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ABSTRACT 

 

 

We show how cross–sectional scanning tunneling microscopy is used to examine 

a gallium–free, type–II InAs/InAsSb superlattice and perform compositional analyses of 

the as–grown structure through isovalent impurity identification. We describe the 

optimization of cleaving protocols, upgrades to the vacuum system, and standardized lab 

protocols for minimizing STM non–idealities. These improvements allow acquisition of 

representative, device–scale STM surveys yielding statistically–significant image 

ensembles.  

We describe protocols for identifying surface antimony–for–arsenic substitutions 

in STM images, which facilitate monolayer–by–monolayer analyses of the antimony 

fraction across surveyed repeats. Reconstruction of representative bulk composition 

profiles, based on appropriate approximations to the bulk period, reveal compositional 

grading across superlattice interfaces consistent with anion segregation. HRXRD 

simulations based on these profiles provide insights into the discrepancies between 

intended and observed x–ray spectra. 

We develop a quantitative, continuum segregation model to fit the observed 

antimony profiles, and examine the resulting fit parameters to determine what they 

reveal about segregation and cross–incorporation in InAs/InAsSb superlattices. We show 

how the model best describing the bulk profile relies on two, spatially distinct 

segregation sources with an offset close to one monolayer, consistent with either 
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monolayer roughness or substrate vicinality. This model also provides self–consistent 

period measurements over surveyed sections of the multilayer stack, that agree with bulk 

period approximations based on sliding window averages, thereby substantiating the 

occurrence of more than one bulk period in the superlattice. The insights achieved 

through such detailed analyses of the as–grown structure can be combined with STM 

and SIMS data pointing to a vertical evolution in the total incorporated antimony per 

period to obtain x–ray simulations in excellent agreement with the experimental 

HRXRD spectrum. 

 Finally, we demonstrate how cross–sectional STM may be used to measure local 

periods in superlattice structures via a novel, reciprocal–space technique analogous to 

Bragg’s law in x–ray diffraction. The period measurements obtained with this technique 

are compared with those from sliding–window averages and the continuum segregation–

model to validate the accuracy of this new method, and pinpoint period variations within 

the multilayer stack. 
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CHAPTER I 

INTRODUCTION 

 

Background and Motivation 

Several applications utilize infrared (IR) radiation to gain information; these 

include environmental monitoring, terrestrial surveillance, missile warning systems, and 

astronomical research. Infrared radiation is electromagnetic radiation with wavelengths 

between visible light and microwaves, about 0.7 to 1000 microns. The long–wavelength 

(8–14 µm) IR region is often referred to as the ‘thermal infrared’ where there is 

considerable interest for the aforementioned applications. The most common material 

currently used to fabricate infrared structures is mercury–cadmium-telluride (HgCdTe). 

HgCdTe was first proposed as an IR absorber material by Schulman and McGill [1] in 

1979 and has been the dominant source for infrared systems over the last few decades.   

However, there are challenges faced by devices fabricated with the Hg1-xCdxTe 

alloy that have yet to be overcome, such as strong dependence on alloy composition [2] 

and compositional uniformity at longer wavelengths, creating strict composition 

requirements that are difficult to accomplish. Another challenge that still plagues 

HgCdTe devices is Auger recombination [2] (Fig 1.1). Within semiconductors Auger 

recombination involves two electrons and one hole, or one electron and two holes. After 

an electron–hole pair form, their energy is given to a third carrier, which increases its 

energy moving it to a higher energy level within the same energy band. This process 

decreases carrier lifetimes. 
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Lack of progress in recent years with regard to long-wavelength IR devices made 

from HgCdTe has led to increased interest in the prospects for devices built from the III–

V materials system. Within this materials system (Fig 1.2, [3]) there are a number of 

binary and ternary compounds (e.g. InAs, GaSb, InAsSb, GaInSb) with lattice constants 

very close to each other, which can be grown with monolayer precision by way of a 

well–established growth method such as molecular beam epitaxy (MBE) [4, 5]. The 

alloy composition and layer thickness of the constituent layers within this type of 

structure can be adjusted to control the energy gap to fit a specific application, i.e. band–

gap engineering.  

The deliberate tailoring of optical transitions in such quantum–confined 

structures typically relies on theoretical or empirical paradigms whose predictive utility 

is judged against assumed (intended) rather than empirically determined (as–grown) 

constituent–layer sequences.  Accurate knowledge concerning the as–grown atomic 

arrangements responsible for the confining potentials that make these structures unique 

is rarely available. 

Cross–sectional scanning tunneling microscopy (STM) has proven to be a 

powerful tool for characterizing III–V semiconductor heterostructures with exceptional 

atomic resolution. STM is capable of providing real–space structural as well as 

morphological information on the cross–sectional epitaxial layers exposed through 

cleavage [6-8]. This analysis can be performed across the entire as–grown structure, 

characterizing any changes in the aforementioned properties from initiation to 

completion of the growth. 
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Alternative Infrared Device Materials 

There are two band alignments formed from the III–V material system (Fig. 1.3). 

In one type of alignment, the electrons and holes are confined in a common potential 

well of the superlattice so that shifts in the electron and hole energy levels are coupled 

with changes in the well width (commonly referred to as type–I). In the other band 

alignment (type–II) electrons and holes are separately confined in neighboring layers 

whose thicknesses may be independently adjusted to achieve a desired optical transition 

energy, providing a degree of freedom not available with the type–I system. 

InAs/GaSb type–II superlattices were first introduced in 1977 by Sai–Haiasz and 

Esaki [9], and ten years later Smith and Mailhiot [10] proposed their use for infrared 

detection.  Theoretical calculations predict that InAs/GaSb type–II superlattices have a 

similar absorption coefficient to that of HgCdTe, and the strain present in InAs/GaSb 

suppresses Auger recombination [11], which should result in longer intrinsic carrier 

lifetime and higher quantum efficiency for the detectors. This suggests that type–II 

superlattices based on the InAs/GaSb system might hold distinct advantages over 

HdCdTe in long-wave-infrared applications. This non–common–atom binary material, 

and its closely–related, ternary variant InAs/Ga(In)Sb, have thus been extensively 

studied, but have not yet reached their theoretical potential, nor have they surpassed the 

HgCdTe–based devices. This is believed to be due to native defects formed during 

growth in the bulk InAs or bulk GaSb leading to Shockley–Read–Hall recombination 

[12]. Measurements of the carrier lifetimes of bulk InAs, bulk InAsSb, and bulk GaSb 

revealed that the GaSb had the shortest lifetime [13]. This suggests the defect limiting 
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the carrier lifetimes of InAs/Ga(In)Sb structures is located in the bulk GaSb, and that 

type–II superlattices without Ga will have longer carrier lifetimes. 

The Ga–free type–II superlattice InAs/InAsSb, was proposed in 1995 by Grin et 

al [11], and demonstrated potential to replace the incumbent HgCdTe in infrared devices 

at longer wavelengths. From recent reports [14], InAs/InAsSb superlattices have 

exhibited carrier lifetimes an order of magnitude greater than those observed in 

InAs/Ga(In)Sb, possibly connected with the gallium–free nature of the structure.  This 

has led to renewed interest in the prospects for competitive devices built from this Ga–

free material.  

 

Molecular Beam Epitaxy 

Solid–source molecular beam epitaxy (MBE) has become a primary tool for 

fabricating superlattice structures. In an MBE setup (Fig.1.4, [15, 16]), there are several 

high temperature effusion cells inside an ultra high vacuum (UHV) chamber, each 

providing an elemental source such as gallium, indium, aluminum, or arsenic. The UHV 

environment increases the mean free path of the elements to be deposited, with excellent 

control over growth conditions for atomically thin, epitaxial films. The cells are arranged 

in the vacuum system with their beam paths directed towards the substrate mounted near 

the center of the chamber.  Each effusion cell is heated to the sublimation temperature of 

its respective element, and the sources are projected as beams towards a substrate wafer 

where they diffuse to form molecules. Adjustments to the temperature of the effusion 

cells control the amount of material reaching the substrate, and to minimize 
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concentration gradients the substrate is typically rotated as well as heated during growth. 

Computer-controlled pneumatic shutters placed just beyond the end of the effusion cells 

allow for termination of the material flux from each cell separately. The shutters are 

opened and closed in a controlled sequence allowing for deposition of the desired layer 

thicknesses to fabricate the intended structure. More in-depth descriptions of MBE 

systems can be easily found in literature [17, 18]. 

 

Materials Issues During Epitaxy 

During epitaxial growth of type–II quantum structures, the anions and/or cations 

are adjusted at each layer interface, and it is important to maximize the quality of these 

interfaces for optimal device performance.  Anion segregation and cross–incorporation 

[7, 8] (Fig. 1.5) are two well–known atomic–scale processes that occur during growth, 

where two or more anions compete for the available lattice sites. These processes 

frustrate the intended compositional discontinuities across the heterojunctions, which in 

turn affect the optical and electronic properties of the quantum structure. 

Anion segregation refers to the geometric progression in anion incorporation that 

follows exposure of a growth surface to competing anion fluxes. For example, when 

antimony is co–deposited with arsenic, some portion of the antimony flux is 

incorporated in the current monolayer, while the remaining fraction is ejected to a 

floating layer on the surface and made available (in addition to the incoming flux) for 

incorporation into the next monolayer. Once the antimony–source shutter is closed, this 
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partitioning continues as additional arsenic layers are formed until the antimony floating 

layer is exhausted or the shutter is opened again.  

Anion cross–incorporation refers to a spatially uniform, random distribution of a 

foreign species incorporated into the growth via unintended substitution for another 

anion. The anion species produced by the effusion cells are typically molecular (e.g. Sb2) 

while the cations are atomic (e.g. In).  The sticking probability for the anion molecules is 

also smaller than that for the cation atoms, so an anion overpressure is (almost) 

universally required for stoichiometric growth [19, 20]. As the anion vapor in the 

effusion cell increases, molecules will leak around the effusion cell shutter forming an 

unwanted ambient background, which will then compete with the intended anion stream 

for incorporation during growth. 

These non–idealities play an important role in the optical and electronic 

properties of the as–grown structure. Strain introduced by cross–incorporation and 

segregation influences transport of carriers through the structure. Interfacial mixing and 

compositional grading due to segregation leads to overall softening of band–edge 

confinement potentials, and likewise influences transport effective masses. 

 

Characterization Techniques 

Epitaxial growth with atomic layer precision is aided by reflection high–energy 

electron diffraction (RHEED), a standard analytical tool used in MBE systems for 

monitoring the growth quality in real time [21]. In a RHEED system (Fig 1.6) an 

electron gun produces a beam of high-energy electrons that strike the sample surface at 
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grazing incidence. Incoming electrons diffract off the topmost layer of the sample, and a 

small fraction of the diffracted electrons are observed with the detector screen. 

Diffraction patterns are formed at the detector when the diffracted electrons 

constructively interfere at specific angles corresponding to the spacing of the surface 

atoms. Valuable information about the structure and morphology of the sample surface 

during growth is made available from these electron diffraction patterns. 

While RHEED provides in-situ monitoring of growth modes and surface 

reconstruction during growth, ex–situ characterization techniques are needed to better 

evaluate the quality of the grown heterostructure and to optimize growth conditions. 

Structural information on the growth quality can be obtained from such techniques as 

high–resolution x–ray diffraction (HRXRD) and transmission electron microscopy 

(TEM), while photoluminescence (PL) provides compositional insights regarding bound 

states of the heterostructure.  These techniques spatially average over a large portion of 

the heterostructure; therefore, essential structural and compositional insights in the sub–

nanometer scale regarding the electron confinement are not easily accessible.  

 

Scanning Tunneling Microscopy 

Scanning tunneling microscopy (STM) has been utilized for atomic–scale 

characterization of semiconductor surfaces for several years. An atomically sharp metal 

tip is brought very close to the sample surface and a small bias is applied between the 

two allowing electrons to tunnel through the vacuum barrier between the tip and 
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dangling bonds of the surface atoms [22]. A one–dimensional tunneling schematic is 

illustrated in Fig 1.7 [23]. The tunneling current between the tip and sample 

 I ∝ ρs E,eV( )  T E,eV( )  dE
0

eV

∫
 

(1.1) 

is a function of the local density of states for the sample, ρs, with a transmission 

coefficient,  

 

€ 

T E,eV( )∝ exp −2κs( )  (1.2) 

which has an exponential dependence on the separation, s, between tip and sample. T 

also depends on the applied voltage, V, according to  

 
  

€ 

κ =
2m
2

Φ eV( ) − E( )  (1.3) 

where Φ is the mean barrier height, and κ is on the order of 1 Å-1. 

Cross–sectional STM allows for investigation of as–grown heterostructures 

through cleavage in vacuum and subsequent exposure of the epitaxial layers in cross 

section; a simple schematic of the technique appears in Fig. 1.8. The III–V materials that 

make up the structure examined in this study have the zincblende structure for which 

there are two orthogonal crystal planes, (110) and (1–10), containing equal numbers of 

anions and cations in zig–zag chains. These two non–polar planes are preferential when 

cleaving the structure. Following cleavage along a <110> plane, the surface undergoes a 

Jahn–Teller relaxation [24] rather than reconstructing, where the anions and cations 

experience a coordinated rigid–bond rotation. This leads to a shift in the cleavage 

14



FIGURE 1.7. Schematic electron energy diagram illustrating a typical, planar tip-sample 
junction. Sample is biased, by a voltage V, to adjust its Fermi level, EF, with respect to  the 
tip. Adapted from [23].

eV

EC

EFEV

s
sample tip

! 

" 
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FIGURE 1.8.  Illustration of cross sectional scanning tunneling microscopy.  There are 
two non–polar crystal cross sections accessible for analysis with STM, (110) and (11 ̅0).

[001]

[110]

[110]

growth  surface

epitaxial  layers
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surface atomic geometry with the anions displaced slightly outward and the cations 

displaced slightly inward. An attending charge transfer leads to the cations becoming 

empty states and the anions becoming filled states, making atom–selective imaging 

possible with STM [25]; the cation or anion sublattices can be imaged separately by 

tunneling into or out of the sample. 

Precise position control allows placement of the STM tip above a chosen set of 

superlattice periods.  Once positioned over a region of interest, the tip is brought within a 

few angstroms of the exposed surface and a bias is then applied. A negative bias is 

applied to the sample to obtain images of the filled states corresponding to the top layer 

anions (such as arsenic or antimony), while a positive voltage images the empty states 

associated with the cation dangling bonds (such as indium or gallium).   

As the STM tip scans the sample surface, the separation between tip and sample 

adjusts to keep a constant tunneling current (Fig 1.9). This constant–current contour 

mirrors the surface local electronic density of states within the energy window available 

for tunneling [26, 27], which provides a “topographic” representation of the density of 

states, typically displayed as grayscale in STM images. The varying shades of gray in an 

STM image are influenced by two key factors.  The first is electronic effects resulting 

from band edge energy shifts, along with deviations in the density of states available to 

participate in tunneling, displayed as layer contrast. The second factor arises from local 

surface morphology changes accompanying differences in local bond lengths due to 

isovalent impurities. These changes are readily apparent in the STM image of a type–II 

InAs/GaSb superlattice (Fig 1.10) with geometrical perturbations in the local surface 
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morphology indicated by carets. Every feature can be atomically resolved and the entire 

structure can be characterized based on these real–space observations. 

 

Dissertation Overview 

 The remaining chapters of this manuscript are devoted to: a discussion of the 

changes made to the UHV system to provide a contamination–free environment for 

freshly cleaved samples, optimization of the experimental procedures and protocols 

employed to produce reliably flat cleaves, a brief overview of well–known non–

idealities exhibited by tripod scanners, and standardized lab protocols to minimize the 

undesirable effects of these deficiencies during data acquisition; a cross–sectional STM 

study of the antimony distribution in an InAs/InAsSb superlattice and reconstruction of 

the monolayer–by–monolayer antimony fraction in a representative bulk period; 

development of a quantitative segregation model to fit the observed antimony profiles 

together with examination of the resulting fit parameters and what they tell us about 

segregation in InAs/InAsSb superlattices; and, finally, discussion of a novel reciprocal–

space technique that transforms cross–sectional STM into a precision tool for measuring 

the vertical evolution in local superlattice periodicity anywhere along a multilayer stack. 
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CHAPTER II 

EXPERIMENTAL SETUP 

 

UHV System Reconditioning 

The experiments in this study were performed using a commercial STM 

manufactured by Omicron Vakuumphysik [28].  Our microscope resides in an ultra high 

vacuum (UHV) chamber (Fig. 2.1, right) which provides an in–situ environment for 

cleavage and subsequent examination of semiconductor surfaces (Fig. 2.1, left) without 

atmospheric contamination. Details regarding the design and construction of this setup 

are described in dissertations of prior students [29, 30]. 

The partial pressures in our main vacuum chamber are at or below 1x10–13 Torr 

for all species, except hydrogen, which is close to 1x10–11 Torr.  These near–extreme 

high vacuum (XHV) conditions are the result of an extensive and laborious overhaul of 

the inherited vacuum chamber, led by fellow lab member Federico Lopez Cruz, and 

carefully documented in his dissertation [23]. This upgrade was made in response to a 

quantum cascade (QC) superlattice containing a highly–reactive Al–bearing material.  

Freshly cleaved surfaces reacted quickly to the already low levels of residual gases in the 

original vacuum system, becoming contaminated with adsorbates within a matter of 

hours, such that analysis with STM was not feasible.  

To reduce outgassing loads in the vacuum chamber, we removed all unused 

components from the system, replaced the pumps with newer and more efficient models, 

and installed a new transporter rod. The main vacuum chamber following modifications 
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is shown in Fig. 2.2. Another piece of instrumentation contributing the gas load in the 

main chamber was the cleaving–stage carousel. Historically, following cleavage of a 

sample, the carousel had to be rotated for the cleaved surface to face the STM tip; this 

actuation produced outgassing that can have an adverse effect on freshly–cleaved 

surfaces. To avoid this rotation and its accompanying release of gases, a change to the 

sample mounting was made. By moving the mounting pieces to the reverse side of the 

symmetric platen, sample dies can now be cleaved in the carousel already facing the tip 

(Fig. 2.3). 

Attached to the main chamber via a series of valves is a pair of chambers that 

serve as the load lock and transfer chamber for introduction (and retrieval) of samples 

and tips to (and from) the main chamber.  This entry system underwent an extensive 

redesign due to an unintentional cadmium contamination, but the reconstruction led to 

improved pumping speeds and decreased gas loads.  Fig. 2.4 shows the current setup of 

the entry chamber.   

State–of–the–art residual gas analyzers (RGA) [31] were installed in the entry 

and main vacuum chambers to provide important monitoring of gas partial pressures and 

enable early detection of any possible future contamination. Near–XHV pressures are 

highlighted by the RGA data of current levels of reactive species (Fig. 2.5, left). With 

these existing vacuum conditions, a freshly cleaved surface will remain contamination–

free for several days, up to a few months, as illustrated by the plot of the monolayer 

formation time for a reactive species, assuming ideal circumstances, in Fig. 2.5 (right).   

23



FI
G

U
R

E 
2.

2.
 F

ro
nt

 v
ie

w
 o

f t
he

 u
pg

ra
de

d 
U

H
V

 sy
st

em
 (c

a.
 2

00
8)

 h
ig

hl
ig

ht
in

g 
m

aj
or

 re
co

nd
iti

on
in

g 
to

 th
e m

ai
n 

va
cu

um
 ch

am
be

r. 
N

ew
er

, m
or

e 
po

w
er

fu
l v

ac
uu

m
 p

um
ps

 a
nd

 a
 n

ew
 s

m
oo

th
ly

 a
ct

ua
te

d 
lin

ea
r f

ee
dt

hr
ou

gh
 w

er
e 

in
st

al
le

d 
in

 th
e 

m
ai

n 
ch

am
be

r t
o 

pr
ov

id
e 

a 
su

ita
bl

e 
ha

bi
ta

t f
or

 f
re

sh
ly

 c
le

av
ed

 A
l–

ric
h 

su
rf

ac
es

. V
ac

uu
m

 im
pr

ov
em

en
ts

 w
er

e 
m

on
ito

re
d 

w
ith

 a
 n

ew
 e

le
ct

ro
n–

m
ul

tip
lie

r e
nh

an
ce

d 
R

G
A

. R
ep

rin
te

d 
w

ith
 p

er
m

is
si

on
 fr

om
 [2

3]
.

ST
M

cl
ea

vi
ng

  s
ta

ge

RG
A

io
n 

 p
um

p

TS
P

N
EG

s

fe
ed

th
ro

ug
h

24



FI
G

U
R

E 
2.

3.
 T

ra
di

tio
na

l f
as

te
ni

ng
 o

f n
ot

ch
ed

, s
am

pl
e 

di
es

 to
 th

e 
fr

on
t o

f a
n 

ST
M

 p
la

te
n 

(le
ft)

 e
nt

ai
ls

 c
ar

ou
se

l r
ot

at
io

n 
– 

w
ith

 it
s 

at
te

nd
an

t p
re

ss
ur

e 
tra

ns
ie

nt
 –

 fo
llo

w
in

g 
cl

ea
va

ge
 fo

r t
he

 sa
m

pl
e 

su
rf

ac
e 

an
d 

ST
M

 ti
p 

to
 fa

ce
 o

ne
 a

no
th

er
. F

as
te

ni
ng

 th
es

e 
di

es
 to

 
th

e 
ba

ck
 o

f t
he

 s
ym

m
et

ric
, S

TM
 p

la
te

n 
(r

ig
ht

) c
irc

um
ve

nt
s 

an
y 

ne
ed

 fo
r c

ar
ou

se
l r

ot
at

io
n,

 s
in

ce
 c

le
av

ag
e 

su
rf

ac
e 

an
d 

ST
M

 ti
p 

ar
e 

na
tu

ra
lly

 a
lig

ne
d.

 

ST
M

  t
ip

fro
nt

–m
ou

nt
ed

(in
he

ri
te

d)
ba

ck
–m

ou
nt

ed
(m

od
ifi

ed
)

25



FI
G

U
R

E 
2.

4.
 S

id
e 

vi
ew

 o
f t

he
 u

pg
ra

de
d 

U
H

V
 sy

st
em

 (c
a.

 2
00

8)
 h

ig
hl

ig
ht

in
g 

m
aj

or
 re

co
nd

iti
on

in
g 

to
 th

e 
lo

ad
 lo

ck
 a

nd
 tr

an
sf

er
 

ch
am

be
r. 

Va
cu

um
 p

um
ps

, g
at

e 
va

lv
es

, a
nd

 t
he

 l
in

ea
r 

m
ot

io
n 

fe
ed

th
ro

ug
h 

w
er

e 
al

l 
re

pl
ac

ed
 w

ith
 n

ew
er

, h
ig

h–
pe

rf
or

m
an

ce
 

co
m

po
ne

nt
s;

 a
 d

ed
ic

at
ed

 R
G

A
 w

as
 a

dd
ed

 to
 th

e 
sa

m
pl

e 
lo

ad
 lo

ck
. S

ta
in

le
ss

–s
te

el
 tu

bu
la

tio
n 

in
cr

ea
se

d 
fr

om
 2

.7
5”

 to
 4

” 
O

D
 

m
in

im
um

 th
ro

ug
ho

ut
. A

 si
m

pl
e,

 4
–w

ay
 c

ro
ss

 se
rv

es
 a

s a
 tr

an
sf

er
 c

ha
m

be
r. 

R
ep

rin
te

d 
w

ith
 p

er
m

is
si

on
 fr

om
 [2

3]
.

RG
A

io
n 

 p
um

p
N

EG

ga
te

 v
al

ve
s

fe
ed

th
ro

ug
h

4–
w

ay
  c

ro
ss

26



10
6

el
ap

se
d 

 ti
m

e 
 ( 

s )10
4

10
9

.0
110

re
si

du
al

  g
as

  a
na

ly
si

s
m

in
im

um
  s

ur
fa

ce
  l

ife
tim

e
partial  pressure  ( picotorr  )

10
00

 d
ay

s
10

0 
da

ys

H
2O

H
2

C
O

C
O

2
O

2

.11

10
2

FI
G

U
R

E 
2.

5.
 R

G
A

 p
ar

tia
l–

pr
es

su
re

 a
na

ly
si

s i
llu

st
ra

tin
g 

st
ea

dy
–s

ta
te

 X
H

V
 c

on
di

tio
ns

 a
ch

ie
ve

d 
w

ith
 th

e 
up

gr
ad

ed
 U

H
V

 sy
st

em
 

(le
ft)

 a
nd

 a
ss

oc
ia

te
d 

(m
in

im
um

) m
on

ol
ay

er
–f

or
m

at
io

n 
tim

es
 u

nd
er

 id
ea

l c
irc

um
st

an
ce

s (
rig

ht
). 

A
da

pt
ed

 fr
om

 [2
3]

.

27



Another technical aspect important for STM analysis is the vibration isolation. 

The vibration isolation is needed to obtain atomic resolution data with the STM. The 

vacuum system sits on a stainless steel table supported by four air piston legs, or Gimbal 

Piston isolators, commercially available through TMC [32]. Each isolator utilizes two air 

chambers for damping, along with a specially designed piston and piston diaphragm to 

provide vertical and horizontal isolation. Seismometer measurements indicated that the 

vibration isolation provided by the air legs had decreased since the system was originally 

assembled two decades earlier (Fig. 2.6). To remedy this, we disassembled the Gimbal 

piston isolators in order to replace the pistons and piston diaphragms, and updated the 

tubing and valves that control flow to the air chambers for improved isolation (Fig. 2.7).   

 

Sample Cleavage Optimization 

For cross–sectional STM a smooth flat cleavage surface is key, as well as the 

ability to produce such as result in a reliable manner. The original cleaving protocols 

were developed while studying superlattices grown on GaSb substrates, and while 

former students were able to obtain successful cleaves, it could take several attempts 

before getting an acceptable cleave for analysis. In order to create a reliable set of 

cleaving parameters to minimize material waste, we systematically explored each 

parameter of the original cleaving protocol to determine the optimal cleaving conditions 
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for GaSb substrates1, which is the same substrate material used for the structure 

examined in this study.  

To aid improvement of the cleavage surface, we utilized a Zeiss Axiophot light 

microscope located at the Microscopy Imaging Center on TAMU campus (Fig. 2.8). The 

microscope is equipped for Nomarski differential interference contrast (DIC) 

microscopy. DIC or Nomarski microscopy [33, 34] is a method used to enhance the 

contrast in a variety of samples to distinguish features that are normally not visible with 

regular bright field light microscopy. A plane-polarized light enters a Nomarski prism2, 

where it is split into two slightly offset beams of equal intensity. The beams illuminate 

the sample through the microscope objective and the light reflected off the sample 

surface is collected by the same objective. Upon passing through the Nomarski prism for 

a second time, the beams are co-aligned and then impinge on a polarizing filter 

(analyzer) where they are able to interfere.  An interference pattern generated from the 

recombination of the two beams is a result of their optical path difference (OPD). Thus, 

small surface height variations can be visualized with good contrast. The resulting DIC 

image has a false three-dimensional relief appearance, with variations in brightness 

corresponding to the first derivative of the OPD changes on the surface. DIC is a 

qualitative technique, i.e., surface changes can be detected, but height or OPD cannot be 

measured quantitatively, because the same brightness in the image may result from two 

																																																								
1 These parameters were also examined simultaneously for InP substrate, described fully 
in reference [23]. 

2 The Nomarski prism is a modified Wollaston prism. 
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OPDs that differ by one wavelength.  Employing Nomarki to image freshly–cleaved 

surfaces (Fig. 2.9) provides contrast detail of features not visible with a standard lab 

light microscope, aiding improvements to the cleavage protocols.  

To begin our exploration of the cleaving protocol, we examine the steps involved 

in preparing a piece of the sample wafer for cleavage.  We use an ESI laser trimming 

system, also referred to as a laser scriber, which is equipped with an NdYAG laser and 

several mirrors to direct the laser beam from its source to the stage where the wafer is 

placed for scribing (Fig. 2.10).  A substrate wafer is cut into several small 5.08mm x 

5.08mm squares with the laser scriber, aligning the edges of the squares with the major 

and minor flats of the wafer. Once these dies have been cut from the wafer, the laser 

beam is used to scribe a vertically–centered notch on each, aligned with one of the wafer 

flats, which aids cleavage by initiating a fracture process to reveal a specific crystal 

plane, either (110) or (1–10), as illustrated in Fig. 2.11.  

Surprisingly, the laser path direction when notching the die (Fig 2.12, left), as 

well as the length and depth of the notch (Fig. 2.12, right), affect the quality of the 

cleavage surface. Historically the notch was made by rastering the laser from the edge to 

the center of the die; following several tests we found reversing the direction of the laser 

(center to edge of die) noticeably improved cleaves. To control the length of the notch, 

the user simply specifies a number of steps for the laser scriber stepper motor.  Changes 

to the notch depth are more complicated as it is determined by a combination of beam 

parameters and material properties.  Some of these are known, such as the wavelength of 

the laser, and the optical and thermal properties of the substrate wafer, while some 
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FIGURE 2.9. Nomarski micrographs exhibiting typical cleavage results achieved for GaSb 
substrates in either (110) (right) or (11̅ 0) (left) cross sections when employing inherited 
cleaving protocols. Growth direction is from left to right.

500 µm 500 µm
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parameters are fixed such as the beam profile; therefore, only the beam power and dwell 

time were modified.   

The power of the beam is controlled by adjustments to the input current to the 

laser. Once the optimum setting was determined, the power remained fixed while the 

dwell time was adjusted by specifying a time per step for the stepper motors.  The 

optimal resulting notch length for cleaving GaSb is in the range of 1.7 – 1.8 mm and the 

depth is in the range of 160 – 172 µm (or 30% of the GaSb substrate).  

After the sample dies are scribed and notched according to the desired cleavage 

plane, they are cleaned with a standard degreasing method – ultrasonically soaked in 

acetone followed by ethanol. Each die is then mounted in a specially–designed sample 

holder (Fig. 2.13, left), which facilitate cleavage and subsequent analysis with cross–

sectional STM. The die is held in place by a stainless steel anvil and clamp, and a 

beryllium–copper (Be–Cu) spring is placed between the clamp and a compression bar; a 

set of fastening screws keeps all pieces secure. The Be–Cu spring keeps the sample from 

being crushed by thermal expansion during vacuum bake–outs. Both the sample die and 

the Be–Cu spring were previously centered between the screws, but cleave tests revealed 

changing the placement of the sample and spring could improve the quality of the 

cleaved surface.  The best results were produced with the die positioned low in the 

sample holder next to the bottom screw, and the spring asymmetrically raised towards 

the top screw. 

To expose the superlattice structure in cross section, the die must undergo an 

impact from the cleaving rod.  Historically, samples were cleaved by manual actuation 
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of the cleaving rod, so that the speed at which the samples were impacted varied based 

on the user. By adjusting the setup to allow for pneumatic actuation [35], this 

inconsistency is removed, ensuring reproducible results. To make the cleave test process 

more efficient, we set up an atmospheric cleaving stage (Fig. 2.14) mirroring the setup 

used inside the vacuum system.  This allowed us to study the effect from each change of 

parameters more quickly by avoiding the time drain of introducing samples to the 

vacuum chamber and their subsequent retrieval following cleavage. The most effective 

location of impact (Fig. 2.13, center) was determined to be the upper right–hand corner 

of the die. We also found the angle at which the cleaving rod impacts the sample (Fig. 

2.13, right) affects the quality of the cleavage surface for GaSb substrate. The (110) 

cleavage plane favors an impact perpendicular to the die surface, while (1–10) seemed to 

favor an angle slightly less than 90 degrees.  

Another important element to consider is the speed at which the cleaving rod 

impacts the sample die. A commercially available USB accelerometer [36] was attached 

to the handle of the actuator to monitor the linear acceleration as a function of time. 

Integration of the data provides the linear velocity of the cleaving rod, which can be 

converted to linear displacement with a second integration. Fig. 2.15 illustrates a plot of 

velocity versus displacement, where the X indicates the distance the rod travels to the 

die, providing the velocity at impact. Tests concluded speeds above 240 mm/s provide 

the best results for (110) GaSb cross sections, while speeds below 180 mm/s are optimal 

for (1–10) GaSb cross sections. The improvements to the cleavage surface are well 

documented with Nomarski, as highlighted in Fig. 2.16 for a (1–10) cleavage surface. 
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FIGURE 2.15. Pneumatically–actuated cleavage rod velocity versus displacement (top) 
with illustration of real–space stroke schematic (bottom). The velocity at impact (X) can be 
determined directly from this graph once the retracted–rod–to–sample distance is known.
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FIGURE 2.16. Nomarski micrographs highlighting (11̅ 0) GaSb facets obtained with 
inherited (left) and improved (right) substrate cleavage protocols. Similar results are 
obtained for (110) GaSb facets. Growth direction is from left to right.
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(110)
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Having successfully addressed the vacuum conditions and cleavage protocols, 

atomic–resolution images of the InAs / InAsSb superlattice can now be acquired. To 

image a freshly cleaved surface we need an atomically sharp tip. We use 0.2mm 

platinum–iridium (Pt/Ir) 80:20 wire, as platinum is inert and does not form an oxide3 and 

the iridium provides the needed strength and stability for imaging. The tips are 

fabricated from the wire via an electrochemical etch process, which uses a 

CaCl2/H2O/HCl solution based on recipes reported in literature [37] and refined in the 

STM lab; a detailed description can be found in the Honors Thesis of Chad Sosolik [38]. 

Once several acceptable tips have been etched, they are placed in tip holders and held in 

place with indium solder. The tip holders are then placed in platens designed to allow 

transfer of the tips into the vacuum system and to the STM stage. 

 

Instrumental Non–Idealities 

As mentioned in Chapter I, the STM tip can be precisely positioned over any 

desired subset of layers in the growth stack for navigation in the <110> direction. 

Overlapping images along the desired periods are assembled to form large–area survey 

mosaics. Great care must be taken to obtain high quality atomic–resolution images, as 

the STM piezoelectric raster mechanism suffers from well–known non–idealities that 

affect data acquisition. These distortion processes are either temporal or instrumental in 

nature, both of which can be controlled to some degree.  Generally, substandard STM 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 In comparison to another common metal used to make tips, tungsten, which does form 
an oxide. 
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data acquisition leads to temporal distortion, but this can be easily modified. The 

piezoelectric ceramics actuating the STM stage allow for coarse motion to quickly find 

an area of interest. Following this repositioning, the stage will continue to drift in the 

same direction of the movement due to inertia (Fig. 2.17); to minimize any effects from 

this drift on image acquisition we typically allow for a settling time of a few hours, while 

scanning the area every few minutes to check the condition of the tip.  

Once an area of interest has been found on the exposed epitaxial layers, a more 

suitable method of navigation is by way of fine offsets made to the x– and y–piezos of 

the tripod scanner, which controls the movement of the STM tip. The fine adjustment 

piezos in the tripod scanner are not exempt from non-idealities and extra care must be 

considered during navigation. The tripod scanner exhibits undesirable instrumental 

distortion effects such as piezo creep [39] and hysteresis [40], illustrated in Fig. 2.18. 

Hysteresis, or piezo nonlinearity, is a non–linear response of the piezoelectric ceramics 

to the scan voltage applied during operation, but can be worked around, as will be 

explained in Chapter V.  

Piezo creep is a change in the piezo displacement (elongation or contraction) 

occurring after a change in the applied electric field to the piezo ceramics, which can 

appear as a bowing effect or whiplash at the start of an image acquisition. The y–piezo is 

particularly susceptible to creep as it is associated with the slow–scan direction of the 

tripod scanner. To minimize the distortion due to creep, the offset applied to the z–piezo 

to move the tip must be must be parallel, but in the opposite direction, to the slow–scan 

increment (Fig. 2.19).  
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FIGURE 2.17. Schematic diagram (left) illustrates apparent drift of the STM scan frame 
due to piezo–inertia of the sample stage. This stage permits sample movement either left 
(in growth direction), or right (opposite growth direction) with respect to the tip. The 
induced drift typically requires several hours to settle. Also illustrated (right), contraction 
of the x– and y–piezos of an STM scan frame produce positive displacements. Cleavage 
plane coincides with plane of paper. Growth direction is right to left. Reprinted with 
permission from [23].
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FIGURE 2.19. STM image frame located at the origin indicates fast– and slow–scan 
directions oriented along x– and y–piezo axes, respectively.  This image frame can be 
precisely positioned anywhere within the one–micron–squared maximum area available to 
the tripod scanner with fine adjustment of the x– and y–piezo offsets. Minimally distorting 
zone corresponds to navigation routes that avoid positive increments of the y–piezo offset.  
Growth direction is right to left. Reprinted with permission from [23].
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The x–piezo, fast–scan direction, is minimally effected by piezo creep due to its 

incremental motion – the ceramics contract in the forward direction and subsequently 

expand in the reverse direction; in comparison, the slow–scan increment is one–

directional, always contracting. Piezo creep manifested as whiplash during the 

commencement of an image acquisition can be minimized by following an established 

procedure – start acquisition of an image, scan for 150 lines, end the scan, and discard 

the data, then repeat once more before starting a scan suitable for storage.  

It is important to note these instrumental non–idealities will play a part in an 

analytical method to determine local superlattice periodicities to be discussed in Chapter 

V.  The analysis discussed in Chapters III and IV is based on a counting method that is 

insensitive to these non–idealities. 

 

Standardized Navigation Routes 

Finally, taking into account the tripod scanner non–idealities, we established 

standardized navigation protocols for acquiring minimally–distorted data. Maintaining 

negative (anti–parallel) increments of the slow–scan piezo to minimize creep, the fast–

scan piezo increments are chosen based on the direction of the desired survey. For a 

transverse survey exploring the entire multilayer stack from initiation to completion in 

the [001] growth direction, the applied increment to the fast–scan piezo will be negative; 

for lateral surveys navigating in the orthogonal [1–10] direction along a specific subset 

of layers from the stack, the piezo will have a positive increment.  
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An example of these navigation routes is illustrated in Fig. 2.20 by the device–

scale surveys of an InAs/InAsSb superlattice. A lateral survey acquired at the beginning 

of the epitaxial growth clearly indicates the transition from the GaSb buffer to the 

superlattice structure; the subsequent transverse survey allows us to check for any 

cleavage–related steps across the growth sequence; and finally a lateral survey acquired 

close to the conclusion4 of the structure permits comparative analysis of the composition 

and uniformity of the growth from initiation to completion. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 As there was no capping layer, we avoided the last few periods of the growth to 
remove the risk of imaging the edge and possibly losing the tip. 
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FIGURE 2.20. Device–scale, atomic–resolution surveys of an InAs / InAsSb superlattice. 
The lateral survey on the left was acquired at the start of the growth as indicated by the 
GaSb buffer layer, while the lateral survey on the right was acquired towards the conclusion 
of the growth. The two lateral surveys are joined by a transverse survey obtained across 
eighty–five repeats. Green arrows indicate the direction each survey was acquired. Growth 
direction is from top–left to bottom–right.
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CHAPTER III 

COMPOSITIONAL ANALYSIS* 

Introduction 

In this chapter, we present an analysis of the distribution of antimony in an 

MBE–grown gallium–free type–II superlattice with cross–sectional scanning tunneling 

microscopy. The composition of such a quantum–confined structure largely dictates the 

layer–by–layer strain, as well as layer–by–layer electronic properties.  Deviations from 

the intended composition will modulate the local strain, affect the band–edge 

confinement potentials, and likewise influence transport effective masses. The nearly 

universal disconnect between intended and as–grown structures thus underscores the 

centrality of precision characterization for realistic device modeling.  

We begin with a brief description of the device structure used for our study and 

quickly proceed to a discussion of the layer–by–layer mapping of the antimony 

distribution in this structure. We then review the general principles that govern the 

strobing of bulk planes by an STM tip positioned over the cleavage surfaces of 

zincblende structures. Finally, we present the case for well–motivated approximations to 

the bulk period in order to reconstruct a representative bulk composition profile from 

these STM data, and evaluate their credibility by way of dynamical x–ray simulations. 

* Part of the data in this chapter is reprinted from M.R. Wood, K. Kanedy, F. Lopez, M. 
Weimer, J.F. Klem, S.D. Hawkins, E.A. Shaner, J.K. Kim, Journal of Crystal Growth, 
425 (2015) 110-114.
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Sample Structure 

In this study we focus on an InAs/InAsSb superlattice fabricated by solid–source 

molecular beam epitaxy at Sandia National Laboratories. The nominal superlattice 

structure, outlined schematically in Fig 3.1  (left), consisted of 15.4 monolayers of InAs 

alternating with 5.4 monolayers of InAs0.67Sb0.33 for 100 periods atop an un–doped GaSb 

buffer; the intended bulk band alignments [41, 42] are shown in Fig. 3.1 (right). These 

layers were deposited on an (001)-oriented n–type GaSb substrate under an anion 

overpressure5 of ~1.5:1 and growth rate of 0.9 monolayers / sec (ML/s). The substrate 

was held at approximately 420º C and rotated continuously throughout deposition. A 

high–resolution x–ray diffraction (HRXRD) examination of the (004) reflections in a 

triple–axis configuration was performed at Sandia, and subsequently analyzed by the 

STM Lab at TAMU. The x–ray spectrum revealed a period of 20.62 ML6, and a 

mismatch of –0.05%, following analysis of nine superlattice satellite orders using 

Bragg’s law [43], as shown in Fig 3.2.   

Design Discrepancies with HRXRD  

The HRXRD spectrum illustrates the quality of the crystalline structure for this 

growth, as well as the excellent match to the substrate. We used a dynamical x–ray 

simulation program [44] to generate a simulated spectrum for the intended structure (Fig. 

3.1 left), assuming abrupt interfaces and compositional uniformity throughout the 

5 The quoted anion overpressure represents a sum of As:In of ~1.2 and Sb:In of ~0.3. 

6 This corresponds to 6.28 nm. 
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satellite  order

FIGURE 3.2  Conventional (004) triple–axis HRXRD measurement (top) and corresponding 
determination of superlattice periodicity from Bragg’s law (bottom). The 100–period 
average measured by x–ray diffraction is 20.62 ± 0.01 ML.

period:  20.62 ± 0.01  ML

mismatch:  –0.048 ± 0.001 %
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structure. We then compared this simulation with the experimental HRXRD, as 

illustrated in Fig 3.3. Predicted and observed satellite peak locations agree, 

demonstrating the as–grown period and mismatch are close to their intended values, but 

predicted and observed peak intensities differ by up to two orders of magnitude bringing 

the assumed compositional uniformity into question.  In addition to this conspicuous 

quantitative discrepancy, the assumed structure likewise fails to capture the visible 

broadening at the base of each satellite peak. 

To determine the underlying cause(s) for these discrepancies, we used cross–

sectional scanning tunneling microscopy (STM) to perform a real–space, monolayer–

by–monolayer mapping of the superlattice composition. As mentioned earlier, the gross 

amount and detailed spatial distribution of antimony per superlattice period determines 

the energy band profiles for gallium–free, type–II superlattice structures. 

STM Identification and Counting Method 

Several lateral surveys, such as those shown in Fig 3.4, were acquired at select 

locations along the growth sequence for three separate sample dies; two were scored to 

expose a (110) cleavage plane, and the other a (1–10) cleavage plane, to specifically 

check for any growth anisotropies. A representative, atomic–resolution STM image of 

the anion sublattice is presented in Fig 3.5 with growth direction from upper left to lower 

right. Bright sites indicate isovalent replacement of antimony for arsenic, with individual 

instances labeled SbAs (1) and SbAs (3) corresponding to antimony substitutions that 

occur within the cleavage–exposed and second subsurface planes, respectively. These 
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FIGURE 3.5  Atomic–resolution STM image of the anion (Sb, As) sublattice from a type–
II InAs / InAsSb superlattice.  Antimony–for–arsenic replacement within the top–layer, 
cleavage–exposed plane and second subsurface plane are identified by carets.  Growth 
direction is from top–left to bottom–right. 
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sites appear bright due to two re-enforcing effects – the larger back–bond length 

attending non-native, InSb–like pairings in InAs, and the higher filled–state dangling–

bond orbital energy for antimony versus arsenic. The distribution of these antimony sites 

is non–uniform and there is significant intermixing at the two interfaces. 

To facilitate analysis of the antimony distribution within this structure, a 

counting window is overlaid on each STM image (Fig 3.6) to demarcate the same atomic 

rows across an entire survey. The STM images necessarily have some overlap with 

preceding and succeeding ones, so the width of the counting window along the in–plane 

<110> direction must be selected to maximize counting statistics while avoiding 

duplicate counts in neighboring images. The length of the window in the [001] growth 

direction, 62 surface monolayers, is chosen to sample the maximum number of bulk 

superlattice repeats consistent with the standard image size and previously determined 

window width (Fig. 3.6). It is then a straightforward, but time–consuming, task to 

carefully count by hand the individual SbAs (1) sites. These top–layer antimony–for–

arsenic sites are especially prominent due to their long back–bond and high dangling–

bond orbital energy; subsurface SbAs (3) sites, on the other hand, can be occluded by 

top–layer (SbAs (1)) substitutions making their count less certain. An identical counting 

protocol was implemented for all lateral surveys.  

The surveyed antimony counts in each atomic row are normalized to the total 

available sites within all windows to obtain the antimony fraction as a function of 

surface monolayer. Errors for each data point are then calculated by assuming the counts 

are random and using the standard deviation for a binomial distribution [45] 
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FIGURE 3.6. Representative counting window extending 62 surface monolayers in the 
growth direction, and encompassing 6 repeats of the superlattice period, was overlaid on 
each image of a survey. The width was selected to maximize total number of sites sampled 
in each window while avoiding double-counting in subsequent windows.
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σ = np 1− p( )         (3.1) 

where n is the number of available atomic sites, and p is the probability of a site being an 

antimony versus an arsenic atom. A representative surface antimony profile highlighting 

the modulation in the observed SbAs (1) fraction across the entire counting region from 

one such survey is shown in Fig 3.7.  

Surface and Bulk Distinction 

In order to reconstruct a bulk monolayer–by–monolayer composition profile from 

the surface sampling obtained with STM, it is necessary to clearly understand the 

distinction between surface and bulk planes at {110} cleavage faces. For a zinceblende 

structure, only every other bulk (001) plane projects dangling bonds into the vacuum 

following {110} cleavage, hence the number of surface monolayers per period seen with 

STM is half that in the bulk. For a bulk period of even–integer value, each surface 

repeat7 of the projected bulk planes represents the same alternating planes of the bulk 

layer sequence, so that the bulk is always under sampled. However, for a bulk period 

with an odd–integer value, two sequential surface repeats sample every bulk monolayer 

of the period once, revealing even– and odd–anion subsequences of the complete bulk 

profile in turn [46].  

A simplified atomic diagram (Fig 3.88) illustrates this strobing of the bulk by the 

7 A surface repeat is the surface sampling of the bulk anions. This term will be 
generalized in the succeeding text. 

8 In the diagram (and subsequent versions) we used InSb to represent InAsSb. 
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surface in (110) cross–section, where it is also clear the surface period is dictated by 

commensurability of the bulk period with an integer number of surface monolayers. In 

the diagram dashed lines indicate sequential surface repeats, carrots the continuation of 

the atomic structure from the first row to the second, and solid lines surface 

commensurability with the bulk. This relationship between bulk and surface periods can 

be written as  

€

M ⋅ B = 2 ⋅ S          (3.2a) 

where B is an integer bulk period, S the integer surface period, and M the integer 

commensurability number (i.e. the number of surface repeats to bring the surface and 

bulk back into coincidence with one another). 

For bulk periods with a rational–fraction remainder, this bulk–surface 

relationship must be generalized via   

€

M ⋅ Λ = 2 ⋅ S  (3.2b) 

€

Λ = B + p /q( )   (3.2c) 

where Λ consists of an integer (B) plus rational–fraction remainder (p/q), where p and q 

are integers. Commensurability is still guaranteed, but its rigorous fulfillment may be 

experimentally inaccessible due to the very large number of surface monolayers 

required. To determine the commensurability number (M) and surface period (S) we 

employ 

€

M =

q B even ,  p even

2 ⋅ q all other cases

# 

$ 
%%

& 
% 
% 

(3.2d) 
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€ 

S =

B ⋅ q + p( ) /2 B even ,  p even

  

B ⋅q+p  all other cases

# 

$ 
% % 

& 
% 
% 

      (3.2e) 

 

For the special case of integer bulk periods (p=0), these formulas return the expected 

integer values with q=1.  

With a bulk period of 20.6 ML, which is the case for the InAs/InAsSb 

superlattice studied here, 103 surface monolayers (S), or ten surface repeats (M), are 

required for strict commensurability. This is well outside our accessible counting 

window; therefore, to make use of the counting statistics from finite–size STM images, 

we need a reasonable approximation for the superlattice period that reduces this 

commensurability condition to a suitable number of surface layers. 

 

Period Approximations 

We explored two bulk–period approximations with small rational fraction 

remainders – 20.5 and 20.67 – that bracket the 20.6 value determined by HRXRD; these 

approximations translate into surface commensurabilities of 41 and 31 surface 

monolayers, respectively, each of which lies comfortably within our counting window. 

To establish the credibility of these two approximations, 31 ML and 41 ML sliding 

averages were calculated for each lateral survey; sliding averages for 40, 42, 30, and 32 

surface monolayers were also calculated for comparison. Fig 3.9 illustrates one such 41 

ML sliding window.  

66



SbAs(1)

s

SbAs(1)

s

41 ML
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surface monolayers is performed and an average antimony fraction calculated with each 
step. The 41 ML subset is illustrated above.

20  nm

[001][11
0]

InAsSbInAs

67



As demonstrated in Fig 3.10 (left), the 41 ML sliding average is nearly 

translational invariant for early– and late–period lateral surveys, whereas other sliding 

averages include too few or too many monolayers to be commensurate with the bulk. As 

shown in Fig 3.10 (right), on the other hand, lateral surveys over the middle of the 100 

period superlattice stack required a 31 ML window to achieve a similarly invariant 

result. The translational invariance manifestly demonstrated in Fig. 3.10 affirms that a 

bulk period approximation of 20.5 ML is reasonably accurate for superlattice periods 

near the beginning and completion of the growth sequence, whereas 20.67 ML is a better 

rational–fraction approximation for periods near the middle of the growth.  

It is of interest to note that one may also use the respective, translationally–

invariant sliding averages from each survey to look for any time dependence in the total 

antimony incorporated per superlattice period. Calculation of the survey–average surface 

antimony fraction per translation–invariant sliding average window points to a 

measureable increase in incorporated antimony from beginning to end of the multilayer 

stack. For two of the dies (Fig. 3.11 and 3.12) this increase lies between 12 and 13%; a 

third die (Fig. 3.13) displayed a somewhat smaller 7% increase. We return to this 

important observation later on, in Chapter IV.  

Reconstruction of Bulk Antimony Profile 

Having established either 20.50 or 20.67 ML approximations to the bulk 

superlattice period as valid over different subsets of the full superlattice layer sequence, 
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FIGURE 3.11. Total antimony per period calculations for (110) STM surveys acquired 
near the initiation, midpoint, and conclusion of the growth (blue points) reveal an increase 
of 13%.  Wafer diagram illustrates the location of the sample die and x–ray measurement.
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near the initiation, midpoint, and conclusion of the growth (blue points) reveal an increase 
of 12%.  Wafer diagram illustrates the location of the sample die and x–ray measurement.
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FIGURE 3.13. Total antimony per period calculations for (110) STM surveys acquired at 
the initiation and near conclusion of the growth (blue points) reveal an increase of 7%.  
Wafer diagram illustrates the location of the sample die and x–ray measurement.
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we next reconstruct a representative layer–by–layer composition profile that summarizes 

the spatial distribution of antimony throughout a typical bulk period as follows.  

The strobing previously illustrated in Fig. 3.8 is repeated in Fig. 3.14, where 

surface monolayer indices (s) and surface repeats (m) are now denoted in grey. As 

before, dashed lines indicate sequential surface repeats, carrots the continuation of the 

atomic structure from the first row to the second, and solid lines surface 

commensurability with the bulk. The same atomic diagram is shown again in Fig. 3.15 

with the corresponding bulk monolayer indices (b) now denoted in black. The translation 

from surface monolayer index to bulk monolayer index follows the algorithm9 

€

b = 2 ⋅ s{ } mod  m −1( ) ⋅ B{ }        (3.3)

where b is an integer from 1 to B, s an integer from 1 to S, and m an integer from 1 to M. 

This algorithm is illustrated in Fig 3.16 for an odd integer bulk period (B) of 15 ML and 

surface period (S) of 15 ML. This re–identification is then used to interleave even and 

odd subsequences to reconstruct the full bulk profile. 

The surface monolayers in each surface period are separated into M surface 

repeats following 

€

Sm =

S /M[ ] 1≤ m ≤ M − SmodM

S /M[ ] +1 M − SmodM +1 < m ≤ M

$ 

% 
& 

' 
& 

(3.4a) 

€

Sm
1

M

∑ = S  (3.4b) 

9 We define mod in the following manner: 

€

a = b mod  d( )⇒ a = b + nd⇒ a = b  , for  
mod 0 and integer n. 
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where Sm is the number of surface monolayers assigned to a surface repeat, and [S/M] 

refers to the greatest integer function.  

It is important to note that Eq. (3.3) assumes the number of surface monolayers 

per repeat (Sm) always follows Eq. (3.4a). For example, in Fig. 3.16 the grouping of 

surface monolayers according to Eq. (3.4a) (seven surface monolayers in the first repeat 

and eight in the second repeat) corresponds to the even– and odd–anion subsequences of 

the bulk period per Eq. (3.3)10.  

For bulk periods with a rational–fraction remainder, as is the case here, Eq. (3.3) 

can be written as 

€

z = 2 ⋅ s{ }mod m −1( ) ⋅ Λ{ }       (3.5)

where z is now a rational bulk monolayer index. Fig. 3.17 illustrates the situation for a 

bulk period (Λ) of 7.5 ML and surface period (S) of 15 ML. Four sequential surface 

repeats (M) are needed to fully sample the bulk period, and the number of monolayers 

per repeat again follows Eq. (3.4). As with previous diagrams, dashed lines denote 

sequential surface repeats and solid lines indicate surface commensurability with the 

bulk. In this instance, odd repeats map onto integer bulk monolayer indices, whereas 

even repeats map onto half–integer values. As before, this mapping is used to 

appropriately interleave surface data to reconstruct a representative bulk antimony 

profile. 

10 It is important to add that our counting window, wherein this algorithm is applied, has 
an arbitrary offset associated with surface index, s; the bulk period (B or Λ) is the 
parameter governing the re–identification.  

77



1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

2.
0

4.
0

6.
0

0.
5

2.
5

4.
5

6.
5

1.
0

3.
0

5.
0

7.
0

1.
5

3.
5

5.
5

7.
5

m
 =

 1
m

 =
 3

FI
G

U
R

E 
3.

17
.  

Ill
us

tra
tio

n 
of

 th
e 

al
go

rit
hm

 (
Eq

. (
3.

5)
) 

us
ed

 to
 c

on
ve

rt 
in

te
ge

r 
su

rf
ac

e 
m

on
ol

ay
er

 in
de

x 
(s

) 
to

 r
at

io
na

l b
ul

k 
m

on
ol

ay
er

 in
de

x 
(z

) f
or

 e
ac

h 
su

rv
ey

ed
 a

ni
on

 in
 a

n 
ob

se
rv

ed
 su

rf
ac

e 
re

pe
at

 (m
). 

Th
e 

ra
tio

na
l b

ul
k 

pe
rio

d 
(L

) h
er

e 
is

 7
.5

 M
L.

m
 =

 2
m

 =
 4

su
rf

ac
e 

 in
de

x

bu
lk

  i
nd

ex

z  
= 

 {
 2

 • 
s }

 m
od

 {
 ( 
m

 –
 1

 ) 
• L

 }

78



This discussion raises the question of proper interpretation of the fractional 

monolayers denoted by Eq. (3.5). For MBE, a fractional monolayer is well–defined since 

shutter times and elemental fluxes are both well–controlled and unrestricted to discrete 

“integer” values. A fractional monolayer is likewise well defined for x–ray diffraction, 

but not for an atomic lattice structure where atomic positions are by definition discrete. 

We interpret the fractional monolayers described here as lateral averages over domains. 

As an example, in Fig. 3.17 where the bulk period is 7.5 ML, a random sampling from a 

one micron long survey would produce a period of 7 ML with 50% probability and 8 

ML with 50% probability. 

Using the interleaving algorithm defined by Eq. (3.5), we can now “fold back” 

the six peak surface profile (Fig. 3.7) into a single bulk antimony profile (Fig. 3.18) for 

each lateral survey. Because this fold back is based on an approximation to the bulk 

period, albeit a good one, these reconstructed profiles yield a semi–quantitative picture 

of the antimony distribution rather than a precision measurement. As we will see later on 

in Chapter IV, however, they are actually quite close to the truth.  

The profile shown in Fig 3.18 is typical of all our data and differs quite markedly 

from design intentions (grey). There is an exponential–like rise and subsequent 

exponential–like fall in the antimony fraction, reflecting compositionally–graded, rather 

than abrupt, heterojunctions. As we explicitly demonstrate in Chapter IV, this 

compositional grading is due to antimony segregation, but for now it is sufficient to 

point out the occurrence of this phenomenon at both interfaces is not readily apparent 

from Fig. 3.7. 
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It is likewise of interest to consider the monolayer–by–monolayer strain that 

follows from the compositional grading seen in the reconstructed bulk antimony profile. 

This strain serves as an important touch point for alternative characterization techniques, 

such as TEM [47], which measure strain in order to infer composition, and it likewise 

enters into many calculations of superlattice optical properties [48]. It turns out that, 

under conditions of coherent growth, the [001] lattice constant of InAsSb on GaSb is 

approximately linear in composition due to the near degeneracy of InAs and InSb 

Poisson ratios [49]. As a consequence, the predicted bulk strain profile for psuedomorpic 

InAsSb, plotted in Fig 3.19, directly mirrors the antimony fraction in the bulk profile of 

Fig 3.18. 

To make the case that this STM–derived profile is representative of the 

superlattice structure as a whole, we again turn to dynamical x–ray simulations. Using 

the antimony fractions and resulting strain from each bulk profile as inputs to the 

simulation program, we generate an x–ray simulation for each survey. The experimental 

spectrum is compared against one of the (110) late period survey simulations in Fig. 

3.20. The simulation provides a good description of the satellite peak intensities and 

background. This makes a convincing argument that our reconstructed antimony profile 

is characteristic of the superlattice as a whole, and points to compositional grading as the 

primary source of the difference between as–grown and intended x–ray spectra (Fig 3.2). 

To be sure, there are still small discrepancies between the STM–profile simulation and 

the experimental spectrum due to the period approximation employed as well as the 
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variation in incorporated antimony over the 100–period superlattice stack, but these 

discrepancies will be addressed in Chapter IV. 

Synopsis 

We have obtained monolayer–by–monolayer compositional analyses of a 

gallium–free type–II InAs/InAsSb superlattice with cross–sectional scanning tunneling 

microscopy through identification of isovalent replacement of antimony for arsenic on 

the atomic scale. Multiple lateral surveys were acquired at various points along the 

multilayer stack for three separate locations on the sample wafer, providing a large 

statistical pool of data for analysis. The antimony fraction as a function of surface 

monolayer revealed a modulation of the antimony distribution across the superlattice 

structure.  

In the above discussion, we presented the case for approximations to the bulk 

period in order to reconstruct a representative bulk composition profile, with one 

approximation for the STM surveys near the beginning and end of the growth and a 

separate approximation for the middle–period surveys. The presence of more than one 

bulk period in the superlattice is further explored in Chapters IV and V.    

The reconstructed composition profiles provide appropriate visualization of an 

exponential–like increase and decrease in incorporated antimony, qualitatively consistent 

with anion segregation. HRXRD simulations based on the STM profiles agree overall 

with experiment, pinpointing compositional grading as the major source of the 
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discrepancies between intended and observed x–ray spectra. Detailed analysis of the 

atomic processes that lead to the compositional grading is the subject of Chapter IV. 
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CHAPTER IV 

ANTIMONY SEGREGATION ANALYSIS* 

Introduction 

We now go on to examine the source of the compositional grading observed in 

InAs/InAsSb superlattices via bulk composition profiles reconstructed in Chapter III. An 

earlier study using scanning tunneling microscopy [50] noted interface asymmetry in an 

InAs/InAsSb superlattice grown by modulated molecular beam epitaxy. This asymmetry 

was attributed to anion cross–incorporation and antimony “riding up” into subsequent 

InAs layers. In another study [8], interface asymmetry was examined for a related 

structure, InAs/GaInSb, and antimony segregation was determined to be the cause. Here, 

we build on the hypotheses and insights gleaned from these studies to definitively 

characterize the growth non–idealities present in gallium–free type–II superlattices. 

We begin this chapter with a brief overview of our segregation model and its 

application to the (single–peak) reconstructed bulk composition profiles. We proceed 

next to discuss adaptation of the segregation model to fit the original (six–peak) surface 

antimony profiles, and critically evaluate the resulting parameters. Finally, we conclude 

with dynamical x–ray simulations, taking into account the compositional grading 

observed with STM, as well as the evolution in incorporated antimony per period 

discussed in Chapter III, to provide a convincing argument that our analysis with STM is 

characteristic of the superlattice as a whole. 

* Part of the data in this chapter is reprinted from M.R. Wood, K. Kanedy, F. Lopez, M. 
Weimer, J.F. Klem, S.D. Hawkins, E.A. Shaner, J.K. Kim, Journal of Crystal Growth, 
425 (2015) 110-114.

86



Segregation Model and Continuum Generalization  

We previously noted that the bulk composition profiles reconstructed in Chapter 

III appear asymmetrical when compared against the intended profile (Fig. 4.1). Ideally, 

during deposition, antimony should be confined to the InAsSb layers forming 

rectangular barriers. However, the as–grown antimony fraction displays an exponential–

like increase, followed by a corresponding exponential–like decay, suggesting anion 

segregation. There is also an offset to the baseline antimony fraction, most likely due to 

anion cross–incorporation.  

When antimony is co–deposited with arsenic, some portion of the antimony flux 

is incorporated in the current monolayer, while the remaining fraction is ejected to a 

floating layer on the surface and made available (in addition to the incoming flux) for 

incorporation into the next monolayer. Once the antimony–source shutter is closed, this 

partitioning continues as additional arsenic layers are formed until the floating layer is 

exhausted or the shutter is opened again. This process is referred to as anion segregation, 

asymmetric compositional grading across the two interfaces of the superlattice is its 

tangible consequence. 

Anion cross–incorporation refers to a spatially uniform, random distribution of 

foreign species incorporated into the growth via unintended substitution for another 

anion. The anion species produced by the effusion cells are typically molecular (e.g. Sb2) 

while the cations are atomic (e.g. In).  The sticking probability for anion molecules is 

also smaller than that for cation atoms, so an anion overpressure is (almost) universally 

required for stoichiometric growth [19, 20]. As the anion vapor in the effusion cell 
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increases, molecules will leak around the shutter forming an unwanted ambient 

background, which will then compete with the intended anion stream for incorporation 

during growth.  

To confirm segregation as the physical cause for the compositional grading 

observed at the interfaces in an InAs/InAsSb superlattice, it is essential to correctly 

model the segregation in these structures and analytically examine its resulting 

parameters. In an earlier study [8] performed by former members of this lab, antimony 

segregation was quantitatively investigated in a related system, InAs/GaInSb. Two 

separate samples displayed the expected geometric progression in antimony fraction due 

to segregation, and the profiles were fit using an adaptation of a segregation model 

developed by Muraki et al [51]. The original model can be summarized by the pair of 

equations  

xn = xss 1− R
n( ) 1 < n < N( )

xn = xss 1− R
n( ) Rn−N n > N( )

      (4.1a) 

€ 

R = exp −
1ML
λ

$ 

% 
& 

' 

( 
)          (4.1b) 

where xss represents the steady–state antimony fraction, N the integer number of 

monolayers in the intended antimonide layer, and R the corresponding segregation 

coefficient, equivalently parameterized in terms of a segregation length λ (in 

monolayers). All variables in Eq. (4.1a) are dimensionless, and both n and N presumed 

integer. 
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The original discrete formulation is problematic for a fractional monolayer 

period where each surface repeat samples only a portion of the bulk layer sequence. We 

therefore employed a continuum generalization of Muraki’s model [46] to accommodate 

the non–integer period of the InAs/InAsSb superlattice examined in this study by way of 

€ 

x z( ) = xss 1− exp −
z
λ

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) + x0 0 < z < d( )

x z( ) = xss 1− exp −
z
λ

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) exp −

z − d
λ

$ 

% 
& 

' 

( 
) + x0 d < z < Λ( )

   (4.2) 

Here, xss again represents the steady–state antimony fraction, z is now a continuously–

varying coordinate along the growth direction, d the duration of a (presumed) spatially–

invariant antimony exposure, Λ the superlattice period, λ a segregation length, and x0 a 

constant background due to cross–incorporation. The variables z, d, λ, and Λ have 

dimensions of monolayers, while xss and x0 are dimensionless. 

To fit our profiles with the continuum segregation model, we employed a data 

analysis and graphing software package [52] equipped to run non–linear regressions. We 

first applied the segregation model to fit our antimony profiles using the bulk period 

approximations discussed in Chapter III. Fits with the appropriately constrained bulk 

period (Λ = 20.50 or 20.67 ML), describe the profiles reasonably well (Fig. 4.2, blue 

curve)11. This agreement provides persuasive confirmation that antimony segregation 

and cross–incorporation are indeed the physical mechanisms driving the compositional 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 This profile (42 points) was folded–back with the 20.50 bulk period approximation 
following the algorithm outlined in Eq. (3.5). 
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grading across our superlattice interfaces and asymptotic antimony fractions, 

respectively. 

Closer examination of Fig. 4.2, however, indicates such fits fail to properly 

capture the detailed shape of the antimony profile as it peaks, and this deficiency was 

shared by all lateral surveys. Furthermore, the source profile implied by the fit 

parameters, here, (Fig. 4.2, grey curve) is both too short and too intense compared with 

the intended source in Fig. 4.1.   

 

Variable–Period Segregation Model 

To ascertain whether these discrepancies are due to the segregation model itself 

or instead due to our bulk period approximations, we next permitted the bulk superlattice 

period, Λ, to be an additional fit variable thereby decoupling the two issues. Focusing 

now on each repeat12, m, of the surface profile, the appropriately relaxed form of Eq. 

(4.2) then follows as 

€ 

x z( ) = xss 1− exp −
z
λ

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) + x0 m −1( )Λ < z < m −1( )Λ + d( )

x z( ) = xss 1− exp −
z
λ

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) exp −

z − d
λ

$ 

% 
& 

' 

( 
) + x0 m −1( )Λ + d < z < mΛ( )

 (4.3) 

Fits to the antimony profiles based on Eq. (4.3) yield an optimal peak spacing 

(superlattice period) for each lateral survey. As shown in Fig. 4.3, many of the values 

aren’t far from the sliding average values (Chapter III), but in some cases our original 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 The surface repeat, m, varies from 1 – 6 (Fig. 3.5), and is described in relation to the 
bulk period Λ in Chapter III, Eq. (3.5). 
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bulk–period approximation is outside error. These results nevertheless confirm that more 

than one bulk period is present in the multilayer stack.  

Examination of the fit to the data for one lateral survey (Fig. 4.4, blue)13 shows 

the variable–period segregation model provides a marginally better description of the 

data than the constrained–period model, and this is true of all lateral surveys. The 

average width (d) of the implied source across all surveys is 4.72 ± 0.03 ML (Fig. 4.5), 

which is still short of the intended 5.4 ML (Fig. 3.1). The corresponding average steady–

state height (xss) of the implied antimony source is 0.307 ± 0.002 (Fig. 4.6), which is 

close to the intended 0.33. 

 

Two–Source Segregation Analysis 

One remaining adjustment to our model is to include a second segregation source, 

spatially offset from the first14, to account for the possibility of interface roughness or a 

vicinal substrate, where the presence of terraces can create separate starting points for 

the segregation process. This two–source segregation model, with x z   x1 z   x2 z  , 

is encapsulated by the following four equations 

																																																								
13 This profile (62 points) was folded–back with the period determined by the variable–
period segregation model following the algorithm outlined in Eq. (3.5). 

14 That is, a second spatial origin for the antimony segregation, not a second antimony 
effusion cell. 
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(4.4)

 

where ζ = z+φ , φ is the spatial offset between source origins (in monolayers), α the 

fraction of the steady–state antimony contributed by the first source, and (1–α) the 

corresponding amount contributed  by the second source. The physical content of this 

model is illustrated in Fig. 4.7, where the spatially–distinct starting points for the 

individual profiles (and corresponding implied sources), along with the common width d 

of the implied sources15 are highlighted. 

Applying this two–source continuum segregation model to the antimony profiles, 

we find it describes the data with persuasive accuracy, including the previously 

problematic shape near the peak of the curve (Fig. 4.8, blue)16. The values of φ that 

emerge from the two–source segregation fits average 1.09 ± 0.06 ML (Fig. 4.9), which 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 Requiring the individual source widths to be the same is a reasonable assumption if a 
roughness model is physically correct; the fits furthermore do not converge if this 
constraint is relaxed.  

16 This profile (62 points) was constructed following the algorithm in Eq. (3.5), with the 
period determined by the two–source segregation model. 
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supports the physical motivation (i.e. monolayer roughness or vicinal substrate) for this 

generalization to the segregation model. Finally, the best–fit superlattice periods (Fig. 

4.10) are within error of the periods determined from single–source fits and thus, again, 

in reasonable agreement with our sliding–window approximations. 

The common pulse width, d, for the implied sources (Fig. 4.8, grey) has an 

average over all surveys of 4.46 ± 0.04 ML (Fig. 4.11), within error of the single–source 

pulse width average. The steady–state height, xss, and steady–state fraction provided by a 

single source, α, have respective averages of 0.330 ± 0.003 (Fig. 4.12) and 0.38 ± 0.02 

(Fig. 4.13). The unresolved discrepancy between source widths determined from the 

segregation model (4.46 ± 0.04 ML) and growth–rate calibrations performed by Sandia 

(5.40 ML) is not understood at this time. 

Parameters obtained from our continuum segregation model can also be used to 

determine the values of the antimony segregation coefficient (R) and constant 

background (x0), which have potential predictive value for related structures. The 

segregation coefficient, expressed in Eq. (4.1b), and the background have respective 

averages of 0.671 ± 0.003 (Fig. 4.14) and 1.28 ± 0.03 % (Fig. 4.15)17.  

 

HRXRD Simulations 

To establish the results of our fits with the continuum segregation model are 

characteristic of the superlattice structure as a whole, we once more turn to dynamical x–

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 The average values for the segregation coefficient and background are in good 
agreement with those reported in [7]. 
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ray simulations [44]. As discussed in Chapter III, the simulated spectrum of the intended 

structure (Fig. 4.16) fails to correctly describe the satellite peak intensities of the 

experimental HRXRD spectrum, as well as the broadening at the base of each peak. 

When we rely instead on the reconstructed antimony profile to generate a simulation, we 

see a marked improvement in the description of the experimental x–ray data (Fig. 4.17). 

Not surprisingly (since these reconstructed profiles were based on approximations to the 

bulk period) there are remaining differences between the simulated and experimental 

spectra. 

With the two–source continuum segregation model, we can not only accurately 

account for segregation and cross–incorporation throughout the structure, but determine 

a self–consistent period for each lateral survey as well. We can also consider the role 

played by any evolution in incorporated antimony fraction as noted in Chapter III (Figs. 

3.11 – 3.13), in refining our x–ray simulations. To this end, a small piece, previously 

used for x–ray analysis, was selected for depth profiling with secondary ion mass 

spectrometry (SIMS)18.  The SIMS data are plotted in Fig. 4.18 as a moving average 

over nine periods (sienna line), and they support the STM results concerning the increase 

in average antimony fraction from initiation to completion of growth.  

We account for these SIMS and STM data by including a simple, piecewise 

constant approximation (Fig. 4.18, blue line) to the steady–state antimony fraction 

characterizing our two–source segregation model. The resulting x–ray spectrum (Fig. 

4.19) provides an impressive description of the experimental HRXRD. All significant 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 The SIMS measurement was performed by Evans Analytical Group. 
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FIGURE 4.18. Depth profile from SIMS (sienna) agrees with observed increase in 
incorporated antimony from STM (blue points). A piecewise-constant approximation to 
the STM and SIMS data (blue line) is employed for x-ray simulation. Wafer diagram 
depicts location of the sample die (blue), SIMS measurement (sienna), and HRXRD (grey).
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features of the x–ray data, including satellite peak intensities, peak widths, overall 

background, mismatch, and superlattice period, are now fully accounted for. This 

improvement is highlighted with the expanded views of Figs. 4.17 and 4.19 reproduced 

in Fig. 4.20. 

 

Synopsis 

 Inspection of the InAs/InAsSb composition profiles established the existence of 

an interface asymmetry suggestive of anion segregation. We adapted a standard 

segregation model to accommodate for the non–integer period of our structure, and 

included an offset to account for cross–incorporation. This model provided a satisfactory 

fit to the profiles, thereby identifying a combination of antimony segregation and cross–

incorporation as the physical origin of the observed compositional grading.  

 By removing the period approximation constraints imposed in Chapter III, we 

were able to use the segregation model to quantitatively analyze the superlattice period 

for each of the period subsets surveyed with STM. However, while the variable period 

model was an improvement, there were still notable discrepancies between the fit and 

the data. A second, spatially–distinct segregation source was then added, and it provided 

a superior description of the antimony profiles. The spatial offset between the two 

sources naturally settles on one monolayer, which is consistent with a vicinal substrate 

or interface roughness. However, the source widths determined by these fits disagree 

with the shutter timing (for antimony exposure) provided by the grower. This 

inconsistency is not understood at this time.  
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 The systematic increase in incorporated antimony per period from beginning to 

end of the growth (observed with STM) was independently confirmed with SIMS. 

Combining this information with the compositional grading observed with STM in our 

dynamical x–ray simulations produced an impressively accurate match to the full, as–

grown HRXRD spectrum. This makes a compelling argument that our compositional 

analysis with STM is characteristic of the superlattice as a whole. 
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CHAPTER V 

PERIOD ANALYSIS 

 

Introduction 

In previous chapters, we have provided evidence of a small, but quantifiable 

variation in superlattice period from the beginning to end of epitaxial growth. Accurate 

knowledge of the as–grown superlattice period in multiple–quantum–well structures is 

important to the extent these deviations from design intentions adversely affect the 

overall optical properties in such devices. High–resolution x–ray diffraction (HRXRD) is 

conventionally used to assess the average superlattice period throughout the multilayer 

stack [43].  

In principle, it is possible to learn something about period variations in the 

growth through careful examination of peak broadening in the HRXRD spectrum [43, 

53]. Here, we also employ a new analytical method developed in the STM lab [23], 

which uses reciprocal–space maps from atomic–resolution STM images to accurately 

measure local heterostructure periods. We demonstrate the validity of this reciprocal–

space method using our previous InAs/InAsSb superlattice period measurements – the 

sliding–average period approximations in Chapter III and the quantitative measurements 

deduced from the compositional profiles fit in Chapter IV – as independent checks. 
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Analysis of Period Variations from HRXRD 

 The (004) HRXRD analysis discussed in Chapter III, and reproduced, here, in 

Fig. 5.1, for easy reference, revealed an average superlattice period of 20.62 ± 0.01 ML 

for all 100 repeats in the multilayer stack. A peak fitting program [54] was used to 

determine the center of each satellite peak for this analysis by way of Gaussian fits.  

All of the satellite peaks in the experimental spectrum are best described by more 

than one Gaussian component. One such example is the three–Gaussian fit illustrated in 

Fig. 5.2 for the second satellite from the left (compressive) side of the HRXRD 

spectrum. The blue curve represents the central portion of the satellite peak used for the 

aforementioned average–period measurement in Fig. 5.1 (bottom). The green and red 

curves may be interpreted as a broadening of this satellite due to fluctuations in the 

superlattice period at some point during the growth. The grey curve in Fig. 5.2 is the 

composite fit to these satellite data including all three Gaussian components. Separately 

applying Bragg’s Law to the full set of small ‘outer’ peaks – those to the left of the 

compressive peaks in the HRXRD spectrum, along with those to the right of the tensile 

peaks – reveals a period of 20.53 ± 0.01 ML (Fig. 5.3, top), remarkably close to the 

20.50 ML approximation employed in Chapter III.  Applying Bragg’s Law to the set of  

‘inner’ peaks – those to the right of the compressive peaks along with those to the left of 

the tensile peaks – on the other hand, reveals a period of 20.69 ± 0.01 ML (Fig. 5.3, 

bottom), likewise close to the 20.67 approximation employed in Chapter III.  

While these two measurements suggest more than one period within the 

superlattice, they offer no clues as to where these periods occur within the multilayer 
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satellite  order

FIGURE 5.1  Conventional (004) triple–axis HRXRD measurement (top) and corresponding 
superlattice period from Bragg’s law (bottom), reproduced from Fig. 3.2.
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satellite  order

FIGURE 5.3  Bragg law fits to the auxiliary satellite peaks illustrated in Fig. 5.2, indicating 
possible presence of 20.53 and 20.69 ML periods within the multilayer stack.
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stack. We must also consider that the x–ray peaks may be interpreted in other ways; for 

example, if we consider only the smaller peaks to the right–side of each satellite, we get 

a period of 20.65 ± 0.01 ML. Thus, we seek an analytical method that will permit 

reliable period measurements anywhere along the multilayer stack, a requirement 

admirably fulfilled by cross–sectional STM. 

 

Local Period Measurement with STM 

We first recount, briefly, the non–idealities accompanying the piezoelectric raster 

mechanism used in scanning tunneling microscopes [40]. In Chapter II, we described 

how the tripod scanner exhibits undesirable distortion effects (such as piezo creep and 

hysteresis) that make accurate length measurements problematic, along with 

empirically–established protocols for acquiring minimally–distorted data. We 

demonstrate here that under suitable circumstances one may overcome these inherent 

deficiencies to transform STM into a surprisingly accurate period–measurement tool.  

To most conveniently ascertain atomic spacing with STM, we transition from 

real to reciprocal space by performing a two–dimensional (2–D) discrete Fourier 

transformation (DFT) on atomic–resolution images. One such image – of the Sb-

sublattice over a GaSb substrate – is shown in Fig. 5.4 left, and its corresponding 

reciprocal space map easily obtained. This is repeated with each STM image in a given 

survey (in this case, over the substrate), and the survey–average reciprocal–space map 

(Fig. 5.4, right) is readily constructed. Constructive interference in the 2D-DFT results in 

localized spots oriented along the [001] (circled in red) and [110] (circled in white) 
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reciprocal–lattice vectors, establishing the two–dimensional surface mesh. For a given 

STM image, all length measurements may be referenced to these locally determined 

reciprocal–lattice vectors [23], which constitute natural rulers automatically calibrated in 

units of the underlying crystal structure’s lattice constant. Provided the corresponding 

image size is appropriately constrained, this normalization effectively factors out the 

piezo non–idealities discussed in Chapter II.  

A representative atomic–resolution image is shown in Fig 5.5, where the black 

outline indicates a standard 400 Å by 400 Å crop area for the two–dimensional (2–D) 

discrete Fourier transformation (DFT). The size and location of this crop area were 

adopted to minimize the non–linear distortion effects previously described. The resulting 

power spectrum shown in Fig. 5.6 (right) is derived from the ensemble of atomic–

resolution images (left) compromising a lateral survey. It shares the same [001] and 

[110] reciprocal–lattice vectors as the substrate–survey DFT in Fig. 5.4 (right), but now 

includes additional sets of superlattice satellite peaks convolved with the zone–center 

(blue) and [001] reciprocal–lattice vectors (red). 

Due to reflection symmetry, the positive and negative zone–center satellite peaks 

are not independent, so we cannot use both; all [001]–convolved satellite peaks are 

independent of one another, however. These satellites, illustrated in Fig. 5.7 (top), are 

analogous to those observed in conventional (004) x–ray rocking curves. The small 

shoulders on either side of each [001] peak are artifacts due to the finite–crop window 

and unrelated to the superlattice period itself.  
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FIGURE 5.5. Representative atomic–resolution STM image of the anion (Sb, As) sublattice 
over a type–II InAs / InAsSb superlattice; solid outline indicates two–dimensional discrete 
Fourier transform crop area.  Growth direction is from top–left to lower–right. 
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FIGURE 5.7. An [001]–section (top) through the survey average power spectrum of Fig. 
5.6; hash mark indicates the [001] peak. Like their x–ray analogs in Fig. 5.1, the spacing 
between satellite peaks, here, may be used to determine the superlattice period (bottom).
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Satellite peaks in the x–ray spectrum (Fig 5.1, top) are used to determine the 

average superlattice period via Bragg’s Law (Fig. 5.1, bottom). The STM–derived 

satellite peaks in reciprocal space may be likewise used to determine a local superlattice 

period for any selected subset of bulk repeats via the two–dimensional analogue of this 

law. The spacing between satellite peaks as a function of peak order is again inversely 

proportional to the superlattice period, as shown in Fig. 5.7 (bottom).  

The [001]–section in Fig. 5.7 (top) is taken through the survey average power 

spectrum of Fig. 5.6 (right). For an “ideal” STM, signal–to–noise is improved by 

averaging single–image measurements absent any systematic drift in the survey. 

However, this logic overlooks the fact that, in reality, the piezo properties change frame–

by–frame, as described in Chapter II. A plot of the reciprocal–lattice vector x– and y–

components for a representative survey (Fig. 5.8) emphasizes the point: the x–

component is far more stable and reproducible from image to image than the y–

component. This is unsurprising since piezo creep is always more pronounced in the 

slow–scan direction as explained in Chapter II.  

It is clear from the foregoing that one is best served by separating reciprocal–

lattice vector components, and we henceforth focus entirely on the x–component alone19. 

For local period measurements then, each of the evenly–spaced [001]–convolved 

																																																								
19 The plot in Fig. 5.7 (top) includes both x– and y–components because it is aligned 
with the survey average [001]. The points in the bottom plot, however, are the survey 
average x–components normalized to the survey average [001] reciprocal lattice vector 
x–components.  It is important to add that period measurements calculated with the y–
component are typically within 1% of the x–components in spite of the notable drift of 
the y–piezo. 
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satellite peaks is normalized to the respective [001] reciprocal–lattice vector on an 

image–by–image basis, and subsequently averaged across all images in the lateral 

survey. Average satellite positions are plotted as a function of satellite order and fit to a 

straight line as in the x–ray spectrum of Fig. 5.120, with the superlattice period obtained 

from the inverse slope of this line.  

Errors in x–ray measurements (Fig. 5.1) are determined by the error in the 

Gaussian fit to each satellite, and that error is used to weigh the linear fit to the satellite 

positions. For the STM–DFT period measurements, a measurement error of one pixel is 

included in the numerator and denominator when normalizing the [001]–convolved 

satellite peaks to the respective [001] reciprocal–lattice vector. That error is propagated 

when averaging the satellite position across all images and then used to weigh the linear 

fit. The resulting fit error, which we refer to as the “Bragg error”, is surprisingly good  

(± 0.01 ML) for the superlattice periods shown in Fig. 5.9.  

The STM–DFT period measurements in Fig. 5.9 (closed circles) are compared 

against the rational–fraction approximations (20.50 and 20.67, dashed lines) from 

Chapter III for subsets of periods from three survey locations in the multilayer stack in 

two orthogonal cross sections. We see that early– and late–period measurements all 

uniformly agree with the 20.50 ML approximation.  Likewise, both middle period 

surveys are in good agreement with one another and with the 20.67 ML approximation. 

																																																								
20 One important difference, however, is the lattice mismatch of the structure cannot be 
obtained with the STM–DFT method since all peaks are referenced to the local [001] 
spacing in the multilayer stack without any reference to the substrate. 
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These same surveys were likewise analyzed in direct–space using the periodic 

antimony impurity profiles precisely mapped with STM. The profiles were described by 

a segregation model [46], which fit the spacing between InAsSb repeats providing 

quantitative period measurements, as detailed in Chapter IV. The resulting superlattice 

periods (Fig. 5.10, open circles), again independently corroborate the STM–DFT period 

measurements21 (Fig. 5.10, closed circles).  

The agreement between our reciprocal–space analysis, direct–space impurity 

profile, and the sliding–window averages provides a strong argument that normalizing to 

the reciprocal–lattice vector on an image–by–image basis effectively circumvents the 

non–idealities caused by the piezo scanner. This conclusion is further validated by 

observing the agreement between measurements obtained when the piezo scanner is 

elongating versus contracting (Fig. 5.11) – physical situations on opposite sides of the 

hysteresis loop that characterizes piezo non–linearity. 

It is important to note our validation of this reciprocal–space technique means it 

can be confidently applied to other heterostructures, including those for which a direct–

space impurity profile is unavailable, as in the quantum cascade materials studied in 

reference [23]. There, local periods calculated for lateral surveys acquired over selected 

																																																								
21 As a separate confirmation of the agreement between the STM–DFT and 
compositional profile period measurement techniques, we refit the profile data with the 
segregation model, requiring the spacing between InAsSb repeats to be equal to the 
respective period measurements from the STM–DFT technique. The resulting fits were 
visually indistinguishable from the original. 
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subsets of the multilayer stack (as well as their global average) again agreed remarkably 

well with HRXRD period measurements.  

The image–by–image period measurements assembled in Fig. 5.11 represent a 

fixed subset of superlattice repeats surveyed along the <110> direction and centered 

about repeat 50 (Fig. 5.9). In this case, Bragg–like fits were applied to normalized 

satellite peaks from each STM image in the survey, with the resulting periods 

determined to ~0.05 ML22. From one image to the next, on the other hand, measurements 

differed by ~0.2 ML, an amount outside Bragg–like errors23. The source of this variation 

is still being investigated, however ongoing work by fellow lab members on interface 

roughness in quantum cascade materials has shown that fluctuations similar to these can 

arise from lateral correlations present within the interface, where they emulate the 

underlying stochastic process. When looked at this way, each image is a physical 

realization originating from the infinite ensemble that describes the stochastic process, 

yet each member of the ensemble can be characterized with convincing accuracy.  

 

Summary 

We have developed a two–dimensional reciprocal–space technique analogous to 

conventional HRXRD that transforms a scanning tunneling microscope into an accurate 

																																																								
22 The errors in the single–image measurements are ~ 5x larger than the survey 
measurement Bragg errors shown in Fig. 5.9 and 5.10, since the errors are no longer 
reduced by the square-root of the number of images. 

23 Despite these fluctuations, overlapping STM images reliably yield the same period 
measurement even if the images are taken several hours apart. 
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tool for local period measurements in heterostructures. Device–scale STM surveys over 

selected subsets of an InAs/InAsSb superlattice provide statistically significant 

ensembles from which precise periods may be obtained. Satellite peaks in the discrete 

Fourier transform of atomic resolution STM images that are normalized to the [001] 

reciprocal–lattice vector successfully remove the distortions inherent to tripod–style 

piezo scanners, as demonstrated by the agreement between periods obtained from 

reciprocal space, sliding–window averages, and direct–space profiles for nominally the 

same dataset. All three methods point to a reproducible variation in the local superlattice 

periodicity at select points throughout the growth. Finally, the reciprocal–space method 

period measurements also reveal unanticipated fluctuations in the growth–plane that, 

although not pursued here, may be an additional source of energy–level broadening in 

optical devices based on these superlattices.  
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CHAPTER VI 

CONCLUSIONS 

 

We have used cross–sectional scanning tunneling microscopy to examine a 

gallium–free, type–II InAs/InAsSb superlattice and perform compositional monolayer–

by–monolayer analyses of the as–grown structure through isovalent impurity 

identification on the atomic scale. We discussed the optimization of cleaving protocols, 

upgrades to the vacuum system, and standardized lab protocols to minimize the 

undesirable effects of STM raster non–idealities during data acquisition. These 

improvements allowed for representative, device–scale, lateral STM surveys to be 

conducted over select subsets of the multilayer stack, providing statistically–significant 

image ensembles for analysis.  

We described the development of optimal counting protocols for identification of 

surface antimony–for–arsenic substitutions, where select areas are chosen across a full 

set of survey images. This identification facilitates monolayer–by–monolayer analyses 

of the antimony fraction across the surveyed repeats, as well as reconstruction of 

representative bulk composition profiles based on appropriate approximations to the 

bulk period dictated by commensurability conditions. These bulk profiles manifest 

exponential–like increases and decreases in incorporated antimony at the InAsSb–on–

InAs and InAs–on–InAsSb interfaces, respectively, consistent with anion segregation, as 

well as an offset likely due to anion cross–incorporation. Agreement between STM–

based HRXRD simulations and the experimental spectrum pinpoints compositional 
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grading as the major source of discrepancies between intended and as–grown x–ray 

spectra. 

We likewise have developed a quantitative, continuum segregation model to fit 

the observed antimony profiles, and examined the resulting fit parameters. These fits 

conclusively establish antimony segregation, and cross–incorporation, as the physical 

mechanisms driving the observed compositional grading across superlattice interfaces, 

and asymptotic antimony fractions, respectively.  

The model best describing the bulk profile relies on two, spatially distinct 

segregation sources with a spatial offset close to one monolayer, consistent with either 

monolayer roughness or substrate vicinality. This model also provides self–consistent 

period measurements over surveyed sections of the multilayer stack that are comparable 

with bulk period approximations based on translationally–invariant sliding window 

averages. Agreement between these two seemingly different approaches substantiates 

the occurrence of more than one bulk period in the multilayer stack. The insights 

achieved through such detailed analyses of the as–grown structure can then be combined 

with STM and SIMS data pointing to a vertical evolution in the total incorporated 

antimony per period to obtain x–ray simulations in excellent agreement with the 

experimental HRXRD spectrum.  

Finally, we have demonstrated a novel reciprocal–space technique, analogous to 

Bragg’s law in x–ray diffraction, that transforms cross–sectional STM into a precision 

tool for measuring local periods in superlattice structures. The non–idealities associated 

with STM piezo scanners are effectively factored out through normalization of the 
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superlattice satellite peaks in a two–dimensional discrete Fourier transforms of atomic–

resolution STM images to the corresponding reciprocal lattice vector with which they 

are convolved. Comparison of the period measurements obtained with this technique and 

those from either the sliding–window average or segregation–model validate the 

accuracy of this new method, providing confidence in its more general use with other 

heterostructures absent similar impurity profiles. 
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