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ABSTRACT 

Acoustic imaging (including ultrasound and photoacoustic imaging) refers to a 

class of imaging methods that use high-frequency sound (ultrasound) waves to generate 

contrast images for the interrogated media. It provides 3D spatial distribution of 

structural, mechanical, and even compositional properties in different materials. To 

conduct 3D ultrasound imaging, 2D ultrasound transducer arrays followed by multi-

channel high-frequency data acquisition (DAQ) systems are frequently used. However, 

as the quantity and density of the transducer elements and also the DAQ channels 

increase, the acoustic imaging system becomes complex, bulky, expensive, and also 

power consuming. This situation is especially true for 3D imaging systems, where a 2D 

transducer array with hundreds or even thousands of elements could be involved.  

To address this issue, the objective of this research is to achieve new 

micromachined scanning devices to enable fast and versatile 2D ultrasound signal 

acquisition for 3D image reconstruction without involving complex physical transducer 

arrays and DAQ electronics. The new micromachined scanning devices studied in this 

research include 1) a water-immersible scanning mirror microsystem, 2) a 

micromechanical scanning transducer, and 3) a multi-layer linear transducer array. 

Especially, the water-immersible scanning mirror microsystem is capable of scanning 

focused ultrasound beam (from a single-element transducer) in two dimensions for 3D 

high-resolution acoustic microscopy. The micromechanical scanning transducer is 

capable of sending and receiving ultrasound signal from a single-element transducer to a 

2D array of locations for 3D acoustic tomography. The multi-layer linear transducer 
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array allows a unique electronic scanning scheme to simulate the functioning of a much 

larger 2D transducer array for 3D acoustic tomography. The design, fabrication and 

testing of the above three devices have been successfully accomplished and their 

applications in 3D acoustic microscopy and tomography have been demonstrated. 
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NOMENCLATURE 

MEMS Microelectromechanical systems 

ORPAM                      Optical resolution photoacoustic microscopy 

PA Photoacoustic 

PAT Photoacoustic tomography 

PAM Photoacoustic microscopy 

PVDF Polyvinylidene fluoride 

SAM                           Scanning acoustic microscopy  

SAFT                          Synthetic aperture focusing technique 

SNR   Signal to noise ratio 
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1. INTRODUCTION 

1.1  Motivation 

Acoustic imaging (including ultrasound and photoacoustic imaging) refers to a 

class of imaging methods that use high-frequency sound (ultrasound) waves to generate 

contrast images for the interrogated media [1, 2]. It provides the spatial distribution of 

structural, mechanical, and even compositional properties in different materials. 

Therefore, it has become a useful non-destructive diagnostic technique with a wide range 

of applications. Depending on the number of dimensions of the imaged region, acoustic 

imaging can be divided into 2D or 3D. The 2D imaging generates a cross-sectional (B-

Scan) image of the imaging target, while the 3D imaging creates a volumetric (3D) 

visualization, which is easier to interpret than a B-Scan image. Therefore, 3D ultrasound 

imaging is able to provide diagnostic information with higher quality and quantity than 

2D ultrasound imaging [3-11].     

To conduct 3D ultrasound imaging, the time-serial ultrasound signals form a 2D 

arrays of locations on the imaging target has to be properly received for 3D image 

reconstruction. To achieve this, a 2D ultrasound transducer array followed by a multi-

channel high-frequency data acquisition (DAQ) system is often used [12-19]. The 

imaging performance (e.g., resolution, field of view, and data collection speed) is 

determined by the number and density of the transducer elements and the number of the 

DAQ channels [20-23]. However, as the number and density of the transducer elements 

increase, the fabrication and packaging of the transducer array becomes more 

challenging. To interface each transducer element, a large number of high-frequency 
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DAQ channels are required, which makes the ultrasound imaging system complex, bulky, 

expensive and also power consuming. This situation is especially true for 3D imaging 

systems, where a 2D transducer array with hundreds or even thousands of elements 

could be involved. This situation not only sets a practical limit on the maximal number 

of DAQ channels and thus the performance of a 3D imaging system, but also prevents 

the development of low-cost, low-power and ultraportable ones suitable for field 

operations. To address this issue, the objective of this research is to study new 

micromachined scanning devices to enable fast and versatile 2D ultrasound signal 

acquisition, such as 3D acoustic imaging can be achieved without involving complex 

physical transducer arrays and DAQ electronics. The new micromachined scanning 

devices studied in this research include 1) a water-immersible scanning mirror 

microsystem for 3D acoustic microscopy, 2) a micromechanical scanning transducer for 

3D acoustic tomography, and 3) a multi-layer transducer array for 3D acoustic 

tomography. An outline of the details of this research is described as follows. 

1.2  Summary of Work 

As discussed in Chapter 2, a new water-immersible scanning mirror microsystem 

has been designed, fabricated and tested. To achieve reliable underwater operation, 

flexible polymer torsion hinges were used to support the reflective mirror plate.  Energy 

efficient electromagnetic microactuators were constructed to drive the mirror plate 

around a fast axis and a slow axis. The performance of this water-immersible scanning 

mirror microsystem in both air and water were tested using the laser tracing method. The 

feasibility of using such a water-immersible scanning mirror microsystem for scanning 
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ultrasound microscopic imaging has successfully been demonstrated. The water-

immersible scanning mirror microsystem has been used to build a high-speed and high-

resolution photoacoustic microscopic imaging system. Its application in the in-vivo 

functional imaging of biological tissues is also described. 

As discussed in Chapter, a new two-axis micromechanical scanning transducer 

has been designed, fabricated and tested. It consists of a miniaturized single-element 

ultrasound transducer driven by a compact 2-axis liquid-immersible electromagnetic 

microactuator. It is capable of sending and receiving ultrasound signals over a 2D array 

of locations, whose density and arrangement are controlled by software programming. 

Therefore, it can be used to simulate any virtual 2D transducer array with any density 

and arrangement of its elements.  Using the scanning transducer, 3D ultrasound 

tomography was successfully demonstrated with only one channel of data acquisition 

(DAQ) electronics. The lateral resolution of the 3D ultrasound image was further 

improved with the synthetic aperture focusing technique (SAFT).  

As discussed in Chapter 4, a new multi-layer transducer array has been designed, 

fabricated and tested. It consists of two 1D linear arrays of line transducers positioned 

orthogonally to each other. They were used to provide electronic scanning to generate 

two orthogonal 2D B-Scan images (x/z and y/z), respectively. A 3D ultrasound 

tomographic image was successfully reconstructed from the two 2D B-Scan images. 

Therefore, the multi-layer transducer array technique makes it possible to use 2 × N 

transducer elements and DAQ channels to simulate 3D imaging with N × N transducer 

elements and DAQ channels. 
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2. WATER-IMMERSIBLE SCANNING MIRROR MICROSYSTEM FOR ACOUSTIC 

MICROSCOPY* 

2.1  Introduction  

Scanning mirrors have been used in a number of highresolution optical imaging 

modalities, including optical coherence tomography [24, 25], confocal microscopy [26] 

and multi-photon microscopy [27]. Compared with conventional scanning mirrors [28], 

MEMS (microelectromechanical systems) scanning mirrors have a smaller form factor 

and is able to provide higher scanning speeds. They are especially suitable for 

developing compact imaging probes for handheld, endoscopic and even intravascular 

applications. Currently, MEMS scanning mirrors are mainly designed for freespace 

optical beam steering in air, where the mirror supporting structure is made of brittle 

silicon-based material and the mirror is driven by delicate microactuators [28]. However, 

these designs are not suitable for underwater scanning operations in ultrasound [29] and 

photoacoustic imaging [30-33], where water is usually the matching medium for 

acoustic propagation (Fig. 2.1). For example, when immersed in water, the silicon 

supporting structures are susceptible to permanent damage from a small turbulence, 

*@ 2013 Springer. Reprinted with permission from Chih-Hsien Huang, Junjie Yao, Lihong Wang, and 

Jun Zou, "A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic 

microscopic imaging applications,"  Microsyst Technol (2013) 19: 577–582. doi: 10.1007/s00542-012-

1660-4  

*@ 2012 SPIE. Reprinted, with permission, from Chih-Hsien Huang, Lidai Wang, Joon-Mo Yang, Liang 

Gao, Konstantin I. Maslov, Jun Zou, and Lihong V. Wang “Wide-field fast-scanning photoacoustic 

microscopy based on a water-immersible MEMS scanning mirror,” Journal of Biomedical Optics, Aug. 

2012, Vol. 17(8), pp. 1-3. 
 

http://dx.doi.org/10.1088/0960-1317/23/2/025006
http://dx.doi.org/10.1088/0960-1317/23/2/025006
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shock or unbalanced surface tension force, which otherwise are often encountered in a 

liquid environment. Second, significant degradation in the scanning performance (e.g., 

maximal scanning angle and frequency) or complete device failure could possibly occur 

due to electrical shorting, excessive cooling and fluidic damping. To address this issue, 

we report the development of a new waterimmersible scanning mirror microsystem, 

which is able to operate reliably in both air and water. By utilizing highstrength 

polymer supporting materials and efficient electromagnetic microactuators, fast scanning 

of both optical and high-frequency ultrasonic beams in water has been successfully 

achieved. This new capability could enable the development of compact ultrasonic and 

photoacoustic microscopic imaging systems with fast imaging speed and large field of 

view. 
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Figure 2.1 Illustration of the underwater operation of micro scanning mirrors in (a) 

pulse-echo ultrasound and (b) photoacoustic microscopic imaging 

2.2  Design and Fabrication 

2.2.1   Design 

Fig. 2.2(a) shows the schematic design of the water-immersible scanning mirror, 

which consists of a fast-axis module and a slow-axis module. The reflective mirror plate 

is housed in the fast-axis module and supported by two micro torsion hinges made of 

high-strength BOPET (biaxiallyoriented polyethylene terephthalate) film. The low 

stiffness and high fracture strain of the polymer hinges help to reduce the required 

driving force and minimize the chance of shock damage [28]. Electromagnetic actuation 

was chosen as the driving mechanism to enable reliable underwater scanning. Compared 
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with other microactuation mechanisms, such as electrostatic, piezoelectric and thermal 

methods, electromagnetic actuation does not need high voltage or electro-heating, and 

therefore is more suitable in a liquid environment. Compact electromagnetic actuation 

was achieved by combining a single inductor coil with two micro rare-earth magnet 

discs attached to the two ends of the mirror plate with opposite polarities. When an AC 

or DC current flows through the inductor coil, the resultant magnetic field creates a 

torque on the magnets and thus rotates the mirror plate around the torsional supporting 

hinges. To achieve the second (slow) axis scanning, the fast-axis module is attached to 

the slow-axis module with the support of two BOPET torsional hinges (Fig. 2.2(b)). 

Four inductor coils and four micro rare-earth magnet discs were arranged into two 

groups with opposite polarities to provide the torsional driving force for the slow-axis 

scanning. Due to its larger mass, the resonant frequency of the slow-axis module will be 

lower than the fast-axis module. One advantage of the above modular design is that 

scanning motion in the two axes is largely decoupled, which helps to improve the 

scanning accuracy, linearity and repeatability. 
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Figure 2.2 Schematics of the water-immersible scanning mirror design: (a) side 

view; (b) top view of fast-axis module; and (c) top view of slow-axis module. PM, 

permanent magnets; PF, polymer frame; AF, actuation force; AH, acrylic holder. 

In ultrasound and photoacoustic imaging, the optical and ultrasound signals are 

in the form of short pulses with a typical repetition rate of kHz. To maintain a dense 

pixel formation, the scanning frequency of the scanning mirror should be 10s to 100s of 

Hz. A maximal scanning angle larger than 10 is desirable to provide a good field of 
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view. To ensure a good numerical aperture, the size of the mirror plate should be as large 

as possible. In addition, the driving voltage needed to be minimized to reduce the risk of 

electrical shorting and shock especially in water. Tables 2.1 and 2.2 list the main design 

parameters of the fast-axis and slow-axis module. Based on these design parameters, a 

preliminary mechanical analysis was conducted to provide a first-order estimation of 

their scanning performances (scanning angle, resonant frequency and driving voltage). 

The magnetic force (𝐹) generated between the permanent magnet discs and the inductor 

coil can be determined by 

 𝐹 = V × Ms ×
∂H

∂z
                 (2.1) 

where 𝑉 is the volume of permanent magnetic disc, 𝑀𝑠 is the magnetization of 

the magnet disc. 𝐻 is the magnetic field intensity generated by inductor. The torque 

𝑇𝑚𝑎𝑔 generated by the magnetic force and the resulting rotation angle () can be 

determined by 

 𝑇𝑚𝑎𝑔 = F × L′        (2.2) 

 ɸ =
𝑇𝐿

𝐽𝐺
         (2.3) 

where 𝐿, 𝐽 and 𝐺 are the length, torsional moment of inertia and shear modulus 

of elasticity of the BOPET hinges, respectively and 𝐿′ is the work distance between the 

magnetic force (𝐹) and the BOPET hinges. For the BOPET hinge with a rectangular 

cross-section, the torsion moment of inertia (𝐽) can be determined by  

 J = w𝑡3 [
16

3
− 3.36

𝑡

𝑤
(1 −

𝑡4

12𝑤4)]      (2.4) 
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where 𝑤 is the width and 𝑡 is the thickness of the BOPET hinge. The resonant 

frequency in air (𝑓𝑟_𝑎𝑖𝑟) of the fast-axis and the slow-axis modules can be estimated by  

 𝑓𝑟_𝑎𝑖𝑟 =
1

2𝜋
√

𝐾∗

𝑚
       (2.5) 

 where 𝐾∗ is the torsional force constant of the BOPET hinge and 𝑚 is the 

overall effective mass of the fast-axis and the slow-axis modules, respectively. Due to 

the small movement of the mirror plate during scanning and the relatively large mass of 

the two modules, the damping from the air is allowed to be neglected. When the 

scanning mirror is immersed in water, the resonant frequency (𝑓𝑟_𝑤𝑎𝑡𝑒𝑟) is estimated by 

 𝑓𝑟_𝑤𝑎𝑡𝑒𝑟 = 𝑓𝑟_𝑎𝑖𝑟
√1 +

3𝜋𝜌𝑏

2𝜌𝑚𝑡′

−1

Γ𝑡(𝜅)     (2.6) 

where 𝜌 is the density of water, 𝜌𝑚 and 𝑏 are the effective density and width of 

the scanning mass, Γ𝑡(𝜅) is hydrodynamic functions, and 𝜅  is normalized mode 

numbers [34]. From Eqs. (1) to (9), the estimated scanning angles and resonant 

frequencies of the fast-axis and slow-axis modules are listed in Table 2.3. 

Table 2.1 Design parameters of the fast-axis module. 

Inductor Neodymium Magnets 

Inductance 33mH Thickness 0.8 mm 

 Diameter 3.125 mm  

Mirror Plate Supporting Hinge 

Length 9 mm Length 1 mm 

Width 9 mm Width 0.9 mm 

Thickness 500 µm Thickness 75 µm 
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Table 2.2 Design parameters of slow-axis module. 

Inductor Neodymium Magnets 

Inductance 33 mH Thickness 1.6 mm 

 Diameter 3.125 mm  

Mirror Plate Supporting Hinge 

Length 9 mm Length 1 mm 

Width 9 mm Width 1.4 mm 

Thickness 500 µm Thickness 75 µm 

 

Table 2.3 Estimated driving angles and resonance frequencies. 

                     Fast axis                     Slow axis 

ɸ (DC 16V)  12.8 ɸ(DC 10V) 7.88 

Fr_air 214.38 Hz Fr_air 63.92 Hz 

Fr_water 160.06 Hz Fr_water 45.24 Hz 
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2.2.2   Fabrication 

The fabrication of the water-immersible scanning mirror was conducted as 

follows. First, the reflective mirror plate (9 × 9 mm
2
) was diced from a polished single-

crystalline silicon substrate. The polished silicon substrate provides excellent surface 

smoothness and flatness, and also good acoustic reflectivity due to the large acoustic 

impedance mismatch between silicon (19.6×10
6 

N·s/m
3
) and water (1.47×10

6 
N·s/m

3
). A 

thin layer of gold coating (~70 nm thick) was deposited onto the silicon mirror surface 

using e-beam evaporation to enhance its optical reflectivity. Second, the BOPET 

torsional hinges and acrylic holders of both fast-axis and slow-axis modules were made 

by a laser cutting machine. During the assembly, the silicon mirror plate, the BOPET 

torsional hinges, the permanent magnet discs (D21B-N52, K&J Magnetics), the inductor 

coil (70F331AF-RC, BOURNS) and the acrylic holder were assembled and bonded 

together with silicone rubber adhesive (RTV 108, Momentive Performance Materials) to 

form the fast-axis module. The same procedure was repeated to make the slow-axis 

module. Finally, the fast-axis module was bonded onto the acrylic holder of the slow-

axis module (see Fig. 2.2). After insulating the coils and electrical connections, the entire 

2-D scanning mirror module can be immersed in water to ensure a reliable underwater 

scanning operation (Fig. 2.3). 
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Figure 2.3 A fully assembled prototype of the water-immersible scanning mirror. 

2.3  Characterization 

The scanning angle ɸ and resonance frequency fr of the scanning mirror were 

measured in air and water by using the laser tracing method (Fig. 2.4). During the 

measurement, the scanning mirror was mounted on the bottom of a water tank. A ruler 

was placed 6.5 cm away from the center of the mirror plate at an angle of 45. The laser 

beam from a laser pointer was projected onto the mirror plate with an incident angle of 

45 and reflected onto the ruler. The scanning angle was calculated based on the trace of 

the laser beam on the ruler. To determine the resonance frequency, an AC driving 

voltage with varied frequency was applied. The resonance frequency is defined as the 

frequency of the AC driving voltage when the scanning angle reaches its maximum. Fig. 

2.5 shows the scanning angles of the fast axis under DC and AC driving conditions. As 

shown in Fig. 2.5(a), under DC driving condition, the scanning angle increased with the 

driving voltage in both directions (clockwise (CW) and counterclockwise (CCW)). The 
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scanning angle reached 12 with a 16 V driving voltage, which matches well with the 

estimated value. The scanning angles of the fast axis were similar in air and water. This 

is because the mirror plate was driven in a quasi-static mode and the dynamic damping 

from water can be negligible. As shown in Fig. 2.5(b), with AC driving at the resonance 

frequency, the scanning angle increased with the peak driving voltage in both air and 

water. However, due to the dynamic damping in water, the resonance frequency drops 

from 224 Hz in air to 164 Hz in water, which is similar to the estimation results and 

higher driving voltage is needed to maintain the same scanning angle. For example, at a 

scanning angle of 10º, the required peak driving voltage increased from 7.5 V in air to 10 

V in water. The scanning performance of the slow axis of the scanning mirror was also 

characterized. As shown in Fig. 2.6(a), under DC driving condition, the scanning angle 

reached 6.5 with a 10 V driving voltage in both air and water. The resonant frequency 

dropped from 55 Hz in air to 38 Hz in water. With an AC driving voltage of 10 volt (at 

55 Hz in air and 38 Hz in water), the scanning angle dropped from 8.5 in air to 6 in 

water as shown in Fig. 2.6(b). The estimated rotation angle and resonance frequencies of 

slow axis are not accurate as fast axis since the structure of the slow axis is much more 

complex, which is well described by a lumped-element model. In addition, as a 

reliability test, the fast axis of the scanning mirror was driven in water with a peak 

driving voltage of 10 V and a frequency of 164 Hz for over ten million cycles. No 

noticeable degradation in the scanning performance was observed. 
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Figure 2.4 Illustration of laser tracing method. 
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Figure 2.5 Scanning angles of the fast axis of the water-immersible scanning mirror: 

(a) With a DC driving voltage; and (b) With an AC at the resonance frequency in 

air (224 Hz) and water (164 Hz).  CW, clockwise; CCW, counter clockwise. 
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Figure 2.6 Scanning angles of the slow axis of the water-immersible scanning 

mirror: (a) With a DC driving voltage; and (b) With an AC at the resonance 

frequency in air (55 Hz) and water (38Hz).  CW, clockwise; CCW, counter 

clockwise. 

2.4  Ultrasound Microscopy Experiment 

Using the water-immersible scanning mirror to steer focused ultrasound beam in 

water, pulse-echo ultrasound microscopic imaging of an optical-fiber target were 

successfully demonstrated. As shown in Fig. 2.7(a), the imaging setup includes a water 

tank, a high-frequency (25 MHz) focused transducer with a focal length of 19 mm 
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(V324N-SU, Olympus), the water-immersible scanning mirror, and three optical fibers 

as the imaging target. The scanning mirror is placed 9 mm away from the transducer at 

an angle of 45. The three optical fibers are placed 10 mm away from the center of the 

mirror plate, such that they are located in the focal zone of the ultrasound transducer. 

The diameter of the optical fibers is 140 µm and the pitches between two adjacent fibers 

are 0.64 mm and 0.7 mm, respectively. The ultrasound transducer is connected to a 

pulser/receiver system (5072PR, Olympus) and an oscilloscope (TDX 2014B, Tektronix). 

The pulses repetition rate and pulse width were set to be 200 Hz and 1 µs, respectively. 

A DAQ card ((PCI 6251, National Instruments) and a custom-built operational amplifier 

array were used to provide DC voltages to drive the two axes of the scanning mirror. The 

DC driving voltage of the fast axis was from -10V to 10V with a 0.4V increment and 

that of the slow axis was from 0 to 8V with a 0.4V increment. This forms 1000 scanning 

steps, corresponding to a scanning area of 0.8 mm × 2.6 mm with 20 × 50 pixels. At 

each “pixel”, the peaktopeak voltage of the received ultrasound signals were 

measured and averaged 128 times. To automate the scanning and data acquisition 

process, a Labivew (National Instrumets) program was developed to control the DAQ 

card and the oscilloscope. Fig. 2.7(b) shows the normalized averaged peaktopeak 

voltages as a function of the lateral and vertical scanning location. The distances 

between the three peaks of the backscattered ultrasound signals were 0.676 mm and 

0.728 mm, respectively, which agreed well with the actual distances between the optical 

fibers. 
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Figure 2.7 (a) Schematic setup of the pulse/echo ultrasound microscopic imaging 

setup; and (b) Averaged peak-to-peak voltage of the backscattered ultrasound 

signal as a function of lateral and vertical scanning location. 
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2.5    Applications in Photoacoutsic Microscopy 

A water-immersible microelectromechanical systems (MEMS) scanning mirror 

was used to build a wide-field fast-scanning OR-PAM (MEMS-OR-PAM) by 

collaborators in Washington University of Saint Louis to achieve cross-sectional (B-scan) 

image with 400 Hz imaging rate over a 3 mm range. In this system the laser beam and 

reflected ultrasound signal were both scanned as Fig. 2.8 shows. The light source is 

Nd∶YVO4 laser (AOT-YVO-100Q, AOT Inc.,), the pulse duration is 2 ns and the 

wavelength is 532 nm with a repetition rate of 100 kHz. The laser beam was focused by 

a condenser lens (LA1131, Thorlabs) and filtered by a 50 μm diameter pinhole (P50C, 

Thorlabs). The filtered beam was focused by an optical objective lens (AC127-050-A, 

Thorlabs. NA: 0.1 in air). A beam combiner composed of an aluminum-coated prism 

(NT32-331, Edmund) and an uncoated prism (NT32- 330, Edmund) provides acoustic-

optical coaxial alignment. The focused laser beam is directed toward the sample surface 

by the aluminum coated MEMS scanning mirror plate. Besides, the resultant 

photoacoustic waves were reflected by the MEMS scanning mirror and detected by an 

ultrasonic transducer (V214-BB-RM, Olympus-NDT) with central frequency of 50 MHz 

and a −6 dB bandwidth of 100%. The whole imaging head is submerged in a water tank 

for ultrasound coupling. Volumetric imaging is provided by fast angular scanning of the 

MEMS scanning mirror along the x-axis and linear translation scanning of the step 

motor along the y-axis. The dimension of silicon MEMS mirror plate in this application 

was 9 ×9 mm
2
 with 500 um thickness with an 80-nm-thick gold coating which provides 
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a good reflection of both the optical and acoustic beams and the supporting hinges was 1 

× 0.9 mm
2
 . 

 

Figure 2.8 Schematic of MEMS-OR-PAM. CL, condenser lens; AC, aluminum 

coating; AL, acoustic lens; UT, ultrasonic transducer. 

Imaging experiments were conducted by collaborators from Washington 

University of Saint Louis. First, Red blood cell (RBC) flow in a nude mouse ear was 

imaged in vivo by MEMS-OR-PAM to demonstrate its high-speed imaging capability. 

(Fig. 2.9) In addition to the RBC flow imaging, intravascular transport was also explored 

by using contrast agent (Fig. 2.9).  
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Figure 2.9 MEMS-OR-PAM of blood flow dynamics of the vasculature in a mouse 

ear. Capillaries were clearly resolved, and the flow dynamics over a 2 × 5 mm
2
 area 

were imaged with a 0.8 Hz volumetric frame rate and 400 Hz B-scan rate.  

 

Figure 2.10 MEMS-OR-PAM of flow dynamics of carbon particles. (a) MEMS OR-

PAM image of a mouse ear with a pulse energy of 100 nJ, where the blood vessels 

were imaged. (b) After the injection of carbon particles via the tail vein, a smaller 

region indicated by the dashed box in (a) was monitored with a 4 Hz volumetric 

frame rate. The pulse energy was reduced to 10 nJ to image only the particles. The 

dashed lines are the boundaries of the vessel containing the flowing particles. A 

representative particle is indicated by the arrows.  
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3. MICROMECHANICAL SCANNING TRANSDUCER FOR ACOUSTIC 

TOMOGRAPHY 

3.1 Introduction 

Ultrasound imaging (2D or 3D) has become a useful non-destructive diagnostic 

technique with a wide range of applications [35, 36]. To conduct 3D ultrasound imaging, 

the time-variant ultrasound field at a 2D array of locations has to be properly recorded 

for image reconstruction [2, 3, 8, 37]. Currently, there are three different methods to 

achieve 3D ultrasound imaging.  First, a 2D ultrasound transducer array can be used to 

detect the incoming ultrasound signals in one or multiple transmission-receiving (T/R) 

cycles [14, 16, 38]. However, to obtain good imaging resolution and field-of-view, a 

large number (100s~1000s) of transducer elements and T/R channels are required. As a 

result, the entire imaging system could become complex, bulky, power-consuming, and 

expensive [39]. To address this issue, a 1D transducer array could be used to conduct 

“electronic” 2D B-Scan, while the scan in the azimuth dimension is conducted 

mechanically by using a one-axis motor stage or just by hand with the assistance of a 

position tracking device [5, 6, 9]. However, this method still requires an ultrasonic 

transducer array and multiple T/R channels. The need of a position tracking device 

complicates the imaging system design and operation [7, 10]. In addition, the data 

acquisition speed is also limited by the slow mechanical scanning and complex position 

tracking. Alternatively, the ultrasound signals can also be received by mechanically 

scanning a single-element transducer over the imaging target by using a two-axis motor 

stage. However, the use of 2-axis motor stages makes the entire imaging system complex 
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and bulky. Second, the slow mechanical scanning frequency limits the date acquisition 

speed. As a result, this technique is mainly limited for lab use and is not suitable for 

handheld operations [7, 10, 40, 41]. 

In this paper, we report a new 2-axis micromechanical scanning transducer technique to 

enable fast and versatile 3D ultrasound imaging. The 2-axis micromechanical scanning 

transducer consists of a miniaturized single-element transducer mounted a unique 2-axis 

water-immersible electromagnetic micro actuator. When AC driving currents are applied, 

the single-element transducer can be scanned along concentric paths with different radii 

at a frequency of 10s~100s Hz. By synchronizing the scanning frequency with the 

ultrasound pulse-echo repetition rate, the ultrasound signals from a 2D array of locations 

can be received sequentially with only one T/R channel for 3D image reconstruction. 

The two-axis micromechanical scanning transducer can be further miniaturized to be 

fitted into a liquid-filled compact probe for handheld operations. Therefore, it could 

provide a new approach for compact, fast and low-cost 3D ultrasound imaging systems. 

3.2    Device Concept and Feasibility Study 

3.2.1   Device Concept 

Due to the complexity and high cost of using electronics to scan and receive 

ultrasound signals of 1D/2D transducer array, some researchers are working on using 

mechanical scanning strategies to scan single element transducer instead of electronic 

scanning devices and multi-elements transducer array. Fig. 3.1 indicates the possible 

scanning patterns of 2-axis single element ultrasound transducer mechanically scanning 
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systems.  For systems without limitation of imaging speed, point by point scanning 

pattern are often used. For high speed imaging systems, most of them are using zigzag 

pattern with a fast axis and a slow axis. For 3D ultrasound imaging purpose, it is a 

common method to reconstruct a 3D image to stack several B-Scan images along x or y 

directions from results of zigzag 2D scan. However, a zigzag scanning system would 

require at least two hinges with different resonance frequencies. It is good for table top 

scanning systems, but would be too bulky and complex to build a handheld scanning 

transducer system with multi hinges. The most cost effective way would be have only 

one hinge and using coaxial cable of ultrasound transducer as main portion of the hinge. 

Since there is only one hinge, scanning the single element transducer along a circular or 

spiral pattern would be the best approach to achieve 2D scanning pattern as Fig. 3.1 

shows. In order to evaluate the feasibility to reconstruct 3D imaging with circular pattern, 

a single element transducer scanning system was built with two linear translation stages 

(M-403.2DG, Physik Instrumente). Two silicon pieces and two pencil leads are used to 

build two imaging samples. Both samples are going to image by photoacoustic and 

ultrasound methodologies. This photoacoustic and ultrasound co-register 3D imaging 

experiment could also proof the potential of building a handheld imaging system with 

both 3D ultrasound and photoacoustic imaging abilities.  
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Figure 3.1 Comparison of different patterns for single element ultrasound 

transducer scanning system  

3.2.2   Feasibility Study 

Fig. 3.2 shows the setup of co-register imaging experiment, a Q-switched 

Nd:YAG laser system was used to deliver laser pulses with a wavelength of 532 nm and 

a duration of 8 ns. The laser pulse was focused by an optical lens before introduce into a 

220 um diameter optical fiber. The end of optical fiber was attached on a single element 

ultrasound transducer (XMS-310-B, Olympus) with center frequency of 10 MHz, 6-dB 

bandwidth of 80%, and diameter of 2 mm. The transducer was immersed into a water 

tank with imaging samples, and the distance between transducer and imaging targets 



 

27 

 

area is 5 mm. Two linear translation stages were used to carry the water tank and move 

along sector lines of circular paths. Fig. 3.3 indicates the scanning path of stacked 

translation stages with a paper stick on top of it and contact with a fixed pencil. Two 

imaging samples were consisted by two silicon pieces with 6 mm diameter and two 

pencil leads with 0.6 mm diameter respectively. Fig. 3.4 shows the construction of 

imaging samples, schematic of imaging experiments, and how to calculate the 2D 

scanning points. The step size represents the recording interval of DAQ card (AT9350-

128M, Alazar Technologies), and the angle interval represents the angular difference 

between two linear scanning path. In photoacoustic imaging experiment, the laser pulse 

conducted to optical fiber and deliver to samples. The acoustic signals will be generated 

when laser pulse illuminated silicon pieces or pencil leads. In ultrasound imaging 

experiments, the ultrasound pulses were generate by pulser/receiver (5072PR, Olympus) 

through 10MHz transducer and the laser pulse didn’t introduce into optical fiber. Both 

ultrasound and photoacoustic imaging experiments are using pulse laser as trigger 

signals to active the moving of linear translation stages and receiving acoustic signals 

through 10MHz transducer and pulser/receiver.  
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Figure 3.2 Schematic of co-register imaging experiment. 

 

Figure 3.3 Scanning paths of linear translation stages. 



 

29 

 

 

Figure 3.4 Layouts of imaging samples, experiments, and pixels of 2D pattern. 

Fig. 3.5 shows the A-Scan results of photoacoustic imaging and pulse/echo 

imaging at the same positions where a silicon disc is under the single element transducer. 

The amplification (50dB) of both results is the same; it shows the signal strength of 

pulse/echo imaging was much stronger than photoacoustic imaging since the laser pulse 

was attenuated during introducing and transmission with an optical fiber. The results of 

3D imaging reconstruction of different imaging methods and samples were showed in 

Fig.  3.6. The dynamic range of each image is the same and the results were agreed with 

the layout of imaging targets. The dimensions of silicon pieces were similar to real 

situation while in photoacoustic imaging experiments the reverberation effects happens 

due to the weaker signal strength. The width of pencil leads were larger than real 
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condition since the element size of transducer is 2mm and the maximum lateral 

resolution should be close to 1mm, which is, still larger than the real size of them. 

 

Figure 3.51 A-Scan results when (a) laser pulse illuminated target, and (b) 

ultrasound pulse reflected by target.  

 

Figure 3.6 3D imaging reconstruction results of co-register imaging experiments. 

(a) (b) 
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3.3 Design, Construction and Characterization 

3.3.1   Design and Construction 

According to the preliminary research above, using circular path to conduct 3D 

imaging is possible. However, to enable useful 3D ultrasound imaging, fast scanning of 

the single-element transducer in two axes is needed. Since ultrasound waves with a 

frequency in the MHz range have high attenuation in air, a liquid coupling medium 

(oftentimes water) is needed for their effective propagation. Therefore, a micro actuator 

that is able to work properly under water is necessary. Currently, the most commonly 

used micro actuators are piezoelectric actuators. However, they require high driving 

voltages (e.g., >100 V), which could easily cause electrical breakdown or shorting in 

water. Their work distance is also very limited. In contrast, electromagnetic actuators do 

not need a high voltage to drive, which are suitable for working in a liquid environment. 

Besides, they generate large driving force at a large driving distance. Therefore, 

electromagnetic actuation will be chosen as the driving mechanism for the scanning 

transducer.  

Fig. 3.7(a) shows the schematic design of the 2-axis micromechanical scanning 

transducer. A miniaturized single-element transducer is fixed onto a flexible hinge 

structure with a small permanent magnet attached onto it. To provide the driving force 

for scanning the transducer in two axes, two pairs of inductor coils are mounted close to 

the permanent magnet. The magnetic polarity of the two inductor coils in each pair is 

made opposite. When an AC current is flowing through the two inductor coils, a push 

and a pull force will be generated on the permanent magnet to vibrate the flexible hinge 
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together with the transducer at a certain scanning angle (θ). The vibration can be 

described as a simple harmonic motion. Its resonance frequency is related to the overall 

stiffness of the hinge, the mass of the magnet and transducer, and also the damping force 

encountered by the entire assembly. Fig. 3.7(b) shows the constructed prototype of the 2-

axis micromechanical scanning transducer. A miniaturized water-immersion single-

element transducer (XMS-310-B, Olympus) was used as the scanning transducer. It has 

a center frequency of 10 MHz, a 6-dB bandwidth of 80%, and a diameter of 2 mm. The 

RF coaxial cable of the single-element transducer was directly used as the supporting 

hinge, which was clamped onto a height adjustable stage. A neodymium ring magnet 

(R84X0, K&J Magnetics) was used as the permanent magnet. It has a length of 10 mm, 

an outer diameter of 5 mm, and an inner diameter of 2 mm, respectively. Its nominal 

peak magnetic field intensity is ~13200 Gauss. Eight RF coil inductors (70F331AF-RC, 

Bourns) were used as the driving coils. The inductance of each inductor is 330 mH. To 

provide good driving force, two inductors were connected in parallel. The use of two 

smaller coils instead of one larger coil results in a more compact structure and more 

uniform field distribution. The inductors and their wire connections were coated with 

water-proof epoxy. All the components were assembled together with acrylic fixtures 

made by laser cutting. 
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Figure 3.7 (a) Schematic of the 2-axis micromechanical scanning transducer design. 

(b) Picture of the constructed prototype. 

 

 

(a) 

(b) 
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When the frequency of the AC driving current matches the resonant frequency, θ reaches 

its maximum, which results in the most efficient driving condition. Due to its 

centrosymmetric structure, the resonant frequencies in both axes will be identical. 

Therefore, an ideal 2D scanning pattern will be a circular path (clockwise or 

counterclockwise), where both axes are driven at their resonant frequency [42-44]. As 

shown in Fig. 3.8(a), to generate a circular scanning path, the two AC driving currents 

must follow 

𝐼𝑥(𝑡) = 𝐴 cos(𝜔𝑟 𝑡) = 𝐴 cos(2𝜋𝑓𝑟 𝑡)             (3.1) 

𝐼𝑦(𝑡) = 𝐴 sin(𝜔𝑟 𝑡) = 𝐴 sin(2𝜋𝑓𝑟𝑡)             (3.2) 

where A is the amplitude of the driving currents and fr is the resonant frequency of the 

hinge and transducer assembly [42, 45-47]. By adjusting the amplitude of the driving 

currents, the transducer can be scanned along one circular path with different radius (r), 

which is proportional to A (Fig. 3.8(b)). The location of the transducer at a certain time ti 

can be represented as (𝑟cos(𝜔𝑟𝑡𝑖), 𝑟sin(𝜔𝑟𝑡𝑖)). To dynamically configure the location 

of the detection points on each circular path, the mechanical scanning of the transducer 

needs to be synchronized with the ultrasound pulse repetition rate (fu). The ratio between 

fu and fr will determine the effective number of detection points on each circular path. 

The time interval (∆t) between two adjacent detection points will be the repetition period 

of the ultrasound pulses. The relative location of each detection point along on the 

circular path can be determined sequentially along with the driving signal. To 

demonstrate the two-axis scanning, the optical trace of a LED-illuminated optical fiber 

tip driven by the two-axis microactuator is shown in Fig. 3.8(c). In this work, the total 
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number of detection points on one circular path was set be 256. With an ultrasound pulse 

repetition rate of 5 kHz, the resonant frequency will need to be adjusted to 19.5315 Hz. 

For the data aquistion, after 256 A-Scan signals and driving signals are recorded, the 

scanning of the transducer will be moved onto a different circular path by adjusting the 

amplitude of the driving signal. The data recording will start again after a delay period 

(τ).[48] 

 

Figure 3.8 (a) Waveforms of the two AC driving signals and ultrasound pulses. (b) 

The resulting distribution of ultrasoud detection points on a circular scanning path. 

(c) Picture of the optical trace of a LED-illuminated optical fiber tip driven by the 

two-axis microactuator. 

 

(a) 
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Figure 3.8 Continued. 

 

(b) 

(c) 
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3.3.2   Scanning Characterization 

The entire scanning transducer setup was immersed in water to characterize the 

scanning angle when different driving currents were applied. Two function generators 

(33220A, 33220B, Agilent) were used to generate two AC signals at a frequency of 

19.532 Hz, which have the same amplitude but with a phase difference of 90
o
. They 

were further amplified by two home-made current amplifiers before being sent to the 

inductor coils. Since the impedance of the inductors remains constant under the same 

frequency, the voltages applied on the inductors should be proportional to the currents 

flowing into them. Therefore, during the scanning characterization, the AC voltage drop 

on the inductor coils was monitored as a measure of the strength of the driving signals. 

Before the characterization of the scanning angle was conducted, the resonant frequency 

of the scanning transducer setup was fine-tuned to around 19.5 Hz. A driving voltage of 

2.5 V (peak to peak) was applied onto the inductor coils. The length of the supporting 

hinge was carefully adjusted, so that the scanning angle reached its maximum.   Next, 

the driving voltage was swept from 0 to 5 V (peak to peak) with an increment of 0.1 V. 

The amplitude of the vibration of the transducer was recorded and the scanning angle 

was calculated accordingly. The characterization was repeated on both axes. As shown 

in Fig. 3.9, the scanning angle changes almost linearly with the driving voltage. During 

the imaging experiment, this linear relationship was employed to determine the 

amplitude of the driving voltage to control the radius of a circular scanning path. 
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Figure 3.9 Scanning angle as a function of the AC driving voltage. 

3.4 Data Acquisition and Image Reconstruction 

3.4.1   Data Acquisition. 

A schematic of the data acquisition system is shown in Fig. 3.10. The pulser-

receiver (5072PR, Olympus) was set to provide a pulse repetition rate of 5 kHz, an 

amplification of 50 dB, and a damping ratio of 20 ohm. A personal computer loaded 

with LabView (version 2013, National Instruments) was used to trigger the two function 

generators (33220A, 33220B, Agilent) to generate two 19.532 Hz sinusoidal driving 

signals with 90
o
 phase shift. After being amplified by the current amplifiers, the two 
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driving currents were sent to the scanning actuator to create a circular scanning path of 

the transducer. The diameter of each circular path is determined by the amplitude of the 

driving currents or voltages (Fig. 3.9). To form a 3D image with 60×256 detection points, 

the transducer was scanned on 60 circular paths with equal intervals. The external trigger 

port of the DAQ card (AT9350-128M, Alazar Technologies) was connected to the 

synchronization output port of pulser-receiver. Once being triggered by the pulser-

receiver, it will start the data collection with 100 MHz sampling rate and 8192 sampling 

points. At each detection point, both the amplified ultrasound echo signals (from the 

pulser-receiver) and the driving signals from the function generator were recorded. For 

each ultrasound signal, all the 8192 sampling points were saved. For each driving signal, 

since all the 8192 sampling points have the same values, only the first sampling point 

was saved. Due to the short time interval (~µs) of the pulse-echo cycle, the location of 

the scanning transducer at each detection point can be considered static. After the data 

from all the 256 detection points on one circular path were recorded, the amplitude of 

the two driving currents was adjusted to move the transducer onto the next one. In the 

end, a total of 60×256×8192 sampling points for the ultrasound signals and 60×256 

sampling points for the driving signals were acquired and saved on the computer for 

image reconstruction.   
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Figure 3.10 Schematic of the data acquisition system. CHA and CHB are the input 

channels and EXT is the external trigger channel of the DAQ card. 

3.4.2   Image Reconstruction 

To achieve a good balance between the lateral resolution and computation time, 

2D SAFT was applied separately along two orthogonal directions rather than applying 

3D SAFT directly [11, 49-51]. As shown in Figs. 11(a) and (b), the cone-shaped 3D 

imaging space were decomposed into 60 concentric circular planes and 128 sector planes, 

which are perpendicular to each other. For each circular plane, a B-Scan image was 

reconstructed from the 256 A-lines (with 8192 pixels in each) with and without applying 

SAFT, respectively. For each sector planes, a B-scan image was reconstructed from the 

120 A-lines (with 8192 pixels in each) with and without applying SAFT, respectively. 

Next, the B-Scan images for the 60 circular planes and the 128 sector planes were 
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normalized and combined together pixel by pixel to reconstruct the 3D image 

reconstruction, which consists of a total number of 60×256×8192 voxels. The voxels 

were further regrouped onto 8192 C-Scan images in Cartesian coordinates and saved 

into the png format (Fig. 3.11(c)). At last, the 8192 C-Scan images were stacked together 

to create a 3D view in Volview (Kitware) (Fig. 3.3.11 (d)). 

 

 

Figure 3.11 3D Image reconstruction process.  (a) Circular B-Scan image 

reconstruction. (b) Sector B-Scan image reconstruction.  (c) C-Scan image slicing. 

(d) 3D image formation. 

(a) (b) 

(c) (d) 
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Applying 2D SAFT on the circular and sector planes is similar with that on 

Cartesian coordinates, except that the observation distance between a detection point and 

a reconstruction pixel needs to be calculated in a different way. As shown in Fig. 3.12(a), 

for applying SAFT on a circular plane, the observation distance (𝜌)  from an ultrasound 

detection point ( 𝑇𝑖) to a reconstruction pixel ( 𝑃𝑗) can be calculated as 

𝜌 = √𝑐2 + 𝑑2                (3.3) 

𝑐 = √𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos 𝜑            (3.4) 

𝑑 = 𝛿 cos 𝜃             (3.5) 

where d is the distance between the two c-planes bounding  𝑇𝑖  and 𝑃𝑗 , 

respectively, r is the diameter of the circular path passing the detection point ( 𝑇𝑖), 𝑟
′ is 

the diameter of the circular path passing the reconstruction  pixel (𝑃𝑗), 𝜃 is the scanning 

angle of the transducer, and 𝜑 is the angle between the two sector planes bounding 

 𝑇𝑖 and  𝑃𝑗, respectively. For applying SAFT on a sector plane (Fig. 3.12(b)), the 

observation distance can be calculated as  

𝜌 = √𝑙2 + 𝑙′2 − 2𝑙𝑙′ cos ∆𝜃           (3.6) 

where 𝑙 is the distance from the ultrasound detection point ( 𝑇𝑖) to the anchor 

point of the hinge, 𝑙′ is the distance from the reconstruction pixel ( 𝑃𝑗) to the anchor 

point of the hinge, and ∆𝜃 is the cross angle between  𝑇𝑖 and  𝑃𝑗 with respect to the 

anchor point. The mapped pixel of each A-Line signal can be determined by 

summarizing the values of signal strength (after Hilbert transformation) based on the 
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corresponding acoustic delay times determined by dividing the observation distance by 

the acoustic velocity. 

 

 

Figure 3.12 Illustration of the geometry for the calculation of the observation 

distance for SAFT. (a) on circular planes. (b) on sector planes.. 

(a) 

(b) 
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3.5  Imaging Experiments and Results 

Fig. 3.13 shows the imaging target for the ultrasound imaging experiments with 

the scanning transducer. It consists of two silicon discs with a diameter of 6 mm, which 

are supported with four optical fibers with a diameter of 100 µm. To fix the optical 

fibers in place, four acrylic plates with an array of positioning holes were made by laser 

cutting and assembled together with epoxy. The distances between the two silicon discs 

are 15 mm, 10 mm, and 20 mm, respectively. Due to their small diameter, the back-

scattered ultrasound signals from the optical fibers will be weak and therefore would not 

interfere with those from the two silicon discs. During the ultrasound imaging 

experiment, the entire assembly was placed underneath the scanning transducer setup 

and completely immersed in water. 

 

 

Figure 3.13 Picture of the imaging target. 
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3.5.1   Alignment of the Detection Points 

To implement the 2D SAFT on both circular and sector planes, the ultrasound 

detection points need to be positioned on the 2D grid formed by the circular and sector 

planes. However, due to the random time delay (ϵ) between the trigger signals from the 

LabView controlled computer and the driving signals from the function generators, the 

ultrasound detection points on the circular scanning paths could be misaligned (Fig. 

3.14(a)). In addition, when the scanning of the transducer is shift from one circular path 

to another, some ultrasound detection points could appear on the transition section 

between two circular paths. To address this issue, the data recording of the DAQ card 

was delayed by a time (τ) (longer than ϵ) to exclude those off-path detection points. The 

recording period (σ) was still equal to the period of the driving signal. The relative 

location of an ultrasound detection point on a circular scanning path is determined by the 

time and therefore the phase of the AC driving signals (see Fig. 3.8). Therefore, the 

ultrasound detections points on the circular scanning paths can be re-aligned based on 

the phase of the corresponding driving signals. (Fig. 3.14(b)) 
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Figure 3.14 (a) Random time delay in the AC driving signals and the resulting 

misalignment of the ultrasound detection points. (b) Re-alignment of the ultrasound 

detection points based on the AC driving signals. 

 

 

 

 

(a) 

(b) 
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3.5.2   Image Reconstruction 

Fig. 3.15(a) shows the raw B-Scan image (before applying SAFT) of a 

representative circular plane reconstructed from the 256 A-line data.  Fig. 3.15(b) shows 

the B-Scan image of the same circular plane after applying SAFT. The reverberation 

signals from the ultrasound echo traveled back and forth between sample and transducer 

were canceled by using the reverberation nulling and echo prediction method [52-54]. 

The signals reflected from the aluminum plate at the bottom of acrylic holder and from 

the tip of transducer itself were also removed. A similar image processing procedure was 

adopted for the section plane. Fig. 3.15(c) and 3.15(d) show the B-Scan images of one 

representative sector plane before and after applying SAFT. Both images consist of 120 

A-line data. 
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Figure 3.15 B-Scan image of a representative circular plane (a) before and (b) after 

applying SAFT. B-Scan image of a representative sector plane (c) before and (d) 

after applying SAFT. 

 

(a) 

(b) 
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Figure 3.15 Continued.  

Fig. 3.16(a) shows the reconstructed 3D image based on the raw B-Scan images of 

both the circular and sector planes. The C-Scan images with gradually increased 

diameters can be clearly seen. The margin of the graphs excluding the Cartesian 

coordinates is presented in white color. In order to provide a better view of the two 

imaging targets, most of the margin was removed by using the shrink function in 

(c) 

(d) 
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Volview (Fig. 3.16(b)). However, in order to keep the image of the two targets intact, a 

small portion of the white margin at the upper-left corner has to be kept and therefore is 

also shown in the plot. Fig. 3.16(c) shows the reconstructed 3D image based on the B-

Scan images of both the circular and sector planes after applying SAFT. Compared with 

the image without SAFT, both the contrast and spatial resolution of the imaging targets 

were significantly improved. The mean diameters of the upper and lower silicon discs 

were estimated to be 6.28 mm and 5.83 mm, respectively, which close to the actual 

dimension (6 mm). The distances between the two silicon pieces along x, y, and z axes 

were estimated to be 14.2 mm, 9.88 mm, and 20.11 mm, respectively, which match well 

with their actual values. 

 

Figure 3.16 Reconstructed 3D ultrasound images in Volview. (a) Raw image. (b) 

Image with white margin removed. (c) Image with white margin removed and after 

applying SAFT. The red, green and blue lines indicate the x y and z axes. 

(a) 
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Figure 3.16 Continued.  

(b) 

(c) 
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4. MULTI-LAYER TRANSDUCER ARRAY FOR ACOUSTIC TOMOGRAPHY 

4.1  Introduction 

Ultrasound transducer array (1D or 2D) is an essentials part for ultrasound 3D 

image which is useful non-destructive diagnostic technique with a wide range of 

applications [8, 55, 56]. To achieve 3D ultrasound imaging, acoustic signals have to be 

recorded from 2D positions. At present, most of the 3D ultrasound imaging is achieved 

by ultrasound transducer array which can be used to generate and receive ultrasound 

signals from 2D elements either independently or by group [14, 17, 57, 58]. Through 

using 2D transducer array to conduct “electronic” acoustic scan in a curvature 2D plane 

by manipulating the phase or delay time of ultrasonic pulse generators and recorded the 

echo signals respectively [13, 18, 19, 22]. 3D imaging could be reconstructed through 

the acoustic scanning path and delay time between transmitted and reflected ultrasonic 

signals. Nevertheless, to record echo signals or generate acoustic pulses through a large 

number (100s~10000s) of transducer elements, complex electronics including 

multiplexer, pulser/receiver, and data acquisition (DAQ) system are required which 

make the entire imaging system could become complex, bulky, power-consuming, and 

expensive [12, 16, 38, 59]. As a result, these techniques are mainly good for on-site 

diagnose or research use and are not suitable for economical handheld operations. 

Therefore, a novel 2D transducer array is necessary for many applications which need 

barely enough resolution or imaging high contrast targets where SNR is supposed to be 

good, but have requirements for mobile ability, imaging speed, and cost-effective.  
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In this research, a novel strategy of building 2D ultrasound transducer array with 

PVDF which enable high speed and low cost 3D ultrasound imaging was reported. The 

2D ultrasound transducer array was consisted by two 1D transducer arrays manufactured 

by patterning metal layer of PVDF sheets. When acoustic signals arrive PVDF film, the 

compression and relax motion will generate voltage difference between upper and 

bottom conductive layers.  By reading the voltage values of each section individually, 

each 1D array could be used to build a B-Scan image. The ultrasound signals from these 

two 1D arrays of locations will be stacked together to reconstruct a 3D image. The 

number of transducer elements could be reduced from the multiplication of two 1D 

arrays to the summation of them. The amount of ultrasound pulse generator, channels of 

high speed DAQ card, control elements, and multiplexers could be dramatically 

decreased.  The 2D PVDF transducer array can be further miniature and patterned with 

transparent conductive layers to allow optical signals penetrate from it. Therefore, it 

could provide a new approach for high speed, compact, and low-cost 3D ultrasound and 

photoacoustic imaging systems. 

4.2 Device Concept and Feasibility Study 

4.2.1   Device Concept 

The concept of using two 1D arrays to collect 2D information for 3D imaging 

reconstruction could be simplified as using two 1D optical detection elements to build a 

2D image. Assume there are two laser spots with center aligned horizontally and same 

light density were imaged by two transparent, completely overlapped, and perpendicular 
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1D photo sensor arrays. (Fig. 4.1(a)) For 1D array with vertical alignment elements the 

imaging result should be two rectangles where the intensity would proportional to the 

illuminated area like Fig. 4.1(b) shows. Similarly, the horizontal aligned 1D array will be 

a horizontal stripe. (Fig. 4.1(c)) Through stacking these results together, the positons and 

dimensions of two objects could be retrieved with partially shape distortion. 

 

Figure 4.1 2D Image reconstruction process.  (a) Schematic of laser spot on top of 

two transducer arrays (line: 1D array at the top, dot: 1D array at the bottom.) (b) 

Imaging results of horizontal 1D array. (c)Imaging results of vertical 1D array. (d) 

Reconstructed 2D image. 

 

 

(a) (b) 

(c) (d) 
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4.2.2    Feasibility Study 

A preliminary imaging experiment was conduct to evaluate the feasibility of the 

concept discussed above through comparing the 3D imaging results of 16x16 elements 

ultrasound array and 16 elements plus 16 elements multi-layer array. The system setup 

was shown in Fig. 4.2, a 1Hz pulsed signal generated by function generator was used to 

synchronize the motion of linear translation stages and the ultrasound pulse of 

pulser/receiver. The echo signals received by pulser/receiver will be recorded by DAQ 

card. A single element ultrasound transducer with 10MHz resonance frequency and 

2mm diameter was immersed in a water tank. The water tank was carried by two stacked 

linear translation stages which allows it to move along both x and y directions. The total 

imaging region was 32x32mm
2
 and the step size was 2mm (Fig. 4.2). The total numbers 

of recorded pulse/echo signals would be 256. The imaging sample was consisted by two 

6mm diameter with 100um thickness silicon discs. The top view of imaging sample was 

showed as Fig. 4.2(a) the distances between two discs were 15 mm along x axis, 10 mm 

along y axis, and 10 mm depth difference.  
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Figure 4.2 (a) System setup of feasibility study experiment. (b) Traveling path of 

single element transducer. (c) Top view of imaging sample. 

(a) 

(b) 

(c) 
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Fig. 4.3(a) shows the raw 3D imaging result of using A-Scan signals from 16x16 

different locations. Through averaging the results of 16 elements into one channel along 

x and y directions respectively, two 16 channel 2D images was generated. By using the 

stacking 1D array imaging reconstruction process, a raw 3D imaging reconstruction 

result with the same dynamic range as last result was showed by Fig. 4.3(b). The 

resolution of using 16 plus 16 channels methodology was relatively low especially for 

the deeper target. However, the positions of two discs were clearly the same and the 

resolution can be improved by simply using different dynamic range. With this imaging 

result, the concept of using multiple layers of 1D transducer array to replace 2D 

transducer array should be consider as feasible. By using this technique, it is obviously 

the channel numbers of DAQ card and transducer elements can be reduced from 256 to 

32 without sacrificing the imaging speed. 

 

Figure 4.3 (a) 3D imaging result of signals from 16x16 locations. (b) 3D imaging 

result of signals from 16 plus 16 rectangular locations. 

 

(a) 
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Figure 4.3 Continued 

4.3  Design, Construction and Characterization 

4.3.1   Design and Construction 

Theoretically, ultrasound waves will introduce charges when it contact with 

PVDF film and cause the vibration on it due to piezoelectric phenomenon. These 

electrical signals could be detected and transmitted if there are conductive layers covered 

on each side of PVDF film. Therefore, certain portion of PVDF film coated with metals 

could serve as an acoustic detect element. Moreover, if there are multiple regions of 

PVDF film patterned by conductive materials isolated. These covered islands could 

serve as multiple ultrasound detection elements. Besides, the array elements most close 

to the bombard area should have strongest voltage difference which could use to 

determine the locations of acoustic signals. Although PVDF could also be used to 

generate ultrasound signals through applying voltage on each side, it is a much better 

ultrasound receiver rather than transmitter [55, 60-64]. In this research, it is mainly 

severed as receiver while doing ultrasound transmission mode imaging. 

(b) 
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To enable 3D ultrasound imaging, 2D A-Scan information from both x and y 

direction are necessary. As Fig. 4.4(a) (b) indicates, 16 copper stripes are patterned on 

PVDF film where grounding Ni/Cu layer are coated on another side. The overlap regions 

of Ni/Cu strips and common grounding layer could serve as 16 different ultrasound 

transducer elements. Two PVDF films are bonded together like Fig. 4.4(c) shows, where 

array elements from two rectangular 1D array were aligned perpendicularly. 

Fig. 4.4(d) shows the constructed prototype of the 2D PVDF ultrasound 

transducer array. Two 64mmx64mm PVDF film with 110um thickness and coated with 

8um Ni/Cu on both side (3-1003702-7, Measurement Specialties, Inc.) was used to build 

the transducer array. Photolithography process was used to pattern transducer elements 

by using photoresist as mask with chemical etching. As Fig 4.4(a) indicates, the 

transducer area was consisted by sixteen 1.53125mmx32mm rectangular strips with 

0.5mm intervals. Besides, sixteen 3mmx3mm pads with 1mm interval and connections 

between transducer elements and pads were also patterned on the same side. Fig. 4.4(b) 

shows the layout of another side which include 32mmx32mm ground area and 

3mmx10mm ground pad with conducting copper layer. Two transducer array were than 

bonded together by using conductive epoxy (ESOLDER30222OZ, Von Roll) like Fig. 

4.4(c) indicates. Since water is the most common medium of ultrasound imaging 

applications, the entire 2D transducer array was coated with Teflon as hydrophobic layer 

and sealed inside a case made by acrylic with laser cutting to ensure the waterproof 

ability. (Fig. 4.4(d))  
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Figure 4.4 (a) Schematic of the transducer array and pads design. (b)  Schematic of 

the common ground side and its pad. (c) Illustration of two 1D transducer arrays 

bonded together. (d) Picture of 2D PVDF transducer array. 

 

(a) 

(b) 

(c) 
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Figure 4.4 Continued. 

The resonant frequency of ultrasonic transducer made by piezoelectric materials 

and works on thickness mode can be calculated by equation 4.1. Where thickness t 

defines the resonance frequency f of the device given by with the first harmonic resonant 

frequency being n = 1, where n is an odd integer, and cp is the acoustic wave velocity in 

the piezoelectric material. In this research, two 110um PVDF films were stacked and the 

acoustic velocity of PVDF is 2250m/s which turns out the resonant frequency of our 2D 

PVDF transducer array will be about 5.11 MHz.  

f = n 
c𝑝

2t
             (4.1) 

4.3.2   Characterization  

To characterize the frequency response of PVDF film, a simple PVDF stacked 

transducer was used to receive photoacoustic signals generate from rubber tape, hex 

wrench, and lead. A 2.25 MHz transducer (V106-RM, Olympus NDT) was used to 

(d) 
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receive the ultrasound signals from targets at the same time as comparison. A Q-

switched Nd:YAG laser system was used to deliver laser pulses with a wavelength of 

532 nm and a duration of 8 ns. (Fig. 4.5(a)) Because of thermal expansion effect, the 

targets will generate acoustic signals after heated by such a short pulse duration laser. 

The illumination area is 10mm× 10mm and the optical energy density was ∼20 mJ/cm
2
. 

A pulser-receiver (5072PR, Olympus) synchronized with pulse laser was used to amplify 

ultrasound signals. As Fig 4.5(b) (c) (d) indicates, the center frequency of upper layer, 

bottom layer and stacked PVDF film transducer are between 4 MHz to 5 MHz because 

the conductive epoxy and metal layers could slightly increase the thickness. The 

frequency domain of two single layers and stacked layer were similar which shows the 

bonding process successfully merge two PDVF films together. The photoacoustic signals 

received by 2.25 MHz transducer were mostly below 2 MHz since the attenuation of 

ultrasound signals was proportional to the frequency and the distance between transducer 

and targets were much larger than PVDF films and targets. 

 

Figure 4.5 Setup of frequency characterization experiment (a) and the results for 

different targets including (b) rubber tape, (c) hex wrench, and (d) pencil lead. 

(a) 
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Figure 4.5 Continued.  

To characterize the sensitivity of each PVDF transducer element, a single 

element ultrasound transducer (XMS-310-B, Olympus) with center frequency of 10 

MHz, 6-dB bandwidth of 80%, and diameter of 2 mm was used to scan the 1D 

(b) 

(c) 

(d) 
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transducer array. During each scanning process, only one element from 1D transducer 

array was active to record the acoustic signals generate by single element transducer. 

The scanning step is 2mm on both directions and the result will represented with 

summation voltage signals after Hilbert transform during certain time interval. Fig. 4.6 

shows the results of scanning 16 times for each layer, each pixel represented the 

integrated amplitude in certain time interval. As predicted, in most of the graphs, the 

strongest amplitude received by PVDF transducer elements happened when the single 

element transducer traveled right on top of the activated element. Some graphs, the 

intensity distribution is not perfectly matched with active area. It is due to the PVDF 

film itself will transmit vibrations and generate charges on activated elements even the 

ultrasound source is not on top of it. Besides, the electrical conductivity of each element 

might be nonuniform after photolithography process.   

 

Figure 4.6 Results of ultrasound sensitivity experiment of (a) top layer and (b) 

bottom layer. 

(a) 
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Figure 4.6 Continued. 

4.4  Data Acquisition and Image Reconstruction 

4.4.1  Data Acquisition 

A schematic of the data acquisition system is shown in Fig. 4.7(a). The pulser-receiver 

(5072PR, Olympus) was set to external trigger mode with amplification of 50 dB and 

damping ratio of 20 ohm. A personal computer with LabView (version 2013, National 

Instruments) installed was used to switch the ultrasound elements through multiplexer IC 

arrays (74HC4052, NXP Semiconductor) and trigger the pulser/receiver by using DAQ 

card A (PCI6251, National Instrument). The ultrasound signal will maintain its time 

domain characteristics where the amplitude would be slightly attenuated after going 

through multiplexers. (Fig. 4.7(b)) The amplified ultrasound signals were recorded by 

DAQ card B (AT9350-128M, Alazar Technologies) after being triggered by the DAQ 

card A. The data collection of DAQ card B was setup with 250 MHz sampling rate and 

8192 sampling points. After the data from all the 16 1D elements on the top layer were 

(b) 



 

66 

 

recorded 20 times, the active transducer array switched manually by connecting the 

cable of multiplexer array to the transducer arrays on the bottom. In the end, a total of 

20×32×8192 sampling points for the ultrasound signals were acquired and saved on the 

computer for image reconstruction.   

 

 

Figure 4.7 (a) Schematic of the data acquisition system. (b) Received ultrasound 

signals before (Top) and after (Bottom) multiplexer IC. 

 

 

(a) 

(b) 
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4.4.2  Image Reconstruction 

The imaging reconstruction process of PVDF multi-layer transducer array could 

be demonstrated by using two sets of 16 A-Scan signals. The A-Scan results are set to 

from two perpendicular ultrasound arrays. Assume a target was put under the 12
th

 

rectangular element of 1D array aligned along x direction and 4
th

 rectangular element of 

1D ultrasound array aligned along y direction. It is possible to simulate the A-Scan 

results using MATLAB like Fig. 4.8 (a) (b) indicates .After Hilbert transform, both B-

Scan results is shown by Fig. 4.8(c) where the graph on the top indicates the B-Scan 

image of x direction array and the graph on the bottom represents the B-Scan image of y 

direction array.  For reconstructing 3D image with these two B-Scan results, B-Scan 

imaging from x direction alignment transducer elements have to be extended along y 

direction to form a 3D volumetric image like top graph of Fig. 4.8(d) shows. The same 

process is applied to y direction transducer array and the result is shown on the bottom 

of Fig. 4.8(d). Through summarize the amplitude pixel by pixel of these two 3D images 

and tuning the dynamic range, 3D imaging reconstructed from two 1D ultrasound 

transducer arrays could be achieved as Fig. 4.8(e) indicates.  
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Figure 4.8 Simulation of (a) A-Scan results from 16 channels ultrasound transducer 

array which aligned along x direction. (b)A-Scan results from 16 channels 

ultrasound transducer array which aligned along y direction. (c) B-Scan result of x 

direction ultrasound array (Top) and y direction ultrasound array (Bottom). (d) 3D 

B-Scan image of direction ultrasound array (Top) and y direction ultrasound array 

(Bottom). (e) Result of 3D imaging reconstruction. 

4.5  Imaging Experiment and Results 

Fig. 4.9(a) (b) shows the design of imaging setup and the imaging targets for the 

ultrasound transmission mode imaging experiments with PVDF 2D ultrasound 

transducer array. The traget was consisted by two 4mmx10mm rectangular silicon pieces, 

which were supported by two 100um diameter optical fibers. To fix the optical fibers in 

(a) (b) 

(c) (d) 

(e) 



 

69 

 

place, two acrylic plates with an array of positioning holes were made by laser cutting 

and assembled together with silicone. The distances between the two silicon pieces are 

15mm in z direction and 1mm along x direction, respectively. Due to their small 

diameter, the back-scattered ultrasound signals from the optical fibers will be weak and 

therefore would not interfere with those from the two silicon pieces. During the 

ultrasound imaging experiment, the entire assembly was placed underneath the PVDF 

2D ultrasound transducer array and completely immersed in water. 

 

Figure 4.9 (a) Alignment of imaging targets and (b) Picture of the imaging target. 
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4.5.1   Experimental Setup 

Fig. 4.10 shows the system setup of 3D imaging reconstruction experiment. The 

data recording process was mentioned above; a 2.25 MHz single element transducer 

(V105-RM, Olympus NDT) with 19mm diameter nominal element size was selected to 

be ultrasound source with 30mm away from the silicon pieces. Its large diameter could 

provide uniform acoustic signals for ultrasound transmission mode imaging experiment 

like Fig. 4.9(a) showed. In the bottom layer of 2D PVDF transducer array was 1D 

transducer array aligned along x direction where 1D transducer array aligned along y 

direction was on the top layer. The repetition rate of DAQ card A was set to 200 Hz and 

the total data acquisition time for each layer was 1.6s. 

 

Figure 4.10 Picture of 3D imaging reconstruction experiment. 

4.5.2   Imaging Results  

To reconstruct B-Scan image, first, 20 A-Scan results of each channel will be 

averaged to eliminate white noise. After that, Hilbert transform was applied to transfer 
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voltage signals into amplitudes of acoustic energy. Fig. 4.11(a) indicates the imaging 

result of top layer elements which aligned along y direction. In Fig. 4.11(a), the upper 

object was 12mm wide and the lower one is 6mm. The result from bottom layer 

elements was shown in Fig. 4.11(b) where the top object is 4mm wide and lower object 

is 12mm wide. The dimensions were not totally agreement with the real values since the 

acoustic signals diverged radially after going out form silicon pieces which make the 

imaging results blur especially for the lower object. Besides, the elements size would 

limit the resolution of raw B-Scan image. As mentioned before, in order to reconstruct 

3D image from these two B-Scan results, both graphs has to extrude along x or y 

directions. After it, these two 3D images will be added together pixel by pixel. The result 

of 3D imaging reconstruction was shown in Fig. 4.11(c); the positions of two objects 

were close to real situation where the shape was distorted especially for the lower silicon 

piece. 

 

Figure 4.11 B-Scan image of 1D transducer arrays (a) top layer (b) bottom layer 

and (c) the result of 3D imaging reconstruction. 

(a) 
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Figure 4.11 Continued. 

(b) 

(c) 
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5. CONCLUSIONS AND FUTURE WORK 

In this dissertation, three micromachined scanning devices have been studies for 

different 3D acoustic imaging applications. Specifically, the water-immersible scanning 

mirror microsystem is useful for acoustic microscopy to scan focused ultrasound beams. 

The micromechanical scanning transducer is useful for high-resolution portable 3D 

imaging, where high-density transducer array with small element size were often 

required. The multi-layer transducer array is useful for high-speed 3D imaging, where all 

the ultrasound data need to be collected within a single transmitting-receiving cycle. 

First, a twoaxis scanning mirror microsystem is demonstrated, which is 

specially designed for reliable and fast underwater scanning of both optical and 

ultrasonic beams. The liquid-immersible electromagnetic microactuator provided fast 

and energy-efficient 2-axis mechanical scanning. This made the acquisition of all the 

ultrasound data for 3D image reconstruction to be performed in a timely manner. This 

unique feature can be potentially used to enhance the imaging capability of scanning 

acoustic microscopy and photoacoustic microscopy where a liquid matching medium is 

needed. Future work will focus on the optimization and further minturization of the 

scanning mirror microsystem and also its application in new ultrasound and 

photoacoustic microscopic imaging modalities. 

Second, a two-axis micromechanical scanning transducer technique was 

developed and 3D pulse-echo ultrasound imaging of two silicon discs immersed in water 

as the imaging target was successfully conducted. The lateral resolution of the 3D 

ultrasound image was improved with modified SAFT algorisms based on the unique 



 

74 

 

format of the acquired ultrasound data. The scanning transducer technique doesn’t 

involve complex and expensive data acquisition (DAQ) electronics, which are otherwise 

required in the ultrasound-array based imaging systems. Ultrasound imaging at different 

frequency ranges can be easily obtained by using a single-element transducer with 

suitable frequency response. This work laid a foundation for the development of 

compact and low-cost hand-held scanning transducer probes for 3D ultrasound imaging. 

In the future, feedback control will be developed to improve the stability of the 

mechanical scanning. New functionalities (e.g., optical delivery) will be investigated to 

expand the imaging capability (e.g., photoacoustic tomography) of the scanning 

transducer probe. 

Last, a prototype of multi-layer ultrasound transducer array for low-cost and 

high-speed 3D imaging system has been demonstrated. It could provide a new 

economical solution for high-speed 3D ultrasound imaging. In the future, the design and 

fabrication of the multi-layer transducer array will be further improved to increase the 

detection sensitivity and reducer inter-element cross-talk. In addition, new data 

acquisition electronics will be developed to provide better interface with the multi-layer 

transducer array. 
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 APPENDIX   

MATLAB AND LABVIEW PROGRAMS 

In this dissertation most of the imaging reconstruction and processing were done 

by MATLAB. The algorithms of imaging processing and reconstructions had been 

mentioned above, where the programs of how to implement circular SAFT, sector SAFT, 

and generating 2D images for 3D reconstruction with MATLAB were also attached.  

In this dissertation, all the data acquisition process were controlled by LabVIEW. 

LabVIEW is a graphic language which makes it easier to learning and programing. Here 

the control program of high speed DAQ card (ATS9350, Alazar tech) was attached. It 

basically modified the source code from our vendor.  
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%Sector SAFT 

%I: origial image 
%A: [1 4 9 ... 78^2]*1.419E-4^2 depth 
a=1:12000; 
A=a.^2*(0.77E-2)^2;   %units:mm, depth look up table 
%theta=-0.3120:0.0184:0.3120; 
s=0;                  %register of target position amplitude 
%Sector_SAFT_1=zeros(8001,33,210); 

  

  
for k=151:210 
%P32SAFT=P32(:,:,k); 
I=SR_all_n0(2000:10000,:,k); 
background=mean(I(:,1)); 
Sector_SAFT_1(:,:,k)=background; 
m=10;                               % neighboring rows 
for x=1:1:33                       % target lateral position 
    for y=3000:1:5000               % target depth 

            
        for i=round(max(1,x-m)):1:round(min(33,x+m))     % total 

Vitural Ultrasound sources  
            a=(y+1050)*0.77E-2+62; 
            b=62; 
            d=a^2+b^2-2*a*b*cos(abs(x-i)*0.0195);     % 2000-950=1050, 

cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>0.001 
                s=s+background; 
            elseif i>28||i<5 
                s=s+background; 
            else  
               s=s+I(j-2000,i);         
            end 

             
        end 

         
        if  round(x+m)>33    
               %P32SAFT(y,x,k)=s/round((x/4+m-32));       % numbers of 

source siganls being added when x+m>32 
               Sector_SAFT_1(y,x,k)=s/(round(min(33,x+m))-

round(max(1,x-m))+1); 
        elseif round(x-m)<1 
               %P32SAFT(y,x,k)=s/round((m-x/4+1));        % numbers of 

source siganls being added when x-m<1 
               Sector_SAFT_1(y,x,k)=s/(round(min(33,x+m))-

round(max(1,x-m))+1); 

      
        else       
               Sector_SAFT_1(y,x,k)=s/(round(min(33,x+m))-

round(max(1,x-m))+1); 
        end 
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                   s=0;                 
    end 
end 
m=5; 
for x=1:1:33 
    for y=5500:1:7500               % target depth 

            
        for i=round(max(1,x-m)):1:round(min(33,x+m))     % total 

Vitural Ultrasound sources  
            a=(y+1050)*0.77E-2+62; 
            b=62; 
            d=a^2+b^2-2*a*b*cos(abs(x-i)*0.0195);     % 2000-950=1050, 

cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>0.001 
                s=s+background; 
            else  
               s=s+I(j-2000,i);         
            end 

             
        end 

         
        if  round(x+m)>33    
               %P32SAFT(y,x,k)=s/round((x/4+m-32));       % numbers of 

source siganls being added when x+m>32 
               Sector_SAFT_1(y,x,k)=s/(round(min(33,x+m))-

round(max(1,x-m))+1); 
        elseif round(x-m)<1 
               %P32SAFT(y,x,k)=s/round((m-x/4+1));        % numbers of 

source siganls being added when x-m<1 
               Sector_SAFT_1(y,x,k)=s/(round(min(33,x+m))-

round(max(1,x-m))+1); 
        else       
               Sector_SAFT_1(y,x,k)=s/(round(min(33,x+m))-

round(max(1,x-m))+1); 
        end 
                   s=0;                 
    end 
end 

  
end 

  

  
theta=-0.3120:0.0195:0.3120; 
rho=(2000:1:10000)*0.77E-2+62-950*0.77E-2;    % 62 UT tip to fix points, 

950 = tip depth measured 
[R,T]=meshgrid(rho,theta); 
[x,y]=pol2cart(T,R); 
%y=y'; 
HT=Sector_SAFT_1(:,:,151)'; 
surf(x,y,HT); 
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shading interp; 
view(90,90); 
cmin=max(max(Sector_SAFT_1(:,:,151))); 
cmax=max(max(Sector_SAFT_1(:,:,151))); 
caxis([cmin cmax]); 
%axis([1 128 0 6000]);     
figure 
surf(x,y,SR_all_n0(2000:10000,:,151)'); 
shading interp; 
view(90,90); 
%caxis([-30 0]); 

 
%I: origial image 
%A: [1 4 9 ... 78^2]*1.419E-4^2 depth 
B=B_4_X;  % scanning path matrix 
R=(1:1:60)*12.8/60;                                              % 

radius matrix 
L=45;                                                     % length from 

fix point to UT tip (units: mm) 
phi=atan(R/L);                                           % phi matrix 
%theta=-3.1416:6.2832/419:3.1416; 

  

  
%circular SAFT 
g=1:8192; 
A=g.^2*(0.77E-2)^2;   %units:mm, depth look up table 
%R=0.55148/101;              % Rotation angle per line (unit:radins) 
%L=41.68;                    % Lenth of scanning radius (unit:mm) 
%m=2;                        % Number of UT sources to be considered 
s=0; 
%total_index=0; 
Circular_SAFT_1=zeros(8192,256,60);    %creat zero matrix for result 

  
for k=1:60 
%P32SAFT=P32(:,:,k); 
I=B_4_X(1:8192,:,k); 
background=mean(I(:,1)); 
Circular_SAFT_1(:,:,k)=background; 
if k<=10 
m=10;                               % neighboring rows  1:10 m=10 10:20 

m=7 20:40 m=5 40:50 m=3 50:60 m=2 
range=0.00125; 
elseif k>10&&k<=20 
m=5;                                
range=0.0025;   
elseif k>20&&k<=30 
m=5;                                
range=0.0030; 
elseif k>30&&k<=40 
m=5;                                
range=0.0045;  
elseif k>40&&k<=50 
m=5;                                
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range=0.0065;   
elseif k>50&&k<=60 
m=5;                                
range=0.009;   
end 

  
for x=1:1:256                       % target lateral position 
    for y=1000:1:1500            % target depth 

         
        if x-m>0&&x+m<=256 
        for i=round(max(1,x-m)):1:round(min(256,x+m))     % total 

Vitural Ultrasound sources  
            a=0.77E-2*y; 
            r=R(k); 
            r1=r+a*sin(phi(k)); 
            theta=(abs(x-i)/256*360/180*3.14); 

             
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 

  
            else  
               s=s+I(j,i);         
            end                          
            %Circular_SAFT_1(y,x,k)=s/(round(min(256,x+m))-

round(max(1,x-m))+1);        

        
               % s=0; 
        end 
        elseif x-m<=0 
        for i=1:1:x+m     % total Vitural Ultrasound sources  
            a=0.77E-2*y; 
            r=R(k); 
            r1=r+a*sin(phi(k)); 
            theta=(abs(x-i)/256*360/180*3.14); 

             
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 

  
            else  
               s=s+I(j,i);         
            end                           
        end 
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        for i=256-m+x:1:256 
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 

             
            else  
               s=s+I(j,i);         
            end            
              % Circular_SAFT_1(y,x,k)=s/(2*m+1);         

        
               % s=0; 
        end 
        elseif x+m>256 

             
        for i=x-m:256     % total Vitural Ultrasound sources  
            a=0.77E-2*y; 
            r=R(k); 
            r1=r+a*sin(phi(k)); 
            theta=(abs(x-i)/256*360/180*3.14); 

             
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 

             
            else  
               s=s+I(j,i);         
            end                                        

            
        end 
        for i=1:1:x-256+m     % total Vitural Ultrasound sources  
            a=0.77E-2*y; 
            r=R(k); 
            r1=r+a*sin(phi(k)); 
            theta=(abs(x-i)/256*360/180*3.14); 

             
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 
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            else  
               s=s+I(j,i);         
            end                                        
            %Circular_SAFT_1(y,x,k)=s/(2*m+1);         

        
             %s=0; 
        end 
        end 
        Circular_SAFT_1(y,x,k)=s/(2*m+1);         

        
             s=0; 
      end         
        for y=3700:1:4350            % target depth 

         
        if x-m>0&&x+m<=256 
        for i=round(max(1,x-m)):1:round(min(256,x+m))     % total 

Vitural Ultrasound sources  
            a=0.77E-2*y; 
            r=R(k); 
            r1=r+a*sin(phi(k)); 
            theta=(abs(x-i)/256*360/180*3.14); 

             
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 

  
            else  
               s=s+I(j,i);         
            end                          
            %Circular_SAFT_1(y,x,k)=s/(round(min(256,x+m))-

round(max(1,x-m))+1);        

        
               % s=0; 
        end 
        elseif x-m<=0 
        for i=1:1:x+m     % total Vitural Ultrasound sources  
            a=0.77E-2*y; 
            r=R(k); 
            r1=r+a*sin(phi(k)); 
            theta=(abs(x-i)/256*360/180*3.14); 

             
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 
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            else  
               s=s+I(j,i);         
            end                           
        end 
        for i=256-m+x:1:256 
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 

             
            else  
               s=s+I(j,i);         
            end            
              % Circular_SAFT_1(y,x,k)=s/(2*m+1);         

        
               % s=0; 
        end 
        elseif x+m>256 

             
        for i=x-m:256     % total Vitural Ultrasound sources  
            a=0.77E-2*y; 
            r=R(k); 
            r1=r+a*sin(phi(k)); 
            theta=(abs(x-i)/256*360/180*3.14); 

             
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     

            
            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 

             
            else  
               s=s+I(j,i);         
            end                                        

            
        end 
        for i=1:1:x-256+m     % total Vitural Ultrasound sources  
            a=0.77E-2*y; 
            r=R(k); 
            r1=r+a*sin(phi(k)); 
            theta=(abs(x-i)/256*360/180*3.14); 

             
            d=a^2*cos(phi(k))^2+r^2+r1^2-2*r*r1*cos(theta);     % 2000-

950=1050, cos theory, a^2+b^2-2abcos(theta)=d^2 
            [c,j]=min(abs(sqrt(A)-sqrt(d)));     
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            if c>range                  % 1:10 c=0.0005 10:20 c=0.001 

20:40 c=0.005 40:50 c=0.025 50:60 c=0.05 
                s=s+background; 

            
            else  
               s=s+I(j,i);         
            end                                        
            %Circular_SAFT_1(y,x,k)=s/(2*m+1);         

        
             %s=0; 
        end 
        end 
        Circular_SAFT_1(y,x,k)=s/(2*m+1);         

        
             s=0; 
        end                    
end 

    
end 

 

 
%generate 2D images for 3D reconstruction 
theta=-3.14:6.28/419:3.14; 
rho=(0:1:15)*1.54; 
C=zeros(1,420); 

  
for i=1:8192 
for j=1:16 
    %Bname=sprintf('BR_%d',B(j)); 
    C(j,1:420)=SR_SAFT(i,1+420*(j-1):420*j); 
end 
CT=C'; 
[R,T]=meshgrid(rho,theta); 
[x,y]=pol2cart(T,R); 
surf(x,y,CT); 
set(gcf, 'color', 'w'); 
shading interp 
view(-90,90) 
axis equal 
axis off 
grid off 
cmin=max(max(max(SR_SAFT))); 
cmax=max(max(max(SR_SAFT))); 
caxis=([cmin, cmax]); 

  
%caxis([-20,-9]); 
%colormap(gray); 

  
%figure 

  



 

91 

 

end 

  

  
im = getframe; 
im = imresize(im.cdata, [100 100]); 
fname = sprintf('SAFT%0d.png',i); 
imwrite(im,fname,'png'); 
%imwrite (im, 'yourplot.png', 'png') 
set(gcf,'Renderer','zbuffer'); 
%figure('Renderer','zbuffer'); 

 

 

 
 


