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ABSTRACT 

This dissertation is aimed at understanding the molecular composition and 

physical chemistry of secondary organic aerosols (SOA) and, in particular, the processes 

that lead to their formation and growth. Several analytical and experimental methods 

have been developed and employed to characterize the chemical composition of nano- to 

sub-micrometer-sized particles and to obtain kinetic data and physiochemical properties 

of SOA. The first part of this dissertation describes the development, calibration, and 

application of Thermal Desorption Chemical Ionization Ion Drift Mass Spectrometry 

(TD-ID-CIMS) designed for the collection and chemical analysis of nucleation to 

accumulation mode aerosols with sizes between 2 and 200 nm. The TD-ID-CIMS 

instrument has been applied to the analysis of collected nano- to sub-micrometer-sized 

aerosol samples or injected bulk solutions.  

The uptake coefficient (γ) and the Henry’s law constant (H*) for the 

heterogeneous reaction of gas-phase glyoxal on liquid sulfuric acid surfaces have been 

obtained using a laminar flow reactor coupled to ion drift – chemical ionization mass 

spectrometry (ID-CIMS) detection. The results show that both the uptake coefficient and 

Henry’s law constant increase with decreasing acid concentration and temperature, 

indicating a reaction mechanism of hydration followed by oligomerization for glyoxal on 

acidic media and suggesting an efficient aqueous reaction of glyoxal on hygroscopic 

particles leading to SOA formation.  
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The hygroscopicity, deliquescence, and cloud condensation nuclei activity of 

several alkylaminium carboxylate aerosols with sizes between 46 and 151 nm have been 

measured using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA), a 

Condensation Particle Counter (CPC) and a Cloud Condensation Nuclei counter (CCN). 

Our results indicate that, dependent of their molecular functionality, alkylaminium 

carboxylate aerosols exhibit distinct hygroscopic, CCN, and deliquescent characteristics.  

Finally, the heterogeneous conversion of sulfur dioxide to sulfate in the presence 

of gaseous nitrogen dioxide and ammonia has been investigated to evaluate sulfate 

formation under polluted environments. Experiments were performed utilizing a 1 m3 

chamber connected to a TDMA-CPC assembly and the TD-ID-CIMS instrument. Our 

results show that the extent of sulfate formation and particle growth is dependent on the 

gas concentrations of SO2, NO2, and NH3, but not sensitive to light. The results may lead 

to a better understanding of the formation of haze in polluted environments. 
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CHAPTER I 

INTRODUCTION 

 

 Atmospheric aerosols constitute one of the major frontiers in science today due 

to their abundance in the atmosphere, impact on human health, and direct and indirect 

influence on the planetary radiation balance.1 However, the current understanding on 

their formation mechanism is limited, producing one of the largest uncertainties in 

climate predictions and atmospheric modeling.1 By definition, atmospheric aerosols are 

solid/liquid microscopic particles suspended in the atmosphere with sizes spanning four 

orders of magnitude, from a few nanometers to 100 µm.1,2 In addition, aerosol particle 

concentrations can be as high as 107-108 cm-3 for urban and remote areas.2  

Historically, the impact of atmospheric aerosols has been observed since ancient 

roman times as Seneca (ca. 60 AD) attributed atmospheric turbidity to volcanic gases 

and ash stating that “gloomy cold and stains darken the atmosphere of our region”.3 

More recently, in the 1700’s, Benjamin Franklin wrote that the “year without a summer” 

may have been attributed to a volcanic eruption in Iceland in the year 1783.3 In the year 

1883, red sunsets were reported around the globe, prompting the British Royal Society to 

call for a scientific competition to explain the global phenomena. Johann Kiessling, won 

the competition by providing data linking the red sunsets to stratospheric aerosol from 

the Krakatoa volcanic eruption of 1883, thus also discovering global circulation in the 

atmosphere.3,4  These are only a few examples of the historical impact and recorded 

observations of the effect of aerosols on human society and the planet.   
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Atmospheric aerosols are divided into two major categories: primary and 

secondary particles.5,6 Primary aerosols are emitted into the atmosphere from either 

natural (biogenic) or artificial (anthropogenic) sources. Natural sources may include sea 

salt aerosols from ocean and sea sprays, plants and animal activity, mineral dust from 

volcanic eruptions, and sandstorms from deserts around the world.2 Artificial sources 

may include vehicular emissions, industrial plant activities, and urban construction. 

Secondary aerosols are produced by the nucleation of gas-phase species such as sulfuric 

acid, ammonia, water, and volatile organic compounds (VOCs).7-10 Such phenomena has 

been observed in urban, remote, marine, and forested sites,11 except at the amazon 

region, a tropical rain forest with high isoprene emissions.12,13  

Currently, new particle formation (NPF) is understood as a two-step process. 

First, gas-phase species must nucleate to form a “critical nucleus” with diameters as low 

as 1.4 nm and containing as few as two molecules.1,14 Second, the nucleus must grow to 

detectable sizes (>2-3 nm) while competing with removal of the newly nucleated 

particles by coagulation with pre-existing aerosols.1,14 Considering that the nucleation 

process represents a transition from the gas-phase to the particle-phase,  the nucleation 

process involves a decrease in entropy (ΔS < 0) and enthalpy (ΔH < 0)  for the 

nucleating system. Although the first law of thermodynamics favors a decrease in 

enthalpy, the second law of thermodynamics does not favor the spontaneous decrease of 

entropy (disorder) in a system. Therefore, a free energy barrier ΔG (ΔG= ΔH-TΔS > 0) 

is involved and must be crossed before the transition to the particle-phase and 
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subsequent growth become spontaneous. Such energy barrier represents a major 

limitation to new particle formation and growth.  

Another significant limitation to nucleation and growth of aerosols is the Kelvin 

(curvature) effect, which says that “the vapor pressure over a curved surface interface 

always exceeds that of the same substance over a flat surface”.2 Thus, the Kelvin effect 

provides an elegant thermodynamic explanation for the elevated saturation vapor 

pressure over small particles: that as the particle diameter decreases, equilibrium vapor 

pressure increases. The Kelvin effect is expressed by the following equation: 

 

                                   𝑝𝑎 =   𝑝!  ! exp
!!"
!"!!!

                                                   (1.1) 

  

where 𝜌!! is the vapor pressure of A over a flat surface, σ is the surface tension, 

M is the molecular weight of A, R is the gas constant, T is the temperature of the system, 

𝜌! is the liquid-phase density of A, and r is the radius of the particle. However, the 

condensation of gas-phase molecules on a particle surface takes place when the ambient 

partial pressure of the gas-phase species is higher than the saturation vapor pressure over 

the particle. Considering that the saturation vapor pressure of the molecules surrounding 

the nanoparticle is dependent on temperature and both, the particle diameter and 

chemical composition; complete information of the chemical composition of the critical 

nuclei is of paramount importance in atmospheric chemistry. 

Atmospheric aerosols directly affect human health. For example, 100 nm 

particles penetrate respiratory airways deeply into the lungs.15 In addition, some recent 
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studies have discussed the link between mortality rate and human longevity to reductions 

in ambient aerosol loadings.16 Atmospheric aerosols directly affect climate by absorption 

and scattering of solar radiation.2 In addition, aerosols indirectly affect the Earth energy 

budget by acting as cloud condensation nuclei promoting cloud formation and altering 

cloud properties.17 Therefore, changes in the chemical composition of aerosols also alter 

the effects of aerosols on climate and human health. Thus, a better understanding on the 

chemical composition of aerosols is of paramount importance.  

The present dissertation describes laboratory studies regarding the chemical 

composition, formation, growth, and physicochemical properties of secondary oganic 

aerosol (SOA), a significant segment of atmospheric aerosols. Chapter II describes the 

development, calibration, and application of a novel thermal desorption ion-drift 

chemical ionization mass spectrometry (TD-ID-CIMS) instrument for nucleation to 

accumulation mode aerosols. Our TD-ID-CIMS is an analytical technique that provides 

chemical information on the composition of aerosol particles with diameters as small as 

2 nm, and with sample loads as low as 0.1 ng. Therefore, at such small particle sizes, 

TD-ID-CIMS allows for the elucidation of the chemical composition of aerosol particles 

near the critical nuclei diameter generated by the oxidation of VOCs in chamber studies. 

In our laboratory, TD-ID-CIMS has also been utilized to identify the products of the 

reactions of epoxides and sulfuric acid nanoparticles, and the chemical composition of 

alkylaminium carboxylates after evaporation.  

Chapter III discusses the heterogeneous chemistry of glyoxal on sulfuric acid 

surfaces by measuring the temperature and concentration dependence of the uptake 
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coefficient (γ) and Henry’s Law constant (H*) utilizing a low-pressure fast flow laminar 

reactor coupled to an ion drift-chemical ionization mass spectrometer. Our 

measurements offer insight into a hydration driven dicarbonyl oligomerization pathway 

for the formation of secondary organic aerosols (SOA).  

Chapter IV discusses the hygroscopicity and cloud condensation nuclei activity 

(CCN) of alkylaminium carboxylate aerosols. Experiments were conducted on a tandem 

differential mobility analyzer (TDMA) and a cloud condensation nuclei counter coupled 

to a condensation particle counter (CPC). Atmospheric alkylaminium carboxylates are 

the products of gas-phase reactions between weak organic acids and alkylamine bases, 

and thus constitute a significant segment of organic nitrogen containing species in the 

atmosphere. These newly formed salts may in turn condense into the particle phase to 

form SOA with varied hygroscopic and CCN characteristics dependent on their chemical 

composition. In addition, we have derived the hygroscopicity parameter (κ, kappa) for 

all our studied aminium carboxylate salts under three methods: hygroscopic growth 

factor, cloud condensation nuclei, and the mixing rule approximation.  

Chapter V discusses experiments regarding the conversion of sulfur dioxide 

(SO2) into sulfate (SO4
2-) in the presence of nitrogen dioxide (NO2) and ammonia (NH3). 

Such experiments may offer an insight into the accelerated formation of atmospheric 

sulfate during episodes of intense haze formation in highly polluted places such as 

Beijing, China. Chapter VI summarizes the results from chapter II-V, offering 

concluding remarks and potential future research directions. 
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CHAPTER II 

DEVELOPMENT, CALIBRATION, AND APPLICATION OF A NOVEL 

THERMAL DESORPTION ION DRIFT CHEMICAL IONIZATION  

MASS SPECTROMETRY (TD-ID-CIMS) INSTRUMENT*  

Introduction 

Atmospheric aerosols originated from natural and anthropogenic sources exhibit 

a broad range of impacts on the atmosphere. In particular, fine aerosols (i.e., particulate 

matter or PM with the aerodynamic diameter smaller than 2.5 µm) profoundly impact 

human health, visibility, ecosystem, weather, and climate.18-21 For example, the adverse 

effects of PM on human health have been clearly demonstrated, ranging from 

aggravating allergies to the development of serious chronic diseases and premature 

death.22 Also, aerosols modify the lifetime and albedo of clouds, precipitation, and 

lightning, modulate photochemistry, promote multiphase chemistry, degrade local, 

regional, and global air quality, and impact the Earth energy budget directly by 

interfering with the solar radiative transfer and indirectly by influencing cloud 

formation.18-21,23,24 Currently, the direct and indirect radiative forcings by aerosols 

represent the largest uncertainty in climate projections.18  

______________________________________ 
* Part of this chapter is reprinted with permission from Lavi, A.; Segre, E.; Gomez-Hernandez, M.; Zhang,
R.; Rudich, Y. Volatility of Atmospherically Relevant Alkylaminium Carboxylate Salts. The Journal of 
Physical Chemistry A, 2015, 119 (19), pp 4336–4346. Copyright 2014 American Chemical Society.  
Part of this chapter is reprinted with permission from Xu, W.; Gomez-Hernandez, M.; Guo, S.; Secrest, J.; 
Marrero-Ortiz, W.; Zhang, A. L.; Zhang, R. Acid-catalyzed reactions of epoxides for 
atmospheric nanoparticle growth. Journal of the American Chemical Society. 2014, 136, 44,15477-15480. 
Copyright 2014 American Chemical Society.  
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The atmospheric effects of aerosols are largely dependent on the particle 

properties, including the number concentration, size, and chemical composition, which 

are related to their formation pathways.14 Aerosols are emitted directly into the 

atmosphere (primary) or formed in the atmosphere through gas-to-particle conversion 

(secondary). Secondary aerosol formation includes nucleation to form nano-sized 

(nucleation mode) particles and their subsequent growth to sub-µm (accumulation mode) 

particles, and their compositions consist of a complex mixture of various chemical 

constituents, including a large mass fraction of inorganics and organics.14, 7,1 Because of 

the complexities in the formation and chemical compositions, measurements of aerosols 

under diverse environmental conditions represent a major challenge to quantify their 

abundance and decipher their chemical identity, which requires a synergy of different 

highly advanced analytical approaches.14,25 

Recently, mass spectrometry has emerged as a promising tool to address the 

analytical challenges imposed by atmospheric aerosol measurements.26-30 Mass 

spectrometry offers a fast responding, robust, versatile, sensitive, and accurate analytical 

platform for measuring the chemical compositions of aerosols. Currently, aerosol 

analysis by mass spectrometry is divided into two categories, i.e., off-line and on-line 

measurements.26,27 While both modes offer several advantages, the drawbacks of both 

approaches hinder efforts to obtain a comprehensive understanding of the formation, 

growth, and impacts of aerosols in the atmosphere. For example, off-line methods 

typically suffer from a long collection time that hinders real-time measurements, 

affecting the temporal resolution of the analysis. On-line aerosol mass spectrometry 
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(AMS) is capable of measuring the size-resolved particle chemical composition with a 

high time resolution (seconds to minutes), high sensitivity, and low detection limit.30-34 

There exist two common types of online AMS, i.e., laser desorption/ionization mass 

spectrometry (LDI-MS) and thermal desorption electron impact ionization mass 

spectrometry (TD-EI-MS). 35 The major difference between the two types of AMS lies in 

particle vaporization and ionization: LDI-MS is used for analysis of individual aerosol 

particles by identification of the chemical particle classes associated with subsets of the 

particles, while TD-EI-MS is usually used for quantitative determination of non-

refractory aerosol components.  

A commercial AMS developed by the Aerodyne Res. Inc. has been widely 

applied for ambient aerosol measurements.36-38 For the Aerodyne AMS, aerosols are 

focused into a narrow beam by an aerodynamic lens and transmitted into a detection 

chamber, where they are impacted on a heated surface. Vaporized aerosol species are 

ionized by electron impact and analyzed via mass spectrometry. The particle time-of-

flight from a mechanical beam chopper to the vaporizer is measured to obtain chemically 

speciated size distributions. The Aerodyne high-resolution time-of-flight aerosol mass 

spectrometry (HR-ToF-AMS) achieves the MS resolution ranging from 2500 (in V-

mode) or 4500 to 5000 (in W-mode), where the V and W represent the path of the ions 

in the flight chamber. The high mass resolution allows the separation of each unit mass 

peak into separate contributions for specific elemental compositions based on small 

differences in mass defects.  
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On the other hand, the currently available on-line AMS methods still suffer from 

significant fragmentation of the analytes, because of the evaporation and ionization 

techniques utilized (i.e., LDI-MS or TD-EI). In addition, measurements of nucleation 

mode particles by on-line AMS are difficult, because of their significantly smaller 

masses for efficient detection and quantification. A nano-aerosol mass spectrometer 

(NAMS) has been developed by Johnston and co-authors for real-time characterization 

of sub-10-nm aerosols.39 The NAMS approach includes an aerodynamic inlet, 

quadrupole ion guide, quadrupole ion trap, and time-of-flight (TOF) mass analyzer; 

charged particles are introduced into the aerodynamic inlet, transmitted by the ion guide, 

and captured in the ion trap, and analyzed by the TOF-MS. In addition, semi-online 

approaches, which collect particles for a sufficient amount and use soft 

evaporation/ionization techniques, have the advantages of analyzing nanoparticles and 

minimizing analyte fragmentation. For example, thermal desorption - chemical 

ionization mass spectrometry (TD-CIMS) has developed for the analysis of the chemical 

composition of down to sub-20 nm ultrafine aerosols.40-42 The TD-CIMS developed by 

Smith and co-workers combines an electrostatic precipitator for particle separation and 

collection with CIMS detection, with a high sensitivity for down to 10 nm particles. In 

addition, Held et al. have reported the application of Thermal Desorption Ion Trap Mass 

Spectrometry for the analysis of ultrafine aerosol particles.43 

Because of its soft ionization, selectivity, and high sensitivity, CIMS has been 

widely employed in atmospheric chemistry research, including laboratory kinetic 

investigations and field trace gas measurements.44-46 In the CIMS method, a neutral 
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species is ionized by a reagent ion to yield the product ion, which is then analyzed by a 

mass spectrometer for identification and quantification. An ion drift chemical ionization 

mass spectrometry (ID-CIMS) technique has been developed to detect and quantify 

various organic and inorganic trace species.47, 48 The key components of the ID-CIMS 

system include an ionization source to produce the reagent ions, a drift tube for the 

ion−molecule reaction and guiding the reagent and product ions, and a mass 

spectrometer for analysis of the reagent and product ions. Among several advantages, 

the ID-CIMS method allows for quantification of analytes without the necessity of 

calibration using authentic samples.  

Currently, the development of more advanced aerosol analytical techniques is 

still required to achieve the highest level of chemical speciation and to identify and 

quantify the diverse organic and inorganic constituents from molecular clusters, 

nucleation, to accumulation mode particles. In this paper we describe the design and 

calibration of thermal desorption - ion drift - chemical ionization mass spectrometry 

(TD-ID-CIMS), which includes an integrated differential mobility analyzer and 

condensation particle counter system for charging and size separation, an electrostatic 

particle collector (EPC) for collection and thermal desorption of particles, and ID-CIMS 

for generation of reagent ions, ion-molecular reactions between reagent and product 

ions, and detection of product ions. The performance of this instrument is evaluated to 

establish the collection efficiency, sensitivity, and detection limit for a broad range of 

particle sizes and chemical compositions using various reagent ions. Additional 
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qualitative applications of this instrument for detection of nano-sized organic and 

inorganic aerosols can be found in our previous publications.9, 10, 49-51 

 

Experimental 

Fig. 1 depicts the schematic of the TD-ID-CIMS instrument. The TD-ID-CIMS 

consisted of several components, including a combined atomizer, differential mobility 

analyzer (DMA), and condensation particle counter (CPC) system for particle 

production, size-separation, and charging, an electrostatic particle collector (EPC) for 

collection and thermal desorption (TD) of particles, and ID-CIMS for generation of 

reagent ions, ion-molecular reaction, and detection of product ions.  

Briefly, aerosols generated by the atomizer were first size-selected and charged 

by the DMA, and subsequently introduced into the collection chamber. The charged 

particles were deposited on the EPC, which was oppositely charged with a DC voltage. 

Once sufficient deposited particle mass was collected on the EPC, the EPC was pushed 

to the front region of the drift tube, and an AC voltage was applied to the EPC to heat 

the filament to a temperature of about 350oC and to evaporate the collected mass. Within 

the drift tube, reagent ions were generated and the ion-molecular reactions between the 

neutral analytes and reagent ions occurred to form the product ions. The product ions 

were then detected and analyzed by a triple quadrupole MS (QqQ).  
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Figure 1. Schematic representation of the TD-ID-CIMS instrument. The insert at the bottom depicts 
three different designs of the electrostatic particle collector (EPC), i.e., a platinum wire (top), a 
nichrome coil (middle), and a stainless steel rod (bottom). Samples were collected in the collection 
chamber or directly deposited using a micro-syringe on the EPC. The EPC was then slid into the 
front region of the drift tube, and the collected or injected samples were vaporized by resistive 
heating. Reagent ions produced by the corona discharge reacted with the analytes throughout the 
drift tube, which was consisted of 24 stainless steel conductive rings. Product ions were transferred 
to the mass spectrometer (MS) through a pinhole and ion optics before being analyzed by a triple 
quadrupole (QqQ) MS. 
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A commercial continuous-flow atomizer (TSI 3076) was employed to produce 

aerosols in the size range of 10 to 200 nm. Particles were size-selected and detected 

using a nano DMA (nDMA 308500, TSI, Incorporated) coupled to an ultrafine CPC 

(UCPC 3025A, TSI, Incorporated) for nucleation mode particles (10 to 20 nm) and a 

long DMA (DMA 3081, TSI, Incorporated) and a CPC (CPC 3760A, TSI, Incorporated) 

for accumulation mode particles (20 to 200 nm). The DMA-CPC systems were 

controlled by LabVIEW software through National Instruments data acquisition 

interface cards.  

Within the collection chamber, the EPC was concentrically located within a 

stainless steel cylindrical housing (1” outer diameter). Aerosols were introduced to the 

collection chamber with a N2 flow of 1 slpm, and a sheath flow of about 0.5 slpm was 

introduced into the stainless steel EPC housing to maintained a laminar flow condition in 

the collection chamber. The cylindrical housing and the sheath flow protected the EPC 

from possible contamination by gaseous species in the aerosol flow. Size-selected and 

charged particles were introduced the stainless steel collection chamber and deposited on 

the EPC.  Three designs were considered for the filament of the EPC, including a 

platinum wire (0.01” diameter and 1.7” length), a nichrome coil (0.02” diameter and 

2.4” length), and cylindrical stainless steel rod (0.20” diameter and 3.9” length). To 

achieve sensitive and reproducible results, a rapid rate of heating to a high temperature 

(about 350oC) was desirable for efficient thermal desorption of the collected mass. Also, 

an efficient cooling for the EPC was necessary to allow for experiments conducted in a 

timely fashion. As to be discussed below in the results section, the platinum wire worked 
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efficiently for nucleation mode particles, while the nichrome coil was preferred for 

accumulation mode particles. Although the cylindrical stainless steel rod also exhibited 

high collection efficiency because of a large collecting surface area, its large thermal 

inertia proved to be inefficient for heating of the collected mass and cooling of the EPC. 

The heating and cooling times for the platinum wire and the nichrome coil were about 5 

and 10 seconds during typical experiments. The AC voltage applied to the EPC for 

evaporation was about 2.1 and 4.5 V for the platinum wire and the nichrome coil, 

respectively. For aerosol collection, a high DC voltage (1-10 kV) was applied to the 

EPC, and the collection time for a desirable sample mass (0.1-10 ng) was dependent of 

the particle size. For example, the collection time was about a few minutes for 

accumulation mode particles, but up to a few hours for nucleation mode particles. The 

exposure length of the EPC to the aerosol flow (i.e., extension over the housing) was 

adjusted to achieve the maximal collection efficiency, which was also depended of the 

particle size, voltage, and geometry of the filament.  

The particle collection efficiency of the EPC was determined by the UCPC/CPC, 

which was located at the end of the collection chamber, on the basis of the difference in 

particle counts with and without the DC voltage applied to the EPC. The mass of 

collected particles on the EPC was estimated by considering the measured particle 

collection efficiency, the particle size and density, and the flow velocity in the collection 

chamber. Alternatively, samples of known chemical compositions and masses were 

directly deposited on the EPC through the syringe injection port for the calibration 

purpose.  
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The drift tube typically operated at a pressure of about 0.5 Torr. Positive or 

negative reagent ions were produced by a corona discharge device. The voltages of 

about -740 V and 1300 V were applied to the corona needle for the negative and positive 

modes, respectively, while the discharge electrode was grounded. In the drift tube, the 

neutral analyte was chemically ionized by the ion-molecule reactions with the reagent 

ions, yielding the product ions with low fragmentation. The drift tube was composed of 

24 stainless steel rings connected in series and with 1-MΩ resistors between the rings, 

and each stainless steel rings had an internal diameter of 1.4 cm. The first ring of the 

drift tube was charged to -116 V in the negative mode and 60 V in the positive mode, 

while the last ring was grounded, to achieve maximal ion transmission efficiency. By 

maintaining an appropriate electrical field in the drift tube, undesirable cluster ions are 

effectively suppressed.52 Also, the ID-CIMS method allows for the quantification of the 

gas-phase concentrations without the necessity of calibration, since the ion−molecule 

reaction time is precisely controlled within the drift tube and ion−molecule reaction rate 

constants can be accurately determined experimentally or theoretically.53   

Reagent and product ions entered the mass spectrometer through a pinhole with 

an aperture of 0.2 mm, which was biased at -6 V in the negative mode and 60 V in the 

positive mode. All mass spectrometry experiments were performed using an Extrel ELQ 

400 (Extrel CMS, Pittsburgh, PA) mass spectrometer equipped with a triple quadrupole 

(QqQ). The QqQ allows for the MS/MS application with potentially added identification 

of the analyte, i.e., using the first quadrupole (Q1) for mass selection, the second 

quadrupole (Q2) for collision dissociation or addition, and the third quadrupole (Q3) for 
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MS analysis. For the TD-ID-CIMS experiments in the present work, the Q3 was 

employed as the mass filter, while Q1 and Q2 were tuned for optimal ion transmission.  

Three different types of ion-molecule reactions were employed for analysis of 

various organic and inorganic species. Sulfuric acid was detected using the NO3
- reagent 

ion, according to the following ion-molecular reaction,  

H2SO4 + (HNO3)n●NO3
-  → HSO4

- ●(HNO3)n+ HNO3   (2.1) 

In the present work, sulfuric acid was detected as HSO4
- (97 amu), i.e., with n =  0. 

Alternatively, the CO3
-/CO4

- ion was used to ionize sulfuric acid, also yielding the HSO4
- 

product ion. Organic acids (p-toluic, oleic, stearic, and succinic acids) were ionized by 

the CO3
-/CO4

- reagent ion, according to the following ion-molecule reaction schemes,  

RCOOH + CO4
-  → RCOOH●O2

- + CO2    (2.2) 

RCOOH + COx
- → RCOO- + HCOx     (2.3) 

where x = 3 or 4. In addition, the hydronium ion (H3O+) was employed to ionize 

dimethylaminium acetate and dimethylaminium sulfate, both leading to the protonated 

dimethylamine fragment, (CH3)2NH2
+(46 amu).  

Calibration of the TD-ID-CIMS was performed by directly depositing a droplet 

of a known mass and chemical composition onto the tip of the EPC using a glass micro-

syringe. Liquid solutions were prepared by the standard dissolution procedure to produce 

a concentration of 1000 ng/µL. A Mettler-Toledo analytical balance was utilized to 

measure the mass of the pure analytes before dilution in the solvent (water). Solutions 

were then prepared using clean and oven-dried volumetric glassware, and the 

concentrations were 10, 7, 5, 3, 1, 0.7, 0.5, 0.3, and 0.1 ng/µL. The micro-syringe was 
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utilized to deposit 1 µL droplet of the sample solution onto the EPC. A stream of N2 gas 

(12 slpm) was utilized to dry the deposited droplet, and the sample was then introduced 

to the drift tube region and subjected to resistive heating to vaporize the analyte, which 

was subsequently ionized and analyzed by the ID-CIMS.  

In addition, to account for possible variations in the MS signal intensity between 

replicate experiments (i.e., drifts in the background signal, reagent ion, corona discharge 

efficiency, etc.), a constant propionic acid (C3H6O2) flow from a propionic acid 

permeation source (294 nmoles/s at 32oC) was introduced to the ID-CIMS prior to each 

measurement. Propionic acid was ionized using the H3O+ or CO3
-/CO4

- reagent ion, 

yielding the product ion of C3H6O2�H+ (75 amu) or C3H6O2�O2
- (106 amu), respectively. 

The observed propionic acid signal was employed to correct the variation in the MS 

signal intensity between different measurements, which was typically less than 10%.  

 

Results and Discussion 

Fig. 2 illustrates a typical ionogram for syringe-deposited sulfuric acid samples 

in the mass range from 1 to 10 ng measured using the CO3
-/CO4

- reagent ion. The 

experiments were performed by depositing a droplet of 1 µl volume of sulfuric acid 

solutions on the platinum wire, and the dried mass was determined from the sample 

volume and sulfuric acid concentration. Each peak in the ionogram corresponds to 

thermal desorption of a sample, and the peak area is integrated to quantify the total 

amount of the desorbed mass. It is evident from Fig. 2 that the intensity of the desorption 

peaks well correlate with the deposited sample masses. 
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Figure 2. Desorption peaks of deposited samples by a micro-syringe on the platinum filament for 
different sulfuric acid masses using the CO3

-/CO4
- reagent ion. 

 

Fig. 3 shows calibration of syringe-deposited samples for various organic 

(organic acids, dimethylaminum sulfate, and dimethylaminum estate) and inorganic 

(sulfuric acid, ammonium sulfate, and ammonium bisulfate) species on the platinum 

filament using the three reagent ions.  
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Figure 3. Calibration of syringe-deposited samples on the platinum filament. (a) sulfuric acid (solid 
circles), ammonium sulfate (open circles), ammonium bisulfate (solid triangles) masses using the 
CO3

-/CO4
- reagent ion, (b) p-toluic acid (solid circles), oleic acid (open circle), and stearic acid (solid 

triangles), and succinic acid (open triangles) masses using the CO3
-/CO4

- reagent ion, (c) 
dimethylaminum sulfate (solid circles) and dimethylaminum acetate (open circle) masses using the 
H3O+ reagent ion, and (d) maleic acid (solid circles), cis-pinonic acid (open circle)s, and p-toluic acid 
(solid triangles) with sub-nanogram masses (< 1ng) using the CO3

-/CO4
- reagent ion. Each point 

represents the average of three experiments, and the uncertainty reflects the random error of the 
measurements (1σ). 
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Most of the experiments were performed in the mass rage of 1 to 10 ng (Figs. 

3A-C), and additional measurements were conducted in the mass range of 0.1 to 1 ng for 

selected organic acids (Fig. 3D). Figure 3 shows a good linearity between the integrated 

peak area and the deposited mass for all species investigated and reagent ions used, with 

the correlation coefficient (R2) in the range of 0.95 to 0.99. The sensitivity and detection 

limit of the TD-ID-CIMS were estimated from the slope of the lines in Fig. 3 and three 

times of the signal to noise ratio (S/N) for the smallest mass deposited of each species, 

respectively. Table 1 summarizes the molecular structures, ion assignments, sensitivities, 

detection limits, and the correlation coefficients for all species calibrated by TD-ID-

CIMS using the three reagent ions. The TD-ID-CMS exhibits somewhat different 

performances for the various organic and inorganic species, dependent of the reagent 

ions. For example, using the CO3
-/CO4

- reagent ion, the TD-ID-CIMS is more sensitive 

to sulfuric acid than to ammonium sulfate and bisulfate, but with comparable detection 

limits among the three inorganic sulfate forms (Fig. 3A and Table 1). The use of the 

NO3
- reagent ion yields both a higher sensitivity and lower detection limit for sulfuric 

acid than those using the CO3
-/CO4

- reagent ion. Among the organic acids (Figs. 3B and 

3D and Table 1), malic acid exhibits the highest sensitivity, while cis-pinonic acid shows 

the lowest detection limit using the CO3
-/CO4

- reagent ion. Also, the linearity between 

the integrated peak area and sample mass is similar for selected organic acids with high 

(1 to 10 ng) and low (0.1 to 1 ng) masses, with comparable correlation coefficients. For 

p-toluic acid, for example, the same linearity extends from 0.1 to 10 ng.  
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Table 1. Molecular structure, formula, molecular weight (MW), ion, sensitivity, 
detection limit, and correlation coefficient for all analytes measured by TD-ID-

CIMS. Reagent ion used is (a) CO3
-/CO4

-, (b) NO3
-, and (c) H3O+. 

 

 

 

 

Analyte Formula  
(MW)  

Ion  
(m/z) 

Sensitivity 
(x104) 

(cps/ng)  

Detection Limit 
(x10-1) 
(ng) 

R2 

Sulfuric Acid 
 

H2SO4 
(98.1) 

HSO4
- 

(97.1) 
74.6a 

199.1b 
1.2a 
0.3b 

0.97a 
0.99b 

Ammonium Sulfate 
 

 (NH4)2SO4 
(132.1) 

HSO4
- 

(97.1) 49.1a 1.3a 0.95a 

Ammonium Bisulfate 
 
 

 (NH4)HSO4 
(115.1) 

HSO4
- 

(97.1) 44.1a 1.2a 0.97a 

cis-Pinonic acid 

 

C10H16O3 
(184.2)  

C10H16O3!O2
-
 

(216.2) 35.1a 0.1a 0.99a 

Succinic Acid 

 
 

C4H6O4  
(118.1) 

C4H5O4
- 

(117.1) 4.5a 5.6a 0.99a 

Maleic Acid 

 
 

C4H4O4 
(116.1) 

C4H3O4
- 

(115.1) 59.4a 1.0a 0.99a 

Toluic Acid 

 
 

C8H8O2 
(136.1) 

C8H8O2!O2
-
 

(168.1) 17.6a 2.6a 0.99a 

Stearic Acid 

 

C18H36O2 
(284.5) 

C18H36O2!O2
-
 

(316.5) 6.4a 0.9a 0.89a 

Oleic Acid 

 

C18H34O2 

(282.5) 
C18H34O2!O2

- 

(314.5) 9.0a 0.6a 0.96a 

Dimethyl Aminium 
Acetate 

NH(CH3)2CH3COOH 
(105.1) 

(CH3)2NH2
+ 

(46.1) 5.5c 6.3c 0.98c 

Dimethyl Aminium 
Sulfate 

(NH(CH3)2)2H2SO4 
(188.2) 

(CH3)2NH2
+ 

(46.1) 22.9c 2.7c 0.99c 
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In addition, dimethylaminum sulfate has a higher sensitivity and lower detection 

limit than those of dimethylaminum acetate using the H3O+ reagent ion. The sensitivity 

for the various organic and inorganic species using the different reagent ions is 

dependent of the ion-molecule reaction rate constants, ion transmission efficiency of the 

drift tube and the MS optics, and the background signal, while the detection limit is more 

dependent of the background signal, which is related to the mass range and the use of the 

reagent ions. 

In our experiments, the background signal is typically lower for the NO3
- reagent 

ion than those for the CO3
-/CO4

- and H3O+ reagent ions, explaining the highest 

sensitivity and a lower detection limit for sulfuric acid using the NO3
- reagent ion. For 

comparison, our TD-ID-CIMS exhibits a sensitivity similar to, but a higher detection 

limit than those reported by Voisin et al.40 In that previous work, a radioactive material 

(231Am) emitting α particles was employed to ionize the buffer gas mixture to form 

nitrogen and oxygen ions and to yield H3O+, O2
−, and CO3

− as the reagent ions, likely 

corresponding to lower background signals than those from the corona discharge ion 

source.47, 48     

To evaluate the collection efficiency of the EPC for particles of different sizes, 

experiments were performed to identify the maximal exposure length and voltage for the 

platinum and nichrome filaments. For experiments using the platinum filament for 

nucleation mode particles (Fig. 4A), the collection efficiency increases with the 

increasing exposure length and voltage of the filament and decreasing particle size.  
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Figure 4. Collection efficiency for ammonium sulfate particles as a function of the voltage applied on 
the platinum wire. (A) and the nichrome coil (B). In (A), 10 nm (dashed lines) and 40 nm (solid lines) 
particles were collected with different exposed lengths of the EPC (relative to the tip of the EPC 
housing cylinder): 4 cm (solid triangles), 2 cm (open triangles), and 0 cm (open circles). In (B), 80 
nm (solid squares), 100 nm (solid triangles), 150 nm (open circles), and 200 nm (open diamonds) 
particles were collected on the nichrome coil with a 4 cm exposed length. 
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For example, for 10 nm particles and 2 cm exposure length, a collection 

efficiency of greater than 70% is achieved at 1 kV, and for 40 nm particles and 4 cm 

exposure length, a collection efficiency of 60% is achieved at 3kV. On other hand, for a 

shorter exposure length and larger particles, a higher voltage (> 4kV) is required to 

achieve a sufficient collect efficiency, but likely induces undesirable discharge within 

the collection chamber, which subsequently decreases the collection efficiency. 

Similarly, for accumulation mode particles using the nichrome coil (Fig. 4B), the 

collection efficiency decreases with the increasing particle particles, but increases with 

increasing voltage at a fixed exposure length of 4 cm. For 80, 100, 150, and 200 nm 

particles at 3 kV, the collection efficiencies are 100, 75, 50, and 20%, respectively. For 

larger particles (> 200 nm), a longer exposure length or a higher voltage is required to 

achieve a sufficient collection, and the higher voltage may cause discharge inside the 

collection chamber. Furthermore, the nichrome coil is unsuitable for collection of 

nucleation mode particles, possibly because of the combination of a smaller particle 

mass and complex geometry of the coil, leading to lower collection efficiency. Hence, 

our results demonstrate that a collection efficiency of larger than 50% is achieved with 

an exposure length of 4 cm and voltage of 3 kV using the platinum filament for the 

nucleation mode (≤ 40 nm) particles and using the nichrome coil for accumulation mode 

(40-150 nm) particles. Those configurations were employed for all measurements of 

collected particles. Fig. 5 (a-d) shows the comparison of the integrated peak areas as a 

function of the particle masses between collected particles and syringe-deposited 

droplets. 
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Figure 5. Comparison of the integrated desorption peak areas between collected particles and 
syringe-deposited droplets of similar masses. (A) collected 40 nm sulfuric acid particles (open cycles) 
and syringe-deposited droplet (solid circles) using the NO3

- reagent ion; (B) collected 40 nm sulfuric 
acid particles (open cycles), syringe-deposited droplet (solid circles), collected 40 nm succinic acid 
particles (open triangles), syringe-deposited succinic acid droplet (solid triangles) using the CO3

-

/CO4
- reagent ion;  (C) collected 200 nm ammonium sulfate particles (open cycles), syringe-deposited 

ammonium sulfate droplet (solid circles), collected 200 nm oleic acid particles (open triangles), 
syringe-deposited oleic acid droplet (solid triangles) using the CO3

-/CO4
- reagent ion; (D) collected 

40 nm dimethylaminum sulfate particles (open cycles), syringe-deposited dimethylaminum sulfate 
droplet (solid circles), collected 40 nm dimethylaminum acetate particles (open triangles), syringe-
deposited dimethylaminum acetate droplet (solid triangles) using the H3O+ reagent ion. The lines 
represent linear regression over both collected particles and syringe-deposited samples for each 
species. Each point represents the average of three experiments, and the uncertainty reflects the 
random error of the measurements (1σ).  
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Experiments were conducted with particles of different compositions (i.e., 

sulfuric acid, succinic acid, oleic acid, ammonium sulfate, oleic acid, dimethylaminum 

sulfate, and dimethylaminum acetate) and particle sizes (i.e., 40, and 200 nm) using the 

three reagent ions. The collected particle mass was estimated on the basis of the 

measured collection efficiency (Fig. 4), along with the particle size and density, and the 

flow rate in the collection chamber. For all measurements in Fig. 5, the correlation 

coefficients of the measured integrated peaks between collected particles and syringe-

deposited droplets are in the range of 0.91 and 0.99, showing a good linearity between 

the desorption peak area and particle mass and agreement between those two methods.  

 

 
 
Figure 6. Comparison of the integrated desorption peak areas between collected 10 nm particles and 
syringe-deposited droplets. Collected particles (open cycles) and syringe-deposited droplet (solid 
circles) of ammonium sulfate using the CO3

-/CO4
- reagent ion. The lines represent linear regression 

over both collected particles and syringe-deposited samples.  
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Figure 6 illustrates the correlation of collected particles and syringe-deposited 

calibrations, showing a linear correlation of 0.99 for the average of both sets for 10 nm 

ammonium sulfate particles using the CO3
-/CO4

- reagent ion scheme. The results also 

indicate that the sensitivity and detection limit obtained by using the syringe-deposited 

sample droplets are applicable to those for collected particles. In addition, such 

calibration demonstrates the capability of the TD-ID-CIMS instrument in quantifying 

aerosols from the nucleation to accumulation mode particles. 

In our laboratory, we have also utilized our TD-ID-CIMS in other research 

projects aimed at studying the chemical composition and formation of SOA. Such 

projects include analysis of the chemical composition of critical nuclei clusters (2 nm 

particles) for new particle formation, chemical composition of alkylaminium carboxylate 

salts after evaporation, and acid-catalyzed reactions of epoxides for atmospheric 

particles growth. Here we provide a brief description of the application of TD-ID-CIMS 

in such projects to illustrate the analytical capabilities of our instrument in the study of 

SOA formation and composition. 
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New Particle Formation Studies 

Figure 7 shows mass spectra for 2 nm particles analyzed by TD-ID-CIMS. In our 

experiments, α-pinene was oxidized by hydrogen peroxide inside a nucleation chamber 

yielding particles containing several organic compounds. The particles were generated in 

the nucleation chamber and collected on our platinum filament in our EPC for 3 hours. 

Particles were size selected by a nano-TDMA before entering our TD-ID-CIMS for 

analysis in the positive ion mode. For ionization, we utilized a proton transfer reaction 

ionization scheme. 

 

 

Figure 7. TD-ID-CIMS of 2 nm aerosol particles in the positive (+) ion mode. Analysis was 
performed utilizing proton transfer reaction (PTR-MS) ionization. Panel a depicts the monomer 
mass region. Panel b depicts the dimer mass region.  
 

For example, Figure 7a illustrates the presence of different organic compounds 
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and 201 correspond to pinalic, norpinic, pinonic, pinic, and hydroxypinonic acids 

respectively. Figure 7b depicts the mass region [m/z = 330-410] of the dimers produced 

from the oxidation of α-pinene in the chamber. Our TD-ID-CIMS analysis detected only 

the dimers of the organic acids, without detecting pinonaldehyde dimers. Furthermore, 

TD-ID-CIMS analysis shows the presence of both, homomolecular and heteromolecular 

acidic dimers, mainly for diprotic acids such as pinic and norpinic acid. These results 

highlight the analytical prowess of our TD-ID-CIMS, as it is the first instrument in the 

world that can successfully analyze the chemical composition of 2 nm aerosol particles. 

TD-ID-CIMS thus exploits the benefits of “soft” ionization generating mass 

spectrometry data with low fragmentation, and retention of the molecular structure of the 

analytes.   

 

Chemical Composition of Alkylaminium Carboxylates 

We have analyzed the chemical composition of alkylaminium salts after 

evaporation to elucidate their composition, volatility, and stability in the gas-phase as 

part of a study in collaboration with Lavi et al.51 Briefly, a 1.5 µL droplet of the salt 

solution was deposited on a platinum filament and dried with a stream of dry nitrogen. 

The filament was then subjected to resistive heating up to 600 K to evaporate the 

deposited sample. The hydronium ions (H3O+) were employed for the proton-transfer 

reactions in the drift tube, and the reagent and products were detected using CIMS.  

Figure 8 depicts the TD-ID-CIMS spectrum of dimethylaminium adipate, which 

consists of adipic acid (MW 146.14 g/mol) and two dimethylamine (MW 45.08 g/mol) 



 

 

 

30 

entities. The presence of the [adipic acid+2DMA+H]+ ion at m/z 237, is clear even after 

the salt was evaporated up to 600 K. In addition, [adipic acid+DMA+H]+ at m/z 192 

having a higher intensity than that of [adipic acid+H]+ at m/z 147 was observed. 

Interestingly, we also observed a signal at m/z 165, which corresponds to the [adipic 

acid+H2O+H]+ ion.  Therefore, the presence of the salt ions in the mass spectrum 

suggests that the salt is stable after vaporization. 

 

 

Figure 8. TD-ID-CIMS analysis of adipic acid:DMA salt solution in the positive ion mode. The m/z 
147 signal corresponds to [adipic acid+H]+, while the peak at m/z 165 corresponds to [adipic 
acid+H2O+H]+, mass at m/z 192 corresponds to [adipic acid+DMA+H]+, and mass at m/z 237 
corresponds to [adipic acid+2DMA+H]+.     
 

Figure 9 illustrates the TD-ID-CIMS spectrum of dimethylaminium azelate, 

which consists of azelaic acid (MW 188.22 g/mol) and two dimethylamine (MW 45.08 

g/mol) entities. The obtained spectrum shows the presence of [azelaic acid+DMA+H]+ at 

m/z 234, confirming the presence of the salt in the gas phase. For the azelaic acid:DMA 

salt, three major peaks were observed: [azelaic acid+H]+ at m/z 189, [azelaic 

acid+H2O+H]+ at m/z 207, and [azelaic acid-H2O+H]+ at m/z 171. The presence of the 

[azelaic acid+DMA+H]+ ion suggests that the alkylaminium carboxylate salt (2:1) is 
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stable after thermal desorption even though m/z 279 corresponding to the [azelaic 

acid+2DMA+H]+ ion is absent. The absence of m/z 279 may be attributed to lack of 

proton transfer from the H3O+ reagent ion to the azelaic acid+2DMA. Our mass 

spectrometry results show little impurities in the samples after evaporation. Hence, we 

suggest that the alkylaminium dicarboxylate salts are stable after evaporation. 

 

 

Figure 9. TD-ID-CIMS analysis of azelaic acid:DMA salt solution in the positive ion mode. The peak 
at m/z 171 corresponds to [azelaic acid-H2O+H]+, while the signal at m/z 189 corresponds to [azelaic 
acid+H]+, signal at m/z 207 corresponds to [azelaic acid+H2O+H]+, and at m/z 234 corresponds to 
[azelaic acid+DMA+H]+.    
 

 Our TD-ID-CIMS results indicate that both, dimethylaminium adipate and 

dimethylaminium azelate are stable in the gas-phase without decomposing into the acid 

and base precursors. Therefore, our TD-ID-CIMS instrument has the capabilities to 

analyze not only collected particles, but also samples composed of SOA precursors in 

the liquid phase loaded unto the injection port.  
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Acid-Catalyzed Reactions of Epoxides for Atmospheric Particle Growth 

We have also utilized our TD-ID-CIMS for the analysis of acid-catalyzed 

reactions of epoxides for atmospheric nanoparticle growth.49 Figure 10 depicts the TD-

ID-CIMS spectra of 20 nm sulfuric acid nanoparticles collected on a platinum filament 

after the exposure to isoprene oxide.  

 

 

Figure 10. TD-ID-CIMS analysis of 20 nm sulfuric acid particles after exposure to isoprene oxide. 
Panel (a) shows results at 4 % RH. Panel (b) shows results at 32% RH. 
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The peak assignments for the products heterogeneous reactions of epoxides on 

sulfuric acid nanoparticles are summarized in Table 2.  

 

Table 2. Structure assignment for detected ions by TD-ID-CIMS in 20 nm sulfuric 
acid particles after exposure to isoprene oxide vapor. 

 

 

 

Figure 11 depicts the reaction leading to polymerization from isoprene oxide, the 

α,β-unsaturated ketone formed through 1,2-methanide shift polymerizes via the Michael 

addition in the presence of sulfuric acid,54 and the resulting polymers are detected by the 

TD-ID-CIMS at m/z of 169, 253, 337, and 421 for dimer, trimer, tetramer, and pentamer, 

respectively. Organosulfates are not identified for isoprene oxide, since their formation 

is suppressed by polymerization. 
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Figure 11. Mechanism for the formation of polymers in sulfuric acid particles after exposure to 
isoprene oxide.  
 

In the acid-catalyzed reactions of epoxides for atmospheric nanoparticle growth we also 

utilized our TD-ID-CIMS to analyze the composition of sulfuric acid nanoparticles after 

exposure to budatiene diepoxide, and α-pinene oxide. A full discussion can be found in 

the recent contribution by Xu et al.49  

These three recent applications of our TD-ID-CIMS showcase the capabilities of 

our new analytical technique to conduct cutting-edge measurements for the analysis of 

SOA composition and formation.  
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Summary 

We have described the design and calibration of a TD-ID-CIMS instrument, 

which consists of a combined atomizer, DMA, and CPC system, an EPC, and ID-CIMS. 

Particles generated by the atomizer are charged and size-selected by the DMA, 

electrostatically deposited on and resistively evaporated by the EPC, and subsequently 

ionized and analyzed by the ID-CIMS. Experimental results are presented to evaluate the 

performance and to establish the collection efficiency, sensitivity, and detection limit of 

the instrument for a broad range of particle sizes and chemical compositions using 

various reagent ions.  

In our instrument, high collection efficiency (> 50%) is achieved for both 

nucleation and accumulation particles (10-150 nm) using a platinum wire and a 

nichrome coil, respectively. The TD-ID-CIMS exhibits soft desorption and ionization for 

most organic (six organic acids) and inorganic (sulfuric acid, ammonium sulfate, and 

ammonium bisulfate) compounds, since those species are selectively ionized by the 

reagent ions (CO3
-/CO4

-, NO3
-, or H3O+) with little fragmentation (with the exception for 

dimethylaminum sulfate and acetate using H3O+). Calibration of collected particles and 

syringe-deposited droplets shows a marked agreement, illustrating the highly 

quantitative feature of the instrument.  

Our results reveal that the TD-ID-CIMS instrument is capable of analyzing and 

quantifying nucleation to accumulation mode particles, with the advantages of soft 

vaporization and ionization and high collection efficiency, selectivity, and sensitivity for 

a variety of organic and inorganic species down to sub-nanogram levels. Ongoing work 
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in our group includes quantification of collected particles on the basis of the ion-

molecule rate constants theoretically determined for various organic and inorganic 

species and ambient monitoring of aerosols using the TD-ID-CIMS method.  

 We have also demonstrated the capabilities of TD-ID-CIMS to analyze aerosols 

in laboratory studies regarding new particle formation, chemical composition of 

alkylaminium carboxylates, and acid-catalyzed reactions of epoxides for atmospheric 

nanoparticle growth. For the new particle formation studies, our TD-ID-CIMS has 

successfully collected particles as small as 2 nm, produced from chamber experiments. 

Our results show the formation of several weak organic acids present in the collected 

particles as result of the oxidation of alpha-pinene by hydrogen peroxide. In addition, the 

TD-ID-CIMS has confirmed that alkylaminium carboxylates evaporate as molecular 

complexes, without decomposing into the acid and base components. Finally, we have 

demonstrated that the mechanism for the acid-catalyzed reactions of epoxides are 

dependent on relative humidity, thereby impacting the formation of organosulfates and 

polymers, which may lead to particle growth and formation of SOA. Overall, the TD-ID-

CIMS offers a versatile, robust, and sensitive platform for the study of atmospheric 

aerosols.  
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CHAPTER III 
 

HETEROGENEOUS CHEMISTRY OF GLYOXAL ON ACIDIC SOLUTIONS  

AN OLIGOMERIZATION PATHWAY FOR SECONDARY ORGANIC  

AEROSOL FORMATION* 

 

Introduction 

 In addition to his pioneering work in the understanding of stratospheric ozone 

depletion by man-made chlorofluorocarbons (CFCs) and atmospheric chemistry in 

general,55,56 Mario J. Molina’s research has made fundamental advances to the aerosol 

chemistry both in the troposphere57 and stratosphere.58,59 Atmospheric aerosols exert 

important impacts on visibility, human health, air quality, weather, and climate.60 In 

particular, aerosols modify the Earth’s energy budget directly by scattering and 

absorbing the incoming solar radiation and indirectly by modifying cloud formation. 

Currently, the direct and indirect radiative effects of aerosols represent the largest 

uncertainty in projections of future climate by atmospheric models.19,21,60 Part of the 

uncertainty in assessing the aerosol radiative forcings is attributable to the complex 

processes leading to aerosol formation: the current understanding of the formation 

mechanisms of atmospheric aerosols is highly limited.1,7  

Aerosols can be directly emitted (primary) or formed through the gas-particle 

conversion process (secondary) in the atmosphere. The primary aerosol sources include  

_____________________________________ 
* This chapter is reprinted with permission from Gomez, M.E.; Lin, Y.; Guo, S.; Zhang, R. Heterogeneous 
Chemistry of Glyoxal on Acidic Solutions. An Oligomerization Pathway for Secondary Organic Aerosol 
Formation. The Journal of Physical Chemistry A. 2015, 119 (19), pp. 4457–4463. Copyright 2015 
American Chemical Society.  
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emissions from combustion, road or wind-blown dust, and plants, while the secondary 

formation processes include nucleation and growth by multi-phase chemical processes. 

Previous studies have shown that heterogeneous reactions of organic molecules, such as 

alkylamines, epoxides, and carbonyls, may contribute significantly to formation of 

secondary organic aerosols (SOA) by acid-base, acid-catalyzed, and hydration reactions, 

respectively.23,24,58,61-64 For example, smaller α-dicarbonyls (i.e., glyoxal and 

methylglyoxal) have been shown to form from atmospheric photochemical oxidations of 

anthropogenic (toluene, xylenes, or trimethylbenzenes) and biogenic (isoprene) 

hydrocarbons and to participate in the SOA formation.46,65-72 Formation of glyoxal has 

been suggested as the consequence of the oxidation-driven ring fragmentation of 

aromatic hydrocarbons46,69-72 and the oxidation of isoprene.73,74 The gas-phase 

concentrations of glyoxal have been reported to range from less than 20 to 350 parts per 

trillions (ppt) in rural areas and from 0.15 to 2 parts per billions (ppb) in urban areas,75-77 

and the global source of glyoxal is estimated at 45 Tg yr-1 (ref 78). The gas-phase 

chemistry of glyoxal includes photolysis and the reaction with OH, leading to an 

atmospheric lifetime of a few hours.77 Other possible loss processes of glyoxal include 

dry deposition and heterogeneous reactions on aerosol surfaces. For example, the 

presence of glyoxal in the particle-phase has been identified from atmospheric field 

measurements.68 Fu et al. have calculated a global SOA source of 2.6 TgC yr-1 from the 

irreversible uptake of glyoxal, with up to 90 % resulted from cloud processing.78 In 

addition, the measured glyoxal concentrations in Mexico City have been shown to be 
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significantly below those predicted, indicating a possible missing sink for gas-phase 

glyoxal that is likely linked to SOA.79 

Several laboratory studies have investigated the heterogeneous interaction of 

glyoxal with atmospheric particulate matter.80-90 A previous study by Ip et al.80 has 

reported the effective Henry’s Law constant (H*) of 1.6 x 106 M atm-1 for glyoxal in 

water at neutral pH and at 278 K, whereas the H* value decreases to 4.2 x 105, 1.5 x 105, 

5.0 x 104 M atm-1 at 298, 308, 318 K, respectively. The uptake coefficient (γ) of glyoxal 

on aqueous aerosols and liquid droplets has also been investigated. For example, 

previous laboratory studies have measured the γ values of 8 x 10-4 to 7.3 x 10-3 on 

aqueous inorganic aerosols88 and 1 x 10-3 to 2 x 10-2 on cloud droplets/ice crystals,89 

with a larger γ on more acidic particles (> 2.3 x 10-3) and at a lower temperature (>10-3). 

In addition, Zhou et al.87 have studied the formation of gas-phase carbonyls as products 

of the heterogeneous oxidation of polyunsaturated fatty acids in the air-water interface 

and the sea surface microlayer. In our previous experiments, the uptake of methylglyoxal 

on liquid sulfuric acid has been measured at different temperatures and relative 

humidities, showing a reaction mechanism of hydration and oligomerization that 

increases with decreasing acidity and temperature.63  

In this study, we have investigated the heterogeneous interaction of glyoxal on 

liquid sulfuric acid surfaces, a relevant model system for atmospheric aerosols. The 

uptake coefficient, γ, and effective Henry’s Law constant, H*, of glyoxal have been 

measured on 60-93 wt % H2SO4 and in the temperature range of 253-273 K. Our 

measurements provide an elucidation on the kinetics and mechanism of glyoxal uptake 
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on aqueous acidic solutions. The atmospheric implications of our experimental results 

are discussed.  

Experimental 

 The uptake experiments were performed using a low-pressure laminar fast flow 

reactor coupled to an ion drift - chemical ionization mass spectrometer (ID-CIMS),47 

similar to those employed in our previous studies.23,61-64 Figure 12 provides a schematic 

representation of the experimental setup.  

 

 

Figure 12. Schematic illustration of the low-pressure fast flow reactor coupled to an ID-CIMS 
instrument. 

 

Glyoxal with a concentration of 100 ppm (parts per million) was prepared in a 4 

L glass bulb pressurized to 800 Torr, and was introduced into the flow reactor by a 

moveable 45 cm long stainless steel tubing. Aqueous sulfuric acid solutions were 

deposited on a semicircular Pyrex® glass reservoir of 15 cm long, 2 cm wide, and 0.7 

cm deep to provide a flat liquid surface with the acid concentrations between 60 - 93 wt 

%. The inner diameter and the length of the low-pressure laminar fast flow reactor were 
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1.25 and 50 cm, respectively. The temperature of the flow reactor was maintained and 

controlled by circulating methylene glycol through the outer jacket of the flow reactor, 

isolated from room temperature using insulating foam. All carrier gas flows were 

monitored utilizing calibrated electronic mass flow meters. The flow reactor was 

operated at a pressure of 2.5 Torr with a flow average velocity of 856 cm s-1, and the 

typical flow rate in the flow reactor was maintained at 3 SLPM (standard litter per 

minute) for helium. The composition of the acid solutions was checked before and after 

experiments by titration with standardized sodium hydroxide. Commercially available 

glyoxal trimer dihydrate (Aldrich) was processed to produce pure glyoxal monomer. 

Briefly, glyoxal trimer dihydrate 97% (GTD) reacted with phosphorous pentaoxide 

(P2O5) in a 150 mL round bottom flask heated for 45 minutes. The flask was directly 

connected to a solid salt trap with 50% potassium carbonate (K2CO3) and 50% 

phosphorous pentaoxide (P2O5) to dry the glyoxal sample. A flow containing glyoxal 

was then directed to a cold trap (a 3 way glass bubbler) immersed in liquid nitrogen (N2) 

and the glyoxal sample was allowed to condense. After removal from the liquid nitrogen 

reservoir, the cold trap was immersed in an acetone/dry ice bath for 2 hours to remove 

impurities. The final glyoxal sample was in a green crystalline form deposited in the 

bottom of the cold trap. The glyoxal sample was then stored in a freezer at -20oC. The 4 

L glass bulb containing gaseous glyoxal was prepared by successive dilutions of the 

glyoxal vapor with high purity helium, down to 100 ppm. 

Glyoxal was detected by the ID-CIMS to obtain the kinetic data upon exposing 

glyoxal to the sulfuric acid surfaces. The oxygen reagent anion (O2
-), formed by using a 
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corona discharge device, ionized glyoxal to produce the glyoxal-oxygen adduct ion (O2
-

•C2O2H2 at m/z = 90.4), which was subsequently detected by ID-CIMS. The ion-

molecule reactions took place in the drift tube at a low pressure of < 2.5 Torr. The 

glyoxal-oxygen adduct ion signal at m/z = 90.4 was monitored in real time as glyoxal 

molecules were injected into the system. The stainless steel injector was retracted over 

an increasing area of sulfuric acid, allowing glyoxal molecules to be exposed to the 

sulfuric acid surfaces. Subsequently, the ionograms were recorded and processed. From 

the changes in the glyoxal signal after sulfuric acid exposure monitored by the ID-CIMS, 

the time-dependent uptake coefficient γ(t) of glyoxal on sulfuric acid is calculated:45,91-92  

𝛾(𝑡) = !!
!

!
!

                                                         (3.1) 

where k is the first-order rate coefficient, V is the internal volume of the flow reactor, A 

represents the geometric area of the exposed acid liquid, and ω is the molecular mean 

thermal speed. The effective Henry’s Law constant, H*, is determined from the time-

dependent uptake coefficient:  

!
! !

= 𝑎 + 𝑏𝑡!/!                                                     (3.2) 

where a is a constant that parameterizes the accommodation coefficient and the time-

independent aqueous reaction rate constant and b = ω/4H*RT(Dl/π)1/2. Hence, equation 2 

allows the calculation of H* from the time-dependent uptake coefficient, where Dl is the 

liquid-phase diffusion coefficient, R is the gas constant, and T is the temperature. The 

liquid-phase diffusion coefficient Dl is calculated following Klassen et al.93 All 
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measurements were repeated at least 3 times to obtain the experimental random error 

(1σ). The estimated systematic uncertainty in our measurements was about ±30%.  

 

Results and Discussion 

Figure 13 illustrates a typical experiment of glyoxal uptake on sulfuric acid 

solution of 75 wt % at 253 K.  

 

 

Figure 13. (a) Temporal profile (I, relative intensity) of glyoxal when exposed to a 15 cm long vessel 
containing 75 wt % sulfuric acid at 253 K. Each drop in the signal corresponds to a 5 cm distance 
increment from 0 to 15 cm. The experiment is terminated by retracting the injector to its original 
position after approximately 150 seconds. (b) The signal intensity of glyoxal as a function of injector 
distance for the experiment shown in panel (a). 
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As the injector is retracted successively, the glyoxal signal decreases stepwise as 

a function of the exposure length. The glyoxal signal does not recover at each exposure 

distance.After the injector is pushed to its original position, the glyoxal signal returns to 

the original level without desorption. Hence, the uptake of glyoxal on 75 wt% H2SO4 at 

253 K is characteristic of an irreversible reaction. Figure 13b shows a linear relation 

between the glyoxal signal intensity (I, arbitrary units) and the injector position, yielding 

a γ value of 1.03 x 10-2 for glyoxal uptake on 75 wt % H2SO4 at 253 K.  

In contrast, as the temperature increases, the uptake profile shows an increasingly 

reversible character. As depicted in Figure 14a for glyoxal uptake by a 75 wt% H2SO4 

solution at 273 K, the glyoxal signal at each exposure distance shows a significant 

recovery. After the experiment is terminated and the injector is returned to its original 

position, a desorption peak is observed before the glyoxal signal returns to its original 

level.  

Figure 14b also shows a linear relation between stabilized glyoxal signal at each 

step and the injector position, yielding a γ value of 5.26 x 10-3 for 75 wt % H2SO4 at 273 

K. For more diluted solutions (i.e., 60 wt %), the uptake exhibits little reversible 

behavior, even at 273 K. In contrast, reversible uptake pattern is consistently observed 

for experiments performed on concentrated H2SO4 (75-93 wt %) at the temperatures of 

263-273 K. 
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Figure 14. (a) Temporal profile (I, relative intensity) of glyoxal when exposed to a 15 cm long vessel 
containing 75 wt % sulfuric acid at 273 K. Each drop in the signal corresponds to a 5 cm distance 
increment from 0 to 15 cm. The experiment is terminated by retracting the injector to its original 
position after approximately 250 seconds. (b) The signal intensity of glyoxal as a function of injector 
distance for the experiment shown in panel (a). 

 

Figure 15 depicts the measured uptake coefficient of glyoxal on different sulfuric 

acid concentrations and at various temperatures. As shown in Figure 15, the measured γ 

value increases when the acid becomes more dilute and temperature is lower. The 

highest uptake coefficient of 1.2 x 10-2 is measured for 60 wt % H2SO4 at 253 K, and the 

lowest value of 2.5 x 10-3 is measured for 93 wt % H2SO4 at 273 K. For 60-93 wt % 
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solutions at 253 K, the uptake is irreversible, and the decay in the glyoxal signal follows 

pseudo-first-order kinetics with the time independent γ values of 1.2 x 10-2 to 6.2 x 10-3, 

respectively. 

 

 

Figure 15. Concentration dependence of the uptake coefficient (γ) of glyoxal on sulfuric acid for 60, 
75, and 93 wt % H2SO4 solutions at various temperatures. Blue diamonds, brown circles, green 
triangles, and red diamond correspond to measurements at 253, 258, 263, and 273 K, respectively. 
The error corresponds to one standard deviation (1σ) for at least three uptake experiments. 
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For 60 and 93 wt % solutions at 258 K, the uptake coefficient decreases to 9.1 x 

10-3 and 5.8 x 10-3, respectively. The measurements of γ values are also summarized in 

Table 3. 

 
Table 3. Uptake coefficient (γ) for the heterogeneous reaction of glyoxal on sulfuric 

acid for 60-93 wt% H2SO4 solutions at 253 to 273 K. 
 

 
The error corresponds to one standard deviation (1σ) for at least three uptake 
experiments. 

 

Parts a and b of Figure 16 show time-dependent uptake measurements on 60 and 

75 wt % solutions at 273 K, respectively. The time-dependent uptake coefficients are 

plotted to obtain the correlation of the inverse of γ as a function of the square root of the 

exposure time in Figure 16 c and d. From the slope of each linear regression, the H* 

values at different temperatures and acid concentrations are calculated. According to 

Figure 16, the H* values of 1.7 x 105 and 20.4 x 105 M atm-1 are derived for 75 and 60 

wt % solutions at 273 K, respectively.  

H2SO4 % T	
  (K) Uptake	
  Coefficient	
  (γ)
60 253 1.2	
  x	
  10-­‐2	
  ± 6	
  x	
  10-­‐4

75 253 1.0	
  x	
  10-­‐2	
  ± 5	
  x	
  10-­‐4

93 253 6.2	
  x	
  10-­‐3	
  ± 3	
  x	
  10-­‐4

60 258 9.1	
  x	
  10-­‐3	
  ± 4	
  x	
  10-­‐4

75 258 6.3	
  x	
  10-­‐3	
  ± 3	
  x	
  10-­‐4

93 258 5.8	
  x	
  10-­‐3	
  ± 3	
  x	
  10-­‐4

60 263 8.3	
  x	
  10-­‐3	
  ± 4	
  x	
  10-­‐4

75 263 6.2	
  x	
  10-­‐3	
  ± 3	
  x	
  10-­‐4

93 263 5.7	
  x	
  10-­‐3 ± 3	
  x 10-­‐4

60 273 7.9	
  x	
  10-­‐3	
  ± 4	
  x	
  10-­‐4

75 273 5.3	
  x	
  10-­‐3	
  ± 3	
  x	
  10-­‐4

93 273 2.5	
  x	
  10-­‐3	
  ± 1	
  x	
  10-­‐4
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Figure 16. (a) and (b): Temporal profiles (I, relative intensity) of glyoxal when exposed to a 15 cm 
length of a vessel containing 60 and 75 wt % sulfuric acid at 273 K, respectively. (c) to (d): Plots of 
1/γ vs t1/2 for the temporal profiles in (a) and (b), respectively, for the exposure of the glyoxal to the 
acid reservoir. The lines are the linear least-square fit for each experiment.  
 

The measurements of the H* values are summarized in Table 4. For the 60 wt % 

solution, the H* values are 98.9 x 105 and 20.4 x 105 M atm-1 at 263 and 273 K, 

respectively, whereas for the 70 wt % solution the H* values are 60.3 x 105 and 4.2 x 105 

M atm-1 at 263 and 273 K, respectively. Clearly, the measured H* values also increase 

with decreasing acidity and temperature, similarly to the γ values.  
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Table 4. Values of the H* for glyoxal on sulfuric acid for 60-93 wt% H2SO4 
solutions at 263 and 273 K. 

 

The error corresponds to one standard deviation (1σ) for at least three uptake 
experiments. 

 

Hence, our measurements show that both the uptake coefficient and Henry’s Law 

constant for glyoxal on sulfuric acid exhibit a similar dependence with the acid 

concentration and temperature, consistent with our previous measurements of 

methylglyoxal uptake on sulfuric acid.63 For comparison, the previously measured γ 

value of 7.6 x 10-3 for 58 wt % at 253 K and H* value of 15.2 x 103 M atm-1 for 69 wt % 

at 273 K for the uptake of methylglyoxal on sulfuric acid are smaller than those values 

of 1.2 x 10-2 for 60 wt % at 253 K and 60.3 x 105 M atm-1 for 70 wt % at 273 K in our 

present work of uptake of glyoxal, demonstrating that glyoxal is more reactive on 

aqueous solutions than methylglyoxal. The reaction of smaller α-dicarbonyls on sulfuric 

acid solutions is characterized by initial hydration to form diols and tetrols, which 

subsequently undergo aqueous-phase reactions to form nonvolatile oligomers.63 The 

effect of methyl substitution in the α-dicarbonyls likely inhibits hydration and 

oligomerization, explaining the more efficient heterogeneous reactions of glyoxal than of 

H2SO4 % T	
  (K) H*	
  (X	
  10^5 M	
  atm-­‐1)
60 263 98.9	
  ± 4.9
70 263 60.3	
  ± 3.0
75 263 11.3	
  ± 0.6
93 263 9.9	
  ± 0.5
60 273 20.4	
  ± 1.0
70 273 4.2	
  ± 0.2
75 273 1.7	
  ± 0.1
93 273 1.6	
  ± 0.1
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methylglyoxal on sulfuric acid. Also, the amount of available water in the solution 

governs the equilibrium between the unhydrated and hydrated forms of the α-

dicarbonyls.63 The hydration and oligomerization reactions are hindered in more acidic 

sulfuric acid solutions, because the water activity decreases,94,95 leading to a solubility-

limited reversible uptake. Figure 17 depicts the hydration driven oligomerization of 

glyoxal in sulfuric acid, and the subsequent formation of SOA. 

 

 

Figure 17. Depiction of the oligomerization of glyoxal and formation of SOA. 
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Summary 

In this work, we have measured the heterogeneous uptake of glyoxal in 60-93 wt 

% H2SO4 and the temperature range of 253-273 K, utilizing a fast-flow low-pressure 

reactor coupled to an ion-drift chemical ionization mass spectrometer. The measured γ 

value of glyoxal on sulfuric acid is in the range of (1.2 ± 0.06) x 10-2 to (2.5 ± 0.01) x 10-

3 for 60 - 93 wt % H2SO4 and temperatures of 253-273 K. The measured H* value is in 

the range from (98.9 ± 4.9) x 105 M atm-1 to (1.6 ± 0.1) x 105 M atm-1 for 60 - 93 wt % 

and the temperatures of 263-273 K. Both the uptake coefficient and Henry’s Law 

constant increase with decreasing acid concentration and temperature. Our results show 

that glyoxal is more reactive than methylglyoxal on aqueous solutions and the 

heterogeneous reaction mechanism of smaller α-dicarbonyls involves hydration 

followed by oligomer formation, indicating that the oligomerization of glyoxal leading 

to secondary organic aerosol formation is largely dependent on the particle 

hygroscopicity.  

Our measured dependence of the γ and H* values with the acidity indicates that 

the reactions of hydration and oligomerization for smaller α-dicarbonyls are unlikely to 

be acid-catalyzed, in contrast to those from the previous studies.80,89 For example, the H* 

value of glyoxal has been found to be enhanced by less than 3 times in the presence of 

chloride in the range of 0.05–4.0 M ionic strength and by 50 times in the presence of 

sulfate at 0.03 M ionic strength.80 Also, on one hand, Schweitzer et al. has explained an 

increased uptake of glyoxal in acidic solutions as a result of protonation prior to 

accommodation.84 On the other hand, a previous chamber study of SOA growth by 
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reactive uptake of simple carbonyl compounds has shown little enhancement in particle 

growth with an acidic seed, suggesting that the glyoxal uptake is not a result of particle 

acidity but rather of ionic strength of the seed.96  

For 60 wt % sulfuric acid at 273 K, our measured γ and H* values are 7.9 x 10-3 

and 20.4 x 105 M atm-1, respectively. Extrapolation of our measurements to a neutral 

solution at 273 K yields the γ and H* values of 1.7 x 10-2 and 8.7 x 107 M atm-1, 

respectively. Our extrapolated H* to the neutral solution at 273 K appears to be higher 

than that previously measured value (1.6 x 106 M atm-1) for glyoxal in water at neutral 

pH and at 278 K.80 However, extrapolation of our measurements to a neutral solution 

involves a rather large concentration range, because the most diluted sulfuric acid 

employed in our experiments is 60 wt %. Interestingly, on the basis of the model-

measurement differences, it has been suggested that the γ value of about 3.7 x 10-3 for 

irreversible uptake to aerosol surface area or a H* value of 4 x 109 M atm-1 for reversible 

partitioning to aerosol liquid water would be necessary to explain the missing sink for 

gas-phase glyoxal in Mexico city.79 Clearly, our measurements support an efficient 

heterogeneous reaction of glyoxal on aqueous aerosols. Future laboratory measurements 

are needed for the heterogeneous chemistry at more relevant tropospheric conditions in 

urban environments, to evaluate their contributions to SOA formation and the impacts on 

aerosol cloud-forming and optical properties.97  
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CHAPTER IV 

HYGROSCOPICITY, DELIQUESCENCE, AND CLOUD CONDENSATION 

NUCLEI ACTIVITY OF ALKYLAMINIUM  

CARBOXYLATE AEROSOLS 

 

Introduction 

 Atmospheric aerosols affect air quality, visibility, human health, and the Earth 

radiation balance.18 In particular, aerosols impact the Earth energy budget in two distinct 

ways, directly by absorbing and scattering solar radiation and indirectly by acting as 

cloud condensation nuclei (CCN) that change the lifetime, coverage, precipitation 

efficiency, and albedo of clouds.18-20,98 Currently, the direct and indirect radiative 

forcings by aerosols represent the largest uncertainty in climate projections.18 The 

complex effects of aerosols in the atmosphere partially depend on particle size, number 

concentration, and chemical composition. Atmospheric aerosols are broadly categorized 

to be primary and secondary on the basis of their formation mechanisms.14,24 In 

particular, secondary organic aerosols (SOA) represent one of the key chemical 

constituents under diverse environmental conditions. Photochemical oxidation of 

biogenic and anthropogenic hydrocarbons leads to formation of semi- and low-volatile 

products,46,50,99-101 some of which may contribute to nucleation and growth of SOA. 

Several mechanisms have been proposed to account for SOA growth, including 

condensation of non-volatile or extremely low-volatile organic species, gas/particle 

partitioning of semi-volatile organic species, and heterogeneous reactions of volatile or 
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semi-volatile compounds.14,23,63,102-105 Among the heterogeneous reactions leading to 

SOA growth is the acid-base reactions between organic acids and amines.10,14,106  

Monocarboxylic and dicarboxylic organic acids are directly emitted into the 

atmosphere from biogenic and anthropogenic sources or are formed in the atmosphere as 

the products of photochemical and multi-phase reactions.107-113 Carboxylic acids have 

been identified under diverse environmental conditions, including semi-urban sites in the 

northeastern US,114 urban environments,115-118 and remote locations.119 Organic acids 

have been shown to contribute importantly to particle nucleation and growth.8,9,120 Short 

aliphatic alkylamines are derivatives of ammonia, where one or more hydrogen atoms 

are replaced by an alkyl functional group. Alkylamines are emitted by anthropogenic and 

biogenic sources, and represent a significant portion of the organic nitrogen species 

present in the atmosphere.121 The total global emissions of monomethylamine (MMA), 

dimethylamine (DMA), and trimethylamine (TMA) have been estimated at ~ 285 ± 78 

Gg N a-1, significantly lower than the total global emissions of ammonia.121 Alkylamines 

are highly volatile and do not undergo condensation under ambient conditions. The 

reaction pathways for alkylamines include gaseous oxidation reactions by OH, O3, and 

NO3 and heterogeneous reactions, which have been shown in field measurements, 

modeling studies, and laboratory experiments.7,122-127 In particular, due to the 

substitution of one or more hydrogen atoms by an alkyl functional group, alkylamines 

have a stronger basicity than ammonia and engage efficiently in acid-base or 

replacement reactions in the condensed phase.24,61,128,129  
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Quantum chemical calculations have shown that alkylamines bind to organic 

acids with a large binding energy and hydration promotes proton transfer from organic 

acids to alkylamines, consequently increasing the interaction strength.120,130 An 

experimental study showed that new particle formation is enhanced in the presence of 

methanesulfonic acid, amines, and water.131 Smith et al. conducted field measurements 

of aminium salts in Mexico, Finland, and the United States using Thermal Desorption 

Chemical Ionization Mass Spectrometry (TDCIMS) and Ultrafine Hygroscopicity 

Tandem Differential Mobility Analyzer (UHTDMA), showing that aminium salts are 

commonly found in ultrafine particles.132 On the basis of equilibrium partitioning of 

organic acids, bases, and their salts, amines have been suggested to be important 

contributors to organic salt formation, likely explaining field and laboratory observations 

of the coexistence and accumulation of low-molecular weight organic acids and bases in 

nucleation mode particles; by reacting with organic and inorganic acids in newly formed 

particles, alkylamines form organic salts that yield nonvolatile ion pairs.133 Reactions 

between alkylamines and ammonium salts have also been shown to occur efficiently in 

laboratory experiments.23,134-136 Displacement reactions between alkylamines and 

ammonium sulfate or ammonium nitrate have been observed and found to proceed even 

in the presence of an excess amount of gaseous ammonia.23,134,135 The uptake 

coefficients of alkylamines on ammonium nitrate and sulfate have been reported to be on 

the order of ∼10−2 to 10−3, whereas the reaction between alkylamines and ammonium 

bisulfate has been shown to be diffusion-limited.23,134 Previous kinetic measurements 

suggest that under atmospheric conditions alkylamines initially form a layer of 
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alkylaminium salts on the ammonium salt aerosol surface and its thickness increases 

over time.23 The kinetics of the acid−base reactions between methylamine, 

dimethylamine, and trimethylamine on citric acid and humic acid has been investigated 

using a Knudsen cell reactor.137 Citric acid, as a stronger acid, shows a higher reactivity 

for amines than humic acid, and the steric effect of amines due to methyl-substitution 

regulates their reactivity with organic acids. 

Recent measurements of the volatility of alkylaminium carboxylate salts shows 

high thermal stability from the organic acid−amine reactions, with a measured vapor 

pressure of alkylaminium dicarboxylate salts of ∼10−6 Pa.51 The latter experimental 

results also indicate that alkylaminium monocarboxylates act as protic ionic liquids at 

room temperature. Dinar et al. have shown that the reactive uptake of ammonia on 

slightly soluble organic acid particles increases their CCN activity and hygroscopic 

growth.138 Prenni et al. have measured the water uptake of pure dicarboxylic acid 

aerosols113 and internally mixed particles containing ammonium sulfate and a 

dicarboxylic acid.139 Their measurements show that the hygroscopicity of the 

dicarboxylic acid particles increases when the organic acid is mixed with ammonium 

sulfate. For instance, the hygroscopic growth factor (HGF) of pure oxalic acid particles 

is 1.45 at 90% RH, whereas for ammonium sulfate:oxalic acid particles the HGF is 1.70 

at 90% RH. In addition, the results by Prenni et al.113 indicate that pure adipic acid 

particles do not absorb water, but once mixed with ammonium sulfate the HGF increases 

to 1.35 at 90% RH. Cruz and Pandis measured the deliquescence and hygroscopicity of 

glutaric and pinonic acid aerosols mixed with sodium chloride and ammonium sulfate, 
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indicating little effect on deliquescence but enhanced water uptake by the organic 

portion.140 Recently, Suda et al. investigated the influence of functional groups on the 

CCN activity of organic aerosols, showing that the hydroxyl group exerts the largest 

impact on CCN activity among several functional groups.141 

 In this study we measured the HGF and CCN activity for a series of 

atmospherically relevant aminium carboxylate aerosols. We also determined the 

hygroscopicity parameter (κ or Kappa) utilizing three methods: from the measured HGF 

results, from the measured CCN results, and theoretically calculated.142 The dependence 

of the hygroscopic and deliquescent characteristics of alkylaminium carboxylate aerosols 

on molecular functionality, molecular weight, and acidity has been demonstrated, and 

relevant atmospheric implications are discussed.  

 

Experimental 

Reagents  

Aqueous solutions of MMA (40%), DMA (40%), and TMA (45%) were 

purchased from Sigma and used as received. Propanoic acid (PrA, 99%), p-toluic acid 

(pTA, >99%), cis-pinonic acid (cPA, >99%), oxalic acid (OxA, >99%), succinic acid 

(SuA, >99%), malic acid (MaA, >99%), adipic acid (AdA, 99%), and azelaic acid (AzA, 

>99%) were purchased from Sigma and used as received. Aqueous acetic acid (AcA, 

40%) was purchased from Fisher and used as received. Figure 18 in the supplemental 

information shows the molecular structures of all organic acids and alkylamine bases 

utilized in this study.  
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Figure 18. Molecular structures of organic acids and alkylamine bases relevant to the alkylaminium 
carboxylate salts in this study. 
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Table 5 summarizes the solubility and density for the organic acids utilized in this study, 

highlighting the differences in solubility between each acid, where solubility ranges 

from 0.5 g/100 g in water to miscible compounds (i.e., acetic and propanoic acid).     

 

Table 5. Solubility and density of  the weak organic acids utilized for HGF and 
CCN measurements. 

 
 

 
 

 

Aminium Carboxylate Sample Preparation 

Aqueous solutions (1 wt %) of aminium carboxylate salts were prepared in the 

laboratory by dissolving the relevant reagents in 300 mL of 18.2 MΩ Millipore water 

and used immediately. Typically, one molar equivalent of a monocarboxylic acid was 

mixed with one molar equivalent of the amine base and stirred vigorously in water at 

room temperature. For dicarboxylic acids, one molar equivalent of the acid was mixed 

with two molar equivalents of the amine base. The analyte solutions were prepared at 

stoichiometrically neutral conditions, i.e., (1:1) for monocarboxylic acids and (1:2) for 

!

Solubility!!!
(g/100!g!water)!

Crystal!Density!!
(g!cm:3)!

Oxalic' 12! 1.9!
Succinic'' 8.8! 1.552!
Malic'' 126.3! 1.61!
Adipic'' 2.49! 1.362!
Azelaic' 0.5! 1.251!
Acetic'' miscible! 1.05!

Propanoic' miscible! 0.99!
p5Toluic'Acid' Sparingly!soluble!! 1.06!
cis5Pinonic' 0.64:0.71! 0.781!
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dicarboxylic acids. The acid to base ratio was increased to (4:1) for additional 

experiments with an increasing acid content. 

 

Hygroscopic Growth Factor Measurements  

For Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) 

experiments, aerosols were generated with a continuous flow aerosol particle generator 

(TSI 3076) by atomizing the aminium carboxylate solutions. The aerosol flow was 

diluted with dry nitrogen gas at a 4:1 ratio. The generated poly-dispersed aerosols were 

heated to 343 K to reduce humidity in the aerosol flow (without thermal decomposition), 

and then dried using two Nafion tube bundles (PD-070−18T-12SS, Perma Pure). The 

particles were then neutralized using a 210Po radioactive source. Hygroscopic growth 

factors were measured using a HTDMA coupled to a condensation particle counter 

(CPC, TSI 3762). Size-selected aerosols with the dry diameters of 46, 81, 97, 100, and 

151 nm were exposed to increasing RH in the range 10% to 90% with an approximate 

step of 10%. HGF is defined as the ratio of Dp,RH to Dp,0, where Dp,RH is the particle size 

separated by the second DMA2 at an elevated RH and Dp,0 is the particle size separated 

by the first DMA1 at RH ∼10% (the dry condition). The RH was actively controlled to 

within 2% and measured at the inlet and outlet of DMA2. Measurements were repeated 

at least 3 times, and the average value and standard deviation were calculated for each 

particle diameter and RH. 3 
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Cloud Condensation Nuclei Measurements 

CCN activation measurements were made with a continuous flow, streamwise 

thermal gradient DMT-CCN (Droplet Measurement Technology CCN-100) counter 

connected to the outlet of DMA1 of the HTDMA assembly in parallel with the CPC. 

Particles were generated and dried as described above. The voltage applied to DMA1 

was scanned and the concentration of size-classified particles was measured with the 

CPC and CCN counter to determine the CN and CCN spectra, respectively. The sheath-

to-aerosol flow ratios in both the DMA and CCN counter were set to 10:1, and all 

measurements were conducted at 298 K. Nominal supersaturation (S) values in the CCN 

counter were set at 0.19%, 0.37%, and 0.51%, and the corresponding activation curves 

were obtained at each supersaturation. The CCN counter was calibrated using 

ammonium sulfate particles. From the CCN and CN spectra, the CCN/CN ratio curves 

were obtained by taking into account doubly charged particles, if applicable. CCN 

activation efficiency curves were calculated, and the Dp50 (defined as the aerosol 

diameter at which 50% of the particles activated at a given supersaturation) was 

determined and used to calculate the hygroscopicity parameter (κ). 

The κ value was calculated using three methods: from the HGF measurements, 

from the CCN measurements, and from the theoretical calculation. The expressions used 

are summarized below, following Petters and Kreidenweis.142 For the HGF results, the κ 

value is obtained as,   

𝜅 = !
!"
exp !

!
− 1 𝐻𝐺!! − 1                                         (4.1) 
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where D is the wet particle diameter and A  is 2.09 nm for water, which is calculated 

assuming a surface tension (σ) of 72 dyne cm-1 at 298 K using the following expression, 

                                                 𝐴 = !!!!
!"!!

                                                           (4.2) 

where Mw is the molecular weight of water and ρw is the density of water at 298 K. 

The κ value is determined from the CCN results on the basis of the Dp50 

determined from each measurement, 

𝜅 = !!!

!"!!!"
! !"!!!

                                                            (4.3) 

where Sc is the critical supersaturation, which is obtained from the S maintained in the 

CCN counter. 

For comparison with the values derived from the experimental data, the κ value 

is theoretically calculated by taking into account the molecular composition of the 

particles. Using the density and molecular weight (MW) of the components, the 

individual κi value for each is determined, and the κ value of the mixture is obtained 

from the linear combination of the single component values (i.e., the mixing rule),  

𝜅! = !!!!
!!

!"!
!"!

                                                             (4.4) 

𝜅 =   ! 𝜀!   𝜅!                                                           (4.5) 

where MWw is the molecular weight of water, ρd is the dry particle density, ρw is the 

density of water, and MWi, νi, and εi are the molecular weight, van’t Hoff factor, and 

volume fraction of the ith component, respectively. Equation 4 is directly used to 
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calculate the κ value for a single component species. The uncertainty in our measured 

HGF was typically within 10%, which resulted in a systematic error of less than 34% in 

HGF-derived κ using equation (1). Considering the possible errors associated with the 

CCN Sc (10%) and DMA sizing (10%), a systematic error of less than 53% was 

estimated for the CCN-derived κ using equation (3). 

 

Results and Discussion 

Hygroscopic Growth Factor  

The HGF values for the aminium carboxylates of mono- and di-carboxylic acids 

were measured between 10% and 90% RH under stoichiometrically neutral conditions. 

Figures 19 (a)-(f) depicts the HGF results for aminium mono and di-carboxylates. 

For the methylaminium monocarboxylates (i.e., the methylaminium salts of 

acetic acid, propanoic acid, p-toluic acid, and cis-pinonic acid) in Figure 19(a), 

AcA:MMA exhibits the highest HGF of 1.57 at 90% RH, followed by PrA:MMA and 

pTA:MMA that have the HGF values of 1.52 and 1.45, respectively. cPA:MMA has the 

lowest HGF of 1.32 at 90% RH. It is also apparent from Figure 19(a) that the 

methylaminium monocarboxylates do not exhibit a clear deliquescence point, since the 

particles show a gradual growth with increasing RH. Interestingly, pTA:MMA shows an 

initial decrease in particle size as the RH is increased to about 60% (possibly due to a 

variation in the particle morphology) and subsequent growth for RH larger than 60%, 

but cPA:MMA shows a gradual growth at RH higher than 50%.  
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Figure 19. Hygroscopic growth factor (HGF) for alkylaminium carboxylate salts. In the RH range of 10% to 90% and the particle size range of 
46 to 151 nm: (a)-(c) Mono,di tri-methylaminium salts of acetic acid (AcA, blue triangle), propanoic acid (PrP, maroon triangle), p-toluic acid 
(pTA, red triangle), and cis-pinonic acid (cPA, black triangle); (d)-(f) Mono,di,tri-methylaminium salts of oxalic acid (OxA, blue triangle), 
succinic acid (SuA, green triangle), malic acid (MaA, red triangle), adipic acid (AdA, maroon triangle), and azelaic acid (AzA, black triangle).
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As shown in Figure 19(b), the HGF values at 90% RH are 1.58, 1.64, 1.65, and 

1.85 for the dimethylaminium salts of acetic acid, cis-pinonic acid, p-toluic acid, and 

propanoic acid, respectively. As with the methylaminium monocarboxylates, the 

dimethylaminium salts do not show a clear deliquescence point; the particles show a 

steady growth starting at about 30% RH, except for cPA:DMA, which does not grow 

until 50% RH. For the trimethylaminium salts of acetic acid, propanoic acid, p-toluic 

acid, and cis-pinonic acid in Figure 19(c), the HGF at 90% RH is 1.52, 1.52, 1.68, and 

1.69 for PrA:TMA, cPA:TMA, AcA:TMA, and pTA:TMA, respectively. A steady 

growth is observed for pTA:TMA above 30% RH and for AcA:TMA and cPA:TMA 

above 40% RH. PrA:TMA exhibits a slight decrease in diameter at 30% and 40% RH 

(also possibly due to the particle morphology) but exhibits growth at RH above 50%. 

The HGF characteristics for alkylaminium dicarboxylates under 

stoichiometrically neutral conditions for MMA, DMA, and TMA are shown in Figures 

19(d)-(f). For the methylaminium di-acid (i.e., oxalic acid, succinic acid, malic acid, 

adipic and azelaic acid) OxA:2MMA and MaA:2MMA have the highest HGF of 2.18 at 

90% RH, followed by SuA:2MMA with a HGF of 1.83 and AdA:2MMA with a HGF of 

1.50. The lowest HGF of 1.13 is found for AzA:2MMA. It is apparent from Figure 19(d) 

that for the monomethylaminium salts only SuA:2MMA exhibits an apparent 

deliquescence point at 60% RH. For the dimethylaminium salts of oxalic acid, succinic 

acid, malic acid, adipic and azelaic acid in Figure 19(e), deliquescence is evident at 

about 60%, 80%, and 80% RH for OxA:2DMA, AdA:2DMA, and AzA:2DMA, 

respectively. Only MaA:2DMA shows gradual growth without a deliquescence point. 
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For the five dimethylaminium di-acid salts, the HGF at 90% RH is 2.19 for OxA:2DMA, 

2.11 for MaA:2DMA, 1.73 for SuA:2DMA, 1.46 for AdA:2DMA, and 1.24 for 

AzA:2DMA. For the trimethylaminium salts of oxalic acid, succinic acid, and malic acid 

in Figure 19(f), steady growth is observed starting at 30% RH, except for AdA:2TMA 

and AzA:2TMA, which exhibit growth above 50% and 60% RH, respectively. The HGF 

at 90% RH is 1.98 for OxA:2TMA, 1.85 for SuA:2TMA, 1.77 for MaA:2TMA, 1.40 for 

AdA:2TMA, and 1.19 for AzA:2TMA.  

The measurements show decreasing HGF values at 90% RH with increasing MW 

for di-carboxylic acids (i.e., oxalic acid, succinic acid, adipic acid, and azelaic acid) and 

independent of the amine base, except for malic acid. In contrast, such a HGF trend is 

less evident for the aminium mono-carboxylate salts. For aminium mono-carboxylates, 

the HGF at 90% RH increases with decreasing MW for MMA, but not consistently for 

DMA and TMA (e.g., AcA:DMA, cPA:DMA, PrA:TMA, and pTA:TMA). For 

comparison, the water solubility of pure mono- and di-carboxylic acids consistently 

decreases with increasing molar weight, also except for malic acid (Table 5).  

Aminium di-carboxylates show similar HGF at 90% RH for the same acids but 

different amine types, while the HGF value at 90% RH is somewhat different for 

aminium mono-carboxylates of the same organic acids but different amine types. For 

example, the HGF values are higher for the aminium mono-carboxylates with DMA and 

TMA than those with MMA. Several aminium di-carboxylates (SuA:2MMA, 

OxA:2DMA, AdA:2DMA, and AzA:2DMA) exhibit deliquescence, but not for the 

aminium mono-carboxylates. 
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Table 6. Molecular weight (MW), HGF at 90% RH, and κ  values derived using 
three methods i.e., the mixing rule (MR) approximation, HGF results, and CCN 
results for aminium carboxylates. The κ  value from the HGF results is derived at 
90% RH, and the κ  value from the CCN results is averaged at supersaturation 
ranging from 0.19 to 0.51%. 
 

 
Each point represents the average of three experiments, and the uncertainty 
reflects the random error of the measurements (1σ). 
 

 

 

Methylaminium,Salts, MW,, HGF, κ,(MR), κ,(HGF), ,,κ,(CCN),
Acetic,, 91.11, 1.57,±,0.17, 0.53, 0.41,±,0.04, 0.19,±,0.05,

Propanoic, 105.14, 1.52,±,0.11, 0.45, 0.53,±,0.035, 0.08,±,0.02,
pJToluic,, 167.20, 1.45,±,0.12, 0.31, 0.34,±,0.03, 0.09,±,0.004,

cisJPinonic, 215.29, 1.32,±,0.16, 0.28, 0.24,±,0.03, 0.13,±,0.005,
Oxalic, 152.15, 2.18,±,0.05, 0.66, 1.37,±,0.03, 0.46,±,.27,
Succinic,, 180.20, 1.83,±,0.11, 0.55, 0.73,±,0.04, 0.16,±,0.02,
Malic,, 196.21, 2.18,±,0.13, 0.52, 1.26,±,0.08, 0.49,±,.30,
Adipic,, 208.26, 1.50,±,0.15, 0.46, 0.40,±,0.04, 0.14,±,0.01,
Azelaic, 250.34, 1.13,±,0.03, 0.33, 0.06,±,0.002, 0.11,±,0.02,

, , , , , ,Dimethylaminium,Salts, MW, HGF, κ,(MR), κ,(HGF), ,,,κ,(CCN),
Acetic,, 105.13, 1.58,±,0.15, 0.43, 0.59,±,0.05, 0.14,±,0.05,

Propanoic, 119.16, 1.85,±,0.11, 0.38, 0.72,±,0.04, 0.11,±,0.02,
pJToluic,, 181.22, 1.65,±,0.12, 0.28, 0.50,±,0.03, 0.05,±,0.03,

cisJPinonic, 229.31, 1.64,±,0.24, 0.25, 0.52,±,0.07, 0.09,±,0.02,
Oxalic, 180.19, 2.19,±,0.05, 0.49, 1.32,±,0.03, 0.19,±,0.02,
Succinic,, 208.24, 1.73,±,0.12, 0.43, 0.60,±,0.042, 0.14,±,0.02,
Malic,, 224.25, 2.11,±,0.12, 0.41, 1.19,±,0.06, 0.11,±,0.09,
Adipic,, 236.30, 1.46,±,0.11, 0.37, 0.28,±,0.02, 0.18,±,0.02,
Azelaic, 278.38, 1.24,±,0.04, 0.28, 0.12,±,0.004, 0.11,±,0.02,

, , , , , ,Trimethylaminium,
Salts, MW,of,Salt, HGF, κ,(MR), ,,,,κ,(HGF), ,,,κ,(HGF),
Acetic,, 119.16, 1.68,±,0.18, 0.37, 0.70,±,0.075, 0.15,±,0.04,

Propanoic, 133.19, 1.52,±,0.16, 0.33, 0.47,±,0.049, 0.15,±,0.02,
pJToluic,, 195.25, 1.69,±,0.12, 0.25, 0.55,±,0.04, 0.06,±,0.03,

cisJPinonic, 243.34, 1.52,±,0.08, 0.22, 0.36,±,0.018, 0.05,±,0.02,
Oxalic, 208.15, 1.98,±,0.11, 0.40, 0.94,±,0.05, 0.23,±,0.07,
Succinic,, 236.30, 1.85,±,0.22, 0.36, 0.74,±,0.07, 0.17,±,0.01,
Malic,, 252.31, 1.77,±,0.09, 0.35, 0.65,±,0.03, 0.19,±,0.07,
Adipic,, 264.36, 1.40,±,0.08, 0.32, 0.24,±,0.014, 0.19,±,0.03,
Azelaic, 306.44, 1.19,±,0.05, 0.25, 0.10,±,0.004, 0.12,±,0.02,
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Table 6 summarizes our measured HGF for all aminium carboxylate salts. Each 

data point represents the average of the HGF for particles with selected diameters 

between 46 to 151 nm. Typically, there is a slight increase in the measured HGF values 

with increasing particle size, and the difference in the measured HGF is within 10% in 

our selected size range.  

 

Cloud Condensation Nuclei Activity  

Figures 20(a)-(b) depict the activation diameters (Dp50) for alkylaminium salts of 

selected mono- and di-carboxylic acids measured at three different S values of 0.19, 

0.37, and 0.51%. For the alkylaminum salts of acetic acid, the Dp50 values range from 

144 to 61 nm for MMA, 125 to 74 nm for DMA, and 150 to 65 for TMA. For the 

alkylaminium salts of cis-pinonic acid the Dp50 value range is 146 to 73 nm for MMA, 

159 to 78 nm for DMA, and 196 to 113 nm for TMA. For the alkylaminium salts of 

oxalic acid, the Dp50 values range from 79 to 59 nm for MMA, 131 to 63 nm for DMA, 

and 108 to 69 nm for TMA, and for the alkylaminium salts of azelaic acid Dp50 values 

range from 152 to 81 nm for MMA salts, 143 to 79 nm for DMA salts, and 143 to 74 nm 

for TMA salts. For the alkylaminium carboxylates shown in Figure 20, the measured 

Dp50 value increases with decreasing supersaturation and increasing MW of the organic 

acids. 
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Figure 20. Activation diameters (Dp50) of alkylaminium carboxylates. CCN measured at S = 0.19, 
0.37, and 0.51%: (a) for alkylaminium monocarboxylates with acetic and cis-pinonic acids (navy 
blue diamonds AcA:MMA, royal blue triangles for AcA:DMA, green diamonds for AcA:TMA, grey 
triangles for cPA:MMA, red diamonds for cPA:DMA, and black triangles for cPA:TMA); (b) for 
alkylaminium dicarboxylates with oxalic and azelaic acids (navy blue triangles for OxA:MMA, blue 
diamonds for OxA:DMA, light blue for OxA:TMA, black diamonds AzA:MMA, green triangles for 
AzA:DMA, and grey diamonds for AzA:TMA).   
 

 

Hygroscopicity Parameter (κ)  

We have derived the κ values for all alkylaminium carboxylates utilizing three 

methods: i) calculated using the mixing rule approximation, ii) derived from the HGF 

results at 90% RH, and iii) derived from the CCN results obtained at supersaturation 

ranging from 0.19 to 0.51%. Figures 21(a)-(f) depict the derived κ values for aminium 

mono- and di-carboxylates using the three methods. The derived κ using the mixing rule 

for the aminium carboxylates decreases with increasing molecular weight, i.e., the 

calculated κ decreases from MMA to DMA and from DMA to TMA for the same acid. 
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Figure 21. Comparison of the κ  values for derived from HGF and CCN results and the mixing rule. (a)-(c) mono, di, and tri-methylaminium 
monocarboxylates. (d)-(f) mono, di, and tri-methylaminium dicarboxylates. Solid triangles and hollow triangle represent the κ  values obtained 
from HGF and CCN measurements, respectively. The solid circles on the diagonal (1:1) line represent the κ  values derived from the mixing 
rule. In (a)-(c), blue for acetic acid, maroon for propanoic acid, red for p-toluic acid, and black for cis-pinonic acid. In (d)-(f), blue for oxalic 
acid, green for succinic acid, red for malic acid, orange for adipic acid, and black for azelaic acid. The error bars represent the experimental 
random error (1σ).
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For example, the calculated κ for acetic acid is 0.53 for MMA, 0.43 for DMA, 

and 0.37 for TMA. On the other hand, the derived κ using the mixing rule for the 

aminium carboxylates does not vary monotonically between mono- and di-acids for the 

same base because of the difference in the acid/base stoichiometry for the neutral species 

(i.e., the difference in the molecular weight). The calculated κ using the mixing rule is 

highest for OxA:2MMA (0.66) and lowest for cPA:TMA (0.22). The HGF derived κ is 

typically higher than that derived from the mixing rule, except for AcA:MMA, 

cPA:MMA and the two di-acids having the higher molecular weights (adipic and azelaic 

acid). The CCN derived κ is consistently lower than those derived from the HGF results 

and the mixing rule. For example, the κ value for OxA:2MMA derived from the CCN 

measurements is 0.46, which is lower than 1.37 and 0.66 from the HGF and mixing rule 

methods, respectively.  

The dependence of the κ value on the MW for di-acids is similar for both the 

HGF and CCN methods, i.e., decreasing with increasing molecular weight, except for 

malic acid with MMA and DMA. For example, the HGF and CCN derived κ values are 

1.26 and 0.49 for MaA:2MMA (MW = 196.2), respectively, which are higher than 0.73 

and 0.16 for SuA:2MMA (MW = 180.2) and 1.37 and 0.46 for OxA:2MMA (MW = 

152.1), respectively. Similarly, the HGF and CCN derived κ values are 1.19 and 0.11 for 

MaA:2DMA (MW = 224), respectively, which are higher than 0.60 and 0.14 for succinic 

acid:2DMA (MW = 208) and 1.32 and 0.46 for OxA:2DMA (MW = 180), respectively. 

The larger hygroscopicity for malic acid is explainable because of the presence of the 

hydroxyl function, making it more hydrophilic. For comparison, the mixing rule predicts 
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the κ values of 0.52 for MaA:2MMA, 0.55 for SuA:2MMA, and 0.66 for OxA:2MMA, 

respectively, increasing with decreasing MW. The HGF and CCN derived κ values are 

0.65 and 0.19 for MaA:2TMA (MW = 252.3), respectively, compared to 0.74 and 0.17 

for SuA:2TMA (MW = 236.3). Hence, the presence of the OH functional group does not 

appear to appreciably enhance the hygroscopicity for TMA, likely because increasing 

methyl substitution induces hydrophobicity. A previous experimental study has shown 

that the reactivity of amines decreases with increasing numbers of methyl groups on the 

alkylamine.23  

 

Effect of Acidity on Hygroscopicity  

Figure 22 depicts the changes in measured HGF at 90% RH for aminium 

carboxylate aerosols with a varying acidity, i.e., for the pure acid, an acid to base ratio of 

4:1, and the neutral salt. The HGF increases significantly with decreasing acidity, with 

the values of 1.25 for 4cPA:DMA and 1.65 for cPA:DMA. For comparison, Cruz and 

Pandis have reported an HGF of 1.0 for pure cis-pinonic acid at 90% RH.140 Similarly, 

the HGF value also increases from 1.95 for 4OxA:DMA to 2.21 for OxA:2DMA at 90% 

RH. Prenni et al. have reported that pure oxalic acid particles have an approximate HGF 

of 1.45 at 90% RH.113 From our measured HGF values and those from the literature, the 

κ values are 0.11 for pure cPA (ref 142), 0.14 for 4cPA:DMA, and 0.52 for cPA:DMA, 

increasing with decreasing acidity. 
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Figure 22. Measured HGF values at 90% RH as a function of acidity. Blue diamonds for pure OxA 
and its mixtures with DMA under acidic and neutral conditions (i.e., 4OxA:DMA and OxA:2DMA, 
respectively) and black diamonds for pure cPA and its mixture with DMA under acidic and neutral 
conditions (i.e., 4cPA:DMA and cPA:DMA, respectively). The HGF values for pure OxA and cPA 
are taken from refs 113 and 140, respectively. The error bars represent the experimental random 
error (1σ).  
 

Similarly, the κ values are 0.5 for pure OxA (ref 143), 0.92 for 4OxA:DMA, and 

1.32 for OxA:2DMA. In comparison, the mixing rule predicts the κ values of 0.23 for 

4cPA:DMA and 0.25 for cPA:DMA, and 0.69 for 4OxA:DMA and 0.49 for 

OxA:2DMA, showing no apparent trend with particle acidity as shown in figure 23.  
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Figure 23. Mixing rule calculated κ values. Blue diamonds for pure OxA and its mixtures with DMA 
under acidic and neutral conditions (i.e., 4OxA:DMA and OxA:2DMA, respectively) and black 
diamonds for pure cPA and its mixture with DMA under acidic and neutral conditions (i.e., 
4cPA:DMA and cPA:DMA, respectively). The κ values for pure OxA and cPA are obtained from 
Kumar et al.143 and Peters and Kreindenweis,142 respectively.  
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Summary 

Understanding the hygroscopic and deliquescent characteristics of aerosols is 

essential for assessing their atmospheric impacts. For example, hygroscopicity is related 

to the optical (i.e., scattering and absorption) properties of aerosols, which impact not 

only visibility and air quality but also direct radiative forcing.144 The CCN activation 

efficiency of aerosols is relevant to cloud microphysics and precipitation efficiency as 

well as to the indirect radiative forcing in climate projections, which is highly 

uncertain.18-20,98 Hygroscopicity influences the atmospheric lifetime of aerosols, since 

wet deposition represents one of their key removal processes.14 Also, heterogeneous 

reactions leading to secondary aerosol formation may be dependent on hygroscopicity, 

such as those responsible for SOA and sulfate formation.14,63,105 In addition, the presence 

of hygroscopic electrolytes in fine particulate matter may not only influence deposition 

of particles on biological tissues but also their toxicity, regulating the human health 

effects.14 Furthermore, laboratory results of hygroscopicity for various species may 

assist in interpretation and identification of the chemical constituents for aerosols 

measured under ambient comditions.145  

We have investigated the hygroscopic and deliquescent characteristics for a 

series of alkylaminium carboxylate aerosols, which are selected to represent those 

commonly found under diverse environmental conditions.24,110,115 Our results 

demonstrate that alkylaminium carboxylate aerosols exhibit varied hygroscopicity, 

dependent not only on MW but also the functionality of the carboxylic acids (i.e., 

carboxylic or OH functional groups) and the methyl-substitution of the alkylamine bases 
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(i.e., MMA, DMA, or TMA). For example, aminium monocarboxylate salts exhibit a 

smaller range (1.3 – 1.8) in HGF at 90% RH than those for aminium dicarboxylate salts 

(1.1 – 2.2). Dicarboxylate salts, except for the MMA and DMA salts with malic acid, 

exhibit a correlation between HGF and MW, consistent with mixing rule predictions. 

However, such a correlation is less evident for monocarboxylate salts. For MaA:2MMA 

and MaA:2DMA, the measured HGF values are higher than the corresponding values for 

smaller di-carboxylate salts (i.e., SuA:2MMA and SuS:2DMA), indicating that the OH 

functional group attached to the aliphatic chain of malic acid enhances hydrophilicity. 

Our HGF results for MaA:2MMA and MaA:2DMA are consistent with those reported 

by Suda et al., who have also demonstrated that the hydroxyl group produces the largest 

enhancement in CCN activity among the different functional groups.141 However, the 

enhanced hydrophilicity is less evident for MaA:2TMA, likely because of the steric 

effect of amines that induces hydrophobicity with increasing methyl substitutions. In 

addition, our results show that differences in the identity of the alkylamine base 

correspond to a variation in hygroscopicity for monocarboxylate salts containing the 

same organic acid, but not for dicarboxylate salts containing the same organic acid.  

Our results show that the activation diameters of aminium carboxylates range 

from 74 to 219 nm at the S value of 0.19%, suggesting that the aminium carboxylates 

can readily form cloud droplets under atmospherically relevant conditions. On the other 

hand, our results illustrate noticeable differences in the hygroscopicity parameter 

obtained from experimentally measured HGF and CCN results and calculated using the 

mixing rule. The κ value is in the range of 0.06-1.37 derived from the HGF 
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measurements, 0.22-0.66 calculated from the mixing rule, and 0.05 – 0.49 derived from 

the CCN measurements. The κ value obtained from the experimentally measured HGF is 

typically higher than that from the mixing rule (except for azelaic acid and adipic acid 

with MMA, DMA, and TMA, and acetic acid and cis-pinonic acid with MMA), and the 

κ obtained from the mixing rule is consistently higher than that from the CCN results. 

The κ prediction using the mixing rule is mainly dependent on the density, MW, and 

van’t Hoff factor (i.e., eq. 4). Clearly, the observed κ dependence on molecular 

functionality (i.e., for MaA:2MMA and MaA:2DMA) from the HGF and CCN 

measurements is unaccounted for in the mixing rule calculation. The large difference in 

κ values derived between the measured HGF and CCN results is similar to those 

previously measured for multi-component organic oligomers.97 Several explanations 

have been suggested to account for such discrepancies, including the limitations in the 

application of the κ approach using the HGF and CCN measurements.97 For instance, the 

κ approach applies only for ideal solutions, which may not be appropriate for HGF and 

CCN measurements. Also, particles consisting of aminium carboxylates may be fractal, 

and water uptake may lead to additional variation in their morphology. In addition, the 

calculated κ from the mixing rule assumes that the surface tension of the aerosol solution 

is identical to that of water and does not vary with the particle size.  

Our measurements for aminium carboxylate aerosols with a varying acidity (i.e., 

from pure organic acid, a 4:1 ratio of acid to base, to a neutral composition) reveal that 

the HGF and κ value increase significantly with decreasing acidity. In contrast, the κ 

value predicted from the mixing rule does not account for the acid-base reaction and the 
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pH dependence of the hygroscopicity. In addition, our measured HGF values of 1.98-

2.19 for the three oxalic acid salts (i.e., OxA:2MMA, OxA:2DMA, and OxA:2TMA) at 

90% RH are higher than that of 1.70 at 90% RH previously measured for ammonium 

sulfate:OxA particles,139 and both are higher than that of 1.45 for pure oxalic acid 

particles measured by Prenni et al. 113  

Our results reveal that several aminium di-carboxylate salts e.g., SuA:2MA, 

OxA:2DMA, AdA:2DMA, and AzA:2DMA) exhibit an apparent deliquescence point, 

but not for the aminium mono-carboxylates. Hence, it is likely that these di-carboxylate 

salts exist in a crystalline phase under dry ambient conditions, while the aminium mono-

carboxylate salts only exist in an amorphous state. Also, alkylaminium carboxylate 

aerosols in the atmosphere may contain impurities (i.e., internally mixed with other 

aerosol constituents with hygroscopic moieties) that may affect their water uptake and 

CCN activity. Future laboratory and field measurements are needed to evaluate the 

hygroscopicity of ambient aminium carboxylates containing impurities and the effects of 

aminium carboxylates on mixed aerosols.  
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CHAPTER V 

CONVERSION OF SULFUR DIOXIDE TO SULFATE UNDER  

NITROGEN DIOXIDE AND AMMONIA CONDITIONS 

 

Introduction 

 Sulfur dioxide (SO2) is a major pollutant in the atmosphere, generated by 

biogenic and anthropogenic sources.  Biogenic sources include volcanic emissions and 

dimethyl sulfide (DMS) oxidation.146,147 However, the main emitters are anthropogenic 

sources such as fossil fuel burning, industry, transoceanic shipping, and power plants.148 

For example, in the year 2010, the global anthropogenic emissions of sulfur dioxide 

were estimated at 49-55 Tg(S) yr-1 with the energy and industrial sectors representing the 

largest contributors. 149 For biogenic emissions, DMS oxidation accounted for 10-40 

Tg(S) yr-1 and volcanic emissions contributed 4-20 Tg (S) yr-1.60  

 As a major atmospheric pollutant, sulfur dioxide has detrimental impacts on the 

ecosystem and human health. For instance, sulfur dioxide is a major precursor of acid 

rain (acid deposition) thereby affecting water bodies, soil, forests, buildings, and 

monuments.150 In addition, sulfur dioxide represents the main source of atmospheric 

sulfate (SO4
2-) aerosols, which constitute a large fraction of fine particulate matter 

around the globe. As part of atmospheric particulate matter, sulfate aerosols may exert 

direct and indirect effects on climate and the global energy balance and act as cloud 

condensation nuclei.60  
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 In the atmosphere, sulfur dioxide undergoes gas-phase oxidation by OH radicals 

as follows: 

                                          SO2 + OH� + M → HOSO2� + M                                       (5.1) 

                                             HOSO2� + O2 → HO2� + SO3                                          (5.2) 

                                            SO3 + H2O + M → H2SO4 + M                                        (5.3) 

with a reaction rate constant of 8.9×10-13 cm3 molecule-1 s-1 for the oxidation of sulfur 

dioxide by the OH radical.2 Under average global OH radical concentrations of (~ 1×106 

molecules cm-3) sulfur dioxide has an average lifetime of approximately one week, and 

therefore may undergo oxidation to sulfate during long-range transport.151 In addition, 

sulfur dioxide undergoes oxidation into sulfate through heterogeneous reactions in the 

aqueous phase of fog, aerosols, and clouds.14 Such aqueous-phase conversion of sulfur 

dioxide into sulfate is a two-step process. First, sulfur dioxide must dissolve, leading to 

the formation of the following species: hydrated sulfur dioxide (SO2�H2O), the bisulfite 

ion (HSO3
-), and the sulfite ion (SO3

-). The dissolved sulfur dioxide may then exist as 

different chemical species according to the pH of the system. At a pH range of 2-7, the 

dominant specie is HSO3
- whereas for pH < 2, sulfur dioxide exists in its hydrated form: 

SO2�H2O. At pH > 7, SO3
2- becomes the dominant form: 

                                                SO2 (g) + H2O  ⇌ SO2�H2O                                        (5.4) 

                                               SO2�H2O (aq) ⇌ H+ + HSO3
-                                       (5.5) 

                                                H+ + HSO3
-  ⇌ SO3

2- + 2H+                                         (5.6) 
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Second, aqueous-phase reactions involving atmospheric oxidants such as hydrogen 

peroxide, ozone, OH radical, organic perioxides, and nitrogen dioxide may convert 

dissolved sulfur dioxide (S(IV)) into sulfate (S(VI)): 

HSO3
-  + H2O2  ⇌  SO2OOH- + H2O                                   (5.7) 

 
S(IV) +  O3 →  S(VI) +  O2                                            (5.8) 

 
S(IV) + OH  →  S(VI) +  H2O                                         (5.9) 

 
SO2OOH- + H+ → H2SO4                                             (5.10) 

 
HSO3

- + CH3OOH + H+ → SO4
2-  + H+ + CH3OH                         (5.11) 

 
S(IV) + !

!
 O2  S(VI)                                        (5.12) 

 
2NO2 + HSO3

-  3H+ + 2NO2
-  + SO4

2-                             (5.13) 
 

However, the reaction yield for the oxidation of S(IV) by oxygen is insignificant, but can 

be significantly enhanced under the presence of metal catalysts such as Fe (III) and Mn 

(II).14  

 The heterogeneous oxidation of S(IV) into S(VI) by nitrogen dioxide is severely 

limited by the low solubility of nitrogen dioxide (Henry’s Law Constant = 1.0×10-2 M 

atm-1) in water.2 Therefore, under typical cloud conditions, the oxidation of S(IV) by 

nitrogen dioxide may not be a significant source of sulfate in the atmosphere. 

Nevertheless, in environments with elevated concentrations of nitrogen dioxide and 

neutralizing species such as ammonia (NH3), S(IV) may be efficiently oxidized into 

S(VI) due to the increased dissolution of sulfur dioxide in the aqueous phase of clouds, 

fog, or aerosols.152 Furthermore, under the presence of neutralizing species such as 

Fe3+, Mn2+ 

H2O 
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ammonia, the bisulfite ion may undergo complete dissociation into sulfite and then 

subsequent oxidation to sulfate. Behra et al. have studied the effect of ammonia on the 

oxidation of aqueous sulfur dioxide by ozone, determining that the reaction rate 

increases with increasing pH.153 Therefore, in polluted urban environments (Beijing, 

China) with high relative humidity and increased levels of nitrogen dioxide and 

ammonia, the conversion of S(IV) into S(VI) may provide a significant source of sulfate 

in the atmosphere. Once formed in the aqueous phase of fog, clouds, and aerosols, 

sulfate may interact with atmospheric ammonia to form highly hygroscopic ammonium 

sulfate, which upon formation may mix with existing aerosols producing particle growth. 

Thus, the formation of sulfate from the oxidation of S(IV) by nitrogen dioxide may 

increase the formation of haze in highly polluted environments. Guo et al. have recently 

reported a direct correlation between atmospheric levels of sulfur dioxide, nitrogen 

dioxide, ammonia, PM, and elevated relative humidity levels prior to the formation of 

dense haze in Beijing, China.145 Lee and Schwarz have investigated the oxidation of 

S(IV) by nitrogen dioxide, and reported that the reaction rate constant for the conversion 

of HSO3
- to SO4

2- is pH-dependent.154  

 In this chapter, we will discuss results from our chamber experiments aimed at 

exploring the conversion of sulfur dioxide into sulfate (SO4
2-) under the presence of 

nitrogen dioxide and ammonia. Such experiments may help explain the formation of 

haze and growth of PM in highly polluted environments such as Beijing, China.  
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Experimental 

 Our experiments on the heterogeneous conversion of sulfur dioxide to sulfate in 

the aqueous phase of aerosols were conducted utilizing a 1 m3 Plexiglass chamber 

equipped with Teflon film liner. Our chamber was equipped with a water based 

humidifier to control the internal relative humidity. Figure 24 illustrates the general 

arrangement of our instrumental system and its major components. 

 

 

Figure 24. Schematic representation of the 1 m3 Teflon lined Plexiglass chamber connected to 
TDMA, CPC, and TD-ID-CIMS.  
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In these experiments, the chamber was connected to a H-TDMA equipped with a 

CPC counter to measure the concentration and size distribution of the aerosols before 

and after treatment with sulfur dioxide, nitrogen dioxide, and ammonia. Furthermore, the 

chamber was also connected to our TD-ID-CIMS to measure the chemical composition 

of the aerosols before and after addition of the gases, and the concentration of newly 

formed sulfate. Therefore, our experimental setup allows for the simultaneous 

quantification of the particle concentration and measurement of the size distribution 

along with analysis of the chemical composition of the particles. However, for our 

experiments, our set up was operated in two modes: seeding mode and scanning mode. 

 

Seeding Mode 

For operation under seeding mode, size-selected (45 nm) oxalic acid articles 

were used as aerosol seeds in the chamber to provide particulate matter for the 

heterogeneous conversion of sulfur dioxide to sulfate. In seeding mode, the particles 

travelled from the atomizer to the TDMA for size selection, then to the chamber where 

the particles would remain for pre-determined periods of time to allow for the aerosols to 

react with the gaseous species. Thereafter, the aerosols would flow through the 

electrostatic particle collector (EPC) component of our TD-ID-CIMS and finally to the 

CPC. The oxalic acid aerosols were generated utilizing a continuous flow aerosol 

particle generator (TSI 3076) to atomize the aqueous solution of oxalic acid (1 wt%). 

The aerosol flow was diluted with dry nitrogen gas at a 4:1 ratio. After generation of the 

poly-dispersed aerosols and prior to entering the TDMA system for size discrimination, 
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the particles were heated to 343 K to remove excess humidity from the aerosol flow. The 

aerosol flow was then further dried using two Nafion tubes (PD-070−18T-12SS, Perma 

Pure). The particles were then charged by a 210Po radioactive source. For particle 

concentration measurements, a condensation particle counter (CPC, TSI 3762) was 

utilized. The relative humidity of the chamber was controlled using a 5 gallon water 

reservoir equipped with a water heater set at 307 K. Thereafter, a 2 SLPM nitrogen flow 

was passed through the water reservoir to produce humidified nitrogen that was 

subsequently introduced into the chamber. The RH in the chamber was monitored using 

a 24 V (DC) RH probe located downstream of the chamber. Typically, the size selected 

particle number concentration inside the chamber was elevated to 5 × 104 cm-3 particles 

before gases were injected. Sulfur dioxide was obtained from Sigma-Aldrich whereas 

nitrogen dioxide and ammonia were obtained from Matheson. Gas samples of sulfur 

dioxide and nitrogen dioxide were injected into the chamber from pressurized lecture 

bottles utilizing a mass flow controller to monitor the flow of gas into the chamber. The 

concentrations in the lecture bottles were prepared by diluting sulfur dioxide or nitrogen 

dioxide with dry nitrogen to a nominal concentration of 1×103 ppm. Ammonia (2×103 

ppm) was used as received without dilution. Typically, sulfur dioxide or nitrogen 

dioxide were injected into the chamber at a flow rate of 0.1 SLPM for 2 minutes to add 

enough gas to equal 0.25 ppm in the chamber. Ammonia was added at a flow rate of 0.1 

SLPM for 5 minutes to amount to a concentration of 1 ppm in the chamber. The particle 

and gas mixture was allowed to react for at lest 45 minutes before setting the instruments 

to scanning mode to measure the size distribution of the particles after 
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exposure to the gases. For control purposes, we conducted separate experiments adding 

only one of the gases to oxalic acid particles using the concentrations mentioned above. 

We also conducted experiments in dark conditions, by wrapping the chamber in 

aluminum foil to eliminate the possibility of photo-driven oxidation of sulfur dioxide 

into sulfate. In addition, we also conducted experiments where one of the gases was 

reduced to 50% of the nominal concentration to measure the impact of reduced gas 

concentrations on the growth of the oxalic acid seed particles.    

Scanning Mode 

For scanning mode, the flow lines were modified through the use of three-way 

valves to change the direction of the aerosol flow from the chamber to the TDMA. 

Subsequently, the aerosol flow was directed to the EPC component of our TD-ID-CIMS 

and finally to the CPC. Typically, after the “incubation” time of 45 minutes was 

complete, the humidified nitrogen flow was set at 2 SLMP to push the particles in the 

chamber unto the TDMA. The TDMA instrument was set to scan from 12 to 600 nm to 

measure the size distribution of the chemically modified aerosols. Considering that the 

concentration of particles in the chamber is significantly lower than the output given by 

the continuous flow atomizer, for scanning mode analysis the aerosol flow was 

generated by injection of humidified nitrogen at a flow of 2 SLPM into the chamber. 

After incubation, the aerosol particles in the chamber were into the TDMA system for 

size discrimination. Consistent with the seeding mode, the aerosol particles were heated 

to 343 K to remove excess humidity from the aerosol flow. The aerosol flow was then 
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further dried using two Nafion tubes (PD-070−18T-12SS, Perma Pure). The particles 

were then charged by a 210Po radioactive source. For particle concentration 

measurements, a condensation particle counter (CPC, TSI 3762) was utilized.  

 

Particle Collection and Chemical Analysis by TD-ID-CIMS 

 The chemical composition of the aerosols was analyzed using our TD-ID-CIMS 

instrument. Our TD-ID-CIMS is equipped with an EPC capable of collecting aerosols 

from 2 to 200 nm. We have discussed the joint collection of aerosols in our EPC and the 

operation of our TD-ID-CIMS and in full detail in chapter II. For our sulfate production 

experiments, the aerosol flow crossed the EPC at 1.5 SLPM with a dry nitrogen sheath 

flow of 0.3 SLPM. The particle flow passed through the EPC for 45 minutes and 

particles were collected using a collecting voltage of 3300 V (DC) on our platinum 

based collection/desorption filament. After collection, the aerosol sample was introduced 

into the ionization chamber and the filament was heated to 600 K to evaporate the 

sample by applying a 2 V (AC) voltage. Chemical ionization was achieved utilizing a 

CO3/CO4
- ionization scheme to generate negative ions for negative mode mass 

spectrometry. Mass spectrometry experiments were conducted on a triple quadrupole 

(QqQ) Extrel ELQ 400 instrument utilizing Selected Ion Monitoring (SIM) for the ions 

of interest (i.e. sulfate, oxalic acid)  
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Results and Discussion 

For these experiments, we have focused our analysis on the heterogeneous 

conversion of sulfur dioxide into sulfate under the presence of nitrogen dioxide and 

ammonia. Considering that the heterogeneous conversion of sulfur dioxide to sulfate 

may take place in the aqueous phase of fog, clouds, and aerosols, the detection of sulfate 

in oxalic acid particles serves as an indicator for the heterogeneous conversion of sulfur 

dioxide into sulfate in aerosols. This in turn is representative of the formation of sulfate 

in PM in polluted environments with high levels of nitrogen dioxide, ammonia and 

sulfur dioxide.  

   Figure 25. TD-ID-CIMS spectrum of ammonium sulfate standard solution. 
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For the detection of newly formed sulfate, we have utilized our TD-ID-CIMS 

instrument to analyze the chemical composition of oxalic acid particles after exposure to 

the gas mixture. Figure 25 illustrates the mass spectrometry analysis for an ammonium 

sulfate standard solution, which shows three major peaks: first the sulfate ion [SO4]- at 

m/z = 96, second the bisulfate ion [HSO4]
- at m/z = 97, and finally the oxygen adduct of 

[SO3�O2]- at m/z = 122. The ion at m/z =96 is thus our reference ion. 

In our particle collection experiments, we have detected the presence of the 

sulfate ion in oxalic acid particles after the particles have grown inside the chamber. 

Figure 26 shows a representative ionogram for the sulfate ion as measured by our TD-

ID-CIMS instrument in the negative ion mode.  

Figure 26. TD-ID-CIMS ionogram of sulfate in collected nanoparticles. Collection time = 40 
minutes. Selected Ion Monitoring (SIM) for the sulfate ion at m/z 96.  

8.E+04'

1.E+05'

1.E+05'

1.E+05'

2.E+05'

2.E+05'

2.E+05'

800' 900' 1000' 1100' 1200' 1300' 1400' 1500'

Si
gn
al
'In

te
ns
ity

'

Scan'Time'



90 

Figure 27 depicts the TD-ID-CIMS analysis of oxalic acid nanoparticles after 

exposure to the gas mixture at 65 % RH, with a change in diameter from 45 to 75 nm. 

Comparison of the mass spectra reveals an exact match for the observed ions. Our mass 

spectrometry analysis shows that the oxalic acid particles contained sulfate and oxalic 

acid. The mass spectrum shows ions at m/z = 89, 96, 97, 112, and 122 for [Oxalic Acid-

H]-, SO4
-, HSO4

-, [SO3�O2]- and [Oxalic Acid�O2]- respectively. 

Figure 27. TD-ID-CIMS of oxalic acid nanoparticles after exposure to sulfur dioxide, nitrogen 
dioxide, and ammonia at 65 % RH. Particle diameter increased from 45 to 75 nm.  

These results indicate that sulfate forms inside the chamber as a result of the 

heterogeneous oxidation of sulfur dioxide by nitrogen dioxide under the presence of 

ammonia, leading to particle growth. We have monitored particle grow by parametizing 

the particle growth factor (GF) utilizing a TDMA system, coupled to our chamber and 
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TD-ID-CIMS. Therefore, in these preliminary experiments we have also analyzed the 

effects of changes to the concentration levels of sulfur dioxide, ammonia, and nitrogen 

dioxide on the GF of the oxalic acid aerosols. Furthermore, we have also analyzed the 

effect of light on particle growth due to sulfate production. Figure 28 depicts the effect 

of gas concentration on the oxalic acid particle GFs. Our data shows that the 

concentration of the gasses exerts a direct effect on particle growth. For example, when 

sulfur dioxide and nitrogen dioxide were each added at a concentration of 0.25 ppm 

inside the chamber, with ammonia added at a concentration of 1 ppm, the growth factor 

(GF) for 45 nm oxalic acid nanoparticles was approximately 1.56 at 65% RH. However, 

when the concentration of sulfur dioxide was reduced by 50% (i.e. 0.1.3 ppm) and the 

concentrations of nitrogen dioxide and ammonia were kept constant, the growth factor 

for 45 nm oxalic acid nanoparticles decreased to approximately 1.33. Such results 

suggest that the growth of PM due to the conversion of sulfur dioxide to sulfate is 

synergetic in nature, and thus, that as more sulfate is generated by the presence of 

nitrogen dioxide and ammonia in the system, PM diameter increases. 

Furthermore, Figure 28 shows that when oxalic acid nanoparticles are exposed 

only to sulfur dioxide, without the presence of nitrogen dioxide nor ammonia, the GF is 

equal to 1, showing that there is no particle growth. Interestingly, Figure 28 also shows 

that after the concentration of nitrogen dioxide was reduced by 50% while the 

concentration of sulfur dioxide and ammonia were kept constant, the GF was 

approximately 1.56 at 65% RH. 
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Figure 28. Comparison of growth factor for 45 nm oxalic acid nanoparticles after exposure to gases 
at 65% RH. The black bar represents the experiments carried with all gases at original conditions 
(2.6 ppm SO2 and NO2, 10 ppm Ammonia). The green bar represents experiments with the 
concentration of sulfur dioxide reduced by 50%. The light green bar represents experiments with 
only sulfur dioxide added to oxalic acid particles. The blue bar represents experiments with nitrogen 
dioxide reduced by 50%. The light gray bar represents experiments with only nitrogen dioxide 
added to oxalic acid particles. The orange bar represents experiments with ammonia reduced by 
50%. The purple bar represents experiments with only ammonia added to oxalic acid particles. The 
dark grey bar represents experiments with the chamber wrapped in aluminum foil to prevent light 
from entering the chamber.  
  

However, when only nitrogen dioxide was added to the oxalic acid particles, the 

GF was 1. For ammonia, when the concentration of sulfur dioxide and nitrogen dioxide 
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Additionally, when only ammonia was added to the oxalic acid seeds in the 

chamber, the particles did not grow, and therefore the GF was equal to 1. As the particles 

did not grow after exposure to ammonia only, it is clear that the growth of the particles is 

due to the formation of sulfate and not by the acid-base reaction of oxalic acid and 

ammonia. Considering that Prenni et al. have demonstrated that internally mixed 

particles containing ammonium sulfate and oxalic acid are hygroscopic, with HGF of ≈ 

1.2 at 65 and % RH,139 the formation of internally mixed aerosols could lead to bias in 

our results. But such extent of growth could not explain our observed GF as recorded by 

our TDMA at ≈ 1.5 at 65 % RH respectively. However, as the oxalic acid particles did 

not grow after exposure to ammonia only, the potential growth of the oxalic acid 

particles due to the acid-base reaction with ammonia is therefore discarded. In addition, 

we conducted experiments in dark conditions in order to explore the effect of light on the 

synergetic formation of sulfate. Under dark conditions, the GF for the oxalic acid 

particles was approximately 1.54 at 65 % RH. Our data then suggests that the formation 

of sulfate from sulfur dioxide, nitrogen dioxide, and ammonia at 65 % RH proceeds 

unaltered by the presence or absence of light. Therefore, our results indicate that the 

growth of particulate matter requires the combined presence of SO2, NO2, NH3, and high 

RH conditions.  

To provide further confirmation regarding the production of sulfate inside the 

chamber, we have also analyzed the aqueous condensation accumulated inside the 

chamber utilizing our TD-ID-CIMS instrument in the negative ion mode. Figure 29 

depicts the mass spectrum of the analyzed chamber water. 
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Figure 29. TD-ID-CIMS analysis of the aqueous condensation inside the Teflon Chamber. 

  

Our mass spectrometry analysis of the chemical composition of the aqueous 

condensation inside the chamber shows the presence of sulfate and oxalic acid on the 

water sample. Thus, our mass spectrometry data confirms that the gaseous sulfur dioxide 
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chamber. In addition, the TD-ID-CIMS analysis of chamber water matches the mass 

spectra of collected oxalic acid particles after exposure to the gas mixture.  

Our TDMA and TD-ID-CIMS data indicate that the heterogeneous conversion of 

sulfur dioxide to sulfate under the presence of nitrogen dioxide and ammonia is sensitive 

to the concentrations of the gases. Furthermore, such concentration dependence also 

translates to particle growth for pre-existing aerosols (i.e. the oxalic acid seeds).  In turn, 
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such observations suggest a synergetic effect linking the NO2 driven heterogeneous 

generation of sulfate to particulate matter growth for environments with high levels of 

ammonia. Thus, our results provide insight into the formation of haze in polluted 

environments where particulate matter is exposed to high levels of sulfur dioxide, 

nitrogen dioxide, and ammonia under high RH conditions leading to significant particle 

growth as reported by Guo et al.145  

 

Summary 

Seinfeld and Pandis have written that under typical cloud conditions, the NO2 

mediated conversion of S(IV) to S(VI) is limited by the low solubility of nitrogen 

dioxide in water.2 Here, we demonstrate that if the environment contains elevated levels 

of ammonia and high % RH, the production of sulfate is not only enhanced, but it also 

produces significant particle growth for pre-existing aerosols. Such findings may help 

explain the accelerated formation and growth of particulate matter in polluted 

environments such as Beijing, China.  

In Beijing, sulfur dioxide, nitrogen dioxide, ammonia, and organic particulate 

matter consistently exceed healthy atmospheric concentration levels, leading to 

respiratory and cardiovascular diseases, low visibility, and poor air quality. Furthermore, 

it has been reported that in Beijing, haze formation events are accompanied by increased 

levels of SO2, NO2, and NH3 under high relative humidity conditions.145 In this chapter, 

we have provided evidence that sulfate produced by the heterogeneous oxidation of 

gaseous sulfur dioxide by nitrogen dioxide under the presence of ammonia may lead to 
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significant SOA growth. Our results indicate that pre-existing aerosol particles 

significantly grown in size when exposed to sulfur dioxide, nitrogen dioxide, and 

ammonia at high RH (i.e. 65%). Furthermore, our results also show that sulfate is 

present not only on the particles, but also on the accumulated aqueous condensation 

inside the chamber.  

In our laboratory experiments, our representative SOA particles grew faster than 

in Beijing (1 vs. 4 hr),145 but such difference in time-scale maybe explained by the 

higher concentrations utilized in our study with respect to typical atmospheric conditions 

(ppb vs. ppm) in Beijing. Moreover, our experiments were conducted utilizing pure 

oxalic acid particles, whereas in Beijing, SOA may contain a wide array of organic 

compounds; thus, future experiments may address the effect of utilizing multicomponent 

particles (i.e. m-toluic, cis-pinonic, succinic, malic, adipic, etc) as particle seeds on SOA 

growth. However, our utilized concentrations are lower than the maximum permissible 

sulfur dioxide exposure concentrations (5 ppm) allowed by the United States Department 

of Labor Occupational Safety & Health Administration (OSHA) for industrial activity.155 

Therefore, our experiments indicate that the potential impact of the conversion of sulfur 

dioxide to sulfate on SOA and air quality is significant, even below the current 

regulations for human exposure to sulfur dioxide.  

Our experiments also show that the heterogeneous formation of sulfate as 

performed inside the chamber is dependent on the concentration of the gaseous species. 

For example, reducing the concentration of either SO2 or NH3 decrease the GF of the 

particles significantly. On the other hand, decreasing NO2 did not seem to decrease the 
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GF of the seed aerosols, suggesting the SO2 is the limiting reagent in this chemical 

reaction. Our data also supports a synergetic effect for the growth of the particles, as 

individual injection of each gaseous species did not produce particle growth. Thus, we 

can conclude that the production of sulfate from the heterogeneous oxidation of sulfur 

dioxide by nitrogen dioxide under the presence of ammonia and high relative humidity 

leads to rapid growth of particular matter representative of Beijing haze.  
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CHAPTER VI 

CONCLUSIONS 

 

 Atmospheric aerosols represent a monumental challenge in science. Their effects 

on human health and the planetary radiation balance pose global challenges that demand 

scientific answers based on rigorous experimentation. In this dissertation, we have 

discussed experimental results aimed at better understanding the composition, formation, 

growth, and physicochemical properties of SOA. Our novel TD-ID-CIMS provides 

analysis of the chemical composition of aerosols with different diameters, ranging from 

the nucleation to the accumulation mode. For example, our TD-ID-CIMS has proven 

useful in analyzing the chemical composition of sulfuric acid particles after exposure to 

organic epoxide compounds providing evidence for the acid catalyzed formation of 

oligomers responsible for particle growth.  

 The new TD-ID-CIMS has also proven capable to analyze the chemical 

composition of alkylaminium carboxylate aerosols after evaporation, showing that 

alkylaminium carboxylates retain their chemical composition without dissociating into 

the acid and base precursors after thermal desorption. TD-ID-CIMS has also proven 

useful in studying the chemical composition of 2 nm aerosol particles, which are near the 

diameter of the critical nuclei clusters necessary for new particle formation. Our TD-ID-

CIMS has shown that the oxidation of alpha-pinene generates several oxidation 

products, and that such organic compounds are found in 2 nm particles. Such organic 

products may hydrogen bond to form heterodimers, depending on their molecular 
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structure and functional groups. Therefore, with the formation of various organic acids, 

the possible combinations for the formation of heterodimers increase, leading to new 

particle formation. Therefore, TD-ID-CIMS represents a significant development for the 

analysis of SOA formation, growth, and composition.  

 In this dissertation, we have also explored the chemistry of carbonyl compounds 

on acidic surfaces. Carbonyl compounds are ubiquitous in the atmosphere, and represent 

a significant fraction of organic particulate matter in polluted environments such as 

Mexico City. Thus, we have discussed the heterogeneous chemistry of gaseous glyoxal 

on sulfuric acid solutions. Our results indicate that the uptake coefficient and Henry’s 

Law constant are dependent not only on temperature, but also on acid concentration. Our 

results support a hydration driven mechanism where glyoxal may be converted to diols 

and tetrols, which in turn may oligomerize and then lead to SOA formation. Such 

mechanism may then offer insight into the discrepancy between the measured and 

predicted glyoxal levels in Mexico City, where a “missing sink” for glyoxal has been the 

focus of investigation by other laboratories.   

 Atmospheric alkylamines represent a significant fraction of nitrogen containing 

atmospheric particulate matter. However, due to the substitution of one or more 

hydrogen atoms by an alkyl group, alkylamines have higher basicity than ammonia. 

Such high basicity generates highly efficient acid-base reactions between alkylamines 

and weak organic acids found in the atmosphere. In turn, those acid-base reactions may 

lead to formation of various alkylaminium salts, each with unique hygroscopicity and 

cloud condensation nuclei activity. Our measurements have shown that the 
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alkylaminium salts are more hygroscopic than their pure organic acid counterparts; and 

that the hygroscopicity is closely dependent on the molecular weight of the acid 

precursor. Our results indicate that the hygroscopicity of alkylaminium carboxylates 

decreases with molecular weight.  For example, small organic acids such as oxalic or 

succinic acid mixed with an alkylamine generate highly hygroscopic salts with HGF 

values > 2 at 90 % RH. On the other hand, larger molecules such as azelaic acid generate 

salts with low hygroscopicity with HGF close to 1.1 at 90% RH. In our work, we have 

also derived the hygroscopicity parameter (κ, kappa) under three methods: HGf, CCN, 

and the mixing rule approximation. Our calculations indicate that the HGF derived κ is 

higher than the mixing rule approximation κ; whereas the CCN derived κ values are 

lower than the mixing rule approximation κ values. Such discrepancy may be partially 

attributed to the differences in the physicochemical properties of the alkylaminium salts 

such as surface tension, density, and molecular structure. However, such discrepancy 

also reflects the limitations of the current mathematical model to describe 

hygroscopicity, as it does not include molecular structure (i.e. functional groups) in its 

approximations and may therefore underestimate the magnitude of κ for compounds 

containing hydrophilic functional groups.  

 In this dissertation, we have also discussed chamber experiments regarding the 

conversion of sulfur dioxide into sulfate under the presence of nitrogen dioxide and 

ammonia and high relative humidity conditions. Our results suggest that this oxidation 

pathway is dependent on gas concentrations and the presence of ammonia. Therefore, 

this conversion pathway may be a significant source of sulfate in the aqueous-phase of 
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clouds and aerosols where ammonia levels are high. At the same time, the increased 

production of sulfate may promote the growth of PM, as reflected by the size changes of 

45 nm oxalic acid aerosols observed in our chamber experiments under different 

chemical conditions. Therefore, our results suggest that for highly polluted environments 

(i.e. Beijing, China) the elevated levels of sulfur dioxide, nitrogen dioxide, and 

ammonia, combined with elevated relative humidity and existing PM offer the “right” 

conditions for the accelerated conversion of sulfur dioxide into sulfate. In turn, the 

increased conversion of sulfur dioxide into sulfate in the aqueous-phase of clouds and 

aerosols may promote the formation of haze by increasing the size and concentration of 

particulate matter in the atmosphere. 

 Currently, secondary organic aerosols (SOA) represent one of the most complex 

challenges in analytical chemistry and atmospheric science. Such challenging nature is 

not only due to the chemical composition and physicochemical properties of SOA; but 

also due to their impact on the planetary radiation balance, climate interactions, 

pollution, and human health. Thus, the analysis and investigation of the chemical 

properties of SOA requires the synergy of state of the art instrumentation, relevant 

experiments, and the continuous development of new techniques that can provide a 

better understanding regarding SOA and their formation.   

 The present dissertation has discussed experimental work that opens exciting 

future studies in the field of atmospheric chemistry focused on SOA formation, 

composition, and properties. For instance, our TD-ID-CIMS instrument may be utilized 

to analyze the chemical composition of critical nuclei clusters composed of weak 
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organic acids mixed with alkylamines and/or sulfuric acid. Once the chemical 

composition of the critical nuclei cluster is determined, the nucleation parameter may be 

calculated from the properly calibrated gas-phase concentration of the nucleating species 

and the formation of < 2 nm particles measured by a nano-DMA assembly. In addition, 

as a continuation of our chamber experiments, our TD-ID-CIMS may also be coupled to 

a reaction chamber to study the effect of molecular structure on new particle formation 

efficiency for organic acids mixed with sulfuric acid, ammonia, water, and amines. 

Furthermore, the combination of our TD-ID-CIMS and a TDMA assembly may be 

applied to study the interactions of newly formed sulfate aerosols with size selected soot 

particles. Such experiments would serve to complement our chamber work on sulfate 

generation and its interaction with pre-existing atmospheric aerosols. Considering that 

soot is not hygroscopic, the extent of any growth may be attributed only to the gain of 

sulfate by the particle, without the risk of growth bias due to the increased 

hygroscopicity of sulfate aerosols.  

 Future experiments may also extend our measurements utilizing a low-pressure 

laminar fast flow reactor coupled to ID-CIMS to study the heterogeneous chemistry of 

gas-phase glyoxal and ammonium or alkylaminium-carboxylate surfaces. Such studies 

would help to elucidate the extent of reaction between gas-phase dicarbonyls and 

nitrogen containing particulate matter under different conditions of humidity and 

concentration. Finally, laboratory measurements regarding the effect of inorganic 

impurities such as sodium chloride on the cloud forming potential of alkylaminium 

carboxylate aerosols may provide insight into the interactions of sea salt aerosols with 
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highly hygroscopic SOA. Such measurements may in turn provide a better 

understanding of the climate implications of SOA mixed with naturally occurring 

aerosols. In addition, it would be interesting to explore the extent and timescale of 

sulfate driven growth of aerosols composed of other organic acids such as cis-pinonic, 

malic, adipic, azelaic, or toluic acid and mixtures therein. Such studies could provide 

insight on the synergetic mechanism behind Beijing haze formation. 

 In closing remarks, this dissertation provides experimental results regarding the 

development and application of advanced instrumentation to study the molecular 

composition and physicochemical properties of SOA and their formation. Our results 

demonstrate that the chemical composition of SOA can now be measured for particles as 

small as 2 nm. Such capability provides analysis of the chemical composition of critical 

nuclei clusters, essential for new particle formation, as well as other chemical systems 

involved in SOA formation and growth. Our results also demonstrate that the chemical 

composition of SOA directly affects the physicochemical properties of the particle such 

as hygroscopicity and CCN, thereby affecting the direct and indirect effects of aerosols 

on the global radiation balance. In addition, our results discuss two novel reaction 

pathways in the atmosphere that may lead to formation of SOA, one dealing with 

carbonyls and the other dealing with sulfur dioxide. The experiments discussed in this 

dissertation are aimed at providing a better understanding on the formation and 

composition of SOA so that we, as a society may ensure the quality of the air we breathe 

today, and for generations to come. 
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