+H]+: 425.2723, found: 

425.2705. 

 

 
Ethyl (3aR,4R,7aS)-1,1,7-trimethyl-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-

hexahydroisobenzofuran-4-carboxylate ((+)-3f): Prepared according to the 

representative procedure using silyloxydiene alcohol 2d (554 mg, 1.86 mmol, 1.0 

equiv.), (R)-(+)-BTM (94 mg, 0.37 mmol, 20 mol%), 2,6-lutidine (43 mL, 0.37 mmol, 

20 mol%), K3PO4 (1.20 g, 5.57 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (13 mL, to make 

final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (0.37 

mL, 2.78 mmol, dissolved in 5.5 mL CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). 

Upon completion (as judged by TLC), the reaction mixture was purified by an 

automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single 

diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (+)-3f (558 mg, 71% yield, 

96% ee) as a clear colorless oil: α[ ]D
19.0 = +27.83 (c = 2.30, CHCl3). Enantiomeric excess 

was determined by chiral HPLC analysis in comparison with authentic racemic material 

using a Chiralcel OD-H column: hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 

nm: tminor = 11.4 min, tmajor = 13.5 min; 96% ee. Absolute stereochemistry was assigned 

by analogy to bicyclic γ-lactone (+)-3c’. All spectral data matched that reported above. 
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(3aR,7S,7aR)-4,7-dimethyl-5-((triisopropylsilyl)oxy)-3a,6,7,7a-tetrahydroisobenzo-

furan-1(3H)-one ((–)-3g): Prepared according to the representative procedure using 

silyloxydiene alcohol 2c (287 mg, 1.06 mmol, 1.0 equiv.), (S)-(–)-BTM (53 mg, 0.21 

mmol, 20 mol%), 2,6-lutidine (25 mL, 0.21 mmol, 20 mol%), K3PO4 (675 mg, 3.18 

mmol, 3.0 equiv.) in anhydrous CH2Cl2 (7.5 mL, to make final concentration of 

silyloxydiene alcohol 0.1 M) and crotonoyl chloride 1c (0.15 mL, 1.6 mmol, dissolved in 

2.5 mL CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). Upon completion (as judged 

by TLC), the reaction mixture was purified by an automated flash chromatography (5 → 

20% EtOAc/hexanes) to afford a single diastereomer (as judged by 1H NMR) of bicyclic 

γ-lactone (–)-3g (197 mg, 55% yield, 95% ee) as a clear colorless oil: TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.43; α[ ]D
20.5= –64.57 (c = 7.00, CHCl3). Enantiomeric 

excess was determined by chiral HPLC analysis in comparison with authentic racemic 

material using a Chiralcel OD-H column: hexanes:iPrOH = 98:02, flow rate 0.5 mL/min, 

λ = 210 nm: tminor = 16.0 min, tmajor = 17.0 min; 95% ee. Absolute stereochemistry was 

assigned by analogy to bicyclic γ-lactone (+)-3c’. 1H NMR (500 MHz; CDCl3): δ 4.33 

(dd, J = 8.8, 6.7 Hz, 1H), 4.09 (dd, J = 8.8, 4.7 Hz, 1H), 2.99 (q, J = 5.8 Hz, 1H), 2.39 (t, 

J = 6.8 Hz, 1H), 2.33-2.30 (m, 1H), 2.29-2.27 (m, 1H), 1.85-1.80 (m, 1H), 1.63 (s, 3H), 

1.13-1.09 (m, 6H), 1.05 (dd, J = 6.7, 2.3 Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 

178.3, 144.9, 106.4, 71.5, 44.6, 39.8, 35.2, 26.9, 19.2, 18.1 (6), 13.9, 13.2 (3); IR (thin 

film): 2945, 2868, 1772, 1678 cm-1; HRMS (ESI+) m/z calcd for C19H35O3Si [M+H]+: 

339.2355, found: 339.2382. 
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(3aS,7aR)-4,7a-dimethyl-5-((triisopropylsilyl)oxy)-3a,6,7,7a-tetrahydroisobenzo-

furan-1(3H)-one ((–)-3h): Prepared by a modified representative procedure. To an 

oven-dried, 50-mL round-bottomed flask equipped with a magnetic stir bar was added 

(S)-(–)-BTM (87 mg, 0.34 mmol, 20 mol%), 2,6-lutidine (40 mL, 0.34 mmol, 20 mol%), 

K3PO4 (1.10 g, 5.16 mmol, 3.0 equiv.) and anhydrous CH2Cl2 (10 mL, to make final 

concentration of silyloxydiene alcohol 0.07 M) at ambient temperature (23 ºC). With 

vigorous stirring, silyloxydiene alcohol 2c (464 mg, 1.72 mmol, 1.0 equiv.) in CH2Cl2 

(3.5 mL) and methacryloyl chloride 1d (0.25 mL, 2.58 mmol, 1.5 equiv.) in CH2Cl2 (3.5 

mL) were simultaneously added over a period of 8 h using two separate syringe pumps. 

After stirring for an additional 10 h, the reaction mixture was filtered through a pad of 

celite and concentrated by rotary evaporation. Purification by an automated flash 

chromatography (5 → 20% EtOAc/hexanes) afforded a single diastereomer (as judged 

by 1H NMR) of bicyclic γ-lactone (–)-3h (266 mg, 46% yield, 91% ee) as a clear 

colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.45; α[ ]D
20.4 = –60.00 (c = 0.40, 

CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in comparison 

with authentic racemic material using a Chiralcel AS-H column: hexanes:iPrOH = 98:02, 

flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.8 min, tminor = 14.0 min; 91% ee. Absolute 

stereochemistry was assigned by analogy to bicyclic γ-lactone (+)-3c’. 1H NMR (500 

MHz; CDCl3): δ 4.45 (dd, J = 8.9, 7.3 Hz, 1H), 3.97 (dd, J = 8.9, 6.2 Hz, 1H), 2.63 (t, J 

= 6.7 Hz, 1H), 2.17-2.13 (m, 2H), 1.94 (ddd, J = 13.2, 7.3, 5.9 Hz, 1H), 1.64 (s, 3H), 

1.63-1.59 (m, 1H), 1.25 (s, 3H), 1.15-1.11 (m, 3H), 1.08 (d, J = 6.3 Hz, 18H); 13C NMR 

(125 MHz; CDCl3): δ 181.7, 145.6, 107.7, 70.6, 47.8, 41.1, 28.6, 26.7, 21.5, 18.1 (6), 

17.8, 13.3 (3); IR (thin film): 2944, 2867, 1776, 1680 cm-1; HRMS (ESI+) m/z calcd for 

C19H34NaO3Si [M+Na]+: 361.2175, found: 361.2181. 
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Ethyl (3aS,4S,5S,7aS)-7-methyl-3-oxo-5-propyl-6-((triisopropylsilyl)oxy)-1,3,3a,4, 

5,7a-hexahydroisobenzofuran-4-carboxylate ((+)-3i): Prepared according to the 

representative procedure using silyloxydiene alcohol 2e (740 mg, 2.37 mmol, 1.0 

equiv.), (S)-(–)-BTM (120 mg, 0.47 mmol, 20 mol%), 2,6-lutidine (55 mL, 0.47 mmol, 

20 mol%), K3PO4 (1.50 g, 7.11 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (17 mL, to make 

final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (0.47 

mL, 3.56 mmol, dissolved in 6.0 mL CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). 

Upon completion (as judged by TLC), the reaction mixture was purified by an 

automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single 

diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (+)-3i (496 mg, 48% yield, 

99% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.44; α[ ]D
19.0 = 

+61.33 (c = 1.50, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis 

in comparison with authentic racemic material using a Chiralcel AD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.4 min, tminor = 

12.7 min; 99% ee. The relative stereochemistry of bicyclic γ-lactone (+)-3i was assigned 

based on detailed 2D NMR analysis following g-lactone ring opening with 4-

bromobenzylamine as described for amide (–)-S20 (page S29). Absolute stereochemistry 

was assigned by analogy to bicyclic g-lactone (+)-3c’. 1H NMR (500 MHz; CDCl3): δ 

4.39 (dd, J = 7.9, 6.1 Hz, 1H), 4.29-4.17 (m, 2H), 3.90 (dd, J = 10.9, 8.0 Hz, 1H), 2.85 

(dd, J = 11.5, 6.3 Hz, 1H), 2.80-2.74 (m, 1H), 2.69 (dd, J = 13.6, 11.5 Hz, 1H), 2.53 (t, J 

= 6.2 Hz, 1H), 1.65-1.57 (m, 5H), 1.31 (t, J = 7.2 Hz, 3H), 1.28-1.25 (m, 1H), 1.19-1.13 

(m, 4H), 1.10 (d, J = 5.7 Hz, 18H), 0.84 (t, J = 7.2 Hz, 3H); 13C NMR (125 MHz; 

CDCl3): δ 174.6, 170.9, 148.2, 109.0, 70.6, 61.1, 44.0, 43.9, 43.6, 41.2, 32.9, 22.0, 18.2 
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(6), 14.8, 14.2, 13.8, 13.1 (3); IR (thin film): 2946, 2869, 1794, 1736, 1658 cm-1; HRMS 

(ESI+) m/z calcd for C24H43O5Si [M+H]+: 439.2880, found: 439.2882.  

 

Use of a lower catalyst loading for the DAL (5 mol%) as described for bicyclic g-

lactone (+)-3i: This reaction was performed according to the procedure described above 

for (+)-3i with the exception that a lower catalyst loading (5 vs. 20 mol%), a lower 

“shuttle” base loading (5 vs. 20 mol%) and a longer addition time (15 vs. 5 h) were 

employed. Silyloxydiene alcohol 2e (31 mg, 0.10 mmol, 1.0 equiv.), (S)-(–)-BTM (1.3 

mg, 0.0050 mmol, 5 mol%), 2,6-lutidine (0.6 mL, 0.0050 mmol, 5 mol%), K3PO4 (64 

mg, 0.30 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (0.7 mL, to make final concentration of 

silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (20 mL, 0.15 mmol, 

dissolved in 0.3 mL CH2Cl2, 1.5 equiv.). The solution of ethyl fumaroyl chloride 1a was 

added by syringe pump over 15 h and the reaction was allowed to stir for 3 h at ambient 

temperature (23 ºC). Upon completion (as judged by TLC), the reaction mixture was 

purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a 

single diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (+)-3i (16 mg, 37% 

yield, 97% ee) as a clear colorless oil. Enantiomeric excess was determined by chiral 

HPLC analysis in comparison with authentic racemic material using a Chiralcel AD-H 

column: hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.4 min, 

tminor = 12.8 min; 97% ee. All spectral data matched that reported above. 

 

 
Ethyl (1S,2S,5S,6S)-6-((4-bromobenzyl)carbamoyl)-5-(hydroxymethyl)-4-methyl-2-

propyl-3-((triisopropylsilyl)oxy)cyclohex-3-ene-1-carboxylate ((–)-S20): Into an 

oven-dried, 10-mL round-bottomed flask containing a solution of bicyclic γ-lactone (+)-

3i (120 mg, 0.27 mmol, 1.0 equiv.) in THF (2.7 mL, to make final concentration of 
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bicyclic g-lactone 0.1 M), was added dropwise 4-bromobenzylamine (0.14 mL, 1.1 

mmol, 4.0 equiv.). The reaction was allowed to stir at ambient temperature (23 ºC) for 

30 h. Upon completion (as judged by TLC), the reaction was concentrated by rotary 

evaporation and purified by an automated flash chromatography system (20 → 50% 

EtOAc/hexanes) to afford amide (–)-S20 (86 mg, 51% yield) as a pale yellow solid: m.p. 

126-130 ºC; TLC (EtOAc:hexanes, 1:2 v/v): Rf = 0.55; α[ ]D
18.1= –14.10 (c = 8.60, 

CHCl3). 1H NMR (500 MHz; CDCl3): δ 7.42 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.2 Hz, 

2H), 6.70 (t, J = 5.8 Hz, 1H), 4.43 (dd, J = 15.0, 6.1 Hz, 1H), 4.31 (dd, J = 15.0, 5.6 Hz, 

1H), 4.10-4.00 (m, 2H), 3.70 (dd, J = 11.1, 4.6 Hz, 1H), 3.63 (dd, J = 11.2, 2.5 Hz, 1H), 

3.15 (dd, J = 12.4, 4.5 Hz, 1H), 2.98 (dd, J = 12.3, 8.6 Hz, 1H), 2.49-2.45 (m, 2H), 1.60 

(s, 3H), 1.44-1.37 (m, 2H), 1.27-1.13 (m, 8H), 1.11 (t, J = 6.3 Hz, 18H), 0.81 (t, J = 7.2 

Hz, 3H); 13C NMR (125 MHz; CDCl3): δ 175.4, 173.7, 150.8, 137.7, 131.7 (2), 129.6 

(2), 121.2, 107.3, 62.6, 60.6, 45.7, 44.9, 43.1, 42.0, 40.9, 34.2, 21.6, 18.2 (6), 14.9, 14.1, 

14.0, 13.6 (3); IR (thin film): 3424, 3288, 2945, 2868, 1731, 1676, 1632, 1556 cm-1; 

HRMS (ESI+) m/z calcd for C31H51BrNO5Si [M+H]+: 624.2720, found: 624.2693. 

 

 
Ethyl (4aS,8S,8aS)-4,4-dimethyl-1-oxo-6-((triisopropylsilyl)oxy)-3,4,4a,7,8,8a-hexa 

hydro-1H-isochromene-8-carboxylate ((+)-3j): Prepared according to the 

representative procedure using silyloxydiene alcohol 2f (30 mg, 0.10 mmol, 1.0 equiv.), 

(S)-(–)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-lutidine (2.3 mL, 0.020 mmol, 20 

mol%), K3PO4 (64 mg, 0.30 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (0.7 mL, to make 

final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (20 

mL, 0.15 mmol, dissolved in 0.3 mL CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). 

Upon completion (as judged by TLC), the reaction mixture was purified by an 
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automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single 

diastereomer (as judged by 1H NMR) of bicyclic δ-lactone (+)-3j (23 mg, 54% yield, 

92% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.35; α[ ]D
18.6 = 

+21.05 (c = 0.57, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis 

in comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 10.7 min, tmajor = 

12.5 min; 92% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ-

lactone (+)-3c’. 1H NMR (500 MHz; CDCl3): δ 4.79-4.78 (m, 1H), 4.17-4.04 (m, 2H), 

3.94 (d, J = 10.9 Hz, 1H), 3.80 (dd, J = 10.9, 1.5 Hz, 1H), 3.49 (dt, J = 4.8, 2.4 Hz, 1H), 

3.32 (dd, J = 7.1, 3.1 Hz, 1H), 2.49-2.44 (m, 2H), 2.31 (ddt, J = 17.5, 6.2, 3.0 Hz, 1H), 

1.21 (t, J = 7.1 Hz, 3H), 1.14 (s, 3H), 1.12-1.07 (m, 3H), 1.02 (d, J = 6.7 Hz, 18H), 0.90 

(s, 3H); 13C NMR (125 MHz; CDCl3): δ 172.9, 172.2, 152.2, 100.4, 75.8, 61.0, 40.1, 

39.4, 38.4, 33.2, 27.7, 24.3, 22.6, 18.0 (6), 14.2, 12.6 (3); IR (thin film): 2945, 2868, 

1730, 1661 cm-1; HRMS (ESI+) m/z calcd for C23H41O5Si [M+H]+: 425.2723, found: 

425.2725. 

 

Representative procedure for the stereodivergent DAL process as described for 

bicyclic γ-lactones (–)-3k and (+)-3k’: 

 

 
Ethyl (2aS,2a1R,3S,8aS)-2-oxo-5-((triisopropylsilyl)oxy)-2a,2a1,3,4,6,7,8,8a-octa-

hydro-2H-naphtho[1,8-bc]furan-3-carboxylate ((–)-3k) and ethyl (2aS,2a1R,3S, 

8aR)-2-oxo-5-((triisopropylsilyl)oxy)-2a,2a1,3,4,6,7,8,8a-octahydro-2H-naphtho[1,8 -

bc]furan-3-carboxylate ((–)-3k’): Prepared according to the representative procedure 

TIPSO

(±)-2g

OH

(S)-(–)-BTM (20 mol%) 

2,6-lutidine (20 mol%)

K3PO4 (3.0 equiv.)
CH2Cl2 (0.1 M), 23 ºC, 18 h

+

TIPSO

O
O

CO2EtTIPSO

O
O

CO2Et

(–)-3k'
1

35% yield
>19:1 endo/exo

99% ee

(–)-3k
1.4

50% yield
>19:1 endo/exo

99% ee

H

HH

H
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+
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using silyloxydiene alcohol (±)-2g (250 mg, 0.84 mmol, 1.0 equiv.), (S)-(–)-BTM (43 

mg, 0.17 mmol, 20 mol%), 2,6-lutidine (20 mL, 0.17 mmol, 20 mol%), K3PO4 (535 mg, 

2.52 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (6.5 mL, to make final concentration of 

silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (0.17 mL, 1.26 mmol, 

dissolved in 1.9 mL CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). Upon 

completion (as judged by TLC), the reaction mixture was purified by an automated flash 

chromatography (5 → 20% EtOAc/hexanes) to afford a single endo diastereomer (as 

judged by 1H NMR) of bicyclic γ-lactone (–)-3k (179 mg, 50% yield, 99% ee) and a 

single endo diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (–)-3k’ (124 mg, 

35% yield, 99% ee). 

(–)-3k: colorless solid; m.p. 58-61 ºC (recrystallized from hexanes); TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.30; α[ ]D
19.2 = –31.30 (c = 2.30, CHCl3). Enantiomeric 

excess was determined by chiral HPLC analysis in comparison with authentic racemic 

material using a Chiralcel AS-H column: hexanes:iPrOH = 97:03, flow rate 0.5 mL/min, 

λ = 210 nm: tmajor = 21.1 min, tminor = 28.6 min; 99% ee. Absolute stereochemistry was 

assigned based on X-ray analysis using anomalous dispersion (see Figure S1). 1H NMR 

(500 MHz; CDCl3): δ 4.56 (q, J = 3.3 Hz, 1H), 4.18-4.05 (m, 2H), 3.23-3.19 (m, 2H), 

3.03-3.01 (m, 1H), 2.92-2.89 (m, 1H), 2.52-2.50 (m, 2H), 2.15-2.12 (m, 1H), 1.71-1.64 

(m, 1H), 1.58-1.54 (m, 1H), 1.48-1.35 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 1.14-1.08 (m, 

3H), 1.03 (d, J = 6.6 Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 177.6, 173.2, 142.9, 

109.6, 79.5, 61.3, 43.0, 38.4, 36.6, 27.9, 27.6, 24.4, 20.7, 18.0 (6), 14.2, 13.3 (3); IR 

(thin film): 2944, 2867, 1778, 1733, 1677 cm-1; HRMS (ESI+) m/z calcd for C23H39O5Si 

[M+H]+: 423.2567, found: 423.2558. 

(–)-3k’: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.42; α[ ]D
19.0 = –13.33 (c 

= 0.60, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 17.4 min, tmajor = 

25.7 min; 99% ee. Absolute stereochemistry was assigned by derivatization as described 
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below. 1H NMR (500 MHz; CDCl3): δ 4.27-4.15 (m, 2H), 3.86 (td, J = 11.2, 3.4 Hz, 

1H), 2.93-2.86 (m, 2H), 2.75 (ddd, J = 14.0, 5.1, 1.5 Hz, 1H), 2.56-2.50 (m, 1H), 2.47 

(dd, J = 11.0, 6.8 Hz, 1H), 2.26 (dq, J = 11.4, 3.5 Hz, 1H), 2.18 (dd, J = 15.6, 3.2 Hz, 

1H), 1.98-1.93 (m, 1H), 1.74-1.69 (m, 1H), 1.65 (td, J = 12.0, 4.0 Hz, 1H), 1.49-1.39 (m, 

1H), 1.27 (t, J = 7.1 Hz, 3H), 1.12-1.08 (m, 3H), 1.06 (d, J = 4.5 Hz, 18H); 13C NMR 

(125 MHz; CDCl3): δ 175.7, 172.6, 140.0, 110.9, 83.9, 61.4, 47.7, 40.9, 38.8, 33.2, 30.4, 

24.8, 24.5, 18.0 (6), 14.2, 13.1 (3); IR (thin film): 2945, 2868, 1787, 1737, 1697 cm-1; 

HRMS (ESI+) m/z calcd for C23H39O5Si [M+H]+: 423.2567, found: 423.2571. 

 

 

 
Ethyl (1S,2S,8R,8aR)-1-((4-bromobenzyl)carbamoyl)-8-hydroxy-4-((triisopropyl-

silyl)oxy)-1,2,3,5,6,7,8,8a-octahydronaphthalene-2-carboxylate ((–)-S21): Into an 

oven-dried, 5-mL round-bottomed flask containing a solution of tricyclic γ-lactone (–)-

3k’ (57 mg, 0.14 mmol, 1.0 equiv.) in THF (1.4 mL, to make final concentration of 

tricyclic g-lactone 0.1 M), was added dropwise 4-bromobenzylamine (68 mL, 0.54 

mmol, 4.0 equiv.). The reaction was allowed to stir at ambient temperature (23 ºC) for 

36 h. Upon completion (as judged by TLC), the reaction was concentrated by rotary 

evaporation and purified by an automated flash chromatography system (20 → 50% 

EtOAc/hexanes) to afford bicyclic amide (–)-S21 (60.1 mg, 73% yield) as a white solid: 

m.p. 143-147 ºC (recrystallized from Et2O); TLC (EtOAc:hexanes, 1:2 v/v): Rf = 0.40; 

α[ ]D
18.5 = –42.00 (c = 6.00, CHCl3). Absolute stereochemistry was assigned based on X-

ray analysis using anomalous dispersion (see Figure S2). 1H NMR (500 MHz; CDCl3): 

δ 7.42 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 6.44 (t, J = 5.7 Hz, 1H), 4.51 (dd, J 

= 15.0, 6.3 Hz, 1H), 4.23 (dd, J = 15.0, 5.2 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.67 (td, J 
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O
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= 9.9, 4.4 Hz, 1H), 3.53 (br s, 1H), 3.13 (td, J = 11.0, 5.7 Hz, 1H), 2.85 (d, J = 12.8 Hz, 

1H), 2.71 (dd, J = 11.1, 5.4 Hz, 1H), 2.41 (dd, J = 16.3, 5.7 Hz, 1H), 2.34 (dd, J = 9.6, 

5.3 Hz, 1H), 2.26-2.21 (m, 1H), 2.02-1.98 (m, 1H), 1.73-1.69 (m, 1H), 1.42-1.31 (m, 

2H), 1.29-1.25 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H), 1.12-1.08 (m, 3H), 1.05 (d, J = 4.3 Hz, 

18H); 13C NMR (125 MHz; CDCl3): δ 177.0, 174.9, 140.6, 137.2, 131.7 (2), 129.7 (2), 

121.4, 115.3, 71.3, 61.0, 48.5, 45.6, 43.3, 39.4, 35.6, 33.5, 27.2, 24.9, 18.1 (6), 14.2, 13.2 

(3); IR (thin film): 3286, 2942, 2867, 1732, 1714, 1680, 1644, 1557 cm-1; HRMS (ESI+) 

m/z calcd for C30H47BrNO5Si [M+H]+: 608.2407, found: 608.2386. 

 

 
Ethyl (3aS,4S,7aS)-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydroiso-

benzofuran-4-carboxylate ((–)-3c) and ethyl (3aS,4S,7aR)-3-oxo-6-((triisopropyl-

silyl)oxy)-1,3,3a,4,5,7a-hexahydroisobenzofuran-4-carboxylate ((+)-3c’): To an 

oven-dried, 250-mL round-bottomed flask equipped with a magnetic stir bar was added 

silyloxydiene alcohol 2b (2.12 g, 8.22 mmol, 1.0 equiv.), (S)-(–)-BTM (416 mg, 1.64 

mmol, 20 mol%), 2,6-lutidine (2.9 mL, 24.6 mmol, 3.0 equiv.) and anhydrous CH2Cl2 

(70 mL, to make final concentration of silyloxydiene alcohol 0.1 M) at ambient 

temperature (23 ºC). With vigorous stirring, ethyl fumaroyl chloride 1a (1.31 mL, 9.86 

mmol, 1.5 equiv.) in CH2Cl2 (12 mL) was added over a period of 5 h by syringe pump 

addition. After stirring for an additional 13 h, the reaction mixture was filtered through a 

short pad of SiO2 and the filtrate was concentrated by rotary evaporation. Purification by 

an automated flash chromatography (5 → 20% EtOAc/hexanes) afforded bicyclic γ-

lactones (–)-3c (1.16 g, 37% yield, 99% ee) and (+)-3c’ (1.10 g, 35% yield, 99% ee). 

(–)-3c: All spectral data matched that reported above. 
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(+)-3c’: colorless solid; m.p. 62.1-64.7 ºC (recrystallized from CH2Cl2); TLC 

(EtOAc:hexanes, 1:4 v/v): Rf = 0.58; α[ ]D
21.8= +66.67 (c = 3.00, CHCl3). Enantiomeric 

excess was determined by chiral HPLC analysis in comparison with authentic racemic 

material using a Chiralcel OD-H column: hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, 

λ = 210 nm: tminor = 22.1 min, tmajor = 26.1 min; 99% ee. Absolute stereochemistry was 

assigned based on X-ray analysis using anomalous dispersion (see Figure S3). 1H NMR 

(500 MHz; CDCl3): δ 4.92 (d, J = 1.3 Hz, 1H), 4.40 (dd, J = 8.0, 6.6 Hz, 1H), 4.28-4.20 

(m, 2H), 3.84 (dd, J = 11.3, 8.0 Hz, 1H), 2.93 (ddddt, J = 13.2, 11.5, 6.6, 3.3, 1.7 Hz, 

1H), 2.81 (ddd, J = 11.6, 10.6, 7.1 Hz, 1H), 2.58 (dd, J = 13.3, 11.7 Hz, 1H), 2.52 (dddd, 

J = 17.6, 7.1, 2.0, 1.2 Hz, 1H), 2.44 (dddd, J = 17.7, 10.5, 3.3, 1.9 Hz, 1H), 1.30 (t, J = 

7.1 Hz, 3H), 1.19-1.12 (m, 3H), 1.06 (d, J = 6.9 Hz, 18H); 13C NMR (125 MHz; CDCl3): 

δ 173.9, 172.9, 152.8, 99.5, 71.5, 61.4, 45.1, 40.1, 39.5, 34.4, 18.0 (6), 14.2, 12.6 (3); IR 

(thin film): 2945, 2868, 1792, 1737, 1650 cm-1; HRMS (ESI+) m/z calcd for 

C20H34LiO5Si [M+Li]+: 389.2336, found: 389.2334. 

 

Use of TsCl for in situ activation of carboxylic acid (1e) for the stereodivergent 

DAL process as described for bicyclic γ-lactones (–)-3c and (+)-3c’: 

 

 
To a solution of mono-ethyl fumarate 1e (18.7 mg, 0.13 mmol, 1.3 equiv.) and TsCl 

(23.8 mg, 0.125 mmol, 1.25 equiv.) in anhydrous CH2Cl2 (0.5 mL, to make final 
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concentration of mixed tosyl anhydride S22 0.25 M) was added 2,6-lutidine (18 mL, 

0.15 mmol, 1.5 equiv.). The mixture was stirred for 45 min at ambient temperature (23 

ºC) and then drawn into the syringe. The solution of S22 was then transferred via syringe 

pump into a second flask containing silyloxydiene alcohol 2b (25.6 mg, 0.10 mmol, 1.0 

equiv.), (S)-(–)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-lutidine (18 mL, 0.15 mmol, 

1.5 equiv) and anhydrous CH2Cl2 (0.5 mL) over 5 h. The reaction was stirred for an 

additional 13 h at ambient temperature (23 ºC), concentrated by rotary evaporation, and 

then directly purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) 

to afford bicyclic g-lactones (–)-3c (10.8 mg, 28% yield, 99% ee) and (+)-3c’ (10.2 mg, 

26% yield, 99% ee). All spectral data matched that reported above. 

 

Synthetic applications of bicyclic g-lactones (–)-3d and (–)-3h: 

 

 
(3aR,7aR)-4,4-dimethyltetrahydroisobenzofuran-1,5(3H,4H)-dione ((–)-4): Into an 

oven-dried, 5-mL round-bottomed flask containing a solution of bicyclic γ-lactone (–)-

3d (50 mg, 0.17 mmol, 1.0 equiv.) and MeI (0.11 mL, 1.77 mmol, 10.0 equiv.) in THF 

(0.20 mL, to make final concentration of bicyclic g-lactone 0.9 M), was added TASF (73 

mg, 0.26 mmol, 1.5 equiv.) in one portion at -78 ºC. The dry ice/acetone bath was 

removed and the mixture was allowed to warm up to ambient temperature (23 ºC) on its 

own accord and the reaction was allowed to stir for 30 h. Upon completion (as judged by 

TLC), the mixture was filtered through a short pad of celite, concentrated by rotary 

evaporation and purified by an automated flash chromatography system (20 → 50% 

EtOAc/hexanes) to afford α,α-dimethyl ketone (–)-4 (24 mg, 75% yield) as a clear 

colorless oil: TLC (EtOAc:hexanes, 1:1 v/v): Rf = 0.31; α[ ]D
19.0 = –10.67 (c = 0.75, 

CHCl3). 1H NMR (500 MHz; CDCl3): δ 4.37 (dd, J = 9.7, 7.7 Hz, 1H), 4.04 (dd, J = 9.7, 

MeI, TASF, THF
-78 → 23 ºC, 30 h
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7.9 Hz, 1H), 2.99 (q, J = 7.9 Hz, 1H), 2.81 (q, J = 7.9 Hz, 1H), 2.61-2.54 (m, 1H), 2.42-

2.32 (m, 2H), 2.18-2.10 (m, 1H), 1.24 (s, 3H), 1.05 (s, 3H); 13C NMR (125 MHz; 

CDCl3): δ 213.1, 178.5, 68.8, 47.2, 44.9, 37.0, 35.8, 26.5, 23.4, 21.2; IR (thin film): 

2971, 1771, 1710 cm-1; HRMS (ESI+) m/z calcd for C10H15O3 [M+H]+: 183.1021, found: 

183.1027. 

 

 
(R)-4,7a-dimethyl-7,7a-dihydroisobenzofuran-1,5(3H,6H)-dione ((–)-5): Into an 

oven-dried, 25-mL round-bottomed flask containing a solution of bicyclic g-lactone (–)-

3h (130 mg, 0.38 mmol, 1.0 equiv.) in CH2Cl2 (4.7 mL, to make initial concentration of 

bicyclic g-lactone 0.08 M), was added PhSeCl (88 mg, 0.46 mmol, 1.2 equiv.) in CH2Cl2 

(3.0 mL, to make final concentration of bicyclic g-lactone 0.05 M) dropwise at -78 ºC. 

After stirring for 15 min, H2O2 (35% wt. % in H2O, 52 mL, 3.8 mmol, 10.0 equiv.) was 

added dropwise. The dry ice/acetone bath was removed and the mixture was allowed to 

warm up to ambient temperature (23 ºC) on its own accord over 45 min. Upon 

completion (as judged by TLC), the mixture was filtered through a short pad of celite, 

concentrated by rotary evaporation and purified by an automated flash chromatography 

system (10 → 40% EtOAc/hexanes) to afford enone γ-lactone (–)-5 (31 mg, 46% yield) 

as a white crystalline semisolid: TLC (EtOAc:hexanes, 1:2 v/v): Rf = 0.29; α[ ]D
18.9 = –

11.11 (c = 0.36, CHCl3). 1H NMR (500 MHz; CDCl3): δ 4.99 (q, J = 1.1 Hz, 2H), 2.66-

2.53 (m, 2H), 2.22 (ddd, J = 13.3, 5.2, 2.2 Hz, 1H), 2.09 (td, J = 13.4, 6.0 Hz, 1H), 1.74 

(t, J = 1.1 Hz, 3H), 1.51 (s, 3H); 13C NMR (125 MHz; CDCl3): δ 196.7, 178.4, 154.7, 

129.0, 67.4, 41.5, 32.6, 29.7, 21.4, 10.9; IR (thin film): 2924, 1778, 1668 cm-1; HRMS 

(ESI+) m/z calcd for C10H11O3 [M–H]+: 179.0708, found: 179.0711. 
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Single crystal X-ray structures and selected crystallographic data for compounds (–

)-3k, (–)-S21 and (+)-3c’ (Figures S1-S3): 

 

Figure S1. Single crystal X-ray structure (ORTEP) of tricyclic γ-lactone (–)-3k. The 

crystals were grown from a concentrated solution of tricyclic γ-lactone (–)-3k in hexanes 

(2.0 mL), using a slow evaporation method (probability ellipsoids are shown at the 50% 

level). X-ray crystallographic data have been deposited in the Cambridge 

Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under accession 

code CCDC 972245. 

 
Alert level B: 

THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575. 

Calculated sin(theta_max)/wavelength = 0.5614. Author Response: Data was collected 

on a Bruker GADDS instrument with Cu-source and MWPC (multiwire proportional 



 

 138 

counter) detector. Under these experimental conditions the maximum angle that can be 

collected is 120 degrees two-theta. 

 

Table 1. Crystal data and structure refinement for DRB_MA_130730_G_B2. 

 

Crystal Parameters                       Crystal Data 
 

Identification code  b2 

Empirical formula  C23 H38 O5 Si 

Formula weight  422.62 

Temperature  110(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 8.6924(6) Å a = 90º 

 b = 8.9976(6) Å b = 90º 

 c = 29.0972(18) Å g = 90º 

Volume 2275.7(3) Å3 

Z 4 

Density (calculated) 1.234 Mg/m3 

Absorption coefficient 1.157 mm-1 

F(000) 920 

Crystal size 0.13 ✕ 0.07 ✕ 0.03 mm3 

Theta range for data collection 3.04 to 59.95º 

Index ranges –9 ≤ h ≤ 9, –9 ≤ k ≤ 10, –32 ≤ l ≤ 31 

Reflections collected 18633 

Independent reflections 3357 [R(int) = 0.0615] 

Completeness to theta = 59.95º 99.8%  

Absorption correction Semi-empirical from equivalents 
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Max. and min. transmission 0.9661 and 0.8641 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3357 / 0 / 269 

Goodness-of-fit on F2 1.044 

Final R indices [I>2sigma(I)] R1 = 0.0299, wR2 = 0.0708 

R indices (all data) R1 = 0.0322, wR2 = 0.0715 

Absolute structure parameter 0.00(2) 

Largest diff. peak and hole 0.167 and -0.240 e.Å-3 

 

Table 2. Atomic coordinates  (✕  104) and equivalent isotropic displacement 

parameters (Å2 ✕  103) for DRB_MA_130730_G_B2. U(eq) is defined as one third of 

the trace of the orthogonalized Uij tensor. 

 

Atom x y z U(eq) 
 

Si(20) 4673(1) 4355(1) 5769(1) 12(1) 

O(16) 9567(2) -615(2) 6467(1) 17(1) 

O(19) 5729(1) 4434(2) 6248(1) 14(1) 

O(5) 9365(2) 4100(1) 7441(1) 18(1) 

O(15) 7446(2) 105(2) 6084(1) 24(1) 

O(6) 10899(2) 4472(2) 6835(1) 25(1) 

C(14) 8607(2) 404(2) 6285(1) 15(1) 

C(1) 9985(2) 3702(2) 7033(1) 17(1) 

C(10) 6605(2) 3117(2) 6893(1) 13(1) 

C(7) 9199(2) 1964(2) 6372(1) 14(1) 

C(9) 6780(2) 3508(2) 6454(1) 12(1) 

C(27) 3109(2) 5732(2) 5901(1) 16(1) 

C(2) 9344(2) 2199(2) 6891(1) 14(1) 

C(22) 7020(3) 6156(2) 5350(1) 21(1) 

C(3) 7806(2) 2194(2) 7141(1) 13(1) 
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C(4) 8292(2) 2929(2) 7595(1) 17(1) 

C(29) 1694(2) 5606(2) 5586(1) 22(1) 

C(8) 8143(2) 3128(2) 6158(1) 15(1) 

C(11) 5281(2) 3646(2) 7186(1) 17(1) 

C(25) 3485(3) 1700(2) 6151(1) 23(1) 

C(18) 7855(3) -2535(2) 6774(1) 27(1) 

C(17) 9061(3) -2154(2) 6424(1) 21(1) 

C(21) 5919(2) 4863(2) 5261(1) 16(1) 

C(12) 5896(2) 4514(2) 7598(1) 22(1) 

C(26) 4707(3) 1402(2) 5368(1) 23(1) 

C(24) 3803(2) 2455(2) 5686(1) 18(1) 

C(28) 3667(3) 7343(2) 5916(1) 21(1) 

C(13) 7021(3) 3593(2) 7878(1) 22(1) 

C(23) 4979(3) 5129(3) 4820(1) 24(1) 
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Figure S2. Single crystal X-ray structure (ORTEP) of bicyclic amide (–)-S21. The 

crystals were grown from a concentrated solution of bicyclic amide (–)-S21 in Et2O (2.0 

mL), using a slow evaporation method (probability ellipsoids are shown at the 50% 

level). X-ray crystallographic data have been deposited in the Cambridge 

Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under accession 

code CCDC 972248. 

 
Alert level B: 

Crystal system given = triclinic. PLAT019_ALERT_1_B Check _diffrn_measured_ 

fraction_theta_full/_max = 0.927. Author Response: Physical limitations of the GADDS 

X-ray diffractometer and triclinic system. 

 

PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) … 4.4 Ratio. 

Author Response: Possible disorder in the terminal groups. The disorder was not 

modeled. 

 

PLAT242_ALERT_2_B Low Ueq as Compared to Neighbors for … Si1_4 Check. 

Author Response: Possible disorder in the Si terminal groups. The disorder was not 

modeled. 
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PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds … 0.0194 Ang. Author 

Response: Diffuse scattering due to disorder lowers the precision of the C-C bond length 

determination. 

 

Table 1. Crystal data and structure refinement for DR89. 

 

Crystal Parameters                       Crystal Data 
 

Identification code  dr89 

Empirical formula  C30 H46 Br N O5 Si 

Formula weight  608.68 

Temperature  110(2) K 

Crystal system  Triclinic 

Space group  P1 

Unit cell dimensions a = 13.4034(9) Å a = 89.539(5)º 

 b = 13.4037(9) Å b = 89.620(5)º 

 c = 17.8225(13) Å g = 87.393(5)º 

Volume 3198.4(4) Å3 

Z 4 

Density (calculated) 1.264 Mg/m3 

Absorption coefficient 2.400 mm-1 

F(000) 1288.0 

Crystal size 0.11 ✕ 0.1 ✕ 0.01 mm3 

Radiation CuK a (l = 1.54178) 

Theta range for data collection 4.958 to 128.74º 

Index ranges –15 ≤ h ≤ 15, –15 ≤ k ≤ 15, –20 ≤ l ≤ 20 

Reflections collected 55755 

Independent reflections 18937 [R(int) = 0.0831] 

Data / restraints / parameters 18937 / 2631 / 1372 
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Goodness-of-fit on F2 1.089 

Final R indices [I>2sigma(I)] R1 = 0.0896, wR2 = 0.2171 

R indices (all data) R1 = 0.1063, wR2 = 0.2373 

Largest diff. peak and hole 0.84 and -0.73 e.Å-3 

 

Table 2. Fractional atomic coordinates (✕  104) and equivalent isotropic 

displacement parameters (Å2 ✕  103) for DR89. U(eq) is defined as one third of the 

trace of the orthogonalized Uij tensor. 

 

Atom x y z U(eq) 
 

 

Br1_3     10682(3)   15286(3)   10137.5(16)       81.8(9) 

Si1_3     9768(4)   14978(4)   2986(3)        56.5(14) 

O1_3               9221(7)   14314(6)   3624(4)        43(2) 

O2_3     8532(9)   17264(7)   5792(6)        56(2) 

O3_3     9470(9)   16079(9)   6369(7)        56(3) 

O4_3     7289(8)   15692(8)   6721(6)        52(3) 

O5_3     6011(8)   14206(10)   5963(6)        54(3) 

N1_3     7793(10)   14158(8)   7106(5)        47(2) 

C1_3     8766(10)   14473(9)   4301(6)        38(2) 

C2_3     9095(10)   15341(10)   4752(6)        40(2) 

C3_3     8383(9)   15607(8)   5397(6)        40(2) 

C4_3     8190(8)   14644(8)   5820(5)        39(2) 

C5_3     7630(7)   13926(8)   5334(6)        42(2) 

C6_3     6489(7)   14178(10)   5245(7)        49(2) 

C7_3     6045(9)   13404(12)   4750(8)        55(3) 

C8_3     6539(9)   13318(12)   4003(8)        53(3) 

C9_3     7673(9)   13055(10)   4074(7)        48(3) 

C10_3     8092(8)   13839(8)   4559(6)        40(2) 
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C11_3     9086(12)   16206(10)   2802(8)        86(5) 

C12_3     7970(13)   16218(17)   2957(14)        88(5) 

C13_3     9268(18)   16626(16)   2046(11)        90(5) 

C14_3     9813(13)   14210(11)   2111(7)        75(4) 

C15_3     8822(14)   13897(16)   1847(12)        82(5) 

C16_3     10498(16)   13237(14)   2269(11)        76(5) 

C17_3     11044(10)   15212(12)   3317(9)        101(5) 

C18_3     11520(14)   14410(20)   3861(14)        99(6) 

C19_3     11774(13)   15440(20)   2663(13)        106(6) 

C20_3     8853(10)   16338(9)   5910(7)        52(2) 

C21_3     8929(13)   18013(11)   6287(9)        62(3) 

C22_3     8415(16)   17993(17)   7043(9)        66(4) 

C23_3     7695(10)   14872(8)   6569(6)        45(2) 

C24_3     7414(9)   14304(12)   7852(6)        49(3) 

C25_3     8225(10)   14564(13)   8400(6)        51(3) 

C26_3     9024(11)   15094(13)   8193(7)        55(3) 

C27_3     9749(12)   15362(14)   8706(6)        57(3) 

C28_3     9645(11)   15075(15)   9459(7)        60(3) 

C29_3     8875(12)   14467(16)   9660(7)        64(3) 

C30_3     8190(11)   14213(14)   9146(7)        59(3) 
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Figure S3. Single crystal X-ray structure (ORTEP) of bicyclic γ-lactone (+)-3c’. The 

crystals were grown from a concentrated solution of bicyclic γ-lactone (+)-3c’ in CH2Cl2 

(2.0 mL), using a slow evaporation method (probability ellipsoids are shown at the 50% 

level). X-ray crystallographic data have been deposited in the Cambridge 

Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under accession 

code CCDC 972247. 

 
Alert level B: 

THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575. 

Calculated sin(theta_max)/wavelength = 0.5617. Author Response: Data was collected 

on a Bruker GADDS instrument with Cu-source and MWPC (multiwire proportional 

counter) detector. Under these experimental conditions the maximum angle that can be 

collected is 120 degrees two-theta. 
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Table 1. Crystal data and structure refinement for DRB_MA_130306_G_904F2. 

 

Crystal Parameters                       Crystal Data 
 

Identification code  drb 

Empirical formula  C20 H34 O5 Si 

Formula weight  382.56 

Temperature  110(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P2(1) 

Unit cell dimensions a = 16.6474(7) Å a = 90º 

 b = 34.4793(14) Å b = 95.850(2)º 

 c = 19.1312(8) Å g = 90º 

Volume 10923.9(8) Å3 

Z 20 

Density (calculated) 1.163 Mg/m3 

Absorption coefficient 1.155 mm-1 

F(000) 4160 

Crystal size 0.28 ✕ 0.06 ✕ 0.05 mm3 

Theta range for data collection 2.32 to 60.00º 

Index ranges –18 ≤ h ≤ 18, –37 ≤ k ≤ 35, –21 ≤ l ≤ 21 

Reflections collected 225412 

Independent reflections 31523 [R(int) = 0.0593] 

Completeness to theta = 60.00º 99.3%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9445 and 0.7380 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 31523 / 1 / 2412 
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Goodness-of-fit on F2 1.069 

Final R indices [I>2sigma(I)] R1 = 0.0551, wR2 = 0.1469 

R indices (all data) R1 = 0.0610, wR2 = 0.1564 

Absolute structure (Hooft / Flack) 

parameter -0.006(7) / 0.013(14) 

Extinction coefficient 0.00031(2) 

Largest diff. peak and hole 0.720 and -0.591 e.Å-3 

 

Table 2. Atomic coordinates (✕  104) and equivalent isotropic displacement 

parameters (Å2 ✕  103) for DRB_MA_130306_G_904F2. U(eq) is defined as one 

third of  the trace of the orthogonalized Uij tensor. 

 

Atom                            x                   y                     z               U(eq) 
 

 

Si(1P)   6042(1) 7578(1) 6596(1) 16(1) 

O(1P)   7243(1) 7429(1) 10228(1) 22(1) 

O(2P)   8590(1) 7377(1) 10271(1) 25(1) 

O(3P)   9775(1) 7420(1) 8850(1) 31(1) 

O(4P)   9083(1) 6861(1) 8811(1) 23(1) 

O(5P)   6727(1) 7326(1) 7110(1) 18(1) 

C(1P)   8323(2) 7436(1) 8634(2) 17(1) 

C(2P)   7926(2) 7322(1) 7896(2) 19(1) 

C(3P)   7020(2) 7388(1) 7795(2) 16(1) 

C(4P)   6558(2) 7482(1) 8303(2) 15(1) 

C(5P)   6959(2) 7552(1) 9028(2) 16(1) 

C(6P)   7734(2) 7319(1) 9152(2) 16(1) 

C(7P)   6557(2) 7434(1) 9677(2) 19(1) 

C(8P)   7942(2) 7376(1) 9925(2) 17(1) 

C(9P)   9146(2) 7246(1) 8778(2) 17(1) 
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C(10P)   9836(2) 6646(1) 8958(2) 22(1) 

C(11P)   9644(2) 6225(1) 8786(2) 29(1) 

C(12P)   6146(2) 7366(1) 5698(2) 24(1) 

C(13P)   6983(2) 7195(1) 5615(2) 33(1) 

C(14P)   5908(2) 7651(1) 5103(2) 33(1) 

C(15P)   6291(2) 8109(1) 6643(2) 25(1) 

C(16P)   7199(2) 8182(1) 6627(2) 36(1) 

C(17P)   5966(2) 8328(1) 7261(2) 43(1) 

C(18P)   4999(2) 7481(1) 6854(2) 20(1) 

C(19P)   4865(2) 7044(1) 6963(2) 28(1) 

C(20P)   4340(2) 7644(1) 6315(2) 30(1) 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of ketoester S3 in CDCl3 

O CO2Et
S3
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diene S4 in CDCl3 

TIPSO CO2Et

S4
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol 2a in CDCl3 

TIPSO

2a

OH
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol 2b in CDCl3 

TIPSO

2b

OH
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1H (500 MHz) and 13C NMR (125 MHz) spectra of ketoester S7 in CDCl3 

O CO2Me

S7
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diene S8 in CDCl3 

TIPSO CO2Me

S8
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol 2c in CDCl3 

TIPSO

2c

OH
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol 2d in C6D6 

TIPSO

2d

OH
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1H (500 MHz) and 13C NMR (125 MHz) spectra of ketoester S11 in CDCl3 

O

CO2Et

S11
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diene S12 in CDCl3 

TIPSO

CO2Et

S12
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol 2e in CDCl3 

TIPSO

2e

OH
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1H (500 MHz) and 13C NMR (125 MHz) spectra of ketoester S14 in CDCl3 

O
CO2Me

S14
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol 2f in CDCl3 

TIPSO

2f

OH
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diketone S17 in CDCl3 

O

S17

O
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diene S18 in CDCl3 

TIPSO

S18

O
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol (±)-2g in 

CDCl3 

TIPSO

(±)-2g

OH
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactones 3a and 3a’ 

(1.5:1 mixture of endo/exo diastereomers) in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-3b in CDCl3 

TIPSO

O

O
H

H

(–)-3b
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-3c in CDCl3 
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H
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1H (500 MHz) and 13C NMR (125 MHz) spectra of ester S19 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-3d in CDCl3 

TIPSO
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O
H

H

(–)-3d
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-3e in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-3f in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-3g in CDCl3 

TIPSO

O

O
H

H

(–)-3g



 

 173 

 
 

 

 

 

 
 

1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-3h in CDCl3 

TIPSO

O

O
H

(–)-3h



 

 174 

 
 

 

 

 

 
 

1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (+)-3i in CDCl3 
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H
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1H (500 MHz) and 13C NMR (125 MHz) spectra of amide (–)-S20 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic δ-lactone (+)-3j in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of tricyclic γ-lactone (–)-3k in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of tricyclic γ-lactone (–)-3k’ in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic amide (–)-S21 in CDCl3 

(–)-S21
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (+)-3c’ in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of α,α-dimethyl ketone (–)-4 in CDCl3 
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O
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1H (500 MHz) and 13C NMR (125 MHz) spectra of enone γ-lactone (–)-5 in CDCl3 

O

O

O

(–)-5



183 

Figure S12. Chiral HPLC determination of enantiomeric excess of bicyclic γ-

lactones 3a and 3a’: 

Chiral HPLC analysis of bicyclic γ-lactone 3a and 3a’: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 10.3 min, tminor = 

10.9 min; 99% ee; tminor = 12.7 min, tmajor = 19.4 min; 99% ee. 

Table S1, entry 11: 
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Figure S13. Chiral HPLC determinations of enantiomeric excess of bicyclic lactones 

3b-j: 

 
Determination of enantiomeric excess of bicyclic γ-lactone (–)-3b: 
 
Chiral HPLC analysis of bicyclic γ-lactone (–)-3b: Chiralcel OD-H column: 

hexanes:iPrOH = 98:02, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 15.9 min, tminor = 

17.9 min; 94% ee. 
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Determination of enantiomeric excess of bicyclic γ-lactone (–)-3c: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-3c: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 15.4 min, tmajor = 

18.1 min; 99% ee (using 20 mol% (S)-(–)-BTM), 98% ee (using 10 mol% (S)-(–)-BTM). 

 

 
Using 20 mol% (S)-(–)-BTM:  
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Using 10 mol% (S)-(–)-BTM:  
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Determination of enantiomeric excess of bicyclic γ-lactone (–)-3d: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-3d: Chiralcel AS-H column: 

hexanes:iPrOH = 99:01, flow rate 1.0 mL/min, λ = 210 nm: tmajor = 10.3 min, tminor = 

11.5 min; 99% ee. 
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Determination of enantiomeric excess of bicyclic γ-lactone (–)-3e: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-3e: Chiralcel OD-H column: 

hexanes:iPrOH = 98:02, flow rate 0.4 mL/min, λ = 210 nm: tmajor = 20.0 min, tminor = 

21.3 min; 99% ee. 
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Determination of enantiomeric excess of bicyclic γ-lactone (–)-3f: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-3f: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.6 min, tminor = 

13.6 min; 98% ee. 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-3f: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-3f: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 11.4 min, tmajor = 

13.5 min; 96% ee. 
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Determination of enantiomeric excess of bicyclic γ-lactone (–)-3g: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-3g: Chiralcel OD-H column: 

hexanes:iPrOH = 98:02, flow rate 0.5 mL/min, λ = 210 nm: tminor = 16.0 min, tmajor = 

17.0 min; 95% ee. 
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Determination of enantiomeric excess of bicyclic γ-lactone (–)-3h: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-3h: Chiralcel AS-H column: 

hexanes:iPrOH = 98:02, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.8 min, tminor = 

14.0 min; 91% ee. 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-3i: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-3i: Chiralcel AD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.4 min, tminor = 

12.8 min; 99% ee (using 20 mol% (S)-(–)-BTM), 97% ee (using 5 mol% (S)-(–)-BTM). 
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Using 5 mol% (S)-(–)-BTM:  
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Determination of enantiomeric excess of bicyclic δ-lactone (+)-3j: 

 

Chiral HPLC analysis of bicyclic δ-lactone (+)-3j: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 10.7 min, tmajor = 

12.5 min; 92% ee. 
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Figure S14. Chiral HPLC determinations of enantiomeric excess of lactones 3k, 3k’ 

and 3c’: 

 
Determination of enantiomeric excess of tricyclic γ-lactone (–)-3k: 

 

Chiral HPLC analysis of tricyclic γ-lactone (–)-3k: Chiralcel AS-H column: 

hexanes:iPrOH = 97:03, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 21.1 min, tminor = 

28.6 min; 99% ee. 
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Determination of enantiomeric excess of tricyclic γ-lactone (–)-3k’: 

 

Chiral HPLC analysis of tricyclic γ-lactone (–)-3k’: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 17.4 min, tmajor = 

25.7 min; 99% ee. 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-3c’: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-3c’: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 22.1 min, tmajor = 

26.1 min; 99% ee. 
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CHAPTER III 

 

Preparation of S3, S4, S5, S8, S9, (±)-13a, (±)-13b and (±)-13c: 

 

 
(E)-3-methyl-1-phenylpent-2-ene-1,4-dione (S3): To a solution of 2,3-butanedione S1 

(2.0 mL, 23.2 mmol, 1.0 equiv.) in anhydrous CHCl3 (77 mL) was added 

(benzoylmethylene)triphenylphosphorane S2 (8.84 g, 23.2 mmol, 1.0 equiv.) and 

refluxed (65-70 °C) for 24 h. The mixture was filtered through a short pad of celite and 

the filtrate was concentrated using rotary evaporation. The residue was then diluted with 

cold Et2O (50 mL), filtered through a plug of celite and washed with additional Et2O (25 

mL). The filtrate was concentrated by rotary evaporation and purified by an automated 

flash chromatography system (5 → 15% EtOAc/hexanes) providing 2.24 g (52% yield) 

of diketone S3 as a yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.42; 1H NMR (500 

MHz, CDCl3): δ 7.95-7.93 (m, 2H), 7.62-7.58 (m, 1H), 7.51-7.48 (m, 2H), 7.44-7.42 (m, 

1H), 2.47 (s, 3H), 2.07 (d, J = 1.4 Hz, 3H); 13C NMR (125 MHz; CDCl3): δ 200.1, 

193.3, 147.0, 137.3, 133.9, 131.8, 129.0 (2), 128.7 (2), 26.4, 14.0; IR (thin film): 1681, 

1668, 1597 cm-1; HRMS (ESI+) m/z calcd for C12H12LiO2 [M+Li]+: 195.0997, found: 

195.0988. 

 

 
(E)-3-methyl-1-phenyl-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-one (S4): To a 

solution of diketone S3 (2.24 g, 11.9 mmol, 1.0 equiv.) in anhydrous Et2O (40 mL) at 0 

ºC was added Et3N (2.5 mL, 17.9 mmol, 1.5 equiv.) dropwise. After stirring for 10 min, 

TIPSOTf (3.8 mL, 14.3 mmol, 1.2 equiv.) was added over a period of 30 min. The 

O
O + Ph3P O

CHCl3
reflux, 24 h

(52%)
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reaction was stirred for 30 min at 0 ºC then allowed to warm up to ambient temperature 

(23 ºC) and stirred for 1 h. The reaction mixture was then quenched with a saturated 

aqueous solution of NaHCO3 (20 mL). The aqueous layer was extracted with Et2O (2 x 

50 mL) and the combined organic extracts were then washed with brine (50 mL). The 

organic layer was then dried over anhydrous MgSO4, filtered, and concentrated by rotary 

evaporation. The residue was purified by an automated flash chromatography system 

(0.5 → 10% EtOAc/hexanes) providing 3.28 g (80% yield) of diene S4 as a yellow oil: 

TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.87; 1H NMR (500 MHz, CDCl3): δ 7.97-7.94 (m, 

2H), 7.54 (tt, J = 7.4, 1.7 Hz, 1H), 7.48-7.44 (m, 3H), 4.90 (d, J = 2.0 Hz, 1H), 4.66 (d, J 

= 1.9 Hz, 1H), 2.28 (d, J = 1.1 Hz, 3H), 1.33-1.26 (m, 3H), 1.14 (d, J = 7.3 Hz, 18H); 
13C NMR (125 MHz; CDCl3): δ 193.1, 156.9, 148.3, 139.4, 132.7, 128.6 (2), 128.4 (2), 

121.0, 96.8, 18.2 (6), 15.3, 12.9 (3); IR (thin film): 2946, 2869, 1660, 1594 cm-1; HRMS 

(ESI+) m/z calcd for C21H33O2Si [M+H]+: 345.2250, found: 345.2255. 

 

 
(E)-3-methyl-1-phenyl-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-ol ((±)-13a): To a 

solution of diene S4 (100 mg, 0.29 mmol, 1.0 equiv.) in absolute EtOH (1.9 mL) and 

anhydrous CH2Cl2 (1.9 mL) at 0 ºC was added CeCl3•7H2O (120 mg, 0.32 mmol, 1.1 

equiv.) in one portion. After stirring for 15 min, NaBH4 (27 mg, 0.73 mmol, 2.5 equiv.) 

was added portionwise over a period of 1 min. The reaction was stirred for 45 min at 0 

ºC then quenched with a saturated aqueous solution of NaHCO3 (2.0 mL). The aqueous 

layer was extracted with CH2Cl2 (2 x 5.0 mL) and the combined organic extracts were 

then washed with brine (2.0 mL). The organic layer was then dried over anhydrous 

MgSO4, filtered, and concentrated by rotary evaporation. The residue was purified by an 

automated flash chromatography system (5 → 20% EtOAc/hexanes) providing 101 mg 

(99% yield) of silyloxydiene alcohol (±)-13a as a pale yellow oil: TLC (EtOAc:hexanes, 

1:9 v/v): Rf = 0.42; 1H NMR (500 MHz, CDCl3): δ 7.42-7.27 (m, 5H), 6.35 (d, J = 8.8 

TIPSO

(±)-13a
OH

Ph

NaBH4, CeCl3•7H2O
EtOH/CH2Cl2 (1:1)

0 ºC, 1 h

(99%)
TIPSO

S4
O

Ph
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Hz, 1H), 5.58 (d, J = 8.8 Hz, 1H), 4.52 (d, J = 1.4 Hz, 1H), 4.38 (s, 1H), 1.93 (d, J = 1.1 

Hz, 3H), 1.26-1.21 (m, 3H), 1.10 (dd, J = 7.4, 2.2 Hz, 18H); 13C NMR (125 MHz; 

CDCl3): δ 157.1, 143.6, 133.0, 129.8, 128.6 (2), 127.6, 126.3 (2), 92.1, 71.2, 18.2 (6), 

14.0, 12.9 (3); IR (thin film): 3384, 2945, 2867, 1595 cm-1; HRMS (ESI+) m/z calcd for 

C21H34O2Si [M+H]+: 347.2406, found: 347.2390. 

 

 
(E)-4-methyl-2-phenyl-5-((triisopropylsilyl)oxy)hexa-3,5-dien-2-ol ((±)-13b): To a 

solution of diene S4 (3.28 g, 9.5 mmol, 1.0 equiv.) in anhydrous Et2O (50 mL) at 0 ºC 

was added MeMgBr (3.0 M solution in Et2O, 4.8 mL, 14.4 mmol, 1.5 equiv.) over a 

period of 1 h. The reaction was stirred for 2 h at 23 ºC then quenched with a saturated 

aqueous solution of NH4Cl (25 mL). The aqueous layer was extracted with Et2O (2 x 30 

mL) and the combined organic extracts were then washed with brine (25 mL). The 

organic layer was then dried over anhydrous MgSO4, filtered, and concentrated by rotary 

evaporation. The residue was purified by an automated flash chromatography system (5 

→ 15% EtOAc/hexanes) providing 2.22 g (65% yield) of silyloxydiene alcohol (±)-13b 

as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.58; 1H-NMR (500 MHz; 

CDCl3): δ 7.47-7.45 (m, 2H), 7.33-7.30 (m, 2H), 7.24-7.20 (m, 1H), 6.65 (s, 1H), 4.46 

(d, J = 1.5 Hz, 1H), 4.32 (d, J = 0.5 Hz, 1H), 1.67 (s, 3H), 1.64 (d, J = 0.7 Hz, 3H), 1.28-

1.22 (m, 3H), 1.12 (dd, J = 7.4, 0.8 Hz, 18H).; 13C NMR (125 MHz; CDCl3): δ 157.6, 

148.6, 135.0, 134.7, 128.2 (2), 126.6, 125.2 (2), 91.8, 74.2, 34.1, 18.3 (6), 14.6, 12.9 (3); 

IR (thin film): 3454, 2945, 2867, 1594 cm-1; HRMS (ESI+) m/z calcd for C22H37O2Si 

[M+H]+: 361.2563, found: 361.2549. 
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(2Z,4Z)-3-methyl-4-((triisopropylsilyl)oxy)octa-2,4-dienal (S5): To a solution of 

silyloxydiene alcohol 2e (0.96 g, 3.1 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (20 mL) 

was added MnO2 (5.34 g, 61.4 mmol, 20.0 equiv.) and vigorously stirred at ambient 

temperature (23 ºC) for 24 h. The mixture was filtered through a short pad of celite and 

the filtrate was concentrated using rotary evaporation. Purification by an automated flash 

chromatography system (5 → 15% EtOAc/hexanes) afforded 0.38 g (54% yield) of 

aldehyde S5 as a pale yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.49; 1H NMR 

(500 MHz, CDCl3): δ 10.11 (d, J = 8.1 Hz, 1H), 6.29 (dd, J = 8.1, 0.4 Hz, 1H), 5.37 (t, J 

= 7.3 Hz, 1H), 2.26 (d, J = 1.0 Hz, 3H), 2.19 (q, J = 7.4 Hz, 2H), 1.43 (sext, J = 7.4 Hz, 

2H), 1.22-1.16 (m, 3H), 1.09 (d, J = 7.0 Hz, 18H), 0.93 (t, J = 7.4 Hz, 3H); 13C NMR 

(125 MHz; CDCl3): δ 192.0, 154.3, 150.8, 124.9, 118.2, 28.9, 22.6, 18.1 (6), 14.3, 14.1, 

14.0 (3); IR (thin film): 2960, 2869, 1668, 1618 cm-1; HRMS (ESI+) m/z calcd for 

C18H35O2Si [M+H]+: 311.2406, found: 311.2403. 

 

 
(2Z,4Z)-3-methyl-1-phenyl-4-((triisopropylsilyl)oxy)octa-2,4-dien-1-ol ((±)-13c): To 

a solution of aldehyde S5 (0.38 g, 1.2 mmol, 1.0 equiv.) in anhydrous Et2O (8.0 mL) at 0 

ºC was added PhMgBr (3.0 M solution in Et2O, 0.53 mL, 1.6 mmol, 1.3 equiv.) over a 

period of 1 h. The reaction was stirred for 2 h at 23 ºC then quenched with a saturated 

aqueous solution of NH4Cl (4 mL). The aqueous layer was extracted with Et2O (2 x 10 

mL) and the combined organic extracts were then washed with brine (5 mL). The 

organic layer was then dried over anhydrous MgSO4, filtered, and concentrated by rotary 

evaporation. The residue was purified by an automated flash chromatography system (5 

TIPSO

2e (from CHAPTER II)
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23 ºC, 24 h

(54%) TIPSO
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→ 20% EtOAc/hexanes) providing 0.44 g (94% yield) of silyloxydiene alcohol (±)-13c 

as a pale yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.42; 1H NMR (500 MHz; 

CDCl3): δ 7.42-7.25 (m, 5H), 5.98 (dd, J = 8.9, 0.4 Hz, 1H), 5.57 (d, J = 8.9 Hz, 1H), 

4.90 (t, J = 7.1 Hz, 1H), 2.19-2.07 (m, 2H), 1.95 (t, J = 0.5 Hz, 3H), 1.40 (dt, J = 14.9, 

7.4 Hz, 2H), 1.15-1.04 (m, 21H), 0.94 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz; CDCl3): 

δ 151.2, 143.8, 134.8, 128.5 (2), 128.1, 127.5, 126.0 (2), 111.4, 71.3, 28.5, 23.0, 18.1 

(6), 14.7, 14.2, 13.9 (3); IR (thin film): 3356, 2946, 2867 cm-1; HRMS (ESI+) m/z calcd 

for C24H39OSi [M–OH]+: 371.2765, found: 371.2715. 

 

 
(E)-1-phenylpent-2-ene-1,4-dione (S8): To a solution of hydroxyacetone S6 (2.4 mL, 

34.2 mmol, 1.3 equiv.) and (benzoylmethylene)triphenylphosphorane S7 (10.0 g, 26.3 

mmol, 1.0 equiv.) in anhydrous CH2Cl2 (90 mL) was added MnO2 (23.0 g, 262.9 mmol, 

10.0 equiv.) and vigorously stirred at ambient temperature (23 ºC) for 30 h. The mixture 

was filtered through a short pad of celite and the filtrate was concentrated using rotary 

evaporation. The residue was then diluted with cold Et2O (100 mL), filtered through a 

plug of celite and washed with additional Et2O (50 mL). The filtrate was concentrated by 

rotary evaporation and purified by an automated flash chromatography system (5 → 

25% EtOAc/hexanes) providing 3.76 g (82% yield) of diketone S8 as a yellow solid: 

m.p. = 42-47 ºC; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.28; 1H NMR (500 MHz, CDCl3): 

δ 7.98-7.96 (m, 2H), 7.68 (d, J = 15.8 Hz, 1H), 7.63-7.59 (m, 1H), 7.51-7.48 (m, 2H), 

7.06 (d, J = 15.7 Hz, 1H), 2.42 (s, 3H); 13C NMR (125 MHz; CDCl3): δ 198.0, 190.4, 

138.5, 136.7, 134.02, 133.97, 128.98 (2), 128.90 (2), 29.1; IR (thin film): 1668, 1614 

cm-1; HRMS (ESI+) m/z calcd for C11H10LiO2 [M+Li]+: 181.0841, found: 181.0833. 
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(E)-1-phenyl-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-one (S9): To a solution of 

diketone S8 (4.77 g, 27.4 mmol, 1.0 equiv.) in anhydrous Et2O (91 mL) at 0 ºC was 

added Et3N (5.7 mL, 40.9 mmol, 1.5 equiv.) dropwise. After stirring for 10 min, 

TIPSOTf (8.8 mL, 32.7 mmol, 1.2 equiv.) was added over a period of 30 min. The 

reaction was stirred for 2 h at 0 ºC then quenched with a saturated aqueous solution of 

NaHCO3 (45 mL). The aqueous layer was extracted with Et2O (2 x 50 mL) and the 

combined organic extracts were then washed with brine (50 mL). The organic layer was 

then dried over anhydrous MgSO4, filtered, and concentrated by rotary evaporation. The 

residue was purified by an automated flash chromatography system (0.5 → 10% 

EtOAc/hexanes) providing 3.76 g (42% yield) of diene S9 as an orange oil: TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.79; 1H NMR (500 MHz, CDCl3): δ 7.96-7.95 (m, 2H), 

7.59-7.55 (m, 1H), 7.50-7.47 (m, 2H), 7.35 (dd, J = 14.9, 0.3 Hz, 1H), 7.21 (d, J = 14.9 

Hz, 1H), 4.75 (s, 2H), 1.33-1.27 (m, 3H), 1.15 (d, J = 7.3 Hz, 18H); 13C NMR (125 

MHz; CDCl3): δ 190.8, 154.5, 142.5, 138.3, 132.9, 128.8 (2), 128.6 (2), 122.6, 103.4, 

18.2 (6), 12.9 (3); IR (thin film): 2946, 2868, 1667, 1607, 1590 cm-1; HRMS (ESI+) m/z 

calcd for C20H31O2Si [M+H]+: 331.2093, found: 331.2178. 

 

 
(E)-1-phenyl-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-ol ((±)-35): To a solution of 

diene S9 (3.67 g, 11.1 mmol, 1.0 equiv.) in absolute EtOH (74 mL) and anhydrous 

CH2Cl2 (74 mL) at 0 ºC was added CeCl3•7H2O (4.34 g, 11.7 mmol, 1.1 equiv.) in one 

portion. After stirring for 20 min, NaBH4 (1.1 g, 27.8 mmol, 2.5 equiv.) was added 

portionwise over a period of 30 min. The reaction was stirred for 30 min at 0 ºC then 

quenched with a saturated aqueous solution of NaHCO3 (30 mL). The aqueous layer was 
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extracted with CH2Cl2 (2 x 100 mL) and washed with brine (30 mL). The organic layer 

was then dried over anhydrous MgSO4, filtered, and concentrated by rotary evaporation. 

The residue was purified by an automated flash chromatography system (5 → 20% 

EtOAc/hexanes) providing 3.43 g (93% yield) of silyloxydiene alcohol (±)-35 as a 

yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.37; 1H NMR (500 MHz, CDCl3): δ 

7.41-7.28 (m, 5H), 6.28 (ddd, J = 15.2, 6.1, 0.4 Hz, 1H), 6.17 (dd, J = 15.2, 1.1 Hz, 1H), 

5.31 (d, J = 6.1 Hz, 1H), 4.37 (s, 1H), 4.33 (s, 1H), 1.27-1.22 (m, 3H), 1.11 (d, J = 7.4 

Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 154.8, 142.9, 132.1, 128.7, 128.6 (2), 127.8, 

126.6 (2), 95.7, 74.4, 18.2 (6), 12.9 (3); IR (thin film): 3356, 2945, 2868, 1592 cm-1; 

HRMS (ESI+) m/z calcd for C20H33O2Si [M+H]+: 333.2250, found: 333.2245. 
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Representative procedure for the stereodivergent DAL process as described for 

bicyclic γ-lactones (–)-14a and (+)-14a’: 

 

 
Ethyl (1R,3aS,4S,7aR)-7-methyl-3-oxo-1-phenyl-6-((triisopropylsilyl)oxy)-1,3,3a,4, 

5,7a-hexahydroisobenzofuran-4-carboxylate ((–)-14a) and ethyl (1S,3aS,4S,7aR)-7-

methyl-3-oxo-1-phenyl-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydroiso-

bezofuran-4-carboxylate ((+)-14a’): To an oven-dried, 5-mL round-bottomed flask 

equipped with a magnetic stir bar was added silyloxydiene alcohol (±)-13a (34 mg, 0.10 

mmol, 1.0 equiv.), (S)-(–)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-lutidine (2.3 mL, 

0.020 mmol, 20 mol%), K3PO4 (64.0 mg, 0.30 mmol, 3.0 equiv.) and anhydrous CH2Cl2 

(0.7 mL, to make final concentration of silyloxydiene alcohol 0.1 M) at ambient 

temperature (23 ºC). With vigorous stirring, ethyl fumaroyl chloride 12a (20 mL, 0.15 

mmol, 1.5 equiv.) in CH2Cl2 (0.3 mL) was added over a period of 5 h by syringe pump 

addition. After stirring for an additional 13 h, the reaction mixture was filtered through a 

pad of celite and concentrated by rotary evaporation. Purification by an automated flash 

chromatography (5 → 20% EtOAc/hexanes) afforded a single endo diastereomer (as 

judged by 1H NMR) of bicyclic γ-lactone (–)-14a (20 mg, 48% yield, 99% e.e.) and a 

single endo diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (+)-14a’ (13 mg, 

31% yield, 98% e.e.). 

(–)-14a: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.53; = –22.86 (c 

= 1.40, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.4 min, tminor = 
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13.4 min; 99% e.e. Absolute stereochemistry was assigned by analogy to tricyclic γ-

lactone (–)-3k. 1H NMR (500 MHz; CDCl3): δ 7.42-7.39 (m, 2H), 7.35-7.30 (m, 3H), 

5.39 (s, 1H), 4.17-4.04 (m, 2H), 3.29 (ddd, J = 7.7, 3.3, 0.9 Hz, 1H), 3.26 (dd, J = 6.1, 

3.2 Hz, 1H), 3.19 (d, J = 7.5 Hz, 1H), 2.57-2.53 (m, 1H), 2.49 (ddt, J = 17.1, 6.0, 2.3 Hz, 

1H), 1.80 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 1.17-1.12 (m, 3H), 1.09 (dd, J = 6.8, 2.1 Hz, 

18H); 13C NMR (125 MHz; CDCl3): δ 177.7, 172.8, 144.4, 139.7, 129.0 (2), 128.3, 

124.9 (2), 108.0, 83.6, 61.4, 47.6, 38.5, 38.3, 28.8, 18.1 (6), 14.5, 14.2, 13.3 (3); IR (thin 

film): 2944, 2867, 1780, 1732, 1676 cm-1; HRMS (ESI+) m/z calcd for C27H41O5Si 

[M+H]+: 473.2723, found: 473.2734. 

(+)-14a’: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.50; = +30.38 

(c = 0.80, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel AS-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 16.9 min, tminor = 

19.4 min; 98% e.e. Absolute stereochemistry was assigned by analogy to bicyclic amide 

(–)-S21. 1H NMR (500 MHz; CDCl3): δ 7.41-7.38 (m, 5H), 5.07 (d, J = 10.2 Hz, 1H), 

4.35-4.22 (m, 2H), 3.08-3.04 (m, 1H), 2.96 (d, J = 11.5 Hz, 1H), 2.93-2.88 (m, 1H), 

2.56-2.52 (m, 2H), 1.35-1.32 (m, 6H), 1.13-1.08 (m, 3H), 1.06 (dd, J = 6.7, 2.4 Hz, 

18H); 13C NMR (125 MHz; CDCl3): δ 173.3, 172.9, 144.8, 137.0, 129.6, 128.8 (2), 

128.1 (2), 109.8, 85.4, 61.4, 50.0, 46.5, 39.9, 34.7, 18.1 (6), 14.3, 13.33, 13.27 (3); IR 

(thin film): 2946, 2869, 1790, 1738, 1663 cm-1; HRMS (ESI+) m/z calcd for C27H41O5Si 

[M+H]+: 473.2723, found: 473.2735. 
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Ethyl (1R,3aS,4S,7aR)-1,7-dimethyl-3-oxo-1-phenyl-6-((triisopropylsilyl)oxy)-1,3, 

3a,4,5,7a-hexahydroisobenzofuran-4-carboxylate ((+)-14b) and ethyl (1S,3aS, 

4S,7aR)-1,7-dimethyl-3-oxo-1-phenyl-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexa-

hydroisobenzofuran-4-carboxylate ((+)-14b’): Prepared according to the 

representative procedure using silyloxydiene alcohol (±)-13b (2.03 g, 5.63 mmol, 1.0 

equiv.), (S)-(–)-BTM (284 mg, 1.13 mmol, 20 mol%), 2,6-lutidine (0.13 mL, 1.13 mmol, 

20 mol%), K3PO4 (3.59 g, 16.89 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (56 mL, to 

make initial concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 

12a (1.13 mL, 8.44 mmol, dissolved in 24 mL CH2Cl2, 1.5 equiv.) at ambient 

temperature (23 ºC). Upon completion (as judged by TLC), the reaction mixture was 

purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a 

single endo diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (+)-14b (1.09 g, 

41% yield, 99% e.e.) and a single endo diastereomer (as judged by 1H NMR) of bicyclic 

γ-lactone (+)-14b’ (0.62 g, 23% yield, 99% e.e.). 

(+)-14b: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.54; = +30.30 (c 

= 3.30, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 12.0 min, tminor = 

16.1 min; 99% e.e. Absolute stereochemistry was assigned by analogy to tricyclic γ-

lactone (–)-3k. 1H NMR (500 MHz; CDCl3): δ 7.33-7.28 (m, 5H), 4.21-4.11 (m, 2H), 

3.59 (ddd, J = 8.3, 4.4, 1.3 Hz, 1H), 3.21 (d, J = 8.3 Hz, 1H), 3.18 (dd, J = 9.7, 4.2 Hz, 

1H), 2.53-2.49 (m, 1H), 2.38 (ddt, J = 16.5, 5.6, 2.1 Hz, 1H), 1.93 (s, 3H), 1.25 (t, J = 

7.1 Hz, 3H), 1.08-1.04 (m, 3H), 1.02 (dd, J = 5.7, 3.7 Hz, 18H), 0.87 (s, 3H); 13C NMR 

(S)-(–)-BTM (20 mol%) 

2,6-lutidine (20 mol%)

K3PO4 (3.0 equiv.)
CH2Cl2 (0.1 M), 23 ºC, 18 h

[gram scale]
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(125 MHz; CDCl3): δ 177.1, 172.8, 145.6, 141.2, 128.1 (2), 127.9, 126.2 (2), 107.4, 

89.3, 61.3, 52.5, 42.4, 39.5, 29.5, 28.1, 18.1 (6), 16.4, 14.2, 13.2 (3); IR (thin film): 

2945, 2867, 1770, 1732, 1666 cm-1; HRMS (ESI+) m/z calcd for C28H43O5Si [M+H]+: 

487.2880, found: 487.2862. 

(+)-14b’: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.65; = +51.85 

(c = 2.70, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel AD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.8 mL/min, λ = 210 nm: tmajor = 6.5 min, tminor = 7.9 

min; 99% e.e. Absolute stereochemistry was assigned by analogy to bicyclic amide (–)-

S21. 1H NMR (500 MHz; CDCl3): δ 7.43-7.41 (m, 2H), 7.34-7.29 (m, 3H), 4.30-4.15 

(m, 2H), 3.02 (dt, J = 13.5, 1.4 Hz, 1H), 2.85 (t, J = 12.5 Hz, 1H), 2.77 (td, J = 10.9, 6.5 

Hz, 1H), 2.49-2.36 (m, 2H), 1.92 (s, 3H), 1.88 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.11-1.07 

(m, 3H), 1.05 (d, J = 6.7 Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 173.6, 173.1, 145.8, 

139.9, 128.6 (2), 128.2, 126.2 (2), 109.4, 88.6, 61.3, 54.7, 44.3, 39.9, 35.0, 30.1, 18.1 

(6), 14.26, 14.21, 13.2(3); IR (thin film): 2945, 2868, 1786, 1737, 1652 cm-1; HRMS 

(ESI+) m/z calcd for C28H43O5Si [M+H]+: 487.2880, found: 487.2891. 

 

 
Ethyl (1R,3aS,4S,5S,7aS)-7-methyl-3-oxo-1-phenyl-5-propyl-6-((triisopropylsilyl)-

oxy)-1,3,3a,4,5,7a-hexahydroisobenzofuran-4-carboxylate ((+)-14c): Prepared 

according to the representative procedure using silyloxydiene alcohol (±)-13c (39 mg, 

0.10 mmol, 1.0 equiv.), (S)-(–)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-lutidine (2.3 

mL, 0.020 mmol, 20 mol%), K3PO4 (64 mg, 0.30 mmol, 3.0 equiv.) in anhydrous 
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CH2Cl2 (0.7 mL, to make final concentration of silyloxydiene alcohol 0.1 M) and ethyl 

fumaroyl chloride 12a (20 mL, 0.15 mmol, dissolved in 0.3 mL CH2Cl2, 1.5 equiv.) at 

ambient temperature (23 ºC). Upon completion (as judged by TLC), the reaction mixture 

was purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to 

afford a single endo diastereomer (as judged by 1H NMR) of bicyclic γ-lactone (+)-14c 

(20 mg, 40% yield, 99% e.e.) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): Rf 

= 0.42; = +41.03 (c = 0.39, CHCl3). Enantiomeric excess was determined by 

chiral HPLC analysis in comparison with authentic racemic material using a Chiralpak 

IA column: hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 28.9 min, 

tminor = 43.7 min; 99% e.e. Absolute stereochemistry was assigned by analogy to tricyclic 

γ-lactone (–)-3k. 1H NMR (500 MHz; CDCl3): δ 7.41-7.38 (m, 5H), 5.06 (d, J = 10.1 

Hz, 1H), 4.32-4.19 (m, 2H), 3.03 (dd, J = 13.3, 11.7 Hz, 1H), 2.95 (dd, J = 11.6, 6.2 Hz, 

1H), 2.91 (dd, J = 12.2, 10.9 Hz, 1H), 2.53 (t, J = 6.3 Hz, 1H), 1.73-1.60 (m, 2H), 1.33 

(t, J = 7.2 Hz, 3H), 1.27 (s, 3H), 1.24-1.16 (m, 2H), 1.11-1.08 (m, 3H), 1.06 (d, J = 6.4 

Hz, 18H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (125 MHz; CDCl3): δ 173.5, 170.9, 148.5, 

137.2, 129.5, 128.8 (2), 128.1 (2), 109.5, 85.1, 61.1, 50.7, 43.8, 43.4, 42.8, 33.0, 22.1, 

18.2 (6), 14.8, 14.25, 14.24, 13.8 (3); IR (thin film): 2948, 2870, 1793, 1737, 1653 cm-1; 

HRMS (ESI+) m/z calcd for C30H47O5Si [M+H]+: 515.3193, found: 515.3211. 

 

 
(2aR,2a1R,3S,8aS)-3-methyl-5-((triisopropylsilyl)oxy)-2a,2a1,3,4,6,7,8,8a-octahydro 

-2H-naphtho[1,8-bc]furan-2-one ((–)-14d) and (2aR,2a1R,3S,8aR)-3-methyl-5-

((triisopropylsilyl)oxy)-2a,2a1,3,4,6,7,8,8a-octahydro-2H-naphtho[1,8-bc]furan-2-

one ((–)-14d’): Prepared by a modified representative procedure. To an oven-dried, 250-
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mL round-bottomed flask equipped with a magnetic stir bar was added silyloxydiene 

alcohol (±)-13d (2.73 g, 9.21 mmol, 1.0 equiv.), (S)-(–)-BTM (465 mg, 1.84 mmol, 20 

mol%), 2,6-lutidine (0.21 mL, 1.84 mmol, 20 mol%), K3PO4 (5.87 g, 27.63 mmol, 3.0 

equiv.) and anhydrous CH2Cl2 (80 mL, to make final concentration of silyloxydiene 

alcohol 0.1 M) at ambient temperature (23 ºC). With vigorous stirring, crotonoyl 

chloride 12b (1.32 mL, 13.82 mmol, 1.5 equiv.) in CH2Cl2 (12 mL) was added over a 

period of ~5 min. After stirring for 18 h, the reaction mixture was filtered through a pad 

of celite and concentrated by rotary evaporation. Purification by an automated flash 

chromatography (5 → 20% EtOAc/hexanes) afforded a single endo diastereomer (as 

judged by 1H NMR) of tricyclic γ-lactone (–)-14d (1.17 g, 35% yield, 99% e.e.) and a 

single endo diastereomer (as judged by 1H NMR) of tricyclic γ-lactone (–)-14d’ (0.80 g, 

24% yield, 99% e.e.). 

(–)-14d: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.34; = –62.86 (c 

= 3.50, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 11.1 min, tmajor = 

12.1 min; 99% e.e. Absolute stereochemistry was assigned by analogy to tricyclic γ-

lactone (–)-3k. 1H NMR (500 MHz; CDCl3): δ 4.49 (q, J = 3.3 Hz, 1H), 2.96-2.93 (m, 

1H), 2.88 (d, J = 2.2 Hz, 1H), 2.57-2.51 (m, 2H), 2.50-2.44 (m, 1H), 2.19-2.15 (m, 1H), 

1.74 (d, J = 17.2 Hz, 1H), 1.71-1.65 (m, 1H), 1.61-1.56 (m, 1H), 1.49 (tt, J = 12.6, 3.3 

Hz, 1H), 1.42 (td, J = 12.4, 2.2 Hz, 1H), 1.13-1.07 (m, 6H), 1.05 (d, J = 5.9 Hz, 18H); 
13C NMR (125 MHz; CDCl3): δ 178.5, 143.6, 108.6, 79.4, 47.6, 37.6, 33.2, 27.8, 25.0, 

24.4, 21.0, 20.3, 18.1 (6), 13.4 (3); IR (thin film): 2943, 2867, 1778, 1675 cm-1; HRMS 

(ESI+) m/z calcd for C21H37O3Si [M+H]+: 365.2512, found: 365.2510. 

(–)-14d’: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.49; = –12.50 

(c = 1.60, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralpak IA column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 230 nm: tminor = 14.1 min, tmajor = 
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17.2 min; 99% e.e. Absolute stereochemistry was assigned by analogy to bicyclic amide 

(–)-S21. 1H NMR (500 MHz; CDCl3): δ 3.90 (td, J = 11.2, 3.4 Hz, 1H), 2.76 (ddd, J = 

13.9, 5.1, 1.6 Hz, 1H), 2.40 (dd, J = 10.7, 7.8 Hz, 1H), 2.27-2.19 (m, 2H), 2.17-2.10 (m, 

1H), 2.09-2.02 (m, 2H), 1.97-1.91 (m, 1H), 1.73-1.61 (m, 2H), 1.49-1.41 (m, 1H), 1.17 

(d, J = 6.1 Hz, 3H), 1.14-1.10 (m, 3H), 1.08 (d, J = 5.6 Hz, 18H); 13C NMR (125 MHz; 

CDCl3): δ 177.8, 141.3, 110.9, 84.5, 48.8, 45.7, 38.9, 30.7, 28.1, 24.9, 24.8, 18.9, 18.1 

(6), 13.2 (3); IR (thin film): 2944, 2867, 1766, 1737, 1697 cm-1; HRMS (ESI+) m/z calcd 

for C21H37O3Si [M+H]+: 365.2512, found: 365.2497. 

 

 
Ethyl (1R,3aS,4S,7aS)-3-oxo-1-phenyl-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexa-

hydroisobenzofuran-4-carboxylate ((–)-36), ethyl (1R,3aS,4S,7aR)-3-oxo-1-phenyl-

6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydroisobenzofuran-4-carboxylate ((+)-

36’), ethyl (1S,3aS,4S,7aR)-3-oxo-1-phenyl-6-((triisopropylsilyl)oxy)-1,3,3a, 4,5,7a-

hexahydroisobenzofuran-4-carboxylate ((+)-36’’) and ethyl (1S,3aS,4S, 7aS)-3-oxo-

1-phenyl-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydro-isobenzo-furan-4-

carboxylate ((–)-36’’’): Prepared according to the representative procedure using 

silyloxydiene alcohol (±)-35 (33 mg, 0.10 mmol, 1.0 equiv.), (S)-(–)-BTM (5.0 mg, 

0.020 mmol, 20 mol%), 2,6-lutidine (35 mL, 0.30 mmol, 3.0 equiv.) in anhydrous 

CH2Cl2 (0.7 mL, to make final concentration of silyloxydiene alcohol 0.1 M) and ethyl 
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fumaroyl chloride 12a (20 mL, 0.15 mmol, dissolved in 0.3 mL CH2Cl2, 1.5 equiv.) at 

ambient temperature (23 ºC). Upon completion (as judged by TLC), the reaction mixture 

was purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to 

afford bicyclic γ-lactones (–)-36 (12.1 mg, 27% yield, 98% e.e.), (+)-36’ (12.0 mg, 27% 

yield, 99% e.e.), (+)-36’’ (9.0 mg, 20% yield, 99% e.e.) and (–)-36’’’ (8.3 mg, 18% 

yield, 97% e.e.). 

(–)-36: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.49; = –16.40 (c 

= 10.00, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.3 min, tminor = 

13.6 min; 98% e.e. Absolute stereochemistry was assigned by analogy to amide (–)-S11. 
1H NMR (500 MHz; CDCl3): δ 7.40-7.37 (m, 2H), 7.34-7.29 (m, 3H), 5.20 (d, J = 2.2 

Hz, 1H), 4.92 (dd, J = 2.9, 1.8 Hz, 1H), 4.18-4.07 (m, 2H), 3.28-3.24 (m, 2H), 3.20 (dd, 

J = 7.6, 4.1 Hz, 1H), 2.51 (ddq, J = 17.6, 2.6, 0.8 Hz, 1H), 2.44 (ddt, J = 17.6, 6.5, 2.1 

Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H), 1.19-1.14 (m, 3H), 1.07 (dd, J = 7.2, 1.7 Hz, 18H); 13C 

NMR (125 MHz; CDCl3): δ 177.1, 172.8, 151.4, 138.8, 128.9 (2), 128.4, 125.0 (2), 

101.6, 85.9, 61.4, 42.6, 38.3, 38.1, 28.8, 18.0 (6), 14.2, 12.4 (3); IR (thin film): 2944, 

2867, 1779, 1732, 1667 cm-1; HRMS (ESI+) m/z calcd for C26H39O5Si [M+H]+: 

459.2567, found: 459.2589.  

(+)-36’: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.43; = +35.20 (c 

= 10.00, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 22.8 min, tminor = 

34.0 min; 99% e.e. Absolute stereochemistry was assigned by analogy to amide (–)-S11. 
1H NMR (500 MHz; CDCl3): δ 7.43-7.33 (m, 5H), 4.96 (d, J = 9.7 Hz, 1H), 4.88 (d, J = 

1.4 Hz, 1H), 4.33-4.22 (m, 2H), 2.90-2.86 (m, 2H), 2.85-2.78 (m, 1H), 2.56-2.44 (m, 

2H), 1.33 (t, J = 7.1 Hz, 3H), 1.15-1.08 (m, 3H), 1.05 (t, J = 6.6 Hz, 18H); 13C NMR 

(125 MHz; CDCl3): δ 173.1, 172.8, 153.0, 136.5, 129.1, 129.0 (2), 126.1 (2), 98.7, 84.8, 
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61.4, 48.2, 46.6, 39.4, 34.4, 18.0 (6), 14.2, 12.6 (3); IR (thin film): 2945, 2868, 1790, 

1738, 1650 cm-1; HRMS (ESI+) m/z calcd for C26H39O5Si [M+H]+: 459.2567, found: 

459.2544. 

(+)-36’’: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.38; = +30.80 

(c = 10.00, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 21.7 min, tmajor = 

37.0 min; 99% e.e. Absolute stereochemistry was assigned by derivatization as described 

on page S216. 1H NMR (500 MHz; CDCl3): δ 7.37-7.30 (m, 3H), 7.19-7.17 (m, 2H), 

5.64 (d, J = 7.4 Hz, 1H), 4.84 (d, J = 1.2 Hz, 1H), 4.31-4.18 (m, 2H), 3.35 (dddt, J = 

13.5, 7.6, 3.6, 1.9 Hz, 1H), 2.83 (ddd, J = 11.6, 10.4, 6.9 Hz, 1H), 2.73 (dd, J = 13.6, 

11.6 Hz, 1H), 2.43 (dddd, J = 17.7, 6.9, 2.0, 1.1 Hz, 1H), 2.22 (dddd, J = 17.6, 10.4, 3.5, 

1.9 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.05-1.02 (m, 3H), 0.94-0.84 (m, 18H); 13C NMR 

(125 MHz; CDCl3): δ 174.2, 173.0, 151.8, 134.9, 128.5 (2), 128.3, 125.5 (2), 100.0, 

81.3, 61.3, 43.7, 40.6, 39.5, 34.1, 17.9 (6), 14.2, 12.3 (3); IR (thin film): 2945, 2867, 

1790, 1738, 1650 cm-1; HRMS (ESI+) m/z calcd for C26H39O5Si [M+H]+: 459.2567, 

found: 459.2584. 

(–)-36’’’: clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): Rf = 0.31; = –15.20 

(c = 10.00, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel AS-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 15.5 min, tminor = 

28.2 min; 97% e.e. Absolute stereochemistry was assigned by analogy to amide (–)-S11. 
1H NMR (500 MHz; CDCl3): δ 7.37-7.32 (m, 2H), 7.29-7.26 (m, 1H), 7.25-7.23 (m, 

2H), 5.63 (d, J = 5.2 Hz, 1H), 4.19-4.11 (m, 2H), 3.99-3.99 (m, 1H), 3.59-3.55 (m, 1H), 

3.49 (dd, J = 6.8, 2.6 Hz, 1H), 3.34 (dt, J = 5.4, 2.8 Hz, 1H), 2.48-2.46 (m, 2H), 1.25 (t, 

J = 7.1 Hz, 3H), 0.90-0.82 (m, 21H); 13C NMR (125 MHz; CDCl3): δ 176.8, 173.0, 

151.4, 135.7, 128.5 (2), 127.9, 125.3 (2), 97.8, 82.9, 61.3, 41.9, 40.0, 37.8, 27.9, 17.8 
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(6), 14.2, 12.2 (3); IR (thin film): 2945, 2867, 1778, 1731, 1665 cm-1; HRMS (ESI+) m/z 

calcd for C26H39O5Si [M+H]+: 459.2567, found: 459.2592. 

 

Use of a lower catalyst loading for the DAL (10 mol%) as described for bicyclic γ-

lactones (–)-36, (+)-36’, (+)-36’’ and (–)-36’’’ on gram scale: This reaction was 

performed according to the procedure described above for (–)-36, (+)-36’, (+)-36’’ and 

(–)-36’’’ with the exception that a lower catalyst loading (10 vs. 20 mol%), and a longer 

addition time (10 vs. 5 h) were employed. Silyloxydiene alcohol (±)-35 (3.30 g, 9.92 

mmol, 1.0 equiv.), (S)-(–)-BTM (250 mg, 0.99 mmol, 10 mol%), 2,6-lutidine (3.47 mL, 

29.7 mmol, 3.0 equiv.) in anhydrous CH2Cl2 (80 mL, to make final concentration of 

silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 12a (2.0 mL, 14.8 mmol, 

dissolved in 15 mL CH2Cl2, 1.5 equiv.) at ambient temperature (23 ºC). The solution of 

ethyl fumaroyl chloride 12a was added by syringe pump over 10 h and the reaction was 

allowed to stir for 8 h at ambient temperature (23 ºC). Upon completion (as judged by 

TLC), the reaction mixture was purified by an automated flash chromatography (5 → 

20% EtOAc/hexanes) to afford bicyclic γ-lactones (–)-36 (0.80 g, 18% yield, 98% e.e.), 

(+)-36’ (0.74 g, 16% yield, 99% e.e.), (+)-36’’ (0.69 g, 15% yield, 99% e.e.), (–)-36’’’ 

(0.68 g, 15% yield, 97% e.e.) and ester (±)-S10 (0.54 g, 12% yield). All spectral data 

matched that reported above. 

 

Ethyl ((E)-1-phenyl-4-((triisopropylsilyl)oxy)penta-2,4-

dien-1-yl) fumarate ((±)-S10): pale yellow oil; TLC 

(EtOAc:hexanes, 1:9 v/v): Rf = 0.77; = 0.00 (c = 3.00, 

CHCl3). 1H NMR (500 MHz; CDCl3): δ 7.37-7.36 (m, 3H), 

7.32-7.29 (m, 2H), 7.15 (dd, J = 15.9, 10.9 Hz, 1H), 6.94-6.85 (m, 2H), 6.48 (d, J = 15.9 

Hz, 1H), 5.68 (d, J = 10.9 Hz, 1H), 4.68 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 

Hz, 3H), 1.27-1.20 (m, 3H), 1.14 (d, J = 7.2 Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 

165.0, 164.7, 146.6, 138.0, 134.5, 133.1, 130.4, 128.8 (2), 127.3, 126.3 (2), 122.7, 113.5, 

α[ ]D
21.1
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O O
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67.1, 61.6, 18.1 (6), 14.2, 13.3 (3); IR (thin film): 2944, 2867, 1727, 1645 cm-1; HRMS 

(ESI+) m/z calcd for C26H39O5Si [M+H]+: 459.2567, found: 459.2582. 

 

 
Ethyl (1S,5R,6S)-6-((4-bromobenzyl)carbamoyl)-5-((S)-hydroxy(phenyl)methyl)-3-

((triisopropylsilyl)oxy)cyclohex-3-ene-1-carboxylate ((–)-S11): Into an oven-dried, 5-

mL round-bottomed flask containing a solution of bicyclic γ-lactone (+)-36’’ (50 mg, 

0.11 mmol, 1.0 equiv.) in THF (1.1 mL, to make final concentration of bicyclic g-

lactone 0.1 M), was added dropwise 4-bromobenzylamine (70 mL, 0.55 mmol, 5.0 

equiv.). The reaction was allowed to stir at ambient temperature (23 ºC) for 36 h. Upon 

completion (as judged by TLC), the reaction was concentrated by rotary evaporation and 

purified by an automated flash chromatography system (20 → 50% EtOAc/hexanes) to 

afford amide (–)-S11 (32 mg, 46% yield) as a white solid: m.p. 151-155 ºC 

(recrystallized from Et2O); TLC (EtOAc:hexanes, 1:2 v/v): Rf = 0.49; = -13.95 (c 

= 0.86, CHCl3). Absolute stereochemistry was assigned based on X-ray analysis using 

anomalous dispersion (see Figure S1). 1H NMR (500 MHz; CDCl3): δ 7.42 (d, J = 8.3 

Hz, 2H), 7.37-7.34 (m, 2H), 7.29-7.24 (m, 3H), 7.19 (d, J = 8.3 Hz, 2H), 6.73 (t, J = 6.0 

Hz, 1H), 4.82 (d, J = 4.6 Hz, 1H), 4.51 (dd, J = 14.9, 6.5 Hz, 1H), 4.42 (s, 1H), 4.30 (dd, 

J = 15.0, 5.5 Hz, 1H), 4.09-3.97 (m, 2H), 3.10-3.06 (m, 2H), 2.83 (dd, J = 11.6, 10.4 Hz, 

1H), 2.41-2.24 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H), 1.07-1.03 (m, 3H), 0.99 (dd, J = 14.2, 

6.1 Hz, 18H); 13C NMR (125 MHz; CDCl3): δ 174.7, 173.8, 151.9, 142.4, 137.6, 131.8 

(2), 129.7 (2), 128.3 (2), 127.2, 125.3 (2), 121.3, 98.5, 73.0, 61.1, 45.9, 45.5, 43.2, 43.1, 

32.9, 18.0 (6), 14.2, 12.5 (3); IR (thin film): 3316, 2925, 2866, 1728, 1673, 1645 cm-1; 

HRMS (ESI+) m/z calcd for C33H47BrNO5Si [M+H]+: 644.2407, found: 644.2384. 
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Representative procedure for the Diels-Alder/lactamization process as described 

for tricyclic γ-lactam (+)-23: 

 
(3aS,6S,7aR)-2-tosyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one ((+)-23): To 

an oven-dried, 25-mL round-bottomed flask equipped with a magnetic stir bar was added 

furanyldiene sulfonamide 211 (4.60 g, 18.3 mmol, 1.0 equiv.), (–)-Levamisole·HCl (442 

mg, 1.83 mmol, 10 mol%), 2,6-lutidine (0.43 mL, 3.66 mmol, 20 mol%), K3PO4 (9.7 g, 

45.8 mmol, 2.5 equiv.) and anhydrous CH2Cl2 (185 mL, to make final concentration of 

silyloxydiene alcohol 0.1 M) at ambient temperature (23 ºC). With vigorous stirring, 

acryloyl chloride 22 (1.8 mL, 21.9 mmol, 1.2 equiv.) in CH2Cl2 (1.2 mL) was added 

over a period of 5 min. After stirring for an additional 18 h, the reaction mixture was 

filtered through a pad of celite and concentrated by rotary evaporation. Purification by 

an automated flash chromatography (10 → 80% EtOAc/hexanes) afforded a single 

diastereomer (as judged by 1H NMR) of tricyclic γ-lactam (+)-23 (4.24 g, 76% yield, 

91% ee) as a white solid: TLC (EtOAc:hexanes, 1:1 v/v): Rf = 0.44; α[ ]D
20.0 = +5.88 (c = 

3.40, CHCl3). Enantiomeric excess was determined by chiral HPLC analysis in 

comparison with authentic racemic material using a Chiralcel AS-H column: 

hexanes:iPrOH = 40:60, flow rate 1.0 mL/min, λ = 230 nm: tminor = 12.1 min, tmajor = 

14.8 min; 91% ee. Absolute stereochemistry was assigned by analogy to epoxide (+)-28. 
1H NMR (500 MHz; CDCl3): δ 7.90 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 6.41 

(dd, J = 5.8, 1.6 Hz, 1H), 6.38 (d, J = 5.8 Hz, 1H), 4.98 (dd, J = 4.5, 1.5 Hz, 1H), 4.45 (d, 

J = 12.0 Hz, 1H), 4.32 (d, J = 12.0 Hz, 1H), 2.55 (dd, J = 8.7, 3.2 Hz, 1H), 2.42 (s, 3H), 

2.09 (dt, J = 11.9, 3.9 Hz, 1H), 1.55 (dd, J = 12.0, 8.7 Hz, 1H); 13C NMR (125 MHz; 

O NTs

OHO NHTs

(–)-TM•HCl (10 mol%)
2,6-lutidine (20 mol%)

K3PO4, CH2Cl2
23 ºC, 48 h
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CDCl3): δ 172.6, 145.1, 138.0, 135.2, 132.3, 129.7 (2), 128.0 (2), 87.8, 78.9, 49.9, 48.3, 

28.9, 21.7; IR (thin film): 2956, 1741 cm-1; HRMS (ESI+) m/z calcd for C15H16NO4S 

[M+H]+: 306.0800, found: 306.0811. 

 
Ethyl (3aS,6R,7R,7aR)-1-oxo-2-tosyl-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole-7-

carboxylate ((+)-25i): Prepared according to the representative procedure using 

furanyldiene sulfonamide 21 (360 mg, 1.43 mmol, 1.0 equiv.), (S)-(–)-BTM (72 mg, 

0.143 mmol, 20 mol%), pyridine (0.13 mL, 1.57 mmol, 1.1 equiv.) in anhydrous CH2Cl2 

(1.45 mL, to make initial concentration of furanyldiene sulfonamide 0.1 M) and ethyl 

fumaroyl chloride 12a (0.23 mL, 1.72 mmol, dissolved in 0.7 mL CH2Cl2, 1.2 equiv.) at 

ambient temperature (23 ºC). Upon completion (as judged by TLC), the reaction mixture 

was purified by an automated flash chromatography (10 → 80% EtOAc/hexanes) to 

afford a single endo diastereomer (as judged by 1H NMR) of tricyclic γ-lactam (+)-25i 

(460 mg, 85% yield, 92% e.e.) as an off-white solid: TLC (EtOAc:hexanes, 1:1 v/v): Rf = 

0.62; α[ ]D
19.9 = +72.63 (c = 3.80, CHCl3). Enantiomeric excess was determined by chiral 

HPLC analysis in comparison with authentic racemic material using a Chiralcel AD-H 

column: hexanes:iPrOH = 60:40, flow rate 0.5 mL/min, λ = 230 nm: tminor = 27.2 min, 

tmajor = 30.9 min; 94% ee. Absolute stereochemistry was assigned by analogy to epoxide 

(+)-28. 1H NMR (500 MHz; CDCl3): δ 7.91 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 

6.53 (d, J = 5.8 Hz, 1H), 6.34 (dd, J = 5.8, 1.6 Hz, 1H), 5.18 (dd, J = 4.9, 1.5 Hz, 1H), 

4.45 (d, J = 12.2 Hz, 1H), 4.31 (d, J = 12.2 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.36 (dd, J 

= 4.8, 3.4 Hz, 1H), 3.03 (d, J = 3.3 Hz, 1H), 2.44 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H); 13C 

NMR (125 MHz; CDCl3): δ 171.1, 169.6, 145.3, 135.8, 134.9, 134.31, 134.30, 129.7 (2), 

128.1 (2), 89.1, 80.2, 61.4, 52.1, 49.8, 47.6, 21.7, 14.1; IR (thin film): 2983, 1734 cm-1; 

HRMS (ESI+) m/z calcd for C18H20NO6S [M+H]+: 378.1011, found: 378.1018. 

O NTs

OHO NHTs
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Synthetic applications of γ-lactone (–)-14d, γ-lactams (+)-23 and (+)-25: 

 

 
(3S,4R,4aR,5S,8aS)-5-hydroxy-4-(hydroxymethyl)-3-methyloctahydronaphthalen-

1(2H)-one ((+)-26): Into an oven-dried, 10-mL round-bottomed flask containing a 

solution of tricyclic γ-lactone (–)-14d (50 mg, 0.14 mmol, 1.0 equiv.) in anhydrous THF 

(2.7 mL, to make initial concentration of tricyclic γ-lactone 0.05 M) was added LiAlH4 

(2.0 M solution in THF, 0.21 mL, 0.42 mmol, 3.0 equiv.) dropwise at 0 ºC. After stirring 

for 20 min, the ice bath was removed and the mixture was allowed to warm up to 

ambient temperature (23 ºC) on its own accord over 40 min. Upon completion (as judged 

by TLC), the reaction mixture was cooled to 0 ºC and carefully quenched in sequence 

with 17 mL H2O, 17 mL 15% aqueous NaOH, and 42 mL H2O. The ice bath was 

removed and the mixture was allowed to warm up to ambient temperature (23 ºC) on its 

own accord. Subsequently, anhydrous MgSO4 was added and the reaction mixture was 

vigorously stirred for 30 min, filtered through a pad of celite and concentrated by rotary 

evaporation to afford crude diol S12 as a clear colorless oil. The crude material was of 

sufficient purity to be carried on directly to the next step. 

To a solution of crude diol S12 in anhydrous THF (2.8 mL, to make final 

concentration of crude diol 0.05 M) at 0 ºC was added TBAF (1.0 M solution in THF, 

0.70 mL, 0.69 mmol, 5.0 equiv.) dropwise. The reaction was stirred for 10 min at 0 ºC 

then allowed to warm up to ambient temperature (23 ºC) and stirred for 9 h. The reaction 

mixture was quenched with a saturated aqueous solution of NH4Cl (2.0 mL). The 

aqueous layer was extracted with Et2O (2 x 5.0 mL) and washed with brine (2.0 mL). 

The organic layer was then dried over anhydrous MgSO4, filtered, and concentrated by 

rotary evaporation. The residue was purified by an automated flash chromatography 

system (20 → 80% EtOAc/hexanes) providing 22 mg (76% yield over 2 steps) of ketone 

LiAlH4, THF
0 → 23 ºC, 2 h

TBAF, THF
23 ºC, 9 h
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(+)-26 as a clear colorless oil: TLC (EtOAc:hexanes, 3:1 v/v): Rf = 0.36; = +17.50 

(c = 0.16, CHCl3). 1H NMR (500 MHz; CDCl3): δ 4.17 (dd, J = 11.2, 8.8 Hz, 1H), 4.13 

(s, 1H), 3.71 (dd, J = 11.3, 2.1 Hz, 1H), 2.71 (td, J = 12.0, 3.5 Hz, 1H), 2.41 (dd, J = 

14.2, 5.7 Hz, 1H), 2.26-2.21 (m, 1H), 2.10-2.08 (m, 1H), 2.06-2.05 (m, 1H), 1.90 (dd, J 

= 12.8, 4.0 Hz, 1H), 1.84-1.79 (m, 1H), 1.73-1.66 (m, 1H), 1.61-1.55 (m, 1H), 1.47 (tdd, 

J = 13.6, 4.1, 2.1 Hz, 1H), 1.29-1.20 (m, 2H), 0.97 (d, J = 7.1 Hz, 3H); 13C NMR (125 

MHz; CDCl3): δ 213.4, 69.3, 64.9, 46.6, 44.7, 44.4, 43.9, 35.6, 33.8, 25.9, 20.5, 18.9; IR 

(thin film): 3332, 2934, 1703 cm-1; HRMS (ESI+) m/z calcd for C12H20LiO3 [M+Li]+: 

219.1572, found: 219.1582. 

 

 
2-Tosylisoindolin-1-one (S13): To a dried pressure tube with p-toluenesulfonic acid 

monohydrate (6.20 g, 32.8 mmol, 5.0 equiv.) was added an anhydrous toluene (90 mL, 

to make initial concentration of (+)-23 0.07 M) solution of compound (+)-23 (2.0 g, 6.55 

mmol, 1.0 equiv.). The resulting mixture was purged with Ar for 5 min, then heated at 

120 °C for 1 h. The reaction mixture was quenched with a saturated aqueous solution of 

NaHCO3 (50 mL). The aqueous layer was extracted with Et2O (2 x 50 mL) and washed 

with brine (10 mL). The organic layer was then dried over anhydrous MgSO4, filtered, 

and concentrated by rotary evaporation. The residue was purified by an automated flash 

chromatography system (5 → 50% EtOAc/hexanes) providing 1.77 g (94% yield) of 

lactam S13 as a white solid: TLC (EtOAc:hexanes, 1:1 v/v): Rf = 0.70. 1H NMR (500 

MHz; CDCl3): δ 8.05 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 1H), 7.66 (td, J = 7.5, 1.1 

Hz, 1H), 7.51 (dd, J = 7.1, 0.5 Hz, 2H), 7.36 (dd, J = 8.1, 0.5 Hz, 2H), 4.94 (s, 2H), 2.44 

(s, 3H); 13C NMR (125 MHz; CDCl3): δ 166.1, 145.3, 141.0, 135.4, 133.9, 130.2, 129.8 

(2), 128.8, 128.2 (2), 125.1, 123.4, 49.9, 21.7; IR (thin film): 1726, 1171, 1088 cm-1; 

HRMS (ESI+) m/z calcd for C15H14NO3S [M+H]+: 288.0694, found: 288.0705. 
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Isoindolin-1-one (27): To a refluxing solution of compound S13 (2.52 g, 8.78 mmol, 1.0 

equiv.) and Bu3SnH (11.8 mL, 43.9 mmol, 5.0 equiv.) in degassed toluene (300 mL, to 

make initial concentration of S13 0.03 M) was added in three portions AIBN (720 mg, 

4.4 mmol, 0.5 equiv.) every 1 h. The reaction mixture was refluxed for another 2 h. The 

solvent was then evaporated under vacuum, and the crude residue was purified by an 

automated flash chromatography system (0.1 → 10% MeOH/EtOAc) providing 1.13 g 

(97% yield) of isoindolinone 27 as a white solid: TLC (MeOH:EtOAc, 1:9 v/v): Rf = 

0.60. 1H NMR (500 MHz; CDCl3): δ 8.35 (br s, 1H), 7.87 (d, J = 7.4 Hz, 1H), 7.57 (td, J 

= 7.4, 1.0 Hz, 1H), 7.48 (d, J = 6.4 Hz, 2H), 4.48 (s, 2H); 13C NMR (125 MHz; CDCl3): 

δ 172.4, 143.7, 132.3, 131.7, 127.9, 123.6, 123.2, 45.9; IR (thin film): 3215, 1682 cm-1; 

HRMS (ESI+) m/z calcd for C8H8NO [M+H]+: 134.0606, found: 134.0608. 

 

 
Ethyl (1aS,2S,3R,3aR,6aS,6bS)-4-oxo-5-tosyloctahydro-2,6a-epoxyoxireno[2,3-

e]isoindole-3-carboxylate ((+)-28): Under ice cooling (0 ºC), (+)-25i (70 mg, 0.19 

mmol, 1.0 equiv.) was dissolved in CH2Cl2 (2.0 mL, to make initial concentration of (+)-

25i 0.1 M). After stirring for 10 min, a solution of mCPBA (70–75%, 182 mg, 0.74 

mmol, 4.0 equiv.) in CH2Cl2 (2.0 mL) was slowly added. The solution was stirred for 24 

h at 23 ºC. The reaction mixture was purified by an automated flash chromatography 

system (20 → 80% EtOAc/hexanes) providing 61 mg (76% yield) of epoxide (+)-28 as a 

clear colorless oil: TLC (EtOAc:hexanes, 1:1 v/v): Rf = 0.44; α[ ]D
19.7 = +43.81 (c = 0.21, 

CHCl3). Absolute stereochemistry was assigned based on X-ray analysis using 
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anomalous dispersion (see Figure S2). 1H NMR (500 MHz; CDCl3): δ 7.89 (d, J = 8.1 

Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 4.70 (d, J = 5.2 Hz, 1H), 4.35 (d, J = 12.4 Hz, 1H), 

4.28 (d, J = 12.3 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.56 (dd, J = 3.2, 0.8 Hz, 1H), 3.43 

(dd, J = 3.3, 0.7 Hz, 1H), 3.33 (t, J = 4.4 Hz, 1H), 3.26 (d, J = 3.8 Hz, 1H), 2.44 (s, 3H), 

1.28 (td, J = 7.1, 0.9 Hz, 3H); 13C NMR (125 MHz; CDCl3): δ 170.4, 168.7, 145.5, 

134.7, 129.8 (2), 128.1 (2), 84.9, 76.3, 62.0, 52.5, 51.0, 48.6, 48.31, 48.19, 21.7, 14.2; IR 

(thin film): 2984, 1734, 1171 cm-1; HRMS (ESI+) m/z calcd for C18H20NO7S [M+H]+: 

394.0960, found: 394.0972. 

 

 
Dimethyl 3,3'-((2R,3R,3aR,6aS)-3-(ethoxycarbonyl)-4-oxo-5-tosylhexahydro-6aH-

furo[2,3-c]pyrrole-2,6a-diyl)(2E,2'E)-diacrylate ((–)-29): A solution of tricyclic γ-

lactam (+)-25i (200 mg, 0.53 mmol, 1.0 equiv.) was dissolved in CH2Cl2 (10.0 mL, to 

make initial concentration of (+)-25i 0.05 M) and cooled to –78 °C. Ozone was bubbled 

through the reaction solution until a blue color persisted. Excess ozone was removed by 

blowing N2 gas into the solution with stirring for 10 min. Dimethylsulfide (0.70 mL, 

10.6 mmol, 20.0 equiv.) was added by syringe and the reaction was slowly warmed to 

ambient temperature (23 °C) over 6 h at which time TLC indicated the reaction was 

complete. 1H NMR analysis from an aliquot of the crude reaction mixture indicated the 

formation of S14 intermediate. To a resultant crude mixture of S14 was added at once 

methyl (triphenylphosphoranylidene)acetate (445 mg, 1.33 mmol, 2.5 equiv.). The 

solution was stirred for 18 h at 23 ºC. The reaction mixture was purified by an automated 

flash chromatography system (5 → 50% EtOAc/hexanes) providing 262 mg (95% yield) 

of lactam (–)-29 as a clear colorless oil: TLC (EtOAc:hexanes, 1:1 v/v): Rf = 0.66; 

α[ ]D
20.1= –36.87 (c = 1.15, CHCl3). 1H NMR (500 MHz; CDCl3): δ 7.91 (d, J = 8.4 Hz, 

2H), 7.37 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 15.5 Hz, 1H), 6.86 (dd, J = 15.6, 4.9 Hz, 1H), 
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6.16 (d, J = 15.5 Hz, 1H), 6.06 (dd, J = 15.6, 1.7 Hz, 1H), 4.57 (ddd, J = 6.5, 4.9, 1.7 Hz, 

1H), 4.16-3.97 (m, 5H), 3.75 (s, 3H), 3.75 (s, 3H), 3.52-3.45 (m, 1H), 2.46 (s, 3H), 1.14 

(t, J = 7.1 Hz, 3H). 13C NMR (125 MHz; CDCl3): δ 170.7, 168.4, 166.08, 165.89, 146.0, 

145.7, 145.4, 141.5, 134.3, 130.0 (2), 128.1 (2), 122.0, 121.7, 83.8, 80.2, 61.7, 56.8, 

56.1, 52.1, 51.8, 21.8, 13.9; IR (thin film): 2985, 2954, 1728, 1665, 1597 cm-1; HRMS 

(ESI+) m/z calcd for C24H28NO10S [M+H]+: 522.1434, found: 522.1433. 

 

 
(R)-7-nitro-2-phenyl-2,3-dihydrobenzo[d]imidazo[2,1-b]thiazole ((R)-(+)-NBTM): 2-

Chlorobenzothiazole (4.00 g, 24.0 mmol, 1.0 equiv) was added dropwise to a 

concentrated H2SO4 (35 mL) in ice water bath (0 ºC). Potassium nitrate (2.63 g, 26.0 

mmol, 1.1 equiv) was then added at once. The resulting mixture was stirred at 0 ºC for 1 

h and then at room temperature (23 ºC) for 2 h. The solution was subsequently poured 

onto ice. The precipitate was obtained by filtration and washed several times with ice 

cold water to obtain 332 with >95% purity as determined by 1H NMR, which was used in 

the next step without further purification. 

 A 100 mL pressure tube containing a stirrer bar was charged with (R)-(–)-2-

phenylglycinol (2.60 g, 19.0 mmol, 1.2 equiv), crude 33 (~3.40 g, 15.8 mmol, 1.0 equiv) 

and iPr2NEt (55.0 mL, to make initial concentration of 33 0.3 M). The resulting yellow 

suspension was stirred vigorously and heated to reflux at 130 °C, at which point the 

suspended solid had dissolved to leave a yellow solution. After 48 h at 130 ºC, the 

N

S

N

O2N

HO

NH2

Ph

iPr2NEt (neat)
130 ºC, 48 h

N

SO2N

HO
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PhN

S
Cl

KNO3, H2SO4
0→23 ºC, 3 h

(R)-(+)-NBTM

N

S

N

N

MsCl, Et3N, CH2Cl2

0→23 ºC, 1 h then
23→60 ºC, 18 h

(36% over 3 steps)

i. Fe, HCl, EtOH
H2O, 100 ºC, 3 h

ii. 2,5-DMTHF, H2SO4
NaBH4, THF/MeOH
0→23 ºC, 2 h
(75% over 2 steps)

32: R = H 

33: R = NO2

R

34

(R)-(+)-PBTM
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orange reaction mixture was allowed to cool to room temperature (23 ºC). Once cooled, 

the crude reaction mixture was diluted with EtOAc/PhMe/CH2Cl2 (1:1:1, 150 mL) and 

quenched with 2N HCl (50 mL) under vigorous stirring. The aqueous layer was 

extracted with CH2Cl2 (2 x 50 mL) and washed with brine (40 mL). The organic layer 

was then dried over anhydrous MgSO4, filtered, concentrated by rotary evaporation to 

deliver 34 that was used immediately without purification. 

To a crude alcohol 34 (~5.00 g, 15.8 mmol, 1.0 equiv) dissolved in CH2Cl2 (100 

mL, to make initial concentration of 34 0.15 M) was added dropwise Et3N (6.6 ml, 47.4 

mmol, 3.0 equiv) and MsCl (1.8 ml, 23.7 mmol, 1.5 equiv) at 0 ºC. The reaction mixture 

was stirred at 0°C for 1 h. MeOH (1.3 ml, 23.7 mmol, 1.5 equiv) was added via syringe 

and the mixture was stirred at room temperature for 30 minutes, then Et3N (22.0 ml, 158 

mmol, 10 equiv) was added. The reaction mixture was refluxed at 60 °C for 18 h, cooled 

to room temperature, washed with brine, then dried over MgSO4, filtered, and 

evaporated. The residue was purified by an automated flash chromatography system (10 

→ 90% EtOAc/hexanes) providing 2.52 g (36% yield over 3 steps) of (R)-(+)-NBTM as 

a pale orange solid: TLC (EtOAc:hexanes, 1:1 v/v): Rf = 0.30. α[ ]D
19.1= +88.42 (c = 0.38, 

CHCl3). 1H NMR (500 MHz; CDCl3): δ 8.21 (dd, J = 2.1, 0.7 Hz, 1H), 8.15 (ddd, J = 

8.7, 2.2, 0.9 Hz, 1H), 7.41-7.31 (m, 5H), 6.68 (dd, J = 8.7, 0.6 Hz, 1H), 5.77 (dd, J = 

10.1, 7.8 Hz, 1H), 4.36 (td, J = 9.8, 0.7 Hz, 1H), 3.80 (ddd, J = 9.3, 7.8, 0.8 Hz, 1H); 13C 

NMR (125 MHz; CDCl3): δ 165.1, 142.0, 141.7, 128.9 (2), 128.4, 128.0, 126.4 (2), 

124.1, 119.1, 107.05, 107.04, 76.1, 52.0; IR (thin film): 1614, 1593, 1516 cm-1; HRMS 

(ESI+) m/z calcd for C15H12N3O2S [M+H]+: 298.0650, found: 298.0652. 

 

 (R)-2-phenyl-7-(pyrrolidin-1-yl)-2,3-dihydrobenzo[d]imidazo[2,1-b]thiazole ((R)-

(+)-PBTM): A suspension of Fe (280 mg, 5.0 mmol, 10 equiv) in EtOH (5.0 mL, to 

make initial concentration of (R)-(+)-NBTM 0.1 M) and H2O (1.5 mL) was mixed with 

HCl (0.2 mL) at room temperature (23 ºC). (R)-(+)-NBTM (150 mg, 0.5 mmol, 1.0 

equiv) was added to the suspension and refluxed at 100 ºC for 3 h. The resulting mixture 

was extracted with CH2Cl2 (2 x 20 mL) and washed with brine. The solvent was 
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removed under reduced pressure and the crude was used in the next step without further 

purification. 

A THF (1.0 mL) solution of 2,5-dimethoxytetrahydrofuran (0.10 mL, 0.59 mmol, 

1.3 equiv) and 2.5M H2SO4 (0.50 mL, 1.13 mmol, 2.5 equiv) was added dropwise (ca. 

20 min) to an open vessel containing a solution of the crude amine (~120 mg, 0.45 

mmol, 1.0 equiv) in MeOH/THF (3.0 mL, 1:1) and NaBH4 (70 mg, 1.8 mmol, 4.0 equiv) 

was added under vigorous stirring at 0 ºC. The mixture was then allowed to warm up to 

room temperature (23 ºC) and stirred for 2 h. Then it was diluted with an aqueous 

NaHCO3 solution (10 mL), extracted with CH2Cl2 (3 × 30 mL), washed with brine, then 

dried over MgSO4, filtered, and evaporated. The residue was purified by an automated 

flash chromatography system (10 → 90% EtOAc/hexanes) providing 121 mg (75% yield 

over 2 steps) of (R)-(+)-PBTM as a pale orange solid: TLC (EtOAc:hexanes, 1:1 v/v): Rf 

= 0.45. α[ ]D
16.2 = +97.96 (c = 0.49, CHCl3). 1H NMR (500 MHz; CDCl3): δ 7.41-7.35 (m, 

4H), 7.30-7.27 (m, 1H), 6.60-6.58 (m, 2H), 6.41 (dd, J = 8.5, 2.3 Hz, 1H), 5.62 (t, J = 9.3 

Hz, 1H), 4.22 (t, J = 9.3 Hz, 1H), 3.66 (t, J = 8.5 Hz, 1H), 3.24 (t, J = 6.5 Hz, 4H), 2.03-

2.01 (m, 4H); 13C NMR (125 MHz; CDCl3): δ 167.5, 144.3, 143.3, 128.81, 128.63 (2), 

127.8, 127.4, 126.6 (2), 109.8, 109.4, 106.7, 75.1, 53.4, 48.2 (2), 25.4 (2); IR (thin film): 

2923, 2850, 1594, 1565 cm-1; HRMS (ESI+) m/z calcd for C19H20N3S [M+H]+: 

322.1378, found: 322.1386. 
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Figure S1. Single crystal X-ray structure (ORTEP) of amide (–)-S11. The crystals 

were grown from a concentrated solution of amide (–)-S11 in Et2O (2.0 mL), using a 

slow evaporation method (probability ellipsoids are shown at the 50% level). X-ray 

crystallographic data have been deposited in the Cambridge Crystallographic Data 

Centre database (http://www.ccdc.cam.ac.uk/) under accession code CCDC 972246. 

 
Alert level B: 

Crystal system given = orthorhombic 

PLAT019_ALERT_1_B Check _diffrn_measured_fraction_theta_full/_max … 0.890. 

Author Response: Data was collected on a Bruker GADDS instrument with Cu-source 

and MWPC (multiwire proportional counter) detector. Under these experimental 

conditions the maximum angle that can be collected is 120 degrees two-theta. 
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Table 1.  Crystal data and structure refinement for DRB_MA_131001_G_1075C. 

 

Crystal Parameters                       Crystal Data 
 

Identification code     1075c 

Empirical formula     C33 H46 Br N O5 Si 

Formula weight     644.71 

Temperature      110.15 K 

Wavelength      1.54178 Å 

Crystal system     Orthorhombic 

Space group      P 21 21 21 

Unit cell dimensions    a = 9.0910(3) Å a = 90º 

      b = 18.1061(7) Å b = 90º 

      c = 20.6924(7) Å g = 90º 

Volume     3406.0(2) Å3 

Z      4 

Density (calculated)    1.257 Mg/m3 

Absorption coefficient   2.285 mm-1 

F(000)      1360 

Crystal size     0.23 x 0.01 x 0.01 mm3 

Theta range for data collection  3.243 to 62.561º 

Index ranges     –10 ≤ h ≤ 9, –20 ≤ k ≤ 20, –22 ≤ l ≤ 23 

Reflections collected    34574 

Independent reflections   5224 [R(int) = 0.0645] 

Completeness to theta = 67.679º  86.9%  

Absorption correction    Semi-empirical from equivalents 

Max. and min. transmission   0.7522 and 0.6042 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   5224 / 0 / 378 
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Goodness-of-fit on F2    1.126 

Final R indices [I>2sigma(I)]   R1 = 0.0328, wR2 = 0.0707 

R indices (all data)    R1 = 0.0423, wR2 = 0.0774 

Absolute structure parameter   -0.005(8) 

Extinction coefficient    N/A 

Largest diff. peak and hole   0.319 and -0.512 e.Å-3 

 

Table 2. Atomic coordinates  (x 104) and equivalent isotropic displacement 

parameters (Å2 x 103) for DRB_MA_131001_G_1075C. U(eq) is defined as one 

third of  the trace of the orthogonalized Uij tensor. 

 

Atom x y z U(eq) 
 

Br(1) 2728(1) 4280(1) 8166(1) 44(1) 

Si(1) 3297(1) -1217(1) 4487(1) 22(1) 

O(1) 1441(3) 2784(2) 4768(1) 21(1) 

O(2) 4103(3) 2482(2) 3520(2) 28(1) 

O(3) 1952(3) 2162(2) 3052(1) 28(1) 

O(4) 4949(3) 1042(2) 5764(1) 22(1) 

O(5) 2642(3) -439(1) 4168(1) 22(1) 

N(1) 3780(4) 3040(2) 5064(2) 18(1) 

C(1) 3183(4) 1797(2) 4697(2) 15(1) 

C(2) 2520(4) 1584(2) 4038(2) 17(1) 

C(3) 3025(4) 811(2) 3845(2) 19(1) 

C(4) 2728(5) 280(2) 4383(2) 18(1) 

C(5) 2498(5) 489(2) 4985(2) 19(1) 

C(6) 2589(4) 1271(2) 5224(2) 16(1) 

C(7) 2740(5) 2585(2) 4851(2) 17(1) 

C(8) 3504(5) 3817(2) 5227(2) 21(1) 
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C(9) 3297(4) 3935(2) 5944(2) 21(1) 

C(10) 2274(5) 3523(2) 6290(2) 24(1) 

C(11) 2083(5) 3633(2) 6946(2) 28(1) 

C(12) 2938(5) 4152(2) 7260(2) 28(1) 

C(13) 3945(5) 4578(2) 6928(2) 29(1) 

C(14) 4122(5) 4467(2) 6267(2) 23(1) 

C(15) 2976(5) 2129(2) 3519(2) 20(1) 

C(16) 2231(6) 2687(3) 2533(2) 36(1) 

C(17) 1646(6) 3434(3) 2714(3) 43(1) 

C(18) 3502(4) 1306(2) 5860(2) 18(1) 

C(19) 2751(4) 847(2) 6376(2) 19(1) 

C(20) 3374(5) 194(2) 6595(2) 26(1) 

C(21) 2599(5) -255(3) 7025(2) 32(1) 

C(22) 1229(5) -45(3) 7241(2) 42(1) 

C(23) 627(5) 615(3) 7036(2) 41(1) 

C(24) 1383(5) 1063(3) 6611(2) 30(1) 

C(25) 2632(6) -1946(2) 3902(2) 34(1) 

C(26) 1200(7) -1727(3) 3572(3) 57(2) 

C(27) 3760(7) -2181(3) 3392(3) 53(2) 

C(28) 5352(5) -1166(3) 4542(2) 31(1) 

C(29) 6061(6) -795(3) 3948(3) 52(2) 

C(30) 5946(6) -799(3) 5157(3) 46(1) 

C(31) 2506(5) -1392(2) 5311(2) 27(1) 

C(32) 3065(6) -2124(3) 5592(2) 38(1) 

C(33) 821(5) -1363(3) 5330(3) 38(1) 
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Figure S2. Single crystal X-ray structure (ORTEP) of epoxide (+)-28. The crystals 

were grown from a concentrated solution of epoxide (+)-28 in CH2Cl2 (4.0 mL), using a 

slow evaporation method (probability ellipsoids are shown at the 50% level). X-ray 

crystallographic data have been deposited in the Cambridge Crystallographic Data 

Centre database (http://www.ccdc.cam.ac.uk/) under pending accession code. 

 
Alert level B: 

THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575. 

Calculated sin(theta_max)/wavelength = 0.5679. 

Author Response: Data was collected on a Bruker GADDS instrument with Cu-source 

and MWPC (multiwire proportional counter) detector. Under these experimental 

conditions the maximum angle that can be collected is 120 degrees two-theta. 

 

PLAT019_ALERT_1_B _diffrn_measured_fraction_theta_full/_max < 1.0 0.857 Report 

Author Response: Data was collected on a Bruker GADDS instrument with Cu-source 

and MWPC (multiwire proportional counter) detector which has geometrical restrictions. 



 

 232 

Table 1.  Crystal data and structure refinement for DRB_MA_150407_G_EpoN. 

 

Crystal Parameters                       Crystal Data 
 

Identification code     epon 

Empirical formula     C18 H19 N O7 S 

Formula weight     393.40 

Temperature      110.15 K 

Wavelength      1.54178 Å 

Crystal system     Monoclinic 

Space group      P 1 21 1 

Unit cell dimensions    a = 12.8722(5) Å a = 90º 

      b = 6.6204(2) Å b = 92.069(2)º 

      c = 20.7083(8) Å g = 90º 

Volume     1763.59(11) Å3 

Z      4 

Density (calculated)    1.482 Mg/m3 

Absorption coefficient   2.019 mm-1 

F(000)      824 

Crystal size     0.54 x 0.02 x 0.02 mm3 

Theta range for data collection  2.135 to 61.119º 

Index ranges     –14 ≤ h ≤ 14, –7 ≤ k ≤ 6, –23 ≤ l ≤ 23 

Reflections collected    31880 

Independent reflections   5106 [R(int) = 0.0431] 

Completeness to theta = 67.679º  83.0%  

Absorption correction    Semi-empirical from equivalents 

Max. and min. transmission   0.7519 and 0.5733 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   5106 / 166 / 515 
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Goodness-of-fit on F2    1.116 

Final R indices [I>2sigma(I)]   R1 = 0.0370, wR2 = 0.0966 

R indices (all data)    R1 = 0.0428, wR2 = 0.1092 

Absolute structure parameter   0.02(2) 

Extinction coefficient    0.0099(8) 

Largest diff. peak and hole   0.742 and -0.456 e.Å-3 

 

Table 2.  Atomic coordinates  (x 104) and equivalent isotropic displacement 

parameters (Å2 x 103) for DRB_MA_150407_G_EpoN.  U(eq) is defined as one third 

of the trace of the orthogonalized Uij tensor. 

 

Atom x y z U(eq) 
 

S(1) 9919(1) -663(2) 6245(1) 17(1) 

O(1) 8844(3) 2066(5) 5252(2) 27(1) 

O(2) 6770(2) -2054(5) 5451(2) 23(1) 

O(3) 6245(2) -5170(5) 4845(2) 24(1) 

O(4) 5750(3) 680(6) 3656(2) 37(1) 

O(6) 10712(2) 522(5) 5974(2) 23(1) 

O(7) 10157(2) -2589(5) 6528(2) 24(1) 

N(1) 9024(3) -1169(6) 5674(2) 18(1) 

C(1) 8648(3) 266(8) 5232(2) 19(1) 

C(2) 7955(3) -843(7) 4741(2) 17(1) 

C(3) 7664(3) -2765(7) 5114(2) 18(1) 

C(4) 8564(3) -3222(7) 5582(2) 19(1) 

C(5) 6885(3) 125(7) 4581(2) 22(1) 

C(6) 6159(3) -1452(7) 4890(2) 22(1) 

C(7) 6177(3) -3332(8) 4472(2) 23(1) 

C(8) 7187(3) -4270(7) 4633(2) 19(1) 
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C(9) 6624(4) 503(8) 3871(3) 28(1) 

O(5A) 7471(9) 1390(30) 3636(7) 34(1) 

C(10A) 7267(18) 1920(40) 2962(9) 40(2) 

C(11A) 7270(30) -110(60) 2637(13) 60(2) 

O(5) 7476(3) 508(11) 3503(2) 34(1) 

C(10) 7346(7) 737(16) 2806(4) 40(2) 

C(11) 7232(8) -1480(20) 2582(4) 60(2) 

C(12) 9299(3) 823(7) 6820(2) 17(1) 

C(13) 9574(3) 2847(7) 6887(2) 22(1) 

C(14) 9155(4) 3937(7) 7384(2) 22(1) 

C(15) 8471(4) 3071(8) 7812(2) 24(1) 

C(16) 8189(3) 1077(8) 7717(2) 22(1) 

C(17) 8604(3) -81(7) 7226(2) 19(1) 

C(18) 8050(4) 4274(10) 8356(2) 37(1) 

S(1M) 4581(1) 9471(2) 8775(1) 22(1) 

O(1M) 5708(3) 12675(5) 9647(2) 26(1) 

O(2M) 7897(2) 9359(5) 9212(1) 22(1) 

O(3M) 8924(2) 6465(5) 9692(2) 28(1) 

O(4M) 8133(3) 10524(6) 11252(2) 39(1) 

O(6M) 3872(2) 10870(6) 9034(2) 30(1) 

O(7M) 4286(3) 7413(5) 8670(2) 31(1) 

N(1M) 5611(3) 9356(6) 9278(2) 19(1) 

C(1M) 6011(3) 10941(8) 9658(2) 19(1) 

C(2M) 6895(3) 10075(7) 10078(2) 19(1) 

C(3M) 7243(3) 8302(7) 9652(2) 16(1) 

C(4M) 6275(3) 7525(7) 9310(2) 21(1) 

C(5M) 7885(4) 11407(7) 10125(2) 21(1) 

C(6M) 8619(3) 10173(7) 9690(2) 22(1) 

C(7M) 8957(3) 8301(8) 10070(2) 25(1) 
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C(8M) 8019(3) 7005(7) 10045(2) 19(1) 

C(9M) 8319(3) 11647(8) 10813(2) 24(1) 

O(5M) 8960(30) 13180(40) 10853(11) 36(1) 

C(10M) 9379(15) 13580(20) 11503(10) 42(2) 

C(11M) 8725(10) 15020(20) 11827(5) 55(2) 

O(5N) 8940(50) 13210(70) 10864(19) 36(1) 

C(10N) 9470(30) 13780(40) 11471(19) 42(2) 

C(11N) 9097(19) 15730(40) 11677(10) 55(2) 

C(12M) 5077(3) 10437(7) 8060(2) 20(1) 

C(13M) 5293(4) 12493(8) 8005(2) 24(1) 

C(14M) 5719(4) 13197(8) 7449(2) 25(1) 

C(15M) 5926(3) 11908(8) 6931(2) 24(1) 

C(16M) 5681(3) 9894(8) 6989(2) 25(1) 

C(17M) 5258(3) 9117(8) 7550(2) 24(1) 

C(18M) 6436(4) 12727(9) 6343(2) 30(1) 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diketone S3 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diene S4 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol (±)-13a in 

CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol (±)-13b in 

CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of aldehyde S5 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol (±)-13c in 

CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diketone S8 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of diene S9 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of silyloxydiene alcohol (±)-35 in 

CDCl3 

TIPSO

(±)-35
OH

Ph



 

 245 

 
 

 

 

 

 
 

1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-14a in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (+)-14a’ in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (+)-14b in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (+)-14b’ in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (+)-14c in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of tricyclic γ-lactone (–)-14d in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of tricyclic γ-lactone (–)-14d’ in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-36 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (+)-36’ in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (+)-36’’ in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of bicyclic γ-lactone (–)-36’’’ in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of ester (±)-S31 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of amide (–)-S11 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of ketone (+)-26 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of lactam (+)-23 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of lactam (+)-25i in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of lactam S13 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of isoindolinone 27 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of epoxide (+)-28 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of lactam (–)-29 in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of (R)-(+)-NBTM in CDCl3 
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1H (500 MHz) and 13C NMR (125 MHz) spectra of (R)-(+)-PBTM in CDCl3 
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Figure S3. Chiral HPLC determinations of enantiomeric excess of lactones 14a-d 

and 14a’-d’: 

 
Determination of enantiomeric excess of bicyclic γ-lactone (–)-14a: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-14a: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.4 min, tminor = 

13.4 min; 99% e.e. 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-14a’: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-14a’: Chiralcel AS-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 16.9 min, tminor = 

19.4 min; 98% e.e. 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-14b: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-14b: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 12.0 min, tminor = 

16.1 min; 99% e.e. 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-14b’: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-14b’: Chiralcel AD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.8 mL/min, λ = 210 nm: tmajor = 6.5 min, tminor = 7.9 

min; 99% e.e. 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-14c: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-14c: Chiralpak IA column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 28.9 min, tminor = 

43.7 min; 99% e.e. 
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Determination of enantiomeric excess of tricyclic γ-lactone (–)-14c: 

 

Chiral HPLC analysis of tricyclic γ-lactone (–)-14c: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 11.1 min, tmajor = 

12.1 min; 99% e.e. 
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Determination of enantiomeric excess of tricyclic γ-lactone (–)-14d’: 

 

Chiral HPLC analysis of tricyclic γ-lactone (–)-14d’: Chiralpak IA column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 230 nm: tminor = 14.1 min, tmajor = 

17.2 min; 99% e.e. 
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Determination of enantiomeric excess of bicyclic γ-lactone (–)-36: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-36: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 11.3 min, tminor = 

13.6 min; 98% e.e. using 2,6-lutidine (3.0 equiv.). 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-36’: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-36’: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 22.8 min, tminor = 

34.0 min; 99% e.e. 
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Determination of enantiomeric excess of bicyclic γ-lactone (+)-36’’: 

 

Chiral HPLC analysis of bicyclic γ-lactone (+)-36’’: Chiralcel OD-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tminor = 21.7 min, tmajor = 

37.0 min; 99% e.e. 
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Determination of enantiomeric excess of bicyclic γ-lactone (–)-36’’’: 

 

Chiral HPLC analysis of bicyclic γ-lactone (–)-36’’’: Chiralcel AS-H column: 

hexanes:iPrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: tmajor = 15.5 min, tminor = 

28.2 min; 97% e.e. using 2,6-lutidine (3.0 equiv.). 
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Determination of enantiomeric excess of tricyclic γ-lactam (+)-23: 

 

Chiral HPLC analysis of tricyclic γ-lactam (+)-23: Chiralcel AS-H column: 

hexanes:iPrOH = 40:60, flow rate 1.0 mL/min, λ = 230 nm: tminor = 12.1 min, tmajor = 

14.8 min; 91% ee. 
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Determination of enantiomeric excess of tricyclic γ-lactam (+)-25i: 

 

Chiral HPLC analysis of tricyclic γ-lactam (+)-25i: Chiralcel AD-H column: 

hexanes:iPrOH = 60:40, flow rate 0.5 mL/min, λ = 230 nm: tminor = 27.2 min, tmajor = 

30.9 min; 94% ee. 
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