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ABSTRACT

Efforts toward modernizing education are emphasizing the adoption of Intelli-

gent Tutoring Systems (ITS) to complement conventional teaching methodologies.

Intelligent tutoring systems empower instructors to make teaching more engaging

by providing a platform to tutor, deliver learning material, and to assess students’

progress. Despite the advantages, existing intelligent tutoring systems do not au-

tomatically assess how students engage in problem solving? How do they perceive

various activities, while solving a problem? and How much time they spend on each

discrete activity leading to the solution?

In this research, we present an eye tracking framework that can assess how eye

movements manifest students’ perceived activities and overall engagement in a sketch

based Intelligent tutoring system, “Mechanix.” Mechanix guides students in solving

truss problems by supporting user initiated feedback. Through an evaluation in-

volving 21 participants, we show the potential of leveraging eye movement data to

recognize students’ perceived activities, “reading, gazing at an image, and problem

solving,” with an accuracy of 97.12%. We are also able to leverage the user gaze

data to classify problems being solved by students as difficult, medium, or hard with

an accuracy of more than 80%. In this process, we also identify the key features of

eye movement data, and discuss how and why these features vary across different

activities.
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1. INTRODUCTION

Interactive systems including modern day intelligent tutoring systems(ITS) like

Mechanix [32, 2, 43, 44, 16, 42, 18], iCanDraw [13, 11], ITS for East Asian language

learning [38, 39, 37, 40, 36], biology ITS [41], or child-based ITS [26, 24, 25, 45],

mostly provide a user-initiated feedback mechanism. This is because of the inability

of the system to know the user’s cognitive state, behaviour and intent in real time.

Modelling human behaviour can prove to be very useful in developing adaptive in-

terfaces for such systems. The input user information for such systems has to be

collected using methods which are unobtrusive but sensitive and fast to ensure a

real-time and accurate response. Eye tracking technology can fit this role very well

because it provides a real-time behavioural index of the visual and cognitive pro-

cesses.

Gaze movement data is a promising input for modeling cognitive and perceptual

processes because the gaze response to visual stimuli is regular and systematic(as

researched by Yarbus[47] and Rayner[34] ). Taking cue from the eye-mind hypoth-

esis given by Just and Carpenter[22] many studies have now been done to analyze

the relation between gaze and human cognition process. In the research done for

this thesis, we have investigated the possibility of using eye gaze data to classify

problems being solved by students on an ITS as difficult, medium, or hard. We also

classify the activity being performed by users as “reading”, “gazing at an image”,

and “drawing/problem solving.” Knowing the level of difficulty being perceived by

the user can help the system adapt it’s interface accordingly and assist the user

better. There can be scenarios in which the users interact with content which is

not static (like reading material, problems etc already in an ITS) but produced by
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another human in real time (dynamic). A good example of such a scenario is when

multiple users use the digital whiteboard on devices like Microsoft Hub to learn or

communicate ideas. In such conditions eye movements of users can be used to know

the activity they are doing( reading a handwritten text, gazing an image drawn by

others, or problem-solving).

We have analysed gaze data of users which were collected while they solve prob-

lems on Mechanix [23, 1, 23, 33]. Mechanix is a sketch-based tutoring system for

engineering and high school students enrolled in statics based courses. It allows stu-

dents to submit hand-drawn solutions to static problems with planar truss and free

body diagrams, just as they would with pencil and paper problems. Mechanix checks

the students work against a hand-drawn answer key provided by the instructor. Fig-

ure 1.1 shows the Mechanix interface. Each problem displayed on the interface

consists of a problem statement, an image on the right, control panel which consists

of the tool(pencil and eraser) and action(undo, delete) buttons, a drawing area, an

equation panel and a status panel to the left of the drawing panel. The users draw

the truss, input forces and reactive forces in the drawing area. Each time the user

clicks the ‘CORRECT’ button in the control panel the system checks the user-input

solution and gives feedback. The status panel also gets updated at this time to show

parts of the solution which are incomplete/complete.

2



Figure 1.1: Mechanix interface
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2. RELATED WORK

2.1 Modeling user behaviour, cognition and intent

Extensive prior research has shown the effectiveness of eye-tracking in monitor-

ing cognitive processes. This includes research aimed at differentiating reading from

non-reading activities [8], [12]. Eivazi and Bednarik [4] trained a support vector

machine to classify high-level behavioral codes by using features computed from the

eye movement data collected while subjects solved an 8-tile puzzle. The prediction

model developed by them also gives a 66 percent accuracy in classifying users into

three categories based on individual performance in solving puzzles: high, medium

and low. Eivazi et al. claim that the model prediction increases to 87 percent when

there are only two classes. Several researchers have worked to use the gaze pattern

of users to study and predict reading and comprehension skills of the users. Naval-

pakkam, Rao, and Slaney [31] use the gaze pattern to predict the reading struggles

of users due to distraction. Gomez and Aizawa in their comprehensive study on

reading behaviour [30] use a combination of eye-movement features and characteris-

tics of the document to predict the language skill and level of understanding of the

participants. Kunze et al. [28], who have also used eye tracking to assess a user’s

reading skill level, devised a method to spot difficult words for a user. Their experi-

ment was a paper-based experiment and they laid emphasis on the regression feature

to narrow down their search for difficult words in a reading assignment. Jiang et

al. [21] examined the pupils’ response to the difficulty level of a task through an

experiment in which the task requirements were managed by the Fitt's index [17]

of difficulty. This study showed that the positive change in the pupil diameter is

abrupt for higher task difficulties and that the peak pupil dilation occurred after
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a long delay at the end of task completion. Elmadani et al. [15] in their work

on studying the effectiveness of tutorial dialogues in an intelligent tutoring system

take the help of eye movement data but only consider a very limited and superficial

set eye movement features. Chen, Epps and Chen [9] have used pupil action, gaze

and blink data to infer task characteristics by estimating levels of perceptual and

cognitive load. They use a set of about 29 abstract features each calculated in a

time window of 1 or 2 seconds. Researchers have tried to model human reading

and differentiate it from closely related activities like skimming [7], [14]. Studies by

Simola et al. [35] show that a model based on hidden Markov models(HMM) can

achieve an accuracy of 60.2% in predicting the task a user is engaged in out of the

three information search tasks: word search, searching for an answer and choosing

an interesting title. Bednarik et al. tackle the Midas Touch problem [20] of intent

prediction in gaze-based interaction by using SVM and report an accuracy of 76% [5].

2.2 Gaze based interactive Applications

Eye-tracking has also been used extensively for application research. Xu [46] and

Loboda [29] show that eye movements of users while reading can be used to summa-

rize documents or find relevant words. Text 2.0 framework developed by Biedert et al.

[6] enables writing web-based gaze-controlled real time applications. The framework

was used by them to write a plug-in Text 2.0 which enables text responsive reading

experience. It assists the user to overcome comprehension difficulties when reading.

It does not do any behavior or cognition modeling but is a very good example of

using eye-tracking for real-time interaction with systems.
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3. EXPERIMENT DESIGN AND PROCEDURE

In order to investigate the use of eye gaze data for classifying on-screen activities

and identifying tasks on the basis of difficulty level, we designed an experiment

to gather eye-movement data of users while they work on a tutoring system. We

wanted to engage users in tasks which have varying levels of difficulty and comprise

of different activities (reading, gazing image and drawing/typing). At the heart of

the experiment is Mechanix [32], which is a sketch-based intelligent tutoring system

that allows students to hand-draw solutions to truss problems just as they would with

pencil and paper. It then checks the students’ work against a hand-drawn answer

entered by the instructor.

The Figure 3.1 shows the Mechanix interface. This experiment engages the user

in broadly three different activities namely reading, drawing/typing and gazing while

they solve truss problems. All users attempt to solve three assignments each having

two ’truss’ based questions. The difficulty level of the assignments increases from

easy to medium and finally hard as we go from the first to the third assignment.

The interface is divided into three main panels. The reading panel (r panel) at

the top has the problem statement. Each problem statement is complemented by

an image on the right-hand side, inside the image panel(i panel). In the center is

a drawing panel(d panel) inside which the students draw the truss and label the

input and reactive forces. We modified the Mechanix code to incorporate an eye-

tracking system which tracks and records the eye movement of the user as they solve

the assignments and then saves this data for each assignment separately. The eye

movements are recorded using Eyetribe which is placed at the bottom of a 21 inches

Cintiq display (resolution: 1600x1200) at a distance of 60 cm from the user. The
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users used a mouse to draw the truss diagrams. Twenty-one participants in the age

group 22-30 years, solved three assignments. All the users were given a practice

assignment before the experiment to familiarize them with the interface and the

nature of the tasks. The users labeled each assignment by its difficulty level. By

the end, we had gaze-data from 63 user studies (21 for each easy, medium and hard

assignments). R and Weka were used to do data analysis.

Figure 3.1: Interface of mechanix
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4. DATA ANALYSIS

We follow a simple pipeline to analyse the data and build a classification model

for both the problems. This pipeline broadly consists of five stages (Figure 4.1).

Some of these stages may be significant for only one of the two problems.

Figure 4.1: Analysis pipeline

1. Data Cleaning and Pre-processing

The eye tracker collects data at a frequency of about 30 Hertz. Each data

point corresponds to a different time-stamp and eight other values. Figure 4.2
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shows a snapshot of raw data. The eye tracker labels each of these data points

with a ’state’. The state column can have any of the four states are shown in

the Table 4.1. State ’7’ represents the perfect state in which the eye-tracker is

able to track the eyes perfectly and returns the gaze coordinates and the pupil

diameter for both eyes. State ’4’ is also considered a valid state. However,

the eye tracker may miss out on reporting one of the four values(SmoothX,

SmoothY, RightEyePupil and LeftEyePupil) for such data points.

Figure 4.2: Raw data sample

State String valid
4 TRACKING PRESENCE Yes
7 TRACKING GAZE TRACKING EYES

TRACKING PRESENCE
Yes

8 TRACKING FAIL No
16 TRACKING LOST No

Table 4.1: States of gaze points from eyetribe
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Points in state seven or four only are considered valid points. The user stud-

ies which had less than seventy percent valid data points were not used in

this study. This left us with 58 user studies(17-easy, 21-diff, 20-med). Each

data point carries a property ’IsFixated’. This property labels the data point

as a ’fixation point’(TRUE) or a ’saccade point’(FALSE). Other columns are

the ’TimeStamp’, ’Smoothx’, ’SmoothY’, ’LeftEyePupil’ and ’RightEyePupil’.

SmoothX and SmoothY correspond to the average X and Y coordinate of gaze

position on the screen and the Left/Right-EyePupil give the diameter of the

left and the right eye pupil respectively. The raw data was cleaned to get rid of

the invalid data points before the features were calculated. We also categorize

the data points by labeling each of them with a value for the variable ’panel’.

The screen was divided into three primary panels each of which represents a

different activity. The table 4.2 lists the three panels shown in Figure 1.1 and

the activities associated with each one of these panels.

10



Panel Activity
r panel Reading text
d panel Drawing and problem solving
i panel Gazing at an image

Table 4.2: Panels on the screen and related activity

2. Feature calculation and Exploratory Analysis

We used R for calculating features and doing an exploratory analysis on gaze

data. A lot of different features can be calculated from the raw gaze data. We

were mostly interested in features which are not dependent on the duration of

an assignment. This makes our study independent of the duration for which

a user uses the system. However, as part of the exploratory analysis, we have

calculated some features that do not follow this rule.

The following two definitions help us understand how gaze points for feature

calculation were selected.

(a) Fixation set is a set of edges between consecutive fixation points. A

sample gaze data may contain several such sets. In the Figure 4.3 there

are two fixation sets: {1,2,3,4,5,6} and {13,14,15,16}. Gaze point 8 has no

adjacent fixation points and hence no is not contained inside any fixation

set. Each edge in the set has a length and time interval associated with it.

The time interval is the time taken to traverse the edge. For each fixation

set i we can calculate fixation distance FDi which is a sum of all edge

lengths, fixation time FTi which is the sum of all time intervals and the

total number of edges:FEi.

(b) Saccade set is a set of edges between consecutive saccade points. A
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sample gaze data may contain several such sets. In the Figure 4.3 there

is only one saccade set: {9,10,11,12}. Saccade point 7 has no adjacent

saccade point and hence no saccade set associated with it. Similar to a

fixation set, each saccade set i has a saccade distance SDi which is the

sum of all edge lengths, saccade time STi which is the sum of all time

intervals and the total number of edges:SEi.

Figure 4.3: Sample gaze data

Mean path distance is defined as the average distance between two consecutive

fixation points. We find all the fixation sets in a data set. For a sample data

with n such sets from 1 to n, mean path distance is given by the following

equation:

MeanPathDistance =

∑n
i=1 FDi∑n
i=1 FEi

FixationSpeedX is the average speed of gaze between fixation points in the

x-direction only. For each fixation set i we can calculate FDxi which is the
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sum of the absolute change in x-coordinates for consecutive fixation points.

Average speed is given by the equation:

FixationSpeedX =

∑n
i=1 FDxi∑n
i=1 FTi

Other features like Mean Saccade Length, SaccadeSpeedX and SaccadeSpeedY

are calculated using the similar definitions. We also looked into the features

which can be calculated from the pupil activity. Jiang et.al[21] have shown that

pupil diameter can be used as indicators of task requirements in goal-directed

movements. For this analysis, we were only interested in the features which

are independent of the duration of the task. Dilation speed is simply defined

as the speed with which the pupil dilates(expands or contracts). Saccade-

related features have also been used by researchers like Gomez and Aizawa[30]

to classify the understanding level and language skill of students.

3. Feature Selection

We use the Caret[27] R package to help us in the feature selection process.

Data can contain features which are highly correlated (redundant). Several

classification methods work well if redundant features are left out. Therefore,

the highly correlated variables are identified and dropped from further analysis.

We remove the attributes with an absolute correlation of 0.75 or higher.The

second step is to estimate the importance of each feature by building a model

and evaluate the importance of each feature by its performance in that model.

We build a Learning Vector Quantization(LVQ) model and then use the varImp
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function in Caret package to evaluate and report the importance of each fea-

ture. Finally, we use the Recursive Feature Selection(rfe) method to choose the

best set of features. Reduced feature elimination helps us maintain a balance

between accuracy and the number of features to be used.

4. Dimensionality Reduction

We may have to reduce the dimensionality of the data to avoid over-fitting.

This is particularly true for this study because of the low number of data

points. Therefore, once we have the best set of features which describe the

data we reduce the dimensionality not just by picking the top features but by

doing a Principal Component Analysis(PCA) on the variables to get the top

three or four components to be used for the classification task. Reducing the

dimensionality of the data also helps us visualize the data better.

5. Classification model

The last part is to test the performance of various classification algorithms.

We report the accuracy and f-measure along with the confusion matrix for the

best performing classifier.

14



5. RESULTS AND DISCUSSION

In this chapter we discuss the results of exploratory analysis and final prediction

model for two classification tasks:

• Classification of user activities (reading, gazing an image and drawing/problem

solving)

• Classification of assignments as easy, medium or hard

5.1 Classification of user activities

We were interested in three activities which are now quite common for a lot of

tutoring systems:

1. Reading

2. Gazing at an image

3. Drawing/Problem Solving.

The task of reading text is common to almost tutoring applications these days.

Gazing images is also very common, and just like reading it’s a gaze based informa-

tion extraction process. The third activity ’drawing’ does not just simply refers to

the act of drawing an image but also includes the occasional typing and ’problem

solving’ by the users when they interact with the image which they have already

drawn inside the drawing panel.

15



5.1.1 Features

Let us first discuss the features which can be used to classify the three activities:

reading, gazing at an image and drawing/problem solving. We discuss here six

features and look into possible explanations for their behavior inside each panel.

1. Mean Path Distance

Mean path distance is defined as the average distance between two consecutive

fixations. The scatter-plot shown in Figure 5.1 compares the mean path dis-

tance of the users inside the three different panels.

Figure 5.1: Mean path distance

Mean path distance is relatively higher when reading as compared to the other

two activities. While reading, the user knows ’where to move next’. The gaze

16



movement is quite predictable and hence fast. The eye tracker records the gaze

points with a constant frequency of about 30 Hz (30 times every second). If

the gaze movement is fast the distance covered in one second increases and

so does the average distance between each recorded point. Eye-movement is

also fast inside the drawing panel. When a user draws a stroke, the eyes move

fast between the two points. Why then, is the Mean Path Distance(MPD)

inside the drawing panel so less compared to the question panel? A possible

explanation for this can be given by defining a term: s-barrier and look at how

it may effect the features related to fixations and saccades.

5.1.1.1 s-barrier

We know that the average distance between each recorded point increases when

eyes move fast. These recorded points are fixations when the gaze speed is

below a certain threshold. When this speed barrier is crossed, the eye-tracker

labels each recorded point as a saccade. We call this the s-barrier. The

closer we are to the s-barrier from the approaching side, the higher is the Mean

Path Distance(MPD). Mean path distance is the average distance between two

consecutive fixations. When we cross this speed barrier and move away from

it the Mean Saccade Length(MSL) starts increasing and there is no affect on

MPD because no more fixations are now recorded. The Figure 5.2 shows the

effect of s-barrier on these two features.
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Figure 5.2: Effect of s-barrier on MPD and MSL

The gaze movement inside the question panel is also fast. But, it is not so

fast that the eye-tracker only records saccade points. In other words ’the gaze

movement speed’ is just fast enough to be below the s-barrier’. The mean path

distance for reading is thus higher in comparison to the other two activities. In

the drawing panel the users draw strokes which require fast gaze movements.

But, the speed in that case crosses the s-barrier and hence only effects the mean

saccade length. The mean path distance is able to differentiate reading from

the other two activities very effectively. But this feature is not very effective in

differentiating the user activity inside the image panel from that in the drawing

panel.

2. Mean Saccade Length

Reading is a task with fast gaze movements, but this speed for most of the

part remains below the s-barrier. However, when users go from one word to

the other or change sentences we encounter the fast saccade movements. This

results in a relatively longer mean saccade length inside the question panel.

Mean saccade length inside the drawing panel is also comparable to that in the

reading panel. This is because drawing strokes requires fast gaze movements

and this speed is on the right side of the s-barrier in Figure 5.2. The first
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scatter-plot in Figure 5.3 shows that the MSL for reading panel and drawing

panel is comparable.

Figure 5.3: Mean Saccade Length (MSL)

Since there are no fast gaze movements in image-gazing the mean saccade

length is short for image panel. This makes this feature useful when comparing

the image-gazing activity with the other two. This is also reflected in the p-

value of each pair which is shown at the bottom of each scatterplot in the

Figure 5.3.

3. FixationSpeedX

FixationSpeedX refers to the gaze speed along the x-axis when the user goes

from one fixation to the other.The scatter-plot shown in Figure 5.4 compares

the fixation speed of the user along the x-axis in three different panels.
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Figure 5.4: Fixation SpeedX

Reading text is an activity in which the user already knows where to look next

and hence movement between two consecutive fixations is fast. The pace of

horizontal movement is significantly high in reading as compared to both image

gazing and drawing. There is fast gaze movement when the users draw strokes

inside the drawing panel but the speed of gaze movement is on the right side

of the s-barrier. This has no effect on the fixation speed. As can be seen from

the scatter-plots and the p-values from the t-tests FixationSpeedX is a very

good feature to differentiate reading from the other two activities. However, it

is very closely correlated to the Mean path Distance and therefore a redundant

feature. We do not use this in our final model.

20



SaccadeSpeedX is a very important feature. While gazing at the image the

occasional inter-saccade movement is at a speed which is very close to the

s-barrier hence giving low saccade speed. Reading is quiet fast because of

the predetermined gaze movement which also shows up in the inter-saccade

movement. In case of drawing panel, most of the saccades are recorded when

the strokes are drawn. This is a fast activity and records higher inter-saccade

movement. Thus, this feature helps us classify the image-gazing from the other

two activities. This can easily be seen in the scatter-plot shown in Figure 5.5
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Figure 5.5: Saccade SpeedX

5. SaccadeSpeedY

SaccadeSpeedY behaves no different than the SaccadeSpeedX. We later com-

bine the two features and only calculate Saccade Speed for each activity. The

Figure 5.6 shows the scatter-plot for saccade speed along Y-axis.
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Figure 5.6: Saccade SpeedY

6. DilationSpeed

Previous research work has shown that in a problem-solving scenario there is

a link between mental work load and pupil diameter. Bailey [3] and Iqbal [19]
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use this correlation between pupil dilation and and cognitive load to suggest a

framework for detecting task boundaries. Pupil activity has also been shown

to be sensitive to goal-directed discrete movements [21]. This gave us the idea

to use dilation speed of the pupil as a feature which can help us differentiate

the drawing panel activity from the other two. The scatter-plots in Figure 5.7

show that the dilation speed for the drawing panel is significantly higher than

the other two. The same is also reflected in the p-values for each of these pairs.

Figure 5.7: Dilation Speed

5.1.2 Principal Component Analysis(PCA)

We applied principal component analysis on the features which we have looked

at so far to reduce the dimensionality of our data. This is important because we do
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not have a large number of data points. Reducing the dimensionality of the data

helps us prevent over-fitting. It also makes it easier to visualize the data. The Figure

5.8 shows a scatter-plot of the data when we use only the top two principal com-

ponents for projection. This shows that the three classes are sufficiently separated

when projected on these components. The Figure 5.9 shows a 3D-scatter-plot of the

same data but with the first three components from PCA. We have tilted the axes

to better visualize the scatter-plot in 2D plane.

Figure 5.8: Scatter-plot using the top two components from PCA.
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Figure 5.9: 3D scatter-plot using the top three components from PCA.

5.1.3 Feature selection

We have 174 data points for training and testing our model. Six features can

cause over-fitting. Therefore, before using this data to train a classifier we reduced

the dimensionality of this dataset. This could be achieved by PCA or by variable

subset selection. PCA helped us visualize the data, but for building the model we

used subset selection because it makes the model simpler. The first step was to look

for highly correlated features. Table 5.1 shows the correlation matrix for six features.
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SaccadeSpeedx MSL MPD Dilation Speed FixationSpeedX
SaccadeSpeedx 1 0.319 0.119 0.217 0.131
MSL 0.319 1 0.126 0.326 0.284
MPD 0.119 0.126 1 -0.140 0.778
Dilation Speed 0.217 0.326 -

0.140
1 0.137

FixationSpeedX 0.131 0.284 0.778 0.137 1

Table 5.1: Correlation matrix

Following Cohen’s [10] conventions to interpret effect size, we can easily say that

FixationSpeedX is highly correlated to the Mean Path Distance. This can also be

observed by comparing the scatter-plots of these two features (Figure 5.4 and 5.1 ).

We compare the area under the ROC curve to rank the features(importance). Table

5.2 and Figure 5.10 show the variables sorted by importance across the three classes.

We also wanted to know how many features do we really want to build an accurate

model and avoid over-fitting.

Question Drawing Image
MSL 1.0 0.9958 1
MPD 0.9991 0.9991 0.9081

FixationSpeedX 0.9902 0.9902 0.9536
SaccadeSpeedx 0.8478 0.8891 0.8891
Dilation Speed 0.8157 0.8484 0.8484

Table 5.2: Variable importance
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Figure 5.10: Importance of features

We use the Reverse feature elimination method to find out the best features to

use. From the plot shown in Figure 5.11 we can see that by using only the top two

features: Mean Saccade length (MSL) and Mean Path distance(MPD) we get fairly

high accuracy.
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Figure 5.11: Accuracy with features
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5.1.4 Classification results

Classification of activities is a multi-class problem. This makes the multi-class

classifier in Weka a very good candidate for choice of classifier. Baseline perfor-

mance for comparison was established using a majority classifier. There are equal

number(58) of data points for all three classes. Therefore the majority classifier gives

an accuracy of 33.33%

A multiclass classifier gives an accuracy of 96.55% and f-measure of 0.966 when tested

with 10-fold cross validation. We have tested other classifiers as well with the same

data and Table 5.3 shows the results for those models.

Classifier Accuracy percentage
Multi-class Classifier 96.55
NaiveBayes 95.977
J48 96.55
Random Forest 97.12

Table 5.3: Classifers

The RandomForest classifier with maxDepth 0 gives the best result with an ac-

curacy of 97.12% at an f-measure of 0.97. Table 5.4 shows the confusion matrix for

this classification.

Classified as -> Question Drawing Image
Question 57 1 0
Drawing 2 55 1
Image 1 0 57

Table 5.4: Confusion matrix - randomforest classifier
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5.2 Classification of assignments as easy, medium and hard

In this section we present the results for the prediction of difficulty level (easy,

medium or hard) of tasks (assignments in this case). We first discuss the process of

feature selection. Then, we describe the behaviour of most important features which

were used in this model. Finally, we give results of the various classifiers which were

tested.

5.2.1 Dropping redundant features

For the difficulty level prediction problem, we start by analysing twenty one

features calculated from gaze data. First step was to get rid of the redundant features.

We again employed the Cohen’s criteria of choosing the highly correlated features

and dropped those. Table 5.5 shows a list of the original features with the highly

correlated features highlighted in color.These redundant variables were dropped at

this stage and not used for further analysis. Figure 5.12 shows the most important

features for each of the three classes. These features are ranked by area under the

ROC curve. The area under the ROC curve of a variable w.r.t a class gives an

estimate of how well the variable can differentiate this class from the other two

classes. This only gives an approximate idea about the usefulness of the feature if

this was used as a lone predictor to train a classifier.
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Features
FixationSpeedX qpanel
FixationSpeedX dpanel
FixationSpeedX ipanel

MPD qpanel

MPD dpanel

MPD ipanel

Dilation Speed qpanel

Dilation Speed dpanel

Dilation Speed ipanel

Range PupilSize qpanel

Range PupilSize dpanel

Range PupilSize ipanel
msl qpanel
msl dpanel
msl ipanel

s speedx qpanel

s speedx dpanel

s speedx ipanel

s speedy qpanel
s speedy dpanel
s speedy ipanel

Table 5.5: List of features. Highlighted features are highly correlated
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Figure 5.12: Importance of features ranked by area under ROC curve

However, this is not the case and we intend to to find the best subset of features

which can be used together to build a model. For this we perform a recursive process

of feature elimination.

5.2.2 Recursive feature elimination

Next, we use Recursive Feature Elimination (RFE) with RandomForest model

to get the best suited subset of features. It tells us the information that we can get

an optimum prediction performance only when we use the best seven features. The

Figure 5.13 shows that if we use seven features the accuracy can go over 80% and is

an optimum choice. These features are shown in Table 5.6.
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Figure 5.13: Choosing the optimum number of features

5.2.3 Principal Component Analysis(PCA)

We do not have a large data set to train and hence there is a danger of over-

fitting the data. We therefore turned to PCA to reduce the dimensionality of the

data further to have no more than three final components to train the classifier. The

Figure 5.14 shows a scatter-plot when the top two components of the PCA result

were used to plot the three classes.
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Best Features
msl dpanel

Range PupilSize ipanel
s speedy qpanel

FixationSpeedX dpanel
FixationSpeedX qpanel

MPD qpanel
msl ipanel

Table 5.6: List of best features.

The scatter-plot shows that the classes difficult and easy have a slight overlap

but, the class medium overlaps both easy and difficult hence making it difficult to

predict.
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Figure 5.14: Principal Component Analysis (PCA)

5.2.4 Selected features

Following are the chosen features:

1. Mean Saccade Length in Drawing panel

Mean saccade length inside drawing panel is the most important feature in

this analysis. When the assignments get harder, the problem figures get more

complicated with more and often longer strokes. This leads to longer saccadic

movements in which the mean distance between saccades is high. The Figure

5.15 shows the diagrams from an easy problem and a difficult/complicated
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problem. The longest stroke in the square is it’s side where as in the diagram

on right there can be several strokes (depending on the way user draws this

picture) which are longer than that. This is probably is a reason for the more

difficult problems having longer inter-saccadic distances.

Figure 5.15: Problem diagrams from easy(on left) and difficult(on right) problems

2. Saccade Speed in X-direction while reading

As we go from easier problems to harder problems the users tend to read

slow because they take more time to comprehend the text. This leads to a

significant difference in their inter-saccadic gaze speed. The speed is highest

for easier problems and decreases as we move towards more difficult problems.

3. Range of Pupil Size in i panel

The pupil activity inside the image panel(i panel) significantly changes as the

user starts looking at more complicated diagrams from the more difficult prob-

lems. The range is narrower for easier problems and increases as the diagrams
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get more complicated.

4. Pupil Dilation Speed in i panel

The dilation speed of the pupil inside the image panel is also an important

feature which varies from easier to more difficult problems.

The Table 5.7 shows the p-values for these features which we get from the

regression analysis. The R-square value for this is .67 i.e. the features explain

67% of the data.

Feature p-Value
MeanSaccadeLength dpanel 4.5782e-06
SaccadeSpeedX qpanel 1.30682e-05
RangePupilSize ipanel 1.59684e-05
PupilDilationSpeed ipanel ipanel 2.215e-02

Table 5.7: Features and their p-values in regression analysis

5.2.5 Classification results

We use the majority classifier in Weka: ZeroR to establish the baseline classifi-

cation performance. We use the top three components from the PCA to train the

classifiers. The LibSVM classifier in Weka gives the best accuracy of 81.03% and an

f-measure of .81. Table 5.9 shows the confusion matrix for this classification model.

We definitely need more data to build a better and accurate model. The Table 5.8

gives the result from other classifiers which were also tested.

An f-measure of 0.81 was reported for classification using 10-fold cross validation.

The Table 5.9 shows the confusion matrix for this model.
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Classifier Accuracy Percentage
ZeroR 36.21
Multiclass Classifier 77.58
LibSVM 81.03
NaiveBayes 79.31
RandomForest 68.96

Table 5.8: Accuracy of classification

Classified as-> easy diff med
easy 13 1 3
diff 1 18 2
med 2 2 16

Table 5.9: Confusion matrix - LibSVM using 10-fold cross validation
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6. CONCLUSION

In this thesis, we have tackled two classification problems. The first one is how

accurately can we classify the activity of a user as reading, gazing-image or drawing

in a problem-solving scenario and the second was the ability to predict the task

difficulty if the first problem of activity classification is solved with hundred percent

accuracy. We designed an experiment using Mechanix in which the users attempt

varied levels of problems on an interface which engages the user to do all three kinds

of activities. We rely on an eye-tracker to give us gaze data of the user.

In our approach towards analysing gaze data, we start by cleaning and pre-processing

the data. We calculate ’pure’ gaze based features and conduct an exploratory analysis

for each of these to estimate their usefulness in a learning model. For the activity

classification problem, we find six useful features. Reverse Feature Estimation (RFE)

based on RandomForest showed that Mean Saccade Length(MSL) and Mean path

Distance(MPD) only can give up to 97% accuracy in predicting the activity. For

the second problem, we first get rid of the redundant (highly correlated) features

to narrow down the options and then apply the RFE to get a subset of best seven

features only. Because of the constraint on the amount of data we apply PCA to

get the best three principal components which are used to train a LibSVM classifier.

This model was able to predict the difficulty level of the problem with an accuracy

of about 81%.

Overall, we showed that gaze-based features can be used to infer the user-activity

on an interface and estimate the difficulty level of a problem that engages the user

in the three common activities: reading, gazing at an image and drawing.
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7. FUTURE WORK

The future steps of this work include a prediction model which combines both

these results to predict the task difficulty without knowing the activity in advance.

Another step in the same direction would be to test such a model by developing

a real-time system that dynamically captures and classifies user activities based on

gaze movement. This system should be then tested for platforms which allow hand-

written/drawn text and images such as the Microsoft Hub and the plain old paper

as well. Work will also be required to increase the accuracy of our classifier which

predicts the task difficulty. More training data is definitely one of the limiting factors.

Therefore, we would like to do some more users studies and see if it improves the

accuracy of the model.

Findings from this experiment can also be used in other applications. We have

learnt about the behaviour of several important features through this experiment.

We would like to see if these features can be used in other scenarios like the patient

diagnosis for diseases which affect human cognitive powers (examples: Alzheimer’s

disease, dyslexia etc).
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APPENDIX A

ROC CURVE

In this study we have used area under the ROC curve(AUROCC) to judge in-

dividual features for their individual classification capability. We know that a good

diagnostic test is one with high sensitivity ( high true positive rate) and specificity

(high true negative rate). Also, specificity decreases as the sensitivity increases.

Therefore, we have to choose a test which gives us the best balance between both.

The ROC curve which is a curve between sensitivity and 1-specificity helps us choose

between features. The Figure A.1 shows ROC curves for a good diagnostic test and

an uninformative test.

Figure A.1: ROC curves
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The area under the ROC curve (AUROCC) is a reflection of how good the test is

at discriminating between two classes.The area under an ROC curve may vary from

0.5 to 1. Higher the AUROCC, the better the test (in this case feature). Therefore,

we test each feature in our study by calculating the AUROCC for that feature and

then compare it with others to rank the features.

51



APPENDIX B

PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis is a powerful tool for analysing data. It is a way

of identifying patterns in data. If the data has high dimensionality, it often becomes

hard to find out the patterns in data. PCA can be used to reduce this dimensionality

and make the graphical representation of data easier. Sometimes, we also have to

reduce the dimensionality of the data to avoid over-fitting. We can use PCA to

reduce the dimensionality there as well.
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