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ABSTRACT 

Chinese tallow (Tradica sebifera) is an established invasive species in 

many southern woodlands in the United States. Its ability to adapt and spread 

quickly into disturbed areas has made it an invasive species of much concern to 

land managers. Riparian/floodplain environments have been affected by tallow 

as much as upland areas and entail a high degree of Chinese tallow invasion. 

Remote sensing is a tool that may provide a means of detecting, or classifying, 

Chinese tallow. There have been very few studies that have attempted to map 

Chinese tallow in a floodplain environment.  

This research focused on mapping Chinese tallow on a single river 

meander bend. The purpose of this study was to determine which of the 

nonparametric detection methods considered, such as Multivariate Regression 

Splines (MARS), Stochastic Gradient Boosting (SGB) and the Random Forest 

(RF) models, as well as common spectral-extraction algorithms, were able to 

most accurately detect Chinese tallow in a floodplain forest based on remote-

sensing data. In addition, it was the purpose of this study to attempt to determine 

factors affecting tallow growth and spread, and to map the spatial distribution of 

tallow in the study area. 

Fieldwork was conducted in 2010 and 2014 to acquire Chinese tallow 

presence/absence information to be used for classification model training and 

testing. A hyperspectral Hyperion satellite image from summer 2010 constituted 

the primary remote-sensing data source, as well as airborne LiDAR data. 
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The three nonparametric models tested were used to predict Chinese 

tallow occurrences in the study area. A variety of input variables were employed 

in the modeling process, including: Hyperion image bands, dimensionality-

reduced Minimum Noise Fraction (MNF) images, vegetation indices, and 

topographic and soil variables. An endmember-based approach was also used 

to classify tallow presence but was not very successful.  

Results show that the most accurate dataset-combination trials involving 

both SGB and MARS yield high overall classification accuracy, 92.85%, whereas 

the most accurate RF dataset-combination trial provides lower overall 

classification accuracy, at 80%. Both spatial and aspatial statistical analyses 

were performed on the classification results. Significance testing indicates that 

the most accurate RF classification is not statistically significantly different from 

the most accurate SGB and MARS classifications. However, other error matrix 

significance testing finds the most accurate RF classification to be statistically 

significantly different from the most accurate SGB and MARS Chinese tallow 

classifications. A hot-spot analysis revealed that homogenous areas classified 

as tallow or as non-tallow can be detected and identified. Results from this study 

are promising in many areas of the meander bend, such as the transition zone 

where tallow is prevalent but less so in areas that have more established forest. 

Some methods tested were successful in detecting tallow and their use may aid 

land managers in the managing Chinese tallow growth and spread.  
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1. INTRODUCTION

Invasive plant species cause billions of dollars to be lost each year wide 

due to the loss of biodiversity, ecosystem modification, and mitigation efforts to 

prevent such changes. They have been, and continue to be a concern among 

scientists because of the modifications they make to the ecosystems they 

invade. Invasive plants spread through various means but many more noxious 

plants have been spread via humans. Reasons for spreading these plants are 

usually not malicious but large consequences have been observed. Indeed, 

invasive plants are one of the most significant modifications humans have made 

on the landscape. (Vitousek et al. 1997). 

Chinese tallow (Triadica sebifera) is one of the most significant invasive 

plants in the southeastern United States (Bruce, Cameron and Harcombe 1995, 

Burns and Miller 2004, Wang et al. 2011). Estimates as of 2008 indicate that 

185,000 hectares of forests are occupied by Chinese tallow, and that its range is 

still increasing (Gan et al. 2009, Wang et al. 2011). Chinese tallow has been 

shown to be highly adaptable to its environment and its range is only restricted 

due to cold temperatures, extremely wet conditions such as areas dominated by 

flooding, and overstory shade (Pattison and Mack 2009, Rogers and Siemann 

2003, Butterfield, Rogers and Siemann 2004, Nijjer et al. 2002, Zou, Rogers and 

Siemann 2009). It tends to colonize low, flat and more moist areas and colonizes 

more quickly in disturbed areas and areas with more open canopies (Bruce et al. 
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1995, Burns and Miller 2004, Pattison and Mack 2009, Rogers and Siemann 

2003). 

Riparian ecosystems are important to the global carbon cycle and are one 

of the most diverse ecosystems (Rosenberg, McCully and Pringle 2000). 

Riparian ecosystems along meandering rivers are very dynamic due to the 

movement of the river (Perucca, Camporeale and Ridolfi 2007). The movement 

of the river can create disturbance zones in these riparian areas which are 

susceptible to invasion (Sher, Marshall and Gilbert 2000).  

Remote sensing is a highly utilitarian tool for mapping and monitoring 

change in riparian environments (Filippi, Güneralp and Randall 2014, Güneralp, 

Filippi and Randall 2014b, Güneralp, Filippi and Hales 2014a, Güneralp, Filippi 

and Hales 2013). Once a procedure has been established to classify and map 

features on the landscape, the multi-temporal nature of remote sensing makes it 

possible to track those features through time (Coppin and Bauer 1996). Using 

the spectral information inherent in remote-sensing images, it may be possible to 

detect/classify Chinese tallow in a riparian environment. Few studies have 

attempted to classify Chinese tallow based on remote-sensing images (Ramsey 

III et al. 2005c). Ramsey III et al. (2005a – 2005c) are the main existing using 

remote sensing to detect Chinese tallow, which do not utilize remote-sensor 

images acquired during the summer, and the focus is not on riparian areas. 

Many aspects of riparian systems are variable and nonlinear such as 

flooding regimes, vegetation dynamics, and meander migration(Camporeale and 
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Ridolfi 2010, Camporeale and Ridolfi 2006, Güneralp and Rhoads 2009, 

Güneralp and Rhoads 2010, Güneralp and Rhoads 2011). The nonlinear nature 

of riparian environmental systems in general necessitates the use of 

nonparametric methods when classifying remote-sensing images (Phillips 1992). 

Methods such as Multivariate Adaptive Regression Splines (MARS) and 

Stochastic Gradient Boosting (SGB) have only very rarely been utilized in a 

species-specific remote-sensing classification. These algorithms have a variety 

of different advantages, which include using variable interactions that can be 

fitted into the model allowing for a more dynamic interaction between predictor 

variables, stochastic modeling eliminating the need to pre-select variables and a 

resistance to overfitting. These advantages make them ideal for this kind of a 

study and may make them useful in detecting/classifying Chinese tallow 

(Friedman 2002, Friedman 1991). In addition, more established hyperspectral 

image-processing methods, such as image endmember extraction and spectral 

unmixing algorithms, may yield useful results, given the spectral resolution of 

hyperspectral images.  

This study employs remote-sensor image data and a variety of 

classification methods to detect/classify Chinese tallow in a riparian 

environment. Both multispectral and hyperspectral images are used in these 

classifications, as well as a variety of ancillary variables. This research aims to 

identify the most accurate remote-sensing image-processing method for 

classifying Chinese tallow, of the algorithms evaluated. The research questions 
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of this study are: 1) Can remote sensing be used to accurately detect Chinese 

tallow trees during deciduous forest summer (leaf-on) conditions?; 2) Which 

algorithm/dataset combinations are optimal in detecting Chinese tallow?; and 3) 

Can the spatial distribution of tallow be examined using spatial statistics? These 

questions lead to several research objectives. The objectives of this research 

are: 1) to detect and map Chinese tallow in a floodplain forest using summer 

hyperspectral satellite image and other data, as well as nonparametric modeling 

and spectral unmixing/matching techniques; 2) to determine algorithm/dataset 

combinations that yield the highest-accuracy Chinese tallow classifications, of 

the detection algorithms and input variables tested; and 3) to quantitatively 

characterize the spatial distribution of Chinese tallow trees. 
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2. LITERATURE REVIEW AND BACKGROUND

2.1 Chinese tallow as an invasive species 

2.1.1 Characteristics of Triadica sebifera (Chinese tallow) 

Chinese tallow has many names by which it is referred, i.e., Chinese 

tallow, tallow tree, popcorn tree, Florida aspen, and chicken tree (Jubinsky and 

Anderson 1996). It is a member of the Spurge family, and is generally accepted 

to be poisonous. It starts to flower when it is around three feet high (Godfrey 

1988). The leaves are simple in structure, which are broader than they are long, 

the blades are rhombic, and ~3-7 cm in length. The leaves also have glands at 

the blade-petiole junction that in the late summer and early fall will exude a 

sugary fluid (Correll and Johnston 1970). The fruit is usually found in groups of 

three lobes, with a seed in each lobe. The fruit dehisces in the autumn to leave 

three white seeds that stay attached to the tree; these seeds, which then look 

like popcorn, are the reason for one of its names, the popcorn tree. The tree 

type ranges from a low-spreading tree with forked branches to a taller columnar 

tree with pendant branches (Jubinsky and Anderson 1996). 

Chinese tallow generally inhabits wetter lowland areas, and may be 

further dispersed via water corridors. It also can be found in upland areas, but is 

not as prevalent in such environments (Pattison and Mack 2009). Indeed, it has 

often been found in low, flat areas adjacent to water bodies and roads, and it is 

not as prevalent in more mature stands of forest (Wang et al. 2011, Bruce et al. 

1995, Ramsey III et al. 2005c). There do not seem to be many factors that limit 
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the growth of Chinese tallow. The primary factor that may limit its growth is 

temperature, but that is not a factor in the present study, as the study area is 

very small and therefore temperature does not vary much over the study site. A 

larger geographical scale would factor in temperature into its analysis. 

Furthermore, the spatial extent of the study area is rather limited, and the spatial 

variability of temperature across the study area is thus also limited. Pattison and 

Mack (2009) found that one of the few other variables limiting tallow growth is 

the degree of openness of the canopy. In the study area for this research, the 

largest instances of tallow are in a transition zone where light is variable 

throughout the day and is an ideal amount of light for tallow to grow. Whereas 

tallow is sometimes present in closed-canopy environments, it has much more 

limited growth and distribution in such areas. Competition for and availability of 

nitrogen also seem to limit its expansion, but do not prevent its establishment 

and growth (Pattison and Mack 2009). Tallow is not negatively affected by 

herbivory either; it has shown to be extremely resistant to herbivory, and has a 

very high regrowth rate (Rogers and Siemann 2003). Areas with soils containing 

higher amounts of nitrogen may be more prone to tallow invasion (Rogers and 

Siemann 2003, Zou et al. 2006). 
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2.1.2. History and range expansion of Chinese tallow 

Tallow (Figure 1) is native to eastern Asia, and mainly inhabits the same 

latitudes in the United States as those where it is found in Asia. It was 

introduced into the United States in the late eighteenth century, and was initially 

grown to make wax and oil from the fruit (Howes 1949). In that time, the species 

Figure 1 -  Images of Chinese tallow tree, its leaves, and fruit. (Image 
source: http://www.cnseed.org/). 
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has gradually spread throughout much of the southeastern part of the country, 

and has been found in California as well.  

According to the United States Department of Agriculture (USDA 2014), it 

has not expanded further north than North Carolina, but it is still spreading 

throughout its range in the south. Multiple studies have found that it is 

continually expanding through the western part of its range and further north in 

Arkansas (Pattison and Mack 2009, Wang et al. 2011). 

2.2 Riparian vegetation systems 

2.2.1 Characteristics of riparian vegetation in a floodplain environment 

Although this study is primarily focused on remote-sensing 

detection/classification of Chinese tallow, which is an invasive species in the 

United States, the environment in which the study is conducted plays a 

significant part in the growth of Chinese tallow and its spatial distribution 

(Butterfield et al. 2004).  In addition, the present research contributes to the 

growing literature regarding tallow in riparian environments.   

Riparian vegetation regimes are different from other environmental 

regimes due to the spatio-temporal dynamics among a variety of environmental 

factors and systems, as well as the inherent stochastic nature of riparian 

systems (Naiman, Decamps and McClain 2010). Some of these dynamics 

include: climatic controls, species types, disturbance regimes, and hydrologic 

and geomorphological controls (Richardson et al. 2007, Shafroth, Stromberg 
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and Patten 2002, Hupp and Osterkamp 1996). These riparian dynamics all vary 

significantly throughout the world, which may necessitate study of riparian 

systems at a more local or regional level that is associated with one type of 

morphological scale (van Coller, Rogers and Heritage 2000, Cooper, Andersen 

and Chimner 2003). 

Biological diversity within riparian areas tends to be relatively high. This is 

a result of the frequently-changing water flows that characterize riparian areas. 

Flooding and topographic changes lead to changes in the interactions and 

exchanges between habitats. This biological diversity is often one of the factors 

that lend riparian areas to being so susceptible to invasion (Naiman et al. 2010). 

In addition to hydrogeomorphic processes, the capability of a site for 

supporting establishment of particular species plays a role in the type of 

vegetation regime that is established. Factors that may affect this site capability 

include disturbances such as periodic flooding, sediment deposition, and soil 

properties. The interaction of these many factors translates to riparian 

environments being very stochastic in nature. This stochasticity leads to 

dynamic changes in vegetation regimes and makes riparian environments very 

susceptible to invasion (Hupp and Osterkamp 1996).   
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2.2.2 Vegetation invasion in riparian environments 

Riparian systems are prone to invasion because of their dynamic nature, 

and the ability of streams and rivers to disperse propagules (Planty-Tabacchi et 

al. 1996, Pysek and Prach 1993). Flooding events can clear space for invasive 

species, and drought events may expose more soil for colonization (Thébaud 

and Debussche 1991). Many invasive species are adept at colonizing these 

types of spaces.  

Anthropomorphic changes, such as dam construction or removal of a 

dam, may cause disturbances down- or up-river, which may trigger vegetation 

invasions (Shafroth et al. 2002). These invasions most often occur along stream 

and river banks. Often, more mature forest stands are more resistant to 

vegetation invasion because they have more established root systems and can 

outcompete species for light. However, such properties do not make them 

immune to invasion (Ward 2002).  

2.3 Remote sensing and classification of invasive vegetation 

2.3.1 Remote sensing of invasive vegetation 

Remote sensing is a potentially useful tool for monitoring invasive 

vegetation species. Because of the multitemporal observation capabilities of 

orbital and suborbital remote-sensing systems, it is possible to monitor native 

and non-native species, including changes in their composition and spatial 

extent over time (Nagendra et al. 2012). There are also a variety of limitations 
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with this approach. Spectral, spatial radiometric, and/or temporal resolutions of 

spaceborne or airborne remote sensors may not be adequate to effectively map 

individual species or types of vegetation. The presence of clouds may inhibit the 

acquisition of good-quality images (passive images, in particular), and this may 

occur more during certain times of the year. Despite these limitations, remote 

sensing remains a potentially viable avenue for mapping invasive species.  

To-date, the most successful use of remotely-sensed data to map 

invasive species has been with hyperspectral images. Hyperspectral images 

entail markedly higher spectral resolution than more common multispectral 

sensors such as Landsat, SPOT, or Quickbird (Hestir et al. 2008). Hyperspectral 

images thus often provide richer data sets from which identification of specific 

vegetation species or types of plants can be derived (Filippi and Jensen 2006). 

The majority of invasive-species studies involving remote sensing have utilized 

hyperspectral sensors, and they have found remote sensing to be effective in 

many cases (Andrew and Ustin 2009, Andrew and Ustin 2008, Hestir et al. 2008, 

Lawrence, Wood and Sheley 2006, Pengra, Johnston and Loveland 2007, 

Underwood, Ustin and DiPietro 2003, Ustin et al. 2002, Ramsey III et al. 2005c). 

Multispectral images are not as utilized as frequently as their 

hyperspectral counterparts in identifying invasive species, but they may still 

provide some useful results in certain contexts. Many conventional multispectral 

satellite sensors, such as Landsat Thematic Mapper (TM)/Enhanced Thematic 

Mapper Plus (ETM+), Satellite Pour l’Observation de la Terre (SPOT), and 
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Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

entail relatively coarse spatial resolutions (e.g., 10–30 m). If the vegetation 

species of interest occurs in larger stands or patches, then multispectral images 

may be useful, but if trees of the species of interest are more sparsely 

distributed, spatially, then multispectral images may not prove useful for 

detection (Cho-ying and Asner 2009), particularly given the moderate spatial 

resolutions of such spaceborne sensors. Nonetheless, some studies have 

achieved some success using multispectral images (Groeneveld and Watson 

2008, Narumalani et al. 2009).  

2.3.2 Remote sensing of Chinese tallow 

There currently is very little research regarding remote-sensing detection 

of Chinese tallow. A set of papers by Ramsey III and collaborators detail the 

classification of tallow using two different types of remote-sensor images, and 

several different techniques (Ramsey III et al. 2002, Ramsey III and Nelson 

2005a, Ramsey III et al. 2005b, Ramsey III et al. 2005c). Other than the studies 

by Ramsey III et al., there is extremely limited research on using remote sensing 

to identify Chinese tallow. There are some limitations regarding this task, but 

there are also substantial benefits to successfully deploying a remote-sensing 

approach. These limitations may include low spatial resolution 30-m of the 

source imagery, difficulty separating tallow spectra from other vegetation 

spectra, and the mixed pixel problem. If a viable remote-sensing method for 
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identifying tallow can be found, then it will make it easier for land managers and 

others to identify and manage/control/eradicate tallow.  

One of the distinct characteristics of Ramsey’s methods is that he and his 

collaborators mapped tallow in the fall when it is senescing. Tallow has distinct 

red leaves when it is senescing, which makes it easier to identify, relative to 

other proximal trees. Ramsey hypothesized that it is much more feasible to 

identify tallow during the fall months when it is senescing and much of the other 

surrounding vegetation is not (Ramsey III and Nelson 2005a, Ramsey III et al. 

2002, Ramsey III et al. 2005c, Ramsey III et al. 2005b). However, such a 

methodology that relies on exploiting color/spectral differences between 

senescent and non-senescent vegetation in the fall will likely only be effective in 

certain regions where such differences exist in the fall. For example, in areas of 

the United States further north within the current spatial extent of Chinese tallow, 

other forest tree species (e.g., native species) will also senesce with leaf color 

changes similar to that of Chinese tallow, complicating tallow detection. 

Ramsey’s first paper (Ramsey III et al., 2002) used high spatial-resolution 

color infrared aerial photography and a K-means clustering algorithm. This 

algorithm is an unsupervised algorithm that is meant to separate the various 

endmember spectra from one another to map individual occurrences of Chinese 

tallow. Although the spectral resolution of the imagery analyzed was low, there 

was sufficient spectral difference between the tallow and the surrounding 

vegetation for tallow detection because of the time of year the image data were 
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obtained. The red tallow leaves were distinct enough so that the tallow trees 

could be effectively identified. In addition to the geographical limitation noted 

above, one issue with this work is that the temporal window for obtaining an 

image with these spectral differences is small, and it often does not occur at the 

same each year. Nevertheless, Ramsey III et al. achieved favorable results 

using the image type and method. 

Ramsey III’s other study (Ramsey III and Nelson 2005a, Ramsey III et al. 

2005b, Ramsey III et al. 2005c) is a series of papers detailing one project that 

implemented a method for utilizing hyperspectral imagery from the Hyperion 

sensor on the EO-1 platform to map tallow. Hyperion has a 30-m spatial 

resolution, which is likely coarser than ideal for detecting tallow, as in general 

large stands of tallow often do not exist together  (Ramsey III et al. 2002).  The 

first two papers (Ramsey III and Nelson 2005a, Ramsey III et al. 2005b) detailed 

his method for obtaining accurate spectra from Hyperion satellite imagery using 

an atmospheric correction method developed by Ramsey III, and an endmember 

approach that was able to retrieve four different tallow endmembers based on 

their stage of senescence. The third paper (Ramsey III et al. 2005c) documented 

his method for exploiting these spectra via sub-pixel detection of tallow. 

Approximately 81% (n=34) of the field- and 78% (n=33) of the Hyperion image-

based characteristic spectra associated with ‘red tallow’ were explained by the 

compositions generated in the field site classifications. This approach was 

successful in quantifying the percentages of tallow in moderate spatial-resolution 
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Hyperion pixels and correlating those occurrences with pre-existing land-cover 

classifications for the study area of interest. Red tallow occurrences (10%) were 

detected 68% of the time and yellow tallow occurrences (15%) were detected 

85% of the time.  

Although the authors achieved some successful results in Ramsey III et 

al. (2005a – 2005c), there are some issues with the method of detecting tallow 

when it is senescing, which the authors acknowledge. Not all of the plants 

senesce at the same rate, which makes identifying tallow endmembers from the 

image spectra difficult. In Ramsey III et al. (2005a – 2005c), it was attempted to 

classify the vegetation in different stages of senescence, and then identify the 

tallow within those different stages. This approach makes it difficult to repeat this 

kind of analysis because every year the various tallow trees may senesce at 

different rates and at slightly/somewhat different times. Obtaining remote-

sensing images during the correct/optimal time can be problematic. 

Furthermore, as noted above, there are geographical constraints on the 

applicability of this method based on spectral differences between senescent 

and non-senescent vegetation in the fall. 

Whereas there are problems with the method proposed in Ramsey III et 

al. (2005a – 2005c), there are also some distinct advantages. Again, it is much 

easier to distinguish the tallow from other vegetation during the fall months, 

assuming that the remote detection is conducted in geographical areas where 

such distinct spectral differences exist in the fall, whereas in the summer 
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months, it may be difficult to distinguish Chinese tallow spectra from the spectra 

of other green vegetation. As Ramsey III et al. (2005a-2005c) note, although 

tallow is prevalent in many areas, it does not usually grow in large stands; 

therefore if the spatial resolution of the imagery is not very high, it will 

necessitate some kind of sub-pixel analysis. However, pure or relatively pure 

tallow pixels may not exist in a given moderate-spatial resolution image, which 

would affect the quality of image-derived tallow endmembers, and (field- or 

image-based) endmembers of the respective vegetation species within a study 

region may not be unique enough to enable discrimination between tallow 

another other species.  

Often, remote-sensor images are more available for summer months than 

for winter months (Brandtberg et al. 2003), and although it could be more difficult 

to distinguish between Chinese tallow and non-Chinese tallow tree species 

during the summer, most trees will be relatively healthy and not in different 

stages of senescence, as was the case in Ramsey III et al. (2005 – 2005c). If 

tallow can be accurately mapped based on summer remote-sensing images, it 

may facilitate the ability of land managers to determine the spatial distributions 

of tallow, so that they can inhibit its spread.  
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3. STUDY AREA

The study site (Figure 2) consists of a single meander bend of the Lower 

Trinity River, a meandering river in East Texas; the study-area meander bend is 

located at 30° 08' 02" N, 94° 49' 02" W, approximately 9 km north of Liberty, 

Texas, USA. Aerial photography acquired over the past 60 years documents that 

the meander bend has exhibited a significant degree of migration and has 

rotated southward from its prior location in 1938.  

The study site is on private property that has been used for light cattle 

grazing and was recently purchased by a logging company; however that 

company does not have long-term plans to log the area. Detailed cattle-grazing 

records for the study area are unavailable, and there is no information to 

suggest that cattle grazing has had any significant effect on vegetation pattern, 

structure, or community composition in the area. There is also some control on 

the wildlife population through hunting.  

The study area is located entirely within the broad floodplain of the lower 

Trinity River, although in recent years the site has been unflooded or only partly 

flooded in some areas close to the active channel, most likely due to recent 

intense droughts (particularly May 2010 to March 2011, the time interval over 

which the majority of fieldwork was conducted).  This assumption is based upon 

analysis of recent aerial imagery from the National Agriculture Imagery Program 

(NAIP) and previous gauge data. There have been some major flooding events 

where the entire study area has been flooded in the last 10 years (Personal 
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communication, Stuart Marcus USFWS). The Trinity River basin services two 

major metropolitan centers (Dallas and Houston), and has also undergone 

regulation of flow through the placement of the Livingston dam, located 

approximately 58 km NNW and approximately 107 km upstream of the study-

area meander bend, and was constructed in 1966-1969 by Forest and Cotton, 

Inc.  

Land-cover types at the site consist mainly of mature forest, grading to 

smaller trees and shrubs, and then to herbaceous vegetation progressively 

Figure 2 - Study area location: a) southeastern Texas including Galveston 
Bay, Houston, and Liberty b)  Trinity river north of the town of Liberty c) 
Meander bend that comprises the study area for this study located at at 30° 
08' 02" N, 94° 49' 02" W  
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closer to the point bar. The forest appears from both multitemporal aerial image 

analysis and also field observation to have remained predominantly undisturbed 

for the most part at least the last sixty years; a small portion of the mature forest 

is likely first-growth. The tree community can be described as bottomland mixed 

hardwoods, or Southern Bottomland Forest, which are located in East Texas 

river bottomlands. Dominant species on this site are American sycamore 

(Platanus occidentalis), hackberry (C. occidentalis), roughleaf dogwood (Cornus 

drummondii), L. styraciflua, and in the mature forest, P. deltoides as well. 

Chinese tallow (Triadica sebiferum) is a non-native species that is pervasive 

throughout the site and is the focus of this study; it exists in all but the driest 

areas with high sun exposure and some of the more mature forest areas. Two 

species of water oak (Q. nigra) and willow oak (Q. phellos), are found in a few 

areas, as well as a few individuals of the genus Pinus, specifically loblolly (P. 

taeda) and longleaf (P. palustris) pines. The area has experienced limited or no 

logging since at least 1938, based on analysis of multitemporal aerial 

photographs. Elevation across the site varies between 6 m above sea level at 

the edge of the active river channel to 10.3 m at the highest point, which is 

located on the northern cutbank of the site in the mature forest. 
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Soil across the site is fine alluvial sediment, and ranges from loamy fine 

sands (≥ 50 percent fine sand) to silty clays (total of ≥ 40 percent clay and ≥ 40 

percent silt). Grain sizes range from coarse sand (≥ 1 mm) to very fine clay (< 

0.02 μm)(Nyikos 2011). Soil data were later transformed into percent sand, silt, 

and clay surfaces for use in modeling.  

Figure 3 - Chute intersecting the study area and along which the highest 
portions of tallow can be found. (True-color image source – National 
Agriculture Imagery Program (NAIP), 2008.) 
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The site is partially transected by an inlet or chute cut of the river, running 

approximately halfway across the site, in a northwest-trending direction (Figure. 

3). This chute is important because the largest amounts of Chinese tallow tend 

to grow along this chute. The inlet also has a small sub-branch. This inlet 

enables water to periodically reach the interior of the site, except during extreme 

drought conditions, when the level of the river drops below the elevation of the 

inlet. (Drying of the inlet was observed on three separate visits to the site, in 

September 2010, March 2011 and June 2014, respectively.) However, the level 

of the river also changes periodically/continuously. 
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4. METHODS*

4.1 Fieldwork  

4.1.1 Primary fieldwork 

The initial fieldwork (Figure 4) was conducted by Sarah Nyikos (and Dr. 

İnci Güneralp, Dr. Anthony Filippi, and a team of supporting volunteers) 

preparation for her thesis work studying the tree community patterns on this 

meander bend (Nyikos 2011).The locations of the plots for data collection 

(Figure 4) were determined based on a coordinate grid (UTM NAD 1983); the 

exact location of the grid on the bend was determined through preliminary aerial 

photograph examination of vegetation pattern zonation. Grid lines were laid 

roughly parallel to the meander bend and the direction of channel migration, i.e., 

perpendicular to the apex of the channel bend. Grid mesh sizes were varied 

(100 m, 50 m and 25 m) to better incorporate the natural variability of the 

vegetation, particularly variation in above ground biomass. Plots were located 

approximately at the intersections of the lines of this grid; however, some plot 

locations were varied based on perceived zonation from preliminary visual 

interpretation of aerial imagery. In the field, both during 2010 and 2014 field 

data-collection campaigns, a Garmin® GPS unit was used for navigation to the 

plots locations, as well as for determining locations of center points and 

quadrats. Measurement of plot radii was performed using survey tapes. It was 

also necessary to move some plots slightly in the field from their anticipated  

*Part of the data reported in this section reprinted from International Journal of Applied Earth 
Observation and Geoinformation,  33, Güneralp, İ., A. M. Filippi & J. Randall, “Estimation of 
floodplain aboveground biomass using multispectral remote sensing and nonparametric 
modeling”, 119-126, Copyright 2014 with permission from Elsevier 

________________



23 

also would have prevented the application of the transect method, had it been 

selected. 

Initial primary fieldwork was conducted from mid-June to late September 

of 2010, with an additional visit to the site in mid-March 2011. Fieldwork 

involved the collection of detailed data on vegetation establishment (i.e., tree 

density, saplings, and seedlings) and sediment characteristics (i.e., grain size/

texture distribution) of the meander bend. Vegetation data collection methods 

included: measuring tree diameter at a standard breast height (dbh) of 1.3 to 

1.4 m; identifying all tree species; counting and identifying saplings and tree 

seedlings. These three stages (trees, saplings and seedlings) reflect the 

various stages of tree establishment and growth/development. For the 

purposes of this study, trees were defined as having a dbh of ≥ 5 cm, saplings 

as being less than 5 cm but greater than 1 cm, and seedlings as < 1 cm dbh 

(Chambless and Nixon 1975) and also less than 0.5 m in height.  

Thirty-two ~400 m2 circular plots were established in 2010 on the study 

site (with radius of 11.3 m) (Figure 4). Within each plot, a smaller ~100 m2 plot 

(with radius of 5.6 m) for sampling of saplings was centered. Two 1-m2 

quadrats within the main plot were used to sample seedlings. These were 

arbitrarily located at the north and south ends of each plot. Location of plots 

was based on coordinate grid. Note that some plots were moved very slightly in 

the field, but this is an accurate representation of their respective location.  

locations as a result of the impenetrability of some vegetation; impenetrability 
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Within each main plot, a soil sample was collected to be analyzed for 

grain-size variation. Samples were taken to a depth of 10 cm where possible; 

this has been indicated to be a suitable depth for seedling establishment 

(Robertson and Augspurger 1999). However, in many instances it was not 

possible to take samples below 5 cm.  

Leaf litter was cleared from the ground surface before the samples were 

collected, and any large pieces of organic debris in the soil were removed in the 

field. Soil samples were then stored in airtight plastic bags until processing. 

Samples were analyzed to determine grain-size distributions and gradients 

across point bars. These samples were used to derive rasters for each of the 

soil texture characteristics used in model development. 

4.1.2 Supplementary fieldwork and image-interpreted sample data 

Additional fieldwork was performed June on10 and 11 June 2014 (Figure 

4). The purpose of this supplementary data collection was to obtain counts of 

Chinese tallow trees in additional plots within the meander-bend study area. 

These additional data were collected to augment training and testing datasets 

for the nonparametric model development. Three transects were used to direct 

where field plots should be located (personal communication, W. E. Rogers, 

2014). A single transect was first located along a transitional zone that may have 

formed due to disturbances such as meander migration, flooding and the 

presence of the chute that partially transects the study area. This area was 
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chosen because it contained the highest counts of Chinese tallow trees, as 

observed in the first series of field site visits, and it was hypothesized that 

obtaining more field data in this floodplain environment would help aid in 

developing more accurate tallow-detection models. Two additional transects 

were positioned 50 m from and parallel to the initial transect.  

Figure 4 - Field sites and image-derived value locations. Locations for 2010 
(yellow) and 2014 (blue) are shown with circles that are representative of the 
actual field plot size. The image-interpreted values (orange) are representative 
of the general area that a given circle occupies and were used only to provide 
more Boolean tallow/non-tallow information. (True-color image source – 
National Agriculture Imagery Program (NAIP), 2008.) 
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Along each of the transects, seven additional plots were located 30 m 

apart from edge-to-edge when possible. When other plots from the previous 

fieldwork were co-located with a potential new field plot, they were treated as an 

additional plot, and new plots were established at least 30 m away from them 

(Figure 4). These plots were exactly the same size as previous plots (400 m2), 

and demarcated using similar techniques (via survey tapes). In the field, we 

navigated to the center points of each plot using a Garmin® gpsmap 78 GPS. 

Figure 5 - Total number of tallow trees in field plots from both 2010 and 2014. 
Black circles indicate no presence of tallow in that field site. (True-color image 
source – National Agriculture Imagery Program (NAIP), 2008.) 
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Once the plots were established, the number of Chinese tallow within each plot 

was counted (Figure 5). As with the previous fieldwork, trees were defined as 

having a dbh > 5 cm. Number of tallow samplings was often noted in the field 

notes, but exact numbers were not counted. Although there was a four-year time 

span in between these two data-collection periods (Figure 4), we assume that 

the time difference is not markedly/significantly deleterious to field reference 

dataset construction, as these data were primarily used in this study for 

determining Chinese tallow presence/absence. Additionally, even though some 

of the tallow trees counted as trees in 2014 may have been saplings in 2010, 

there were, in most cases, multiple trees at each site that contained tallow and 

most likely would have been classified as trees in 2010.  

Initial model results revealed that more data were necessary to effectively 

train and test the nonparametric models. These additional data were provided 

via image interpretation and previous knowledge of the study area. The 

nonparametric models predict Boolean results for whether or not a given pixel 

contains tallow trees. Thus, for these additional image-interpreted sites (Fig. 4), 

in order to accrue further Chinese tallow presence/absence information, it was 

only necessary to determine sites that most likely entail relatively high numbers 

of tallow trees, or almost certainly do not contain tallow trees, based on 

manual/visual image interpretation of aerial photography and hyperspectral 

Hyperion and multispectral SPOT satellite images, combined with in situ 

knowledge of the study area. 
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4.2 Hyperion image variable processing 

4.2.1 Spectral and geometric correction 

Spectral data were collected via hyperspectral Hyperion satellite image 

acquisition (30-m ground sample distance (GSD); 242 channels; acquired on 25 

July 2010; 16:45:23 GMT). Hyperion image collection was temporally 

synchronized with the 2010 field data collection. Uncalibrated and spectral 

overlap bands were discarded, resulting in 196 unique bands. Hyperion 

atmospheric correction was performed using Atmospheric COrrection Now 

(ACORN™) code, Version. 5.1(ImSpecLLC 2004) to invert radiance to apparent 

surface reflectance (mode 1.5; mid-latitude summer model; 940 and 1140 nm 

water-vapor derivation; path radiance in spectral fit; baseline visibility = 20.64 

km; ACORN estimated visibility; Types 1, 2 and 3 artifact suppression). High-

noise bands were then removed (78–82, 97–100, 116, 118–133, 152–153, 165–

182, 184–186 and 220–224), determined via signal-to-noise ratio (SNR) 

calculations and visual inspection. In addition, there were a number of bands 

that contained excessive striping and were removed (9-12, 101, 134, 164, 183, 

187-197, 199-203, 205-206, 219) resulting in a final 115 band set (Table 1).  

Following spectral and spatial subsetting, a geometric correction was conducted 

with 50 ground control points (GCPs) and a second-order polynomial model 

(RMSE = 8.1 m). 
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Table 1 - Final Hyperion bands used in model development and spectral analysis, 
comprising 115 bands in total. 

4.2.2 Image dimensionality reduction 

Two data dimensionality-reduction algorithms were applied separately to 

the Hyperion image to minimize potentially redundant information, given the 

highly-correlated bands. In this study, the aim was to test whether 

dimensionality-reduction improved Chinese tallow-detection accuracy. 

Specifically, minimum noise fraction (MNF) transform (Green et al. 1988) was 

one dimensionality-reduction method used. MNF is used to identify and 

Bands Wavelengths (nm) 

8 426.82 

13-56 477.69-915.23 

83-96 972.99-1104.19 

102-115 1164.68-1295.86 

117 1316.05 

135-163 1497.63-1780.09 

198 2133.24 

204 2193.73 

207-218 2224.03-2335.01 
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segregate noise, and then collapse useful bands into smaller sets of images 

(Green et al. 1988). 

MNF transform was performed using the ENVI software package (ITT 

2010). Based on joint inspection of scree plot information, percentage of the 

variance explained, and visual assessment of image spatial coherency, 15 MNF 

bands were selected to be used in subsequent analyses. These MNF 15 bands 

explain 71.48% of the variance.  

The other dimensionality-reduction method employed was independent 

component (IC) analysis. Independent component analysis is a blind-source 

separation tool that does not require any prior information to compute. It utilizes 

a non-Gaussian assumption of independent sources and is able to separate and 

reveal features in hyperspectral data. One of the advantages of IC analysis is 

that it can distinguish features that may only occupy a small portion of the pixels 

within an image (Hyvärinen, Karhunen and Oja 2004). 

IC analysis was performed on the Hyperion image and 7 bands were 

chosen for subsequent analyses; these 7 bands explain 65.4% of the variance. 

The same criteria used in MNF band selection were also used for selecting the 

IC bands to propagate to further analysis steps. 
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4.2.3 Vegetation indices 

Various vegetation indices were calculated (Table 2). Vegetation indices 

are dimensionless, radiometric measures that indicate relative abundance and 

activity of green vegetation (Jensen 1996). Vegetation indices often can provide 

unique biophysical information that is not necessarily apparent from radiance or 

reflectance values. Various applications of vegetation indices include estimation 

of leaf area index (Suits 1973), percentage of cover (Carlson and Ripley 1997), 

chlorophyll content (Tucker 1979), among others. For the purpose of this study, 

a suite of hyperspectral vegetation indices was generated using ENVI software 

based on the good Hyperion bands that were available after spectral subsetting. 

 

4.3 Geomorphometric and biophysical variable pre-processing 

The geomorphometric variables were all produced from a LiDAR-derived 

digital terrain model (DTM). These variables included elevation, slope, aspect, 

profile curvature, plan curvature (Zevenbergen and Thorne 1987), and 

topographic wetness index (TWI) (Beven and Kirkby 1979). In addition, a 

Euclidean distance to river variable was calculated. The LiDAR data used were 

acquired 3 June, 2011. LiDAR data processing was done in collaboration with 

Dr. Jason Tullis, University of Arkansas. The processing was performed using 

LASTools within ArcMap 10.2. 
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Table 2 - Hyperspectral vegetation indices computed. 

Index Formula Citation 

Normalized Difference 

Vegetation Index (NDVI) NDVI =
NIR − RED
NIR + RED

(Rouse 1974) 

Atmospherically 

Resistant Vegetation 

Index (ARVI) 

ARVI =
NIR − 2RED − BLUE
NIR + 2RED − BLUE

(Kaufman and 

Tanré 1996) 

Red Edge NDVI 

(NDVI705) 
NDVI705 =

750− 705
750 + 705

(Gitelson and 

Merzlyak 1996) 

Modified Red-Edge 

Simple Ratio (mSR705) 
mSR705 =  

750− 445
705− 445

(Datt 1999) 

Modified Red-Edge 

NDVI (mNDVI705) 
mNDVI705

750 − 705
750 + 705 − 2(445)

(Datt 1999) 

Vogelmann Red-Edge 

Index (VOG1) 
VOG1

740
720

(Vogelmann, Rock 

and Moss 1993) 

Photochemical 

Reflectance Index (PRI) PRI =  
531 − 570
531 + 570

(Gamon, Penuelas 

and Field 1992) 

Structure Insensitive 

Pigment Index (SIPI) 
SIPI =  

800 − 445
800 − 680

(Penuelas, Baret 

and Filella 1995) 

Red Green Ratio Index 

(RG ratio index) 
RG Ratio =

µ Red Bands
µ Green Bands

(Gamon and Surfus 

1999) 
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The basic workflow for this processing consisted of the following steps. 1) 

Identify noise points and exclude these points from processing. 2) Select last 

return points 3) Classify the last return points using the following parameters 

step: 5; spike: 1; stdev: 10; and offset: 0.05”. The classification consisted of 3 

classes, unassigned, ground or noise. 4) Apply a ground filter using the following 

parameters step:1, isolated:2. 5) Filter points to achieve ground points and then 

triangulate these points without thinning, and 6) Generate a digital elevation 

model (DEM) that is used in conjunction with an aerial photograph to find LiDAR 

points that were incorrectly classified. A final DTM was then produced from 

these points (personal communication, J. Tullis, 2014).  

In addition to the LiDAR data covering the study area, the same data-

processing flow was performed on other LiDAR data sets in the vicinity of the 

study area that were spatially coincident with known survey points from National 

Geodetic Survey (NGS). These NGS points were used in a pseudo accuracy 

assessment. A survey-grade GPS/GNSS receiver was not available to perform a 

DTM accuracy evaluation within the study area itself, so in order to determine 

the validity of the LiDAR processing, these NGS-surveyed control points were 

used as a proxy. Average vertical difference between the 8 NGS elevations and 

the spatially-corresponding LiDAR-derived elevations was 0.48 meters.  
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The soil variables used were the percentage values of the sand, silt and 

clay at each site, as well as the texture of the soil as classified by the United 

States Department of Agriculture (Figure. 6) . Soil raster layers for the entire site 

were computed using a kernel interpolation. A Gaussian kernel function, 

polynomial order of 1, and a ridge parameter of 25 were used. The USDA 

texture classification was generated using the QGIS program (QGIS 2014).  

Aboveground biomass (AGB) for the forest was remotely estimated in an 

associated study in this same study area using some of the same 

nonparametric-modeling methods as those employed in the current study (Filippi 

et al. 2014, Güneralp et al. 2014b). Using the dbh collected during the 2010 

fieldwork, in situ aboveground biomass at each field site was determined using 

allometric equations. Allometric equations use a set of psychical parameters, 

such as dbh, and/or height, to approximate the biomass of certain tree species 

or functional groups of species. When possible, species-specific allometric 

equations were used, and when these were not available functional group 

equations were used. 
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Once the AGB associated with each field site was determined based on 

in situ data, those in situ AGB values were used for nonparametric regression 

model development. Three different nonparametric algorithms were used to 

perform multiple dataset-combination trials, similar to the procedure used for the 

current study. The nonparametric algorithms investigated for remote-sensing 

AGB estimation were Cubist (Huang and Townshend 2003) multivariate 

adaptive regression splines (MARS), and stochastic gradient boosting (SGB). 

MARS and SGB are discussed in Section 4.4. Cubist is a regression tree model 

that produces rule-based results. Cubist served as the baseline algorithm 

against which the remote-sensing AGB estimates from the other two algorithms 

were compared. 

Across the multispectral and hyperspectral image-driven trials conducted 

(Filippi et al. 2014, Güneralp et al. 2014b), MARS produced the most accurate 

AGB estimates using 30-m Landsat 5 image data. Specifically, MARS 

Experiment 2, where multispectral image bands and image-derived variables 

(such as vegetation indices) were used as input, yielded a root mean squared 

error (RMSE) of 29.2 tonnes/ha AGB and a coefficient of determination (R2) = 

0.94 (Filippi et al. 2014, Güneralp et al. 2014b). The remote sensing-estimated  
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AGB for the study area from this particular experiment (Figure 7) were used as 

an input variable for Chinese tallow-detection model development.  

Figure 6 -  USDA soil classifications with study site soil classification 
locations (red circles) (Nyikos 2011). 
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Figure 7 - Aboveground biomass (AGB) estimates derived using MARS. RMSE = 
29.2 tonnes/ha AGB and (R2) = 0.94 (Güneralp et al. 2014b). 

4.4 Nonparametric modeling algorithms 

Three different nonparametric algorithms were used to detect/classify 

Chinese tallow in the floodplain forest on the meander bend: Random Forests 

(RF) (Breiman 2001), MARS (Friedman 1991), and SGB (Friedman 2002). 

These three algorithms were implemented using the Salford SPM software 

package (SalfordSystems 2014). Nonparametric methods may be appropriate 

for detecting tallow, given non-linearities in most floodplain/riparian forest 

systems (Güneralp et al. 2014b). Each of these algorithms yields hard 
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classification results, as well as classification probability values for each 

individual pixel in the image. These classification probability values can be used 

as a proxy for fractional abundance of material/class of interest (e.g., Chinese 

tallow) in a given pixel. Thus, these probability/pseudo-fractional-abundance 

values can be compared with spectral unmixing results, such as those obtained 

via mixture-tuned matched filtering (Mellor et al. 2013). Although some 

vegetation remote-sensing classification studies seek to detect/classify all 

species in an area, this was not the focus of this study, as it likely would not be 

feasible given the relatively coarse-spatial resolution of the image and the lack of 

homogeneity of the species within the image pixels. 

4.4.1 Random forests 

Random forests (RF) is a data-mining technique that expands upon the 

more basic classification tree method (Breiman et al. 1984). RF is able to fit 

many trees to a data set instead of just one tree. The predictions from all of 

these trees are combined into one final result. When each tree is built it selects a 

sample from the data known as the bootstrap sample. These are the samples 

used for training of the model. The remaining samples are referred to as out-of-

bag observations and effectively become the testing sample for the model. 

These out-of-bag results are effectively a cross validated accuracy estimates. 

This is important because the other methods that are compared to RF use cross 

validation and therefore there can be a direct comparison between methods. 
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One of the benefits of RF is that when measuring variable importance RF 

takes a misclassification rate from the out-of-bag observations. Values of a 

specific variable are randomly taken form the out-of-bag data and passed to the 

tree to get a new prediction. The difference between the original 

misclassification rate and the modified rate divided by the standard error 

represents the importance of that particular variable.  

For this study the following parameters were used within the software to 

produce the various trial results: number of trees: 500; predictors at each node: 

6; progress report frequency: 10; proximal cases: automatically chosen; 

bootstrap sample size: automatically chosen; and parent node minimum cases: 

2. These parameters were set based on the recommendation from the software

producer (SalfordSystems 2014) and trial-and-error experimentation. Whereas 

RF is much more robust technique compared with simpler classification and 

regression trees (Breiman et al. 1984, Cutler et al. 2007), there are newer 

nonparametric methods that were anticipated to perform better. RF was thus 

used as a machine-learning baseline for this study, as various other previous 

ecological studies have already found success with RF (Cutler et al. 2007, Latifi, 

Nothdurft and Koch 2010, Prasad, Iverson and Liaw 2006). 

4.4.2 Multivariate adaptive regression splines 

MARS is an adaptive non-linear regression technique that utilizes 

piecewise basis-functions (Friedman 1991). These basis functions define 
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relationships among response variables and the predictors. The basis functions 

are set up in pairs using a knot that defines an inflection point. This knot is a 

value within the range of the given predictor. This allows for there to be different 

slopes within different parts of the range of the regression. There is also the 

possibility of using more than one knot which is in essence the use of more than 

2 basis functions.  

 A forward stepwise procedure is used to choose the placement of the 

knots. A step is defined when the model selects the placement of the knot and 

the particular basis functions that are used. When the maximum model size is 

reached a backward pruning takes place to remove basis functions that do not 

contribute to the model are removed. A pseudo version of cross-validation is 

performed to evaluate the best model with the best predictive fit. 

 One of the benefits of MARS is that variable interactions can also be fitted 

into the model allowing for a more dynamic interaction between predictor 

variables. Although MARS is inherently a regression technique, it can be used in 

this study as a classification model because of the binary nature of the species 

modeling. A version of MARS utilizing logistic binary regression can be used to 

classify a Boolean variable such as tallow/non-tallow. This binary regression 

does not change the MARS model but rather evaluates the result probabilities 

and then uses a cutoff of 0.5 to classify the results into a 0 or 1 (tallow or non-

tallow). The set parameter values used for the MARS dataset-combination trials 

in this study are as follows: max basis functions: 15; maximum interactions 
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between predictors: 2; and min observations between knots: 1. These parameter 

values were chosen after systematically testing of the effect of a range of values 

for each individual parameter, while holding the values for the other parameters 

constant. The set of values for the MARS parameters, noted above, yielded the 

most accurate results. 

The model was tested using 10-fold cross validation. Cross validation is a 

testing technique that allows for the entire sample data set to be segregated into 

10 parts or folds and then run 10 times using 9 of the folds as training and the 

final fold as testing. At each of the 10 folds, a different fold is used for testing. 

This allows for all the data to be used in both the training and testing phase of 

the modeling process. The MARS model was bootstrapped 10 times so that 10 

models were built, each of them using 10-fold cross validation. The best model 

was chosen from these 10 models. The reason 10 was chosen as the number of 

models to build was because beyond ten there were not significant changes 

among the results.  

MARS has been successfully employed to solve a variety of ecological 

problems. These include: modeling species distributions (Leathwick, Elith and 

Hastie 2006), predictive habitat modeling (Moisen and Frescino 2002, Muñoz 

and Felicísimo 2004, Prasad et al. 2006), characterization of soil properties 

(Shepherd and Walsh 2002), invasive species mapping (Stohlgren et al. 2010) 

and aboveground biomass estimation (Filippi et al. 2014, Güneralp et al. 2014b). 
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4.4.3 Stochastic gradient boosting 

Stochastic gradient boosting (Friedman 2002) is a variant of more basic 

regression tree models. SGB makes many small classifications using many 

smaller regression tree models. The gradient of the loss function from one of 

these small trees is used as a pseudo-residual to better train the subsequent 

tree. A random subset of the data is used during each iteration of the model. 

This contributes to a gradual improvement of the model over time (Friedman 

2002). 

Some of the advantages of SGB which set it apart from other models are 

that is stochastic and as such there should not be a need to pre-select variables. 

SGB should be able to determine which variables are of use in the final model 

development. It is resistant to outliers because it focuses more on points closer 

to the correct classification. SGB uses only a fraction of the training data making 

it resistant to over-fitting.  

SGB has been used in few ecological applications thus far. It has been 

used to model aboveground biomass (Filippi et al. 2014, Güneralp et al. 2014b), 

predict tree presence and basal area (Moisen et al. 2006), and to measure the 

distribution of freshwater fish (Elith, Leathwick and Hastie 2008). SGB is a 

robust nonparametric model, and it is thus a very useful algorithm to which the 

other models investigated in this study can be compared.  

A total of 2000 trees were built for each trial and at each fold of the 10-

fold cross-validation process. As with MARS, cross validation was used to obtain 
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the best model. In addition, the process was bootstrapped 10 times in order to 

yield the best possible model. The number of minimum node training cases was 

4, and the maximum nodes per tree was 6. The regression loss criterion used 

was a blend of least squares and least absolute deviation (Huber 2011). 

4.4.4 Modeling trials 

In order to assess the importance of certain types of input variables and 

their effects on Chinese tallow classification accuracy, 19 different dataset-

combination trials were conducted. These trials involved different groups of 

predictor variables, and the efficacies of various combinations of input variable 

groups were evaluated. Across the three nonparametric modeling algorithms 

considered, the same input variable groupings and combinations were used for 

the 19 trials conducted per algorithm (Table 3).  



44 

Table 3 - Predictor variables used in the classification trials across all of the 
algorithms. MNF and IC bands were derived from the hyperion image. 
Geomorphometric variables were derived from a LiDAR-based DTM (LiDAR point-
cloud source: Texas Water Development Board). 

Data type Details Trial 

Hyperion image bands       

(wavelength range 426.82 

– 2335.01 nm)

115 bands: Bands 9-12, 101, 

134, 164, 183, 187-197, 199-

203, 205-206, 219 

1-4,17,19 

Minimum noise fraction 

images (MNF) 

15 MNF images (71.48% of 

the variance explained) 

5-8,17,19 

Independent component 

images (IC) 

7 IC images (65.4% of the 

variance explained) 

9-12,17,19 

Vegetation indices NDVI, ARVI, NDVI705, mSR705, 

mNDVI705, VOGL, PRI, SIPI, 

RG ratio index 

13-16,17,19 

Geomorphometric 

variables 

Elevation, slope, aspect, 

plan curvature, profile 

curvature, TWI, Euclidean 

distance to water 

2,4,6,8,10,12,14,16,18,

19 

Biophysical characteristics 

(Soils, AGB) 

Soil texture and percentages 

(sand,silt,clay), aboveground 

biomass 

3,4,7,8,11,12,15,16,18,

19 
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4.5 Spectral analysis 

Multiple endmember-based spectral analyses were performed including 

spectral angle mapper (SAM) (Yuhas, Goetz and Boardman 1992), spectral 

feature fitting (SFF) (Clark and Swayze 1995), and mixture-tuned matched 

filtering (MTMF) (Boardman 1998). SAM generates an angular match value, 

whereas MTMF produces fractional abundances that can potentially be 

compared with the nonparametric model-derived probability values. These 

analyses were performed on both field-derived endmembers and an image-

derived endmember for Chinese tallow.  

The basic workflow for all of these analyses can be seen in Figure 8. The 

first step to attain the image reflectance has already been detailed. The second 

step is to a spectral data reduction using an MNF. This time more MNF images 

were used to obtain endmembers than the images used in the nonparametric 

models. These 33 MNF bands contained 79.85% of the variance. More MNF 

bands were used in order to better determine the image derived spectral 

endmember for Chinese tallow.  

The pixel purity index (PPI) finds the most spectrally-pure pixels in the 

image. To accomplish this, n-Dimensional scatter plots are projected onto a 

random unit vector. Typically, this is performed for thousands of iterations in 

order to find the most extreme pixels as possible. For this study, 75,000 PPI-

computation iterations were performed. Once PPI computation has terminated, 

the n-Dimensonal viewer was used to determine the endmember(s) that 
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correspond to Chinese tallow based on the field results. 34 endmembers were 

produced from the 33 MNF images. PPI assumes there is one spectrally-pure 

pixel in the image for each of the endmembers. This is an issue in this research 

as the image is very complex and different trees and types of vegetation are 

intermixed and make for very little spectrally pure pixels. 

Spectral feature fitting is a more basic spectral analysis that compares the 

fit between image spectra and reference spectra. It uses a least-squares 

technique. SFF uses continuum removal to match the image and reference 

spectra. The output is a scale image for the reference spectra that indicates the 

strength of the fit. 

Spectral angle mapper is a spectral classification technique that uses the 

n-Dimensional angle to match pixels to reference spectra. The angle is treated 

as a vector in a space with dimensionality equal to the number of bands, in this 

case 33, the smaller the angle the closer the match to the spectra. For the SAM 

classification, the threshold was set at the default of 0.1 radians. The output from 

this is a rule image that contains an angular value for each pixel that indicates 

the degree of match with the endmember spectrum, where smaller angular 

values denote a closer match.  

Mixture-tuned matched filtering is based on matched filtering and adds an 

infeasibility image to the results. Matched filtering uses a partial unmixing to 

suppress the response of unknown background materials and accentuate the 

response of the known endmember (Boardman 1998). It is a good technique to 
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use when only trying to match one endmember as in the case of this research. 

The infeasibility image used in MTMF is used in combination with the matched 

filtering score to create a set of rule images for each endmember. The value is 

the relative degree of the match between the reference spectra and approximate 

sub-pixel abundance. These relative abundance values will compare best with 

the previous nonparametric model probability values. 

Field spectra were taken during the first portion of field collection in 2010. 

These spectra were applied to the same techniques as the image derived 

spectra, but did not yield good results. The spectra exhibited higher reflectance 

values than the image reflectance values and also did not cover as much of the 

spectrum and therefore were not able to compare favorably with the image.  

Field spectra were taken during the first portion of field collection in 2010. 

These spectra were applied to the same techniques as the image derived 

spectra, but did not yield good results. The spectra exhibited higher reflectance 

values than the image reflectance values and also did not cover as much of the 

spectrum and therefore were not able to compare favorably with the image.  
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Figure 8 - Spectral analysis workflow. All steps were completed within ENVI. 

Reflectance 
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4.6 Spatial statistical analysis 

A Getis-Ord Gi* hot-spot analysis was performed on the best tallow-

prediction results from each of the three nonparametric classification methods to 

quantitatively characterize the spatial distribution of Chinese tallow trees. Before 

performing the hot-spot analysis, a spatial autocorrelation test was run using a 

range of distance thresholds at 30-m increments to determine the ideal distance 

band to utilize in the hot-spot analysis. The SGB- and RF-based hot-spot 

analyses both were performed using a distance threshold of 30 m, whereas the 

MARS-based hot-spot analysis was performed using a threshold of 60 m. This 

hot-spot analysis is of particular benefit because it can identify areas where 

there are statistically-significant clusters of high or low probabilities of tallow 

presence. These areas may exhibit certain conditions that are more (less) ideal 

for tallow growth than other areas. 

4.7 Nonparametric model statistical comparison 

The results of the models with the highest accuracy from each of the 

three nonparametric models were compared to one another using the McNemar 

statistical test. The McNemar test is a statistical measure used when comparing 

multiple binary classifications, and it determines whether they have a similar 

marginal distribution between the two classifications (Foody and Mathur 2004, 

Duro, Franklin and Dubé 2012). The McNemar test is similar to a paired sample 

t-test; however it is conceptually the testing of two different properties of a 
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repeated measure dichotomous variable. It is used to compare pretest-posttest 

designs or analyzing comparisons between methods, as is the case in this 

study. It is a good test to use when the same phenomenon is being analyzed 

twice. In the case of this study, it is the binary true/false response from the three 

different nonparametric models evaluated.  

In McNemar’s test and a Pearson’s chi-square test, the Yates correction 

factor is often applied. This correction factor is used to prevent overestimation. 

Often the Yates correction factor tends to overcorrect, but in the case of this 

study’s data it is applicable. Use of the Yates correction factor is recommended 

if a small data set is being analyzed, and if the data set is binary in nature. SPSS 

(IBM 2013), the software used to generate the McNemar statistics does not give 

the option to exclude the correction factor and applies it automatically (IBM 

2013); in the case of the testing data used in this study, this is acceptable.  

All of the algorithms compared utilized cross-validation as a validation 

technique. It may be of concern that the same testing data was not being used in 

each of the algorithms. Using cross-validation, it was ensured that each of the 

points in the small-sized sample was used once for testing. Therefore, the same 

points were used as testing points for each of the algorithms. Statistical 

comparisons between the algorithms are therefore efficacious. Cross-validation 

testing results like these have been used in similar types of classification 

comparisons (Brenning 2009, Torresan et al. 2014). 
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5. RESULTS

5.1 Field observations 

Observations from fieldwork conducted in 2010 and 2014 reveal that, 

relative to other areas on the meander bend, there is a higher density of tallow 

trees present in/along the transitional zone between the more mature forest and 

the smaller tree/shrub zone closer to the point bar. The chute that cuts through 

half of the meander-bend study area runs directly through and parallel with this 

transition zone. The availability of water and the ability of tallow to tolerate 

flooding (Butterfield et al. 2004) may at least partially explain this pattern. In 

addition, this transition zone represents an area of river meander migration-

induced disturbance, and is part of an intermediate light regime and it is thus 

prone to Chinese tallow colonization.  

Moving southwest away from the chute towards the point-bar, there are 

also relatively high numbers of Chinese tallow trees. This may be due to more 

access to sunlight because of the presence of shorter vegetation and more open 

canopy. This portion of the meander bend has historically been the most 

disturbed and flooded, including a flooding event in 1994. Because of the more 

frequent flooding in the southwestern part of the meander bend, vegetation 

tends to be younger there and more diverse, relative to other parts of the 

meander bend. Therefore, this portion of the study area is more susceptible to 

tallow invasion. Areas very close to the point-bar that do not have very much 

vegetation exhibited very little instances of tallow growth. This may be due to the 
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soil characteristics in this the newest part of the meander bend, and this area 

experiences the highest flood frequency (at least once a year) (personal 

communication, Stuart Marcus, 2015) compared with other areas of the 

meander bend, which allows for little to no plant establishment. Further from 

the river, where the more established, more mature forest, which has been 

stable for the most part for the past 60 years, is located, there are very few 

instances of tallow (i.e., no more than five (5) instances in a given field plot). The 

fact that there are instances of Chinese tallow in these more mature-forest areas 

though may serve as indicator of its ability to colonize to some degree over a 

wide extent of the study area.  

5.2 Nonparametric model results 

All model results reported (Tables 4-6) are based on the OOB or cross-

validation testing of each model. Use of OOB and cross-validation ensures that 

every sample is used at least once for testing. All 70 samples are used to 

produce result statistics and confusion matrices that contain test results (not 

training results).  

A variety of different metrics were used to assess model accuracy for 

each trial, for each nonparametric-modeling algorithm. Average log-likelihood is 

not as strong a metric as some of the other metrics but is still useful. It is a 

logarithmic version of the likelihood function, which emphasizes the probability 

interpretations of a model’s prediction (the lower the value, the more accurate 
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the model). Misclass rate is simply the percentages of test results that were 

classified incorrectly and therefore will mirror the final classification results 

produced. Although this seems redundant, it may provide a different context in 

which to evaluate a model. Receiver operating characteristic (ROC) (Equation 

1), or area under the curve, is one of the more commonly-used metrics to 

assess model accuracy, particularly in binary classification models. The ROC is 

a plotted using the following equation: 

True Positives
Positives

False Positives
 Positives

 

Equation 1: Receiver operating characteristic (ROC) 

ROC is used in this study, along with the overall classification accuracy, to 

choose the best model or models generated by each of the algorithms. These 

are compared against each other, as well as against other results from the other 

classification methods. 
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Table 4 - Statistical results from the random forest nonparametric model trials. Trials 1-19 are all listed including the 
variables used in the associated trial. Numbers in bold indicate the best result for the corresponding statistical 
metric. 

Random Forest Results 

Predictor variables used Average LogLikelihood Misclass Rate ROC (area under curve) Lift 

% Correct      
(0.5 

Threshold) 
Trial 1 Bands 0.515 0.228 0.837 1.3 77.14 
Trial 2 Bands, Geomorph 0.5 0.228 0.851 1.5 77.14 
Trial 3 Bands, AGB, Soils 0.505 0.228 0.85 1.5 77.14 
Trial 4 Bands, Geomorph, AGB, Soils 0.5 0.2 0.845 1.5 80 
Trial 5 MNF 0.54 0.2 0.799 1.8 80 
Trial 6 MNF, Geomorph 0.544 0.242 0.807 1.3 75.71 
Trial 7 MNF, AGB, Soils 0.547 0.228 0.802 1.3 77.14 
Trial 8 MNF, Geomorph, AGB, Soils 0.554 0.271 0.801 1.3 72.85 
Trial 9 IC 0.544 0.287 0.802 1.8 71.42 
Trial 10 IC, Geomorph 0.574 0.285 0.792 1.3 71.42 
Trial 11 IC, AGB, Soils 0.548 0.271 0.788 1.8 72.85 
Trial 12 IC, Geomorph, AGB, Soils 0.555 0.342 0.795 1.8 65.71 
Trial 13 Veg Indices 0.69 0.371 0.68 1.5 62.85 
Trial 14 Veg Indices, Geomorph 0.602 0.342 0.75 1.5 65.71 
Trial 15 Veg Indices, AGB, Soils 0.625 0.342 0.734 1.8 65.71 

Trial 16 
Veg Indices, Geomorph, AGB, 
Soils 0.603 0.285 0.748 1.5 71.42 

Trial 17 
Bands, MNF, IC, and Veg 
Indices 0.482 0.228 0.847 1.5 77.14 

Trial 18 AGB, Soils, and Geomorph 0.611 0.3 0.722 1.5 70 
Trial 19 All variables 0.486 0.2 0.849 1.5 80 
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Table 5 - Statistical results from the MARS nonparametric model trials. Trials 1-19 are all listed including the 
variables used in the associated trial. Numbers in bold indicate the best result for the corresponding statistical 
metric. 

MARS Results 

Predictor variables used 

Number of 
basis 

functions 
Average 

LogLikelihood 

Misclass 
Rate Overall 

(raw) 

ROC 
(area 
under 
curve) Lift 

% Correct 
(0.5 

Threshold) 
Trial 1 Bands 10 0.153 0.1 0.898 1.4 88.57 
Trial 2 Bands, Geomorph 11 0.298 0.085 0.927 1.8 90 
Trial 3 Bands, AGB, Soils 10 0.177 0.1 0.906 1.4 84.29 

Trial 4 
Bands, Geomorph, AGB, and 
Soils 9 0.268 0.085 0.963 1.8 87.14 

Trial 5 MNF 13 0.31 0.142 0.919 2 92.85 
Trial 6 MNF, Geomorph 12 0.205 0.1 0.979 1.8 85.71 
Trial 7 MNF, AGB, Soils 13 0.244 0.114 0.909 1.6 87.14 

Trial 8 
MNF, Geomorph, AGB, and 
Soils 12 0.171 0.1 0.957 1.6 91.43 

Trial 9 IC 14 0.224 0.114 0.955 1.9 87.14 
Trial 10 IC, Geomorph 9 0.185 0.1 0.928 1.5 81.43 
Trial 11 IC, AGB, Soils 15 0.336 0.114 0.914 2.1 92.85 
Trial 12 IC, Geomorph, AGB, and Soils 12 0.162 0.071 0.962 1.8 75.71 
Trial 13 Veg Indices 14 0.592 0.257 0.826 1.8 77.14 
Trial 14 Veg Indices, Geomorph 8 0.259 0.128 0.935 1.8 82.86 
Trial 15 Veg Indices, AGB, Soils 7 0.412 0.157 0.879 1.6 78.57 

Trial 16 
Veg Indices, Geomorph, AGB, 
and Soils 13 0.372 0.228 0.819 1.3 82.86 

Trial 17 
Bands, MNF, IC, and Veg 
Indices 13 0.144 0.071 0.99 1.8 88.57 

Trial 18 AGB, Soils, and Geomorph 10 0.256 0.171 0.916 2 85.71 
Trial 19 All variables 15 0.143 0.071 0.99 1.8 88.57 
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Table 6 - Statistical results from the SGB nonparametric model trials. Trials 1-19 are all listed including the variables 
used in the associated trial. Numbers in bold indicate the best result for the corresponding statistical metric. 

SGB Results 

  Predictor variables used 

Optimal 
number of 

trees 
Average 

LogLikelihood 
Misclass 

rate  

ROC                     
(area under 

curve) Lift 

% Correct    
(0.5 

threshold)  
Trial 1 Bands 331 0.377 0.142 0.889 1.46 91.42 
Trial 2 Bands, Geomorph 332 0.368 0.114 0.889 1.46 91.42 
Trial 3 Bands, AGB, Soils 332 0.383 0.157 0.882 1.46 91.42 

Trial 4 
Bands, Geomorph, AGB, 
Soils 330 0.374 0.114 0.891 1.46 91.42 

Trial 5 MNF 284 0.534 0.214 0.793 1.53 87.14 
Trial 6 MNF, Geomorph 311 0.484 228 0.862 1.53 88.57 
Trial 7 MNF, AGB, Soils 161 0.575 0.271 0.774 1.79 90 
Trial 8 MNF, Geomorph, AGB, Soils 299 0.529 0.2 0.815 1.53 90 
Trial 9 IC 484 0.505 0.2 0.837 1.42 88.57 
Trial 10 IC, Geomorph 413 0.522 0.271 0.827 1.89 92.85 
Trial 11 IC, AGB, Soils 132 0.575 0.228 0.752 1.84 82.85 
Trial 12 IC, Geomorph, AGB, Soils 192 0.628 0.257 0.702 1.89 87.14 
Trial 13 Veg Indices 82 0.599 0.271 0.76 1.42 72.85 
Trial 14 Veg Indices, Geomorph 124 0.682 0.314 0.636 0.76 85.71 
Trial 15 Veg Indices, AGB, Soils 168 0.643 0.285 0.703 1.08 84.28 

Trial 16 
Veg Indices, Geomorph, 
AGB, Soils 131 0.648 0.242 0.625 0.52 84.28 

Trial 17 
Bands, MNF, IC, and Veg 
Indices 358 0.435 0.157 0.875 1.42 92.85 

Trial 18 AGB, Soils, and Geomorph 107 0.673 0.257 0.613 0.78 81.42 
Trial 19 All 572 0.389 0.171 0.9 1.46 92.85 
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Lift indicates the effectiveness of the model as a ratio of the testing 

results obtained. The higher the number the more likely the model is to be a 

strong, unbiased model. The final metric used is simply the overall classification 

accuracy of the experiment. This is the accuracy of the testing data withheld in 

each fold or out-of-bag that was used for testing. For a hard, binary 

classification, a threshold value of 0.5 was used to determine whether a data 

point is classified as tallow or non-tallow. This threshold was used because the 

software manual (SalfordSystems 2014) recommended initially using this value 

as the threshold, and other studies have used the same threshold in a similar 

type of analysis (Mellor et al. 2013). 

 In addition, a few other important characteristics of models from certain 

algorithms are included in these tabular results. For instance, the optimal 

number of basis functions is included in the MARS results table (Table 5). The 

number of basis functions does not necessarily represent the strength of the 

model, but rather may provide more detail on the model and its complexity. More 

basis functions indicate more use of different predictor variables within the 

model. The SGB results (Table 6) include a similar metric that indicates the ideal 

number of trees. 1000 trees were built at each fold of the cross-validation model, 

but 1000 trees were not always the optimal number of trees to build. The 

number of trees may be indicative of the strength of each model to continue to 

improve on the previously built tree before it. More trees indicate that the model 

was able to sift through more predictors to find the optimal combinations of 
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predictors. Models with fewer trees built may have had less or not very strong 

predictors (Friedman 2002). 

There was not one dataset-trial across all three algorithms that performed 

the best overall, meaning there was not one dataset combination used with the 

three classification algorithms that was best across all of the statistical metrics, 

but there were some that performed well with respect to multiple metrics. 

Regarding overall classification accuracy, trial 19 for both RF and SGB yielded 

the highest overall accuracy for each algorithm (80% and 92.85% overall 

accuracy, respectively), except that RF trials 4 and 5 also returned 80% overall 

accuracy (tied with RF trial 19). SGB trials 10 and 17 also generated an overall 

accuracy of 92.85%. MARS also had two models (trials 5 and 11) that yielded 

overall accuracies of 92.85%. 

ROC values did not always match the overall classification accuracies. 

The best RF ROC was with trial 2, with a value of 0.851. MARS had the best 

overall ROC values, with trials 17 and 19 achieving ROC values of 0.99. SGB 

had one trial with a ROC value of 0.9 (trial 19). SGB trial 19 was the only trial 

that had both the highest ROC and overall percent correct. Given that SGB 

iteratively corrects the model using pseudo-residuals and chooses new 

predictors, it is not surprising that the model that included all predictors was the 

best, most accurate model. 

Comparing the confusion matrices for best trial results for the three 

nonparametric algorithms (Tables 7-9), it is clear that that both MARS and SGB 
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performed better than RF. Average overall classification accuracies across all 

trials showed that MARS (average percentage correct = 88.5%) was slightly 

more accurate than SGB (average percentage correct = 87.73%), and both were 

more accurate than RF (average percentage correct = 73.22%).  

Given the confusion matrices for the best models (Tables 7-9), selected 

using overall percentage correct as the primary criterion and then ROC as a 

second criterion, there is little difference between the MARS and SGB results, 

aside from MARS having one more false positive than SGB. RF also has a 

higher number of false positives compared to false negatives.  

Table 7 - RF trial 19 confusion matrix 

 Classification Non-tallow Tallow 
Producer 

Accuracy(%) 
Non-tallow 28 2 93.3 

Tallow 3 37 92.5 
User Accuracy(%) 90.3 94.8 

Overall Accuracy 92.8 
Table 8 - MARS trial 5 confusion matrix 

 Classification Non-tallow Tallow 
Producer 

Accuracy(%) 
Non-tallow 25 5 83.3 

Tallow 9 31 77.5 
User    

Accuracy (%) 73.5 86.1 

Overall Accuracy 80 



60 

 Classification Non-tallow Tallow 
Producer 

Accuracy(%) 
Non-tallow 27 3 90 

Tallow 2 38 95 
User 

Accuracy(%) 93.1 92.6 

Overall Accuracy 92.8 
Table 9 - SGB trial 19 confusion matrix 

The three best models were applied to all of the data in the study area to 

create maps showing both predicted binary results as well as predicted 

probability results. These maps show what are final predictions for where tallow 

was at the time the image was taken as well as the probability of tallow being in 

that area. The models were built with one instance of tallow indicating the 

presence of tallow, therefore some of these areas may in reality not include 

much tallow but according to the model built there should at least be one 

instance of tallow in the represented area.  
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While there are some pixels in the probability map that are closer to the 

threshold value of 0.5 the majority of pixels are closer to either 0 or 1 and 

indicate that according to the model there is a high confidence that these 

locations are predicted accurately (Figure 10). There is a similar pattern in this 

map as all the other maps and that is the further away from the transition zone 

where the largest concentration of tallow is the less tallow it is predicting. This 

could be a function of the model but this general trend was also observed in the 

field data. However if this model is to be used to predict tallow on a larger scale 

the models built in this study may not be ideal because they may represent this 

special environment and not the entire landscape in general. 

The RF models were shown to be the weakest of the models with only an 

80% accuracy, but that is still a relatively high score and overall the general 

trend of the data in the predicted maps seems to mirror the field and 

observational data. In general there is not tallow near the point bar and deeper 

in the more established forest. There are a few patches that were not predicted 

to contain tallow in more of the transitional zone that there tended to be more 

tallow, but these area did have field sites that did not contain tallow so that may 

be a factor in these predictions (Figure 9).  
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 Figure 9 - RF experiment 19 projected binary model results for the entire study area. 
Background imagery taken from 2008 (National Agriculture imagery project) 
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Figure 10 - RF experiment 19 projected probability model results for the entire study area. 
Background imagery taken from 2008 (National Agriculture imagery project) 
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The MARS binary prediction map (Figure 11) differs somewhat from the 

RF map. In the MARS classification image, there are more predicted tallow 

pixels in the more mature forest areas. This is probably due to the fact that a few 

field plots in the more mature forest did have at least one instance of tallow. The 

model is taking these instances of few tallow trees and equating them to tallow 

presence, these instances of sites with a small number of tallow trees are 

interpreted by the models in terms of tallow presence/absence, which appears to 

lead to tallow overestimation. Particularly in the more mature forest, there is very 

likely an overestimation of the number of pixels that should be classified as 

tallow. This could at least partially be an artifact of the smaller number of in situ 

field plots in those areas.  

MARS probabilities differ from those derived from RF and SGB. The 

probability values from MARS trial 5 (Figure 12) do not seem as extreme as 

those from the other two algorithms. There are many more cells that are close to 

the 0.5 threshold than the other two algorithms. This could mean could mean 

that it was more difficult for MARS to generate a binary result based on the 

training data, or it could mean that MARS is a better soft classifier, in a sense, 

and is more precise than the other models. 

 RF and SGB are both essentially regression tree models, whereas MARS uses 

more basic linear regression techniques. This may be an important distinction in 

future studies when choosing a modeling method. It is important to note that 

MARS is using a binary classification technique and cannot classify multiple 
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 Figure 11 - MARS experiment 5 projected binary model results for the entire study area. 
Background imagery taken from 2008 (National Agriculture Imagery Project) 
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Figure 12– MARS experiment 5 projected probability model results for the entire study area. 
Background imagery taken from 2008 (National Agriculture imagery project) 
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classes.  Regardless, or perhaps because of this, MARS produced some of the 

best Chinese tallow classifications in this study.   

The SGB binary map (Figure 13) resembles the RF map more closely 

than the MARS map, but statsitcally is more accurate than RF (Tables 7-9). On 

the eastern side of the study area where there were not as many sample points 

there is possibly an overestimation of tallow occurrence. This area is mature 

forest and field observations show that this area should have less tallow than 

others, but the model may overpredict due to the lack of training data in that 

area. SGB predicts more tallow in that area than the other two algorithms. 

SGB also does not predict as many tallow-free pixels in the center of the 

study area as the other algorithms.The SGB map indicates the model was very 

rigid in regards to the training data. The two pixels in the middle of the map that 

were predicted as non-tallow were both non-tallow training areas, but the model 

did not grow these areas at all. The model tended to indicate that the area 

around these pixels was closer to the area where there is a lot of tallow growing 

and predicted those as tallow pixels.  

Similar to RF, the probability map (Figure 14) is more biased toward 

either tallow or non-tallow, there are not many pixels near the threshold value. 

This may suggest that with these data, the regression models tended to have 

more bimoda probability values in this type of binary classification. In comparing 

these two regression tree techniques SGB is more comprhensive algorithm in its 

use of all prediction variables and its iterative nature makes it stronger than RF. 
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 Figure 13 - SGB experiment 19 projected binary model results for the entire study area. 
Background imagery taken from 2008 (National Agriculture imagery project) 
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 Figure 14 – SGB 19 projected probability model results for the entire study area. Background 
imagery taken from 2008 (National Agriculture imagery project) 
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SGB has the ability to identify the most imporant predictor variables and use 

those variables in model construction whereas RF needs more user input. The 

MARS and SGB statistical results (i.e overall accuracy) are idnetical and there is 

no statistical significant difference between them. 

MARS trial 5 and SGB trial 19 have identical overall statistical accuracies. 

However, there are some differences when analyzing their predicted results for 

the entire study area (Figure 15). The map shows where there are areas of 

disagreement between the MARS and SGB predictions. 

 The area that seems to have the most disagreement between the models 

is again in the denser, mature forest portion of the study area. This may be 

traced back to the possible over-prediction of tallow pixels in the MARS 

experiment. Although MARS is not as biased/extreme in its probability map there 

does seem to be an over-prediction of tallow sites in the area. Based on the 

statistical results and without further testing sites in the more established part of 

the forest it is difficult to make an assumption that there is or is not tallow there. 

This makes it difficult to say which model outperformed the other but it can be 

stated that if a more complex classification is needed then SGB is the modeling 

algorithm of choice in that situation. 
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Figure 15 – A map comparing the agreement between the ideal predicted values for MARS 
(experiment 5), and SGB (experiment 19). These were the best experiments among the non-
parametric models 
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Low tallow analysis (zero tallow sites included) 
RF MARS SGB 

< 5% occurrence 
correct (n=3) 

90.91% 72.73% 81.82% 

< 20% occurrence 
correct (n=9) 

76.47% 58.82% 58.82% 

< 50% occurrence 
correct (n=15) 

60.87% 43.48% 43.48% 

Table 10 - Areas of low tallow correctly classified by nonparametric algorithms 
(zero tallow sites included) 

Low tallow analysis (zero tallow sites not included) 
RF MARS SGB 

< 5% occurrence 
correct (n=11) 

66.67% 33.33% 33.33% 

< 20% occurrence 
correct (n=17) 

55.56% 33.33% 22.22% 

< 50% occurrence 
correct (n=23) 

40.00% 20.00% 13.33% 

Table 11 - Areas of low tallow correctly classified by nonparametric algorithms 
(zero tallow sites not included) 

5.3 Spectral analysis results 

The spectral analysis results, in general, tend to under-predict the 

presence of Chinese tallow. In most of the results utilizing spectral feature fitting 

(Figure 16), spectral angle mapper (SAM) (Figure 17) and mixture-tuned 

matched filtering (MTMF) (Figure 18) the area where the image-derived spectra 

are located are classified accurately, but under-prediction is prevalent in the rest 

of the study area, with the exception of the SAM results.  
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 SFF uses a least-squares technique to diagnose the fit between the 

reference and image spectra. It utilizes continuum removal in order to scale the 

images to each other. The resulting output is a combined “fit” map which 

combines the scale and RMS image output from the model (Figure 16). The 

higher the value the better the fit or match to the reference spectra. 

 The results from SFF indicate that where there is a more dominant 

presence of tallow along the chute there is a high fit. This also is where the 

image derived spectra are located so it is not surprising to see a high fit there. 

There is a good prediction closer to the point bar where there is less tallow and 

less vegetation in general, but further inland of the point bar the results are very 

spotty and variable and do not seem to follow the in-situ data as well as the 

nonparametric modeling algorithm results.  

 Because SFF it does not contain fractional abundance values it is difficult 

to compare it directly to the nonparametric algorithms, but it is a good baseline 

method to compare the other spectral analysis methods against.  
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Figure 16 - This SFF fit map combines both the scale and RMS result images from SFF to show 
the best fit between the reference and image spectra. Higher values represent a better fit. 
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 The SAM results (Figure 17) are different from the two other spectra 

analysis methods in that it appears to be over-predicting tallow, but due to the 

results of SAM being the size of the angle between the reference and target 

spectra small changes in the angular value may indicate bigger changes in the 

actual classification. In a SAM classification the lower the angular value the 

better the match. 

 The SAM results indicate a strong association between the reference and 

target spectra in the same location as the other classifications (Figure 17). Along 

the chute there is a strong relationship. Looking at the SAM results it looks like 

almost anywhere that there is significant amount of vegetation on the point bar it 

is predicting tallow, but this may be a little misleading due to the small changes 

in the angular values of each pixel. The lighter red pixels may really be 

insinuating a weak relationship between the two spectra. This map is useful in 

that it is most likely realistically showing where tallow could be present but the 

amount of tallow at each location is not represented very well with this type of a 

classification. It is too generalized to really make an assumption about whether 

there is tallow at a location or not, and in reality there are not very many limiting 

factors in regards to tallow growth besides extreme temperatures and over-

saturation.  

 SFF as well as SAM both generate outputs that make them difficult to 

compare to each other and to compare with the nonparametric models, 

nevertheless the visual patterns can still be compared. The amount of in situ 
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Figure 17 – SAM results, values are angular values between the endmember spectrum vector 
and each pixel vector in the image. 
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data collected where the largest amount of tallow is has led to most of the 

models predicting well there and overall the general trend in the SAM and other 

models is in line with the in situ data. 

The MTMF result (Figure 18) is composed of a fractional abundance 

value for each pixel. This abundance value makes it possible to compare this 

method to the other nonparametric methods. The resulting classification image 

shows the results in a two-tailed pattern. There are very few pixels that show a 

moderate result but rather there are many values close to 0 or close to 1. 

 The pattern seen in other results is continued in this image with the area 

near the chute and where the tallow end-member was derived exhibiting a high 

probability of tallow occurrence. While many of the other classifications 

generalized the whole area as a probable location for tallow growth MTMF 

predicts no tallow in locations that most certainly contain tallow. MTMF exhibited 

the worst results of all of the methods.  

 

5.4 Method comparisons 

 MTMF yields fractional abundances, so these were compared with 

nonparametric model-derived probabilities. The best model result (MARS trial 5) 

and the MTMF results were compared using a map algebra local subtraction 

operation (Figure 19). Areas that are most likely incorrect in the MTMF image 

are not in agreement with the MARS image. Specifically, there is an under-

prediction of tallow in the MTMF image which is creating a large difference. 
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While these areas contain less tallow than right along the transitional zone near 

the chute, they still contain rather large numbers of tallow trees.  

 In this instance, the spectral-analysis results less accurate and do not 

seem to follow the patterns observed in the field. This does not mean that the 

nonparametric modeling algorithms are the best choice nor does it imply they 

are completely correct, but observation of the results does seem to imply that 

they outperform in this study. 

 In summary, the best results are those achieved using SGB and MARS. 

These techniques were able to better parse through the testing data and 

determine areas in the study area that are more amenable to tallow growth. The 

spectral results were not as conclusive and that is likely due to a number of 

factors including spatial resolution, lack of true tallow spectra, tallow as an 

understory species, and pixels containing a large variety of species that are 

difficult to spectrally un-mix.  
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 Figure 18 - MTMF results image, values are fractional abundances of tallow. There is a distinct 
separation between high abundance and low abundance areas and possible overtraining 
localized around areas with high amounts of tallow. 
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 Figure 19 – The difference between the percent abundance values of the MTMF and MARS 
results. Areas in blue are in more agreement than those areas in red. 
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5.5 Spatial analysis 

A Gettis-Ord GI hot-spot analysis was produced for the probability values 

from each of the best models generated by the three modeling methods (Figures 

20-22). Hot spot analysis is beneficial because it identifies statistically significant 

spatial clusters of high values (hot spots) and low values (cold spots). Clustered 

areas of tallow should be highlighted in red colors representing high z-values, 

and blue cold spots should representing clusters of areas where tallow growth is 

not very likely.  

In the three hot-spot maps (Figures 20-22), the colors represent z values. 

These z values represent the number of standard deviations away from the 

mean these values are. High and low z values are outliers and thus represent a 

clustering of values that are unlike the mean and thus unlike the majority of the 

pixels. Z-scores above 2.6 are significant at the 99th percentile; z-scores in 

between 1.96 and 2.6 are significant at the 95th percentile.  

These hot-spot maps reinforce what is visible in the field and from a 

majority of the models. The area that entails the highest number of Chinese 

tallow trees is along the transitional zone/boundary between mature forest and 

younger forest. In addition, the chute cut that provides a water-delivery 

mechanism to this area may contribute to more tallow growth and spread. 
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  Figure 20 – Hot-spot analysis using probability results from the best MARS model. Results 
reported in Z score and grouped by significance (99th percentile, 95th percentile and not 
significant areas) 
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  Figure 21 – Hot-spot analysis using probability results from the best SGB model. Results 
reported in Z score and grouped by significance (99th percentile, 95th percentile and not 
significant areas) 
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 Figure 22 – Hot-spot analysis using probability results from the best RF model. Results reported 
in Z score and grouped by significance (99th percentile, 95th percentile and not significant areas) 



85 

5.6 Nonparametric model statistical comparison 

5.6.1 McNemar statistical test 

Binary comparisons are given in Tables 12-14 between the classification 

results of RF (trial 19), SGB (trial 19) and MARS (trial 5). Pairwise comparisons 

between algorithms showed there is no significant difference in the marginal 

distributions (p < 0.001) between the classification results of RF and SGB, p-

value of 0.227, between MARS and RF, p-value of 0.581, and between SGB and 

MARS p-value of 0.687.  

These results suggest that each of the algorithms is getting similar testing 

results, whether those results are correct or incorrect classifications. This may 

suggest that each of these algorithms is performing relatively similar at 

classifying certain parts of the image but may also be similarly performing poorly 

in other parts. While this may infer that all the algorithms are performing the 

same it does not really inform which of the models is performing differently from 

the others. Since the classification accuracies are relatively high, it does instill 

confidence that each of the algorithms may be suitable for classifying tallow.  

SGB Trial 19 
Random Forest Trial 19 

0 1 
0 26 3 
1 8 33 

Table 12- SGB trial 19 & Random Forest trial 19 confusion matrix 
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Random Forest Trial 19 
MARS Trial 5 
0 1 

0 26 8 
1 5 31 

Table 13 - Random Forest trial 19 & MARS trial 5 confusion matrix 

SGB Trial 19 
MARS Trial 5 

0 1 
0 27 2 
1 4 37 

Table 14 - SGB trial 19 & MARS trial 5 confusion matrix 

5.6.2 KAPPA analysis 

In addition to the McNemar test a more traditional KAPPA analysis was 

performed (Congalton 1991). The KAPPA test reports whether or not each 

classification is better than a random classification to a statistically significant 

degree, in this case a 99% confidence level. The large Z statistic for each 

statistical test (Table 13) signifies that all three tests were more significant than a 

random classification (H0 : K=0). This matches with previous results showing 

relatively high accuracy percentages. 

Pairwise comparisons between the three error matrices for each test 

yielded results that differ from the McNemar results. Table 14 indicates through 

the z-statistic that there is a significant difference between the random forest and 

MARS results as well as the random forest and SGB results. The MARS and 
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SGB results do not have a significant difference. Given the overall accuracy 

results of the models this is more in line with what would be expected. This 

again emphasizes the utility of the MARS and SGB models, they may be more 

robust and accurate than a more typical random forest model.  

Classification 
algorithm 

KHAT 
statistic 

Lower 
limit 

Upper 
limit 

Z 
Statistic 

Variance Res
ult 

RF Ex 19 0.59836 0.41025 0.78647 6.23462 0.00921 S 

MARS Ex 5 0.85477 0.73216 0.97738 13.66409 0.00391 S 

SGB Ex 19 0.85356 0.72993 0.97718 13.532 0.00397 S 

Table 15 - KAPPA analysis test of significance for individual error matrices from 
the classification trials. S = significant result at the 99% confidence level. NS = 
non-significant results at the 95% confidence level 

Pairwise comparison Z Statistic Result 

RF Ex 19 and MARS Ex 5 -2.2382 S 

RF Ex 19 and SGB Ex 19 -2.221 S 

MARS Ex 5 and SGB Ex 19 0.0137 NS 

Table 16 - Test for significant differences between error matrices 

It is unclear why the KAPPA and McNemar test results are different but one 

hypothesis is that the tests are slightly different in design. The KAPPA test uses 

the confusion matrices as an input, whereas the McNemar uses the individual 

test results at each point and compares those results across the three 
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algorithms. In addition some of the literature (Foody and Mathur 2004) mentions 

that the McNemar test may not perform as well with a small sample size, and 

relatively small sample size is used in this study. The KAPPA results seem to be 

the more expected results and follow more closely with other statistical outputs 

for each individual model type. As concluded before, the MARS and SGB 

models seem to yield the best results. 
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6. DISCUSSION

The results achieved from the nonparametric models indicate that it is 

possible to map Chinese tallow. However using strictly presence and absence 

data in this study has most likely led to over-prediction of the presence of tallow 

and does not give a great representation of the density of tallow in the locations 

it has been predicted to be in. This also is partly due to using a 0.5 cutoff value 

for most of the models. This was the default within the modeling software and 

also was used in another study and so it was decided to use it in this research 

as well.  

Using a .5 cutoff and using even one instance of tallow as a presence 

pixel may have had more of an effect on the SGB and RF results. The SGB and 

RF probability results (Figures 10 and 14) showed a distinct bimodal distribution 

with most values grouping near 0 and 1. While this type of distribution allows for 

a more accurate hard cutoff prediction it does not highlight areas where tallow 

has a moderate chance of being present. These areas may be those areas 

where tallow has colonized more recently or they may be more susceptible to 

tallow invasion in the near future. Because RF and SGB did not seem to do a 

good job at predicting these areas, it may be recommended that these methods 

be used more for tallow detection and not prediction.  

MARS is the one nonparametric modeling method that may have been 

able to better predict these areas of possible or new tallow growth. The 

probability results from MARS (Figure 12) showed a larger range of values 
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across the study site yet still had strong values in those areas that have large 

amounts or no tallow. Because of that, it is recommended that MARS may be 

the most ideal method for modeling and predicting tallow growth in these riparian 

areas. 

One of the primary reasons MARS may have performed better is because 

it is a fundamentally different model than RF and SGB. It does not make use of 

the decision tree structure, but rather uses a regression-based method which 

appears to be more useful in this situation. The downside of MARS in this 

particular context is that it cannot be used in a classification that is not Boolean, 

it can only classify a binary classification as was done in this study. The success 

of MARS may suggest that other regression-based techniques such as a 

generalized linear model, or a generalized additive model may perform well in 

this type of study as well.  

Regarding the utility of the predictor variables, the vegetation indices 

tended to result in poor classification performance across all algorithms. 

Consistently across all classification algorithms, including those where other 

variables besides the indices were used, the four experiments involving the 

vegetation indices tend to have some of the lowest values among all of the 

statistical/accuracy metrics.  

RF and MARS models developed in trial 5, where only the MNF 

bands were used as input variables, were among the most accurate models 

developed via those algorithms. In the MARS and SGB trials, the IC image 
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variables also produced high classifications accuracies when paired with either 

the geomorphometric variable group (in the case of SGB) or the AGB and soil 

predictors (in the case of MARS). It is important to note that while the 

geomorphometric, AGB and soil predictors never performed the best on their 

own, there are various trials that only yield good accuracies when using those 

variable groups in concert with the image-derived variables. 

 The RF baseline algorithm, compared with MARS and SGB, is not as 

accurate of an overall model predictor for the binary Chinese tallow-detection 

problem however it did prove to do best at classifying areas with low tallow 

(Tables 10 and 11). For these trials in this problem domain, MARS was not able 

to effectively perform classifications that are contain more than 2 classes and 

can only model binary classifications. SGB does have the capability of handling 

more robust classification problems because of its iterative nature and use of 

pseudo residuals and in this case should be regarded as the more robust and 

correct method for this problem, and most likely other classification problems as 

it had the highest overall accuracy results (Table 9) along with MARS (Table 10). 

Overall, the results achieved from the nonparametric classification 

algorithms are positive and tend to reflect the observed distribution of Chinese 

tallow (Figure 5). Future studies may want to obtain more unbiased in-situ data 

to truly reflect the whole of the study area. In addition, this study could have 

benefited from knowing the amount of tallow at field sties in relation to amount of 

other species in the field plot. This information was only known for some of the 
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in-situ data collected and therefore could not be modeled. Regardless these 

results show confidence in all of the algorithms for producing accurate results 

with SGB and MARS outperforming RF. 

 However, when predicting areas with low percentages of tallow RF 

outperformed the other two algorithms when plots with no tallow were or were 

not included (Tables 10 and 11). When not including sites with no tallow the 

percentages for all algorithms are fairly low, this is most likely due to the low 

number of samples in the analysis. This statistical analysis suggest that RF is 

still a viable method and may perform better at predicting areas of low tallow 

which may be important for managers wanting to mitigate tallow early to avoid 

economic loss (Wang et al. 2012).  

More extensive in situ data may have been able to improve the data and 

allowed for a more robust model. Instead of using just presence and absence, it 

would be better to use a model that incorporates percentage tallow at each site 

and thus better predict tallow in these areas. It would be better to have 

probability values that could relate directly to the percent abundance in a specific 

pixel. While that was the goal of this study, it cannot be said with certainty that 

the results achieved are representative of the percent abundance at the pixel 

level. MARS is the one model that may have been better at that kind of a 

prediction.  

As this is the first study to use these nonparametric-modeling methods to 

detect/classify Chinese tallow, it is optimistic to view that the statistics and model 
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outputs generally follow the established patterns of tallow growth viewed 

throughout the study area. This research shows the value of using these model 

types for modeling not only tallow but possibly other invasive species in this type 

of riparian environment.  

Of all the analyses performed for this research, the spectral analysis 

produced some of the more inconclusive results. SFF and SAM both produced 

underwhelming results although the SAM was able to predict general patterns of 

tallow growth on the point bar. The MTMF results which were expected to 

perform best were only able to pick out the areas with really high tallow growth. 

A few things may be to blame for the weak spectral analysis results. The 

30 meter spatial resolution is definitely an obstacle when performing this kind of 

analysis in the summer and in a small study area. When looking for end-

members there was not a very distinct separation between different species in 

the study area. It is very difficult in such a heavily forested area to filter out the 

different end-members for different species. Although there is a pixel in the study 

area that is almost entirely composed of tallow the tallow end-member derived 

from this one pixel most likely was not sufficient to get a true separation of end-

members when the various spectral methods were computed.  

The field spectra were also not of a suitable quality to be used in the 

spectral analysis. There are a variety of factors that could have led to this. The 

spectra were not taken directly in the field and this may have led to false spectral 

readings when the spectra were shot in the lab. The leaves used for the spectra 
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may have not been preserved well enough. The lab spectra for Chinese tallow 

were averaged across all of the study sites that tallow spectra were collected 

from, this may have introduced some errors into the final lab spectra. If spectral 

analyses are to be used to detect tallow they most likely will need to employ the 

same strategy that Ramsey III did and use spectra and imagery from the fall 

months when tallow is senescing (Ramsey III and Nelson 2005a, Ramsey III et 

al. 2005c, Ramsey III et al. 2005b).  

 While it is more difficult to obtain and more expensive it is recommended 

that higher resolution hyperspectral imagery be used in future studies of this 

nature. If the study species is not grouped in larger stands, then it is difficult to 

obtain a pure spectra for the study species and thus difficult to unmix the pixel 

and determine the abundance in each of the pixels in the image. Other studies 

utilizing hyperspectral imagery have found success even with semi-moderate 

resolution of 10 or 15 meters (Underwood et al. 2003, Ustin et al. 2002, Filippi et 

al. 2014).  

 The hot-spot analyses hightlight where there are statistically-signficant 

hotspots of tallow or no tallow in the study area. The area along the chute cut is 

a hotspot for tallow, whereas the point bar and the more dense forest contain 

hotspots where there is no tallow. Many of these hotspots are significant at the 

0.01 or 0.05 level. Although the hotspot results are good they do not emphasize 

much the interaction between Chinese tallow and other predictive variables but 

rather, just highlight cohesive areas that may contain tallow or do not contain 
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tallow to a high-degree of confidence. The spatial analysis portion of the 

research should be expanded in further research in order to truly link Chinese 

tallow growth with other predictive characteristics. 

The study area used for this research is fairly small and localized. It will 

be of use to determine if the models and methods used in this study can be 

scaled up to predict tallow presence in a bigger area. The models used in this 

research may be used to model other larger riparian areas, particularly along the 

Trinity River. These models will most likely not work in other areas that are not 

riparian in nature, but these methods can be applied in those areas. Results will 

vary but these methods have shown their utility in this study.  
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7. CONCLUSIONS

As with many invasive species, Chinese tallow exhibits a marked ability to 

grow in varied environments, though its presence is more limited in certain 

portions of the study area. Results of this research indicate that Chinese tallow 

trees can be accurately detected in the summer using various remote-sensing 

methods.  

The objectives of this research were: 1) to detect and map Chinese tallow 

in a floodplain forest using summer hyperspectral satellite image and other data, 

as well as nonparametric modeling and spectral unmixing/matching techniques; 

2) to determine algorithm/dataset combinations that yield the highest-accuracy

Chinese tallow classifications, of the detection algorithms and input variables 

tested; and 3) to quantitatively characterize the spatial distribution of Chinese 

tallow trees. This study is, to our knowledge, the first of its kind in that it attempts 

to detect Chinese tallow using remotely-sensed imagery acquired during 

summer months, and not to exploit spectral differences between senescent and 

non-senescent vegetation in the fall. Significantly, the proposed methodology, 

based on image data where vegetation is not senescing, thus geographically 

extends potential Chinese tallow-detection capability to areas where the leaves 

of many native tree species actually change from green to other colors during 

the fall, which complicates discrimination between Chinese tallow and native 

tree species during the fall season.      
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Nonparametric methods were found to be successful in mapping Chinese 

tallow presence. Only MARS was able to effectively produce a probability map 

that may indicate somewhat accurate probabilities, whereas SGB and RF 

seemed to only produce good hard classification maps. Utilizing hyperspectral 

imagery to map tallow using spectral unmixing methods was not entirely 

successful however, this is most likely due to the fact that it is difficult to obtain a 

good Chinese tallow endmember using an image with a coarse spatial resolution 

that was taken in the summer and contains a dense deciduous forest. Mixture 

tuned matched filtering was able to detect the tallow hotspot in the point bar but 

did not do well at predicting tallow at other areas of the point bar. 

 Spatial analysis was able to determine hotspots of tallow and non-tallow 

growth and to possibly intimate some of the factors that may drive tallow growth, 

namely geomorphometric and soil characteristics. These characteristics do not 

necessarily control the growth and spread of tallow but they may have more of 

an effect than other characteristics of the environment.  

Future research that shows promise is utilizing available LiDAR data to 

attempt to map Chinese tallow. Using a dense high quality point cloud it may be 

possible to detect more of the tallow that is located in the understory of the 

canopy. One of the disadvantages of spectral remote sensing in dense forests is 

that it cannot give information about the understory and this is where much of 

the tallow outside of the transitional zone. LiDAR may be able to detect more of 
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that tallow and should be pursued as another method of mapping Chinese 

tallow. 

Chinese tallow is a concerning invasive species in the southeastern 

United States and continues to spread and reduce biodiversity all throughout the 

region. Being able to track and map it is of importance as managers seek to 

control and mitigate the spread of tallow. Remote sensing may provide a cheap 

and efficient way to aid these managers by tracking tallow remotely. As of now 

only Ramsey III and collaborators have been able to accurately delineate tallow 

from other vegetation. However, that solution is dependent on the timing of the 

image-acquisition, and the processing was relatively intensive. While this 

research also is somewhat advanced, it contains concepts that managers may 

be able to eventually employ in order to map tallow.  
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