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(57) ABSTRACT

A movement recognition system includes an inertial sensor,
a depth sensor, and a processor. The inertial sensor is
coupled to an object and configured to measure a first unit
of inertia of the object. The depth sensor is configured to
measure a three dimensional shape of the object using
projected light patterns and a camera. The processor is
configured to receive a signal representative of the measured
first unit of inertia from the inertial sensor and a signal
representative of the measured shape from the depth sensor
and to determine a type of movement of the object based on
the measured first unit of inertia and the measured shape
utilizing a classification model.

9 Claims, 7 Drawing Sheets
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1
FUSION OF INERTIAL AND DEPTH
SENSORS FOR MOVEMENT
MEASUREMENTS AND RECOGNITION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of U.S. Provisional Appli-
cation Ser. No. 62/143,331 filed Apr. 6, 2015, and entitled
“Fusion of Inertial and Depth Sensors for Body Movement
Measurements and Recognition,” which is hereby incorpo-
rated herein by reference in its entirety.

BACKGROUND

Depth sensors or inertial body sensors have been used for
measurement or recognition of human body movements
spanning various applications including healthcare rehabili-
tation and consumer electronics entertainment applications.
Each of the above two sensors has been used individually for
body movement measurements and recognition. However,
each sensor has limitations when operating under real world
conditions.

The application of depth sensors has been steadily grow-
ing for body movement measurements and recognition. For
example, depth images captured by depth sensors have been
used to recognize American Sign Language (ASL). Depth
sensors typically utilize one of two major matching tech-
niques for gesture recognition including: Dynamic Time
Warping (DTW) and Elastic Matching (EM). Statistical
modeling techniques, such as particle filtering and Hidden
Markov model (HMM), have also been utilized for gesture
recognition utilizing a depth sensor alone.

Inertial body sensors have also been utilized to recognize
body movement measurements and recognition. For
example, the human motion capture system may utilize
wireless inertial sensors. Wireless body sensors have been
utilized to recognize the activity and position of upper trunk
and lower extremities. A support vector machine (SVM)
classifier has been used to estimate the severity of Parkinson
disease symptoms. Furthermore, Kalman filtering has been
used to obtain orientations and positions of body limbs.
However, the use of inertial body sensors with depth sensors
at the same time and together to increase system recognition
robustness has not been well developed.

SUMMARY

The problems noted above are solved in large part by
systems and methods for recognizing and/or measuring
movements utilizing both an inertial sensor and a depth
sensor. In some embodiments, a movement recognition
system includes an inertial sensor, a depth sensor, and a
processor. The inertial sensor is coupled to an object and
configured to measure a first unit of inertia of the object. The
depth sensor is configured to measure a three dimensional
shape of the object using projected light patterns and a
camera. The processor is configured to receive a signal
representative of the measured first unit of inertia from the
inertial sensor and a signal representative of the measured
shape from the depth sensor and to determine a type of
movement of the object based on the measured first unit of
inertia and the measured shape utilizing a classification
model.

Another illustrative embodiment is a method of recogniz-
ing movement of an object. The method comprises measur-
ing, by an inertial sensor, a first unit of inertia of an object.
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The method also comprises measuring a three dimensional
shape of the object. The method also comprises receiving, by
a processor, a signal representative of the measured first unit
of inertia from the inertial sensor and a signal representative
of the measured shape from the depth sensor. The method
also comprises determining a type of movement of the
object based on the measured first unit of inertia and the
measured shape utilizing classification model.

Yet another illustrative embodiment is a non-transitory
computer-readable medium. The non-transitory computer-
readable medium stores instructions that when executed on
a computing system cause the computing system to receive
a signal representative of a measured first unit of inertia from
an inertial sensor coupled to an object and a signal repre-
sentative of a measured shape of the object from a depth
sensor and determine a type of movement of the object based
on the measured first unit of inertia and the measured shape
utilizing a classification model.

BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of various examples, reference
will now be made to the accompanying drawings in which:

FIG. 1 shows an illustrative block diagram of a movement
recognition system utilizing an inertial sensor and a depth
sensor in accordance with various embodiments;

FIG. 2 shows an illustrative block diagram of a computer
in a movement recognition system utilizing an inertial
sensor and a depth sensor in accordance with various
embodiments;

FIG. 3 shows an illustrative block diagram of a processor
of'a computer in a movement recognition system utilizing an
inertial sensor and a depth sensor in accordance with various
embodiments;

FIG. 4 shows an illustrative flow diagram of a method for
HMM training in accordance with various embodiments;

FIG. 5 shows an illustrative flow diagram of a method for
HMM testing and/or movement recognition utilizing single
HMM classification in accordance with various embodi-
ments;

FIG. 6 shows an illustrative framework for HMM testing
and/or movement recognition utilizing multi-HMM classi-
fication in accordance with various embodiments;

FIG. 7 shows an illustrative flow diagram of real time
movement recognition utilizing a depth motion map (DMM)
classification model in accordance with various embodi-
ments; and

FIG. 8 shows an illustrative flow diagram of a method for
conducting a fitness test utilizing a movement recognition
system in accordance with various embodiments.

NOTATION AND NOMENCLATURE

Certain terms are used throughout the following descrip-
tion and claims to refer to particular system components. As
one skilled in the art will appreciate, entities and/or indi-
viduals may refer to a component by different names. This
document does not intend to distinguish between compo-
nents that differ in name but not function. In the following
discussion and in the claims, the terms “including” and
“comprising” are used in an open-ended fashion, and thus
should be interpreted to mean “including, but not limited
to ... ” Also, the term “couple” or “couples” is intended to
mean either an indirect or direct connection. Thus, if a first
device couples to a second device, that connection may be
through a direct connection, or through an indirect connec-
tion via other devices and connections. The recitation “based
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on” is intended to mean “based at least in part on.” There-
fore, if X is based on Y, X may be based on Y and any
number of other factors.

DETAILED DESCRIPTION

The following discussion is directed to various embodi-
ments of the invention. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
scope of the disclosure, including the claims. In addition,
one skilled in the art will understand that the following
description has broad application, and the discussion of any
embodiment is meant only to be exemplary of that embodi-
ment, and not intended to intimate that the scope of the
disclosure, including the claims, is limited to that embodi-
ment.

As discussed above, both depth sensors and inertial body
sensors have been utilized individually to recognize body
movements. However, each of these systems has limitations.
It is therefore desirable to create a general purpose fusion
framework to increase the robustness of object movement
recognition by utilizing the information from two or more
sensors at the same time. Therefore, in accordance with the
disclosed principles two sensors, one a depth sensor and one
an inertial sensor, are deployed in such a way that they act
in a complementary manner by compensating for erroneous
data that may be generated by each sensor individually.

FIG. 1 shows an illustrative block diagram of a movement
recognition system 100 utilizing an inertial sensor 106 and
a depth sensor 108 in accordance with various embodiments.
The movement recognition system 100 may include com-
puter system 102, inertial sensor 106, and depth sensor 108.
Computer system 102 may include computer hardware that
may execute instructions stored in computer system 102 or
stored in another computer system and/or memory con-
nected to computer system 102. While shown as a desktop
computer, computer system 102 may be any electronic
device having some amount of computing power. Among
other things, servers, portable computers, personal digital
assistants (PDAs), and mobile phones may be configured to
carry out aspects of the disclosed embodiments. In some
embodiments, computing system 102 may include several
computers and components that are interconnected via com-
munication links, using one or more computer networks or
direct connections.

Inertial sensor 106 may be any type of inertial sensor that
may measure information corresponding to an object’s iner-
tial movement, sometimes referred to as a unit of inertia (i.e.,
specific force, acceleration, angular rate, pitch, roll, yaw,
and/or magnetic field). Thus, inertial sensor 106 may be an
accelerometer, a gyroscope, a magnetometer, or any com-
bination thereof. For example, inertial sensor 106 may
include both an accelerometer and a gyroscope. In an
alternative example, inertial sensor 106 may include only an
accelerometer. In some embodiments, inertial sensor 106 is
a micro-electro-mechanical system (MEMS). In an embodi-
ment, the inertial sensor 106 includes a 9-axis MEMS sensor
which captures 3-axis acceleration, 3-axis angular velocity,
and 3-axis magnetic strength data.

Inertial sensor 106 may be coupled to an object 104 to
measure the object 104’s inertial movement. For example,
inertial sensor 106 may be coupled to object 104 to measure
object 104’s acceleration and angular rate. Object 104 may
be any type of object including animate objects such as a
human wrist or any other human body part. For example,
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inertial sensor 106 may be coupled to the wrist of a human
such that the inertial sensor 106 measures inertial movement
of the human’s wrist.

The inertial sensor 106 may be wirelessly and/or wireline
coupled to computer system 102. For example, inertial
sensor 106 may be configured to communicate data to
computer system 102 through a network based on the IEEE
802.15.4e standard, a wireless local area network
(“WLAN"), such as network based on the IEEE 802.11
standard, and/or a wireless personal area network
(“WPAN”) (e.g., a BLUETOOTH network). Thus, inertial
sensor 106 may communicate a signal and/or signals to
computer system 102 representative of the inertial measure-
ments of object 104.

Depth sensor 108 may be configured to measure a three
dimensional shape of object 104 utilizing projected light
patterns and a camera. Therefore, depth sensor 108 may
include an infrared (IR) emitter 112, a camera (in some
embodiments, a color camera) 116, and an IR depth sensor
114. Thus, depth sensor 108 may capture a series of depth
images of object 104 as object 104 changes position. In
some embodiments, to measure the three dimensional shape
of'object 104, depth sensor 108 may capture more than thirty
frames per second of object 104. In some embodiments, the
depth sensor 108 may be a MICROSOFT KINNECT.

The depth sensor 106 may be wirelessly and/or wireline
coupled to computer system 102. For example, depth sensor
108 may be configured to communicate data to computer
system 102 through a network based on the IEEE 802.15.4e
standard, a wireless local area network (“WLAN™), such as
network based on the IEEE 802.11 standard, and/or a
wireless personal area network (“WPAN”) (e.g., a BLU-
ETOOTH network). Thus, depth sensor 108 may commu-
nicate a signal and/or signals to computer system 102
representative of the measured shape of object 104.

FIG. 2 shows an illustrative block diagram of computer
system 102 of movement recognition system 100 in accor-
dance with various embodiments. The computer system 102
includes one or more processors 202 that may be configured
to receive the signals representative of the inertial measure-
ments of object 104 from inertial sensor 106 and the signals
representative of the measured shape of object 104 from
depth sensor 108. Processor 202 may be coupled to system
memory 204 via an input/output interface. Processor 202
may include a central processing unit (CPU), a semicon-
ductor-based microprocessor, a graphics processing unit
(GPU), and/or other hardware devices suitable for retrieval
and execution of instructions that may be stored in memory
204 or other memory.

Processor 202 may include a single processor, multiple
processors, a single computer, a network of computers, or
any other type of processing device. For example, processor
202 may include multiple cores on a chip, multiple cores
across multiple chips, multiple cores across multiple
devices, or combinations thereof. Processor 202 may include
at least one integrated circuit (IC), other control logic, other
electronic circuits, or combinations thereof that include a
number of electronic components. Processor 202 may per-
form operations such as graphics, signal processing, encryp-
tion, input/output (I/O) interfacing with peripheral devices,
floating point arithmetic, string processing, etc.

Memory 204 may be any electronic, magnetic, optical, or
other physical storage device that contains or stores execut-
able instructions. Thus, memory 204 may be, for example,
Random Access Memory (RAM), Read Only Memory
(ROM), an Electrically Erasable Programmable Read-Only
Memory (EEPROM), a storage drive, a Compact Disc Read
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Only Memory (CD-ROM), and the like. The computer may
also include a network interface coupled to the input/output
interface.

FIG. 3 shows an illustrative block diagram of processor
202 in accordance with various embodiments. Processor 202
may include single HMM classification logic 302, multi-
HMM classification logic 304, DMM classification logic
306, and testing logic 308. In an embodiment, single HMM
classification logic 302 receives the signals representative of
the inertial measurements of object 104 from inertial sensor
106 and the signals representative of the measured shape of
object 104 from depth sensor 108. Because the sampling
rates of the signals from the inertial sensor 106 and the depth
sensor 108 may be different (e.g., the inertial sensor 106 may
have a sampling rate of 200 Hz while the depth sensor 108
may have a sampling rate of 30 Hz), the data from the
inertial sensor 106 and/or depth sensor 108 may be down-
sampled by single HMM classification logic 302 such that
the sampling frequencies match. Furthermore, to reduce
jitter in the two signals, a moving average window may be
utilized.

Single HMM classification logic 302 may be configured
to determine a type of movement of object 104 (i.e., classify
a movement) utilizing the signals from both the inertial
sensor 106 and the depth sensor 108 by utilizing a HMM
classifier. For example, single HMM classification logic 302
may be configured to determine a type of hand gesture (e.g.,
waving, hammering, punching, circle movement, etc.) uti-
lizing the signals from both the inertial sensor 106 and the
depth sensor 108 by utilizing a HMM classifier.

The HMM classifier model characterizes a state transfer
probability distribution A and observation (the received
signals from the inertial sensor 106 and the depth sensor
108) probability distribution B. Given an initial state matrix
nt, an HMM is described by the triplet A={m,A,B}. If a
random sequence of signals O={0,, O,, . . ., O} is
observed; V={v,, v,, ..., v} denotes all possible outcomes,
S={S,,S,, ..., S;} denotes all HMM states, and q, denotes
the state at time t, where T indicates the number of time
samples. The HMM probabilities are:

a={p,=P(0,=5,)}, 1sisM 4]

4={a;=P(q,=S}lq, =Sy}, 1=i,j=M @

B={b;()=P(O,=v1q,=S))}, 1sjsM, 1=ksT 3)

where:

= =15 Ma,=1, and 35 Th (k=1 )

Single HMM classification logic 302 may train the HMM
s0 as to recognize particular types of movement for the
object 104. For example, single HMM classification logic
302 may train a plurality of HMMs to each be able to
recognize a single type of movement (e.g., each HMM is
trained to recognize one of multiple gestures made by object
104). FIG. 4 shows an illustrative flow diagram of a method
400 for HMM training that may be performed by single
HMM classification logic 302 in accordance with various
embodiments. Though depicted sequentially as a matter of
convenience, at least some of the actions shown can be
performed in a different order and/or performed in parallel.
Additionally, some embodiments may perform only some of
the actions shown.

In block 402, the parameters discussed in equations
(1)-(4) are initialized such that A=A,={m,, Ao, B, }. Matrix A
controls the transitions in the HMM. To initialize matrix A,
all of the nonadjacent probabilities in the matrix are zeroed
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out, thus, limiting the state transitions to the sequence of
adjacent states representing the type of movement being
trained. In other words, state transitions are constrained to
occur from left-to-right and between two adjacent states.
Hence, the initial transition matrix A is:

0505 0 0 0
0 0505 0 0
A= 0 0 0505 0
0 0 0 0505
o0 0 0 0 1

®

In block 404, an observation sequence of the particular type
of movement being trained is determined. In block 406, the
probability of the observation sequence is calculated. If, the
observation sequence is O={0,, O,, . . ., O;} of the
particular type of movement being trained and Q={q,,
Qs - - - » qr} s the corresponding state sequence, then the
probablhty of the observation sequence calculated in block
406 is (OIQMIT._,"P (O,Ig,.M).

In block 408, a Baum Welch reestimation of the prob-
ability sequence is performed to update the HMM being
trained. According to the Baum Welch algorithm the prob-
ability P(OIM)r,, a a, . is calculated to

91 6Ilqz D93 qq

update A. Because P(O, QI?») P(OIQ k)P(Q ),
P(OIR)
ZoP(0IQMP(QM)

2:q1,qz, S 7qz”q1(ol)aqlqzqu(o2) s aqrrlqzbqr(OT) ©

To update the current model A={rw,A,B}, the updated model
is 2={m,A,B} and is calculated in block 410. To estimate

?={m,A.B}, the probability of the joint event that
O,, Oy, . . ., O is observed is a,{(i). Thus, a (i)=
P(O,, O,, . . ., Op q=S;A). Similarly, B i)=P(O,,,
0,5, - - ., Op q77S,I1). The probability of being in state S,

at time t and state S; at time t+1 is thus given by

wr(i)aijbj(owl i1 ()
PO

. O]
&is PPg: Si, Gret S; |0, )

It v,(1) is the probability of being in state S; at time t, then

Yt(l) ZjZINEt(isj)sX {R,X,E} Where
7y ®)
7-1 ©)
Dl p
o t=1
%=
; v
T-1 10
Z v:(J)
_ 1=1,0¢=v
bilk) = ——

Because there is a very small threshold value (e.g.,
£=107°) the training may be terminated when log{P(OIA)}-
log{P(OIX)}<e. Therefore, in block 412, a determination is
made of whether log{P(OIA)}-log{P(OIN)}<e. If log{P
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(OIM)}-log{P(OIX)} is not less than &, then the method 400
continues in block 406 with calculating P(OIL). However, if
log{P(OIN)}-log{P(OIX)} is less than &, then the method
400 continues in block 414 with determining whether any
additional observations are needed to train the HMM for the
particular type of movement. If it is determined that this is
not the last observation, then the method 400 continues in
404 with observing an additional sequence of the particular
type of movement being trained. However, if it is deter-
mined that this is the last observation, then the training of the
HMM is complete and A=A.

Once each of the HMMs are trained for their respective
particular type of movement, single HMM classification
logic 302 may make a determination of the type of move-
ment of object 104. FIG. 5 shows an illustrative flow
diagram of a method 500 for HMM testing and/or movement
recognition that may be performed by single HMM classi-
fication logic 302 in accordance with various embodiments.
Though depicted sequentially as a matter of convenience, at
least some of the actions shown can be performed in a
different order and/or performed in parallel. Additionally,
some embodiments may perform only some of the actions
shown.

The method 500 begins in block 502 with receiving, by
the single HMM classification logic 502, a testing sequence
and/or an observation sequence O. In other words, the single
HMM classification logic 502 receives the signals generated
by the inertial sensor 106 and the depth sensor 108 due to the
movement of object 104. For each of the trained HMMs 502,
506, 510, 514 (e.g., a trained HMM for gesture 1, a trained
HMM for gesture 2, etc.), the likelihood of probability
P(OI}) is calculated in blocks 504, 508, 512, 516 resulting
in n likelihood of probabilities where n is the number of
types of movement that are trained.

In block 518, a determination is made as to whether all of
the calculated likelihood of probabilities should be rejected.
For example, a high confidence interval (e.g., 95%) may be
applied to the n calculated likelihood of probabilities. If p
represents the mean and o represents the variance of the n
calculated likelihood of probabilities, then to meet the 95%
confidence interval, at least one of the n likelihood of
probabilities must be larger than

a
u+196—.

Vi

While a commence interval of 95% is shown in this
example, other confidence intervals may be utilized in a
similar manner. If none of the n calculated likelihood of
probabilities meet the selected confidence interval, the
sequence is rejected and the type of movement is unrecog-
nizable in block 522. However, if any of the n calculated
likelihood of probabilities meets the selected confidence
interval, the type of movement corresponding to the trained
HMM 502, 506, 510, 514 having the highest likelihood of
probability is selected as the type of movement.

Returning to FIG. 3, processor 202 may also include
multi-HMM classification logic 304. In an embodiment, like
single HMM classification logic 302, multi-HMM classifi-
cation logic 304 receives the signals representative of the
inertial measurements of object 104 from inertial sensor 106
and the signals representative of the measured shape of
object 104 from depth sensor 108. In alternative embodi-
ments, only multi-HMM classification logic 304 receives the
signals representative of the inertial measurements of object
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104 from inertial sensor 106 and the signals representative
of the measured shape of object 104 from depth sensor 108.
Because the sampling rates of the signals from the inertial
sensor 106 and the depth sensor 108 may be different (e.g.,
the inertial sensor 106 may have a sampling rate of 200 Hz
while the depth sensor 108 may have a sampling rate of 30
Hz), the data from the inertial sensor 106 and/or depth
sensor 108 may be down-sampled by multi-HMM classifi-
cation logic 304 such that the sampling frequencies match.
Furthermore, to reduce jitter in the two signals, a moving
average window may be utilized.

Multi-HMM classification logic 304 may be configured to
determine a type of movement of object 104 (i.e., classify a
movement) utilizing the signals from both the inertial sensor
106 and the depth sensor 108 by utilizing multiple HMM
classifiers. Thus, multi-HMM classification logic 302 may
be configured to determine a type of hand gesture (e.g.,
waving, hammering, punching, circle, etc.) utilizing the
signals from both the inertial sensor 106 and the depth
sensor 108 by utilizing multiple HMM classifiers.

FIG. 6 shows an illustrative framework for HMM testing
and/or movement recognition utilizing multi-HMM classi-
fication logic 304 in accordance with various embodiments.
Though depicted sequentially as a matter of convenience, at
least some of the actions shown can be performed in a
different order and/or performed in parallel. Additionally,
some embodiments may perform only some of the actions
shown.

As shown in FIG. 6, all of the signals from the inertial
sensor 106 and depth sensor 108 are received by the multi-
HMM classification logic 304. However, the inertial sensor
106 and depth sensor 108 may provide different types of data
(e.g., the inertial sensor 106 may provide acceleration data
of object 104 while the depth sensor provides shape (and/or
depth) data of object 104). Furthermore, inertial sensor 106
may itself provide multiple types of data (e.g., acceleration
data and angular rate data). Therefore, each type of data may
be fed into its own HMM classifier 602-606, each classifier
generating its own likelihood of probability. First, each
HMM classifier 602-606 may be trained for that specific
type of data in a similar manner as shown in FIG. 4. Thus,
HMM classifier 602 may be trained to recognize different
types of movements for one specific type of data (e.g.,
acceleration). Similarly, HMM classifier 604 may be trained
to recognize the same types of movements as HMM clas-
sifier 602, only for a different type of data (e.g., angular rate)
than HMM classifier 602 while HMM classifier 606 may be
trained to recognize the same types of movements as HMM
classifiers 602 and 604, but only utilizing a different type of
data (e.g., depth data). Thus, in this example, a plurality of
HMMs is trained to recognize a specific type of movement
(e.g., hand gesture) utilizing only acceleration data, while
two other pluralities of HMMSs are trained to recognize the
same types of movement utilizing angular rate data and
depth data respectively.

Similar to the single HMM classification logic 302, multi-
HMM classification logic 304 may calculate the likelihood
of probabilities for each of the HMM classifiers 602-606. In
block 608, the likelihood of probabilities from each of the
HMM classifiers 602-606 for each of the specific types of
movement trained then may be multiplied by a weight and
pooled together by adding the individually weighted likeli-
hood of probabilities into an overall probability of all of the
input signals as:

P(OIN=w,P(O1h )+ woP(OIh)+ w3 PO 1) (1



US 10,432,842 B2

9

In the example shown in FIG. 6, three HMM classifiers
are utilized which may be denoted as A1 0= {Tsnsec1yor
Asense(l)OSBsense(l)O}S

sense@)0)s Msense(3)0™ 1 sense3)0: A sense310:Bsense 301 TEP-
resenting each of the senses sensed by the inertial sensor 106
and depth sensor 108. The parameters of these models are
then estimated according to the Baum-Welch algorithm as
discussed above. During movement recognition, the overall
likelihood of probability for a specific type of movement P
(OIN) is computed based on the three likelihood of prob-
abilities P(OIA,),P(OIA,),P(OIX,). The type of movement
with the maximum average of the three weighted likelihood
of probabilities w,P(OIA,),w,P(OIL,),w;P(OlX;) then may
be selected as the type of movement of the object 104. One
advantage of utilizing the multi-HMM classification logic
304 over the single HMM classification logic 302 is that the
differences between the probability of likelihoods is dimin-
ished and/or the discriminatory power is increased.

Returning to FIG. 3, processor 202 may also include
DMM classification logic 306. In an embodiment, like single
HMM classification logic 302 and multi-HMM classifica-
tion logic 304, DMM classification logic 306 receives the
signals representative of the inertial measurements of object
104 from inertial sensor 106 and the signals representative
of the measured shape of object 104 from depth sensor 108.
In alternative embodiments, only DMM classification logic
306 receives the signals representative of the inertial mea-
surements of object 104 from inertial sensor 106 and the
signals representative of the measured shape of object 104
from depth sensor 108. Because the sampling rates of the
signals from the inertial sensor 106 and the depth sensor 108
may be different (e.g., the inertial sensor 106 may have a
sampling rate of 200 Hz while the depth sensor 108 may
have a sampling rate of 30 Hz), the data from the inertial
sensor 106 and/or depth sensor 108 may be down-sampled
by DMM classification logic 306 such that the sampling
frequencies match. Furthermore, to reduce jitter in the two
signals, a moving average window may be utilized.

DMM classification logic 306 may be configured to
determine a type of movement of object 104 (i.e., classify a
movement) utilizing the signals from both the inertial sensor
106 and the depth sensor 108. Thus, DMM classification
logic 306 may be configured to determine a type of hand
gesture (e.g., waving, hammering, punching, circle, etc.)
utilizing the signals from both the inertial sensor 106 and the
depth sensor 108.

More particularly, DMM classification logic 306 may
utilize both feature-level and decision-level fusion of the
signals from the inertial sensor 106 and the depth sensor 108
to recognize (classify) the type of movement of object 104.
First, a depth feature may be extracted from the signal
representative of the measured shape by DMM classification
logic 306. Before performing depth image projections, the
foreground that contains the moving object is extracted. Any
dynamic background subtraction algorithms may be utilized
to extract the foreground including background modeling
techniques or spatio-temporal filtering to extract the spatio-
temporal interest points corresponding to an action of object
104. To make this task computationally efficient, the mean
depth value p for each MyxN, depth image may be com-
puted and the foreground region may be selected according
to:

}\’sense(2)0: J-l:sense(2)0 st dsense(2)0s

Aoy if |dap —p = el (12)
dap =

0, otherwise
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where d, ,(a=1, 2, . . ., M,, b=1, 2, .. ., N,) is the depth
value (indicating the distance between the depth sensor 108
and the object 104) of the pixel in the ath row and bth
column of the depth image, € is a threshold for the depth
value with a unit of mm. Based on the Berkeley multi-modal
human database (MHAD), the foreground may be extracted
by setting e[800, 900]. In alternative embodiments, other
settings may be utilized to extract the foreground. For
example, if object 104 is a human body, the position of the
joints of the human’s skeleton may determine the depth
range for foreground extraction.

Each foreground extracted depth image then may be used
to generate three 2D projected maps corresponding to the
front, side, and top views of the shape detected by the depth
sensor 108, denoted by map, where v&{f;s,t}. For a point
(x,y,z) in the depth image with z denoting the depth value in
a right-handed coordinate system, the pixel values in the
three projected maps (map, map,, map,) are indicated by z,
X, and y, respectively. For each projection view, the absolute
difference between two consecutive projected maps may be
accumulated through an entire depth video sequence form-
ing a DMM. Specifically, for each projected map, the motion
energy is calculated as the absolute difference between two
consecutive maps. For a depth video sequence with N
frames, the depth motion map DMM,, is obtained by stack-
ing the motion energy across an entire depth video sequence
as follows:

DMM,=%,,_ " imap,?*'~map,?| (13)

where q represents the frame index, and map,? the projected
map of the qth frame for the projection view v. In some
embodiments, to keep the computational cost low, only the
DMM generated from the front view, i.e. DMM,, is used as
the depth feature; however, in alternative embodiments
additional and/or different DMMs may be utilized. A bound-
ing box may be set to extract the non-zero region as the
region of interest (ROI) in each DMM,. The ROI extracted
DMM,is denoted as DMM',. Since DMM',of different video
sequences may have different sizes, bicubic interpolation
may be used to resize all DMM',to a fixed size in order to
reduce the intra-class variations.

Next, an inertial feature may be extracted from the signal
representative of the measured unit of inertia by DMM
classification logic 306. Each inertia sensor 106 sequence
(e.g., accelerometer sequence) may be partitioned into N
temporal windows. Statistical measures, including mean,
variance, standard deviation, and root mean square, may be
computationally efficient and useful for capturing structural
patterns in motion data. Therefore, these four measures may
be computed along each direction in each temporal window.
In alternative embodiments, only some of these measures
may be computed. For each inertial sensor 106, concatenat-
ing all measures from N, windows results in a column
feature vector of dimensionality 4x3xN_.

DMM classification logic 306 then may perform feature-
level fusion of the data from the inertial sensor 106 and the
depth sensor 108. If U={u,},,” in R % (d,-dimensional
feature space) and V={v,},_," in R %2 (d,-dimensional fea-
ture space), they represent the feature sets generated, respec-
tively, from the depth sensor 108 and the inertial sensor 106
for n training action samples. Column vectors u, and v, may
be normalized to have the unit length. Then, the fused
feature set may be represented by F={f,},_,” in R “*% with
each column vector being f;=[u,”,v,”]7. The fused feature set
then may be fed into a classifier such as a sparse represen-
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tation classifier (SRC), a collaborative representation clas-
sifier (CRC), and/or and HMM classifier for classification of
the type of movement.

SRC may classify measured movements of object 104
into a type of movement. The idea is to represent a test
sample according to a small number of atoms sparsely
chosen out of an over-complete dictionary formed by all
available training samples. Considering C distinct classes
and a matrix X={x,},_,"€R *" formed by n dimensional
training samples arranged column-wise to form the over-
complete dictionary. For a test sample yER ¢, y may be
expressed as a sparse representation in terms of matrix X as
follows:

y=Xa (14)

where a is a nx1 vector of coefficients corresponding to all
training samples from the C classes. o cannot directly be
solved for because equation (14) is typically underdeter-
mined. However, a solution can be obtained by solving the
following 1, -regularized minimization problem:

arg mi (15)

~ in 2
b= Ly = Xollz +Alledl; -

here A is a regularization parameter which balances the
influence of the residual and the sparsity term. According to
the class labels of the training samples, o can be partitioned
into C subsets a=[a;, 0y, . . ., o] with o, €L, 2, ..., C)
denoting the subset of the coefficients associated with the
training samples from the jth class (i.e. X)). After coeflicient
partitioning, a class-specific representation, ¥,, may be com-
puted as follows:

i y=X,0y (16)
The class label of y can be identified by comparing the
closeness between y and §; via:

arg min (17

class(y) =

jeila ..oV

, C}

where r(y)=lly-9ll, indicates the residual error. Thus the
SRC Algorithm may be expressed as:

Input: Training samples {x,},_,"ER ¥ class label w,
(used for class partitioning), test sample yER %, A, C
(number of classes) Calculate ¢ via 1,-minimization of
equation (15)

for all j€{1, 2, ..., C} do
Partition X a, )

Calculate £,(y)=lly-¥l=lly-X,ctl

end for

Decide class(y) via equation (17)

Output: class(y)

CRC may also classify measured movements of object
104 into a type of movement. CRC is the collaborative
representation (i.e., the use of all the training samples as a
dictionary, but not the 1,-norm sparsity constraint) to
improve classification accuracy of a measured movement.
The 1,-regularization generates comparable results but with
significantly lower computational complexity. The CRC
swaps the 1, penalty in equation (15) with an 1, penalty, i.e.

arg mi (18)

A _ = =X 2 o) 2
= ly=Xaly+dlal;
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The 1,-regularized minimization of equation (18) is in the
form of the Tikhonov regularization, thus, leading to the
following closed form solution:

a=(XTx+60) X7y 19
where IER " denotes an identity matrix. The general form
of the Tikhonov regularization involves a Tikhonov regu-
larization matrix I'. As a result, equation (18) can be
expressed as:

arg mi: (20)

& = in = Xo|)? +0T3
= Iy = Xall; + 6l

The term I'" allows the imposition of prior knowledge on the
solution, where the training samples that are most dissimilar
from a test sample are given less weight than the training
samples that are most similar. Specifically, the following
diagonal matrix 'ER " is considered:

Ly =il .. 0
= : :
0 ey =2l

The coeflicient vector & then may be calculated as follows:

@D

a=(XTx+0rT) 1 x7y (22)

DMM classification logic 306 may also perform decision-
level fusion of the data from the inertial sensor 106 and the
depth sensor 108. For C action classes and a test sample y,
the frame of discernment is given by ©={H,, H,, . . ., H.},
where H: class(y)=j, JE{1, 2, . . ., C}. The classification
decision of the classifiers SRC or CRC is based on the
residual error with respect to class j, r(y) using equation
(17). Bach class-specific representation ¥, and its corre-
sponding class label j constitute a distinct item of evidence
regarding the class membership of y. If y is close to §;
according to the Buclidean distance, for small r(y), it is most
likely that H, is true. If r(y) is large, the class of §; will
provide little or no information about the class of y. This
may be represented by a basic probability assignment (BPA)
over O defined as follows:

m(H|5)=pe(+,(7) (23)
m(O17)=1-Be,(r,(») (24
m(DIy)=0,¥yDE2°{0,H;} (25)

where 8 is a parameter such that 0<f<l, and ¢, is a
decreasing function satisfying these two conditions:

9;0)=0 26)

lim, (1,090 @n

However, as there may exist many decreasing functions
satisfying the two conditions listed in equations (26) and
(27), the following @, may be chosen:

P )=e e’
with ¢, being a positive parameter associated with class j. To

gain computational efficiency, y, may be set to 1 which
makes @; a Gaussian function:

)=

Since there are C class specific representations s, the final
belief regarding the class label of y may be obtained by

28)

29)
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combining the C BPAs using the Dempster’s rule of com-
bination. The resulting global BPA, m, is:

1 (30)
mg(Hj) = K—O(l -1 —ﬁ'¢j(rj(y))})l_[ L= B0k
pj
pel, ... ,C}
e BD
mg(©) = K_Oﬂ (1= B3 (rito)
where K, is a normalization factor:
Ko=Zms T {1-B (7500 }+(1-OTL {1~ By (7
o)} (32

To effectuate the decision-level fusion, SRC or CRC is first
applied to the depth feature set U and inertial feature set V,
respectively. Therefore, two corresponding global BPAs,
m,, 1 and m,, 2, are generated. The combined BPA from m,,
1 and m,, 2 then may be obtained via the Dempster-Shafer
Theory. The class label of a new test sample is determined
by which corresponds to the maximum value of Bel(H), (i.e.
max(Bel(H,))).

FIG. 7 shows an illustrative flow diagram of a real time
movement recognition method 700 utilizing DMM classifi-
cation logic 306 in accordance with various embodiments.
Though depicted sequentially as a matter of convenience, at
least some of the actions shown can be performed in a
different order and/or performed in parallel. Additionally,
some embodiments may perform only some of the actions
shown.

The method 700 begins in block 702 with starting the
system. In block 704 a decision is made as to whether action
and/or movement of the object 104 has begun. If not, the
method 700 continues determining whether action and/or
movement of the object 104 has begun until it does begin.
If action and/or movement of the object 104 has begun, then
the method 700 continues in block 706 with recording
inertial sensor data and calculating the DMM as discussed
above. The method 700 continues in block 708 with deter-
mining whether the action and/or movement of the object
104 has ended. If not, the method 700 continues in block 706
with further recording inertial sensor data and calculating
the DMM as discussed above. However, if the action and/or
movement of the object 104 has ended in block 708, then the
method 700 continues in block 710 with extracting the
inertial feature set from the signal representative of the
measured first unit of inertia. In block 712, the method 712
continues with classifying and/or determining the type of
movement of the object 104. The method continues in block
704 with determining whether another action and/or move-
ment of the object 104 has begun. In this way, DMM
classification logic 306 continually and in real time performs
movement recognition.

Returning to FIG. 3, processor 202 may also include
testing logic 308. Testing logic may be configured to test
and/or evaluate tests, utilizing the classifications and/or
types of movements determined by single HMM classifica-
tion logic 302, multi-HMM classification logic 304, and/or
DMM classification logic 306. For example, FIG. 8 shows
an illustrative flow diagram of a fitness test method 800
utilizing movement recognition system 100 that may be
evaluated by testing logic 308 in accordance with various
embodiments. Though depicted sequentially as a matter of
convenience, at least some of the actions shown can be

10

15

25

30

40

45

55

65

14

performed in a different order and/or performed in parallel.
Additionally, some embodiments may perform only some of
the actions shown.

The method 800 begins in block 802 with instructing
and/or guiding a subject to position an object in a proper
position. For example, the object may be a human, and the
instructions provided to the human may be to properly
position the human in the correct position to perform a
fitness test. Similarly, in block 804, the method 800 contin-
ues with instructing the subject to pose the object in a proper
position. Continuing the previous example, the subject may
need to pose properly to perform the test. In block 804 a
determination is made as to whether the object is posed
properly. If the object is not posed properly, the method 800
continues in block 804 with again instructing the subject to
pose the object in a proper position. However, if the subject
is posed properly, then the method continues in block 808
with instructing the subject to sit down. In block 810, the
method continues with determining whether the subject is in
a seated position. If the subject is not in a seated position, the
method 800 continues in block 808 with again instructing
the subject to sit down. However, if the subject is in the
seated position, then the method 800 continues in block 812
with setting the movement counter to 0 and causing the
inertial sensor and depth sensor to record data for x seconds
(e.g., for thirty seconds).

In block 814, utilizing the results from single HMM
classification logic 302, multi-HMM classification logic
304, and/or DMM classification logic 306, the method 800
continues with determining whether the subject is perform-
ing the correct type of movements and/or movement clas-
sifications. This may be accomplished by comparing the
classified movement type performed by the subject with a
predefined intended movement type. If the subject is not
performing the correct type of movements and/or movement
classifications, then the method 800 continues in block 816
with giving a warning to the subject and restarting the test.
The method then continues back in block 812 with setting
the movement counter to 0. However, if in block 814 a
determination is made that the subject is performing the
correct type of movements and/or movement classifications,
then the method 800 continues in block 818 with counting
the number of correctly completed movements. In block
820, the method 800 continues with determining whether x
seconds have been completed. If not, then the method
continues in block 814 with determining whether the subject
is properly completing the correct type of movements and/or
movement classifications. However, if in block 820 a deter-
mination is made that x seconds have been completed, then
the test stops in block 822. Method 800 is just one of many
tests and/or applications that may be performed utilizing
testing logic 308 and the movement recognition of single
HMM classification logic 302, multi-HMM classification
logic 304 and/or DMM classification logic 306.

The above discussion is meant to be illustrative of the
principles and various embodiments of the present inven-
tion. Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims
be interpreted to embrace all such variations and modifica-
tions.

The invention claimed is:

1. A movement recognition system, comprising:

an inertial sensor coupled to an object and configured to
measure a first unit of inertia of the object;
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a depth sensor configured to measure a three dimensional
shape of the object using projected light patterns and a
camera; and

a processor configured to receive a signal representative
of the measured first unit of inertia from the inertial
sensor and a signal representative of the measured
shape from the depth sensor and to determine a type of
movement of the object based on the measured first unit
of inertia and the measured shape utilizing a classifi-
cation model,

wherein the processor is configured to:
compare the type of movement with a predefined

intended movement type:

issue a warning in response to the type of movement
not matching the predefined intended movement
type; and

count a number of correctly completed movements in
response to the type of movement matching the
predefined intended movement type.

2. The movement recognition system of claim 1, wherein
the processor is further configured to determine the type of
movement of the object by:

training a plurality of Hidden Markov models (HMMs),
each of the plurality of HMMs corresponding to a
particular type of movement;

calculating a likelihood of probability for each of the
plurality of trained HMMSs based on the signal repre-
sentative of the measured first unit of inertia and the
signal representative of the measured shape; and

selecting the type of movement corresponding to the
trained HMM having the highest likelihood of prob-
ability.

3. The movement recognition system of claim 2, wherein
the processor is further configured to train each of the
plurality of HMMs by:

initializing HMM parameters including an HMM prob-
ability and a transition matrix;

determining an observation sequence of the particular
type of movement for the particular HMM being
trained;

calculating a probability of the observation sequence; and

performing a Baum Welch reestimation of the probability
of the observation sequence to update the HMM.

4. The movement recognition system of claim 1, wherein:

the inertial sensor is further configured to measure a
second unit of inertia of the object; and

the processor is further configured to receive a signal
representative of the measured second unit of inertia
from the inertial sensor and to determine the type of
movement of the object based on the measured second
unit of inertia.

5. The movement recognition system of claim 4, wherein
the processor is configured to determine the type of move-
ment of the object by:

training:

a first plurality of Hidden Markov models (HMMs),
each of the first plurality of HMMs corresponding to
a particular type of movement for the measured first
unit of inertia;

a second plurality of HMMs, each of the second
plurality of HMMs corresponding to the particular
type of movement for the measured second unit of
inertia; and
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a third plurality of HMMs, each of the third plurality of
HMMs corresponding to the particular type of move-
ment for the measured shape;

calculating:

a first likelihood of probability for each of the first
plurality of HMMs based on the signal representative
of the measured first unit of inertia;

a second likelihood of probability for each of the
second plurality of HMMs based on the signal rep-
resentative of the measured second unit of inertia;
and

a third likelihood of probability for each of the third
plurality of HMMs based on the signal representative
of the measured shape;

pooling together the first, second, and third likelihood of

probabilities to generate an overall probability for each

of the first, second, and third pluralities of HMMs; and
selecting the type of movement corresponding to the
trained HMM having the highest overall probability.

6. The movement recognition system of claim 5, wherein
the processor is further configured to pool the first, second,
and third likelihood of probabilities by:

multiplying the first likelihood of probability by a first

weight to generate a weighted first likelihood of prob-

ability, the second likelihood of probability by a second
weight to generate a weighted second likelihood of

probability, and the third likelihood of probability by a

third weight to generate a weighted third likelihood of

probability; and

adding the weighted first, weighted second, and weighted

third likelihood of probabilities.

7. The movement recognition system of claim 1, the
processor is further configured to determine the type of
movement of the object by:

extracting a depth feature set from the signal representa-

tive of the measured shape;

extracting a inertial feature set from the signal represen-

tative of the measured first unit of inertia; and

fusing the depth feature and the inertial feature at a

decision-level.

8. The movement recognition system of claim 7, wherein
the processor is further configured to extract the depth
feature from the signal representative of the measured shape
by:

extracting a foreground containing the object from the

signal representative of the measured shape utilizing a

background subtraction algorithm to generate a fore-

ground extracted depth image;

generating three two dimensional projected maps corre-

sponding to a front, view of the foreground extracted

depth image; and

accumulating a difference between two consecutive pro-

jected maps through an entire depth video sequence to

generate a depth motion map (DMM).

9. The movement recognition system of claim 7, wherein
the processor is further configured to fuse the depth feature
and the inertial feature at a decision-level by:

applying a sparse representation classifier (SRC) or col-

laborative representation classifier (CRC) to the

extracted depth feature set and the extracted inertial
feature set to generate a first and second basic prob-
ability assignments (BPAs) respectively;

combining the first and second BPAs; and

selecting the type of movement.
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