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ABSTRACT 

 

The importance of secondary metabolites (SM) in plant defense mechanisms 

against environmental stresses as well as its benefits in human health have led to the 

study of how preharvest factors enhance their biosynthesis in fruits and vegetables. 

Pecans and strawberries have high level of bioactive phenolics including ellagitannins, 

gallotanins and proanthocyanidins. Wounding affects the production of SM as a local 

response, and as a systemic response in leaves, but this has never been tested in fruits. 

Organic agriculture claims that under this method of production, plants suffer more 

biotic stress and accumulate more SM in fruits.  

In this dissertation, the preharvest effects of biotic stress due to insect feeding 

and mechanical wounding were evaluated as modulators of phenolics in fruits. 

Wounding did not produce any differences in quality and vitamin C in fruits at harvest 

compared with the control. However, the level of total phenolics and soluble sugars in 

fruits from treated plants increased significantly 12% and 20% respectively. Moreover, 

increments in the level of specific phenylpropanoids were observed: epicatechin (160%), 

quercetin (190%) and rutin (190%), the ellagitannins/gallotanins derivatives ellagic acid 

(58% and gallic acid (130%). In addition, several genes related to phenolics biosynthesis 

and sugar metabolism were overexpressed. A hypothetical model is proposed to explain 

the modulation of phenolic compounds in fruits based on source/sink transport of sugars 

in favor of fruits from wounded leaves. In the following studies were used a generalist 

insect chewing in organic strawberry plants, and a specialist aphid feeding on pecan 
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leaves. In strawberries no significant increments were detected for quality parameters, 

soluble sugars, phenolics, and related gene expression (except for the cell wall invertase 

gene). In pecan kernels, no differences were found in proanthocyanidins, gallotanins o 

ellagitannins derivatives levels due to the insect sucking the leaves. 

The results could explain how the wounding factor attributed to insect damages 

is connected to higher levels of phytochemicals in organic fruits. Furthermore, controlled 

mechanical wounding applied in leaves during preharvest could be used to increase 

phytochemicals in fruits. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

In the last decade, the organic food market has grown between 17% and 21%, 

compared to the 2-4% growth for conventional food products market (Bezawada and 

Pauwels 2013). European countries and the United States lead the global market as 

producers and consumers, and several other countries, including Australia, China, 

Argentina, Brazil and Uruguay are important producers for export markets (Sahota 

2008). For the US Department of Agriculture, organic products should certify that 

during all the processes implied, only approved substances are used, the natural 

resources are preserved, the biodiversity is respected, and uses only approved substances 

(USDA 2013).  Certification and labeling of organic products have a positive effect on 

consumers selection and support higher prices in an ever-growing market (Bauer et al. 

2013). Some studies showed that organic products it may also have higher dry matter, 

higher levels of healthy fatty acids in dairy products, less nitrates and higher levels of 

antioxidants, mainly polyphenols and vitamin C, in fruits and vegetables (Lairon and 

Huber 2014; Lairon 2010).  Regarding the higher levels of phytochemicals, several 

studies supported that organic fruit and vegetables contain higher levels of secondary 

metabolites related to the plant defenses (Brandt and Mølgaard 2001; Zuchowski et al. 

2011; You et al. 2011; Lima and Vianello 2011; Brandt et al. 2011; Petkovsek et al. 

2010; Faller and Fialho 2010; Crinnion 2010; Lima et al. 2008; Lombardi-Boccia et al. 

2003). A meta-analysis, contrasting unique results from 84 studies, showed that 



 

2 

 

secondary metabolites content in organic products is 12% higher than in conventional 

ones (Brandt et al. 2011). Products derived from organic agriculture contained greater 

amounts of flavonoids, anthocyanins and carotenoids (Crinnion 2010). Several authors 

speculate that higher levels of phytochemicals, particularly phenolic compounds, are 

related to higher levels of biotic stress when plants are grown in organic conditions 

(Young et al. 2005; Zhao et al. 2009; Cohen and Kennedy 2010). Phytochemicals are 

especially relevant for human health since they may play a role in treatment and 

prevention of chronic cardiovascular and inflammatory diseases or cancer (Sarkar and 

Shetty 2014; Krishnaiah et al. 2011; Rajendran et al. 2014; Wang et al. 2011). 

Research on secondary metabolites production induced by biotic stresses has 

shown an induction of synthesis of phenolic compounds and phytoalexins as a plant 

defensive response. These studies were conducted in the same tissues where damage was 

caused by either piercing-sucking insects (Cabrera et al. 1995; Goggin 2007; Morkunas 

et al. 2011; Pickett et al. 1992; Smith and Boyko 2007; Chen et al. 2009; Eleftherianos et 

al. 2006) or leaf-chewing insects (Arimura et al. 2005; Bricchi et al. 2010; Howe and 

Schaller 2008; Maffei et al. 2007; Rodriguez-Saona et al. 2010; Valladares et al. 2002). 

Systemic induction of secondary metabolites has been demonstrated for the same kind of 

plant organ, like leaf-leaf model in tobacco, tomato and poplar (Keinänen et al. 2001; 

Schmidt et al. 2005; Schwachtje and Baldwin 2008; Voelckel et al. 2004; Woldemariam 

et al. 2011). However, there is no reported scientific information regarding the 

production of phenolic secondary metabolites (phytochemicals) in fruits and how it is 
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affected by stresses (biotic and mechanical) produced in the leaves during fruit 

development. 

Plant secondary metabolites are regulated by signal transduction pathways that 

can be triggered and regulated by several abiotic and biotic stress factors (Rhodes et al. 

2006; Maffei et al. 2007). Stresses such as wounding and herbivores induce changes in 

plant secondary metabolism (War et al. 2012; Salminen and Karonen 2011; Howe and 

Schaller 2008; Chen 2008; Arimura et al. 2005). Wounded tissues affect the production 

of phenylpropanoid secondary metabolites as a local response and also as a systemic 

response in the same organ tissue (e.g., leaves) (Silva et al. 2012; Maffei et al. 2007; 

Chen et al. 2006; Housti et al. 2002; Campos-Vargas and Saltveit 2002; Dixon and Paiva 

1995; Bennett and Wallsgrove 1994; Woodhead 1981). An early study showed that 

wounded potato and tomato leaves enhanced the production of proteinase inhibitors 

(Green and Ryan 1972). Since then, several studies have shown how chemical signals 

produced at the wounded tissue travel through the plant and activate response in 

undamaged leaves (Howe and Schaller 2008; de Bruxelles and Roberts 2001; Chen 

2008; van Verk et al. 2009; Shah and Zeier 2013). After the recognition of the wounding 

event, plants under insect attack respond with direct and indirect defense mechanisms. 

There are two kinds of direct defenses in plants, the ones already formed such as 

secondary metabolites and physical barriers (e.g., waxes or spines), and those inducible 

by wounding or insect damages (Howe and Schaller 2008; Chen 2008). The indirect 

defense mechanisms of plants include a third trophic level like predators and parasitoids 

(Alba et al. 2012; Arimura et al. 2005). Affected plants develop an efficient defense 
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system that include a crosstalk between signal molecules that include phytohormones, 

such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), 

indolacetic acid (IAA) and gibberellic acid (GA), plus several reactive oxygen species 

(ROSs) (Morkunas et al. 2011; Wasternack 2014; Wang and Wu 2013; De Geyter et al. 

2012). ROSs have critical roles in signaling related to plant defenses and several other 

functions (Fluhr 2009; Suzuki and Mittler 2012; Smékalová et al. 2014; Mori et al. 

2009). The specific elicitors released by insect damage activate several signaling 

pathways that interact each other (crosstalk) producing a metabolic rearrangement 

expressing defense-related genes and sometimes directly releasing directly volatile 

organic compounds (Kessler and Baldwin 2002). JA, methyl jasmonate (MeJA) and its 

precursor, 12-oxo-phytodienoic acid (OPDA), are inducers of proteinase inhibitors as a 

main defense against herbivore feeding (Korth and Thompson 2006; Heil et al. 2012). 

JA and ET play important roles as positive regulators of plant defense against attack 

from insect and some pathogens, whereas SA has been associated with resistance against 

most pathogens (Monaghan et al. 2009). Apparently, the crosstalk allows the plant to 

optimize the responses against herbivores and pathogens, a strategy that produces a very 

complex defensive system (Morkunas et al. 2011; Smékalová et al. 2014; Robert-

Seilaniantz et al. 2011; Mori et al. 2009; Bari and Jones 2009; Wasternack 2007; 

Vandenbussche et al. 2007; Rakwal and Agrawal 2003; Thaler et al. 2002; Ding et al. 

2002). 

The importance of plant defensive compounds (phytochemicals) for human 

health has led to the study of pre- and post-harvest factors that influence the production 
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of bioactive phenylpropanoids (Cisneros-Zevallos 2003; Young et al. 2005; Jin et al. 

2011; Wang et al. 2012; Wang et al. 2008; Wang and Frei 2011; Cohen and Kennedy 

2010). Phenylpropanoids and ellagitannins received attention for their biological activity 

associated with health benefits, such as antioxidant, anti-allergy, anti-hypertensive, and 

antitumor effects in vitro and in vivo (Krishnaiah et al. 2011; Leopoldini et al. 2011; 

Rajendran et al. 2014; Saeidnia and Abdollahi 2013; Wang et al. 2011). Strawberry 

(Fragaria x ananassa) and pecan (Carya illinoinensis) have been reported as foods with 

very high content of bioactive ellagitannins (Arapitsas 2012; Landete 2011; Ascacio-

Valdes et al. 2011; Pinto Mda et al. 2010; Larrosa et al. 2010; Tomás-Barberán et al. 

2009; Nohynek et al. 2006).  

Strawberry is one of the most important small fruits produced worldwide; in 

2012, the United States was the main producer (1.366,850 tons), followed by Mexico 

(360,426 tons) (FAOSTAT 2012). In South America, the main producers are Argentina, 

Brazil, and Chile (Antunes and Peres 2012; Gambardella and Pertuzé 2006; Kirschbaum 

and Hancock 2000). Uruguay has a small production area (120 ha) with high yields (37 

tons/ha) which supply the local market with national cultivars (Antunes and Peres 2012; 

Vicente et al. 2014). Despite the fact that the main biotic stresses affecting strawberry 

culture are caused by bacteria and fungi (Maas 2004; Louws 2009), some arthropods, 

such as the aphid Chaetosiphon fragaefolii (Bernardi et al. 2013) and the spider mite 

Tetranychus urticae (Monteiro et al. 2014), can negatively affect the commercial 

production. Several studies showed that the level of phytochemicals was higher in 

strawberries grown organically compared to those grown with conventional methods. A 
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comparison between both production approaches for two strawberry cultivars found that 

fruit from organic production accumulate more total phenolics and that the differences 

are maintained at different storage temperatures (Jin et al. 2011). Ellagic acid is a 

phenolic compound found in high concentrations in strawberry, ranging from 39.6 to 

52.2 mg/100 g fresh weight in nine cultivars analyzed (Häkkinen and Törrönen 2000). A 

high variation was reported in 13 clones, showing values between 43 to 464 mg/100g 

dry weight (Maas et al. 1991). Comparing the organic vs. conventional techniques of 

production, the cultivar “Jonsok” had higher level of total phenolics and showed a 

significant increment in kaempferol content (0.9 vs. 0.5 mg/100g fresh weight) and 

ellagic acid (58.6 vs. 52.2 mg/100 g fresh weight) for the organic system (Häkkinen and 

Törrönen 2000). The authors speculated that the higher incidence of pathogen attack on 

this cultivar could increase the levels of these phenolics (Häkkinen and Törrönen 2000). 

In another study comparing organic (using compost and cow horn manure as a soil 

supplement) and conventional production (D'Evoli et al. 2010), the results showed 

higher antioxidant activity and levels of kaempferol (1.99 vs. 1.26 mg/100g fresh 

weight) and ellagic acid (53.3 vs. 37.9 mg/100g fresh weight) for organically grown 

strawberry. This higher level in phenolics was correlated with better antiproliferative 

activity in Caco-2 cell lines, derived from a kind of human colon adenocarcinoma 

(D'Evoli et al. 2010). The levels of ellagic acid glucoside in “Allstar” and “Earliglow” 

strawberry cultivars increased from 14.7 to 18.6 µg/g fresh weight and 12.2 to 18.5 µg/g 

fresh weight respectively for the organic growth conditions (Jin et al. 2011). The 

addition of organic and conventional soil nutrients did not affect strawberry yield and 
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quality parameters related to phenolics such as antioxidant capacity (Hargreaves et al. 

2008). 

Pecan is an important horticultural crop in the southern United States. The value 

of US pecan production grew from 430 million of dollars in 2009 to 507 million dollars 

in 2014 (NASS 2015). Furthermore, it is the most significant indigenous nut crop in the 

US, mainly in the states of Texas, Oklahoma, Louisiana, Arkansas, Mississippi, Kansas, 

Missouri, Tennessee and Kentucky, with cultivation extended to other southern states 

(Thompson and Conner 2012). Several pests are associated with pecan orchards. The 

most important ones are pecan nut casebearer (Acrobasis nuxvorella), the black 

margined aphid (Monellia caryella) and the yellow pecan aphid (Monelliopsis pecanis) 

(Ree 1999; Smith 1995). One study reported increments on total terpenes, condensed 

tannins, hydrolysable tannins and lignin in tissues damaged by fruit tree borer insect 

(Euplatypus segnis) and associated fungi (Fusarium solani, Fusarium oxysporum, 

Alternaria alternata and Botryodiplodia theobromae) on pecan (Alvidrez-Villarreal et 

al. 2011). Another study, reported the effects of black pecan aphid (Melanocallis 

caryaefoliae Davis) on the activity of oxidative enzymes (peroxidase, catalase, 

lipoxygenase) and esterase in field conditions (Chen et al. 2009). Recently, over 100 

volatile terpenic derivatives from dormant buds were reported for two pecan cultivars 

(Western Schley and Wichita) grown in Mexico (Corella-Madueño et al. 2011).  

Our group has studied the kernel phytochemistry of several pecan varieties and 

reported different kinds of phenylpropanoids and ellagic acid derivatives (Ortiz-Quezada 

et al. 2011; Villarreal-Lozoya et al. 2007, 2009). A study carried out to detect 
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differences in phenolic compounds and ellagic acid for conventional and organic pecan 

orchards, showed that the levels of ellagic acid and catechin in organically grown 

‘Desirable’ were between two and four times higher than in a conventionally grown 

orchard (Malik et al. 2009).  

The objective of this dissertation is to test the hypothesis that the production of 

phenolic secondary metabolites (such as phenylpropanoids and ellagic acid derivatives) 

in fruits is increased by stresses (biotic and mechanical) produced in the leaves during 

fruit development. In the study described in Chapter II, the hypothesis was tested by 

identification and quantification of the effects of mechanical wounding on leaves in the 

biosynthesis of phenolic secondary metabolites in fruits, using strawberry as a plant 

model. The experiment was then extended to a commercial strawberry field (organic 

production conditions), using a generalist insect (Spodoptera exigua) feeding on leaves 

as a biotic stressor (Chapter III). The hypothesis was finally tested in a contrasting 

model, using the specific relationship between pecan trees and Black Pecan Aphid 

(Melanocallis caryaefoliae). In this experiment the production of phenolic secondary 

metabolites in fruits in response to aphid feeding on leaves was also tested (Chapter IV). 

In Chapter V the results are summarized and analyzed taking into consideration the 

similarities and differences between the two plant models, the two stresses in the same 

plant and the insect feeding behavior related to the plant responses. Conclusions and 

future research suggestions are also presented in this chapter. This dissertation 

contributes knowledge about how the phytochemical levels in strawberry fruits and 

pecan nuts are affected by stresses (biotic and mechanical) produced in leaves of the 
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plant. The knowledge generated in this work could contribute to explain at chemical and 

molecular levels the higher phytochemical content found in organic fruits and 

vegetables. In addition, as a technological tool, controlled stress applied during 

preharvest in leaves could be used to increase the phytochemical content in fruits. 
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CHAPTER II 

PHENOLIC COMPOUNDS IN STRAWBERRY FRUITS ARE INDUCED BY 

MECHANICAL WOUNDING ON LEAVES 

 

Introduction 

It has been supported by several studies that organic fruit and vegetables contain 

higher levels of secondary metabolites related to plant defenses (Brandt and Mølgaard 

2001; Zuchowski et al. 2011; You et al. 2011; Lima and Vianello 2011; Brandt et al. 

2011; Petkovsek et al. 2010; Faller and Fialho 2010; Crinnion 2010; Lima et al. 2008; 

Lombardi-Boccia et al. 2003). Meta-analysis showed that the content of secondary 

metabolites in organic products was 12% higher than in those grown with conventional 

practices (Brandt et al. 2011). In general, vegetables and fruits from organic production 

contain greater amounts of flavonoids, anthocyanins, and carotenoids (Crinnion 2010). 

Higher levels of phytochemicals, particularly phenolic compounds, could be related to 

higher levels of biotic stress, such as insect damage, when plants are grown in organic 

conditions (Young et al. 2005; Zhao et al. 2009; Cohen and Kennedy 2010). Stresses like 

wounding and those induced by herbivores (biotic stress) cause changes in plant 

secondary metabolism (War et al. 2012; Salminen and Karonen 2011; Howe and 

Schaller 2008; Chen 2008; Arimura et al. 2005). Wounded tissues alter the production of 

phenylpropanoid secondary metabolites as a local response, and also as a systemic 

response in the same organ type (e.g. leaves) (Silva et al. 2012; Maffei et al. 2007; Chen 

et al. 2006; Housti et al. 2002; Campos-Vargas and Saltveit 2002; Dixon and Paiva 
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1995; Bennett and Wallsgrove 1994; Woodhead 1981). Plants under attack from 

herbivores develop an efficient defense system that includes a crosstalk between 

signaling molecules that include phytohormones such as salicylic acid (SA), jasmonic 

acid (JA), ethylene (ET), abscisic acid (ABA), indolacetic acid (IAA), gibberellic acid 

(GA), and several reactive oxygen species (ROSs) (Morkunas et al. 2011; Wasternack 

2014; Wang and Wu 2013; De Geyter et al. 2012). The ROSs have critical roles in 

signaling related to plant defenses, among several other functions (Fluhr 2009; Suzuki 

and Mittler 2012; Smékalová et al. 2014; Mori et al. 2009). Specific elicitors released by 

the insect activate several signaling pathways that interact with each other (crosstalk) 

producing a metabolic rearrangement, expressing defense related genes and sometimes 

directly releasing directly volatile organic compounds (Kessler and Baldwin 2002). 

Jasmonic acid, methyl jasmonate (MeJA) and its precursor 12-oxo-phytodienoic acid 

(OPDA) are inducers of proteinase inhibitors as a main defense against herbivore 

feeding (Korth and Thompson 2006; Heil et al. 2012). Jasmonic acid and ET play an 

important role as positive regulators of plant defense against insect attack and some 

pathogens, whereas SA has been associated with resistance against pathogens 

(Monaghan et al. 2009).  The crosstalk allows the plant to optimize responses against 

herbivores and pathogens, and this strategy produces a very complex defensive system 

(Morkunas et al. 2011; Smékalová et al. 2014; Robert-Seilaniantz et al. 2011; Mori et al. 

2009; Bari and Jones 2009; Wasternack 2007; Vandenbussche et al. 2007; Rakwal and 

Agrawal 2003; Thaler et al. 2002; Ding et al. 2002).  
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The importance of plant defensive compounds (phytochemicals) for human 

health has led to the study of pre- and post-harvest factors that influence the production 

of bioactive phenylpropanoids (Cisneros-Zevallos 2003; Young et al. 2005; Jin et al. 

2011; Wang et al. 2012; Wang et al. 2008; Wang and Frei 2011; Cohen and Kennedy 

2010). Phenylpropanoids and ellagitannins received attention for their biological activity 

associated with human health benefits like antioxidant, anti-allergy, anti-hypertensive, 

antitumor effects in vitro and in vivo (Krishnaiah et al. 2011; Leopoldini et al. 2011; 

Rajendran et al. 2014; Saeidnia and Abdollahi 2013; Wang et al. 2011). Studies 

evaluating secondary metabolite responses to biotic stress have shown an induction of 

phenolic compounds production and other phytoalexins as a local and systemic plant 

defensive response; however, these studies were conducted in the same tissue where the 

damage had been caused by piercing-sucking insects (Cabrera et al. 1995; Goggin 2007; 

Morkunas et al. 2011; Pickett et al. 1992; Smith and Boyko 2007; Chen et al. 2009; 

Eleftherianos et al. 2006) or leaf chewing insects (Arimura et al. 2005; Bricchi et al. 

2010; Howe and Schaller 2008; Maffei et al. 2007; Rodriguez-Saona et al. 2010; 

Valladares et al. 2002). The objective of this study was to evaluate the systemic 

induction of secondary metabolites in fruits when the stress is applied in a different 

organ of the plant (leaves). 

 

Materials and methods 

Field experiment. The experiment was conducted on a strawberry (Fragaria × 

ananassa) field at the end of the harvesting season, from December 2013 to January 
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2014, at INIA-Las Brujas Research Station, Uruguay (lat. 34.66 S, long. 56.34 W). An 

evaluation plot of the advanced selection LBM 10.3 (cv. Albion X SGG 31.1) was used 

for the experiment (Fig. 2-1A). The plot in a brunisol soil, was divided in three subplots, 

and randomly assigned to each treatment. Inside each subplot, 20 plants were assigned to 

each treatment as follow: 

1) Control with no perforations applied to the plants; 

2) Low mechanical wounding (W50) consisted in small perforation of 3-5 

perforations per leaf (Fig. 2-1B), for a total of 50 perforations and a 10-cm2 loss of foliar 

area per plant;  

3) High mechanical wounding (W100) with 100 perforation on each plant, and 

20-cm2 loss of foliar area per plant.  

Fertilization consisted in the application of 30 kg of N and 50 kg of P per hectare 

in April 2013 before the planting season. The use of insecticides or fungicides was not 

necessary because there was neither incidence of Botrytis sp. nor noticeable presence of 

insects. The wounding was applied to plants with fully developed fruits (25% red color). 

Each plant was harvested one and two weeks after the treatment was applied, selecting 

the full ripen fruits (over 80% of full color).  
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Fig. 2-1. Picture of strawberry wounding experiment (W50). A, Field experiment. B, sample leaf with 

mechanical wounding.  

A 

B 
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Harvest evaluation. Immediately after harvest, fruits were evaluated for harvest 

quality by measuring physicochemical parameters. For each fruit, the weight was 

registered and color was determined by two measures using a digital colorimeter (CR-

200, D65 illuminant; Minolta, Tokyo, Japan), recording the L*a*b* coordinates values. 

Fruit firmness was determined using a TA.XTPlus Texture Analyzer (Stable Mycro 

System, Surrey, United Kingdom). The soluble solids concentration (SS) was 

determined in the juice by an Atago RX-1000 digital refractometer (Atago Co. Ltd, 

Tokyo, Japan). After these determinations, samples were frozen in liquid nitrogen and 

stored at -80 ºC for subsequent freeze drying and further analyses. All samples were 

freeze-dried in a FreeZone benchtop freeze dry system (Labconco, Kansas City, MO) 

until they were completely dried. 

Total phenolics and vitamin C analysis. Total phenolic compounds and total 

vitamin C were determined in the same analysis according to the method reported by 

Sanchez-Rangel et al. (2013). Briefly, 50 mg of freeze dried strawberry powder was 

extracted with 1.00 mL of MeOH:H2O (80:20 v/v) in a centrifuge tube using an 

ultrasonic bath for 30 min. Samples were then centrifuged at 14.000 rpm. In a 96 plate 

was added 15 µl of extract and 240 µl of distilled water followed by 15 µl of Folin-

Ciocalteau reagent. The mixture was incubated for 3 min and the absorbance was read at 

725 nm for estimation of vitamin C. After that a Na2CO3 solution (30 µl, 1N) was added 

and incubated at room temperature in dark conditions for 2 h, then the absorbance was 

measured again at 725 nm. In parallel, standards of ascorbic and chlorogenic acid were 
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run in addition of blanks. Absorbance was recorded using a Synergy-HT Microplate 

Reader and analyzed using KC4 software (Bio-Tek Inc., Winooski, VT).  

HPLC analysis of phenolic compounds. Chromatographic separation was 

implemented on a LCQ Deca XP Max LC-MS/MS system (Thermo Finnigan, CA) 

equipped with an autosampler, a quaternary pump and a UV 2000 PDA detector, using a 

150 × 2.00 mm Synergi 4µ Hydro RP 80A column (Phenomenex, Torrance, CA) and a 

guard column of the same chemistry. The elution mobile phase was executed with 

solvent solution A [0.5% formic acid -water] and solvent mixture B [0.5% formic acid in 

acetonitrile]. A linear gradient was set up with A and B: 0 min 98% A, 10 min 75% A, 

20 min 75% A, 30 min 25% A, 35 min 0% A, 38 min 98% A. The flow rate was 

200µl/min. The injection volume was 10 µl. Retention time and spectral profile were 

used for identification detected by a photodiode array detector (PDA) scanning between 

190-600 nm, the quantification was done by comparison with external standards 

obtained from Sigma-Aldrich (St. Luis, MO). 

Gene expression. Total RNA extraction from strawberry fruits was carried out 

by combining the method previously described by Christou et al. (2014), with the 

RNeasy Plant Mini Kit (Qiagen, Valencia, CA). Briefly, 0.1 g of freeze-dried strawberry 

fruits was mixed with 1 ml of the extraction buffer (0.5 M Tris–HCl pH 8.8 and 1% 

sodium dodecyl sulfate [SDS]). Subsequently, 1 ml of phenol:chloroform:isoamyl 

alcohol (PCI) (25:24:1 [v/v]) was added to the mixture, which was gently agitated and 

then centrifuged at 14,000 rpm for 5 min at 4 °C for phase separation. The upper 

aqueous phase (~800 μl) was further subjected to the PCI extractions (three times). After 
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the third PCI extraction, the upper aqueous phase (~400 μl), whose phenol traces were 

removed completely, was collected into a fresh chilled tube, where 0.1 volume of 3 M 

NaOAC (pH 5.6) and 1 volume of 100% ethanol were mixed, incubated at −80 °C for 20 

min and then centrifuged at 12,000 rpm for 8 min at 4 °C for RNA precipitation. After 

drying at room temperature, RNA pellets were finally dissolved in RNase-free water and 

further purified by RNeasy Plant Mini Kit (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions. RNA concentration was measured with a NanoDrop ND-

1000 spectrophotometer (NanoDrop Technologies, Willmington, DE). Aliquots of 0.7 

µg RNA, treated with DNase I to avoid DNA contamination, were reverse-transcribed 

into cDNA using the SuperScript III first-strand synthesis supermix (Invitrogen, 

Carlsbad, CA) following the manufacturers protocol. Finally, the cDNAs were used for 

real-time qRT-PCR analyses, which were performed using Power SYBR Green PCR 

Master Mix (Applied Biosystems, Foster City, CA), following the manufacturer’s 

instructions. cDNA amplification was carried out using a 7900 HT Sequence Detection 

System (Applied Biosystems, Foster City, CA). The primer sets used in this study were 

provided by Integrated DNA Technologies (IDT, Coralville, IA), and their sequence 

information is shown on Table 2-1. The relative expression of each gene was normalized 

by the FaGAPDH and was calculated following the comparative Ct method (ΔΔCt), 

known as the 2- ΔΔCt method.  Strawberry gene were selected based on implication in the 

shikimate pathway, phenolic compounds biosynthesis, and sugar transport and 

metabolism. All of these genes have been reported for strawberry fruits, and primer 
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sequences are available (Landi et al. 2014; Amil-Ruiz et al. 2013; Amil-Ruiz et al. 

2011). 

Foliar area. Estimation of losses of foliar area for each strawberry plant were 

done using the software ImageJ (Schneider et al. 2012). Two average leaflets were 

picked, submitted to wounding and a digital picture was taken. Twelve leaves was 

considered the average amount of leaves for this advanced selection. 

Statistical analysis. Analysis of Variance (ANOVA) was applied to the data and 

the statistical differences between treatment means were determined using the Duncan´s 

Test (p≤0.05 and p≤0.1). Those tests were conducted using the software InfoStat 

(National University of Cordoba, Argentina). 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 

 

Table 2-1. Sequence of primers from F. x ananassa used in qRT-PCR analyses. The sequences 

belong to genes of enzymes involved in phenolics biosynthesis and other related enzymes.  

Primer Sequence 

FaPAL-F 5’-CACCTGCTCTCAGTCGTGGACC-3’ 

FaPAL-R 5’-GCA TGTTCTACTAGCTCTGCCCTCAG-3’ 

FaCHS-F 5’-GTTGGGCTCACATTTCACCTCCTCA-3’ 

FaCHS-R 5’-AATTGCTGGGCCACCTGGGTG-3’ 

FaEPSPS-F 5’-GGAGACTTGGTCACTGGTCTTA-3’ 

FaEPSPS-R 5’-GAAGGCCTCCCTTTCCAATTAC-3’ 

FaDAHPS-F 5’-CGCAACTGGTGGGTATGCGGC-3’ 

FaDAHPS-R 5’-CCCGGTGAGCAAGTTCCCGG-3’ 

FaDHQS-F 5’-GCAGCTGGCATGATCATGGCTG-3’ 

FaDHQS-R 5’-CGGTCACAGACTCAGGAGGGC-3’ 

FaDHD/SDH 1-F 5’-AGCTCCTGGTCAACCTACTATC-3’ 

FaDHD/SDH 1-R 5’-GCTGACGGGCTTTCCAATAA-3’ 

FaDHD/SDH 2-F 5’-CGTTGGGATTCCTCACAAAGA-3’ 

FaDHD/SDH 2-R 5’-CATCAGTTGGCCTCCTTACAA-3’ 

FaDHD/SDH 3-F 5’-GAGGAAGGACTTCGAGGATTAG-3’ 

FaDHD/SDH 3-R 5’-GCTCCCATGACCACAAATAAC-3’ 

FaSI-F 5’-GGTATGTGGGAGTGCATTGA-3’ 

FaSI-R 5’-CGTCCAAGCTAGCCTTTAGAA-3’ 

FaCWI-F 5’-CCAGGCAATTCCAAGGACTAT-3’ 

FaCWI-R 5’-CTTGACCTCGTTTGTTCTAAGTTT C-3’ 

FaLOX-F 5’-CCGGGACACGATGAACATAA-3’ 

FaLOX-R 5’-GGCATATTGAGCTGGGAAGA-3’ 

FaJMT-F 5’-AATAAGCAGCGGCGAGCGAGTAGC-3’ 

FaJMT-R 5’-AAGCGATCACTGACGAGCTCTGCG-3’ 

FaGAPDH-F 5’-TCCATCACTGCCACCCAGAAGACTG-3’ 

FaGAPDH-R 5’-AGCAGGCAGAACCTTTCCGACAG-3’ 
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Results 

The evaluation of several fruit quality parameters was carried out immediately 

after harvest. Average fruit weight (Fig. 2-2A), firmness (Fig. 2-2C, and color (Fig. 2-

2D, E, F), at harvest was the same after 7 and 14 days of applied wounding. For soluble 

solids, a significant increment was observed in W100 (19.7%), meaning an increase in 

the levels of soluble sugars and organic acids after two weeks (Fig. 2-2B). Moreover, the 

amount of total phenolics (TP) in fruits of all treated plants increased significantly, 

12.8% for one week and 10.7 % over the control after 2 week of the application of 

mechanical wounding (Fig. 2-2G). Total ascorbic acid (Fig. 2-2H) was significantly less 

for the higher level of wounding (W100) after 7 days but the difference was not apparent 

at 14 days.  
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Fig. 2-2. Application of two levels of pre-harvest wounding on leaves and its effects in strawberry fruit at 

two harvest times (7 and 14 days). Each bar represent the average ± SE of individual fresh fruit evaluated 

from 15-20 plants; weight (A); soluble sugars (B); firmness (C) color (L a b system, D, E, F, respectively; 

G, total phenolics (TP); H, ascorbic acid (AA). TP and AA were measured in freeze-dried fruits and 

expressed per g of freeze-dried weight (FDW). In each group different letters indicate a significant 

difference in comparison to control (Duncan´s test, p<0.05, p<0.10).  
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A significant increase in the level of specific phenylpropanoids and tannins 

derivatives was observe for W100 after 2 weeks compared with the control; ellagic acid 

(+58%), epicatechin (+100%), gallic acid (+68%), quercetin (+190), and rutin (+137%) 

(Table 2-2). 

Figure 2-3 shows the effect of wounding on the transcription of specific genes. 

Phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) are important 

enzymes involved in polyphenol biosynthesis (Singh et al. 2010; Petersen et al. 2010). 

PAL is the first and limiting step in the phenylpropanoid pathway and CHS is the first 

committed enzyme in flavonoid biosynthesis (Vogt 2010). After two weeks, for W100 

on leaves, PAL increased 1.85 fold and CHS 1.73 fold (Fig. 2-3A-B). The expression of 

gene encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase gene 

(FaDAHPS) and 3-dehydroquinate synthase (FaDHQS) were not affected by the 

application of wounding after 7 or 14 days (Fig. 2-3 C-D).  DAHPS is the first enzyme 

in the shikimate pathway and catalyze the reaction of phosphoenolpyruvate with D-

erythrose 4-phosphate to produce 3-Deoxy-D-arabinoheptulosonate 7-phosphate 

(DAHP) and releasing phosphate. DHQS catalyzes the second step in the shikimate 

pathway using DAHP as a substrate to produce 3-dehydroquinate and phosphate (Vogt 

2010). Fig. 2-3E shows the relative expression of 3-dehydroshikimate Synthase 

(FaDHD-SDH2) implicated in the synthesis of gallic acid from shikimic acid (Muir et 

al. 2011). The expression of this gene was 15.2-fold over control for the higher 

wounding level after 14 days of wounding. FaEPSPS 5-enolpyruvylshikimate-3-

phosphate synthase gene expression (Fig. 2-3F) was also greater in fruits from wounded 
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plant after 14 days (6.25 fold). This enzyme catalyzes the reaction that transforms 

shikimate-3-phosphate and phosphoenolpyruvate to 5-enolpyruvylshikimate-3-

phosphate (EPSP). Lipoxigenase (LOX) is an enzyme involved in the first steps of the 

biosynthesis of JA, catalyzing the oxidation of alpha-linolenic acid, producing the 

hydroperoxide (Schaller and Stintzi 2009). Fig. 2-4A shows a 10.7 fold increment in the 

transcript for the LOX gene in strawberries from wounded plants (W100). The 

expression of jasmonate methyl transferase (JMT), which catalyzes the conversion of JA 

to MeJA by adding a methyl group (Schaller et al. 2004), increased 6.2 fold in wounded 

plants (Fig. 2-4B). The expression of sucrose invertases gene also increased; 2 fold for 

cell wall invertase (CWI, Fig. 2-4C) and 7.7 fold for soluble invertase (SI, Fig. 2-4D). 
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Table 2-2. Ellagic acid, epicatechin, gallic acid, quercetin and rutin content in strawberry fruits evaluated after one or two weeks of 

wounding applied to leaves.  

Harvest 

time Treatment 

Ellagic  acida,b,d 

(µg/g FDM)c 

Epicatechina,b 

(µg/g FDM)c 

Gallic acida,b 

(µg/g FDM)c 

Quercetina,b 

(µg/g FDM)c 

Rutina,b 

(µg/g FDM)c 

       

7 days Control 0.21 ±  0.06 a 0.56 ± 0.16 a 2.55 ± 0.60 a 0.29 ± 0.25 a 0.27 ± 0.09 a 

 Wounding 50 0.78 ± 0.42 a 1.39 ± 0.93 a 3.26 ± 1.38 a 0.05 ± 0.02 a 0.24 ± 0.01 a 

 Wounding 100 0.35 ± 0.30 a 0.31 ± 0.19 a 0.64 ± 0.38 a 0.05 ± 0.01 a 0.26 ± 0.13 a 

       

14 days Control 178.75 ± 52.21 b 37.28 ± 5.01 b 380.20 ± 48.78 b 4.26 ± 0.63  ab 35.30 ± 6.18 a 

 Wounding 50 211.77± 23.90 bc 97.19 ± 6.78 c 905.51 ± 69.67 c 8.84 ± 1.26  ab 102.54 ± 17.67 b 

  Wounding 100 283.17  ± 50.73 c 74.37 ± 16.44 c 628.82 ± 62.16 d 12.39 ± 6.10 b 83.80 ±  21.75 b 

a Data expressed as means ± SE  

b Means with a common letter in the same column are not significantly different at p ≤ 0.05 or P ≤0.10 for ellagic acidd (Duncan´s 

Test) 

c(µg/g FDM) : micrograms of compound per g of freeze dried mass of strawberry fruits  
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Fig. 2-3. Relative expression of phenylpropanoid intermediates gene. A, Phenylalanine ammonia lyase 

(FaPAL). B, Chalcone synthase (FaCHS). C, 3-deoxy-D-arabinoheptulosonate 7-phosphate Synthase 

(FaDAHPS). D, 3-dehydroquinate Synthase (FaDHQS). E, 3-dehydroshikimate Synthase (FaDHD-

SDH2). F, 5-enolpyruvylshikimate 3-phosphate Synthase (FaEPSPS). Each bar represent the result of 
three technical replicates from five experimental samples (n=5) ± SE. In each group, different letter 

indicate significant differences in comparison with the control (Duncan´s test, the p-value is indicated in 

the upper right corner). 
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Fig. 2-4. Relative expression of sugar transport involved gene. A, Lipoxigenase (FaLOX). B, Jasmonic 

acid carboxyl methyltransferase (FaJMT). C, Cell wall invertase (FaCWI). D, Soluble invertase (FaSI). 

Each bar represent the result of three technical replicates from five experimental samples (n=5) ± SE.  
In each group, different letter indicate significant differences in comparison with the control (Duncan´s 

test, the p-value is indicated in the upper right corner). 
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Table 2-3 shows the average losses in the foliar area for the treatments, resulting 

in approx. 2.43% for W100 and 1.22% for W50. 

 

 

Table 2-3. Estimated area losses for averages leaflet and strawberry plants. 

 

 

Discussion 

Organic agriculture claims that under this kind of management fruits produce 

more phytochemicals than under the conventional approach (Brandt et al. 2011; Lima 

and Vianello 2011). This claim is supported by several reports comparing both systems 

(Amodio et al. 2007; Asami et al. 2003; Carbonaro and Mattera 2001; Carbonaro et al. 

2002); alternatively, many studies indicate there are no differences (Dangour et al. 2010; 

Dimberg et al. 2005; Faller and Fialho 2010; Häkkinen and Törrönen 2000; Hargreaves 

et al. 2008; Juroszek et al. 2009), setting a controversial matter for several years. There 

is a speculation that biotic stress due to insect and pathogen attacks triggers the 

production of defensive secondary compounds, but this hypothesis has never been tested 

before. The wounding component of the biotic stress is already known as a cause of the 

 Area (mm
2

) Area loss (%) 

Leaflet no-wounded 30.81  

Leaflet wounded (5 holes) 29.46 4.38 

Total foliar area/ plant 1109.16 - 

Wounding (50/plant0 13.50 1.22 

Wounding (100/plant) 27.00 2.43 
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overproduction of secondary metabolites, mainly phenolic compounds, that are 

accumulate in the damaged leaf and also in other distant leaves as a systemic defensive 

response (de Bruxelles and Roberts 2001; Engelberth et al. 2012; Koo and Howe 2009; 

Korth and Thompson 2006). The relation between invertase activity and carbon transport 

is important for the modulation of plant defense and secondary metabolism as carbon is 

the source for phenolic compounds and sucrose and glucose play roles as signaling 

molecules (Proels and Hückelhoven 2014; Lemoine et al. 2013; Ayre 2011; Bolouri-

Moghaddam et al. 2010; Schwachtje and Baldwin 2008). There is evidence that raises in 

translocation of sucrose from source tissues to distant sink tissues increases the 

production of defensive molecules (Arnold et al. 2004; Arnold and Schultz 2002; 

Ferrieri et al. 2013). Invertases bounded to plant cell walls facilitate phloem unloading at 

fruit tissues by hydrolyzing sucrose into glucose and fructose. The cell wall invertase 

(CWI) is overexpressed by application of wounding and jasmonic acid to leaves, but the 

systemic induction in other leaves was not detected in pea (Zhang et al. 1996). Systemic 

induction of CWI by wounding was shown in Populus sp. source-sink model (Arnold 

and Schultz 2002; Babst et al. 2005; Babst et al. 2008). 
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Fig. 2-5. Proposed hypothetical model for phytochemical production in strawberry fruits induced by wounding on leaves. JA, Jasmonic acid; JA-X, Jasmonic acid 
derivatives; LOX, Lipoxigenase; JMT, Jasmonate methyl transferase; OPDA, 12-oxo-phytodienoic acid; HPOT, 9-/13-hydroperoxy-octadecatrienoic acid. Up 
regulation of enzyme genes and secondary metabolites increments are represented by  + .  
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Based on the results found in this dissertation and on previous research, I propose 

a hypothetical model explaining the possible mechanism (Fig. 2-5). The qRT-PCR 

analyses detected the overexpression of several genes on the phenolics pathway and 

carbohydrate metabolism on the strawberry fruits as a late response for wounding 

produced on leaves. In this model, the wounding produced in the leaves triggers the local 

response that reconfigures the sugar metabolism, producing an upload of sucrose in 

vascular tissue that is transported to fruit. In fruits, the up-regulation of sucrose 

invertases genes (CWI and SI), allow the increase of soluble sugar in the cells. The 

imbalance in sucrose/glucose triggers the octadecanoic pathway increasing the JMT 

transcripts and defensive genes related to phenolic compounds biosynthesis. The greater 

accumulation of soluble sugar in fruit cells also increases the availability of carbon for 

the biosynthesis of secondary metabolites with high C/N ratio, such as the 

phenylpropanoids (quercetin, rutin and epicatechin) and hydrolysable tannin derivatives 

(ellagic acid and gallic acid). 

 

Conclusions 

Here is reported for the first time the accumulation of phenolic compounds in 

fruit through long distance wounding applied to leaves, in an experiment conducted in 

the field (leaf-fruit). The results clarify the role of wounding for the accumulation of 

defensive compounds in fruit. The results support the idea that higher levels of 

phytochemicals reported in organic fruits and vegetables could be due to the wounding 
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component of the biotic stress attributed to herbivore insects feeding on leaves, to which 

the plant is exposed. The delayed response of fruits in synthetizing phenolics is the result 

for a late defensive response. This produced an accumulation of soluble sugars in fruits 

as source of carbon for high rate C/N secondary metabolites production. As a 

technological application of these results, the controlled mechanical wounding applied 

during preharvest in leaves could be used to increase phytochemicals in fruits.  



 

 

32 

 

CHAPTER III 

PHENOLIC COMPOUNDS IN STRAWBERRY FRUITS ARE NOT AFFECTED BY 

A GENERALIST INSECT CHEWING ON LEAVES 

 

Introduction 

Strawberry (Fragaria x ananassa) is one of the most important small fruits 

produced worldwide; its production volume is twice the amount of all other berries 

combined (Liston et al. 2014).  In 2012, the United States was the main producer 

(1,366,850 tons), followed by Mexico (360,426 tons) (FAOSTAT 2012). Strawberry is a 

good source of nutrients, such as vitamin C, folate, and essential microelements, and is 

also a source of helpful phytochemicals (Giampieri et al. 2012). The phytochemical 

profile in strawberry contains anthocyanins, ellagitannins, gallotanins, ellagic acid, and 

other phenolic compounds that contribute to the antioxidant potential and health benefits 

(Giampieri et al. 2012; da Silva Pinto et al. 2008a; da Silva Pinto et al. 2008c; Giampieri 

et al. 2014a; Giampieri et al. 2013). The biological activity of strawberries related to  

phytochemicals includes antiproliferative effects on human colon carcinoma (D'Evoli et 

al. 2010), anti-inflammatory effects on macrophages (Liu and Lin 2013), modulation of 

balance oxidant-antioxidant in blood phagocytes (Bialasiewicz et al. 2014), anti-

hyperglycemic potential (da Silva Pinto et al. 2008a), mitochondrial protection 

(Giampieri et al. 2014b), neuroprotective potential (Heo and Lee 2005), and 

antimicrobial properties against human pathogens (Nohynek et al. 2006). Ellagic acid is 
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the phenolic found in highest concentration in strawberry, ranging from 39.6 to 52.2 

mg/100 g fresh weight in nine cultivars analyzed (Häkkinen and Törrönen 2000; Maas et 

al. 1991). A higher variation was reported in 13 clones, showing values between 43 to 

464 mg/100g dry weight  (Maas et al. 1991). Comparing the organic vs. conventional 

techniques of production, the cultivar “Jonsok” had higher levels of total phenolics and 

showed a significant increment in kaempferol content (0.9 vs. 0.5 mg/100g fresh weight) 

and ellagic acid (52.2 vs. 58.6 mg/100 g fresh weight) for the organic system (Häkkinen 

and Törrönen 2000). The authors speculated that the higher impact of pathogen attack on 

this cultivar could increase the levels of these phenolics (Häkkinen and Törrönen 2000). 

In another study comparing organic and conventional production (D'Evoli et al. 2010), 

the results showed higher antioxidant activity and levels of kaempferol (1.99 vs. 1.26 

mg/100g fresh weight) and ellagic acid (53.3 vs. 37.9 mg/100g fresh weight) for 

organically grown strawberry. This higher level in phenolics was correlated with better 

antiproliferative activity in Caco-2 cell lines (D'Evoli et al. 2010). The levels of ellagic 

acid glucoside in “Allstar” and “Earliglow” strawberry cultivars increased from 14.7 to 

18.6 µg/g fresh weight and 12.2 to 18.5 µg/g fresh weight respectively for the organic 

growth conditions (Jin et al. 2011). The addition of organic and conventional soil 

nutrients did not affect strawberry yield and quality parameters related to phenolics such 

as antioxidant capacity (Hargreaves et al. 2008). Despite the fact that the main biotic 

stress affecting strawberry culture are diseases caused by bacteria and fungi (Maas 2004; 

Louws 2009), some arthropods, such as the aphid Chaetosiphon fragaefolii (Bernardi et 
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al. 2013) or the spider mite Tetranychus urticae (Monteiro et al. 2014), affect negatively 

the commercial production. Several studies showed that the level of phytochemicals was 

higher in strawberries grown organically compared to those grown with conventional 

methods. A comparison between both production approaches for two strawberry 

cultivars found that fruit from organic production accumulate more total phenolics, and 

these differences are maintained at different storage temperatures (Jin et al. 2011).  

In this experiment, the hypothesis that biotic stress due to generalist insect larva 

chewing on leaves affects the biosynthesis of phytochemicals in fruits of strawberry 

growing organically was tested. 

 

Materials and methods 

Field experiment on strawberries. For the biotic stress, Spodoptera exigua 

(beet armyworm) was selected due to its commercial availability; larvae are 

polyphagous; and they are reported as a pest for strawberries (UC-IPM 2010). A field 

experiment was conducted in a commercial strawberry (cv. Festival) field near the end 

of the harvesting season, during February to April 2014, in Jollisant Farm, Plantersville, 

Texas (lat. 30.33 N, long. 95.82 W). In a row, 20 plants were assigned randomly to each 

treatment as following:  

1) Control (C) with no application of larvae. 

2) Low insect damage (T1) consisting of the application of one second-instar 

larva of S. exigua per plant;  
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3) High insect damage (T2), consisting in the application of two second-instar 

larvae of S. exigua per plant;  

The larvae were applied to each leaflet inside a mesh bag (Fig. 3-1). Leaves of 

control plants were treated in the same way but with no insect larvae inside the bags. The 

treatment was applied to plants with fully developed fruits (~15% red color).  Fully ripe 

fruits (over 80% of full color) were harvested from each plant one and two weeks after 

the treatment application. The farm followed the guidelines for organic production (not 

certified) with no application of insecticides and organic soil amendments. 

 

 

Fig. 3-1. Field experiment with S. exigua larvae. Two levels of insect damage were set in each treatment 

plant (1 or 2 larvae). 
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Harvest evaluation. Immediately after harvest, fruits were evaluated for harvest 

quality by measuring physicochemical parameters. For each fruit, the weight was 

registered and firmness was determined using a TA.XTPlus Texture Analyzer (Stable 

Mycro System, Surrey, United Kingdom). The soluble solids concentration (SS) was 

determined in the juice by an Atago RX-1000 digital refractometer (Atago Co. Ltd, 

Tokyo, Japan). After these determinations, samples were immediately frozen in liquid 

nitrogen and stored at -80 ºC for freeze-drying and further analyses. 

Total phenolics and vitamin C analysis. Determination of total phenolic 

compounds and total vitamin C were determined in the same analysis according with the 

method reported by Sanchez-Rangel et al. (2013). Briefly, 50 mg of freeze-dried 

strawberry powder was extracted with 1.00 ml of MeOH:H2O (80:20 v/v) in a centrifuge 

tube using an ultrasonic bath for 30 min. After that, samples were centrifuged at 14,000 

rpm. In a 96 plate was added 15 µl of extract and 240 µl of distilled water followed by 

15 µl of Folin-Cicalteau reagent. The mixture was incubated for 3 minutes and the 

absorbance read at 725 nm. After that a Na2CO3 solution (30 µl, 1N) was added and 

incubated at room temperature in dark conditions for 2 hours, then the absorbance was 

measured again at 725 nm. In parallel standards of ascorbic and chlorogenic acid in 

addition of blanks were run. Absorbance was recorded using a Synergy-HT Microplate 

Reader and analyzed using KC4 software (Bio-Tek Inc., Winooski, VT).  
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HPLC analysis of phenolic compounds. Chromatographic separation was 

implemented on a LCQ Deca XP Max LC-MS/MS system (Thermo Finnigan, CA) 

equipped with an autosampler, a quaternary pump and a UV 2000 PDA detector, using a 

150 × 2.00 mm Synergi 4µ Hydro RP 80A column (Phenomenex, Torrance, CA) and a 

guard column of the same chemistry. The elution mobile phase was executed with 

solvent solution A [0.5% formic acid -water] and solvent mixture B [0.5% formic acid in 

acetonitrile]. A linear gradient was set up with A and B: 0 min 98% A, 10 min 75% A, 

20 min 75% A, 30 min 25% A, 35 min 0% A, 38 min 98% A. The flow rate was 

200µl/min. The injection volume was 10 µl. Retention time and spectral profile were 

used for identification, the quantification was done by comparison with external 

standards obtained from Sigma-Aldrich (St. Luis, MO). 

Gene expression. The total RNA extraction from strawberry fruits was carried 

out by combining the method previously described by Christou et al. (2014), with the 

RNeasy Plant Mini Kit (Qiagen, Valencia, CA). Briefly, 0.1 g of freeze-dried powder 

was mixed with 1 ml of the extraction buffer (0.5 M Tris–HCl pH 8.8 and 1% sodium 

dodecyl sulfate [SDS]). Subsequently, 1 ml of phenol:chloroform:isoamyl alcohol (PCI) 

(25:24:1 [v/v]) was added to the mixture, which was gently agitated and then centrifuged 

at 14,000 rpm for 5 min at 4 °C for phase separation. The upper aqueous phase (~800 μl) 

was further subjected to the PCI extractions (three times). After the third PCI extraction, 

the upper aqueous phase (~400 μl), whose phenol traces were removed completely, was 

collected into a fresh chilled tube, where 0.1 volume of 3 M NaOAC (pH 5.6) and 1 
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volume of 100% ethanol were mixed, incubated at −80 °C for 20 min and then 

centrifuged at 12,000 rpm for 8 min at 4 °C for RNA precipitation. After air dry at room 

temperature, RNA pellets were finally dissolved in RNase-free water and further 

purified by RNeasy Plant Mini Kit (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions. RNA concentration was measured with a NanoDrop ND-

1000 spectrophotometer (NanoDrop Technologies, Willmington, DE). The 0.7 µg RNA, 

treated with DNase I to avoid DNA contamination, was reverse-transcribed into cDNA 

using the SuperScript III first-strand synthesis supermix (Invitrogen, Carlsbad, CA) 

following the manufacturers protocol. Finally, the cDNAs was used for the real-time 

qRT-PCR analyses, which were performed using Power SYBR Green PCR Master Mix 

(Applied Biosystems, Foster City, CA), following the manufacturer’s instructions. 

cDNA amplification was carried out using a 7900 HT Sequence Detection System 

(Applied Biosystems, Foster City, CA). The primer sets used in this study were provided 

by Integrated DNA Technologies (IDT, Coralville, IA), and their sequence information 

are shown on Table 3-1. The relative expression of each gene was normalized by the 

FaGAPDH and calculated following the comparative Ct method (ΔΔCt), known as the 2- 

ΔΔCt method.  Strawberry gene were selected regarding its implication in shikimate 

pathway, phenolic compounds biosynthesis, and sugar transport and metabolism. All 

these gene were reported for strawberry fruits, and the sequence primers are available 

(Landi et al. 2014; Amil-Ruiz et al. 2013; Amil-Ruiz et al. 2011). 
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Table 3-1. Sequence of primers from F. x ananassa used in qRT-PCR analyses. The sequences 

belong to the genes of phenolics intermediates biosynthesis and related enzymes.  

Primer Sequence 

FaPAL-F 5’-CACCTGCTCTCAGTCGTGGACC-3’ 

FaPAL-R 5’-GCA TGTTCTACTAGCTCTGCCCTCAG-3’ 

FaCHS-F 5’-GTTGGGCTCACATTTCACCTCCTCA-3’ 

FaCHS-R 5’-AATTGCTGGGCCACCTGGGTG-3’ 

FaEPSPS-F 5’-GGAGACTTGGTCACTGGTCTTA-3’ 

FaEPSPS-R 5’-GAAGGCCTCCCTTTCCAATTAC-3’ 

FaDAHPS-F 5’-CGCAACTGGTGGGTATGCGGC-3’ 

FaDAHPS-R 5’-CCCGGTGAGCAAGTTCCCGG-3’ 

FaDHQS-F 5’-GCAGCTGGCATGATCATGGCTG-3’ 

FaDHQS-R 5’-CGGTCACAGACTCAGGAGGGC-3’ 

FaDHD/SDH 1-F 5’-AGCTCCTGGTCAACCTACTATC-3’ 

FaDHD/SDH 1-R 5’-GCTGACGGGCTTTCCAATAA-3’ 

FaDHD/SDH 2-F 5’-CGTTGGGATTCCTCACAAAGA-3’ 

FaDHD/SDH 2-R 5’-CATCAGTTGGCCTCCTTACAA-3’ 

FaDHD/SDH 3-F 5’-GAGGAAGGACTTCGAGGATTAG-3’ 

FaDHD/SDH 3-R 5’-GCTCCCATGACCACAAATAAC-3’ 

FaSI-F 5’-GGTATGTGGGAGTGCATTGA-3’ 

FaSI-R 5’-CGTCCAAGCTAGCCTTTAGAA-3’ 

FaCWI-F 5’-CCAGGCAATTCCAAGGACTAT-3’ 

FaCWI-R 5’-CTTGACCTCGTTTGTTCTAAGTTT C-3’ 

FaLOX-F 5’-CCGGGACACGATGAACATAA-3’ 

FaLOX-R 5’-GGCATATTGAGCTGGGAAGA-3’ 

FaJMT-F 5’-AATAAGCAGCGGCGAGCGAGTAGC-3’ 

FaJMT-R 5’-AAGCGATCACTGACGAGCTCTGCG-3’ 

FaGAPDH-F 5’-TCCATCACTGCCACCCAGAAGACTG-3’ 

FaGAPDH-R 5’-AGCAGGCAGAACCTTTCCGACAG-3’ 
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Statistical analysis. Analysis of Variance (ANOVA) was applied to the data and 

the statistical differences between treatment means were determined using the Duncan´s 

Test (p≤0.05 and p≤0.1). Those tests were conducted using the software InfoStat 

(National University of Cordoba, Argentina). 

 
 

Results 

The weight of the fruits was the same at harvest after one or two weeks of the 

insect larvae chewing the leaves (Fig. 3-2A). For soluble solids, no significant 

differences were observed when one or two larvae were applied per plant, indicating that 

there were no changes on the levels of soluble sugars and organic acids (Fig. 3-2B). 

Firmness (Fig. 3-2C) was not affected either. Total ascorbic acid (Fig. 3-3A) was not 

significantly affected by any level of larvae feeding after one or two weeks compared 

with the control. There was a significant decrease of the level in week 2 (approx. 3-fold) 

for all the plants, similar results were obtained in the field experiment in Uruguay with 

the other cultivar. Likewise, the amount of total phenolics (TP) in fruits of treated plants 

did not increase significantly over the control after one or two weeks of the application 

of the treatments (Fig. 3-3B).  
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Fig. 3-2. Effects of two levels of S. exigua larvae feeding on leaves on strawberry fruit quality at two 

harvest times (1 and 2 weeks). Each bar represent the mean ± SE of individual fresh fruit evaluated from 

5-10 plants; weight (a); firmness (b) soluble sugars (c). Same letter indicate no significant differences 

between means (Duncan´s test, p≤0.05). 
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Fig. 3-3. Effects of two levels of S. exigua larvae feeding on leaves on strawberry fruit Ascorbic acid (A) 

and Total Phenolics (B) content at two harvest times (1 and 2 weeks). Each bar represent the average ± SE 

from 5-10 plants. Total phenolics (TP) and ascorbic acid (AA) were measured in freeze dried fruits and 

expressed as g of freeze dried weight (FDW). Same letter indicate no significant differences between 

means (Duncan´s test, p≤0.05). 
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Table 3-2. Changes of ellagic acid, epicatechin, gallic acid and quercetin content in strawberry fruits after one and two weeks of S. 

exigua larvae feeding on leavesa,b  

arvest time Treatment Ellagic  acidc Epicatechinc Gallic acidc Quercetinc 

      

1 Week Control 9.85 ± 2.84 a 40.89 ± 17.66 a 57.26 ± 15.55 a 6.46 ± 3.18 a 

 1 Larva 12.89 ± 7.03 a 43.77 ± 12.0 a 71.31 ± 18.65 a 10.97 ± 5.33 a 

 2 Larvae 14.17 ± 8.06 a 69.68 ± 31.02 a 67.64 ± 17.02 a 4.58 ± 1.50 a 

      

2 Weeks Control 17.09 ± 4.79 a 43.53 ± 20.55 a 145.24 ± 39.44 b 3.69 ± 1.96 a 

 1 Larva 13.54 ± 2.76 a 46.65 ± 13.07 a 100.67 ± 32.02 b 4.50 ± 1.37 a 

  2 Larvae 18.57  ± 9.01 a 69.68 ± 31.02 a 135.87 ± 27.81 b 5.29 ± 1.28 a 

a Data expressed as Means ± SE        

b Means with a common letter in the same column are not significantly different at P ≤ 0.05 (Duncan´s test)  

c Data expressed as micrograms of compound per g of freeze dried weight of strawberry fruits (µg/g FDW)  



 

 

 

Phenylalanine ammonia lyase (FaPAL) and chalcone synthase (FaCHS), two 

important enzymes involved in polyphenol biosynthesis (Singh et al. 2010; Petersen et 

al. 2010) were not affected by the insect larvae (Fig. 3-4A-B). PAL is the first and 

limiting step in the phenylpropanoid pathway and CHS is the first committed enzyme in 

flavonoid biosynthesis (Vogt 2010). The expression of 3-deoxy-D-arabino-heptulosonate 

7-phosphate Synthase gene (FaDAHPS) and 3-dehydroquinate Synthase (FaDHQS) was 

not affected by the application of one or two larvae after 2 weeks (Fig. 3-4C-

D).  DAHPS is the first enzyme in the shikimate pathway and catalyze the reaction of 

phosphoenolpyruvate with D-erythrose 4-phosphate to produce DAHP and releasing 

phosphate. DHQS catalyze the second step in the shikimate pathway using DAHP as a 

substrate and produce 3-dehydroquinate and phosphate (Vogt 2010). Fig. 3-4E shows the 

relative expression of 3-dehydroshikimate synthase (FaDHD-SDH2) implied in the 

synthesis of gallic acid from shikimic acid (Muir et al. 2011). The expression of this 

gene was slightly lower than control for the two level of larva damage after 2 weeks of 

feeding, but statistically significant (t-Student test, p≤0.05). On the contrary, FaEPSPS 

gene expression (Fig. 3-4F) was higher in fruits from plant with two larvae but not 

significantly. This enzyme catalyzes the reaction that transforms shikimate-3-phosphate 

and phosphoenolpyruvate to 5-enolpyruvylshikimate-3-phosphate (EPSP). 



 

45 

 

 
Fig. 3-4. Relative gene expression of shikimate pathway and phenylpropanoid intermediates biosynthesis. 

A), Phenylalanine ammonia lyase (FaPAL). B), 3-dehydroquinate Synthase (FaDHQS) C), Chalcone 

synthase (FaCHS). D), 3-deoxy-D-arabinoheptulosonate 7-phosphate Synthase (FaDAHPS). E), 3-

dehydroshikimate Synthase (FaDHD-SDH2). F), 5-enolpyruvylshikimate 3-phosphate Synthase 

(FaEPSPS). C: control, T1: treatment with one S. exigua larva per plant; T2: treatment with two larvae of 

S. exigua per plant. Each bar represents the results of three technical replicates from five experimental 

samples ± SE (n=5). Same letter indicates no significant difference in comparison with the control 

(Duncan´s test, p>0.05). 
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Lipoxigenase (LOX) is an enzyme implied in the first steps of the biosynthesis of 

JA, catalyzes the oxidation of alpha-linolenic acid, producing the corresponding 

hydroperoxide (Schaller and Stintzi 2009). Fig. 3-5A shows a 30% decrease in the 

transcript for LOX gene in strawberries from one larvae treated plants but was not 

significant. Jasmonate methyl transferase (JMT), that catalyzes the conversion of JA to 

MeJA adding a methyl group (Schaller et al. 2004), was not affected its expression in 

any treatment (Fig. 3-5B). The gene expression of sucrose invertases is shown in Fig. 3-

6; increased 2 folds for cell wall invertase (CWI) and kept the same expression level for 

soluble invertase (SI). 

 

 

 
Fig. 3-5. Relative expression of gene implied in jasmonates biosynthesis. A), Lipoxigenase (FaLOX). B), 

Jasmonic acid carboxyl methyltransferase (FaJMT). Each bar represents the results of three technical 

replicates from five experimental samples. Same letter indicates no significant difference in comparison 

with the control (Duncan´s test, p>0.05). 
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Fig. 3-6. Relative expression of gene involved in sugar transport and metabolism. A), Cell wall invertase 

(FaCWI). B), Soluble invertase (FaSI). Each bar represents the results of three technical replicates from 

five experimental samples ± SE (n=5). Same letter indicate no significant differences between means 

(Duncan´s test, p≤0.05) 
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All the analyses performed showed that none of the parameters measured in fruit 

were affected when the S. exigua larvae damaged the leaves. The only gene that 

increased its expression was FaCWI, by 2-fold. This may suggest an increase in sugar 

transport to the fruits due to unloading in the fruit cell wall; however, no significant 

differences were detected in the fruit’s soluble sugars content, thus indicating that this 

increase in FaCWI gene was not sufficient. 

This experiment showed that the isolation of insect chewing on leaves in 
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phytochemicals in the fruit at harvest time. This could be possible through two potential 

mechanisms working alone or in a synergistic way.  

Firstly, the plant could depend on indirect defenses, like the release of herbivore-

induced plant volatiles. These volatile compounds can be used by predators of S. exigua 

to detect them and protect the plant from the ongoing damage. S. exigua produces a fatty 

acid-L-glutamine conjugate, named volicitin, that triggers the release of volatiles in 

maize plants attracting the parasitoid Micriplitis croceipes (Turlings et al. 2000). In that 

way, the plant instead of using the high-cost constitutive or inducible defenses, releases 

volatiles from the surrounding damaged tissue providing a long term benefit if the 

parasitoid is present in the crop`s nearby area (Hoballah et al. 2004). 

Secondly, the wounding damage by the larvae may not be great enough to start 

the cascade of induced plant defenses. The production of the defensive pathway that 

involves jasmonic acid derivatives is costly for plants. Redman et al. (2001) 

demonstrated that the production of jasmonic acid-related defenses by tomato plants 

under Manduca sexta attack affected fruit maturation, delaying fruit setting and 

decreasing the amount of seeds. It is already known that jasmonic acid is highly 

correlated with the activity of invertases and phenolic compound accumulation in 

source/sink relationship in poplars (Appel et al. 2012; Arnold et al. 2012). From the 

results showed in Chapter II, it could be inferred that the release of jasmonic acid is 

necessary to force the translocation of sugar from leaves needed for the biosynthesis of 

more phytochemicals in fruits. In the results showed here, the fruit maturity was not 
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affected, meaning that damage in leaves by S. exigua was not enough to affect the 

processes. 

 

 

 
Fig. 3-7. Schematic view of the hypothetical explanation for leaf stress on fruit responses. A), Mechanical 

wounding distributed in the whole plant produces systemic signals and biochemical changes in fruits. B), 

Insect with limited feeding to one leaf does not produce enough signal to make changes in fruits. The 

thickness of the arrow corresponds with signal and source/sink strength from damage leaf to fruit. 

 

 

In Fig. 3-7, this hypothesis is summarized. Mechanical wounding distributed on 

the whole plant is enough to release the jasmonic acid cascade and increase the 

source/sink strength in favor of fruits (Fig. 3-7A). The area chewed by one larva was 

similar to low level of wounding (W50) in Chapter II and the damaged produced by two 

larvae were comparable to the foliar area lost in high level of wounding (W100). When 

the S. exigua larvae chewing is limited to one leaf, the source of the signal is limited to 

one leaf and the damage is not enough to release the responses related to jasmonic acid 

A B 



 

50 

 

and source/sink relationships, so the carbon source necessary in fruit tissue for phenolic 

compounds biosynthesis is not affected at a significant level. 

 

Conclusions 

Differences among treatments were not significant for any parameter measured. 

After the analysis of all the results, I accepted the null hypothesis (the phytochemicals 

were not affected). In these experimental conditions, the biotic stress applied on leaves 

did not produced detectable changes in the phytochemical profile. I hypothesize that 

damage produced by the larvae was not enough to rearrange the secondary metabolism 

in fruit because the sugar translocation in favor of fruits was not elicited by larvae 

feeding only in one leaf. This hypothesis could be tested in future experiments. 
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CHAPTER IV 

PHENOLIC COMPOUNDS IN PECAN KERNELS ARE NOT AFFECTED BY A 

SPECIALIST APHID FEEDING ON LEAVES 

 

Introduction 

Pecans have been promoted as a healthy a food that prevents diseases related to 

oxidative stress in humans due to its high content of phytochemicals with biological 

activities such as ellagitannins, gallotanins, and proanthocyanidins (Ortiz-Quezada et al. 

2011; Ronald and Pegg 2008; Serrano et al. 2009; de la Rosa et al. 2014). Several pests 

are associated with native and improved pecan orchards. The most important ones are 

pecan nut casebearer (Acrobasis nuxvorella), the black margined aphid (Monellia 

caryella), and the yellow pecan aphid (Monelliopsis pecanis) (Ree 1999; Smith 1995). 

The pecan leaves are mainly affected by three seasonal aphids; the two above mentioned 

and a third one, the black pecan aphid (Melanocallis caryaefoliae) (Bumroongsook and 

Harris 1992; Paulsen et al. 2013; Wood and Reilly 1998). Aphids are important 

arthropod pests that cause damage by piercing-sucking on plant phloem and feeding on 

assimilated carbon compound from sap, thus weakening the plants and producing 

economic losses, and also by as acting as vectors of other diseases to the plant (Pickett et 

al. 1992; Jaouannet et al. 2014). Black pecan aphid is a specialist insect feeding almost 

exclusively on pecan leaves and its damage corresponds with the final stages of kernel 

maturity, at the end of harvest season in summer (Wood and Reilly 1998).  
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There is insufficient knowledge about changes in pecan phytochemistry caused 

by insect damages. Alvidrez-Villarreal et al. (2011) reported increments on total 

terpenes, condensed tannins, hydrolysable tannins and lignin in tissues damaged by fruit 

tree borer insect (Euplatypus segnis) and associated fungi (Fusarium solani, Fusarium 

oxysporum, Alternaria alternata and Botryodiplodia theobromae). In another study, 

Chen et al. (2009) reported the effects of black pecan aphid on the activity of oxidative 

enzymes (peroxidase, catalase, lipoxygenase) and esterase in pecan leaves under field 

conditions; however, phytochemical levels were not reported in the study. Despite the 

lack of information with regard to specific phytochemicals produced by pecan and its 

effects on insects, it is known that hydrolysable tannins have negative effects on pests 

(Barbehenn and Constabel 2011; Barbehenn et al. 2009; Moilanen and Salminen 2008). 

Ellagitannins like geraniin and peduncalagin inhibited the growth of green peach aphid 

(Myzus persicae), and the hydrolysable derivative ellagic acid had a potent activity 

against barley greengub (Schizaphis graminum) (Jones and Klocke 1987). Klocke et al. 

(1985) proposed that geraniin is a protoxin that releases ellagic acid; this hydrolysis 

product is detrimental for insects feeding in plants. Barbehenn et al. (2006) suggested 

that the greater the level of ellagitannins compared to total tannins produced by a plant, 

the more harmful is the impact on caterpillars. In the study presented here, I wanted to 

measure the abundances of the most relevant phytochemicals, in particular the 

ellagitannins derivatives, produced in pecan kernels when the leaves are damaged by a 

specialist aphid.  
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Materials and methods 

Field experiment. The experiment was conducted on 10-year-old pecan trees 

(cv. Choctaw) planted in the Texas A&M University Pecan Orchard located near 

Somerville, TX (lat. 30.52 N, long. 96.42 W). The orchard is managed according to 

commercial pecan production in a tree spacing of 10x10m (Stein et al. 2012). The soil in 

the area is a Westwood silt loam and the irrigation of the orchard is through 

microsprinklers. The experiment was established in early September, when the natural 

population of pecan black aphid increases. Twelve trees were selected, and then 

randomly assigned to either the aphid treatment or the control. Three branches of each 

experimental tree were selected for the treatments with the aphid, taking into account 

size similarities and position within the canopy (Fig. 4-1). The terminal shoot of one 

branch was enclosed in a mesh nylon bag (45 x 90 cm; Bioquip, Compton, CA) as 

shown in Fig. 2 and infested with growth chamber-reared M. caryaefoliae by using 

aphid-infested foliage as described by Chen et al. (2009). The control trees were set with 

the bag in the same conditions but with no aphids inside. In Fig 4-2 shows the setting of 

the experiment in a tree: 

Treatment 1 (T1): Infested branch. 

Treatment 2 (T2): the closest branch to the infested one. 

Treatment 3 (T3): The furthest branch to the infested one. 
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Fig. 4-1. Treatment with black aphid. The branch was covered with a commercial bag designed for insect 

rearing in trees. 

 

 

The aphids for the inoculation were obtained from a field collection in the 

orchard of the USDA-ARS Pecan Breeding & Genetics. A fully expanded leaflet, from 

greenhouse-grown seedlings with similar aphid infestations (approx. 100 aphids, 

including adults and all instars) was inserted in the bag to initiate the aphid infestation in 
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the field experiment. Kernels were collected from the infested branch (T1); and non-

infested pecan shoots: the closest branch or T2, and the furthest branches or T3, as 

shown in Figure 2. The whole production from each branch was collected at harvest in 

late October (between 3 to 6 kernels), and they were immediately frozen in liquid 

nitrogen and kept at -80 °C for further analyses. 

 

 

 
Fig. 4-2. Diagram of the experiment set on pecan trees in the field conditions. Treatment 1: Aphids 

enclosed in the branch with the mesh bag. Treatment 2: The closest branch to the aphid-treated branch. 

Treatment 3: The opposite branch in the tree canopy. 

 

 

(T1) 

(T2) 

(T3) 
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Extraction of phenolics. Pecan kernels from each branch were powdered using a 

food processor.  The samples were placed in plastic tubes and extracted with hexane 

(1:20 w/v) using a high speed homogenizer (Ultraturrax T25, IKA, Wilmington, NC). 

The homogenate was centrifuged at 5,000 rpm x 5 minutes; the supernatant was 

collected and the residue was extracted twice with hexane. The remained defatted 

powder was used for extraction with acetone:water 70:30 (v/v) in proportion 1:20 (w:v), 

based on a described method for pecans (Villarreal-Lozoya et al. 2009). After 16 h in a 

shaker at 5 ºC, the extract was centrifuged at 14,000 rpm for 10 min and used for total 

phenolics and HPLC analyses. 

Total phenolics determination. The acetone:water extract was diluted 

accordingly with nanopure water and the determination was carried out following the 

microplate method reported by Villarreal-Lozoya et al. (2007) with minor modifications. 

Briefly, 15 µL of each diluted extract was placed in a 96 microplate well, nanopure 

water (208 µL) was added with an automatic dispenser, followed by 13 µL of Folin-

Ciocalteau reagent. The solutions were allowed to react for 3 min and then 25 µL of 1N 

Na2CO3 was added. The mixture was placed for 2 h in dark conditions and the 

absorbance was measured at 725 nm using a microplate reader (Sinergy HT, Bio-Tek 

Instruments, Inc., Winooski, VT). At the same time, blanks were run with nanopure 

water, and standard calibration curve was made with chlorogenic acid in water. Total 

phenolic was reported in each sample as mg chlorogenic acid equivalent (CAE) per g of 

defatted kernel powder. 
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HPLC analysis of hydrolyzed phenolic compounds. The acetone: water 

(70:30, v/v) extracts (1.5 ml) were evaporated under vacuum at 35 ºC using a SpeedVac 

concentrator (Thermo, Marietta, OH), and the residues were dissolved in 300 µL of 8 N 

NaOH. They were flushed with nitrogen, capped, and allowed to react overnight 

(approx. 16 h). After this basic hydrolysis, 500 µL of 6N HCl was added to each sample 

and flushed with nitrogen, capped, and heated for 45 min using a block heater (Fisher 

Scientific, Houston, Texas) set at 85 ºC. After the acid hydrolysis, the solutions were 

filtered using a 0.2 µm PTFE filter and put in HPLC vials. The HPLC analysis was 

performed following the procedure described in Villarreal-Lozoya et al. (2009) with 

some modifications. The HPLC system consisted in two Waters 515 gradient pumps, a 

Waters Atlantis C18 column (5 µm particle, 4.5mm × 150mm), coupled with a Waters 

717 autosampler, and a Waters 916 photodiode array detector (Waters Corp., Mildford, 

MA). Photodiode array detector was set to scan absorbance from 190 nm to 600 nm. For 

determination of compounds each peak spectra was used and the retention times were 

compared with external pure standards of catechin, gallic acid and ellagic acid 

(SigmaAldrich, Milwaukee, WI). Nanopure water, acidified to pH 2.3 with 2 M HCl 

(solvent A), and acetonitrile (solvent B) were used as mobile phases. Solvent gradient 

was set as follows: from 0 to 5 min 85% of A in isocratic flow mode, from 5 to 20 min a 

linear gradient of 85% A to 100% B, and from 25 to 30 min isocratic conditions of 100% 

B. After that, a linear gradient was set to 85% A and kept in isocratic mode for 10 min 

before next injection. The injection volume for samples and pure compounds was 20 µL. 
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For quantification of the identified hydrolysable tannin derivatives, standard curves with 

pure compounds were made. 

Statistical analysis. Analysis of Variance (ANOVA) was applied to the data and 

the statistical differences between treatment means were determined using the Duncan´s 

Test (p≤0.05). Those tests were conducted using the software InfoStat (National 

University of Cordoba, Argentina). 

 

Results 

The content of total phenolic and tannin derivatives after hydrolysis was not 

significantly different for all treatments and respective controls (Fig. 4-3). Total 

phenolics (Figure 3A) ranged from 22.47 to 31.11 CAE / g defatted pecan kernel (DPK). 

Gallic acid content was 20.19 to 24.96 mg/g DPK (Figure 3B), catechin between 0.28 

and 0.39 DPK (Figure 3C), and ellagic acid ranged from 0.15 to 0.22 mg/g DPK (Figure 

3D). Treatment 1 (aphids feeding) and Treatment 2-3 (the closest and the farthest 

branches respectively) did not produce any significant variation in ellagitannins 

derivatives in the kernels from the branches. 
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Fig. 4-3. Levels of total phenolics and specific phenolic compounds from treatments 1-3. A), Total 

phenolic content expressed as aCAE (Chlorogenic acid equivalents) per g of defatted pecan kernel (DPK). 

B), Gallic acid content mg/g DPK. C), Ellagic acid levels in mg/g DPK. D), Catechin levels expressed as 

mg/g DPK. All values expressed as mean ± SE of the six field repetitions, compared by Duncan´s test 

(p≤0.05). 
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Phytochemical levels for this cultivar have been not reported before. The values 

of total phenolic reported here are less than half the range reported for six other varieties 

(62 to 106 mg CAE/g) (Villarreal-Lozoya et al. 2007), showing the great variability 

among cultivars. The gallic acid level was higher than the values reported for these six 

cultivars (0.6-1.3 mg/g DPK), and the content of ellagic acid reported here was about 

one tenth less than the range in these other varieties (2.5-4.7 mg/g DPK) (Villarreal-

Lozoya et al. 2007). The values reported by Daniel et al. (1989) of 0.33 mg/g of ellagic 

acid in pecans after acid hydrolysis with trifluoroacetic acid are within the range found 

here, but the authors did not report the cultivar analyzed. The high gallic acid content 

obtained after the hydrolysis was caused by the strong basic and acid conditions for the 

hydrolysis. Under these conditions, all the hydrolysable tannins were hydrolyzed to 

gallic acid, which is the monomeric form for gallotanins and the precursor of 

ellagitannins found in pecans (Jourdes et al. 2013; Muir et al. 2011; Ascacio-Valdes et 

al. 2011). 

 

 

Discussion 

 

The Choctaw cultivar is cultivated in approx. 2500 hectares representing 1.2% of 

total production in the US (Thompson and Conner 2012). This old variety produces good 

nut quality and yields. Nevertheless, it has several problems related to challenging soils 

management, temperatures and pests (Mc Eachern et al. 2012; Knuston et al. 2012); but 

most importantly, Choctaw shows high susceptibility to black pecan aphid (Wood and 

Reilly 1998). Wood and Reilly (1998) suggested that varieties susceptible to this aphid 



 

61 

 

were not able to produce chemical compounds (not mentioned) that affect the aphid 

preference. In a study comparing three susceptible and three resistant cultivars of pecans 

to black pecan aphid it was reported that susceptible varieties increased the activity of 

enzymes related to oxidative stress, and decreased lipoxygenases implicated in resistance 

against insects. Lipoxygenases are important enzymes in the production of jasmonic acid 

derivatives that have important roles in the plant systemic responses and production of 

defensive phenolic compounds (Erb et al. 2012; Kessler and Baldwin 2002; Chauvin et 

al. 2013). These enzymatic activities were measured in the same leaves where the aphids 

were applied however non systemic effects were mentioned (Chen et al. 2009). Aphid 

feeding on plants affects the production of phenolic compounds and its variation is 

unique for the plant-insect interaction. In an experiment using plant of maize and barley 

attacked by Sitobion avenae, Eleftherianos et al. (2006) found that the levels of 

phenolics decreased compared to undamaged plants; however, the phenolic levels were 

unaffected when using the aphid Rhopalosiphum padi in the same conditions. Pest 

damage in pecan is highly dependent on crop management. When plants are under good 

irrigation, good nitrogen availability and low fruit load, pecan leaves were more able to 

host pests (Wood and Reilly 2000). Because black aphids are typically a threat during 

the late growing season, the leaves used in this study had already suffered some kind of 

biotic stress by the time the treatments were established.  

The total phenolics content was lower than that previously reported for pecans 

kernels at harvest time (Villarreal-Lozoya et al. 2007; Malik et al. 2009). The conditions 

of the trees used in this study plus the high susceptibility of Choctaw pecans to black 
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pecan aphid could cause a reduction in the translocation of photosynthates from leaves to 

fruits for synthesis of phenolic compounds. Results showed here support this hypothesis; 

since the total phenolic compounds were half and ellagitannins derivatives about one 

tenth than what reported for other more resistant pecan varieties such as Pawnee, 

Shawnee or Kiowa (Villarreal-Lozoya et al. 2007). The aphid-host relationship is highly 

dependent on the chemical interaction between the piercing-sucking part of the insect 

and the phloem, and several secondary metabolites are implied in the interaction (Smith 

and Chuang 2014; Pickett et al. 1992). In the case of the interaction between black pecan 

aphid and Choctaw trees, the aphid may be able to avoid the local defenses from the 

plant, and the continuing sucking of photosynthates may produce a depletion of sugars 

that cannot be translocated to the sink tissues (kernels) for production of high C/N 

compound as the ellagitannins derivatives reported here. 

 

Conclusions 

Differences among treatments were not significant for any tannin derivative 

measured. After the analysis of all the results, I concluded that the levels of the 

phytochemicals investigated in pecan kernels were not affected by aphids. Under these 

experimental conditions, the biotic stress applied on leaves did not produce detectable 

changes in the phytochemical profile. The damage produced by the black pecan aphid 

was not enough to rearrange the secondary metabolism in fruit, probably because the 

sugar transport in favor of fruits was depleted by the aphids sucking the leaves. This 



 

63 

 

hypothesis could be tested in a future experiment under more controlled environmental 

conditions of the trees.  
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CHAPTER V 

CONCLUSIONS 

 

The importance of phytochemicals for human health has led the study of pre- and 

post-harvest factors that influence the production of bioactive phenylpropanoids. 

Organic agriculture claims that under this method of production, plants suffer more 

biotic stress and accumulate more secondary metabolites (SM) in fruits. Wounded 

tissues affect the production of SM as a local response, and also as a systemic response 

in the same organ type (e.g. leaves) but this has not been tested in other kind of organ so 

far. Pecans and strawberries are known for their high level of bioactive phenolic 

compound including ellagitannins, gallotanins and proanthocyanidins. In this 

dissertation, the preharvest effects of biotic stress due to insect feeding and mechanical 

wounding were evaluated as modulators of tannin derivatives in fruits. 

In Chapter II, a preharvest leaf wounding was applied to measure the effects on 

production of bioactive compounds on fruits. The experiment was conducted in an 

experimental plot subjected to two levels of mechanical wounding applied on strawberry 

leaves, 7-12 days before harvest time. No differences in color, fresh weight, firmness 

and vitamin C were detected at fruit harvest compared with the control (p>0.05). 

However, the level of total phenolics and soluble sugars in fruits of treated plants 

increased significantly 20% and 12% over the control, respectively. Moreover, 

significant increments (p≤0.05) in the level of specific phenylpropanoids were observed: 

epicatechin (185%), and rutin (190%) and the gallotanins derivative gallic acid (130%). 
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In addition, several genes related to phenolic compounds biosynthesis and sugar 

metabolism were overexpressed in the fruits from the stressed plants. In this study, it 

was found that the accumulation of phenolic compounds in fruits can be triggered by the 

application of mechanical wounding on a different tissue of the plant. A hypothetical 

model was proposed to explain the modulation of phenolic compounds in fruits based in 

source/sink transport of sugars in favor of fruits. Furthermore, controlled mechanical 

wounding applied in leaves during preharvest could be used to increase phytochemicals 

in fruits through changes in source/sink sugar transportation. Phenolic compounds are 

very important for example in wine and olive oil industries. This innovative approach 

could be used for increasing the level and modulating the profile of phenolic compounds 

in preharvest. Wineries rely on grapes phenolics composition for producing high quality 

wines (Holt et al. 2008; Pardo-García et al. 2013; Mulero et al. 2010). Several quality 

parameters in virgin olive oil such as its shelf and storage life, its organoleptic attributes, 

and its benefits for human health depend on the phenolic profile in olives (Ninfali et al. 

2008; Gallardo-Guerrero et al. 2012; Mraicha et al. 2010). These phenolics could be 

enhanced by using the abovementioned approach. 

In chapters III and IV, studies were conducted to evaluate the phenolics in fruits 

when a generalist insect is chewing organic strawberry plants, and a specialist aphid 

feeding on pecan leaves. In strawberry fruits evaluated at harvest, there were no 

significant increments in quality parameters, soluble sugars, phenolic compounds, or the 

related gene expressions, with the exception of CWI gene after two weeks when two 

larvae feeding in one leaf. This increment of CWI transcription could indicate that the 
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level of damage just started to develop the late response in fruits as discussed for 

Chapter II. In the pecan kernel harvested, there were no detected differences in 

proanthocyanidins, gallotanins o ellagitannins derivatives levels due to the insects 

sucking phloem sap from the leaves. 

Overall, the results did not support the organic agriculture claim that higher 

levels of phytochemicals in fruits could be attributed directly to the biotic stress when 

plants are exposed to organic management. However the wounding component of this 

biotic stress could be important part of those higher levels. Other parameters should be 

taking into consideration when phytochemicals are evaluated in organic fruits. There are 

several factors on phenolic compounds differences between organic and conventional 

approach, the most studied are: soil and nutrient managements (Mitchell et al. 2007; 

Lester and Saftner 2011; Caris-Veyrat et al. 2004; Omar et al. 2012); genetic variation 

(Malik et al. 2009; Faller and Fialho 2010; Kovačević et al. ; Petkovsek et al. 2010); 

location and cultural practices (Juroszek et al. 2009; Lombardi-Boccia et al. 2003; 

Mitchell et al. 2007); abiotic stresses (Oliveira et al. 2013; Wang and Frei 2011; Akula 

and Ravishankar 2011; Hodges and Toivonen 2008; Jaleel et al. 2009; Keutgen and 

Pawelzik 2008). Most studies have focused on the evaluation of these parameters 

isolated, probably due to the difficulties to set factorial design experiments and control 

all the factors. However, phytochemical levels in fruits is a complex function which is 

derived by the interaction of several agents, such as genetics, soil, nutrients, abiotic 

stresses, biotic stresses, cultural practices, location, climate). 
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The results showed in this dissertation stated that the biotic stress isolated in 

these experimental conditions was not enough to produce changes in phytochemical 

levels in fruits. In future experiments, more variables such as the distribution of insect 

damage in the whole plant and the duration of insect feeding on leaves and its effect in 

fruit phytochemicals should be evaluated. The high variation of phenolics values and 

mRNA transcripts plant-to-plant was observed in these studies and it could be a common 

situation in comparison of organic vs. conventional practices (Luthria et al. 2010), 

another experimental design should be considered in future studies. 
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