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ABSTRACT 

The scanning transducer technique is a simple and cost effective approach to 

achieve ultrasound imaging. By mechanically scanning a single-element transducer with 

a motor stage, the time-variant ultrasound field at an array of locations can be recorded 

for image reconstruction. When compared with the use of conventional transducer arrays, 

the scanning transducer approach requires much less data acquisition electronics. 

However, conventional x-y motor stages used for scanning the transducer are complex, 

bulky and slow. As a result, the scanning transducer technique for image acquisition has 

been mainly limited for lab use and is not suitable for handheld imaging applications. 

The goal of this research is to achieve a new 2-axis scanning transducer probe for 

handheld ultrasound imaging operations, which is compact and light-weight. The 

approach is to develop and capitalize upon a miniaturized water-immersible 2-axis 

electromagnetic actuator to enable fast and agile scanning of a single-element transducer 

in a liquid filled probe case.  

The design and fabrication of a water-immersible 2-axis electromagnetic actuator 

has been achieved and its mechanical scanning performance has been characterized and 

optimized with finite-element simulation. Preliminary pulse-echo imaging experiments 

were performed to verify its ultrasound imaging capability with scanning in B-scan mode 

in multiple directions. The scan system built can be dynamically reconfigured to either 

1D- B-Scan or even 2D C-Scan formats for conventional 2D as well as 3D ultrasound 

imaging. In addition, integrated optical light delivery with optic fiber cables was also 

investigated to extend its capability for photoacoustic imaging. 
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1. INTRODUCTION  

1.1 Ultrasound imaging 

Ultrasound imaging has been used in medical diagnostic and industrial fault isolation 

applications for over fifty years and is one of the most popular imaging techniques in use. 

It is easy to use, does not emit ionizing radiation and is relatively inexpensive when 

compared to competing imaging techniques such as MRI (Magnetic Resonance Imaging) 

and X-ray. Ultrasound images provide a real time cross sectional view of the subject, 

which is an invaluable diagnostic tool especially in medicine [1]. 

A majority of ultrasound (US).imaging today is performed using what is known as 

the B-scan mode or Brightness scan mode ultrasound technique with pulse-echo 

ultrasound. This method involves transmitting short bursts of a few cycles of ultrasound 

using a US transducer (sound frequency generally in the range of 1-20MHz) into the target 

to be imaged at a pulse repetition frequency (PRF) of several thousands of pulses per 

second. Depending on the acoustic impedance of the target, the ultrasound waves penetrate 

to different depths and some are reflected back to the transducer. The US pulse return time 

determines the depth of the target and its intensity determines physical properties (such as 

density of tissue vs bone) The direction of ultrasound propagation along the beam line is 

generally called the axial direction, and the direction in the image plane perpendicular to 

axial is called the lateral direction [1]. The ultrasound transducer itself is made of a 

piezoelectric material which converts a voltage signal to a mechanical ultrasonic sound 

wave and vice versa. 
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Figure 1.1. Attenuation and resulting penetration depth change of US waves with 

frequency.Higher frequency waves are attentuated more with depth than low 

frequency waves. Image reproduced from ref [1]. 

 

 

 

As the frequency of the US waves is increased, the image resolution increases, but 

penetration depth decreases. This is illustrated in figure 1.1 reproduced from [1]. 

US data can be represented in different ways depending on the method of acquisition. The 

most commonly used are A, B and C scan. A scan refers to Amplitude scan, where the US 

image is formed along a single line, and is a representation of the received US energy after 

the echo off the target as a function of time.  Therefore, an A scan image is a plot of 

received US energy on the vertical axis and time on the horizontal axis.  A B-scan 

representation replaces the horizontal axis with lateral distance and the vertical axis with 

depth (or time taken for echo return). The intensity of the signal received is generally 

represented by monochrome shades ranging from black (no obstruction to US signal such 

as in fluid) to white (where US pulse reflects off a hard surface like bone). C scan is the 
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same as B scan but along 2 dimensions and can be used to create a 3D image of the test 

subject. Figure 1.2 illustrates the different image representations, reproduced from ref [2]. 

 

 

 

 

Figure 1.2. .A,B and C scan US imaging. IP is initial pulse, A,B C are imaging 

targets and BW is back wall.  Images courtesy ref [2] 
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1.2 Scanning transducer technology  

The lateral resolution of an ultrasound image depends upon the diameter of the unfocussed 

transducer. If a focused transducer is used, resolution can be improved, but the focus 

distance has a limited range. To improve lateral resolution of an unfocussed transducer, 

image processing algorithms such as SAFT (Synthetic aperture focusing technique) are 

used [3, 4].  

 

 

 

 

Figure 1.3. A multi element linear array Vs a virtual linear array formed by 

mechanically scanning a single transducer. 

 

 

 

The most prevalent method used for US imaging is with a linear phased array of 

US transducers which generate B scan images and this technique gives a 2D cross 

sectional view of the target [5, 6]. The problem with using a linear array of multiple 

transducer elements is high cost because of the additional elements and associated signal 

routing and amplification circuitry and lower lateral resolution due to the finite space 

between each element. To gain lateral resolution, a single transducer can be mechanically 

scanned and a fast serial data transmission and acquisition system can be used to emulate 
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a linear or even 2D array of transducer elements. Such a virtual linear array is illustrated 

in figure 1.3 and compared to a traditional multi element linear array. 

As can be seen in figure 1.3, the scanned transducer can be sampled at many 

positions in between the fixed arrays, leading to potentially much higher lateral image 

resolution. Vertical resolution depends on the frequency of the US transducer. For a given 

penetration depth, higher frequency US allows more number of pulses per unit time, which 

increases the number of available data points and hence resolution [1]. Additionally, a 

single transducer uses only one data line which greatly simplifies the supporting front end 

circuitry like amplifiers and not having to deal with routing signal lines efficiently to 

reduce cross talk, making a single element, high US frequency virtual array potentially a 

much more cost effective and superior solution when compared to a multi element array. 

This is especially true in the case of 3D imaging, where a dense 2 dimensional array of 

transducers is used [7, 8]. 

The limitation of current implementations of scanning virtual array transducer 

imaging systems is due to the fact that they are not very portable as seen in figure 1.4. 

These scanning transducer systems use either a single transducer or a one dimensional 

array of transducers in a benchtop setup with x,y,z stepping motors to scan over a target 

area [9, 10]. 

Some systems use probe positioning systems that need to track the precise location 

of a conventional linear US element array probe as it is scanned over a region of interest 

by hand for 3D imaging [11-13]. The research presented in this thesis focuses on 

developing a cost effective and compact, water-immersible, single-transducer mechanical 
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scanning system capable of linear B-scan style scanning in multiple planes as well as a 2 

dimensional circular or spiral scanning pattern. 

 

 

 

 

Figure 1.4. A scanning transducer system which uses an X-Y stage to mecahnically 

scan the transducer. Image repoduced from ref [13]. 

 

 

 

.   
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2. SCANNING PROBE DESIGN AND OPTIMIZATION  

2.1  Scanning mechanism 

2.1.1 Previous work 

Figure 2.1 shows the general overview of an existing system that scans a single element 

US transducer in a 2 dimensional circular pattern for 3D imaging.  

 

 

 

 

Figure 2.1. Overview of existing US imaging system in the lab. A spiral scanning 

pattern is traced by mechanically scanned probe. A PC controls the data acquisition 

and performs image reconstruction. 

 

 

 

A bench top setup exists currently in the lab which consists of a cylindrical magnet 

attached to the ultrasound transducer coaxial cable, which is acted upon by force generated 

from coils arranged along the x and y axes as seen in figure 2.2. One end if the cable is 
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secured and kept at a suitable height.  By feeding opposing coils a 180 degree phase shifted 

sinusoidal current, a push-pull effect is achieved, causing a deviation in the cable along 

that axis. By giving a 90 degree phase shift on the perpendicular axis, it is possible to scan 

the cable and the attached magnet in a circular pattern. The spiral shape is achieved by 

gradually varying the voltage of the coils. It can be seen that there are numerous 

parameters that can be changed that will affect the scanning angle of the single element 

US transducer. 

  

 

 

 

Figure 2.2. Existing 3D imaging bench setup in the lab. 4 sets of coils drive a magnet 

attached to the coax cable of the US transducer in X and Y directions enabling a 

circular scan pattern with 90 degree phase difference in driving currents. 
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2.1.2 Design of scanning mechanism 

The angle by which the cable deflects depends upon the force acting on it as well as the 

stiffness of the cable. The force generated on a magnetic material separated by an air gap  

from a coil depends upon the number of turns, its core material and the current passing 

through it and is given by equation 2.1 [14]: 

𝑭 =
𝑭𝒎

𝟐 𝝁𝟎𝑨

𝟐𝒈𝟐     Equation 2.1 

 

𝑭𝒎 = 𝑵 × 𝑰     Equation 2.2 

 

𝐹𝑚 is the magneto motive force, N=number of turns, I=current, µ= magnetic permeability, 

A =area of coil and g= air gap. 

  The stiffness k in turn is determined by the length of the cable between the magnet 

and the anchor point, given by equation 2.3 and 2.4 as [15]:  

 

𝒌 =
𝟑𝑬𝑰

𝑳𝟑      Equation 2.3 

 

𝑰 =
𝟏

𝟏𝟐
𝒎(𝟑𝒓𝟐 + 𝑳𝟐)    Equation 2.4 

 

The restoring force F provided by this cable is then given by equation 2.5 as [15]: 

𝑭 = 𝒌 × 𝒙     Equation 2.5 

 

Where E= Elastic modulus of material, I = moment of inertia and L=length, r= radius, 

m=mass and 𝑥 is the lateral displacement. 
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The design process involves selecting an appropriate combination of all these 

parameters that will result in a spiral scanning diameter of at least 30mm. To help with 

this decision making process, hand calculations along with software simulations for both 

the mechanical and electromagnetic properties were performed. Approximating the 

mechanical stiffness of a coaxial cable without appropriate equipment is extremely 

difficult and no characterization data exists from which to roughly estimate its value. Since 

one of the future goals of this research was to build a scanning transducer imaging system 

with light delivery capability for PA imaging in addition to US pulse-echo imaging, as a 

starting point, it was assumed that the coils will have to deflect six 400µm optic fiber 

cables along with the coaxial cable for the US transducer. Mechanical simulations in 

Solidworks were carried out assuming a silicon cantilever is being bent rather than a 

copper coaxial cable, since the coaxial cables stiffness is going to be negligible compared 

to the stiffens of the optic fiber cables. Additionally, to make the entire system more 

compact, it was decided that the driving coils be placed vertically rather than horizontally 

as shown in figure 2.2 previously. To transfer the force to the cable, we now need to 

fabricate a structure that will hold the magnets at a right angle to the cable. The entire 

concept is illustrated in figure 2.3. 

  By varying different lengths x and y and l, it is possible to design the entire system 

so that the transducer can be scanned over a circle of 30mm diameter. The entire length of 

the magnet holder arm was arbitrarily chosen to be 35mm which gives a value of 17.5mm 

for x. Assuming a vertical deviation of 10mm for the magnet holder arm x, it is 

straightforward to determine that the length y of the coaxial cable will need to be 
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approximately 15*17.5/10 = 26.25 mm. Table 2.1 shows the calculated lengths y for 

various applied vertical deviations of the x arm of figure 2.3. 

 

 

 

 

Figure 2.3. . Conceptual illustration of the proposed scanning mechanism. A ‘magnet 

holder’ allows bending force to be transferred to the cable from coils aranged 

vertically as shown. The principal of operation remains the same as the previous 

setup shown in figure 2.2. 

 

 

 

 

Table 2.1. Calculated arm length y for given deflections x  to maintain a 15mm 

deflection of the transducer at the end of the y arm. 

x (mm) y (mm)

1 262.50

2 131.25

3 87.50

4 65.63

5 52.50

6 43.75

7 37.50

8 32.81

9 29.17

10 26.25
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  From table 2.1, it can be seen that a reasonable physical design can be obtained for 

a wide variety of magnet arm deflections.  

 

 

 

 

 

2.2 Design simulations and analysis 

Figure 2.4 shows the result of a Solidworks mechanical bending simulation on a 30mm 

long silicon cable acted upon by a force of 1 Newton on one of the ends of the magnet 

holder arm, which resulted in a vertical deflection of a little over 9mm. The cable diameter 

was chosen to be ~2mm. (Section 5 describes in detail the reasoning for choosing this 

dimension).  

 

 

 

 

Figure 2.4. Solidworks simulation of a 30mm long silicon cable acted upon by a force 

of 1 Newton on one of the ends of the magnet holder arm resulted in a vertical 

deflection of 9.15mm. The entire span of the magnet holder arm was arbitralily 

chosen to be 35mm to ensure the whole system remains compact. See section  5 for 

more detail on why diameter of rod was chosen to be 2mm. 
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From the datasheet of the magnet used (KJ Magnetics part number D22-N52) [16], 

the pull force between 2 magnets is known to be around 1 Newton at a distance of 1.54mm 

from the magnet. The graph of pull force vs distance is shown in figure 2.5  

 

 

 

 

Figure 2.5. Magnet pull force vs distance. At around .06in from the magnet, it 

generates a pull force of 0.22 lb, which equates to about 1.5mm and 1N respectively. 

Image courtesy: KJ magnetics. 

 

 

 

It is in the best interest of the design to maximize the possible pull force on the 

coaxial cable so that we have adequate margins to work with. The coils that are used in 

this setup are inductors sold by Digikey (part number M10176-ND) and have an 

inductance of 0.5 H , rated at 30mA and a DC resistance of 730 Ω. This was the largest 

inductor available in the catalog and was chosen because it has the largest number of turns. 

It is known that the inductance of a coil can be calculated with the formula [17]: 
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𝑳 =
𝝁𝑵𝟐𝑨

𝒍
     Equation 2.6 

 

Where 𝜇 is the magnetic permeability, N= number of turns, A= area of the coil and l is the 

length of the coil. 

 

 

 

 

Table 2.2. Calculating number of turns of he coil using equation 2.7- Wheeler's 

formula modified for a ferrite core. 

 

 

 

Back calculating given L= 0.5 Henry,  𝜇 = 4𝜋 × 10−7 × 640 H/m for ferrite core [20], 

𝐴 = 𝜋 × 0.0082 sq.m and l = 0.0223 m gives N=263 turns.  

 

 

 

 

Figure 2.6. Illustrating the terms in Wheeler's formula. Image courtesy : 

http://coil32.net/theory/faq.html 

 

 

 

Equation 2.6 holds true for a single layer solenoid. For a multilayer coil, we have 

Wheeler’s formula which empirically determines the coil inductance for an air core 

solenoid as [18, 19]: 

http://coil32.net/theory/faq.html
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𝑳 =
𝝁𝒐𝑵𝟐𝑹𝟐

𝟐𝝅(𝟔𝑹+𝟗𝒍+𝟏𝟎𝒘)
    Equation 2.7 

 

As illustrated in figure 2.6, N= number of turns, R=Average radius of coil, l= 

length of coil, w= width of coil winding and 𝜇𝑜 is the magnetic permeability of air. In this 

application, we will have a multiplication factor of 640 to the permeability which is the 

relative permeability of the ferrite core [20]. The result of this calculation using equation 

2.7 is shown in table 2.2 

From equation 2.1, it is possible to calculate the theoretical magnetic force 

generated by this coil. Substituting the values from table 2.2 and assuming the gap g = 

1mm and using the average radius R = 0.005 m, we get:  

𝑭 =
(𝟓𝟒𝟑𝟑 𝒕𝒖𝒓𝒏𝒔 ×𝟑𝟎 𝒎𝑨 )𝟐×𝟒𝝅×𝟏𝟎−𝟕 

𝑯

𝒎
×𝝅×.𝟎𝟎𝟓𝟐𝒔𝒒.𝒎

𝟐×(𝟏 𝒎𝒎)𝟐 = 𝟏. 𝟕 𝑵  Equation 2.8 

 

 

 

 

Figure 2.7. Force Vs distance for a ferromagnetic material with parameters taken 

from table 2.2 calculated using equation 2.8. 
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This is the approximate force experienced by a ferromagnetic material separated 

from the coil by 1mm in air. Figure 2.7 shows the variation of the force experienced by a 

ferromagnetic material for a range of distances from the coil.  The scanning mechanism 

will use permanent magnets which will alter the force from the calculations in equation 

2.8 and figure 2.7. The goal of this design process is to achieve approximately 1N of force 

to ensure that there is adequate deflection in the cable assembly which was obtained from 

the Solidworks simulation of figure 2.4. Calculating the force generated in this situation 

is more complicated and requires numerical computation and therefore cannot be easily 

approximated by hand calculations. Finite element analysis was carried out using the 

FEMM software tool and the resulting force generated on an NdFeB- N52 grade magnet 

by the coil was simulated. Figure 2.8 shows the simulation setup. The simulation depth 

was chosen to be 16mm- the thickness of the coil [21].  

 

 

 

 

Figure 2.8. FEMM simulation setup.  Magnet is separated from coil by 1mm. Initial 

simulations were run on a cylindrical magnet of 3.175mm diameter and height as per 

dimensions in datasheet of coil [21]. To increase the force generated, an additional 

magnet was used which is shown in simulation results in fig 2.11. 
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To ensure that the simulation represented the actual coil as closely as possible, it 

was initially simulated alone without any magnet and the DC resistance as well as the 

inductance was measured and matched with the values in the datasheet. The number of 

turns and the wire diameter was changed by trial and error until the inductance was close 

to 0.5 H and DC resistance was ~700 Ω.  

 

 

 

 

Figure 2.9. FEMM magnetic simulation and  measurement of inductance and DC 

resistance. Inductance measured= 0.493 H, DC R= 728 Ω, Current though coil = 

30mA (max rating of coil as per datasheet[21]) Number of turns = 4500. 

 

 

 

 

Figure 2.10. Force simulations on an NdFeB magnet cylindrical disk of length and 

diameter of 3.17mm seperated from the coil by 1mm. Current in the coil = 30mA. 
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The simulation results and measured values of the coil alone are shown in figure 

2.9.  The parameters measured were: Inductance = 0.493 H, DC R= 728 Ω which are close 

to the values of the actual coil being used. The current though the coil was set to 30mA 

(max rating of coil as per datasheet [21]) and the number of turns was found to be 4500 

by running simulations by trial and error. The computed number of turns in table 2.2 is 

5433 turns, which is reasonably close to the simulation value that produced the desired 

inductance of 0.5H.  Now that the inductance and DC resistance of the coil match the 

actual coil datasheet, the NdFeB magnet was added to the simulation. The magnet shown 

in figure 2.10 is a cylindrical disk of diameter and height of 3.175mm (as per datasheet 

[16]). Three simulations were run to determine the actual force experienced by the magnet 

from the current in the coil. The first simulation was run with zero current in the coil, the 

second and third with +30 and -30 mA respectively. Since the core material is 

ferromagnetic, the permanent magnet separated from it by a distance experiences a pulling 

force towards the core. As both arms of the magnet holder will experience this force in the 

neutral position, the additional force generated by the magnetic field produced by the 

current carrying coil is what is responsible for bending the cable assembly. Table 2.3 

shows force calculations done with a 3.17mm cylindrical NdFeB magnet. To calculate the 

actual force that will result in the bending of the cable, the force obtained with the 

simulation with zero current in the coil is subtracted with the force obtained with current 

flowing in the coil. Changing the direction of current flow- from +30mA to – 30mA results 

in a corresponding change in the direction of the force.  Additionally, simulations were 

run assuming a larger square magnet attached to this cylindrical magnet to increase the 
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generated force, shown in figure 2.11. From the simulations carried out here, it is clear 

that this combination of coil and magnets should produce around 1N of peak force in each 

arm which will be adequate to bend the cable assembly  

 

 

 

  

Table 2.3. Force calculation for a small 3.17mm cylindrical magnet  resulting in a 

0.5N force for each direction of current flow in the coil and an additional square 

magnet (6mm square by 1mm thick)- indicated as "large magnet" in table , to 

increase the pulling force to 1N. 

 

 

 

 

 

 

 

2.3 Design optimization 

The simulations and calculations so far have assumed that the magnet assembly is free to 

move only along one axis- the axis of the coil. However in practice, this is not going to be 

true as the cable will experience torsion forces even with a small misalignment of the 

magnet and the center of the coil causing it to twist and greatly reducing the desired 
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deflection amplitude as well as accuracy in the desired direction. This is illustrated in 

figure 2.12 

 

 

 

 

Figure 2.11. Simulation from larger square magnet attached to the earlier smaller 

magnet to increase force to ~1N. 

 

 

 

 
Figure 2.12. Torsion of the entire assembly will cause undesirable and uncontrolled 

deflection of the cable asembly. 
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To overcome the effect of torsion a gimbal mechanism was created to guide the cable  

 

 

 

 

Figure 2.13. Gimbal mechanism laser cut in acryllic used to isolate  the x and y axis 

forces and prevent torsion. The first prototype had pivots  ( circled in red ) which 

were stiff  metal wires cut to size by hand. Repeated cycling of the pivots caused 

excessive wear in the acryllic joints and caused loss of alignment. 

 

 

 

 

Figure 2.14. CAD drawing of laser cut pattern on a 300 micron plastic sheet to form 

hinges with built in stiffness. Stacking multiple sheets on top of eahc other increases 

the hinge stiffness, emulating the torsion of a rectangular cantilever beam. 
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assembly along the x and y directions independently and isolate the two forces from each 

other. The gimbal mechanism is shown in figure 2.13. 

Despite using the gimbal mechanism, after several experiments, it was determined 

that the coaxial cable provides uneven stiffness along the x and y axes, causing an unstable 

scanning pattern. Also, anchoring the cable so that it presents an equal stiffness in every 

direction as well as ensuring that the cable returns to the exact same zero position at the 

end of each scan cycle proved to be extremely difficult with this setup.  

To overcome these issues, the pivots in the gimbal mechanism had to be fabricated 

such that they provided additional stiffness and can withstand many cycles of movement. 

This was achieved by cutting sheets of 300 micron plastic patterned on a laser cutting 

station as shown in figure 2.14.  This laser cut plastic sheet is sandwiched between the 

acrylic frame shown in figure 2.13 and held together with screws. Mechanical simulations 

were re run on this structure to determine the dimensions of the hinge that would result in 

around 5mm deflection at the magnet arm with 1N of applied force. Figure 2.15 shows the 

SolidWorks simulation result along both axes. The hinge width used was 1.5mm, with a 

height of 0.5mm (roughly 2 sheets stacked on top of each other). To increase the linearity 

of the deflection, it is important to limit the vertical deflection of the magnet arm as much 

as possible since the magnetic force follows an inverse square relationship with distance 

(figure 2.7). This means increasing the magnet arm-to-transducer length (length y in figure 

2.3) to compensate for the reduced magnet arm deflection.  
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Figure 2.15. Solidworks simulation for the gimbal mechanism with the sandwiched 

plastic sheet hinge. Force applied =1N, Arm length from center= 17.5mm (35mm 

total). Hinge width= 1.5mm, hinge thickness = 0.5mm resulting in a 5mm deflection 

of the magnet arm (green in figure). 
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3. SCANNING PROBE CONSTRUCTION AND CHARACTERIZATION 

3.1 Scanning probe construction 

Figure 3.1 shows the design that was used to build the final prototype. It incorporates the 

gimbal mechanism presented in section 2.3 into the vertically mounted coils explained 

earlier. The gimbal mechanism has thin plastic sheets or around 300 micron thickness (red 

in figure 3.1) in between the rigid acrylic frame (grey) which are responsible for providing 

an even restoring force in all directions of deflection and also to ensure that the probe 

returns to the same zero position after each scan.. The transducer coaxial cable (white) is 

pushed through a rigid hollow tube (blue) and the transducer tip (yellow, extreme right). 

The rigid tube was incorporated to ensure there is no additional bending of the coaxial 

cable as it scans a circular or longitudinal pattern, which will prevent nonlinearity of the 

scan pattern with respect to applied voltage to the coils. The tube itself is attached to the 

gimbal mechanism using silicone glue. The “cable support” section (grey, extreme left) 

anchors the coaxial cable at one end to the extreme left. Its length can be varied to change 

the effective stiffness of the cable seen by the magnet actuation mechanism. The cable is 

held in the support structure with silicone glue. The entire structure is made by laser cut 

acrylic of 2mm thickness (figure 3.2) and held together with 1mm diameter steel screws 

and bolts. The hollow plastic tubing (shown in blue in figure 3.1) can also be used to hold 

optical fibers in place for light delivery for photoacoustic imaging. This is explored in 

detail in section 5. Scanning performance and mechanical characterization of the scan 

system is discussed in section 3.2 
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Figure 3.1. Design used to build  the final prototype. 
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Figure 3.2. Laser cuting the components used in the construction of the probe. 

 

 

 

 

Figure 3.3. Close up view of the scanning mechanism showing the gimbal, magnets 

and drive coils along with the spacers used to adjust the distance between the 

magnets and the coils. Yellow arrow is direction of magent motion. 



 

27 

 

 

Figure 3.4. Fully assembled US scanning probe mechanism. 

 

 

 

 

 

3.2 Scanning angle characterization 

To determine the actual performance of the design, we look at the deviation of the 

scanning probe end with respect to the applied voltage. Since the DC resistance of these 

coils is around 750 Ω, the signal generators alone are sufficient to provide the driving 

current since they are rated to drive a 50Ω load up to 10V pk-pk. No current amplifier was 

used to drive the coils.  The setup used to characterize the scanning pattern and deviation 

with applied voltage is shown in figure 3.5. The applied sinusoidal voltage was varied 

from 1V to 10 V pk-pk in steps of 1V and the resulting horizontal deviation of the laser 

spot was measured. The resulting deflection angle was calculated using simple 

trigonometry tangent function since the vertical length of the cable is known. The 

maximum deflection occurs at the mechanical resonant frequency of the entire setup. The 
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resonant frequency of this setup was measured manually by keeping the driving voltage 

to the maximum 10V from the signal generator, varying the frequency and visually 

observing the resulting deflection traced by the laser spot 

 

 

 

 

Figure 3.5. The scanning angle is characterized by visually observing the laser spot 

traced on a scale placed inside the water container in thich the probe is being 

scanned. By simultaneously applying a phase shifted voltage to the perpendicular 

coils, it is possible to scan the probe in a circular pattern or create a linear B-Scan 

with different angles.  

 

 

 

A vertical cable length of 90mm was chosen for this prototype and the resulting 

resonant frequency was found to be 7.7Hz. Table 3.1 shows the deviation recorded for 

each voltage applied to the coils. A maximum deflection of ~ 28mm was achieved. The 

equivalent angle at the gimbal is calculated and plotted in figure 3.6. The angular deviation 

is found to be fairly linear with applied voltage, but there is still some nonlinearity due to 
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the uneven stiffness of the coaxial cable feeding the ultrasound transducer. A camera was 

placed under the scanning probe and photographs taken in long exposure mode (>1 sec) 

to generate trails from the CW laser coupled to the thin optic fiber shown in figure 3.5. 

 

 

 

 

Table 3.1. Characterization data of probe end deflection with respect to voltage 

applied to coils. Voltage is peak to peak. 

 

 

 

 

Figure 3.6. Calculated angular deflection with applied voltage. Maximum angle of 

deflection is 8.8 degrees. Dashed line represents ideal characterestics. 
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Figure 3.7 and 3.8 show the scan pattern shape produced in linear B-scan mode 

and circular scanning which was achieved by varying the phase difference between the 2 

sets of coils. 

 

 

 

 

Figure 3.7. Scanning pattern in B-Scan mode. 

 

 

 

 

Figure 3.8. Circular scanning pattern with varying scan diameters. 
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It is possible to produce scan pattern ranging from a straight line to an ellipse to 

circular by changing the phase and amplitude of the driving coils. 

 

 

 

 

Figure 3.9. Part of the setup used for generating characterization data. 

 

 

 

A photograph of the setup is shown in figure 3.9. A longer and more flexible thin 

plastic straw of 200 mm length was used as the hollow plastic tube in the setup to reduce 

the deflection angle of the magnets in an attempt to further improve linearity and scan 

range. While the lower mass and longer length resulted in a larger 32mm deflection (vs 
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28mm for this setup), the deflection was not very linear with applied voltage as shown in 

figure 3.10. This behavior was due to the bending of the tube itself as it was scanned. If 

the tube length is increased to achieve larger scan, it is necessary to maintain its stiffness. 

Using a carbon fiber tube is one alternative, but was not explored in this research. 

 

 

 

 

Figure 3.10. Deflection angle characterization data for 200mm long arm. Results 

are not as linear compared to stiffer arm setup shown previously in figure 3.6. 

 

 

 

 Although the scan patterns in figure 3.8 look more or less circular, there is slight 

distortion in the pattern which can be seen more easily in the stacked image shown in 

figure 3.11. The 3D image reconstruction algorithms used to create the final 3D image 

after scanning the transducer needs the probe to scan very precise circular patterns each 

varying by less than 0.5mm in diameter. This is needed because the image reconstruction 

algorithm is open loop and determines the position of the transducer by looking at the 
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voltage amplitude and phase of the driving coils. 

 

 

 

 

Figure 3.11. Stacked compiosite image showing distortion of circular pattern as 

diameter increases. 

 

 

 

  The reason for this distortion is the uneven stiffness presented by the coaxial cable 

attached to the transducer. Since it is a commercially available device, it is not possible to 

change the coaxial cable and this is a limiting factor in the scanning probe’s performance. 

Maintaining a circular path also required different adjustments of the voltage and phase of 

the x and y axis coils for each diameter. Figure 3.12 shows the voltage changes on the 

coils as well as the corresponding phase difference that had to be introduced to maintain 

the circular shape of the scan pattern. Since this system is completely open loop, any 
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mechanical disturbance or even a slight shift in the cable would cause the circular scan 

pattern to get distorted and would require recalibration. 

 

 

 

 

Figure 3.12. Voltage and phase changes needed to maintain a circular scan pattern 

as the diameter is increased. X axis represnets an increasing circle diameter traced 

out by the probe. 
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4. ULTRASOUND IMAGING RESULTS 

4.1 Imaging setup and data acquisition 

To test the imaging capability of the setup, a 2D B-scan was performed on a 0.9 mm pencil 

lead as a target.   

 

 

 

 

Figure 4.1. Target used for B-scan imaging. The acryllic holder has porvision to hold 

several pencil leads of 0.9mm diameter and varying heights and seperations. 

 

 

 

 

Figure 4.2. Conceptual diagram showing arrangement of pencil lead targets and scan 

path. The leads were seperated both along the x axis and the depth Z axis. 
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Figure 4.3. Multiple B-scan paths for a single pencil lead target.The 45 and 90 degree 

paths will result in a larger cross section than the 0 anf 90 degree paths due to the 

finite width of the pencil lead. 

 

 

 

A picture of the target is shown in figure 4.1. One, two and three pencil leads were 

imaged together in three separate runs to test for resolution. The test setup is shown in 

figure 4.2. Four different B-scans were also performed on the pencil lead target as shown 

conceptually in figure 4.3 to demonstrate the programmability of the scan direction of the 

probe. The phase of the driving coils was changed so that the probe scanned the path 

shown in the red arrows for each combination of phase angle between the 2 sets of coils. 

The pencil lead target was offset from the 45 degree scan path by 30 degrees as shown in 
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figure 4.3 to ensure that only the cross section of the pencil lead was imaged and that no 

scan path would coincide with the entire length of the pencil lead to ensure consistency in 

the imaging results. Multiple B-scans at smaller angles covering the entire target can be 

potentially stacked together to build a 3D image of the target. The change in scan angle is 

achieved by varying the phase of the driving coils as shown in figure 4.4. A zero and 

ninety degree scan is performed by simply driving either of the 2 perpendicular pairs of 

coils. 

 

 

 

 

Figure 4.4. Driving current of each individual coil for desired scan direction. Red 

and Blue are ON with a 180 degree phase shift, Grey is off. 
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Figure 4.5. Overall US data acquisition setup. 

 

 

 

To achieve +/- 45 degree scans, a phase difference of 180 degrees is given to the 

adjacent sets of coils. This is illustrated in figure 4.4 to show how the individual coils are 

driven to achieve the desired scan direction. The overall setup for the data acquisition is 

shown in figure 4.5. A US pulser/ receiver (5072PR, Olympus) is used to generate and 

receive the echo ultrasound pulses. The transducer used is rated at 10 MHz and a pulse 

repetition rate of 2 KHz was used.  The pulser/receiver is connected to a data acquisition 

card (DAQ) connected to a PC running Labview via a GPIB bus. The Labview code 

determines the position of the US scanning probe by sampling the sinusoidal drive signal 

of one of the pairs of the coils shown schematically in figure 4.5. Since this is an open 

loop system, the assumption is that the driving sinusoidal signal is an accurate 

representation of how the position of the scanned transducer head changes with time, 

which is necessary for successful image reconstruction.  The image is further processed 

by a Matlab script that runs an SAFT (Synthetic aperture focusing technique) algorithm 

that helps in improving contrast and resolution of the image. SAFT is discussed in more 

detail in section 4.2 
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4.2 Image reconstruction using SAFT 

Synthetic aperture focusing technique (SAFT) is a method of image enhancement used in 

US imaging which improves lateral resolution by processing several successive 

measurements. It works by mimicking acoustic lenses used for focusing US beams at a 

point by using software algorithms rather than physical hardware.  The main benefits of 

SAFT are improvement of lateral resolution and improvement of contrast by reducing 

backscattering effects [22]. The most common implementation of SAFT uses a delay and 

sum (DAS) of the time domain signal and is most commonly used in phased arrays. In this 

implementation, the US probe is a sort of a virtual phased array since it is mechanically 

scanned along a particular axis to be imaged, however, the principle is still the same as a 

traditional phased array.  Figure 4.6 reproduced from ref [22] shows the 2D geometry of 

an array of US transducers imaging a target in the region of interest (ROI) 

The US transducer is scanned along the y axis and transmits the US pulses along 

the x axis as shown in figure 4.6 For the US beam to be focused in the ROI, the SAFT 

algorithm works by performing a sum of the time shifted signals of the echo it receives. 

The time delays between each received signal from the observation point can be expressed 

in equation 4.1 as:[22] 

 

𝟐

𝒄
(√𝒙′𝟐 + (𝒚′ − 𝒖𝒏)𝟐 − 𝒙′)   Equation 4.1 
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for n = 0, 1, ..., L – 1, where L is the number of element positions, 𝑟𝑛 is the straight line  

distance from the element, 𝑢𝑛 is the position of the transducer.  

 

 

 

 

Figure 4.6. 2D cross section view of a linear phased array imaging a target in the 

region of interest (ROI). Image reproduced from ref[22]. 

 

 

 

By summing all the echo signals received by the transducer at all different scan 

positions, and correcting for the time delay using equation 4.1, the SAFT algorithm 

enhances contrast since the backscatter component of the received signal gets cancelled 

out since it is random in nature compared to the actual signal from the target, which gets 

further enhanced by the summation process. 
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4.3 US imaging results 

Figure 4.7 shows the results obtained by a single B-scan for the target configured as shown 

in figure 4.2 

 

 

 

 

Figure 4.7. 2D B-scan image results of a 0.9 mm pencil lead target for 1, 2 and 3 leads. 

Note different depths (vertical axis) and similar thickness of each lead ( horizontal 

axis) All dimensions are in mm. 
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Figure 4.8. B-Scan imaging results for different scan angles shown in figure 4.4. X 

axis is target width and Y axis is depth in mm. 

 

 

 

Separate B-scans were performed with one, two and three 0.9mm diameter pencil 

leads as targets. The vertical axis represents depth and the horizontal axis the width.  It 

can be seen in figure 4.7 that the second and third images have the pencil leads at different 

depths. Figure 4.8 shows the multiple scan results of a single pencil lead in the 

configuration of figure 4.3.  From the imaging results, it can be seen that +45 and 90 

degree scans are slightly wider than the other two scans. This is because at these scan 

angles, as seen from figure 4.3, the apparent cross section is larger than at 0 and -45 

degrees. By stacking several such B-scans at a smaller separation angle, it is possible to 

capture the entire cross section of a target and ultimately generate a 3D image. Imaging 

was not possible with the circular scan pattern due to instability discussed in the previous 

section. 
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5. INTEGRATION OF OPTICAL LIGHT DELIVERY 

5.1 Integrating optical fibers for light delivery 

Photoacoustic Imaging (PAI) makes use of the photoacoustic effect to create high contrast 

optical-absorption images of biological samples at a penetration depth up to several 

centimeters [23, 24]. 

 

 

 

 

Figure 5.1. Principle behind PAI and the system used here. The optic fibers deliver 

the optical energy to the target to be imaged while being flexible enough to be 

mechanically scanned in a B-scan/ circular pattern. 

 

 

 

In PAI, the target (e.g. tissue) to be imaged is illuminated with a short 

(nanosecond) pulse of light from a laser which creates a highly localized area of heating 

in the target. This heating subsequently causes a rapid pressure rise due to thermo-elastic 
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expansion, which in turn propagates as an ultrasonic acoustic wave referred to as a 

photoacoustic wave. This photoacoustic wave is then detected by an ultrasound transducer 

which is subsequently processed to reconstruct an image of the sample. Figure 5.1 gives 

an overview of the proposed PAI system utilizing optical fibers for light delivery. To 

generate a strong PA signal from the target, the ultrasound receiver must be as directly 

above the region on the target receiving the light pulse as possible. 

 

 

 

 

Figure 5.2. Photoacoustic imaging probe / cable assembly concept. 

 

 

 

The previous setup in section 2.3.1 is most suitable only for imaging using pulse-

echo. i.e, imaging using purely ultrasound transmission and receive echo from the target. 

This setup is not optimized to scan an optical fiber to enable photoacoustic imaging.  To 

overcome this limitation, it is proposed here to construct a PA imaging probe that 

incorporates an ultrasound transducer as well as optical fibers for light delivery. As shown 
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in figure 5.2, the PA imaging probe is made up of 6 optic fiber cables whose core diameter 

is 400µm arranged in a hexagonal pattern around a single coaxial cable that connects to a 

commercially available PZT ultrasound transducer. The entire cable assembly is held 

together by spacers printed on a high resolution 3D printer in plastic. 

Solidworks mechanical simulations were run to determine that 6 cables arranged 

in a hexagonal pattern were the smallest number of cables that would provide equal 

stiffness in all directions when the whole assembly is subjected to bending. Figure 5.3 

shows the mechanical bending simulation results carried out on such a configuration of 

cables.  

 

 

 

 

Figure 5.3. Solidworks simulation results for bending of 6 identical cables arranged 

in a hexagonal pattern (in addition to one center cable). X and Y axis forces resulted 

in the same deviation showing that the mechanical stiffness is identical in all 

directions in this configuration. 

  

 

 

The square block on the bottom is subjected to force separately in the X and Y 

directions and the deflection is found to be the same in both cases. It is important for the 
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probe to have equal stiffness in all directions if it is going to be scanned in a circular/spiral 

pattern for 3D imaging. Unequal stiffness will result in a non-circular scan pattern and 

will make image reconstruction difficult.  

 

 

 

 

Figure 5.4. CAD drawing showing overall structure of PA probe scanning 

mechanism. a) Cable locking mechanism b) Magnetic coil holder plates c) Magnetic 

coils d) Magnet holder for probe bending actuation e)PA imaging head- Ultrasound 

transducer + polished optic fiber. 

 

 

 

Figure 5.4 shows the overall proposed system for the scanning mechanism with 

optical light delivery capability for PA imaging. As before, four coils are held vertically 

between two acrylic laser cut sheets. The PA imaging probe is suspended through this 

structure and anchored at a point above the coils by a locking mechanism that has the 

capability to twist and be tightened to hold all the cables secure while providing nearly 

equal force in all directions. Finally, a cross shaped permanent magnet holder attaches to 

the cable assembly which enables the transfer of force from the coils to bend the cable 

along the desired axis.  
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Figure 5.5. Simulation carried out on cable structure with7 Silicon cables arranged 

in a hexagonal pattern. A 1 Newton force at one of the ends of the magnet holder 

arms (shown with blue arrows) produced only 0.3mm deflection. 

 

 

 

When simulations were initially run on solid works for the bending of the 7 cable 

assembly with a 1 Newton force, it was found that the deflection in the cable was 

extremely small and is shown in figure 5.5.The reason for such a small deflection is 

possibly due to the ideal nature of anchor points for all the cables (shown in green arrows 

in figure 5.5) in the simulation. In reality, this anchor point is made up of a spacer with 

holes where the cables are able to slide through. The assumption is that there is enough 

friction for the cables to slightly slide in and out of the anchor holes as the whole cable 

assembly bends. If this did not happen, it would be impossible for the cables to bend to 

any significant degree.  To simplify the simulation, it was decided to replace the 6 cables 



 

48 

 

of diameter 400µm each and the coaxial cable in the center with one single cable to 

equivalent thickness which would theoretically offer a similar level of stiffness. 

The force constant k of a cantilever beam fixed at one end and acted upon a force 

perpendicular to its length at the other end is given by [15]:  

𝒌 =
𝟑𝑬𝑰

𝑳𝟑     Equation 5.1 

 

Where E= Elastic modulus of material, I = moment of inertia and L=length. The moment 

of inertia I is in turn given by [15]: 

I= 
𝟏

𝟏𝟐
𝒎(𝟑𝒓𝟐 + 𝑳𝟐)   Equation 5.2 

 

Where r= radius of the rod, L= Length and m=mass. From (5.1) and (5.2), we can see 

𝒌 ∝  
(𝟑𝒓𝟐+ 𝑳𝟐)

𝑳𝟑     Equation 5.3 

 

Since the cable assembly consists of 6 optic fiber cables arranged circularly around 

a coaxial cable, as a simplification, it was assumed that we have 7 cables all bending 

together in parallel.  This is equivalent to 7 springs connected together in parallel. In this 

configuration, the spring constants are added together to get the equivalent k for the entire 

system.  If all 7 cables are to be replaced by one equivalent cable of larger diameter and 

same length. In equation 5.3 given that length L is a constant. The stiffness k is only 

dependent on r. If k’ denotes the new equivalent stiffness of this setup with a 

corresponding radius r’ 

𝒌′ = 𝟕 × 𝒌     Equation 5.4 

Which gives from 5.3: 
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𝒓′𝟐 = 𝟕 × 𝒓𝟐     Equation 5.5 

 

Or,  r'= √𝟕 × 𝒓     Equation 5.6 

 

If r= 400 µm, then, r’ becomes 1.058 mm, which is the basis for the simulation in 

section 2.2 shown in figure 2.4, which yields a 10mm deflection with a 1N force acting on 

a silicon rod of 30mm length, which was the starting point for the entire design process. 

Since the PZT transducer used for ultrasound detection and pulse transmission used here 

comes pre-fabricated with a BNC connector at the other end, it was not possible to create 

a spacer with a hole diameter large enough to hold only the cable and then push it through 

like the optic fibers. A novel interlocking mechanism was designed to accommodate both 

the fibers and the coaxial cable into a tightly bound single cable so that it can be scanned 

mechanically as a single entity. 

 

 

 

 

Figure 5.6. PA probe assembly process. The PZT transducer cable could not be 

pushed through the small  holes like it was done for the optic fiber cables (blue) , so 

a novel interlocking mechanism had to be devised to enable the incorporation of the 

fibers and the coaxial cable 
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Figure 5.7. 3D printed Spacers (left) and assembled PA probe (right). 

 

 

 

 

 

 

5.2 Photoacoustic testing 

To test the PA imaging capability of this probe, it was fixed vertically onto a stand and 

the target was scanned on an x,y scanning stage. The fibers were coupled into a pulsed 

laser and LabView stepped the x,y stage in a zigzag pattern over a target and also acquired 

data from the PZT transducer from an oscilloscope. Matlab was then used to create a 

surface plot of the raw data acquired. The setup is shown in figure 5.8. Figure 5.9 shows 

the target used for PA imaging. It consists of two black tape pieces 5mm x5mm stuck on 

2 platforms separated by a height of ~10mm. Figure 5.10 shows the pulse received by the 

transducer in the PA probe at a distance of approximately 20mm from the target. Depth 

information is gleaned from the time taken for US pulse to travel to the transducer once 

the laser hits the target. Figure 5.11 shows a surface plot of the raw data collected from 

the oscilloscope once the PA probe has traversed across the entire target 
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Figure 5.8. Setup used to test the PA imaging probe. 
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Figure 5.9. Imaging target for Photoacoustic imaging.  

 

 

 

 
Figure 5.10. Oscilloscope screenshot showing PA pulse received by the ultrasound 

transducer after the laser has fired and struck the target. At a distance of more than 

2cm. Depth information is gleaned from the time taken for US pulse to travel to the 

transducer once the laser hits the target. 

 

 

 

It can be clearly seen that the gathered data matches closely with the actual target 

shown in figure 5.10. The purpose of this experiment was to demonstrate that this probe 

is capable of generating a PA image and it was successfully accomplished 
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Figure 5.11. PA pulse data of target shown in figure 2.24. Z axis is time of occurance 

of the PA pulse ( indirectly the depth, since it can be calculated given speed of sound 

in water.) X and Y is distance. The color represents amplitude of PA signal voltage. 

 

 

 

 

 

 

5.3 Photoacoustic probe scanning 

In addition to building a scanning US probe as shown in figure 3.9, the PA probe described 

here so far was also assembled into the scanning mechanism in the configuration shown 

in the CAD illustration in figure 5.4 initially. However, the mechanical bending of the 

probe was found to be inadequate since there was torsion in the cable as explained in 

section 2.3 .This initial prototype is shown in figure 5.12. Using the gimbal mechanism in 

figure 2.13, where the gimbal hinges provide no stiffness of their own, the scanning probe 

assembly was rebuilt with the PA probe. 
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Figure 5.12. Initial prototype of scanning probe without the gimbal mechanism 

which resulted in torsion of the PA probe and very little deflection. 

 

 

 

The overall stiffness of the PA probe however, proved to be too high for the magnet 

and coil mechanism to generate enough force and achieve a deflection of 30mm. The 

maximum deflection obtained from the second prototype with the gimbal mechanism was 

a ~15mm diameter circular scanning pattern, which is not adequate for good coverage of 

the target. The PA probe assembled into the gimbal mechanism is shown in figure 5.13.  

This setup relies on the stiffness of the probe assembly which consists of the optic fiber 

cables as well as the coaxial US transducer cable to provide the restoring force to bring 

back the probe to its zero position.  
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Figure 5.13. PA probe incorporated with the gimbal scanning mechanism. 

 

 

 

 

An issue noted while testing this setup was that the bending of the cable was not 

repeatable in all directions, causing an instability in the scanning pattern. The reason for 

this behavior is due to slight variation in the hole sizes for the 3D printed plastic spacers 

(figure 5.7). Some holes were slightly larger than the optic fiber cable diameter, which did 



 

56 

 

not offer much frictional resistance while other holes were smaller and offered so much 

resistance that the cable had to be pulled through with considerable application of force 

using pliers during the assembly process.  

 

 

 

 

Figure 5.14. Scanning pattern generated by the photoacoustic imaging probe being 

scanned in a circular pattern taken with a  3 second exposure photograph. The 

scanning diameter was limited to about 15mm and the uneven cable stiffnes resulted 

in insatbility. The multiple rings are due to light emerging out of each optic fiber 

cable. 

 

 

 

 This uneven frictional force acting on the PA probe assembly as it bends to form 

a circular scanning pattern increases the apparent stiffness of the cable assembly ( as seen 

in the ideal situation in the simulation shown in figure 5.5) or at times provided un-

repeatable scanning patterns as the cables slid and grabbed the plastic spacer holes 

randomly. The scan pattern produced is shown in the long exposure photograph in figure 

5.14. A possible remedy for this issue was to create spacers by etching silicon to improve 

precision, but was not explored in this research and is one of the future improvements that 
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can be done to improve performance. 

 Due to these complications with the unreliable scanning of the photoacoustic 

probe, for the purpose of this research, it was decided that the scanning mechanism would 

be limited to pulse echo ultrasound detection only. Section 3.2 went into the details of the 

mechanical scanning characterization of the US only probe. 
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6. SUMMARY AND FUTURE WORK 

In this research, a low cost scanning mechanism that enables the scanning of a single 

element transducer for ultrasound imaging was developed. It is capable of generating 

either B-scan patterns at several different angles or circular/ spiral patterns by varying the 

phase and amplitude of the driving coils. This capability makes this scanning probe 

software programmable to enable scanning a variety of shapes. Pulse echo ultrasound 

imaging was carried out in B-scan mode at multiple angles on a 0.9 mm pencil lead. The 

same design was further shown to be expandable to photoacoustic imaging by 

incorporating optic fiber cables into the imaging probe. While this particular prototype 

was unable to fully scan the ultrasound transducer in a perfectly circular path due to 

mechanical limitations, the prototypes developed as part of this research can be used as a 

platform for further refinement of the design.  

Several improvements can be made to enhance the accuracy and robustness of the 

scanning mechanism, mainly by improving the materials used in the construction such as 

laser cut acrylic and 3D printed plastic which has a relatively large error in the dimensions 

produced.   

Another aspect of the design that can be improved is to make the whole scanning 

system closed loop by using PID control. A position error sensor can be easily 

incorporated into the magnet holder arm of the scanning mechanism using a magnetic or 

capacitive transducer that converts the angle position of the magnet holder into a 

corresponding analog error voltage value. 
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Incorporating probe position information will also help simplify and increase the 

robustness of the image reconstruction algorithms, since image formation requires both 

the actual ultrasound data as well as position information to successfully reconstruct a 3D 

image of the target.  Having the exact relative positon information will allow the scanning 

probe to be scanned in any arbitrary shape and still generate coherent images. This is very 

useful especially when the imaging probe is going to be hand held and used for in-vivo 

imaging, where hand holding the probe will introduce mechanical shock and vibrations 

which will alter the shape of the scanning pattern.  

A commercially viable design will need to be completely immersed in water to 

make it truly hand hold-able. In such a case, the transducer needs to be placed in water to 

to match the acoustic impedance of the target to the transducer. This can be achieved by 

using something as simple as a plastic PVC tube or equivalent material to house the entire 

scanning mechanism and fill it with water. Doing this will change the mechanical 

characteristics of the scanning mechanism due to the damping of the fluid and the coils 

will also need to be waterproofed by coating the electronics in an insulating material. Since 

the magnetic permeability of water is very close to that of air, the magnetic force generated 

will be almost the same but the deflection of the probe and the resonant frequency will be 

significantly lower due to resistance provided by the surrounding water. Furthermore, the 

coils used in the setup are capable of being driven at higher voltages than what was used 

in this study, which will significantly increase the generated driving force. 

  



 

60 

 

REFERENCES 

[1] S. N. Narouze, “Basics of Ultrasound Imaging,” in Atlas of ultrasound-guided 

procedures in interventional pain management, New York: Springer, 2011, pp. 13–

15. 

[2] “A,B and C scan displays,” Classle.net, Apr-2009. [Online]. Available at: 

https://www.classle.net/book/ab-and-c-scan-displays. [Accessed: May-2015]. 

[3] C. Frazier and W. O'brien, “Synthetic aperture techniques with a virtual source 

element,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency 

Control., vol. 45, no. 1, pp. 196–207, 1998. 

[4] J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic 

aperture ultrasound imaging,” Ultrasonics, vol. 44, no. 1, pp. E5–15, 2006. 

[5] J. Woo, “A short History of the Real-time ultrasound scanner,” Obstetric 

ultrasound -- a comprehensive guide to ultrasound scans in pregnancy, 1998. 

[Online]. Available at: http://www.ob-ultrasound.net/history-realtime.html. 

[Accessed: May-2015]. 

[6] T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” 

Ultrasound in Medicine & Biology, vol. 24, no. 9, pp. 1243–1270, 1998. 

[7] D. Turnbull and F. Foster, “Fabrication and characterization of transducer 

elements in two-dimensional arrays for medical ultrasound imaging,” IEEE 

Transactions on Ultrasonics, Ferroelectrics and Frequency Control IEEE Trans. 

Ultrason., Ferroelect., Freq. Contr., vol. 39, no. 4, pp. 464–475, 1992. 

[8] G. Lockwood, J. Talman, and S. Brunke, “Real-time 3-D ultrasound imaging using 

sparse synthetic aperture beamforming,” IEEE Transactions on Ultrasonics, 

Ferroelectrics and Frequency Control IEEE Trans. Ultrason., Ferroelect., Freq. 

Contr., vol. 45, no. 4, pp. 980–988, 1998. 

[9] Reinstein, D. Z., Silverman, R. H., Raevsky, T., Simoni, G. J., Lloyd, H. O., Najafi, 

D. J.,  & Coleman, D. J. , “Arc-scanning very high-frequency digital ultrasound 

for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ 

keratomileusis”, Journal of Refractive Surgery, vol. 16, no. 4, pp. 414-430, 2000 



 

61 

 

[10] Z. Song, “Three-Dimensional Ultrasound Imaging,” in Handbook of 3D machine 

vision optical metrology and imaging, Boca Raton: CRC Press, Taylor & Francis 

Group, 2013, p. 304. 

[11] A. Fenster and D. Downey, “3-D ultrasound imaging: a review,” IEEE Eng. Med. 

Biol. Mag. IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 6, 

pp. 41–51, 1996. 

[12] Q. Huang, Y. Zheng, M. Lu, and Z. Chi, “Development of a portable 3D ultrasound 

imaging system for musculoskeletal tissues,” Ultrasonics, vol. 43, no. 3, pp. 153–

163, 2003.  

[13] A. Fenster, K. Surry, W. Smith, J. Gill, and D. B. Downey, “3D ultrasound 

imaging: applications in image-guided therapy and biopsy,” Computers & 

Graphics, vol. 26, no. 4, pp. 557–568, 2002. 

[14] R. Clarke, “The force produced by a magnetic field,” Coils, 2010. [Online]. 

Available at: http://info.ee.surrey.ac.uk/workshop/advice/coils/force.html. 

[Accessed: May-2015]. 

[15] R. J. Roark and W. C. Young, “Beams: Flexure of Straight Bars,” in Roark's 

formulas for stress and strain, 7th ed., New York: McGraw-Hill, 2002, p. 199. 

[16] “D22-N52 Specification Sheet,” Product Performance Specifications, 2015. 

[Online]. Available at: https://www.kjmagnetics.com/specification.sheet.php. 

[Accessed: May-2015]. 

[17] R. Nave, “Increasing Current in Coil,” Inductance of a coil of wire, 2012. [Online]. 

Available at: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/indcur.html. 

[Accessed: May-2015]. 

[18] H. Wheeler, “Formulas for the Skin Effect,” Proceedings of the IRE, vol. 30, no. 

9, pp. 412–424, 1942. 

[19]  H. Wheeler, "Simple Inductance Formulas for Radio Coils," Proceedings of the 

I.R.E., vol. 30, no. 9, pp. 1398-1400, 1928. 

[20] I. R. Sinclair and J. Dunton, “Inductive and Tuned Circuit Components,” in 

Practical electronics handbook, 6th ed., Amsterdam: Elsevier/Newnes, 2007, p. 66. 



 

62 

 

[21] “Part number 70F501AF-RC,” Varnished Chokes, 2003. [Online]. Available at: 

http://www.bourns.com/data/global/pdfs/70f_series.pdf. [Accessed: May-2015]. 

[22] T. Stepinski and F. Lingvall , "Synthetic aperture focusing techniques for 

ultrasonic imaging of solid objects," Synthetic Aperture Radar (EUSAR), 2010 8th 

European Conference on , vol., no., pp.1,4, 7-10 , 2010 

[23] M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. 

Instrum. Review of Scientific Instruments, vol. 77, no. 4, pp. 041101–041101, 

2006. 

[24] H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic 

microscopy for high-resolution and noninvasive in vivo imaging,” Nat Biotechnol 

Nature Biotechnology, vol. 24, no. 7, pp. 848–851, 2006. 

 

 

 


