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ABSTRACT 

 

As a side effect of fast growing informational technology, information overload 

becomes prevalent in the operation of many human-machine systems. Overwhelming 

information can degrade operational performance because it imposes large mental 

workload on human operators. One way to address this issue is to improve the cognitive 

efficiency of display. A cognitively efficient display should be more informative while 

demanding less mental resources so that an operator can process larger displayed 

information using their limited working memory and achieve better performance. In order 

to quantitatively evaluate this display property, a Cognitive Efficiency (CE) metric is 

formulated as the ratio of the measures of two dimensions: display informativeness and 

required mental resources (each dimension can be affected by display, human, and 

contextual factors).  

The first segment of the dissertation discusses the available measurement 

techniques to construct the CE metric and initially validates the CE metric with basic 

discrete displays. The second segment demonstrates that displays showing higher 

cognitive efficiency improve multitask performance. This part also identifies the version 

of the CE metric that is the most predictive of multitask performance. The last segment of 

the dissertation applies the CE metric in driving scenarios to evaluate novel speedometer 

displays; however, it finds that the most efficient display may not better enhance 

concurrent tracking performance in driving. Although the findings of dissertation show 
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several limitations, they provide valuable insight into the complicated relationship among 

display, human cognition, and multitask performance in human-machine systems.  
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NOMENCLATURE 

 

CE Cognitive Efficiency 

HRV                            Heart Rate Variability 

SCR                             Skin Conductance Response 

EEG                             Electroencephalogram 

 



 

 

vii 

 

 

TABLE OF CONTENTS 

Page 

ABSTRACT .......................................................................................................................ii 

 

DEDICATION .................................................................................................................. iv 
 

ACKNOWLEDGEMENTS ............................................................................................... v 
 

NOMENCLATURE .......................................................................................................... vi 
 

TABLE OF CONTENTS .................................................................................................vii 
 

LIST OF FIGURES ............................................................................................................ x 
 

LIST OF TABLES ......................................................................................................... xiii 
 

CHAPTER I INTRODUCTION ........................................................................................ 1 

 

I.1 Information Overload .............................................................................................. 1 

I.2 Solutions to Information Overload ......................................................................... 3 
I.3 Evaluation of Display Design ................................................................................. 7 

I.4 Gap of Knowledge ................................................................................................ 16 

I.5 Research Questions and Contribution ................................................................... 17 

I.6 Dissertation Structure ............................................................................................ 20 

 

CHAPTER II MEASURING THE DIMENSIONS OF  

COGNITIVE EFFICIENCY OF DISPLAY .................................................................... 23 
 

II.1 Calculation of Information Transmitted .............................................................. 23 
II.2 Evaluating Cognitive States under Short-term Loads and Acute Stress           

Events – A Case Study of Mental Workload Measure ............................................... 26 
II.3 Detection of An Extreme Phenomenon of Mental Workload: Cognitive 

Redline ....................................................................................................................... 47 
II.4 Conclusion ........................................................................................................... 49 

 

CHAPTER III THE INITIAL INVESTIGATION OF COGNITIVE EFFICIENCY ..... 50 
 

III.1 The First Version of Cognitive Efficiency Metric ............................................. 51 
III.2 The Initial Investigation of CE Metric ............................................................... 53 

III.3 Conclusion .......................................................................................................... 67 



 

 

viii 

 

 

 

Page 

 

CHAPTER IV THE RELATIONSHIP BETWEEN COGNITIVE EFFICIENCY 
AND MULTITASK PERFORMANCE ........................................................................... 68 

 

IV.1 The Modified Version of Cognitive Efficiency ................................................. 68 

IV.2 Investigating the Relationship Between Cognitive Efficiency and Multitask 

Performance ............................................................................................................... 72 
IV.3 Conclusion ......................................................................................................... 98 

 

CHAPTER V INVESTIGATING A SPECIAL DISPLAY DIMENSION:               

BEAT PATTERN ............................................................................................................ 99 

 

V.1 The Definition of Beat Pattern ............................................................................ 99 
V.2 A Case Study of the Perception of Haptic Beats ............................................... 103 

V.3 Conclusion ......................................................................................................... 117 
 

CHAPTER VI MEASURING THE COGNITIVE EFFICIENCY OF                    

NOVEL SPEEDOMETER DISPLAYS ......................................................................... 119 

 

VI.1 Measuring the Cognitive Efficiency of Novel Speedometer Displays ............ 119 
VI.2 Conclusion ....................................................................................................... 137 

 

CHAPTER VII SUPPORTING CONCURRENT TRACKING              

PERFORMANCE USING NOVEL SPEEDOMETER DISPLAYS ............................. 139 

 

VII.1 Concurrent Tracking Performance ................................................................. 140 
VII.2 Redundancy Gain and Cost ............................................................................ 141 
VII.3 Evaluate the Effects of Novel Speedometer Displays on Concurrent     

Tracking Performance – Experiment 1 .................................................................... 142 
VII.4 Evaluate the Effects of Novel Speedometer Displays on Concurrent     

Tracking Performance – Experiment 2 .................................................................... 158 
VII.5 General Discussion ......................................................................................... 171 

VII.6 Conclusion ...................................................................................................... 172 
 

CHAPTER VIII SUMMARY AND CONCLUSION .................................................... 174 

 

VIII.1 Cognitive Efficiency Metric .......................................................................... 174 
VIII.2 Cognitive Efficiency and Multitask Performance ......................................... 178 
VIII.3 Cognitive Efficiency of Novel Speedometer Display ................................... 179 

 



 

 

ix 

 

 

 

Page 

 

REFERENCES ............................................................................................................... 183 

 

APPENDIX A ................................................................................................................ 199 



 

 

x 

 

 

LIST OF FIGURES 

 Page 

Figure 1. The framework of communication system ....................................................... 24 

Figure 2. Sample ECG reading, with R-R intervals varying from 732 ms to 845 ms ..... 28 

Figure 3. A characteristic pattern in skin conductance that constitutes a skin 

conductance “response”.. .................................................................................. 30 

Figure 4. Driving simulation environments in Toyota Economics Settlement Safety 

Research ............................................................................................................ 32 

Figure 5. Mean HRV across all driving conditions. ......................................................... 37 

Figure 6. The mean HRV under each segment of each Loaded driving condition .......... 38 

Figure 7. The mean amplitude of SCR interaction effect between sex and age............... 40 

Figure 8. The mean amplitude of SCR immediately before and after the unintended 

acceleration event ............................................................................................. 41 

Figure 9. Mean SCR-Frequency values in each segment of each loaded driving 

condition. .......................................................................................................... 43 

Figure 10. HT/TLX and HT/Att for displays with 2, 3, and 4 levels ............................... 60 

Figure 11. Interaction effect between #levels and modality on HT/Att ........................... 62 

Figure 12. Interaction effect between #levels and dimension on HT/TLX. ..................... 64 

Figure 13. Schematic of the driving scenario and example driver views while in the 

Segment 1 and Segment 2 ................................................................................. 74 

Figure 14. Four types of head-up visual displays and their respective keys .................... 76 

Figure 15. LST key and expected number of brush collisions in each lane. .................... 77 

Figure 16. Performance indices for each group in each experimental display  

condition ........................................................................................................... 84 

Figure 17. Information transmitted and report accuracy for each performance group  

in each experimental display condition ............................................................ 85 



 

 

xi 

 

 

Page 

Figure 18. NASA TLX workload indices in the lane-selection task for all participants 

in each display condition .................................................................................. 87 

Figure 19. Relationships between CE metrics and multitask performance indices for 

the highest-correlating metrics for High - and - Low groups ........................... 91 

Figure 20. Graphical representation of amplitude-modulated “beats” ........................... 101 

Figure 21. C-2 Tactors attached to the pad of middle and index fingers ....................... 106 

Figure 22. Response accuracy for each frequency difference and body location in 

Group 1 ........................................................................................................... 110 

Figure 23. Response accuracy for each sex and body location in Group 1. ................... 110 

Figure 24. The nine virtual auditory locations surrounding the head and the eight 

tactor locations on the lower back .................................................................. 122 

Figure 25. Lane deviation between wind and sex conditions ........................................ 130 

Figure 26. The informativeness index of each novel speedometer display.................... 131 

Figure 27. NASA TLX across all experimental conditions ........................................... 132 

Figure 28. NASA TLX between wind and sex conditions. ............................................ 133 

Figure 29. The cognitive efficiency of each novel speedometer display ....................... 134 

Figure 30. Driving simulation scenario, with the ambient-visual display projected to 

the background screen behind the monitor. .................................................... 144 

Figure 31. Spatial locations of tactors on the inside back of a compression shirt.......... 147 

Figure 32. Speed deviation for each experimental condition. ........................................ 151 

Figure 33. Lane deviation for each experimental condition ........................................... 152 

Figure 34. The Acceptable Performance % for each experimental condition................ 153 

Figure 35. The ranking of overall preference for each experimental condition ............. 155 

 



 

 

xii 

 

 

Page 

Figure 36. The nine virtual auditory locations surrounding the head and the eight 

tactor locations on the lower back .................................................................. 161 

Figure 37. The speed deviation of baseline condition in both experiments. .................. 164 

Figure 38. Speed deviation across all experimental conditions ..................................... 165 

Figure 39. Lane deviation across all experimental conditions ....................................... 166 

Figure 40. Acceptable Performance % across all experimental conditions ................... 167 

 



 

 

xiii 

 

 

LIST OF TABLES 

 Page 

Table 1   Stimulus-Response Confusion Matrix .............................................................. 25 

Table 2   Participant Demographics of the Simulation Study .......................................... 31 

Table 3   The Description of each Driving Condition in the Simulation Study ............... 34 

Table 4   Post-hoc Results of Driving Condition and Age on HRV ................................ 37 

Table 5   Post-hoc Results of Significant Main Effects on HRV in Loaded Conditions . 39 

Table 6   Post-hoc Results for Significant Main Effects on SCR-Frequency .................. 43 

Table 7   Four Displays Evaluated in the Present Study .................................................. 54 

Table 8   Levels of Each Perceptual Dimension for each Display ................................... 55 

Table 9   Main Effect of #levels on Primary Dependent Measures ................................. 59 

Table 10   Main Effect of Modality on Primary Dependent Measures ............................ 61 

Table 11   Main Effect of Dimension on Primary Dependent Measures ......................... 63 

Table 12   List of Physiological Measures Used in Required Mental Resources 

Quantifications ............................................................................................... 80 

Table 13   Clustering of High and Low Groups ............................................................... 82 

Table 14   Measures of Mental Workload among All Experimental Conditions ............. 86 

Table 15   Diplay Effect and Group Effect on Cognitive Efficiency Metrics .................. 89 

Table 16   Pearson Correlation Coefficients between CE Metrics and Multitask 

Performance Indices ....................................................................................... 90 

Table 17   The Summary of Dimensions of Visual, Auditory, and Haptic Displays ....... 99 

Table 18   Grouping of Paired Presentation Locations .................................................. 104 

Table 19   The Nine Presentations of each Display and Their Locations and Distances 

to the Center ................................................................................................. 124 



 

 

xiv 

 

 

Page 

Table 20   The Parameters of Displays which Engaged Different Modalities ............... 125 

Table 21   The Score of each Question .......................................................................... 127 

Table 22   Mapping Speed to the Three Novel Displays................................................ 145 

Table 23   Average Ratings for each Type of Display ................................................... 154 

Table 24   The Nine Speed Levels and Their Respective Auditory and Tactile  

Presentations ................................................................................................. 159 

Table 25   The Average Ratings for each Display ......................................................... 168 



 

 

1 

 

 

CHAPTER I 

INTRODUCTION 

 

I.1 Information Overload 

The operational success of complex human-machine systems largely depends on 

the machines’ capacity to convey task-relevant information to human operators. For 

example, a well-designed car should be able to effectively present drivers with various 

types of information, such as speed on the speedometer, planned route on the GPS, traffic 

next to and behind in the rear view mirrors and abnormal vehicle states by the warning 

lights on the vehicle panel. The display design is critical for human operators to assess the 

ongoing state of human-machine systems and satisfactorily perform multiple concurrent 

tasks. 

Influenced by the fast-growing computational technologies, the displays in modern 

human-machine systems tend to present more and more data in sophisticated formats (e.g., 

the control panel of Tesla electric car). Since human only has limited working memory 

(Simon, 1999), the displayed information could be more than what our cognitive systems 

can handle, thus causing a challenging problem: information overload. Besides 

overwhelming information, ineffective display design, such as those show clutter 

(Moacdieh & Sarter, 2015), may also result in information overload because it’s hard for 

human to distribute attention precisely to the target message among rich data set on poorly-

designed displays (Woods, Patterson, & Roth, 2002). Given the gap between 
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exponentially-growing display technologies and ‘stone-age’ human brain, information 

overload becomes a generic problem that resists many solutions. 

In addition to display and human factors, contextual factors can also contribute to 

information overload. In human-machine systems, the contextual factors mainly refer to 

physical energy that interrupt human attention, such as ambient lights and sounds. In larger 

sociotechnical systems, the contextual factors also include managerial factors, such as task 

procedure (e.g., too many steps of completing an operational task) and organizational 

design (e.g., heavy collaborative work among multiple operators) (Eppler & Mengis, 

2004). Considering all relevant factors, information overload should be viewed 

systematically as an emergent phenomenon generated by the interaction of human, 

display, and contextual factors. 

As a prevalent problem, information overload exists in a wide range of scenarios, 

including surface transportation, aviation, healthcare operation, and business 

management, being called in multiple names, such as data overload (Woods, Patterson, & 

Roth, 2002), knowledge overload (Hunt & Newman, 1997), and cognitive overload 

(Vollmann, 1991). However, for the sake of content consistency the dissertation stayed at 

using the name information overload. 

Performance degradation is a critical negative consequence of information 

overload. According to the research of cognitive engineering, overwhelming information 

imposes a large amount of mental workload beyond the cognitive redline (e.g., the point 

when mental workload surpasses available mental resources), thus leading to worse task 
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performance (Wickens, Hollands, Banbury, & Parasuraman., 2015), such as limited 

information search strategies, interrupted data analysis and organization, and lower-

quality decision making and task performance. In order to overcome these negative 

consequences, it’s critical to detect cognitive redline promptly and develop effective 

countermeasures to information overload.  

 

I.2 Solutions to Information Overload 

Because information overload is a systemic problem contributed by multiple 

factors, we should look into its solution from various perspectives by take into account 

four existing methods: training personnel, activating external automation, redesigning 

work environment, and redesigning display.  

Personal Training, the first method, helps operators to build schema in their long-

term memory to automate information retrieval (e.g., LaBerge & Samuels, 1974) and 

enables operators to adopt efficient information processing strategies (e.g., Kirsh, 2000). 

The second method external automation can aid human task performance under high 

workload conditions by actively selecting data, analyzing information, making decisions 

and selecting actions, and controlling process (e.g., Kaber & Endsley, 2004; Lee & See, 

2003; Parasuraman, Sheridan, & Wickens, 2000). The work environments redesign can 

eliminate redundant or noisy data in the background, therefore reducing the information 

load (e.g., Chaudhury, Mahmood, & Valente, 2009; Nachreiner, 1995).  
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The dissertation focuses on the fourth methods: display redesign. As the bridge 

between human and machine, an ideal display should be able to convey information 

effectively while requiring less mental efforts for information processing. Following this 

principle, several display designs were created in the human factors domain, including 

ecological interface design (EID), multimodal display design, and ambient display design.  

 

I.2.1 Ecological Interface Design 

EID is an analytical framework based on abstraction hierarchy analysis (AH) and 

skills, rules, knowledge taxonomy (SRK). AH analysis describes the constraints in a work 

domain into five abstraction levels (i.e., functional purpose, abstract function, general 

function, physical function, and physical form) and three levels of details (i.e., whole, sub 

system, and component). SRK describes the mechanisms of human performance into three 

different levels (Rasmussen, 1999; Vicente, 2002; Vicente & Rasmussen, 1992). They are 

skill-based behavior (i.e., parallel, automated, and direct information processing and 

performance), rule-based behavior, (i.e., performance associates with familiar information 

that regulates human intention and action), and knowledge-based behavior (i.e., serial and 

analytical problem solving process to cope with unfamiliar and unanticipated situations).  

By adopting the results of abstraction hierarchy analysis, EID encourages the use 

of skill- and rule-based behavior to reduce mental workload and supports knowledge-

based behavior for handing the dynamics and novelty of tasks. These characteristics of 

EID supported it application to the displays of not only small-scale systems, such as 
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neonatal intensive care medicine (Sharp & Helmicki, 1998) and auditory alarm system 

(Sanderson, Anderson, & Watson, 2000; Watson & Sanderson, 2007), but also large-scale 

sociotechnical systems, such as the nuclear power plant (Dinadis & Vicente, 1996; Lau, 

Jamieson, Skraaning Jr, & Burns, 2008).  

 

I.2.2 Multimodal Display Design 

A multimodal display transmits information into our brain via multiple sensory 

channels (e.g., visual, auditory, and tactile channels) so that it can distribute information 

processing demands among parallel modalities. This property of multimodal display 

produces several types of benefits on information processing activities, such as synergy 

(i.e., the merging of information refers to various aspects of the same event or process), 

redundancy (i.e., the use of more than one modalities to enhance information processing), 

disambiguation (i.e., the event is clarified by information from different modalities), 

increased bandwidth of transformed information, and assistance to attention management 

(e.g., Oviatt, 2002; Sarter, 2002; Sarter, 2006). These cognitive benefits of multimodal 

display also improve task performance in many work environments. For example, the 

advanced navigational display that engaged visual and auditory modalities, compared to 

that only involved visual modality, shortened drivers’ reaction time in the navigation task 

and reduced their errors in the identification task (Liu, 2001). Therefore, multimodal 

display can be a powerful tool to support cognitive and operational performance under 

information overload conditions.  
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In addition, ‘multi-code’ display is modified from multimodal display and can also 

strengthen human information processing capacity and operational performance by 

encoding information into multiple dimensions of a display modality, such as spatial 

location and rhythm pattern of tactile modality (Adroin & Ferris, 2015). A dimension here 

is defined a sensory feature of modality.  

 

I.2.3 Ambient Display Design 

The design of ambient display is inspired by the idea of “calm” technology which 

is introduced in the ubiquitous computing literature (Weiser & Brown, 1996). An ambient 

display should be able to ‘quietly’ communicate information to the human at the 

individual, shared, and public levels (Maclean, 2009). It has been illustrated in a number 

of interesting examples, such as ambientRoom, which used water ripples, light patches, 

and natural soundscapes to convey ambient information (Ishii et al., 1998); breakaway, 

which is a small sculpture that turns into a slouching pose (when people sit for too long) 

to remind people that they need a stand-up break (Jafarinaimi, Forlizzi, Hurst, & 

Zimmerman, 2005); a scent diffuser which delivers ambient scent as notifications 

(Bodnar, Corbett, & Nekrasovski, 2004). Since it fulfills the design goals of distributing 

information in a manner that minimally loads mental resources, ambient display design 

may be another promising way to combat information overload problem. 
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I.3 Evaluation of Display Design 

The general goals of all three display redesign can be concluded as 1) improving 

display informativeness and 2) reducing mental resources required for information 

processing. However, there haven’t been conclusive answers to how we can quantify the 

extent to which display design achieve the two goals. This part of Chapter I discussed the 

existing theories and methods that measure display informativeness and required mental 

resources.  

 

I.3.1 Display Informativeness Measure 

Display informativeness reflects the relationship between display and viewer 

(Woods, 2002) because it is not only affected by display but also constrained by human 

information processing ability. Since the displayed information can alter the state of each 

stage of human information processing (i.e., sensation/perception, cognition, and 

behavior), the level of human response at each stage may be used to illustrate the level of 

display informativeness.  

 

Sensation/Perception  

Display informativeness strongly associates with eye movement pattern (Woods, 

2002). This response of visual sensation/perception can be recorded and analyzed by the 

current eye tracking technologies. For example, the effectiveness of computer display in 

a visual search task was measured by the length of scanpath and the location and duration 
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of eye fixation (Goldberg & Kotval, 1999). Among these variables of eye movement, the 

length of scanpath was more sensitive to display effectiveness. It was shorter when the 

display presentation was well designed but it became longer as the information was poorly 

organized. Therefore, the eye movement pattern may be a promising indicator of display 

informativeness at the sensory/perceptual stage. However, in addition to visual response, 

it’s difficult to assess the sensory/perceptual response in other modalities (e.g., auditory 

and tactile) with the existing technologies.  

 

Cognition 

Display informativeness can significantly influence cognitive activities, such as 

memory recall, monitoring, and decision making. For example, the display that contained 

more information (i.e., additional functional variables) about the state of a thermal-

hydraulic system led to better memory recall of the subset of variables that were most 

critical to the diagnosis of the current system state (Vicente, 1992). For another example, 

the less informative displays on the control panel of nuclear power plant (e.g., showing 

unreliable indicator, failed meter, few emergent features, and unclear reference values) 

enlarged the difficulty of monitoring the nuclear power plant (Mumaw, Roth, Vicente, & 

Burns, 2000).  

One way to evaluate human cognitive performance during the human-machine 

interaction is cognitive task analysis (CTA) (Schraagen, Chipman, & Shalin, 2000), which 

provides complete descriptions of cognitive process and decisions (Clark, Feldon, van 
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Merriënboer, Yates, & Early, 2008) and better insight into the needs of information from 

displays (Woods, Wise, & Hanes, 1981). This method has been applied to improve the 

interface design in complex systems, such as nuclear power plant (Carvalho, dos Santos, 

Gomes, Borges, & Guerlain, 2008; Woods, Wise, & Hanes, 1981). CTA and other similar 

analytic tools may play an important role in the evaluation of display informativeness.  

 

Behavior 

Finally, the effects of display extend to operators’ operational performance (e.g., 

tracking performance) so that display informativeness may be reflected by behavior 

measure. For example, the in-vehicle navigational display systems was evaluated by 

multiple variables of performance, such as average time to input the address of the 

destination, navigational error, and minimum number of user operations of performing a 

particular function (Antin, Dingus, Hulse & Wierwille, 1990; Ross & Burnett, 2001).  

Among various behavior responses, verbal response plays a key role in the 

measure of display informativeness. The verbal response (some studies used button 

pressing to replace verbal response) to external stimuli can be used to calculate 

information transmitted (i.e., the amount of information that is successfully transmitted 

from displays to human observers regarding the lost information during the transition), 

which is superior to other indicators in terms of its capacity to illustrate the quantity of 

displayed information. In the calculation of information transmitted, the verbal response 

provides input (i.e., event probability) into the mathematical formula (built upon the 
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concept entropy) to quantify the discrete information transmitted (Miller, 1954; Shannon, 

1948), which has been successfully used to quantify the information displayed via 

different sensory channels, such as visual (e.g., Hsia, 1971), auditory (e.g., Hsia, 1971; 

Pollack, 1952; Pollack, 1953), and tactile (e.g., Tan, Reed, & Durlach, 2010). However, 

the event probability in the calculation can be only obtained in carefully-controlled 

experimental environments so that it’s difficult to be applied to the real-world 

environments. Moreover, it’s difficult to extend the quantitative measure of discrete 

information to continuous and mixed (discrete & continuous) information in the current 

experimental settings.   

 

I.3.2 Mental Workload Measure 

The information processing activities impose mental workload on our cognitive 

systems, as an analogy to physical workload. Mental workload is a complex concept with 

various characteristics (Xie & Salvendy, 2000) which are listed below.  

 Mental workload cannot be detected directly.  

 Mental workload can be static or dynamics over a period of time.  

 Mental workload is a multi-dimensional variable because our brain reacts to 

the perceived information in many different ways, such as memorizing, 

calculating, and reasoning.   
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 Mental workload can be affected by multiple human factors, either long-term 

factors such as cognitive capacity or short-term factors such as emotion and 

fatigue.  

 According to Cognitive Load Theory, mental workload consists of three types 

of workloads: intrinsic, extraneous, and germane (Paas, Tuovinen, Tabbers & 

van Gerven, 2003).  

There are four major categories of mental workload measures: performance 

measure, subjective self-reported measure, physiological measure, and mental modeling. 

In the early years, mental workload measures relied on the evaluation of primary and 

secondary task performance, eventually being extended to subjective self-reported 

measures. Along with the development of biotechnologies and computational 

technologies, physiological measures are becoming the primary tools to measure mental 

workload and mental modeling.    

 

Performance Measure 

Primary- and secondary- task performances (e.g., choice reaction time, memory, 

monitoring, and tracking) were used to indicate mental workload (Ogden, Levine, & 

Eisner, 1979). 
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Subjective Self-reported Measure 

This type of measure is based on questionnaires that collect participants’ subjective 

ratings and weightings to selected scales, such as NASA Task Load Index (NASA TLX; 

Hart & Starvland, 1988), Subjective Workload Assessment Technique (SWAT; Reid & 

Eggemeier, 1982), and Workload Profile (WP; Tsang & Velazquez, 1996). 

 

Physiological Measure 

Physiological measure relies on the technologies that continuously collect 

physiological data which strongly correlate with mental workload, such as hear rate 

variability, skin conductance response, and pupil diameter. 

 

Mental Modeling  

The modeling techniques simulate the cognitive activities of information 

processing and assign a ‘workload score’ to each activity. The overall mental workload is 

indicated by the sum of the scores. The well-known mental modeling techniques include 

adaptive control of thought – rational (ACT-R; Anderson, Matessa, & Lebiere, 1997), 

queueing network-model human processor (QN-MHP; Liu, Feyen, & Tsimhoni, 2006), 

and Visual/Auditory/Cognitive/Psychomotor (VACP; Aldrich, Szabo, & Bierbaum, 1989; 

McCracken & Aldrich, 1984). 

Although various mental workload measures are developed by researchers in 

different fields, there are three challenges that haven’t been overcome to date. First, no 
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single measure was found to be sensitive enough to mental states under all kinds of task 

scenarios (Matthews, Reinerman-Jones, Barber, & Abich, 2015; Mehler, Reimer, & 

Coughlin, 2009). Since mental workload is a multi-dimensional variable, a single measure 

may be sensitive to some of its dimensions but less sensitive to others (Matthews, 

Reinerman-Jones, Barber, & Abich, 2015). To build a robust mental workload measure, 

several studies proposed various ways to algorithmically combine multiple mental 

workload measures (Miyake, 2001; Ryu & Myung, 2005; Tan, Reimer, Mehler, & 

Coughlin, 2011), showing a promising improvement on the accuracy of measures.  

Secondly, it’s difficult to detect mental overload in a timely manner. Mental 

overload happens when mental workload reaches cognitive redline. Thus, the detection of 

cognitive redline is critical to stop mental overload. The existing detection methods rely 

on the degradation of task performance and high self-reported ratings of mental workload, 

but they could be less reliable or sensitive. However, some studies showed that the upper 

or lower limit of the arousal of sympathetic nerve systems may strongly associate with 

cognitive redline, such as the maximum pupil diameter (Juris & Velden, 1977), the 

minimal prefrontal activation reported by fNIRS (Durantin, Gagnon, Tremblay, & Dehais, 

2014), and the lowest heart rate variability (Rodriguez Paras, Yang, Tippey, & Ferris, 

2015). These findings suggest the physiological patterns as useful indicators of cognitive 

reline, but the idea needs further validation. 
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I.3.3 Cognitive Efficiency Measure 

The above measures of either display informativeness or imposed mental workload 

may not provide sufficient insight into display impacts. For example, a display that 

conveys larger amount of information is not necessarily the better display because it may 

also impose higher mental workload on human operators. Therefore, it is necessary to 

evaluate a display regarding its effectiveness and cost.   

Efficiency is a proper display property that can take into account both display 

effectiveness and cost. According to the Processing Efficiency Theory, processing 

efficiency (similar to display efficiency) is defined as the ratio of performance 

effectiveness to mental effort, in which performance effectiveness is denoted by the 

quality of performance (Eysenck & Calvo, 1992; Eysenck, Derakshan, Santos, & Calvo, 

2007). However, the relevant studies haven’t proposed a quantitative way to measure each 

aspect of processing efficiency. The goal of these studies was to understand the anxiety 

effect on processing efficiency and found that anxiety increased working memory load 

(e.g., Fales, et al., 2008), reduced mental storage and impaired processing efficiency 

(Eysenck & Calvo, 1992).   

In addition to processing efficiency, the similar concept of cognitive efficiency has 

been studied in many other domains, such as graphic design (Carner & Larking, 1989) and 

educational psychology (Clark, Nguyen, & Sweller, 2011) , but it is usually indicated by 

how fast people complete the tasks. For example, the cognitive efficiency in the processing 

of graphics was indicated by the response time (Carner & Larking, 1989). The efficiency 
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of visual processing in driving simulation task was denoted by the search rate or response 

time (Murray & Jannelle, 2003; Wilson, Smith, Chattington, Ford, & Marple-Horvat, 

2006). However, response speed, as a single-scale indicator, provides limited insight into 

each component of cognitive efficiency.  

Finally, the research on instructional efficiency (i.e., efficiency of instructional 

design) provided the measure of each aspect of efficiency: task performance (as 

instructional effect) and cognitive load (as instructional cost) (Paas, Tuovinen, Tabbers & 

van Gerven, 2003; Paas & van Merriënboer, 1993). In the computation of instructional 

efficiency, task performance is indicated by the exam score and cognitive load is measured 

by a single-scale self-reported rating. The exam score and self-reported rating can be 

combined in two ways. In the first way, the two types of measures generated the x-y 

dimensions of a two-dimensional Euclidean plane. Instructional efficiency was indicated 

by the perpendicular distance from a point on the plane to the diagonal which represents 

zero efficiency (e.g., Paas, Touvinen, Tabbers, &Van Gerven, 2003; Paas & van 

Merriënboer, 1993). In the second combination, instructional efficiency was calculated as 

the ratio of task performance to cognitive load (Kalyuga & Sweller, 2005).  

The studies on instructional efficiency was the first effort to develop the 

quantitative evaluation of both dimensions of efficiency. The measures of instructional 

efficiency have been validated in multiple learning scenarios, including example-based 

training, older learners’ instruction, multimedia learning, and computer-supported 

collaborative learning (Kirschner, 2002). Similar methods have also been used to evaluate 
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the efficiencies of various training programs (Fiore, Scielzo, Jentsch, & Howard, 2006; 

Salden, Paas, Broers, & van Merriënboer, 2004) and information portals such as websites 

(lo Storto, 2014).  

 

I.4 Gap of Knowledge 

The previous studies only evaluated the cognitive efficiency of instructional 

materials (e.g., Paas, Touvinen, Tabbers, &Van Gerven, 2003), which mainly engaged 

learning activities, or e-commence websites, which required limited motoric response 

(e.g., lo Sortor, 2013). This dissertation, however, aims to evaluate displays that support 

real-time operational task in human-machine systems, which is under more complicated 

context.   

In addition to using different context, the dissertation also aims to address the 

limitations of current cognitive efficiency measures. First, the existing measures used task 

performance to indicate display effectiveness, but task performance might not be sensitive 

enough to display informativeness because it also largely affected other factors, such as 

individual differences in motor skill. Moreover, performance measures, such as task-

complete time, response accuracy, and test score, cannot illustrate the quantity of 

displayed information which is a critical aspect of quantitative evaluation of display. 

 Second, the single-dimension rating scale used in instructional efficiency measure 

may not be sensitive enough to mental workload in multitasking condition. Also, the 
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subjective measure cannot provide continuous and high-resolution monitoring of mental 

workload during the task.  

Third, the existing cognitive efficiency measures did not consider the effects of 

relevant contextual factors on them.  

 

I.5 Research Questions and Contribution 

To fill the gap of knowledge, the dissertation aims to answer five research 

questions. 

 

I.5.1 How Can We Measure Each Dimension of Cognitive Efficiency of Display? 

Different from instructional display or ecommerce website, the displays studied 

here are those which support operational performance in human-machine systems. Given 

that cognitive efficiency consists of two dimensions (display informativeness and imposed 

mental workload), the first question aims to determine the effective measures of each 

dimension. This question will be answered by the examples which apply the measures of 

display informativeness or mental workload and provide insight into the advantages and 

limitations of each measure.  
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I.5.2 How Can We Measure the Cognitive Efficiency  

of Basic Displays in Single-Task Condition? 

In this question, the basic displays are a visual display that present RGB colors and 

an auditory display that delivers pure tones. The colors and pure tones vary in intensity 

(brightness vs. loudness) or spectrum (hue vs. pitch). This question aims to validate the 

measure of displays’ cognitive efficiency under a low-workload condition. Moreover, the 

study for this question can illustrate the differences in cognitive efficiency between 

modalities or dimensions. 

 

I.5.3 How Can We Construct the Cognitive Efficiency Measure  

That Is the Most Predictive of An Operator’s Multitask Performance? 

We hypothesized that display that shows higher cognitive efficiency is able to 

improve the operator’s multitask performance in human-machine systems. The study aims 

to demonstrate this hypothesis by showing the positive correlation between cognitive 

efficiency of display and multitask performance, which provides theoretical support for 

the adoption of cognitive efficiency measure. Moreover, since each dimension of 

cognitive efficiency can be measured in many ways, it’s necessary to know which of these 

measures can be combined as the cognitive efficiency measure that has the highest 

predictive power of multitask performance.   
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I.5.4 How Can We Measure the Cognitive Efficiency 

of Novel Speedometer Displays in Multitask Conditions? 

The novel speedometer displays are different from the displays studied in previous 

questions. First, the novel speedometer displays present continuous information instead of 

discrete information. Second, the novel speedometer displays engage different perceptual 

modalities, such as peripheral-visual, auditory, and tactile modalities, compared to the 

previous ones which only engaged focal vision. Third, the auditory and tactile displays 

engage the perception of more complex dimensions, such as beat pattern. The findings of 

this question will expand our understanding of cognitive efficiency of more diverse 

displays.   

 

I.5.5 How Do Novel Speedometer Displays Affect  

Concurrent Tracking Performance in Driving? 

For this question, we will explore the function of novel speedometer display on 

supporting drivers’ concurrent tracking performance. The findings of this study can 

provide valuable guidance for the display design for multitask performance under high 

workload condition. The study will also examine relationship between cognitive 

efficiency of novel speedometer display and concurrent tracking performance to see if it 

is consistent with the findings of Q3.  
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I.6 Dissertation Structure 

To answer these research questions, the dissertation covers my eight studies 

completed between 2011 and 2016. These studies are organized into three sections.  

 

I.6.1 Measurement Techniques for Cognitive Efficiency (Chapter II - III) 

In the first section, Chapter II answered Q2 by using examples to illustrate the 

measures of display informativeness and mental workload. This chapter also discussed the 

detection of cognitive redline because cognitive efficiency measure is especially important 

in high mental workload condition. Based on the measures in Chapter II, Chapter III 

proposed Cognitive Efficiency metric and initially validated it with the simple displays. 

 

I.6.2 Cognitive Efficiency and Multitask Performance (Chapter IV) 

The second section only includes Chapter IV which linked cognitive efficiency to 

multitask performance - an important topic in human factors domain - and examined the 

critical hypothesis in Q3. Moreover, this chapter determined the version of CE metric that 

was the most predictive of multitask performance.  

 

I.6.3 Cognitive Efficiency of Novel Speedometer Display (Chapter V - VII) 

Before moving into the study of novel speedometer display, Chapter V 

investigated the perception of beat pattern, which was one of the display’s special 

dimensions. In Chapter VI, five novel speedometer displays were evaluated in terms of 
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their informativeness, imposed mental workload, and cognitive efficiency. Chapter VII, 

the last chapter, applied novel speedometer displays in a practical driving scenario: 

concurrent tracking task. 
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CHAPTER II 

MEASURING THE DIMENSIONS OF 

COGNITIVE EFFICIENCY OF DISPLAY 

 

According to the literature review in Chapter I, display informativeness and 

imposed mental workload are the two critical dimensions of cognitive efficiency. This 

chapter answered the first research question (Q1) in Chapter I: how can we measure each 

dimension of cognitive efficiency of display. The first section of this chapter illustrated 

how to mathematically quantify display informativeness based on Information Theory. In 

the second section, we described a case study of mental workload measure (based on 

Toyota Economics Settlement Safety Research), which used two physiological measures 

- heart rate variability (HRV) and skin conductance response (SCR) - to evaluate drivers’ 

cognitive states under short-term loads and acute stress events. In the end, this chapter 

discussed how to use physiological measures to detect cognitive redline, which is one of 

the challenging topics for mental workload measure.  

 

                                                 

 Part of this chapter is reprinted with permission from Proceedings of the Human Factors Society Annual 

Meeting, 60, 1. Copyright 2016 by the Human Factors and Ergonomics Society. All rights reserved. 
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II.1 Calculation of Information Transmitted 

The information transmitted, which is an important indicator of display 

informativeness, can be quantified into bits based on the mathematical theory of 

communication (Information Theory; Shannon, 1948). The theory is one of the most 

important scientific theories in the 20 century. Information Theory has deeply influenced 

a wide range of domains, including electrical engineering, computer science, physics, 

philosophy, and economics.  

In the theory, the communication system consists of five parts: information source, 

transmitter, channel, receiver, and destination (See Figure 1). The information travelling 

(arrows in Figure 1) in the communication system can be roughly classified into three 

main categories: discrete, continuous and mixed (discrete & continuous). The study here 

focuses on the quantification of discrete information because it’s difficult to quantify the 

continuous and mixed information under the current experimental settings.  
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Figure 1. The framework of communication system. 

 

 

The discrete information consists of a sequence of discrete symbols (e.g., a 

sequence of letters) which appear in certain (conditional) probabilities. The probabilities 

of discrete symbols (𝑝𝑖, i represents each symbol) need to be input into entropy (i.e., 𝐻 =

−∑𝑝𝑖 𝑙𝑜𝑔 𝑝𝑖) to calculate the amount of discrete information. 

Based on the event probability and the concept of entropy, Miller (1952) showed 

a way to calculate information transmitted in the experimental settings. The example here 

explains the way of calculating information transmitted (H). Here are two types of stimuli 

(A and B) and each one presents totally 8 times to observes. Observes need to verbally 

response to each stimuli (or press corresponding buttons). The number of each S-R pair is 

listed in Table 1, which enables us calculate the joint probability of each S-R pair.  
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Table 1: Stimulus-Response Confusion Matrix 

 Response A Response B  

Stimulus A 6 2 8 
Stimulus B 1 7 8 

 7 9  
 

 

The joint probability will be input into the equation 𝐻 = −∑𝑝𝑖 𝑙𝑜𝑔 𝑝𝑖 to calculate 

the joint entropy (H(R, S) in Equation 3). In addition to conditional entropy, we also need 

to obtain the marginal probability of each response and stimuli, which is used to calculate 

the entropy of response (H(S) in Equation 1) and stimuli (H(R) in Equation 2). In the end, 

the information transmitted (mutual information; I (S: R) in Equation 4) is calculated as 

entropy to minus condition entropy. 

 

H(S)=− (
8

16
 𝑙𝑜𝑔2 (

8

16
) +

8

16
 𝑙𝑜𝑔2 (

8

16
)) = 1 𝑏𝑖𝑡𝑠                                                           (1) 

H(R)=− (
7

16
 𝑙𝑜𝑔2 (

7

16
) +

9

16
 𝑙𝑜𝑔2 (

9

16
)) = 0.99 𝑏𝑖𝑡𝑠                                                      (2) 

H(R, S)=−
6

16
 𝑙𝑜𝑔2 (

6

16
) −

2

16
 𝑙𝑜𝑔2 (

2

16
) −

1

16
 𝑙𝑜𝑔2 (

1

16
) −

7

16
 𝑙𝑜𝑔2 (

7

16
) = 1.68 𝑏𝑖𝑡𝑠    (3) 

I (S:R)=H(S)+H(R)-H(R, S)=1+0.99-1.68=0.31 bits                                                (4) 
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II.2 Evaluating Cognitive States under Short-term Loads and Acute Stress Events  

- A Case Study of Mental Workload Measure 

According to Chapter I, mental workload can be measured by numerous methods 

from several categories: subjective self-reported measure, performance measure, 

physiological measure, and mental modeling. A number of popular mental workload 

measures are summarized in Appendix 1 and described in terms of their measured 

variables, advantages, and limitations. These measures have been applied for mental 

workload management in a wide range of work environments, such as vehicle cockpit (De 

Waard, 1996), aircraft cockpit (e.g., Wilson, 2002), air traffic control station (e.g., 

Brookings, Wilson, & Swain, 1996), nuclear power plant (e.g., Jou, Yenn, Lin, Yang, & 

Chiang, 2009), surgery room (e.g., Carswell, Clarke, & Seales, 2005), and instructional 

learning environments (e.g., Wiebe, Roberts, & Behrend, 2010). 

As a case study, this section focused on two physiological measures - HRV and 

SCR – and described their applications in Toyota Economic Settlement Safety Research 

during the 2015 calendar year. HRV and SCR were applied to provide online detection of 

arousal levels of a driver’s sympathetic nervous system, which associated with the 

potentially-problematic cognitive states that are detrimental to safe driving behavior. The 

cognitive states of interest in this section were those under three types of short-term loads 

(i.e., mental, emotional, and motoric) and one acute stress event (i.e., unintended 

acceleration).  
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II.2.1 The Impact of Cognitive Loads on Physiological Arousal 

Exposure to cognitive or physical stressors will increase arousal of the human 

autonomic nervous system, which initiates the “fight or flight” response in the body and 

mind. Heightened sympathetic arousal can have a number of effects that are at times 

beneficial and at other times detrimental to the safety of the human. This heightened 

arousal generally tends to increase one’s spatial awareness of surroundings and prepare 

the human for an imminent need to move quickly. It also gives room to in-attentional 

blindness; important events are ignored since they seem unimportant to the goal.  

The sympathetically-aroused mental state can be detrimental to a modern human 

in control of complex systems such as a vehicle. Having identified ‘heightened state of 

sympathetic arousal’ as a potentially-problematic driver state, physiological indicators can 

be used to detect this state of arousal online and used to infer a problematic driver state. 

Identifying this state can then trigger an automated mitigation strategy to better support 

the driver. Because sympathetic arousal causes several physiological changes in the body, 

such as in perspiration and cardiac dynamics, physiological indicators may be used to 

measure the impact of cognitive stressors. Notably, stressors are found to strongly 

influence heart rate variability (HRV; Taelman, Vandeput, Spaopon, & Van Huffel, 2009) 

and skin conductance response (SCR; Boucsein, 2012; Shi, Ruiz, Taib, Choi, & Chen, 

2007; Villarejo, Zapirain, & Zorrilla, 2012). 
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Heart Rate Variability  

Heart rate variability (HRV) is the variance of beat-to-beat heart interval in a time 

window. By identifying corresponding points in electrocardiogram (ECG) signatures 

(such as the R-R interval) and measuring the intervals between these points in successive 

heartbeats observable in an electrocardiaogram as shown in Figure 2, the variance among 

the intervals can be calculated over a specified time window to represent the measure of 

HRV (Karim, Hasan, & Syed, 2011).. As cognitive stress levels increase, HRV tends to 

decrease; heartbeats become more regular, less variant. However, stressors can also cause 

the underlying heart rate to increase (another sympathetic nervous system response), 

which also corresponds with a substantial increase in HRV when the time window 

sampled is narrow. For this reason, HRV is generally used to determine differences in 

sympathetic arousal over larger windows of time (Task Force of the European Society of 

Cardiology, 1996). 

 

 

 

Figure 2. Sample ECG reading, with R-R intervals varying from 732 ms to 845 ms. 

Image source: Heart Rate Variability (HRV) | Polar USA (2016). 
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Skin Conductance Response 

Skin conductance response, or "galvanic skin response", is a phenomenon that 

occurs when sympathetic arousal causes the surface of the skin becomes a better conductor 

of electricity due to increased perspiration in the skin (Boucsein, 2012). Since skin 

perspiration is a function of several biological and environmental factors (including body 

and skin temperature, airflow, and humidity of the surrounding environment), absolute 

levels of skin conductance (referred to as Skin Conductance Level, SCL) are less 

informative than observations of rapid changes in skin conductance over short time 

windows. These are indicative of increased sympathetic arousal that follows from 

perception of a stress-inducing event or context. The changes in sympathetic arousal can 

be inferred by the presence of “responses”, the amplitude of those responses, and the 

frequency of their occurrence.  

Skin conductance response can be defined and analyzed in a number of different 

ways. As a first step, “responses” must be identified in the raw data. Responses can be 

identified as characteristic increases in conductance following a stimulus presentation, 

with the threshold values used to identify the occurrence of a response. Figure 3 below 

illustrates a generic response pattern in skin conductance data (Kappeler-Setz, 

Gravenhorst, Schumm, Arnrich, & Tröster, 2013). 
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Figure 3. A characteristic pattern in skin conductance that constitutes a skin conductance 

“response”. Measures of interest include SCR Amplitude, as well as the count or 

frequency of these responses over a predefined window of time (image from Kappeler-

Setz, et al., 2013). 

 

 

In the current study, we focus on two measures of skin conductance: SCR-

Amplitude and SCR-Frequency. After identifying each “response”, the amplitude of that 

response can be calculated as the change in skin conductance level observable over the 

duration of the response, which will be specified in the current research as SCR-

Amplitude. In contrast, SCR-Frequency is the count or calculated frequency of responses 

identified within a predetermined time window. 

Physiological changes occur following the perception of an event or context that 

activates the “fight or flight” response. HRV is measured over a window of time that, by 

definition, must include several heartbeats while SCR is limited in resolution primarily by 

the threshold of response, the different dynamics in the observed patterns in these two 
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measures may provide additional levels of sensitivity and specificity in identifying the 

several potentially problematic cognitive states under which the driver may be operating. 

The efforts described in this paper focus on physiological data collected via 

relatively inexpensive, lightweight sensors that could be positioned in common driver 

contact points in a vehicle, such as in the steering wheel or seatbelt. By comparing and 

contrasting the results among these sources of driver data, a clearer set of conclusions can 

be drawn about an effective suite of human sensors that can support detection of 

problematic driver cognitive states.  

 

II.2.2 Method 

There were 88 participants in the study with over two data collection periods. The 

demographics of participant are illustrated in Table 2.  

 

 

Table 2: Participant Demographics of the Simulation Study 

 Older(>65) 
drivers  

Younger(<25) 
drivers 

Total 

Males 26 20 46 
Females 21 21 42 
(Total) 47 41 88 
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Apparatus 

The CTS simulator facility in Texas Transportation Institute supports a medium-

fidelity driving simulation environment consisting of three large high-resolution monitors, 

bucket seat, and realistic steering wheel and pedal system (See Figure 4). Driving scenario 

consisted of a simulated rural highway with varied loaded segments.  

 

 

 

Figure 4. Driving simulation environments in Toyota Economics Settlement Safety 

Research. 

 

 

The projects applied multiple metrics to evaluate human and vehicle states. 

However, because of the volume of  a proceeding paper, we only focus on two types of 

physiological measurement techniques: Zephyr Bioharness3 (BioHarness 3 Zephyr 

Technology Corporation, 2015)., a lower-chest strap with microcontroller and sensors 

embedded on it to measure HRV and Shimmer3 (Shimmer3 GSR Unit, 2016) consisted 
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of a module attached on the wrist band and two sensors on the palm of monodominant 

hand to measure SCR.  

 

Tasks 

The resting baseline of all physiological variables were  were collected in the 

“baseline” condition in which participants only needed to relax and listen to soothing 

music for five minutes. Then, they were familiarized with the driving condition in the 

“practice drive”. After practice, they were asked to complete 6 driving conditions (Details 

see Table 3). Before each driving condition, participants were asked whether they were 

experiencing simulator sickness. The experiment would stop if the answer was “yes”.  

The effects of four independent variables were analyzed for each dependent 

measure: 

 Driving condition, a within-subject factor with 6 levels (See Table 3); 

 Age: young (age < 25) vs. old (age > 65), as a between-subjects factor; 

 Sex: male vs. female, as a between-subjects factor; 

 Failure loading: no loading vs. full (cognitive + emotional + motoric) loading in the 

F driving condition, as a between-subjects factor. 
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Table 3: The Description of each Driving Condition in the Simulation Study 

Driving 
Condition 

Description 

Normal Participants drove the length of the experimental scenario, but 
no additional loading was present for the entirety of the drive 

 
LD1~LD4 
Balanced 

4 Loaded drives (LD): Experimental drives that increased the 
driver loading by introducing high-activity construction zone 
areas that heightened the load on the driving task, and 
additional secondary task loads: 
 

LD1-driving Construction zone loading only, no secondary task loading 
 

LD2-cognitive  Secondary cognitive loading via experimenters asking 
challenging analytical and mathematical questions 
 

LD3-emotional  Secondary emotional loading via experimenters asking 
emotionally-charged questions 
 

LD4-motoric  Secondary motoric loading via a texting task completed on a 
smartphone 

Failure-event 
condition 

“Failure” drive which either replicated the conditions of LD1 or 
included cognitive, emotional, and motoric loading tasks 
throughout the drive. At the completion of the drive, an 
unexpected Failure-Event (unintended acceleration) is triggered. 
This occurs while the participant is waiting at a red light and a 
car pulls up in front of them. Then, suddenly, the vehicle 
accelerates and the participant has 10 second to avoid crashing 
into the car in front. Since their brake also fails, they should 
steer to the sides to avoid a collision.  

 

 

In each of these scenarios, two 2.5 minute intervals are secretly defined to collect 

higher cognitive loading states. Those 2.5 minute intervals in each scenario, start and end 
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based on designed marker locations on the road, which provided us the ability to have 

reference windows from each scenario to compare the data in between-scenarios. 

 

Procedure 

After signing the consent form and completing pre-study survey for background 

and mental states, participants were introduced to driving simulator and scenarios. Then, 

they needed to wear Bioharness3 on their lower chest and Shimmer2 on the wrist of their 

non-dominant hand (see details via the links in method section). Then, they were asked to 

adjust the height of seat and steering wheel to their comfort. Prior to the start of the 

experiment, all the devices were calibrated and recordings initiated. Participants 

completed baseline condition first followed by the practice condition. After practice, 

participants continued to complete the 6 driving conditions, among which the loaded 

driving conditions (LD1 ~ LD4) were balanced with the Failure-event condition always 

finishing last. In the end, participants were asked to complete the post-study surveys and 

compensated $40. 

 

Data Analysis 

The proceeding paper reported the analytical results of three dependent variables: 

HRV, SCR-amplitude, and SCR-frequency. Three-way (driving condition × age × sex) 

ANOVAs were used to analyze the dependent variables in driving conditions. In the 

Failure-event condition, four-way (driving condition × age × sex × loading) ANOVAs 
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were used to analyze the dependent variables. Post hoc tests used multiple comparison 

with Bonferroni correction. All analyses were complete in R 3.1.3.  

 

II.2.3 Results 

Only complete data sets obtained from participants were analyzed in the study. 

Only the most important findings of each dependent variable were reported in this section. 

 

HRV 

Mean HRV across All Driving Conditions. For the analysis of HRV, 61 participants 

provided complete HRV datasets that could be entered into the statistical model (older 

males: N = 16; older females: N = 14; younger males: N = 16; and younger females: N = 

15). 

The main effects of driving condition (F(3, 341)=11.99, p<.001, 𝜂2=0.039) and 

age (F(3, 341)=338.83, p<.001, 𝜂2=0.218) significantly affected the measures of HRV. 

Figure 5 below illustrates the mean HRV values across the entirety of each driving 

condition and the significant results of post hoc test can be found in Table 4. There was 

no significant interaction effect found among any of the independent variables. 
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Figure 5. Mean HRV across all driving conditions. 

 

 

Table 4: Post-hoc Results of Driving Condition and Age on HRV 

Significant main 
effect 

Post Hoc Tests  (Significant Results) 

driving condition 

 
F (55.6 ms) > N (40.0 ms) 

F (55.6) > LD1 (42.7) 
F (55.6) > LD2 (47.4) 
F (55.6) > LD3 (46.5) 
F (55.6) > LD4 (43.2) 

 
N < LD2 (47.4) 
N < LD3 (46.5) 
N < LD4 (43.2) 

 
LD1 (42.7) < LD2(47.4) 
LD1 (42.7) < LD3 (46.5) 

 

age Younger (57.5 ms) > Older (33.9 ms) 
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Mean HRV in Loaded Driving Conditions. For this analysis, 54 participants 

provided complete HRV datasets that could be entered into the statistical model (older 

males: N = 14; older females: N = 14; younger males: N = 12; and younger females: N = 

14). 

Within the loaded driving conditions only (LD1, LD2, LD3, and LD4), significant 

effects were found for driving condition (F(3, 999)=11.90, p<.001, 𝜂2=0.007), segment 

(F(4, 999)=33.31, p<.001, 𝜂2=0.027), age (F(3, 999)=1049.7, p<.001, 𝜂2=0.216) and sex 

(F(1, 999)=4.58, p<.001, 𝜂2=0.033) on HRV. Figure 6 below illustrates the mean HRV 

values in each segment of each loaded condition, and the significant results of post hoc 

test can be found in Table 5. 

 

 

 

Figure 6. The mean HRV under each segment of each Loaded driving condition. The 

loaded segments S2 and S4 are affected by the secondary tasks in the driving conditions. 

40

45

50

55

60

Before 1st loaded
segment

Between 2nd
loaded

segment

After

HRV (in ms) in LD1, LD2, LD3,and LD4

LD1

LD2

LD3

LD4



 

 

39 

 

 

Table 5: Post-hoc Results of Significant Main Effects on HRV in Loaded Conditions 

Significant main 
effect 

Post Hoc Tests  (Significant Results) 

driving condition 

 
LD1 (42.3 ms) < LD2 (48.1 ms) 

LD1 (42.3) < LD3 (46.8) 
 

LD2 (48.1) > LD4 (44.3) 
LD3 (46.8) > LD4 (44.3) 

 

segment 

 
S1 (51.2 ms) > S2 (48.1 ms) 

S2 (48.1) > S3 (46.7) 
S3 (46.7) > S4 (39.9) 

 

age Younger (60.0 ms) > Older (33.7 ms) 

sex Males (46.2 ms) > Females (44.6 ms) 

 

 

SCR-Amplitude 

SCR-Amplitude across All Driving Conditions. While no significant main effects 

were identified, a significant interaction effect between age and sex was found 

(F(1,204)=10.05, p<.001), as illustrated in Figure 7. Post hoc test showed that younger 

males showed higher SCR-Amplitude than did the older males (p < .05), but no 

difference was found between young and old females. Younger males showed higher 

SCR-Amplitude than younger female participants (p < .05).  
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Figure 7. The mean amplitude of SCR interaction effect between sex and age. 

 

 

SCR-Amplitude in the Failure-Event Condition. For this analysis, 44 participants 

provided complete SCR-Amplitude datasets that could be entered into the statistical 

model (older males: N = 11; older females: N = 12; younger males: N = 8; and younger 

females: N = 18). 

The influence of the Unintended Acceleration (UA) event lasted for approximately 

5 seconds. Therefore, we compared the mean amplitude of SCR within 5 second windows 

before and after UA. The results showed the UA occurrence significantly affected SCR-

Amplitude (F(1,66)=5.16, p<.002). The mean SCR after UA (SCR-Amplitude = 0.34 

microSiemens) was significantly larger than the mean before UA (0.08 microSiemens). 

See Figure 8. 
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Interestingly, this includes roughly equivalent contributions from participants in 

both the no loading and full loading groups according to the failure loading between-

subjects variable, suggesting a robust way to detect sympathetic arousal in response to 

unexpected and sudden events such as UA. 

 

 

 

Figure 8. The mean amplitude of SCR immediately before and after the unintended 

acceleration event. 

 

 

SCR-Frequency 

Frequency of Skin Conductance Response. The frequency of responses (SCR-

Frequency) was calculated as the number of responses per minute and were analyzed to 
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condition (LD1, LD2, LD3, and LD4), and in comparing fully-loaded and unloaded 

participants during the failure drive. 

SCR-Frequency across All Driving Conditions. For this analysis, 38 participants 

provided complete SCR-Frequency datasets that could be entered into the statistical 

model (older males: N = 13; older females: N = 8; younger males: N = 7; and younger 

females: N = 10). 

A significant main effect of age was found for SCR-Frequency across all driving 

conditions (F(5, 203)=2.72, p=.021). Older participants (mean = 7.7 responses/min) 

showed higher frequencies than did younger participants (3.9 responses/min). 

SCR-Frequency in the Loaded Driving Conditions. For this analysis, 37 

participants provided complete SCR-Frequency datasets that could be entered into the 

statistical model (older males: N = 13; older females: N = 7; younger males: N = 6; and 

younger females: N = 11). 

Significant main effects of driving condition (F(5, 659)=3.46, p=.016), segment 

(F(4, 659)=2.40, p=.049), and age (F(1, 659)=31.85, p<.001) were found. Figure 9 

illustrates the pattern of results across each loaded condition (LD1 - LD4) and within each 

segment. Significant results of post hoc test can be found in Table 6. 
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Figure 9. Mean SCR-Frequency values in each segment of each loaded driving 

condition. 

 

 

Table 6: Post-hoc Results for Significant Main Effects on SCR-Frequency 

Significant main 
effect 

Post Hoc Tests  (Significant Results) 

Driving condition 

LD1 (4.75 responses/min) < LD3 (6.41) 
LD3 (6.41) < LD4 (8.10) 
LD2 (5.55) < LD4 (8.10) 

 

Segment 
 

S1 (7.78) > S3 (4.72) 
S1 (7.78) > S5 (4.92) 
S2 (7.78) > S3 (4.72) 
S2 (7.78) > S5 (4.92) 
S4 (6.48) > S3 (4.72) 
S4 (6.48) > S5 (4.92) 

 

Significant main 
effect 

Post Hoc Tests  (Significant Results) 

Age Older (8.2) > Younger (3.8) 
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II.2.4 Discussion 

 

Age and Sex Differences 

Several analyses showed significant effects of sex and/or age grouping on the 

indicators of sympathetic arousal. These should be strongly considered. Physiological 

responses seem to change as a function of age, and presumably sex as well. But perhaps 

more interestingly, members of each group may experience differing levels of sympathetic 

arousal in response to loading conditions and events. For example, younger drivers are 

likely better-practiced in the task of texting on a smartphone, and perhaps also in the ill-

advised practice of texting while driving. Therefore, it could be expected that the 

sympathetic arousal directly attributable to the secondary texting task may have been less 

dramatic for younger drivers. Similarly, emotionally-charged questions may elicit stronger 

responses for one of the two sexes, depending on the nature of the questions and whether 

the questions are being asked by an experimenter who is of the same or the opposite sex. 

In analyses across all driving conditions, there is a clear trend that shows arousal 

increases from the lowest-loading normal drive “N” condition, through the 4 loaded 

conditions, and shows the highest arousal in the “F” failure-event condition. Whether or 

not they reached significance (did with the HRV measures), a clear increase in sympathetic 

arousal indicators show that a sudden, unexpected event, such as the UA failure event can 

be reliably detected. This is the case regardless of whether the failure drive was completed 

under no loading or full loading contexts. 
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Pending further analysis, it appears that HRV measures are more sensitive than 

SCR measures in detecting and differentiating the types of loading. LD1, which is a loaded 

drive but does not include a secondary task (such as answering questions or texting) can 

be reliably distinguished from other loaded conditions with SCR, however LD2 – LD4 are 

not reliably distinguished. It is useful to be able to differentiate driving-induced loading 

from (secondary task + driving)-induced loading, and HRV offers a promising means to 

do this. 

 

Detecting Changes in Loading 

Both HRV and SCR-Frequency showed an ability to significantly detect changes 

in loading, when observed across segments in loaded conditions. Interestingly, while the 

loaded conditions S2 and S4 could be distinguished from the other conditions, the pattern 

of changes among segments differed between these two measures. 

While HRV shows a general decrease as the scenario unfolds (illustrating the 

effects of loading over time), SCR-Frequency is relatively stable when viewed across the 

scenario. This illustrates that HRV may be better for indicating longer-term changes in 

loading, on the order of several minutes, while SCR may be less sensitive to analyses over 

longer time windows. HRV also does not appear to “recover” to illustrate a decrease in 

arousal that should be expected after loading task segments are completed. With one 

curious exception in LD1, HRV does not change very much from S1 – S3, but the second 

loading segment in S4 shows a precipitous drop in all loading conditions, illustrating an 
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increase in workload/stress/sympathetic arousal. This may indicate that the window of 

time to notice changes in HRV is larger than the few minutes that comprised each of the 

5 segments in loading conditions. 

SCR, on the contrary, is more clearly responsive within each “loaded” segment 

(S2 and S4), especially for motoric loading (texting). It is likely to be a better indicator for 

changes in sympathetic arousal on shorter timescales. 

 

Response to Unintended Acceleration 

SCR-Amplitude showed a significant and large change on either side of the UA 

event, therefore is a clearly better indicator for detecting sudden, “acute stress” events. All 

participants who experienced a change in SCR-amplitude corresponding with that event 

did so within approximately 2.5 seconds. Whether this is sufficient time to offer mitigation 

strategies is yet to be determined, but considering that HRV as measures in the current 

study takes at least 100 seconds to provide a reliable indicator of change, it is clearly a 

better option for detecting acute stress events. Further analyses of the time window for 

measuring HRV may provide additional insights. For example, absolute heart rate may 

increase dramatically following an acute stress event. Perhaps measures of HRV over both 

short and longer time windows can provide additional insight into detecting acute and 

longer-term stressors. 
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II.3 Detection of An Extreme Phenomenon of Mental Workload: Cognitive Redline 

The dissertation primarily focuses on the evaluation of displays under high 

workload situations, so it’s naturally to extend our efforts to identify cognitive redline, the 

occurrence of which indicates mental overload (Wickens, Hollands, Parasuraman, & 

Banbury, 2012). As mentioned in Chapter I, how to detect cognitive redline is an important 

problem but haven’t been satisfactorily solved. The previous studies showed that cognitive 

redline can be indicated by the degradation of multitask performance and the subjective 

rating scores that are higher than the predefined upper limits (Grier et al., 2008). However, 

these soluations based on performance measure and subjective self-reported measure of 

mental workload have their own limitations (see Appendix 1). 

Physiological measure, another measure of mental workload, may be able to 

provide reliable indicator of cognitive redline. It was found that several physiological 

variables, including respiration rate, heart rate, and skin conductance level, approached 

their upper limits in the driving conditions that engaged high mental workload tasks 

(Mehler, Reimer, Coughlin, & Dusek, 2009). Event-related potential (ERP) also 

approached a plateau when the visual load was overwhelmed (Vogel & Machizawa, 2004). 

These findings suggest that some physiological patterns (plateau or asymptote) may link 

to the appearance of cognitive redline.  

Inspired by these findings, a study as an offshoot of my research (Rodriguez Paras, 

2015; Rodriguez Paras, Yang, Tippey, and Ferris, 2015) explored the use of physiological 

measures to indicate cognitive redline. In the study, we used Multi-Attribute Task Battery 
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(MATB-II), a NASA-developed multitask simulation tool, to manipulate five levels of 

mental workload: low, medium, high, very high, and extremely high. Cognitive redline 

was expected to appear among the high, very high, and extremely high workload 

conditions.  

We found that HRV (indicated by pNN50) was higher in the low and medium 

workload conditions but went down and stayed reliably at a lower level when the workload 

increased from high to extremely high level. Meanwhile, NASA TLX went up consistently 

from easy to difficult and also from difficult to extremely difficult workload conditions, 

showing different momentum than HRV after the high workload condition. NASA TLX 

demonstrated the effectiveness of the manipulation of perceived workload. In addition, 

MATB-II didn’t change the level of stress before and after the study according to short 

stress state question (SSSQ; Helton, 2004), which excluded the effect of stress on HRV 

(Matthews & Campbell, 2010). Combing the subjective (NASA TLX and SSSQ) and 

objective (HRV) findings, we concluded that HRV may be a reliable indicator of cognitive 

redline in multitask environments. 

The following studies of this topic include the validation of using the asymptote 

patterns of HRV to indicate cognitive redline under different task environments and the 

test of different physiological indicators. Our long-term goal is to develop a system that 

can predict cognitive redline in a real-time manner and trigger effective countermeasures, 

such as adaptive automation, to assist operators’ mental workload management in high 

workload situations, improving operational safety. 
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II.4 Conclusion 

In order to measure cognitive efficiency, this chapter discussed the measurements 

of its two dimensions: display informativeness and imposed mental workload. The first 

section of this chapter explained the calculation of information transmitted as the reliable 

quantitative indicator of display informativeness. However, the calculation required 

participants’ additional response (e.g., verbally report or button pressing), which might 

interrupt their primary task performance.  

In the second section, two physiological measures (HRV and GSR) were selected 

to evaluate the drivers’ cognitive states under different short-term loads and unintended 

acceleration in driving. The results showed that HRV was a sensitive indicator to short-

term but prolonged loads and SCR was a more immediate indicator of an acute stress 

event. However, the sensitivity of these physiological measures can be affected by many 

factors, such as the complexity of mental workload, the predefined time windows for data 

analysis, and the surrounding physical environments.  

In the end, this chapter discussed the methods for detecting cognitive redline - an 

extreme situation of mental workload - and found that the lower limit of HRV may be an 

effective indicator of cognitive redline, which needs further validation. Ultimately, all 

these efforts will contribute to affordable and high-quality evaluations of cognitive 

efficiency of displays under various conditions.  
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CHAPTER III 

THE INITIAL INVESTIGATION OF COGNITIVE EFFICIENCY* 

 

 In Chapter I, one solution to data overload problem is the use of ambient displays 

which support the distribution of processing resources as well as minimizing overall 

mental workload. However, the designers of ambient displays often seem to be motivated 

as much or more so by aesthetic or artistic qualities than by the quality of “calmness” (e.g., 

Pousman & Stasko, 2006). Moreover, it is still not clear how the engagement of additional 

ambient displays might affect operators’ mental workload.  

Naturally, it can be assumed that the larger amount of cognitive resources are 

required for the processing of more information. But it’s interesting to ask what the 

corresponding increase of required mental resources is, given the increased amount of 

information content. Since ambient display aims to present more information while 

imposing relatively lower mental workload, we may argue that it is more cognitively 

effici1ent, which is a critical display characteristic for addressing data overload problems. 

The research in this chapter is motivated by the need to better quantify the 

efficiency of displays based on the methods described in Chapter II. The studies in the 

past have attempted to quantify the effectiveness of displays, for example, using signal-to-

noise ratios to estimate the data available in a display (e.g., Darkow & Marshak, 1998). In 

                                                 

*Reprinted with permission from Proceedings of the Human Factors Society Annual Meeting, 56, 1. 

Copyright 2012 by the Human Factors and Ergonomics Society. All rights reserved. 
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contrast, the study in this chapter seeks to answer how we can measure the cognitive 

efficiency of basic displays in single-task conditions, which is the second research 

question (Q2) of the dissertation.  

 

III.1 The First Version of Cognitive Efficiency Metric 

The initial Cognitive Efficiency (CE) metric consists of the measure of each 

dimension of cognitive efficiency. Inspired partly by the measure of instructional 

efficiency, the metric is constructed as the ratio of display informativeness (i.e., 

information reliably communicated by a display) and required mental resources (e.g., the 

amount of mental resources required to process that information). The initial CE metric is 

shown in Equation 5 below. 

 

CE = 𝑘
𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
                                                                                       (5) 

 

In Equation 5, display informativeness can be evaluated based on the sensory, 

perceptual, and behavior response; however, they cannot provide quantitative indicator of 

the amount of perceived information. Thus, display informativeness in the dissertation is 

indicated by information transmitted (i.e., the amount of information that is present in the 

stimulus and reliably propagated to the observer), as defined by Information Theory 

(Miller, 1954; Shannon, 1948). The details of information transmitted calculation were 

explained in Chapter II. 
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In this study, we used two types of methods to estimate the required mental 

resources in process displayed information: 1) self-reported subjective workload measures 

(e.g., NASA-TLX ratings; Hart & Staveland, 1988) and 2) physiological measures that 

have been shown to correlate with mental workload (e.g., ElectroEncephaloGraphy (EEG) 

and skin conductance) (O'Donnell & Eggemeier, 1986).  

In addition to the two dimensions, the variable k in Equation 5 represents a set of 

contextual factors under which the operator processes the display, such as the levels of 

physical energies (e.g., light, sound, etc.) in the environment, and the demand for mental 

resources imposed by concurrent tasks. k may be expressed as a quantitative vector of 

processing demands for various resources (which could be empirically derived or 

estimated with the aid of models). However, when multiple displays are evaluated within 

the same context, k can be considered to be constant and need not be further considered. 

In such cases, reliable comparisons can be made among CE ratios for these displays, but 

they are only valid within the evaluation context. 

The present study represents the earlier effort of developing a robust measure of 

cognitive efficiency. The CE equation was used to evaluate visual and auditory displays 

which encoded information by modulating very basic signal dimensions (i.e., intensity and 

spectrum). Information transmitted by these displays over brief time intervals was 

calculated, and subjective (NASA-TLX ratings) and physiological (EEG and skin 

conductance) response were collected during the same intervals to infer the mental 

resources required to process the displayed information. 
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The results of this study are useful in several ways. First, we can see the effects of 

display modality and signal dimension on the information transmission between a display 

and a human receiver in a given context. We can also see the effects of these display 

characteristics on the mental workload measures, and we can compare the effects between 

the different workload measures. These outcomes are valuable for comparison to existing 

evaluations and to inform the design of displays that are intended to be highly informative 

and/or minimally impact processing resources, such as ambient or peripheral displays. 

Future work will build on these results toward the continuing development of a 

robust and universal CE metric. Such a metric could be applied to any system in which 

human information processing is critical to safe/effective operation and where human 

mental resources are especially in demand. Prototype displays could then be evaluated for 

their predicted effectiveness in the given environment by comparing the CE ratios, and 

those that score the highest represent the most promising means of combating the risk of 

data overload. 

 

III.2 The Initial Investigation of CE metric 

 

III.2.1 Method 

Twenty-five engineering students from Texas A&M University participated in this 

study. All were healthy adults with normal or corrected-to-normal visual and auditory 

acuity, and no known color vision deficiency. 
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Displays 

Two visual and two auditory display prototypes were designed for this study. 

Within each type of media, the two displays modulated different basic signal dimensions: 

the intensity of the signal (denoted by the related psychological properties of light 

brightness and sound loudness); and the spectral qualities of the signal (light hue and 

sound pitch) (see Table 7 below). The displays changed state by moving between levels 

within the modulated dimension continuously. 

 

 

Table 7: Four Displays Evaluated in the Present Study 

 Visual 
displays 

Auditory 
displays 

Intensity 

modulation 
B: brightness L: loudness 

Spectrum 

modulation 
H: hue P: pitch 

 

 

The visual displays included clustered tri-color RGB LEDs covered by a diffusing 

frosted globe, and were driven by an Arduino microcontroller via MATLAB. This allowed 

controlling the hue and intensity of the light via RGB codes. The auditory display signals 

were delivered via noise-cancelling earbuds and were also generated in MATLAB by 

specifying the frequency, gain, and duration of each tone. 
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Versions of each of these displays included 2, 3, or 4 levels along the modulated 

dimension. In order to standardize the “psychological distance” between levels when there 

were more than 2, the brightness for the B display were set using Stevens’ Power Law 

with an exponent of 0.45 (derived empirically via pilot tests). A calibration procedure was 

done for each participant so that the levels of auditory intensity in L were matched in terms 

of “subjective salience” to the levels of brightness in B. For the spectral displays, the levels 

of H were equidistant changes along a continuum from a pure blue hue to a pure red hue 

(with purplish gradations between), and the levels of P were equidistant pitch changes, 

which also assured that there would be less confusion due to harmonic resonance. Table 8 

summarizes the level settings for each display. 

 

 

Table 8: Levels of Each Perceptual Dimension for each Display 

Display 2 levels 3 levels 4 levels 

B: Brightness 
(index for voltage 
applied: 0-255) 

15 
59 

15 
95 
255 

15 
59 
138 
255  

L: Loudness 
(% maximum gain) 

20 
40* 

20 
60 
100* 

20 
40 
80 
100* 

*note: these are typical values but were calibrated for 
each participant to match the salience of B 

H: Hue 
(RGB codes) 

(0,0,20) 
(175,0,255) 

(0,0,20) 
(175,0,255) 
(255,0,80) 

(0,0,20) 
(175,0,255) 
(255,0,80) 
(255,0,0) 
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Table 8: Continued 

Display 2 levels 3 levels 4 levels 

P: Pitch 
(frequency in Hz) 

329.62 
415.30 

261.62 
369.99 
523.25 

261.62 
329.62 
415.30  
523.25  

 

 

Procedure 

After consenting to participate, the participants were introduced to the displays and 

data collection methods, then completed the display calibration. They then completed 12 

experimental blocks, one for each type of display at each number of levels, with the block 

order balanced between participants. Each block began with a 3-trial training session 

which could be repeated until the participant felt comfortable with the display. Then, 12, 

18, or 24 experimental trials were completed for 2-, 3-, or 4-level displays, respectively. 

Each experimental trial consisted of a presentation in which the display frequently 

changed between levels in a quasi-random fashion, with the duration at each level between 

1 and 5 seconds and separated by a short (250 ms) break. The level transition/repeat 

probability was balanced, so the next level to be presented could not be predicted by 

knowing the current level. The duration of each complete trial was between 7s and 13s, 

with an average of 10s. 

Participants were instructed to observe the display, while otherwise attempting to 

relax as much as possible to keep the EEG measures of attention low. For each trial, when 
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the presentation was completed and the display went dark/silent, participants were 

instructed to respond as quickly but accurately as possible by clicking the button 

corresponding to the last (first 1/3 of trials in each block), second-last (middle 1/3), or 

third-last level presented (final 1/3). Participants were reminded prior to the trial which 

level was of interest. This N-back task component was deemed necessary in order to 

increase the working memory load and to avoid ceiling effects in response accuracy. 

Clicking the response button would display a short presentation of that level, and 

participants were allowed to change their response until they pressed a separate button to 

begin the next trial. 

Participants took short rests between experimental blocks, and upon completing 

all 12 blocks, completed a short debriefing survey. The entire duration of the experiment 

was approximately two hours for each participant. 

 

Data Analysis 

By creating a stimulus-response confusion matrix from participant responses, the 

information transmitted (denoted as HT) was calculated by following information theory 

methods (e.g., Miller, 1954; Shannon, 1948). HT therefore represents the amount of 

information that is reliably communicated by the display to the human, and was used as 

the measure of display informativeness for the CE equation (5). 

The required mental resources component of the CE equation was measured two 

ways, for the sake of comparison. Subjective measures of workload were gathered using 
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the NASA-TLX survey method (Hart & Staveland, 1988), with weightings of the 

components calculated at the end of the study and ratings for each component collected 

immediately following each experimental block. Limits of the ratings scales were set such 

that the final TLX indices were between 0.0 and 10.0, within the same order of magnitude 

as the HT measures. 

Physiological measures were collected as a more objective indication of required 

mental resources, including skin conductance (data not reported here) and EEG data. For 

EEG, an off-the-shelf toy system (Mindflex™, developed by Mattel) was modified with 

the use of an Arduino microcontroller to allow collection of EEG data with minimal cost 

and intrusiveness to participants. For this study, “Att” (from “Attention”) is an index 

derived from the amount of EEG activity measured over the frontal cortex in the theta 

spectral power range (4-7 Hz), which, when measured over the frontal cortex has been 

shown to increase with increased task difficulty and higher memory load (Parasuraman & 

Caggiano, 2002). Att data were filtered so as to only consider the values collected while 

displays were being observed (not during responses or between trials), and mean Att was 

calculated for each experimental block. As with TLX, the Att index was also scaled to 

have a minimum value of 0.0 and a maximum value of 10.0. 

For this study, two CE ratios were calculated that related HT to each workload 

measure (HT/TLX and HT/Att), for each participant in each experimental block. Because 

large interindividual differences were expected for each individual measure, repeated 

measures ANOVAs were used to test for main and interaction effects for each CE ratio as 
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well as the individual components of the ratios, with independent measures of #levels (2, 

3, or 4), modality (A: auditory, or V: visual), and dimension (I: intensity, S: spectrum). 

Post-hoc t-tests with Tukey corrections were used to analyze differences among means for 

significant effects. 

 

III.2.2 Results 

Data for one participant were removed from analysis due to a failure that prevented 

saving the EEG data. The data for the remaining 24 participants were analyzed in repeated 

measures general linear models (formulated in Minitab). 

#levels 

HT, TLX indices, and Att indices all consistently increase when the number of 

levels present in each display increases from 2 levels to 4 levels. Table 9 summarizes the 

mean values and significance. 

 

 

Table 9: Main Effect of #levels on Primary Dependent Measures 

 2 levels 3 levels 4 levels Sig. 

HT (bits) 0.80 1.10 1.26 p<0.001 
TLX (index) 4.10 4.98 5.83 p<0.001 
Att (index) 1.79 2.78 3.55 p<0.001 
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Of the two CE ratios, #levels is only significant for HT/Att (F(2,253)=8.278; 

p<0.001). Post-hoc tests show that HT/Att decreases consistently from 2 levels to 4 levels, 

with the mean for 4 levels (mean=0.38 bits/index) being significantly lower than the mean 

for 2 levels (mean=0.52; p<0.001) and for 3 levels (mean=0.46; p=0.014). The means for 

2 and 3 levels did not differ significantly. See Figure 10 for the values of each CE ratio 

for displays with 2, 3, and 4 levels. 

 

 

 

Figure 10. HT/TLX and HT/Att for displays with 2, 3, and 4 levels. Error bars represent 

standard error. 
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Modality 

Comparing the auditory (A) and visual (V) displays (see Table 10) shows that 

visual displays transmitted more information (higher HT), and had lower subjective 

workload ratings (TLX) than auditory displays. Interestingly, the Att indices showed the 

opposite pattern, with significantly higher values for visual displays, compared to 

auditory. 

 

 

Table 10: Main Effect of Modality on Primary Dependent Measures 

 A V Sig 

HT (bits) 0.94 1.17 p<0.001 
TLX(index) 5.29 4.65 p<0.001 
Att (index) 2.35 3.07 p<0.001 

 

 

Modality has a significant effect on both CE ratios: HT/TLX (F(1,253)=24.51; 

p<0.001) and HT/Att (F(1,253)=4.94; p=0.027), however, the effects are in opposite 

directions. HT/TLX for A (mean=0.21 bits/index) is lower than that for V (mean=0.33). In 

contrast, HT/Att for A (mean=0.48) is higher than that for V (mean=0.42). 

A significant interaction effect was found between #levels and modality for HT/Att 

(F(2,253)=5.80; p=0.003). Figure 11 shows that for displays with 2 or 3 levels, auditory 

displays outperform visual displays. Post-hoc tests show a marginally significant 

difference at 2 levels (p=0.078) and a significant difference at 3 levels (p=0.013). For 
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displays with 4 levels, although there is no significant difference, we can see at least a 

trend that shows visual displays outperforming auditory displays, which is in line with the 

findings for HT/TLX ratio across #levels. 

 

 

 

Figure 11. Interaction effect between #levels and modality on HT/Att. Error bars 

represents standard error. 

 

 

Dimension 

The display dimension which was modulated to encode the data, intensity (I) vs. 

spectrum (S), was a significant factor for HT and TLX, but not for Att indices. Spectrum 

encoding resulted in more information transmitted and lower TLX indices than did 

intensity encoding. The mean values and significances are listed in Table 11. 
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Table 11: Main Effect of Dimension on Primary Dependent Measures 

 I S Sig 

HT (bits) 0.91 1.20 p<0.001 
TLX (index) 5.10 4.84 p=0.033 
Att (index) 2.72 2.69 Not Sig 

 

 

Dimension is significant for both CE ratios: HT/TLX (F (1,253)=8.66; p=0.004) 

and HT/Att (F(1,253)=15.41; p<0.001). In each case, S encoding (HT/TLX mean=0.30 

bits/index; HT/Att mean=0.51) results in more efficiency than I encoding (HT/TLX 

mean=0.23; HT/Att mean=0.23). 

For HT/TLX, an interaction effect was found for #levels and dimension (F 

(2,253)=4.19; p=0.016) (see Figure 12). Post-hoc tests showed that for displays with 2 and 

3 levels, no significant difference is found between I and S encoding methods. However, 

for 4 levels, S encoding (mean=0.37 bits/index) significantly outperforms I encoding 

(mean=0.19; p<0.001). 
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Figure 12. Interaction effect between #levels and dimension on HT/TLX. Error bars 

represents standard error. 

 

 

III.2.3 Discussion 

This chapter introduces a new way - Cognitive Efficiency (CE) metric - to evaluate 

display design. The metric is formulated as the ratio of display informativeness and 

required mental resources, affected by the contextual factor k. Since required mental 

resources can be measured subjectively or objectively, and each method has its strengths 

and limitations (e.g., O’Donnell & Eggemeier, 1986; Wickens, Hollands, Parasuraman, & 

Banbury, 2012), we measured it in both ways for the sake of comparison. The study in 

this chapter evaluated the cognitive efficiency of very basic visual and auditory displays 

which were designed to be similar to existing ambient displays.  
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The results showed that, as expected, when information content (#levels) 

increased, so did the measures of mental workload. Interestingly, however, the HT/TLX 

ratio did not change significantly due to #levels. This might suggest that the HT/TLX ratio 

is less sensitive to changes in information content, since it remained relatively constant 

within each type of display. The fact that the HT/Att ratio consistently decreased with 

increasing information content may mean that this objective measure is more sensitive to 

increased workload, and may also reflect the functional relationship between EEG 

measures and workload. 

It was interesting to notice that cognitive efficiency was different between the 

visual and auditory displays. Mirroring the general recommendation that displays with 

higher information content should be displayed visually (e.g., Wickens, Hollands, 

Parasuraman, & Banbury, 2012), the HT/TLX (subject) ratio reflected visual displays had 

greater cognitive efficiencies than auditory displays. The HT/Att (objective) ratio, in 

contrast, suggested auditory display was more cognitively efficient than visual display for 

lower information content, and visual more efficient for higher content. The findings may 

associate with the difference between perceived and actual loadings on the visual and 

auditory systems. While participants may have felt the auditory displays were harder to 

interpret (greater subjective workload and lower HT/TLX ratios), the neural activities in 

cerebral cortex associated with listening to simple auditory signals are apparently less 

(denoted by lower ATT) than that of watching simple visual displays. In any case, these 
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findings suggest that visual displays are more efficient at least with higher information 

content. 

Finally, we found a significant effect of display dimension on both CE ratios. It 

showed that the display communication is more efficient by encoding information in the 

spectral (i.e., hue or pitch) than in the intensity (i.e., loudness or brightness). Additionally, 

dimensional difference in the HT/TLX measure was most pronounced with higher 

information content. This difference may be partially due to human’s lower capability of 

identifying the absolute levels of signal intensity (e.g., Hsia, 1971). Because the 

experimental paradigm required an absolute judgment in its response, it may have been 

more difficult for participants to distinguish between “brightness level 1” and “brightness 

level 2”, since the levels of brightness are likely to be processed in a more relative fashion 

(e.g., “brighter”, “less bright”). In contrast, distinguishing red from reddish-purple or 

bluish-purple is likely easier. 

Taken together, the results suggest that for the design of simple displays that follow 

the ambient display model, the display should modulate spectral dimensions, rather than 

intensity. Visual displays are likely better for this purpose; however, auditory displays 

may be better for lower information content. As a general disclaimer, the results are only 

valid and applicable within contexts that resemble the current study, in regard to 

environmental stimuli and the nature of task demands. 
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III.3 Conclusion 

Chapter III documented the initial efforts in the development of a metric to 

quantify the “cognitive efficiency” of (ambient) displays that present each piece of 

information at one moment. The results demonstrated that cognitive efficiency is different 

among displays that engaged different perceptual modalities or dimensions. Specifically, 

the cognitive efficiency of the visual displays was higher than that of the auditory displays 

in higher information content. Moreover, the displays were more cognitively efficient 

when they encoded information into the spectrum dimensions than the intensity 

dimensions. However, the study in this chapter only focused on basic displays under the 

lower task loads; the next chapter will examine the measure of cognitive efficiency in the 

high-load multitask scenarios and its relationship with multitask performance.     
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CHAPTER IV 

THE RELATIONSHIP BETWEEN COGNITIVE EFFICIENCY  

AND MULTITASK PERFORMANCE 

 

Given the initial version of Cognitive Efficiency metric in Chapter III, this chapter 

proposes its modified version for quantifying the cognitive efficiency (CE) of displays in 

human-machine systems by taking account into human, display, and contextual factors. 

Moreover, this chapter examines correlations between the CE metric and multitasking 

performance in a driving simulation. The modified CE metric uses existing theory and 

methods to quantify both display informativeness and required mental resources. A 

divided-attention task set involved processing different visual displays to inform route 

selection while concurrently avoiding obstacles in a simulated driving study. Measures of 

multitasking performance as well as informativeness and resources required were 

collected while participants processed each display. Correlation analyses were used to 

identify the relationships between five constructed CE metrics and performance that 

differed between High- and Low-performing groups, potentially attributable to differences 

in imposed workloads and/or cognitive “redlines”.  

 

IV.1 The Modified Version of Cognitive Efficiency 

In Chapter III, we proposed two basic dimensions that determine the cognitive 

efficiency of displays: 1) display informativeness (amount of displayed information 
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accurately processed by the human); and 2) the types and amounts of required mental 

resources consumed in the specific act of processing this information. The cognitive 

efficiency of displays values communicating more information per “unit” of required 

operator mental resources (Yang, Shukla, & Ferris, 2012).In Chapter III, the initial 

investigation found that simple displays (similar to ambient displays) showed different 

levels of cognitive efficiency, which conformed with expectations according to 

information processing literature (Yang et al., 2012).  

In addition to the basic displays evaluated in Chapter III, Chapter I listed several 

other display design paradigms that also offer insight into the improvement of cognitive 

efficiency. For example, Ecological Interface Design (EID) reduces mental efforts by 

supporting minimally-demanding skill-based and rule-based behaviors and providing 

structured information to ease knowledge-based reasoning (Vicente, 2002). Multimodal 

displays can distribute processing requirements across multiple perceptual channels to 

avoid overloading them (Sarter, 2006; Wickens, 2002). Redundant multisensory displays 

also reduce the risk of overload by supporting flexibility in engaged channels (Wickens, 

Prinet, Hutchins, Sarter, & Sebok, 2011) but may hinder performance due to increased 

signal complexity (Ardoin & Ferris, 2016). “Preattentive reference” displays minimize the 

required mental effort and risk of concurrent task interference when processing them 

(Woods, 1995).  

In addition to display format, human and contextual factors also contribute to 

cognitive efficiency. Human factors can include operator information processing abilities, 
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preferences, and mental/emotional state. Some factors are stable over time, such as 

whether one is a “visual” or “verbal” learner (e.g., Mayer & Massa, 2003), while emotional 

state and stress levels can also temporarily affect mental storage and processing capacity 

(Eysenck & Calvo, 1992; Eysenck, Derakshan, Santos, & Calvo, 2007). Contextual factors 

defined by the environment or task set can also impact information processing, and can 

interact with human factors to affect efficiencies in complex ways. 

In this chapter, we modified our previous version of Cognitive Efficiency metric 

and propose a new version for quantifying CE of displays in human-machine systems 

(Equation 6). The metric is also formulated as a ratio of display informativeness to 

required mental resources, but taking into account display, human, and contextual factors 

in a given multitasking context. The components of Equation 6 can flexibly integrate 

several existing theories and tools described in Chapter II.  

 

CE(ℎ𝑖, 𝑑𝑖 , 𝑘𝑖) =
𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (ℎ𝑖,𝑑𝑖,𝑘𝑖)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ𝑖,𝑑𝑖,𝑘𝑖)
                                                              (6) 

                  

The new version of CE metric illustrates how the CE metric and its components 

are functions that depend on characteristics of the human (h), display (d), and 

task/environmental context (k). These characteristics can be expressed quantitatively, for 

example, k could be represented by a vector of loads imposed by other concurrent tasks 

on various dimensions of cognitive resources, such as individual sensory channels or 

working memory functions (e.g., Wickens, 2002). The variables can also qualitatively 
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describe the contexts under which CE measurements are conducted. Investigations to date 

have emphasized consistent experimental contexts so that k can be handled as a constant. 

Cognitive efficiency in context ki can then be compared between displays (with the same 

human, hi) or between humans (with the same display, di). 

Given the modified version of CE metric, Chapter IV aims to determine how 

different constructed CE metrics relate to performance in a high-demand multitask set. 

Operators’ multitask performance in human-machine systems is expected to improve 

when task-related displays support higher cognitive efficiency. This expectation follows 

from two assumptions: all other factors aside, 1) display-related task performance is the 

same or better with greater display informativeness; and 2) secondary task performance is 

the same or better with fewer required mental resources for display-related task 

processing, since more resources are “left over” for secondary tasks. The primary question 

in this chapter then becomes which of the many ways to measure display informativeness 

and required mental resources should be used to construct the CE metric to most 

accurately predict multitasking performance. 

This chapter investigated the relationship between cognitive efficiency metrics and 

multitask performance in a simulated driving environment. Driving scenarios required 

performing two concurrent tasks that competed for shared mental resources to varied 

extents. Multitask performance was calculated by combining scores for each task. The 

measures of display informativeness and required mental resources were collected and 



 

 

72 

 

 

used in CE metric calculations. Correlation analyses then sought to find relationships 

between CE constructs and multitask performance. 

The long-term goal of this research is to develop a generalized technique for 

reliable CE measurement that is sensitive to a broad range of display, human, and 

contextual factors. A secondary goal is to achieve this with assessment methods that are 

cost-effective and that minimally interfere with natural task performance. Validated CE 

measurement techniques may then be used to conduct heuristic assessments under 

representative operating contexts and to predict the effectiveness of displays in supporting 

multitask performance. Additionally, this research provides basic scientific insight into 

multitask information processing, and design to reduce the risk of data overload in 

complex task environments. 

 

IV.2 Investigating the Relationship 

Between Cognitive Efficiency and Multitask Performance 

 

IV.2.1 Method 

 

Participants 

Twenty-four students and employees of Texas A&M University (18 males and 6 

females, mean age 25) participated in this study. All participants had normal or corrected-
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to-normal visual acuity with no color vision deficiencies, and possessed a valid driver’s 

license for at least one year, with an average of 5.5 years of prior driving experience. 

 

Procedure 

After signing the consent form and affixing physiological sensors, participants 

were familiarized with the driving simulator. They then demonstrated a basic proficiency 

in experimental tasks by completing a 15-minute training scenario with samples from each 

display type. Next, the participants completed four experimental conditions in a 

counterbalanced order. Each condition included twelve trials of tasks. Physiological data 

were collected continuously throughout the study. NASA TLX questionnaires (Hart & 

Staveland, 1988) were completed after each condition. The study lasted approximately 2 

hours and each participant was compensated 20 dollars. 

 

Driving Scenarios 

Four driving simulation scenarios were created in the STISIM Drive® driving 

simulator, controlled with a Logitech G27 racing wheel and integrated throttle and brake 

pedals. Figure 13 illustrates a top-down schematic of each driving scene and an embedded 

example of the driver view. Each scenario consisted of a 40-foot wide one-way road with 

alternating Segment 1 and Segment 2. Segment 1 allowed free lateral movement over the 

full roadway width while Segment 2 required participants to enter one of four lanes 

delineated by longitudinal pylons that prevented participants from changing lanes after 
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entering the segment (see Figure 13). A “buffer zone” between the two segments allowed 

for participants to navigate to their chosen lane before entering the lane segment. 

Participants were instructed to drive at the constant governed speed of 35 MPH, and to 

focus control efforts on the lateral position of the vehicle. Their goal was to minimize the 

number of collisions with roadway brush while remaining on the roadway. Driving off-

road registered one collision for every 10 feet off-road. 

 

 

 

Figure 13. Schematic of the driving scenario and example driver views while in the 

Segment 1 and Segment 2. 
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Tasks 

There are two types of tasks: 1) the obstacle-avoidance task (OAT) and 2) the lane-

selection task (LST). The OAT was designed to continuously load the participant’s visual 

channel and spatial working memory while navigating Segment 1. It involved observing 

the pseudo-randomized distribution of plants in this segment (visible up to 400 feet away; 

see Figure 13) and mentally planning and executing routes that minimized the number of 

collisions. Crushing sounds were played as feedback for each registered collision.  

The LST extended from Segment 1 to Segment 2. It required participants to 

monitor visual stimuli on a heads-up display while navigating Segment 1, and when 

entering Segment 2, choose a lane that minimized brush collisions in that segment. The 

heads-up displays conveyed pseudo-randomized sequences of stimuli, each presented for 

2 seconds with 1 second between presentations. Each stimulus represented one of four 

equiprobable states and were encoded according to display type. Three different 

experimental displays, and additionally a baseline display were employed in the four 

separate display conditions (see Figure 14). 
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Figure 14. Four types of head-up visual displays and their respective keys: Baseline 

(single common words), Numeric (Arabic numerals 1 - 4), Hue (rectangles colored red, 

blue, yellow, or green), and Spatial (a 3-D pyramid in four distinct spatial orientations). 

 

 

In the Numeric, Hue, and Spatial experimental display conditions, participants 

were told to remember the last three presentations of the display sequence (which included 

between 4 and 10 stimuli). Limited visibility prevented participants from predicting the 

end of the sequence, thus they were required to maintain the three latest presentations as 

in a running memory task. When reaching the buffer zone, the simulation would pause 

eight seconds so participants could verbally report, in order, the last three presentations 

they observed (or their best guess). This report was used to calculate the measures of 

display informativeness in Equation 6. Meanwhile, a “key” was presented to pseudo-

randomly labeled the four upcoming lanes with associated stimuli (see Figure 15). 
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Figure 15. LST key and expected number of brush collisions in each lane. 

 

 

After the eight-second pause, the simulation would resume and the participants 

needed to maneuver their vehicle into the chosen lane in Segment 2. The choice of lane 

should be motivated by minimizing brush collisions in that lane, and is informed by the 

last three presentations of the head-up display, each of which communicate lanes with 

increasing density of brush. Figure 15 provides an example in which the final three hue 

presentations (in order) were red-green-blue. The blue presentation was the most recent, 

so is associated with the lane that includes the most brush (expected 25 collisions). In this 

way, the most accessible display content (with regard to memory) provides the most useful 

information about which lanes to avoid. Choosing the lane tagged by green (last second 

presentation) would result in 15 collisions and the lane tagged by red (last third 
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presentation) would result in 5 collisions. Processing all three presentations supports the 

identification of the yellow lane as the lane with the least brush density (0 collisions) and 

thus the best lane choice for overall performance.  

The information processing for both tasks overlapped in Segment 1, creating a de 

facto concurrent task set. Participants were told to adopt any strategy that would result in 

the fewest brush collisions across both tasks. While balanced strategies were encouraged, 

extensive pilot testing was used to distribute brush in each of the “lane” and “obstacle” 

segments so that extreme strategies (i.e., focusing 100% on one task and 0% on the other) 

would result in roughly equivalent numbers of collisions. 

The Baseline display condition imposed similar response-related workload by 

requiring verbal report of the last word from each display sequence, but Baseline stimuli 

carried no information regarding the LST, forcing participants to choose lanes at random. 

An index of overall performance in both tasks (PI) was calculated according to 

Equations 7, 8, and 9. PI values ranged from 0 (worst) to 1 (best multitask performance). 

 

𝑃𝐼𝑗 = (𝑃𝐼𝐿𝑆𝑇 𝑖𝑛 𝑗 + 𝑃𝐼𝑂𝐴𝑇 𝑖𝑛 𝑗) ×
1

2
                                                                                   (7) 

𝑃𝐼𝐿𝑆𝑇 𝑖𝑛 𝑗 =  
135−𝑁𝐶𝐿𝑆𝑇 𝑖𝑛 𝑗

135−0
                                                                                                 (8) 

𝑃𝐼𝑂𝐴𝑇 𝑖𝑛 𝑗 =
325−𝑁𝐶𝑂𝐴𝑇 𝑖𝑛 𝑗

325−𝑁𝐶𝑂𝐴𝑇 𝑖𝑛 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
                                                                                       (9) 

𝑁𝐶𝐿𝑆𝑇 𝑖𝑛 𝑗: number of collisions in the LST in condition 𝑗 

𝑁𝐶𝑂𝐴𝑇 𝑖𝑛 𝑗: number of collisioins in the OAT in condition 𝑗 
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𝑁𝐶𝑂𝐴𝑇 𝑖𝑛 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒: number of collisioins in OAT in the Baseline condition 

𝑗: experimental display condition (Numeric, Hue, or Spatial) 

Note. 135 is the expected number of collisions in the LST when displays are completely 

ignored and participants choose lanes at random, and 325 is the expected number of 

collisions in the OAT when brush locations in Segment 1 are completely ignored (e.g., 

with random steering control inputs). 0 and 𝑁𝐶𝑂𝐴𝑇 𝑖𝑛 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represent the best possible 

performance scores in the LST and OAT, respectively, achieved by maximally allocating 

mental resources to the respective task. 

 

CE Component Measures 

In this study, display informativeness was measured in two ways: 1) percent 

accuracy of the verbal report (ACC) and 2) bits of information transmitted (INF) 

evidenced in the verbal report. The information transmitted was calculated based on the 

formula of entropy in Information Theory (Miller, 1953; Shannon & Weaver, 1949).  

Required mental resources were represented as scaled Z-scores of mental workload 

indices derived from NASA TLX subjective ratings and physiological measures of skin 

conductance level (SCL), frontal lobe Electroencephalography (EEG), and heart rate 

variability (HRV) (see Table 12). The physiological data were collected precisely when 

participants were actively processing the displayed information. A physiological baseline 

collected during a three-minute relaxation period prior to beginning experimental 

conditions was used to scale physiological data. 
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Table 12: List of Physiological Measures Used in Required Mental Resources 

Quantifications 

 

Physiological 

Measure 

(Device) 

Sensor 

Location 

Measurement 

Index 

Index 

Meaning 

Relationship to 

Mental 

Workload 

SCL  

(Iom® Wild 

Divine 

biofeedback 

sensor 

system) 

 

Tips of index 

and ring fingers 

of the non-

dominant hand 

The average 

skin 

conductance 

level over 

display-

processing 

interval 

Tonic 

phonemena of 

electrodermal  

activity 

(Boucsein, 

2012; Mehler, 

Reimer, & 

Coughlin, 

2012) 

Higher SCL 

associates with 

higher mental 

workload (e.g., 

Boucsein, 

2012; Mehler, 

Reimer, & 

Coughlin, 

2012) 

 

HRV  

(Zephyr 

Bioharness 3) 

Under 

participants’ 

clothing around 

the torso 

pNN20 and 

pNN50 

The percentage 

of successive 

N-N intervals 

that differ by 

more than 

20ms and by 

more than 

50ms 

Lower pNN20 

or pNN50 

associates with 

higher 

workload (e.g., 

Cinaz, Arnrich, 

La Marca, & 

Tröster, 2013; 

Mehler, 

Reimer, & 

Wang, 2011). 
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Table 12: Continued 

Physiological 

Measure 

(Device) 

Sensor 

Location 

Measurement 

Index 

Index 

Meaning 

Relationship 

to Mental 

Workload 

EEG  

(NeuroSky® 

MindWave 

hardware) 

ingle electrode 

on the Fp1 

position on 

ventrolateral 

prefrontal 

cortex 

(VLPFC) 

according to 

20-10 

international 

system 

The average 

desynchronizatio

n percentage 

(ERD%) of 

lower alpha band 

of the EEG 

The extent of 

depression 

from the 

average of 

EEG amplitude 

in the 

physiological 

baseline 

Larger 

ERD% of 

lower alpha 

band 

indicates 

more overall 

mental  

demand (e.g., 

Klimesch, 

1999) 

 

 

The mental workload imposed by LST and OAT was calculated in Equation 10. 

 

𝑀𝑊𝐿𝑆𝑇 𝑖𝑛 𝑗 = 𝑀𝑊𝑇𝑜𝑡𝑎𝑙 𝑖𝑛 𝑗 − 𝑀𝑊 𝑇𝑜𝑡𝑎𝑙 𝑖𝑛 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒                                                        (10) 

𝑗: experimental display condition (Numeric, Hue, or Spatial) 

Note. MW represents mental workload. 
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Correlating CE Measures with Multitask Performance 

 Quantitative measures of display informativeness and required mental resources 

were compiled for each participant. Pairs of measures were then combined to construct 

several CE metrics according to Equation 6. Finally, correlation analyses determined the 

relationship between these CE metrics and multitask performance. 

 

IV.2.2 Results 

Twenty-four participants were divided into High and Low groups according to 

PILST in the Spatial condition by applying k-means clustering with internal validation 

measures (connectivity, Sillhouette Width, and Dunn Index) (see Table 13). 

 

 

Table 13: Clustering of High and Low Groups 

Groups 𝑃𝐼𝐿𝑆𝑇 in Spatial 

Condition 

Subject Number 

High 0.56 ~ 1.00 n=17 

Low 0.00 ~ 0.33 n=7 

Note. 𝑃𝐼𝐿𝑆𝑇 represents performance index of the lane-selection task (see Equation 8). 

 

 



 

 

83 

 

 

Repeated-measures two-way ANOVAs were used to determine main effects of 

Display, Group, and their interaction effect, with significance levels of α=0.05. Display is 

a variable that specifically included the 3 experimental display conditions: Numeric, Hue, 

and Spatial. Tukey post hoc tests were used to find differences among means. Finally, 

Pearson product-moment analyses determined correlation coefficients between CE 

metrics and multitask performance indices. All analyses were completed in R 3.2.3. 

 

Performance Indices 

A significant main effect of Display was found on PI (F(2,66)=7.60, p<0.001, 

𝜂2=0.11. The post hoc test showed that the Spatial condition (PI=0.75) involved 

significantly lower PIs than the Numeric (PI=0.89, p<0.001) and Hue (PI=0.85, p=0.030) 

conditions. The Numeric and Hue conditions didn’t differ from each other. PI of the High 

group (mean PI=0.89) was significantly higher than the Low group (PI=0.67; 

F(1,66)=47.13, p<0.001, 𝜂2=0.34).  

The interaction effect between Display and Group was significant as well 

(F(2,66)=5.03, p=0.009, 𝜂2=0.07). The Display effect was insignificant in the High group 

(PI: Numeric=0.93, Hue= 0.89, Spatial=0.86). However, in the Low group, PI in the 

Spatial (PI=0.50) condition was lower than in both Numeric (PI =0.79, p<0.001) and Hue 

(PI=0.74, p=0.003) conditions. The Group effect was significant in the Spatial condition 

(PI: High=0.86, Low=0.50, p<0.001), but insignificant in the Numeric (High=0.89, 

Low=0.74) and Hue (High=0.93, Low=0.79) conditions (see Figure 16). 
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Figure 16. Performance indices for each group in each experimental display condition. 

Error bars represent standard error. * indicates significant difference. 

 

 

Display Informativeness Measures 

INF (F(2,66)=4.70, p=0.012, 𝑅2=0.09 and ACC (F(2,46)=7.55, p=0.014, 𝜂2=0.08) 

were significantly affected by Display (see Figure 17). Post hoc tests showed that the 

Numeric display (INF=1.68 bits) transmitted significantly more information than the 

Spatial (INF=1.38 bits, p<0.009) but neither the Numeric nor Spatial displays differed 

from the Hue display (INF=1.52 bits). Similarly, report accuracy was also significantly 

higher in the Numeric (ACC=88.0%) compared to the Spatial (ACC=75.1%, p=0.010) 

conditions, but neither the Numeric nor Spatial displays differed from the Hue 

(ACC=82.8%). 
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The High group (INF=1.66, ACC=88.2%) showed higher INF and ACC than the 

Low group (INF=1.20, F(1,66)=27.85, p<0.001, 𝜂2=0.26; ACC=67.0%, F(1,66)=30.31, 

p<0.001, 𝜂2=0.27). The interaction effect between Display and Group was not significant 

on either INF or ACC. 

 

 

 

Figure 17. Information transmitted (INF; left) and report accuracy (ACC; right) for each 

performance group in each experimental display condition. Error bars represent standard 

error. N, H, and S represent Numeric, Hue, and Spatial conditions, respectively. 

 

 

Measures of Required Mental Resources 

Table 14 provides a summary of each mental workload measure across 

experimental display conditions. Among them, only NASA TLX (F(3,88)=18.15, 
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p<0.001, 𝜂2=0.37) was significantly affected by the experimental conditions. NASA TLX 

of Baseline condition (TLX=78) was significantly lower than that in all Display conditions 

(Numeric=130, p =0.002; Hue=133, p =0.001; Spatial=181, p <0.001).The Spatial 

condition showed higher NASA TLX ratings than the Numeric (p<0.001) and Hue 

(p<0.001) conditions. NASA TLX was not significantly different between the Numeric 

and Hue conditions. In addition, the Group effect on NASA TLX was not significant. 

 

 

Table 14: Measures of Mental Workload among All Experimental Conditions 

 Baseline Numeric Hue Spatial Sig. 

EEG(ERD%) 24.9% 37.8% 37.8% 32.2% no 

HRV(pNN20) 63.6% 64.1% 63.2% 63.1% no 

HRV(pNN50) 30.4% 29.0% 30.9% 28.6% no 

SCL 3.62 3.88 3.73 3.87 no 

NASA TLX 78 130 133 181 p<0.001 

 

 

HRV (pNN50=26.8%, pNN20=60.5%) of the High group was significantly lower 

than that of the Low group (pNN50=36.8%, F(1,88)=7.20, p=0.009, 𝜂2=0.08; 

pNN20=70.9%, F(1,88)=7.19, p=0.009, 𝜂2=0.08). SCL (SCL=4.35) of the High groups 
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was significantly higher than that of the Low group (SCL=2.38, F(1,88)=15.10, p<0.011, 

𝜂2=0.07).  

Workload measures were partitioned according to Equation 10 to determine 

relative workload contributions from LST (see Figure 18). Of these partitions, only 

TLXLST (F(2,66)=9.37, p<0.001, 𝜂2=0.21 ) was significantly affected by Display. The post 

hoc tests showed TLXLST in the Spatial condition (TLXLST=101.5) was significantly 

higher than the Numeric and Hue conditions (Numeric: TLXLST=50.7, p<0.001; Hue: 

TLXLST=53.2, p=0.001), but it did not differ between Numeric and Hue conditions.  

 

 

 

Figure 18. NASA TLX workload indices in the lane-selection task (TLXLST) for all 

participants in each display condition. Error bars represent standard error. 
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Cognitive Efficiency Metrics 

Following Equation 6, five CE metrics were constructed using different 

combinations of measures for display informativeness and required mental resources. INF 

and five mental workload indices (EEGLST, SCLLST, HRVLST(pNN50), HRVLST(pNN20), 

and TLXLST) were normalized and scaled into the same positive range. Only INF was 

chosen to indicate display informativeness because ACC and INF were highly correlated 

(r=0.97) and INF is a better indicator of the quantity of information gained from the 

display. As the task associated with processing the head-up displays, only the LST 

partitions of workload indices were considered in CE calculations. 

The INF/TLX construct was the only one that was significantly affected by Display 

(see Table 15). For INF/TLX, the Spatial display scored lower than the Numeric and Hue 

displays. The scores of all CE metrics were significantly higher in High group than Low 

group (see Table 15).  
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Table 15: Display Effect and Group Effect on Cognitive Efficiency (CE) Metrics 

                                    Display Effect  Group Effect 

CE Metrics Numeri

c 

Hue Spatial Sig. High Low Sig.  

INF/TLX 1.20 1.10 0.90 p<0.001 

(S<Nu***, H*) 

1.12 0.93 p=0.003 

INF/EEG 1.35 1.27 1.19 no 1.34 1.27 p=0.005 

INF/pNN50 0.97 0.93 0.83 no 0.99 0.70 p<0.001 

INF/pNN20 1.12 1.00 0.96 no 1.13 0.78 p<0.001 

INF/SCL 1.13 1.07 0.96 no 1.14 0.84 p<0.001 

Note. Nu, H, and S represent Numeric, Hue, and Spatial display conditions, respectively. 

*p<.05. ** p<.01. *** p<.001. 

 

 

Table 16 lists Pearson correlation coefficients between each CE metric and 

multitask performance indices. Most CE metrics were significantly correlative with PI. In 

many cases, the correlations for the Low group were significantly higher than those for 

the High group. Figure 19 illustrates the most highly-correlating CE metrics for the High 

(INF/EEG: r=0.50) and Low (INF/TLX: r=0.89) groups vs. PI in each experimental 

display condition. 
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Table 16: Pearson Correlation Coefficients between CE Metrics and Multitask 

Performance Indices 

 

 All Group High Group Low Group Group effect 

 

 

CE  

INF/TLX 0.69*** 0.41** 0.89*** High<Low** 

INF/EEG 0.62*** 0.50*** 0.74*** no 

INF/(1-pNN50) 0.51*** 0.17 0.66*** High<Low * 

INF/(1-pNN20) 0.52*** 0.27 0.63** no 

INF/SCL 0.60*** 0.38** 0.80*** High<Low * 

DI  INF 0.72*** 0.44** 0.78*** (N/A) 

ACC 0.76*** 0.42** 0.81*** (N/A) 

MW 

in 

LST 

TLX -0.29 -0.11 -0.55** (N/A) 

EEG -0.08 -0.33 -0.18 (N/A) 

1-pNN50 -0.06 -0.11 -0.10 (N/A) 

1-pNN20 -0.08 -0.03 -0.21 (N/A) 

SCL -0.11 -0.22 -0.04 (N/A) 

Note. The workload indices in Table 16 represent the mental workload associated only 

with the lane-selection task (LST). DI represents quantifications of display 

informativeness and MW represents mental workload. ‘1-pNN50’ and ‘1- pNN20’ 

correlate positively with mental workload. The underlined values indicate particularly 

high correlation coefficients between CE and PI in each column. * p<.05. ** p<.01. 

***p<0.001. 
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Figure 19. Relationships between CE metrics and multitask performance indices for the 

highest-correlating metrics for High- (top) and Low (bottom) groups. 
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resources) dimensional measures. In the case of INF/TLX, it (r=0.89) correlated more 

strongly than INF (r=0.78) and TLX (r=0.55, p<0.001). 

 

IV.2.3 Discussion 

In this chapter, we define cognitive efficiency (CE) as a ratio of display 

informativeness to the amount of operator mental resources required in processing the 

displayed information. A robust CE measurement technique can be used to assess the 

efficiency of human-display systems in multitasking environments. 

Given the complex nature of the concepts represented by the informativeness and 

required resources dimensions, it is challenging to find ways to quantify each dimension 

that are reasonably simple yet sufficiently reflect these complexities. Existing theory and 

measurement techniques can be used to crudely quantify each dimension, but the 

appropriateness and sensitivities of existing methods depend on characteristics of the 

human, display, and context. Therefore, a generalized construct must allow flexibility in 

choice of methods. This study sought to determine how closely various CE constructs and 

metric calculations correlated with multitask performance in a specific task context: 

gathering coded navigational information while driving a vehicle. These efforts revealed 

that CE metrics represent promising means of predicting multitask performance in similar 

task contexts. 

Multitask performance, indicated by performance indices (PI), was improved 

when operators gained more information from experimental displays and used it to make 
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better lane-choice decisions in the LST. PI also increased when displays imposed smaller 

demand on visual-spatial resources, thus leaving more available for route-planning and 

navigation in a concurrent OST. Since LST and OST contributed roughly equivalently to 

performance indices, PI was relatively unaffected by variations in task management 

strategies. 

 

CE Dimensional Measures 

In the current study, display informativeness was quantified in two ways: 

information transmitted (Miller, 1953; Shannon & Weaver, 1949) and report accuracy, 

which were highly correlated with each other so that they provided roughly equivalently-

predictive results. Although we primarily focused on information transmitted in the paper, 

the relative ease of the accuracy measure may make it preferred, at least for simple 

displays with low overall information content. However, both measurements of display 

informativeness require verbal report so that they may interrupt the driving performance. 

Therefore, there are needs of exploring unintrusive measurements of display 

informativeness. 

Required mental resources was quantified using normalized-and-scaled measures 

of subjective mental workload (NASA TLX) and physiological measures according to 

Equation 10. In instructional efficiency research, workload assessments have almost 

exclusively used retrospective subjective ratings (Fiore et al., 2006; Paas et al., 2003; Paas 

& van Merriënboer, 1993), which are appropriate for the longer time intervals involved in 
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long-term memory encoding and skill development. In contrast, our interests concern short 

intervals, working memory processing, immediate application of task-relevant 

information, and continuous activity that ideally is not disrupted by workload surveys. 

Therefore, a major goal of the current research is to determine whether real-time 

physiological assessments can be as indicative of mental load as retrospective subjective 

ratings, if not moreso. 

The results are negative with respect to this goal. Across all participants, the NASA 

TLX subjective ratings were more sensitive to display changes (see Table 14) and 

correlated more strongly with multitask performance than did any of the physiological 

assessment methods (see Table 16). A number of reasons may contribute to this finding. 

First, it is important to note that a broad range of factors (including but not limited to 

mental workload) affect autonomic arousal and corresponding physiological indicators; 

controlling for non-workload factors is difficult and/or expensive (O’Donnell & 

Eggemeier, 1986; Vidulich & Tsang, 2012). In an effort to make our methods broadly 

applicable, affordable, and minimally obtrusive to operators, the sensor technologies used 

were fairly simple. More sophisticated technologies may produce better physiological 

results. 

The lack of sensitivity of physiological measures may also be impacted by ceiling 

effects in the indicators of mental workload which were not present in subjective 

assessments. This possibility is supported by initial evidence showing that near the 

cognitive redline, some physiological indicators show “plateau” effects not seen with 
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subjective measures (Rodriguez Paras, 2015; Rodriguez Paras, Yang, Tippey, & Ferris, 

2015), reducing the sensitivity of physiological measures at extreme workload levels. In 

our study, participants may approach/exceed their cognitive redlines since their multitask 

performance significantly dropped in the Spatial condition (Wickens, Hollands, 

Parasuraman & Banbury, 2012). Therefore, the plateau effect on physiological arousal 

(see Table 14) is likely to reduce the sensitivity of all physiological measures. 

 

CE as a Property of Displays in Human-Machine Systems 

An important feature of the new CE model (Equation 6) is that its component 

measures of informativeness and required resources are functionally dependent on human 

(h), display (d), and contextual (k) factors. This emphasizes that CE calculations are system 

evaluations, and varying any of those factors may have complex emergent effects on 

calculated values. It also implies that CE comparisons, for example, between hypothetical 

displays “dA” and “dB”, are only meaningful when relevant human (hi) and contextual/task 

(ki) factors are held constant (e.g., CE(hi,dA,ki) vs. CE(hi,dB,ki)) or otherwise accounted for 

quantitatively in metric calculations. It remains a topic for future research to 

mathematically account for key human and contextual factors that impact CE measures so 

as to make this metric more generalizable. 
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CE Metrics for Predicting Multitask Performance  

The current study illustrated the sensitivities of several CE metrics to Display 

conditions. Numeric, Hue, and Spatial displays were designed to be increasingly difficult 

to work with (communicating less information and/or imposing a greater cost to mental 

resources) and CE values decreased correspondingly, with INF/TLX distinguishing the 

displays statistically (see Table 15). The Spatial display in particular was designed to be 

especially demanding of visual-spatial working memory resources and create the most 

processing conflict between the LST and OAT. As expected, the Spatial display was 

consistently measured as the least cognitively efficient one and associated with the worst 

multitask performance. 

Of the five constructed CE metrics (see Table 16), the INF/TLX metrics provided 

the highest correlation with multitask performance (PI) across all display conditions. This 

finding is consistent with the fact that NASA TLX is sensitive to the mental workload 

imposed by the LST, and validates the use of subjective measures in the previous 

instructional efficiency studies (e.g., Paas et al., 2003). 

An unexpected finding was the degree to which interindividual differences 

influenced the sensitivity of CE metrics and their power to predict multitask performance. 

The High group demonstrated significantly higher cognitive efficiency than the Low 

group across all CE metrics (see Table 15), but the CE metrics are more predictive of 

multitask performance in the Low group (see Table 16).  Unlike the High group, the Low 
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group may not be able to obtain sufficient information from less efficient displays, thus 

resulting in apparent performance degradation.  

 

Validation of the CE Metric  

Equation 6 was formulated as a “benefits per costs” ratio to express the efficiency 

of a human-display system more completely than considering benefits or costs in isolation. 

CE quantifications can then meaningfully evaluate both highly-informative-but-complex 

and less-informative-yet-simple displays in a given task environment. For INF/TLX in the 

Low group, the ratio combination of measures in Equation 6 showed better predictive 

power for multitask performance than did component individual measures (see Table 16). 

These findings validate the ratio model and illustrate the predictive power of CE metrics 

in high-workload multitasking contexts. 

 

Limitations 

Although cognitive efficiency metrics were strong predictors of multitask 

performance in the current study, it must be emphasized that the results are meaningful 

only in the particular task context used in the experiment. Generalizing these methods 

and/or findings to other contexts requires additional consideration for different tasks 

and/or imposed loads. If the overall load does not approach an operator’s cognitive redline, 

CE measures may dissociate from task performance, because with excess mental resources 
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available, operators can invest more (Wickens et. al., 2012) and thus performance with 

low-efficiency displays may be similar to that with high-efficiency displays. 

Another limitation involves artificiality of the tasks; this was necessary to produce 

experimental conditions that facilitated the desired calculations. The displays were also 

very simple so that informativeness could be measured with practical methods. Accurately 

quantifying the CE dimensions with more complex real-world displays and tasks may 

require more sophisticated measurement techniques. 

 

IV.3 Conclusion 

In this chapter, the modified CE metric provides a powerful way to measure how 

well displays support multitask performance in human-machine systems. Versions of CE 

metrics that included NASA TLX subjective ratings for workload assessments correlated 

highly with performance, especially when operators were most heavily loaded, 

approaching their cognitive redlines. Importantly, some CE metrics showed higher 

correlations with performance indices than did constituent component measures, 

illustrating the value of the combined construct. With the ultimate goal of developing a 

practical method for evaluating display effectiveness in multitask contexts, the research in 

this chapter provides important theoretical basis for combating the problems of data 

overload and multitask performance breakdowns in a wide range of work environments.  
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CHAPTER V 

INVESTIGATING A SPECIAL DISPLAY DIMENSION: BEAT PATTERN 

 

According to Chapter II, the selection of different display modalities and 

dimensions can largely affect the information perception and change the cognitive 

efficiency of display. In this chapter, we studied a special display dimension: beat pattern. 

Since beat pattern in auditory display (auditory beats) has been largely studied before, this 

chapter primarily investigated the beat pattern in haptic display (haptic beats), exploring 

its ‘emergent property’ and the effects of body location, sex, and beat frequency on the 

perception of haptic beats.  

 

V.1 The Definition of Beat Pattern 

A display can encode information into one or multiple of its dimensions. The 

diverse dimensions of visual, auditory, and haptic displays are summarized in Table 17.  

 

 

Table 17: The Summary of Dimensions of Visual, Auditory, and Haptic Displays 

Visual Dimensions: hue, brightness, size, shape, alphabetic, numeric 

 

Auditory Dimensions: pitch/frequency, loudness, timbre 

 

Haptic Dimensions: frequency, amplitude (intensity), waveform 

                                                 

 Reprinted with permission from Proceedings of the Human Factors Society Annual Meeting, 58, 1. 

Copyright 2014 by the Human Factors and Ergonomics Society. All rights reserved. 
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Table 17: Continued 

General Dimensions of all three modalities: tempo, location, direction, 

duration, number 

 

The beat pattern (not listed in the table) is a special dimension that can be found 

in the auditory and tactile presentations, being called ‘auditory beats’ and ‘haptic beats’ 

respectively.  

 

 V.1.1 Auditory Beats 

Auditory “beats” are an emergent property of complex auditory presentations that 

can be observed when two pure tones of different frequencies (i.e., pitches) are presented 

simultaneously to the same observer (Oster, 1973).  Beats can be observed both when the 

component auditory stimuli are integrated in a single auditory stream and when they are 

presented separately to the two ears. When the auditory stimuli are presented separately, 

they are integrated in the superior olivary nucleus and referred to as “binaural” beats 

(Oster, 1973).  

The emergent perception of auditory beats arises from the formation of a complex 

tone that follows a combined sinusoidal pattern of amplitude modulation (see Figure 20). 

The frequency of the resultant sinusoidal pattern (i.e., the “beat frequency”) is equal to the 

difference between the signal frequencies of the component tones. For example, a 

simultaneous presentation of 1000 Hz and 1005 Hz signals would form a complex tone 

with a 5 Hz beat frequency. 
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Figure 20. Graphical representation of amplitude-modulated “beats”, which is the 

combination of two sinusoidal waves. 

 

 

Auditory beat frequencies slow and become imperceptible as the component 

frequencies approach the same value. This quality allows auditory beats to be used in 

calibrating devices emitting distinct auditory streams, such as when tuning a musical 

instrument or in ensuring jet engines are operating at the same frequency (Oster, 1973). 

Binaural beat presentations have also been used as an alternative method to treat 

depression because they increase the depth of meditation (Wahben, Calabrese & Zwickey, 

2007). Auditory beats can also be used to encode data in sonifications and other synthetic 

auditory displays; for example, the deviation from a target driving speed can be encoded 

as the frequency of auditory beats (Yang, You & Ferris, 2013). Auditory beats can enhance 

the salience of signals in a noisy environment and, unlike pure auditory tones, the ability 

to detect beats does not deteriorate with age (Oster, 1973). 

 



 

 

102 

 

 

V.1.2 Haptic Beats 

With a recent growth in the research and commercial development of tactile 

displays (e.g., Jones & Sarter, 2008;), haptic/vibrotactile beats are increasingly being 

explored as an additional display dimension to enhance the expressiveness of tactile 

displays (e.g., Ferris & Sarter, 2011; Hoggan & Brewster, 2007). While some vibrotactile 

display hardware has the ability to produce an integrated beat frequency signal within a 

single actuator, it has also been demonstrated that humans can perceive haptic beats when 

two distinct devices present pure vibrating signals to proximal but separate body locations. 

In this sense, the beat frequencies are an emergent property of the combined presentation.  

The emergent perception of haptic beats has been demonstrated at the fingertip 

when holding two vibrating devices that are in direct contact (Lim, Kim, Hwang, & Kwon, 

2010), when attaching separate vibrotactile devices to the same fingertip (Lim, Kyung & 

Kwon, 2012), and when touching a vibrating finger to either a mobile screen or to the skin 

while it is being vibrated by a separate actuator (Makino & Maeno, 2013). For haptic beats 

to be observed, the difference in activation frequency of the component vibrotactile signals 

must stay within the range of just noticeable difference (JND) (i.e., if presenting the two 

component vibrotactile signals individually, people would not be able to determine that 

the activation frequencies are different) (Pongrac, 2007).  

The limited set of studies exploring the emergent perception of haptic beats from 

multiple stimulation sites has concentrated on the fingertip. However, other body locations 

may also support this perception. Promising sites include the palm and forearm, which can 
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support the interpretation of spatial vibrotactile patterns with relatively high accuracy 

(Piateski & Jones, 2005), and the joints of the elbow and wrist, which support higher 

vibrotactile localization than other locations on the forearm (Chen, Santos, Graves, Kim 

& Tan, 2008; Cholewiak & Collins, 2003). 

As prior research on emergent haptic beats involved presentation locations in very 

close proximity on or near the pad of the fingertip, the perception of beats is likely 

attributable to the physical propagation of vibration waves through the skin. This would 

mean the signals integrate locally via the mechanoreceptors in the skin to form a complex 

vibratory beat sensation. However, as in the perception of auditory binaural beats, these 

component vibrotactile waveforms may alternatively be sensed independently when at 

distinct body locations, with the sensory signals transmitted via parallel neural fibers to 

the cerebral cortex and integrated to form the perception of an emergent beat frequency. 

To gain insight into the underlying mechanisms in emergent haptic beats perception, the 

current study explored proximal presentation locations at the fingertip, palm, wrist, and 

elbow as well as distant body locations that do not support mechanical propagation and 

where emergent perception of beats would indicate neural mechanisms for integration of 

the vibrotactile stimuli. 

 

V.2 A Case Study of the Perception of Haptic Beats 

The goal of this study is to gain a deeper understanding of the mechanisms behind 

the perception of haptic beats and to identify where the emergent perception of beats is 
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strongest. To achieve this goal, this study tested participants’ ability to distinguish 

emergent haptic beats from pairs of pure vibration presentations as a function of body 

location and frequency difference. One grouping of body locations tested spatially-

proximal paired presentation sites to examine how the local integration of component 

vibratory stimuli propagating through the skin may be affected by underlying tissue 

qualities (Group 1; see Table 18). Another grouping investigated whether haptic beats 

could be detected with paired presentation locations that were less proximal and involve 

different neural pathways, thus requiring beat perception to emerge from neural 

integration (Group 2; Table 18). In Group 2, paired presentations to fingertips on separate 

hands corresponds with detection across different cerebral hemispheres, and the use of 

two fingertips on the same hand and a fingertip and palm position on the same hand 

correspond with detection within parallel nerve fibers linked to one hemisphere. 

Additionally, sex effects were also evaluated for both location groupings, as previous 

studies of tactile perception found them significant (e.g., Komiyama, Kawara & De Laat, 

2007). 

 

 

Table 18: Grouping of Paired Presentation Locations 

  
G

ro
u

p
 1

 (1) Fingertip: Pad and nail of the same middle finger 

(2) Wrist: Ulnar and radial styloid processes  

(3) Elbow: Lateral and medial epicondyle  

(4) Palm: Thenar and hypothenar of the same palm 
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Table 18: Continued 

  
G

ro
u

p
 2

 

(5) TwoFingers: Pad of the index finger and pad of the middle 

finger on the same hand 

(6) FingerPalm: Middle finger pad and hypothenar of the same 

hand 

(7) TwoHands: Pads of the middle fingers on two separate hands 

 

 

V.2.1 Method 

Twelve participants (6 males and 6 females) from Texas A&M University 

participated in this study.  All participants were between 20 and 32 years of age (average 

age 25) and had no known injuries or conditions that would affect the ability to detect 

vibrations presented to the hand or lower arm. 

 

Apparatus and Stimulus Presentations 

The EAI© C-2 Tactor system was used to drive two vibrotactile actuators (referred 

to as “tactors”) that presented the stimuli. Software was developed to simultaneously 

activate these tactors at either the same frequency or two slightly different frequencies. 

The tactors were attached to participants using compression fabric and Velcro at 

approximately equal pressures (see Figure 21). Participants were asked to assist in affixing 

the tactors to ensure satisfactory comfort levels. Participants wore noise cancelling 

headphones to minimize the audibility of tactor activation. 

Vibrotactile stimuli were presented to seven pairs of body locations, which were 

divided into Group 1 and Group 2 (see Table 18). 
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Figure 21. C-2 Tactors attached to the pad of middle and index fingers (“TwoFingers” – 

see Table 18). 

 

 

At each location, two different experimental frequency pairings with the potential 

to produce haptic beats were tested: (250 Hz from tactor 1, 246 Hz from tactor 2) – with 

a resultant beat frequency of 4 Hz – and (250 Hz, 242 Hz) – with a resultant beat frequency 

of 8 Hz. There were 14 total (7 location pairings x 2 frequency differences) treatment 

conditions, each of which required reporting whether or not haptic beats were observed 

for ten successive presentations. The ten trials consisted of a random ordering of five 

presentations with the specified frequency difference and five control trials in which the 

vibrations were the same (250 Hz) at both locations.  A base frequency of 250 Hz was 

chosen because it is within the range of maximum sensitivity for Pacinian corpuscles, 

which play a large role in vibrotactile sensation in the hands and joints (Cholewiak & 

Collins, 1991; Sherrick & Cholewiak, 1986), and it is also near the mechanically optimal 

operational frequency for the tactor hardware. The deviations (4 Hz and 8 Hz) from the 

“carrier” frequency (250 Hz) were within the just noticeable difference (JND) range 
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(Pongrac, 2007) and were similar to differences used in previous studies of emergent beats 

perception at the fingertip (Lim, Kyung & Kwon, 2012). The intensities of vibration 

presentations were comparable to a cell phone set to vibrate mode, with the 7.5-mm “skin 

contactor” of the tactors oscillating at a maximum displacement of approximately 1 mm. 

The order of location presentations was balanced within each Group, but Group 1 

was always presented before Group 2. The order of resultant beat frequencies and the 

presentations of the ten stimuli in each location-frequency pair treatment condition were 

quasi-randomly distributed. 

 

Procedure 

After consenting to participate and completing a background questionnaire, 

participants were introduced to the haptic beats concept and experienced the beat sensation 

at the 4 Hz and 8 Hz beat frequencies. When presented to the fingertip, all participants 

were able to distinguish a pure vibration presentation from a beat presentation with 100% 

accuracy, affirming that they clearly understood the haptic beats concept. Participants then 

completed all 14 treatment conditions, for a total of 140 trials. For each trial, participants 

were simply required to verbally report “Yes” if they felt a beat frequency or “No” if they 

did not feel a beat frequency (i.e., if they felt a pure signal). Prior to the start of each new 

treatment condition, participants were trained on a set of at least 6 randomly ordered 

stimuli for which they were given feedback about the correctness of their response; this 

procedure was repeated until their recognition of beat frequencies appeared to reach an 
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asymptote. Each trial presentation lasted approximately 2.5 seconds with 4 seconds 

between trials. There was one minute of required rest time between treatment conditions. 

In total, the experiment lasted approximately one hour. 

 

V.2.2 Results 

The accuracy of response was recorded as the percentage of trials in which the 

participants correctly identified either haptic beats or pure signal presentations. Repeated 

Measures Three-Way ANOVAs formulated in Minitab were used to examine the 

treatment effects of body locations and beat frequencies on the perception of haptic beats 

for each location grouping. 

 

Results of Group 1 

The fingertip, palm, wrist and elbow locations showed overall identification 

accuracies of 98.8%, 90.4%, 91.3% and 93.3%, respectively. The accuracies differed 

significantly among these four body locations (F (3, 80) = 3.30; p = 0.025). Post-hoc 

Tukey tests showed significantly higher accuracies for the fingertip compared to palm 

(p=0.0276). The accuracies for the fingertip, wrist, and elbow did not significantly differ 

from each other.  

The accuracies for conditions involving 8 Hz beat frequency presentations (mean 

accuracy: 97.3%) were significantly higher than conditions involving 4 Hz presentations 

(mean accuracy: 89.6%; F(1, 80) = 13.94; p < 0.001). Male participants also responded 
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with significantly higher accuracies (mean accuracy: 96.9%) than females did (mean 

accuracy: 90.0%; F(1, 80) = 11.09; p = 0.001). None of the two- and three-way interaction 

effects between body location, frequency, and sex were significant. 

Although no significant interaction effect was found, there was a prior expectation 

that the difference in salience between the 4 Hz and 8 Hz beats presentations could affect 

beats perception at body locations with relatively lower sensitivity. Therefore we 

compared the accuracies for 4 Hz and 8 Hz beats at each body location (see Figure 22). 

Beat frequency did not significantly impact identification accuracies for presentations on 

the fingertip, with 98.3% accuracy for 4 Hz beats and 99.2% accuracy for 8 Hz beats. For 

the palm, the average accuracy for 4 Hz treatment conditions (mean accuracy: 85.8%) is 

much lower than that for 8 Hz conditions (mean accuracy: 95.0%), although this difference 

did not reach significance. However, the wrist (F(1, 20) = 5.49; p = 0.030) and elbow (F 

(1, 20) = 6.74; p = 0.017) demonstrate a significantly greater accuracy for treatment 

conditions involving 8 Hz haptic beats compared to those involving 4Hz beats (Wrist: 4 

Hz = 85.0%, 8 Hz = 97.5%; Elbow: 4 Hz = 89.2%, 8 Hz = 97.5%). 
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Figure 22. Response accuracy for each frequency difference and body location in Group 

1. * indicates significance, and error bars represent standard error. 

 

 

 

Figure 23. Response accuracy for each sex and body location in Group 1. * indicates 

marginal significance, and error bars represent standard error. 
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Because previous studies had found consistent sex differences in auditory binaural 

beats perception (Tobias, 1965; McFadden, 1998), the sex effect for haptic beats 

perception was also analyzed at each body location (see Figure 23). Males and females 

accurately identified 99.2% and 98.3% of the stimuli, respectively, with their fingertips. 

For the other body locations, males’ average identification accuracy (Palm = 95.0%, Wrist 

= 96.7%, Elbow = 96.7%) was higher than that of females (Palm = 85.8%, Wrist = 85.8%, 

Elbow = 90.0%). None of these locations significantly differed due to sex, but the p-values 

of wrist (F(1, 20) = 4.12; p = 0.056) and elbow (F(1, 20) = 4.32; p = 0.051) are very close 

to the chosen significance criterion (p = 0.05). 

 

Results of Group 2 

None of the treatment conditions in Group 2 showed accuracies that were 

significantly different from chance (mean accuracy: TwoHands = 48.3%, TwoFingers = 

52.9%, FingerPalm = 56.7%). The effects of frequency and sex were also insignificant. 

 

V.2.3 Discussion 

Haptic beats offer a promising means of increasing the expressiveness of haptic 

displays and supporting the presentation of more complex signals. This phenomenon can 

be observed when vibrotactile stimuli of different frequencies are presented 

simultaneously to one or multiple body locations. Recent research has demonstrated the 

emergent perception of beats for paired presentations to the pad and nail of the same 
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fingertip but has left other body locations and the effects of frequency ranges largely 

unexplored. In order to further the understanding of haptic beat perception, its underlying 

neural basis, and its potential applications, this study aimed to measure the ability to 

reliably detect haptic beats at seven pairs of locations on the lower arm and at two beat 

frequencies. 

 

Effect of Location 

Consistent with previous findings, the fingertip demonstrated a very strong ability 

to detect emergent haptic beats that did not differ due to frequency or sex effects. This 

corresponds with the fingertip’s relatively high sensitivity for processing vibratory stimuli. 

This body location contains a high innervation density for key types of mechanoreceptors, 

especially fast adapting type II (FA II) receptors that are easily excited by mechanical 

oscillations with frequencies ranging between 100 Hz and 300 Hz (Vallbo & Johansson, 

1984). Furthermore, the cortical representation of fingers occupies a large area of the 

somatosensory cortex (SI) (Penfield & Rasmussen, 1951), suggesting a high capacity for 

processing tactile information at the fingertip. Finally, the relative proximity of the 

locations on either side of the fingertip and the rigidity of the tissue in the fingertip support 

vibration propagation and localized mechanical integration of the paired waveforms. 

Therefore, the fingertip is likely the best body location, of those explored in this study, for 

perceiving complex patterns such as emergent haptic beats. 
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Beyond the fingertip, the palm, wrist, and elbow also displayed a strong ability to 

detect haptic beats. At these locations, anatomical differences between participants may 

have affected the results to some extent. For example, some participants appeared to have 

more underlying muscle and tendon tissue on the elbow and wrist. These participants 

tended to be less capable to detect haptic beats at these locations. This observation suggests 

that more direct stimulation of bone enhances the sensitivity to haptic beats since rigid 

bone tissue effectively propagates high-frequency physical oscillations (Bacabac, et.al, 

2006). Taking advantage of the physical propagation of vibration signals within the bone 

at the wrist and elbow may be a reliable way to present emergent haptic beats, in a manner 

similar to how auditory beats can be presented using binaural bone conduction in auditory 

displays (Walker, Stanley, Lyer, Simpson & Brungart, 2005). 

This study also addressed the extent to which emergent haptic beats perception 

was attributable to localized mechanisms, such as pairs of vibrations propagating through 

the skin, versus to neural mechanisms, such as parallel streams of neural signals being 

integrated at the cerebral cortex. Therefore, two groups of paired body locations tested 

each of these mechanisms, with those in Group 2 involving locations associated with 

different nerve fibers: different fingertips of the same hand, the palm and one of its 

connected fingertips, and corresponding fingertips of opposite hands. However, none of 

the Group 2 presentation locations enabled participants to distinguish vibrotactile stimuli 

at a rate significantly different from chance (50%). This finding suggests that haptic beats 

perception likely does not occur due to integration in the somatosensory cortex in any 
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manner similar to the way signals are integrated into binaural beats in the auditory cortex, 

whether the component vibration signals are processed bilaterally (one component in each 

cerebral hemisphere, as in presentations to both hands) or unilaterally (as in presentations 

to different locations on the same hand). Thus, the more likely mechanism for emergent 

haptic beat perception is localized mechanical integration. 

 

Effect of Frequency 

The results also suggest that differences in beat frequencies affect the perception 

of haptic beats. Between the two frequency pairs, the larger difference (the 8 Hz beat 

frequency) resulted in greater beat identifications accuracy, especially at the wrist and 

elbow, which have relatively lower sensitivities to complex/high frequency vibration in 

comparison to the hands and fingers (e.g., Penfield & Rasmussen, 1951). The higher 8 Hz 

beat frequency was also commonly reported as feeling more salient than the 4 Hz 

frequency, which may have contributed to this difference. However, the potential for 

improved beat detection from continuing to increase the beat frequency within the range 

of Just Noticeable Difference is unclear, suggesting a direction for future study. As one 

common mapping for haptic beat frequencies is the urgency of an encoded message, such 

as in displays communicating the severity of deviation for monitored patient health 

parameters (Ferris & Sarter, 2011) and the urgency in which changes in a driver’s speed 

are needed to achieve a target speed (Yang, You & Ferris, 2013), more urgent messages 
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should be encoded with higher beat frequencies, which are more salient and thus more 

likely to be detected. 

 

Effect of Sex 

A sex difference also exists in the perception of haptic beats, with males’ ability 

to detect beats appearing stronger than females’. As with the differences due to beat 

frequency, this difference was more pronounced at the less-sensitive locations of Group 

1: the wrist and elbow. Although sex differences have been observed in tactile detection 

thresholds at some body locations, such as on the skin of the cheek (Komiyama, et al., 

2007), sufficient evidence does not exist to determine if a true detection difference exists 

on the forearm due to the anatomical differences within the study population. Consistent 

with data on average anthropometries, female participants in this study were observed to 

have relatively smaller bones and less flat surface area at the wrist and elbow than male 

participants. This made it difficult to provide reliable skin contact for females at these 

body locations with the C-2 tactors and may have been the primary reason for the observed 

sex differences. Future studies are needed to explore anatomical differences and other 

possible factors contributing to the difference in sex perception, as well as to include larger 

sample sizes to more precisely control for these factors. 
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Emergent Property 

Haptic beats offer a promising “emergent property” to employ in advanced display 

methods such as configural and object displays (Bennett & Flach, 1992). For example, if 

levels of variables of interest are encoded into the frequency dimension of a vibrotactile 

display, then the emergent perception of haptic beats can communicate a difference in 

levels among related variables. For a human operator monitoring a set of automated 

subsystems, a complex vibrotactile display that includes several proximal presentation 

locations – each representing a single subsystem – could use a common frequency to 

communicate nominal conditions for each subsystem. Deviation from the nominal 

condition in at least one subsystem would result in a frequency change at the 

corresponding display location. The effective perception would then morph from a pure 

vibratory signal across the entire display area to a salient emergent beat. This would allow 

a holistic view of overall system performance for the operator as well as directing attention 

to sources of the deviation when they occur. Additional applications include the use of 

haptic beats in calibration tasks, such as those currently performed with auditory beats; in 

remote target-approach or guidance tasks, such as indicating the proximity of the position 

of a robot arm to a task location; and in personal biofeedback devices, such as informing 

wearers with a heart condition that their heart rate is approaching an unsafe level. 
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Limitations 

Some limitations of this study include a limited sample size, the potential for 

vibrotactile propagation through the compression fabric for some locations, and 

uncontrolled skin temperature, which has the potential to impact peripheral tactile 

sensitivity (Green, 1977). These limitations, as well as sex differences, will be addressed 

and further explored in future studies.  

 

V.3 Conclusion 

Chapter V investigated an important dimension of display: beat pattern. We 

studied haptic beats which is the beat pattern of haptic display and found that haptic beats 

can be reliably perceived at the fingertip, palm, wrist and elbow, and likely any spatially-

proximal paired locations that support the localized integration of vibrations which 

physically propagate through tissue. Frequency differences of the component signals and 

sex also significantly affect the perception of haptic beats, especially at locations with 

lower tactile sensitivity such as at the wrist and elbow joints.  

Consistent with previous findings, haptic beats were reliably perceived with paired 

presentations on the same fingertip; previously-unexplored locations on the palm, wrist, 

and elbow also supported perception of beats. However, haptic beats were not perceived 

when stimuli were presented to distant locations, such as on different hands, suggesting 

that haptic beats most likely involve a localized mechanical integration rather than neural 

integration.  
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The study of beat pattern can inform the design of advanced displays, such as 

configural or object displays, which can support direct perception of relationships among 

basic display components through “emergent properties” that arise from the arrangement 

of those components (e.g., Bennett & Flach, 1992). While such advanced display design 

efforts have focused primarily on visual displays, extending this concept to complex 

auditory and haptic displays can benefit domains that heavily load visual resources, such 

as driving, dismounted navigation, medicine, and immersive virtual reality.  
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CHAPTER VI 

MEASURING THE COGNITIVE EFFICIENCY OF 

 NOVEL SPEEDOMETER DISPLAYS 

 

 The studies in previous chapters only measured the cognitive efficiency of visual 

display with discrete presentations; but in Chapter VI, we extended the application of CE 

metric to the continuous speedometer displays that engaged different perceptual 

modalities and dimensions This chapter evaluated the cognitive efficiency of an ambient-

visual, an auditory, and a tactile display in multitask driving scenarios. Moreover, it 

investigated whether using beat pattern (studied in Chapter V) as a redundant dimension 

to encode information can improve the cognitive efficiency of the auditory and tactile 

displays. The findings of Chapter VI have implications for the design of efficient 

continuous displays for various work domains, such as driving, navigation, medicine, and 

immersive virtual reality. 

 

VI.1 Measuring the Cognitive Efficiency of Novel Speedometer Displays 

The goal of Chapter VI is to evaluate the cognitive efficiency of novel speedometer 

displays and find the most cognitively efficient modality and dimension of the displays in 

multitask environments. Therefore, this chapter answers the fourth research question of 

                                                 

 Reprinted with permission from Proceedings of the Human Factors Society Annual Meeting, 60, 1. 

Copyright 2016 by the Human Factors and Ergonomics Society. All rights reserved. 
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the dissertation: how is the cognitive efficiency of continuous speedometer displays? 

This question is decomposed into two sub-questions, which are  

1) how is the efficiency of the speedometer displays that engaged different 

modalities in multitask settings; 

2) do the displays that encode information into redundant dimensions are 

more cognitively efficient in multitask environments than the single-dimension 

displays.  

To answer the two questions, the study adopted a dual task set: display processing 

task (i.e., verbally report the target information presented by displays) and lane tracking 

task (i.e., maintain the vehicle position on the center of the line). The cognitive efficiency 

of display was measured based on the verbal report in the display processing task and the 

measures of imposed mental workload.  

 

VI.1.1 Method 

 

Participants 

The study recruited 24 adults (12 males and 12 females) from Texas A&M 

University, with an average age of 27 years old. All students were at least 18 years old, 

had normal or corrected-to-normal visual and auditory acuity, and no known conditions 

that affect tactile perception on lower back. Each participant had a valid driving license 

for at least one year. 
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Displays 

There were five types of displays - ambient-visual (AV), auditory-spatial (AS), 

auditory-redundant (AR), tactile-spatial (TS), and tactile-redundant (TR) - which were 

modified from the redundant displays used in the previous research for supporting speed 

tracking task (Yang et al., 2013; Yang et al., 2015). More technical details of building 

these displays can be found in these two studies. 

The ambient-visual (AV) display consisted of a sequence of colors which were 

projected on a drop-down screen behind the computer monitor. The center point of the 

color sequence is yellow.  

The auditory-spatial (AS) display consisted of active noise-cancelling headphones 

playing sounds from nine virtual origins which were created by SLAB (http://human-

factors.arc.nasa.gov/slab/). The nine virtual locations were equally distributed as if 

originating from a semicircle on the transverse plane at the height of ear (see Figure 24). 

The radius of the semicircle was 50 cm. To enhance the perception of the virtual spatial 

location, the pitch of each auditory presentation was adjusted into distinguished levels 

which increased from the auditory presentation No.1 to No.9 (see Table 19). 

The auditory-redundant (AR) display was modified from the auditory-spatial 

display by adding redundant beat patterns. When the speeds moved away from the center 

point towards either extreme, the beat frequency (i.e., the difference between paired 

frequencies) discretely increased to higher levels (see the numbers in the parentheses in 

Table 19). The center point of both auditory displays was denoted by sounds No.5 (See 
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Figure 24). Both auditory presentations were displayed at volumes that could be reliably 

and comfortably heard.  

 

 

 

Figure 24. The nine virtual auditory locations surrounding the head (left) and the eight 

tactor locations on the lower back (right). 

 

 

The tactile-spatial (TS) display incorporated eight C-2 tactors developed by 

Engineering Acoustics, Inc. The tactors were arranged horizontally across the lower back 

and symmetrically distributed on both sides of the spine. Tactors were doubly-secured 

with an elastic weightlifting belt and a strap over the top of the belt. In order to assure 

sensation but avoid annoyance, the tactors were presented at the medium gain. For the 

tactile-redundant (TR) display, the frequency of the beats increased as the vibration 

presentation site moved laterally away from the location of spine (see the numbers in the 

parentheses in Table 19).  
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All displays presented information as a sequence of transition patterns. In our 

definition, a transition pattern is a sequence of presentations that transform from the first 

one, across all presentations between, to the last along one direction (left or right). For 

example, the red color eventually transfers to the blue color, crossing each color between 

red and blue. The beginning and end of a transition pattern can be any of the presentations, 

with at least one presentation between them. The last presentation of each transition 

pattern overlaps with the first one of the next transition pattern, creating a sequence of 

consecutive transition patterns, which was used to simulate the pattern of speed fluctuation 

as showed in the previous studies (Yang et al., 2013; Yang et al., 2015).
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Table 19: The Nine Presentations of each Display and Their Locations and Distances to the Center 

Location Left Center Right 

Distance 4 3 2 1 0 1 2 3 4 

AV  (153,0,0) (255,0,0) (255,102,0) (255,204,0) (255,255,102) (187,239,57) (0,160,0) (0,102,255) (0,0,255) 

AS 1; 690 2;587 3;493 4;492 5;349 6;329 7;261 8;220 9;174 

AR 

 

1;690+702 

(12) 

2;587+595 

(8) 

3;493+497 

(4) 

4;392+393 

(1) 

5;349 

(0) 

6;329+328 

(1) 

7;261+257 

(4) 

8;220+212 

(8) 

9;174+162 

(12) 

TS 1;238 2;242 3;246 4;249 Spine 5;251 6;254 7;258 8;262 

TR 

 

1;238+250 

(12) 

2;242+250 

(8) 

3;246+250 

(4) 

4;249+250 

(1) 

Spine 5;251+250 

(1) 

6;254+250 

(4) 

7;258+250 

(8) 

8;262+250 

(12) 
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For all displays, the duration of a stimulus (SD) was 750 milliseconds. But their 

inter-stimuli interval (ISI) and the inter-movement interval (IMI) slightly varied. There 

were 5 presentations in each transition pattern on average for all displays. Each trial 

consisted of average 5 transition patterns. See Table 20. 

 

 

Table 20: The Parameters of Displays which Engaged Different Modalities 

 

Display 

SD 

(ms) 

ISI 

(ms) 

IMI 

(ms) 

Average Number 

of stimuli per transition  

Average Number 

of transitions per trial 

Visual 750 0 0 5.5 5 

Auditory 750 50 100 5.4 5 

Tactile 750 50 0 5.2 5 

 

 

Mental Workload Measure 

Three physiological measurement devices (i.e.,, Shimmer3, Bioharness3, and 

Pupil Labs) and one subjective measure (i.e., NASA TLX) were used to measure mental 

workload. However, only NASA TLX (Hart & Staveland, 1988) will be reported here. 

NASA TLX measures mental workload by asking participants to subjectively report their 

ratings of six scales and weight the scales in the end. 
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Task 

Participants sat in the driving simulator and interacted with the driving scenarios 

created by STISIM Drive® Software via the Logitech G27 steering wheel and pedals. 

They drove on a one-way lane that consisted of curves one after another with varying types 

of curvatures. The vehicle speed was governed at constant 50 MPH in driving.   

There were 6 task zones in each driving condition. Each task zone included two 

concurrent tasks: lane tracking and display processing. For the lane tracking task, we 

attached a foam tape to the desktop screen to indicate the center of vehicle. Participants 

needed to control the vehicle to overlap the foam tape with the center line. Half of the 

participants drove in windy conditions in which the wind (generated by complex sinusoid 

waves) continuously blew the vehicle back and forth along the lateral direction. The other 

half drove in normal conditions without the wind effect. The maximal lateral distance 

moved by wind was round 3 feet.  

At the same time of lane tracking, participants needed to process a trail of 

information from one of the five displays. At the end of a task zone, the display ended and 

the driving scenario paused for 20 seconds during which the experimenter asked four 

questions (see Table 21) and participants verbally answered them after each question. 

Since it’s difficult to calculate the information transmitted of continuous information, we 

proposed informativenesss index (INF) to indicate the overall informativeness of each 

display. It was calculated as the sum of the score of each question (see Table 21).  
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Table 21: The Score of each Question 

Question Description Response Score 

Is the last presentation of the trial on 

the right side or left side? 

 

left 

right 

S1: 1, f correct 

0,  if wrong 

What’s the direction of the last 

transition pattern, left-to-right or 

opposite? 

 

left 

right 

S2: 1, if  correct 

0, if  wrong 

What’s the distance between the last 

presentation of the trial and the center 

point? 

 

 

1, 2 ,3 ,4 S3: 2- |error|*0.5 

How many transition patterns pass the 

center point? 

1 ~ 7 S4: 2.8, if error=0 

1.4, if error=1 

0.7, if error=2 

0,    if error>2 

Note. Error is the absolute difference between response and correct answer. 

 

 

Procedure 

After signing the consent forms and finishing the background questionnaires, 

participants were asked to record a 5-minute physiological baseline. Then, experimenter 

used PowerPoint (with animation) to introduce each type of display. After the introduction 

of each display (except ambient-visual), participants need to be familiar with the 
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presentations by identifying the random presentations until they can’t achieve higher 

accuracy. Then they experienced each type of display processing task in the training 

scenarios and understood what they should process and report.  

After the training, participants went through six experimental conditions (one 

baseline and five display conditions) in a balanced order. Before each experimental 

condition, experimenters repeated the nine presentations of the respective display. Each 

experimental condition took around 3 minutes to complete. During the interval between 

consecutive conditions, participants completed a NASA TLX rating questionnaire and 

took a 90-second breathing exercise to recover the physiological baseline. Finally, 

participants completed a weighting questionnaire of NASA TLX. 

 

Data Analysis 

Driving performance was measured by lane deviation. Display informativeness 

was indicated by informativeness index (INF) and mental workload engaged by display 

was calculated as TLXDisplay  (TLXDisplay = TLX-TLXBaseline). Both INF and 

TLXDsiplay were normalized and scaled to the same positive range and then INF was 

divided by TLXDisplay (INF/TLXDisplay) to indicate cognitive efficiency. All dependent 

variables were analyzed in the three-way repeated measures ANOVAs (Experimental 

Condition × Wind × Sex) in R 3.1.3. Tukey post-hoc tests were applied for pairwise 

comparisons. 
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VI.1.2. Results 

 

Lane Deviation (LD) 

LD was not significantly different among the experimental conditions. However, 

the main effects of sex (F(1,120)=64.04, p<0.001, 𝜂2=0.415) and wind (F(1,120)=17.13, 

p<0.001, 𝜂2=0.111) were significant on LD. LD in windy condition (LD=2.00) was 

significantly larger than that in normal condition (LD=1.31) and male showed much lower 

LD (0.99) than female (2.33).  

Moreover, the interaction effect between sex and wind was also significant on LD 

(F(1,120)=39.43, p<0.001, 𝜂2=0.112). Female participants had significant lower LD than 

male in either windy (LD: female=3.11, male=0.99, p<0.001) or normal (LD: 

female=1.64, male=0.99, p<0.001) condition. Female participants showed significantly 

higher LD in the windy condition comparing to the normal condition (p<0.001). See 

Figure 25. 
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Figure 25. Lane deviation between wind and sex conditions. 

 

 

Informativeness Index (INF) 

INF was significantly different among display conditions (F(4,100)=9.17, 

p<0.001, 𝜂2=0.257). Post hoc test showed that the auditory-spatial display (INF=4.83) had 

significantly lower INF than that of the auditory-redundant (INF=5.50, p=0.006), tactile-

spatial (INF=5.79, p<0.011), and tactile-redundant (INF=5.45, p<0.001) displays. 

Similarly, the INF of ambient-visual display (INF=4.93) was also significantly lower than 

that of the auditory-redundant (p=0.027), tactile-spatial (p<0.001), and tactile-redundant 

(p=0.049) displays. See Figure 26. None of other effects on INF was significant.  
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Figure 26. The informativeness index of each novel speedometer display. 

 

 

NASA TLX  

The effects of experimental condition (F(5,120)=13.87, p<0.001, 𝜂2=0.315) and 

sex (F(1,120)=5.15, p=0.025, 𝜂2=0.023) were significant on NASA TLX. Post hoc test 

showed that Baseline condition had significantly lower NASA TLX (80.0) than other 

conditions (NASA TLX: ambient-visual=150.4, auditory-spatial=185.7, auditory-

redundant=158.0, tactile-spatial=149.8, tactile-redundant= 149.6, p<0.001). See Figure 

27. Moreover, female participants reported significantly higher NASA TLX (154.26) than 

males (136.89).  
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After using baseline as covariate for baseline correction, it’s found that auditory-

spatial display had significantly higher NASA TLX than ambient-visual (p=0.047), tactile 

spatial (p=0.041), tactile-redundant (p=0.039).    

 

 

 

Figure 27. NASA TLX across all experimental conditions. 

 

 

The interaction effect between sex and wind (F(1,120)=18.39, p<0.001, 𝜂2=0.084) 

was significant on NASA TLX. For male participants, NASA TLX was significantly lower 

in the normal condition (114.3) than windy condition (159.5, p<0.001). In the normal 

condition, male participants had significantly lower NASA TLX (114.3) than female 

participants (164.5, p<0.001). See Figure 28. 
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Figure 28. NASA TLX between wind and sex conditions. 

 

 

Cognitive Efficiency (CE) 

The main effects of display condition (F(4,100)=86.07, p<0.001, 𝜂2=0.173) and 

wind (F(1,120)=5.03, p=0.027, 𝜂2=0.036) were significant on the CE of displays. Post hoc 

tests showed the CE of auditory-spatial display was significantly lower than the auditory-

redundant (p=0.003), tactile-spatial (p<0.001), and tactile-redundant (p=0.006) displays. 

See Figure 29. CE in windy condition (CE=0.87) was lower than that in normal condition 

(CE=0.97).  
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Figure 29. The cognitive efficiency of each novel speedometer display. 

 

 

VI.1.3 Discussion 

Chapter VI applied Cognitive Efficiency (CE) metric to assess the novel 

speedometer displays which engaged different perceptual modalities and dimensions. As 

a systematic approach, CE metric integrates the measures of display informativeness and 

imposed mental workload and provides a multi-factor evaluation of displays in human-

machine systems. The measure of cognitive efficiency of displays will be used to predicate 

multitask performance, based on the finding of their positive correlation in Chapter IV.  
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Lane Deviation 

The lane tracking task elevated the baseline of mental workload. The results 

showed that adding an additional display processing task didn’t change the lane tracking 

performance, which suggested that participants distributed similar amount of attention to 

support the lane tracking performance in all display conditions.  

 

CE of Displays with Different Modalities 

The cognitive efficiency of the ambient-visual, auditory, and tactile displays 

(except the auditory-spatial display) in multitasking environments were at the same level. 

However, it is interesting to notice that the ambient-visual display was less informative as 

the auditory and tactile displays. Perhaps, the peripheral vision on the ambient-visual 

display and focal vision on the road interrupted each other since the two types of visions 

are not as distinctly separable as visual vs. auditory or visual vs. tactile modalities. The 

fact that the ambient-visual display was less informative but produced better cognitive 

efficiency should be the result of fewer imposed mental workload, although the low mental 

workload was not clearly showed by NASA TLX.  

 

CE of Displays with Different Dimensions 

In addition to modalities, cognitive efficiency of a display also depends on which 

display dimensions are chosen to encode information. Choosing the ‘wrong’ display 

dimensions can harm the effectiveness and efficiency of a display.  For example, the 
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auditory-spatial display was less informative and cognitively efficient than other displays, 

because human has limited capacity to recognize the auditory locations and absolute 

pitches.  

Between the auditory displays, the auditory-redundant display which engages 

additional beat pattern was much more informative and required less mental resources to 

process, comparing to the auditory-spatial display (without beat pattern). This finding can 

be explained by fact that humans are naturally good at recognizing auditory beats (Oster, 

1973). Therefore, beat pattern can be used as a promising feature for auditory displays to 

enhance its cognitive efficiency.   

Between the two tactile displays, the tactile-redundant display (which engaged 

additional haptic beats) showed the same level of informativeness, mental workload, and 

cognitive efficiency as the tactile-spatial display. In other words, compared to spatial 

location, beat pattern may be a less effective haptic dimension to encode continuous 

information.  

 

Wind Effect on CE 

Contextual factors also significantly affected the cognitive efficiency of display. 

The results showed that the cognitive efficiency of all displays was lower in the windy 

condition than the normal condition. But informativeness index and NASA TLX were not 

significantly different between these two conditions. Maybe cognitive efficiency is more 

sensitive to contextual factors than its constituent components (display informativeness 
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and imposed mental workload). Further studies are needed to explore more contextual 

impacts on cognitive efficiency and each of its constituent components.  

 

Sex Effect 

The informative index, imposed mental workload (total workload – baseline 

workload of lane tracking task), and cognitive efficiency of the same display were not 

different between the male and female participants, which meant both males and females 

did well in the display processing task. However, the female participants performed much 

worse in the lane tracking task than the male participants, especially in the windy 

condition. This was consistent with the observation in the experiment that the female 

participants were relatively weak at manipulating the steer wheel to control the lateral 

position of the vehicle. Thus, sex factor needs to be taken into account in the design of 

human-machine systems that require physical task performance.  

 

VI.2 Conclusion 

This chapter evaluated the cognitive efficiency of five novel speedometer displays 

which engaged different perceptual modalities and dimensions. The results showed that 

the selection of engaged modality can significant affect the cognitive efficiency of a 

display, but the effect also highly depends on the engaged dimensions of the modality. 

Moreover, encoding information into beat dimension can significantly improve the 

cognitive efficiency of the auditory display, but not of the tactile display. In addition, 
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cognitive efficiency was found to be more sensitive to contextual factors (e.g., wind effect) 

than each of its constituent components. Built upon these findings, the next chapter will 

move forward to investigate how the novel speedometer displays support drivers’ 

continuously tracking performance and examine the relationship between cognitive 

efficiency and tracking performance.  
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CHAPTER VII 

SUPPORTING CONCURRENT TRACKING PERFORMANCE  

USING NOVEL SPEEDOMETER DISPLAYS 

 

The previous chapter evaluated the cognitive efficiency of five novel speedometer 

displays. In Chapter VII, we investigated the effects of these five displays on concurrent 

tracking performance which is important in the operations of current human-machine 

systems. In the driving simulation study of this chapter, participants can obtain 

information from a redundant novel speedometer display to support the speed tracking 

performance. At the same time, they also needed to conduct a lane tracking task (which 

was to keep the vehicle at the center of the lane). The findings of this chapter examined 

whether the continuous novel speedometer displays that showed higher cognitive 

efficiency in previous chapter can better support concurrent tracking performance. 

Moreover, this chapter provided valuable suggestions for the design of displays that 

support concurrent tracking performance in driving and many other task scenarios. 

                                                 

 Part of this chapter is reprinted with permission from Proceedings of the Human Factors Society Annual 

Meeting, 57, 1. Copyright 2013 by the Human Factors and Ergonomics Society. All rights reserved. 
 Part of this chapter is reprinted with permission from Proceedings of the Human Factors Society Annual 

Meeting, 59, 1. Copyright 2015 by the Human Factors and Ergonomics Society. All rights reserved. 
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VII.1 Concurrent Tracking Performance 

According to the National Highway Traffic Safety Administration Traffic Safety 

Facts, speeding contributes to approximately 30 percent of the total fatalities. Therefore, 

speed management is critical for driving safety. However, managing speed may interfere 

with other concurrent driving tasks which are also important for driving safety. For 

example, the work and school zones require drivers to control the speed carefully at an 

unnaturally slow level while keeping their eyes closely on the road. But these two tasks 

compete for the limited visual attentional resources since sampling speed information 

from the speedometer moves eyes away from the road. This attentional conflict in driving 

illustrates the need of supporting speed management in visual-demanding environments.  

The study in this chapter focuses on a specific type of speed management: speed 

tracking. A tracking task is defined as a task that requires operators to frequently monitor 

a task-related variable (e.g., speed or lane position), determine the perceived error between 

each variable’s current value versus its target levels, and ‘correct’ that error. Tracking 

more than one variable at the same time generates concurrent tracking task which requires 

an operator to switch visual attention quickly among different target variables and modify 

their states, which can impose heavy mental workload on the operator and interrupt task 

performance. Therefore, it’s important to support concurrent tracking performance in 

human-machine systems.  

In addition to driving, the concurrent tracking performance is prevalent in many 

other scenarios, such as process control, in which an operator needs to control the flow of 
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multiple material streams to balance process output; medicine, in which an 

anesthesiologist needs to adjust drug delivery pumps to control multiple physiological 

parameters; aviation, in which a pilot needs to track the speed and altitude of an airplane. 

 

VII.2 Redundancy Gain and Cost 

According to Multiple Resource Theory (MRT; Wickens, 2002), encoding 

information into redundant parallel modalities, such as visual, auditory, and tactile 

modalities, can mitigate mental resource competition in multitask scenarios and benefit 

multitask performance. For example, anesthesiologists who performed visual tasks while 

monitoring patient data showed better performance when patient data (e.g., blood pressure 

levels) were transformed into the auditory (Seagull, Wickens, & Loeb, 2001; Watson & 

Sanderson, 2004) or tactile (Ferris & Sarter, 2011) signals. The benefits of redundantly 

encoding information are called redundancy gain (Wickens et al., 2011). 

 In addition to redundant modality, encoding task-related information into 

redundant display dimensions can be another way to support multitask performance 

because it can disambiguate signals and increase adaptability in dimensional attention 

(redundancy gain). For example, Ardoin & Ferris (2016) found the tactile displays 

engaged redundant dimensions better supported dual task performance than the 

unidimensional displays that imposed larger competition for mental resources. However, 

encoding information into a redundant dimension does increase the complexity of signals 

and may interfere with the information processing and degrade task performance 
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(redundancy cost; Wickens et al., 2011). In the same study, Ardoin & Ferris (2016) also 

observed that the tactile displays with redundant dimensions worsen the task performance 

compared to the unidimensional displays which had less competition with visual tasks.  

 

VII.3 Evaluate the Effects of Novel Speedometer Displays  

on Concurrent Tracking Performance – Experiment 1 

The study in this chapter aims to use the novel speedometer displays built in 

Chapter VI to produce redundancy gain and reduce redundancy cost in concurrent tracking 

task. Driven by this goal, this section answered the last research question (Q5) of the 

dissertation: how do novel speedometer displays affect concurrent tracking 

performance in driving. This question can be interpreted as two sub-questions:  

1) how can we improve concurrent tracking performance using novel 

speedometer displays that engage redundant modalities;  

2) whether encoding information into redundant ‘beat pattern’ dimension of 

displays can further enhance concurrent tracking performance.  

The two questions were answered in Experiment 1 and 2, respectively. In 

Experiment 1, the novel speedometer displays included an “ambient-visual”, an auditory, 

and a tactile speedometer display; in Experiment 2, the novel speedometer displays were 

the auditory and tactile displays that encode speed into the spatial location and beat pattern. 

Every display provided two pieces of information: 1) whether current speed is higher or 

lower than target speed (speed direction) and 2) the error between current speed and target 
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speed (speed error). Both experiments were built on concurrent speed tracking and lane 

tracking task set in a simulated driving environment. 

 

VII.3.1 Method 

 

Participants  

Twelve adults (9 Male, 3 Female; mean age 26 years old) from Texas A&M 

University participated in this experiment. All had normal or corrected-to-normal visual 

and auditory acuity, no known conditions that affected the tactile sensitivity of the back, 

and a valid driver’s license for at least one year. The average driving experience was 3.7 

years.  

 

Apparatus  

Four driving scenarios were created in the STISIM Drive® Driving Simulator.  

Participants interacted with the simulator via a Logitech G27 racing wheel and associated 

throttle and brake pedals. All scenarios used a standard vehicle cockpit view with an 

analog speedometer centered at the bottom of the screen (see Figure 30). The simulated 

roadway contained a set of consecutive curves of varying degrees that participants 

encountered in a pseudo-randomized order, so that each scenario was equivalent but 

unique. The curves were bordered by changing foliage and buildings. No other cars or 

obstacles were on the roadway. Throughout the scenario, a complex sinusoid-generated 
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wind function increased or decreased the vehicle’s speed within approximately 5 MPH. 

Each scenario was approximately 5 minutes long. 

 

 

Figure 30. Driving simulation scenario, with the ambient-visual display projected to the 

background screen behind the monitor. 

 

 

Each participant completed all four experimental conditions in a semi-

counterbalanced order: (1) a “baseline” condition which did not include any novel displays 

and (2-4) three conditions which used one of the three displays (i.e., an “ambient-visual” 

display, an auditory display, and a tactile display. The speed was divided into nine ranges: 

one “on target” range (49-51 MPH) and eight ranges corresponding to four different 

distances from target speed in each direction (see Table 22). The presentation in each 

display was updated approximately 8 times per second.  
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The ambient-visual display was projected on a drop-down screen behind the computer 

monitor (see Figure 31). Warmer hues (e.g., red) indicated that the participant was driving 

above the target speed, and cooler hues (e.g., blue) indicated that the participant was 

driving below the target speed. Yellow was used as the “on target” hue because it was the 

midpoint on the visible spectrum between the warmer and cooler colors.  

 

 

Table 22: Mapping Speed to the Three Novel Displays 

 Speed  

(MPH) 

ambient-visual 

(RGB codes) 

Auditory 

(Hz) 

Tactile 

(Location ; Hz) 

54> (153, 0, 0) 690+702 (12)                    7, 8; 250+262 

(12) 

53 – 54 (255, 0, 0) 587+595 (8) 7, 8; 250+258 (8) 

 52 – 53 (255, 102, 0) 493+497 (4) 7, 8; 250+254 (4) 

 

Acc 

 

51 – 52 (255, 204, 0) 392+393 (1) 5, 6; 250+252 (1) 

49 – 51 (255, 255, 102) 349 3, 4, 5, 6; 250  

48 – 49 (187, 239, 57) 329+328 (1) 3, 4; 250+249 (1) 

 47 – 48 (0, 160, 0) 261+257 (4) 1, 2; 250+254 (4) 

46 – 47 (0, 102, 255) 220+212 (8) 1, 2; 250+258 (8) 

>46 (0, 0, 255) 174+162 (12) 1, 2; 250+238 

(12) 

Note. The target speed range is 49 -51 MPH. Acc represents “acceptable speed range”. 

The RGB colors within the acceptable range were perceptually similar and clearly 

distinguishable from those outside of the acceptable range. Each number in the parenthesis 
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after the pair of frequencies equals the difference between frequencies, indicating the beat 

frequency. 

 

 

The auditory display consisted of a pair of ceiling speakers that displayed nine 

auditory presentations. The “on target” auditory presentation was a single pure tone at 349 

Hz (approximately the pitch F4). Higher pitches (those above 349 Hz) indicated that the 

participant was driving above the target speed, and lower pitches (those below 349 Hz) 

indicated that the participant was driving below the target speed. Each of these “off target” 

pitch presentations was combined with another tone that of a slightly different pitch, 

generating an emergent phenomenon: binaural beats. For example, when driving at 52.3 

mph, the auditory signal would be a combined 493 Hz + 497 Hz tone, resulting in a 

binaural beat. The frequency of beat is 4 Hz. The frequency of binaural beats increased 

discretely from 1 to 12 Hz as the speed deviated further from the target (See Table 22).  

Tactile display consisted of eight C-2 tactors developed by Engineering Acoustics, 

Inc. All eight tactors were affixed to the inside of the back of a compression shirt and were 

spaced on the whole back to allow participants to distinguish easily the locations 

associated with “fast” (tactors 7 and 8 above the shoulder blades), on-target (tactors 3, 4, 

5, and 6), or “slow” (tactors 1 and 2 near the iliac crests of the pelvis) (see Figure 31). An 

elastic weightlifting belt was used to enhance the skin contact with tactors 1-6. Tactors 

operated in a base frequency of 250 Hz and were combined with another frequency to 
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generate “haptic beats”, a similar pattern of binaural beats, to indicate speeds outside of 

the target range. For example, when driving at 47.7 MPH, tactors 1 and 2 would be 

activated with a combined 250 + 246 Hz signal, forming a haptic beats at the frequency 

of 4 Hz. The frequency of haptic beats also went up when the speed further moved away 

from the target. The tactors vibrated at their maximum gain in order to ensure the 

perception of vibrations. In addition, noise-cancelling headphones were used in the tactile 

display condition to mute the audible sounds generated by the activating tactors. 

 

 

 

Figure 31. Spatial locations of tactors on the inside back of a compression shirt. 

 

 

Concurrent Tracking Task  

There were two equally important tasks: lane tracking and speed tracking. The lane 

tracking task required participants to drive as closely as possible to the dashed lane marker. 

A piece of foam tape was placed directly on the desktop monitor to serve as the tracking 
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“cursor” and indicate the center of the car. This “cursor” should pass directly over the lane 

marker. The speed tracking task required participants to keep the speed as close as possible 

to 50 MPH (target speed) by manipulating the throttle and brake pedals. Maintaining this 

target speed required offsetting the effect of wind and the accelerating and decelerating 

effects caused by hills in the driving scenario. The engine sounds were muted so that they 

could not be used as speed cues. 

 

Procedure  

After signing the consent form and completing a background questionnaire, 

participants got familiar with each type of display through our brief instructions and 

demonstrations of displayed presentations and how they mapped to the speed information. 

They then practiced the concurrent tracking task under each display condition in a 15-

minute training session. After training, participants completed four experimental (one 

baseline condition and three display conditions). There was a 3-minute interval between 

consecutive experimental conditions but additional breaks were also allowed. In the end, 

participants filled a feedback questionnaire for evaluating the displays and ranked them in 

terms of the overall preference. 

 

Analysis of Results 

Performance was measured in two primary dependent variables: lane deviation and 

speed deviation. Lane deviation was the mean difference in feet from the center of the 
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vehicle to the target lane marker over a scenario. Similarly, speed deviation was the mean 

difference in MPH from actual speed to the target speed over a scenario. Each scenario 

began with a 400-foot “ramp-up” section that was a stretch of straight road and ended at a 

50 MPH speed limit sign. It allowed participants to accelerate to the target speed, therefore 

the data in this section was not considered in the analysis. 

As an additional dependent measure, the “acceptable performance percentage” 

(AP%) was derived from the two primary dependent variables. It was calculated as the 

percentage of time that the participant drove within the acceptable speed range (48 - 52 

MPH) while also maintaining the center of vehicle (indicated by foam tape) within +/- 0.5 

feet of the center of the dashed line. This range was chosen because the dashed line was 

1.0 foot wide. With approximately the same width, the foam tape “cursor” that represented 

the center of the vehicle should overlap the dashed line as much as possible. 

The subjective ratings of each display were generated according to five attributes:  

1) satisfaction, which was the extent to which displays supported speed tracking task; 2) 

reliance, which represented the extent to which participants relied on the displays; 3) 

interpretation, which denoted the mental efforts used to interpret the displays; 4) 

distraction, which was the extent of distraction on lane tracking caused by displays; 5) 

annoyance, which indicated how annoying participants felt when they process the 

displays. For each attribute, a rating of “1” represented the worst case (not satisfied; didn’t 

rely on display at all; extremely difficult to interpret; extremely distracting; extremely 

annoying), while a rating of “10” represented the best case. 
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In data analysis, one-way repeated measures ANOVAs were conducted in R to 

determine whether the experimental conditions significantly affected the dependent 

variables. Tukey’s Honest Significant Difference (HSD) tests were performed to 

determine the differences in dependent variables among experimental conditions. In the 

end, subjective ratings of displays were analyzed using one-way repeated measures 

ANOVAs, and preference rankings of displays were also analyzed using a Friedman’s 

test.  

 

VII.3.2 Results 

 

Speed Deviation 

The speed deviation was significantly affected by experimental conditions (F(3, 

33)=11.71, p<0.001, 𝜂2=0.239). Post-hoc tests showed that speed deviation was 

significantly higher in the baseline condition (3.16 MPH) than in the ambient-visual (2.45 

MPH, p=.001), Auditory (2.10 MPH, p<.001), and Tactile (2.49 MPH, p=.002) conditions 

(see Figure 32). 
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Figure 32. Speed deviation (in MPH) for each experimental condition. B, V, A, and T 

represent baseline, ambient-visual, auditory, and tactile, respectively. Error bars 

represent standard error. 

 

 

Lane Deviation 

The lane deviation wasn’t significantly affected by experimental conditions (F (3, 

33)=1.63, p=0.202, 𝜂2=0.043) (see Figure 33).  
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Figure 33. Lane deviation (in feet) for each experimental condition. B, V, A, and T 

represent baseline, ambient-visual, auditory, and tactile, respectively Error bars represent 

standard error. 

 

 

Acceptable Performance % (AP%) 

The AP% was significantly impacted by experimental conditions (F(3, 33)=7.61, 

p=.001, 𝜂2=0.140). Post-hoc tests showed that AP% for the baseline condition (20%) was 

significantly worse than that in the ambient-visual condition (26.6%, p=.002) and the 

Auditory condition (28.2%, p<.001) displays. AP% in the Auditory condition was also 

significantly higher than in the Tactile condition (22.9%, p=.027) (see Figure 34). 
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Figure 34. The Acceptable Performance % for each experimental condition. B, V, A, 

and T represent baseline, ambient-visual, auditory, and tactile, respectively. Error bars 

represent standard error. 

 

 

Subjective Feedback 

The average ratings for each display are given in Table 23.  The effect of 

experimental condition was significant on the ratings of satisfaction (F(3,33)=13.77, 

p<0.001, 𝜂2=0.398), distraction (F(3,33)=9.373, p<0.001, 𝜂2=0.378), and annoyance 

(F(3,33)=3.545, p=0.025, 𝜂2=0.140). For both Satisfaction and Distraction, post hoc test 

showed that baseline display had lower ratings than other displays (p for Satisfaction: 

ambient-visual=.001, Auditory<.001, Tactile<.001; p for Distraction: ambient-

visual=.002, Auditory<.001, Tactile<.001). For annoyance, the baseline display showed 

higher rating score than the Auditory (p=.025) and Tactile (p=.024) displays. 
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Table 23: Average Ratings for each Type of Display 

Attribute                       Ratings Significance 

Satisfaction A: 8.00; T: 7.50; V: 6.83; B: 4.92 

(A, T, V > B) 

 

< .001 

Reliance A; 7.75; T: 7.58; V: 6.67 

 

Not Significant 

Interpretation A: 6.50; T: 6.33; V: 6.08; B: 5.33 

 

Not Significant 

Distraction A: 7.50; T: 6.75; V: 6.50; B: 3.67 

(A, T, V > B) 

 

< .001 

Annoyance B: 8.00; V: 6.42; A: 5.67; T: 5.67 

(B > A, T) 

.025 

Note. B, V, A, and T represent Baseline, ambient-visual, Auditory, and Tactile, 

respectively. The results of post hoc tests are showed inside the parentheses.  

 

 

The average rankings of overall preference to the experimental conditions were 

significantly different (χ2(3, 12)=14.1, p=.003) (see Figure 35). The auditory condition 

was ranked as the best followed closely by the tactile condition. The baseline condition 

was ranked as the worst. 

 

 



 

155 

 

 

 

Figure 35. The ranking of overall preference for each experimental condition (lower 

score represent higher preference). B, V, A, and T represent baseline, ambient-visual, 

auditory, and tactile, respectively.  Error bars represent standard errors. 

 

 

VII.3.3 Discussion 

Since distributing information to parallel sensory channels can support human 

information processing, in Experiment 1 we applied the redundant ambient-visual, 

auditory, and tactile speedometer displays to convey speed information to drivers (at the 

same time with the baseline display).  The study illustrated the effects of these redundant 

speedometer displays on concurrent lane-and-speed tracking performance and revealed 

participants’ subjective feedback of using these displays.  

The results demonstrated that all novel speedometer displays, compared to the 

baseline display, significantly improved the speed tracking performance. Among them the 

ambient-visual and auditory displays generated the best performance. But none of them 

significantly affect the lane tracking performance, which suggests that the improvements 

3.42
2.67

1.83 2.00

0

1

2

3

4

B V A T

The Ranking of Overall Preference



 

156 

 

 

in speed tracking performance did not appear at the cost of degrading the lane tracking 

performance. Moreover, the ambient-visual and auditory displays (not including tactile 

display) also significantly improved the overall tracking performance according to the 

results of AP%.  The findings were consistent with the subjective feedback in which 

participants showed their stronger preference (which was based on higher rating on 

satisfaction sacle and lower rating on distraction scale) to the novel speedometer displays 

than the baseline speedometer display alone in the concurrent tracking task.  

Although not significant, the auditory display is the best one to support concurrent 

tracking performance, leading to the lowest speed deviation and the highest AP%. 

According to Multiple Resource Theory (MRT; e.g., Wickens, 2002), auditory modality 

is parallel to visual modality so that auditory modality can share the visual load without 

interfere with visual modality. Therefore, using the auditory display to present redundant 

(speed) information can reduce the original competition for limited visual resources and 

improving concurrent tracking performance. 

The ambient-visual display is the second best display to support the speed tracking 

and overall performance. Similar to the auditory modality, peripheral vision engaged by 

the ambient-visual displays is also considered to be parallel to focal vision (engaged by 

the baseline speedometer display), according to MRT (Wickens, 2002). However, the 

ambient light emanating from the background screen was bright and changing, generating 

the tendency to reorient participants’ focal vision away from the monitor. This 

phenomenon of redirecting visual attention is called phototropism (Wickens, Lee, Liu, & 
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Gordon-Becker, 2004). Because of the effect of phototropism, the ambient-visual display 

didn’t improve the task performance as much as the auditory display. 

The tactile display benefited only the speed tracking performance yet not the 

overall performance. According to MRT, tactile modality is also parallel to the visual 

modality but it may be not as capable as auditory and visual modalities in terms of 

information processing capacity. First, human only have limited bandwidth of tactile 

perception compared to visual and auditory perception. Second, participants may be still 

unfamiliar with the tactile devices because the tactile devices haven’t been broadly used 

in vehicles. On the opposite, the visual and auditory displays can be found in almost every 

car. 

The tactile display may also hinder the information processing at the cognitive 

stage. Processing the tactile tracking information required the use of spatial working 

memory to determine where the vibrations originated on the body (similar to where the 

speedometer indicator was relative to the target 50 MPH). Meanwhile, the lane tracking 

task also demanded spatial working memory, causing the competition for spatial working 

memory at the cognitive stage. This competition may offset the tactile display’s effort to 

reduce the attentional conflicts at the perception stage, degrading the concurrent tracking 

performance. Unlike the tactile display, the ambient-visual and auditory displays primarily 

required symbolic processing at the cognitive stage, with no disruption on the spatial 

processing that was engaged by the lane tracking task. Therefore, it’s important to consider 
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sensory modalities and encoding dimensions that cause less cognitive interference for 

display design (Ferris & Sarter, 2010). 

In addition to the benefits of novel speedometer displays, we also need to notice 

the fact that these displays were much more annoying than the baseline display according 

the subjective feedback. This annoyance of display is a critical usability issue that has to 

be solved in the following study.  

 

VII.4 Evaluate the Effects of Novel Speedometer Displays  

on Concurrent Tracking Performance – Experiment 2 

 

VII.4.1 Method 

 

Participants 

The study recruited 15 adults (9 Male, 6 Female; mean age 24 years old) from 

Texas A&M University. All participants had a valid driver’s license for at least one year. 

They also had normal or corrected-to-normal visual and auditory acuity and no known 

conditions affecting the tactile sensitivity of the back. The average driving experience was 

3.3 years. 
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Apparatus 

The driving scenarios and the concurrent tracking task used the same setup as in 

the Experiment 1. The Experiment 2 examined the supporting effect of the multi-

dimensional display in a higher workload situation. Hence, we increased the cognitive 

demand for the lane-tracking task by narrowing down the acceptable “speed range” from 

previous 48 -52 MPH to 49 - 51 MPH.  

The multi-dimensional displays were modified from the Auditory and Tactile 

displays developed in the Experiment 1. The new auditory display engaged spatial 

dimension and the new tactile display used a different spatial layout on the back. On the 

basis of using spatial dimension, beat pattern was also employed into auditory and tactile 

displays, generating two displays that engaged redundant ‘spatial+beat’ dimensions. 

Therefore, there were four types of displays: auditory-spatial, auditory-redundant, tactile-

spatial, and tactile-redundant. The presentations of each display naturally mapped to nine 

speed levels (see Table 24). 

 

 

Table 24: The Nine Speed Levels and Their Respective Auditory and Tactile 

Presentations 

 

 
Speed  

(MPH) 

A-spatial 

(loca; Hz) 

A-redundant 

(loca; Hz) 

T-spatial 

(loca; Hz) 

T-redundant 

(loca; Hz) 

54> 1; 690                    1; 690+702(12)                    8    ; 262 8   ; 250+262(12) 

53 - 54 2; 587 2; 587+595(8) 7, 8; 258 7, 8; 250+258(8) 

 52 - 53 3; 493 3; 493+497(4) 6, 7; 254 6, 7; 250+254(4) 

 51 - 52 4; 392 4; 392+393(1) 5, 6; 251 5, 6; 250+251(1) 
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Table 24: Continued 

 

Speed  

(MPH) 

A-spatial 

(loca; Hz) 

A-redundant 

(loca; Hz) 

T-spatial 

(loca; Hz) 

T-redundant 

(loca; Hz) 

Acc 49 - 51 5; 349 5; 349 4, 5; 250  4, 5; 250  

 48 - 49 6; 329 6; 329+328(1) 3, 4; 249 3, 4; 250+249(1) 

 47 - 48 7; 261 7; 261+257(4) 2, 3; 246 2, 3; 250246(4) 

 46 - 47 8; 220 8; 220+212(8) 1, 2; 242 1, 2; 250+242(8) 

 >46 9; 174 9; 174+162(12) 1    ; 238 1    ; 250+238(12) 

Note. ‘Acc’ represents acceptable speed range. ‘loca’ represents location and ‘Hz’ the 

pitch or activation frequencies. ‘A’ represents auditory and ‘T’ represents tactile. Each 

number in the parenthesis after the pair of frequencies equals the difference between 

frequencies, indicating the beat frequency. 

 

 

The auditory-spatial display used a pair of noise-cancelling headphones playing 

sounds from nine virtual origins. The perception of virtual origins was created by SLAB 

(a software developed by NASA Ames Research Center) which manipulated the inter-ear 

intensities (Wolfe, Dluender, & Levi, 2011). The nine virtual origins were equally 

distributed as if originating from a semicircle on the transverse plane at the height of ear 

(see Figure 36). The radius of the semicircle was 50 cm. Since human only has limited 

ability to discriminate auditory spatial origins, the pitch of each auditory presentation was 

adjusted to increase from location 1 to 9 (see Table 24) to enhance the auditory spatial 

perception. 

The auditory-redundant display was modified from the auditory-spatial display by 

involving an additional beat pattern. The beat pattern was generated by combining another 
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slightly different pitch into the auditory display. When speeds moved away from the target 

towards either extreme, the frequency of beats discretely raised from 1 Hz to 12 Hz (see 

Table 24). The “on target” speed level was still denoted by a pure tone. In addition, the 

volumes of both auditory displays were tuned at a level that was comfortable for 

participants and can be reliably heard.  

 

 

 

Figure 36. The nine virtual auditory locations surrounding the head (left) and the eight 

tactor locations on the lower back (right). The activation on greened locations indicates 

the ongoing target speed. 

 

 

The tactile-spatial display consisted of eight C-2 tactors which were arranged 

horizontally and symmetrically across the lower back. The tactors were doubly secured 

with an elastic weightlifting belt and a strap on the top of the belt. We used the maximum 

gain of tactile vibration to ensure that participants felt the vibrations. Similar to the 
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auditory display, the tactile vibrations were displayed continuously to convey the current 

speed.  

The tactile-redundant display added haptic beats into the tactile-spatial 

presentation. Like the auditory-redundant display, the frequency of haptic beats increased 

from 1 Hz to 12 Hz as the site of vibrotactile presentation moving away from the center 

to either side of the back. 

 

Procedure  

After signing the consent form and completing the background questionnaire, 

participants were then familiarized with all four experimental displays in a training 

session. In the training, participants were required to identify the virtual locations of 

randomly-presented sounds until they achieved their best accuracy. Participants then 

completed four training scenarios with one under each display condition, which took a 

total of 15 minutes. After the training, each participant completed five experimental 

conditions in a semi-counterbalanced order, including one Baseline and four display 

conditions. Each condition lasted 5 minutes with a 2-minute break after it. At the end of 

the study, participants completed a feedback questionnaire to rate and rank the Baseline 

and experimental displays. 
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Analysis of Results 

Driving performance was assessed using the same dependent variables as in the 

Experiment 1: lane deviation, speed deviation, and acceptable performance percentage 

(AP%). As stated, the speed range for AP% was modified from the Experiment 1 to be 

49~51 MPH. The three dependent variables and the subjective ratings were analyzed in 

one-way repeated measures ANOVAs in R. Tukey’s HSD were used to determine 

differences in the dependent variables among experimental conditions. Friedman’s test 

was used to analyze the overall rankings of displays.  

 

VII.4.2 Results 

 

Speed Deviation of Baseline Condition  

The speed deviation of baseline condition in the Experiment 1 was significantly 

higher than that in the Experiment 2 (F(1,25)=4.80, p=.038, 𝜂2=0.161). See Figure 37. 
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Figure 37. The speed deviation of baseline condition in both experiments. 

 

 

Speed Deviation  

Experimental condition significantly affected speed deviation (F(4, 56) = 5.54, 

p<.001, 𝜂2=0.168 ). The speed deviation in baseline condition (2.23 MPH) was 

significantly higher than those in the display conditions (auditory-spatial: 1.54 MPH, 

p=.029; auditory-redundant: 1.18 MPH, p=.001; tactile-spatial: 1.42 MPH, p=.006; tactile-

redundant: 1.42 MPH, p=.006). See Figure 38. 
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Figure 38. Speed deviation (in MPH) across all experimental conditions. A represents 

auditory and T represents tactile. Error bars indicate standard error. 

 

 

Lane Deviation 

Lane deviation did not differ significantly across experimental conditions (F(4, 56) 

= 0.251, p=.908, 𝜂2=0.002). See Figure 39.  
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Figure 39. Lane deviation (in feet) across all experimental conditions. A represents 

auditory and T represents tactile. Error bars indicate standard error. 

 

 

Acceptable Performance % (AP%) 

The AP% varied significantly across experimental conditions (F(4, 56) = 7.09, 

p<.001, 𝜂2=0.083). Post hoc tests showed that AP% in the baseline condition 

(AP%=23.0%) was significantly lower than in auditory-spatial (AP%=30.8%, p=.001), 

auditory-redundant (AP%=32.8%, p<.001), and tactile-spatial (AP%=29.0%, p=.021) 

conditions. See Figure 40.  
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Figure 40. Acceptable Performance % across all experimental conditions. A represents 

auditory and T represents tactile. Error bars indicate standard error. 

 

 

Subjective Feedback 

Significant differences were found among displays for the ratings of satisfaction 

(F(4, 56) = 2.90, p=.030, 𝜂2=0.115), distraction (F(4, 56) = 5.028, p=.002, 𝜂2=0.215), and 

annoyance (F(4, 56) = 4.02, p=.006, 𝜂2=0.145) (see Table 25). Post hoc tests showed that 

the satisfaction rating for the auditory-redundant condition was significantly higher than 

for the Baseline (p=.017) condition. The distraction rating for the baseline condition was 

significantly lower than for all display conditions (auditory-spatial: p=.036; auditory-

redundant: p=.011; tactile-spatial: p<.001; tactile-redundant: p=.005). The annoyance 

rating of baseline condition was significantly higher than for all display conditions 

(auditory-spatial: p=.017; auditory-redundant: p=.010; tactile-redundant: p=.006). In the 
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end, overall preference rankings for displays did not significantly differ from each other 

in a Friedman’s test. 

 

 

Table 25: The Average Ratings for each Display 

Attribute Ratings Significance 

Satisfaction A-redundant: 8.00 ; T-spatial: 7.73 ;  

T-redundant: 7.27; A-spatial: 6.93; B: 5.87 

(A-redundant > B) 

 

.030 

Reliance A-redundant:7.93; T-spatial: 7.93; 

T-redundant: 7.86; A-spatial: 7.00 

 

n.s. 

Interpretation A-redundant: 6.67; T-redundant: 6.27;  

T-spatial: 6.20; B: 5.86; A-spatial: 5.60 

 

n.s. 

Distraction T-spatial: 7.33; T-redundant: 6.80;  

A-redundant: 6.60; A-spatial: 6.27; B: 3.80 

(A-spatial, A-redundant, T-redundant,  T-

redundant > B) 

 

.002 

Annoyance B:7.89; T-spatial: 6.00; A-spatial: 5.47;  

A-redundant: 5.33; T-redundant: 5.20 

(B > A-spatial, A-redundant, T-redundant) 

.006 

Note. A, T and B represent Auditory, Tactile and Baseline respectively. The results of 

post hoc tests are listed inside the parentheses at the bottom.  

 

 

VII.4.3 Discussion 

Experiment 2 investigated whether the more disambiguating yet more complex 

display can further improve driver performance. This was addressed by examining how 
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multi-dimensional displays affected concurrent tracking task performance. The 

information for speed tracking was encoded into the spatial dimension or redundant 

‘spatial+beat’ dimension of the auditory and tactile displays. The findings of Experiment 

2 improve our understanding on how different display dimensions affect driver’s 

concurrent tracking performance.  

The lane deviation in Experiment 2 was significantly smaller than that in 

Experiment 1 and it was not different among experimental conditions, which suggested 

that the participants may attribute more mental resources to the lane-tracking tasks in 

Experiment 2. Comparing to the lane-tracking performance, the speed-tracking 

performance was significantly improved by all four novel speedometer displays. In 

addition to performance, the questionnaire feedback showed that the novel speedometer 

displays caused less distraction on the lane tracking task. These objective and subjective 

findings again demonstrated that the novel speedometer displays are able to reduce the 

competition for focal-visual resources and support the concurrent tracking performance. 

Although human only has limited auditory spatial perceptual capacity, the 

auditory-spatial display still supported better tracking performance than the baseline 

display. Perhaps, pitch, which was also engaged into the auditory-spatial display, severed 

as a salient and robust auditory feature to enhance the perception of auditory tones. Thus, 

symbolic encoding associated with pitches could occur at the same time with the spatial 

encoding. This combination of symbolic encoding and spatial encoding in a single display 

modality can generate redundancy gain in information perception (Ardoin & Ferris, 2016). 
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Comparing to the auditory-spatial display, the auditory-redundant display did not 

further improve the speed tracking performance. But participants were more satisfied with 

the auditory-redundant display than the auditory-spatial display. This difference between 

objective performance and subjective feeling suggested that the auditory-redundant 

display may benefit the cognitive process but not the manual performance. Moreover, the 

auditory-redundant display may only produce perceptual benefits for those who were 

difficult to discriminate the pure tones in the auditory-spatial display. For those who were 

good at recognizing pitch, they may not obtain additional benefits from the auditory-

redundant display.  

Tactile-spatial display also lead to better concurrent tracking performance than the 

baseline display. The vibrations on the lower back enabled the participants to monitor the 

speed information intuitively. Since the spine serves as an anatomical reference point 

(Cholewiak, Brill, & Schwab, 2004), tactors 4 and 5 near the spine were the prominent 

spots to indicate the on-target status, and the smooth left-and-right movements of vibration 

along the ‘line of tactors’ naturally mapped to the moving index in the Baseline 

speedometer. However, according to participant feedback, the user’s sensitivity to the 

vibrations at tactors 4 and 5 decreased over time, potentially illustrating a neural inhibition 

effect that occurs when sensory neurons become fatigued under repeated vibrations. 

Practically, this reported insensitivity to tactile vibration actually could serve as an “anti-

signal” to the time when driving at the target speed level. Thus, the sensitivity of 
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vibrotactile locations and the neural inhibition effects may contribute together to the 

effectiveness of the tactile-spatial display. 

As with the auditory-spatial versus auditory-redundant displays, the tactile-

redundant display also failed to improve speed tracking performance over the simpler 

tactile-spatial display. Moreover, the tactile-redundant display did not significantly 

improve the AP% over the baseline display. It was observed that the driving performance 

of two participants were severely interrupted by the tactile-redundant display, especially 

when the vibration traveled to the both sides of the back. This may be another way in 

which redundancy cost was expressed, essentially overriding any redundancy gain that 

may be observed with the tactile spatial+beat pattern. 

 

VII.5 General Discussion 

Chapter VI answered the question of how do the novel speedometer display affect 

continuous concurrent tracking task (Q5) since concurrent tracking task become more and 

more important in many fast-paced and data-rich work environments.  

There modalities - ambient-visual, auditory, and tactile - were individually 

engaged by the novel speedometer displays. These modalities are parallel to focal vision 

according to the Multiple Resource Theory (Wickens, 2002). Hence, the novel 

speedometer displays caused less interruption on the lane tracking performance (which 

required focal vision), reduced visual resource competition, and better support concurrent 

tracking performance. However, it’s interesting to notice that although the auditory 
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speedometer displays showed the highest cognitive efficiency in Chapter VI, it did not 

lead to the best tracking performance in the study of this chapter.  

In addition to modality, this chapter also explored the effects of display dimension 

on concurrent tracking performance. It was found that the auditory and spatial displays 

effectively improved the tracking performance by encoding speed information into their 

spatial dimensions. However, redundantly encoding speed into auditory beats or haptic 

beats did not further enhance the concurrent tracking performance in current experiments. 

But the use of redundant beat dimension improved the cognitive efficiency of the auditory 

display (See Chapter VI).  

The interesting finding that the auditory-redundant display with higher cognitive 

efficiency didn’t contribute to better (concurrent) tracking performance conflicts with 

what we found in Chapter IV, which showed that the more efficient displays associated 

with better task performance. Perhaps participants can obtain ‘extra’ information from the 

baseline displays when it’s difficult to perceive the information from the auditory-spatial 

display, resulting in concurrent tracking performance as good as that in the auditory-

redundant display condition. Therefore, there is a need to exclude the ‘hidden’ benefits of 

the baseline display in the study that removes this display. 

 

VII.6 Conclusion 

Chapter VII applied the novel speedometer displays that were evaluated in the 

previous chapter to support concurrent tracking performance in driving. It demonstrated 
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that the novel speedometer displays which encoded speed information into redundant 

modalities or dimensions enhanced the concurrent lane-and-speed tracking performance 

in driving simulation scenarios. The results of this chapter provided insight into the gain 

and cost of adopting each redundant modality and dimension, which are valuable for the 

design of display systems in a wide range of multitask scenarios. Moreover, this chapter 

found that the novel speedometer displays that showed higher cognitive efficiency (in the 

previous chapter) did not always enhance the concurrent task performance as much as we 

expected, which illustrated the complexity in the relationship between cognitive efficiency 

and multitask performance.  
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CHAPTER VIII 

SUMMARY AND CONCLUSION 

 

The dissertation integrated my eight research projects over the past five years 

(2011-2016) to illustrate cognitive efficiency, a critical property of display to address 

information overload challenge in human-machine systems. The exploration of this 

property engaged the knowledge of several important human factors topics, including 

sensation/perception, mental workload measure, display design, and multitask 

performance. In my dissertation, cognitive efficiency was primarily investigated from 

three perspectives: its measurement techniques, its relationship with multitask 

performance, and its application on novel speedometer display in driving. 

 

VIII.1 Cognitive Efficiency Metric 

As a measurement technique, Cognitive Efficiency (CE) metric is the core of this 

dissertation. It was proposed for quantitatively evaluating cognitive efficiency of display. 

CE metric consists of two dimensions: display informativeness and required mental 

resources. From a systematic view, the measure of each dimension is defined as a function 

that depends on characteristics of the human (h), display (d), and task/environmental 

context (k). Built upon the measure of each dimension, CE metric is formulated as the 

ratio of display informativeness to required mental resources (See the equation below).  
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CE(ℎ𝑖, 𝑑𝑖, 𝑘𝑖) =
𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (ℎ𝑖, 𝑑𝑖 , 𝑘𝑖)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ𝑖 , 𝑑𝑖, 𝑘𝑖)
 

 

Different from previous measures of display efficiency, the proposed CE metric 

provides a comprehensive interpretation of display efficiency by taking into account all 

relevant factors in human-machine systems. For example, cognitive efficiency in context 

ki can then be compared between displays (with the same human, hi) or between humans 

(with the same display, di). Therefore, CE metric largely expands the existing 

interpretation of display efficiency in human-machine systems.  

The measures of each dimension in CE metric were explored in Chapter II. In this 

chapter, display informativeness was indicated by information transmitted according to 

Information Theory. This indicator can reliably show the quantity of discrete information 

delivered from a display to an observer. However, it’s difficult to calculate information 

transmitted in real-world scenarios because it’s impractical to obtain the a priori condition 

probabilities (which is required for calculation) outside the constructed experimental 

environments (Xie & Salvendy, 2000). Moreover, the computation of information 

transmitted requires the feedback from human by verbal report or button pressing, which 

may interrupt other ongoing tasks. Thus, we need to find more practical and nonintrusive 

ways to evaluate this dimension of CE metric in later study. 

In Chapter II, physiological measure was mainly used as the assessment of 

required mental resources in CE metric because physiological measure can provide 

continuous and high-resolution monitoring of cognitive states. In the study of Toyota 
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Economics Settlement Safety Research described in this chapter, we used HRV and SCR 

successfully detect the cognitive states under three types of short-term loads (i.e., mental, 

emotional, and motoric) and an acute stress event (i.e., unintended acceleration). The study 

showed physiological measure can be a promising way to measure the required mental 

resources in CE metric. In the future, the quality of physiological measure is expected to 

be promoted by the development of wearable sensors embedded in machines (e.g., heart 

rate monitor installed inside steering wheel to indicate driver’s mental workload). 

In addition to assessing mental workload under normal conditions, physiological 

measure may also be able to detect the occurrence of cognitive redline, which indicates 

mental overload (information overload). The last study in Chapter II showed that HRV 

stayed at its lower limit when/after human mental workload approached its cognitive 

redline. Therefore, the lower (or upper) limit of physiological measure may strongly 

associate with cognitive redline and be able to support the detection of mental overload. 

The finding may provide effective way to identify information overload syndrome but 

needs to be validated with further efforts.  

Some issues of the measure of required mental resources are still unsolved in this 

dissertation. First, it’s still not quite sure how to accurately measure the mental workload 

that is only imposed by a single subtask in multitask scenarios because it’s difficult to 

divide overall mental workload into several portions that correspond to each subtask. 

Since the relationship between measured workload and actual workload can be nonlinear 

(Estes, 2015), a simple summation of all partial workload measures cannot accurately 
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represent overall mental workload. Further efforts are needed to address this issue of 

partial workload measure. 

Second, the sensitivities of mental workload measures largely depend on the nature 

of tasks and workload levels, which means the sensitivity may be unreliable under 

different task conditions. Perhaps, we can algorithmically combine multiple objective and 

subjective measures to improve the robustness of workload assessment, which will require 

the interdisciplinary efforts from various fields, such as human factors, computer science, 

and neuroscience.  

CE metrics, which was built on the measures described in Chapter II, were initially 

validated with the basic displays in Chapter III. The results showed that cognitive 

efficiency of the visual displays was higher than that of the auditory displays in the large 

information content. Moreover, cognitive efficiency became greater when the display 

encoded information into its spectrum dimensions (e.g., hue and pitch) than intensity 

dimensions (e.g., brightness and loudness). However, it was interesting to find that the 

value of cognitive efficiency also depends on the measures selected for each dimension of 

CE metric. For example, CE metric that relied on subjective measures of required mental 

resources (e.g., NASA TLX) generated a different pattern of cognitive efficiency than that 

used objective measures (e.g., EEG). This initial investigation of CE metric encouraged 

my further investigation of different versions of CE metric under multitask conditions in 

Chapter IV. 
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VIII.2 Cognitive Efficiency and Multitask Performance 

Chapter IV further explored the value of CE metric by investigating its relationship 

with multitask performance. This relationship is complicated because the two dimensions 

- display informativeness and required mental resources - of CE metric influence multitask 

performance in opposite ways.  Higher display informativeness can improve task 

performance while larger imposed mental workload degrades task performance. Chapter 

IV compared several different CE metrics (which adopted different mental workload 

measures) in terms of their predictive power of multitask performance. The results 

demonstrated that all CE metrics positively correlates with multitask performance and the 

CE metric engaging subjective mental workload measures (NASA TLX) showed the 

strongest correlation. This finding provided an important theoretical support for the use of 

CE metric in multitask environments: the cognitively efficient display enhances multitask 

performance. 

In addition, Chapter IV found that inter-individual human factors significantly 

influenced the sensitivity of CE metric and their prediction of multitask performance. CE 

metric was more predictive of multitask performance in the group with lower multitask 

performance (low-performing group). Since the low-performing group was found not as 

cognitively efficient as the high-performing group, it’s possible that this group was not 

able to compensate for the low efficiency of a display, thus being more sensitive to display 

efficiency.  

Future studies of interest derived from Chapter IV include:  
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 examining how the performance-predicting power of CE metrics varies between 

extreme high (at one’s cognitive redline) and low workload levels;  

 identifying more human and contextual factors that affect cognitive efficiency;  

 applying CE metric to more complex real-world displays and tasks.  

 

VIII.3 Cognitive Efficiency of Novel Speedometer Display 

Based on the findings of previous chapters, the dissertation moved on to discussed 

how we can evaluate the cognitive efficiency of novel speedometer display. Before 

stepping into the study on novel speedometer display, we investigated a special display 

dimension: beat pattern. The study in Chapter V illustrated the neural basis behind the 

perception of haptic beats (the beat pattern of haptic modality). Moreover, the study found 

that the perceptual sensitivity of haptic beats was affected by sex, body location, and beat 

frequency, which provided valuable guidance for the use of beat pattern in the design of 

novel speedometer display, such as using high frequency of beats to indicate larger 

deviation between the current and target speeds.  

A novel speedometer display was designed to convey continuously speed 

information to drivers via a modality that was parallel to focal vision, such as ambient-

visual (engaging peripheral vision), auditory, or tactile modality. In Chapter VI, the novel 

speedometer displays were evaluated using CE metric which can quantify the 

informativeness of continuous display. The study found that the cognitive efficiency of 

the ambient-visual, auditory, and tactile displays was at the same level, but the ambient-
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visual display was less informative than the auditory and tactile displays, suggesting that 

it may require less mental resources. The different patterns between efficiency and 

informativeness measures, again, illustrate the need to take into account the measure of 

both display informativeness and required mental resources for a comprehensive 

evaluation of display.  

The study in Chapter VI also examined whether we can enhance the cognitive 

efficiency of the auditory and tactile displays by encoding speed information into the 

redundant beat pattern. It’s found that the use of beat pattern largely increased the 

cognitive efficiency of the auditory display, but not of the tactile display (because beat 

pattern enhanced the informativeness of the auditory display but not the tactile display). 

This finding showed that the cognitive efficiency of a display modality largely depends 

on which dimensions of the engaged modality are selected to encode information.  

After analyzing the novel speedometer displays, in Chapter VII, we moved one 

step further to use these displays to support real-time concurrent tracking task which exits 

in many fast-paced and data-rich environments (e.g., driving, process control, and 

medicine). Implementing redundant novel speedometer displays in vehicle further 

enhanced the concurrent speed-and-lane tracking performance than using the traditional 

speedometer display along. However, the tracking performance was not significantly 

different under the ambient-visual, auditory, and tactile display conditions, which was 

consistent with their cognitive efficiency measure in Chapter VI. Moreover, engaging the 

beat pattern into the auditory or tactile presentation did not benefit the concurrent tracking 
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performance, although it improved the cognitive efficiency of the auditory speedometer 

display in Chapter VI. In addition, participants showed stronger preference to use novel 

speedometer display for concurrent tracking task, but they also reported high annoyance 

of these displays. 

Based on these findings, the study of novel speedometer display introduced several 

directions of future research, including:  

 investigating the differences in the task performance between student groups of 

different fields (e.g., engineering vs. psychology);  

 exploring other dimensions of each display and determining the best one to 

improve cognitive efficiency of display in human-machine systems;  

 eliminating the cognitive interference caused by the novel speedometer displays;  

 generalizing the use of novel speedometer displays to an ecological environment.  

In conclusion, my dissertation has been an intellectual journey of understanding 

the quantitative evaluation of cognitive efficiency of display. It discussed how Cognitive 

Efficiency metric can be used to determine display characteristics that are less likely to 

produce instances where users are overwhelmed by information. Furthermore, it explored 

CE metric’s predictive power of human operational performance in multitask scenarios, 

such as driving. In the end, CE metric was examined on novel speedometer displays which 

were used to support concurrent tracking performance. While the accuracy of cognitive 

efficiency measurements was still limited due to the quality of current measurement 
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technologies, this dissertation offered deeper insight into the quantitative evaluation of 

display components in the human-machines systems. 
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APPENDIX A 

 Subjective Self-reported Measure  

Measures Dependent Variables Advantages Limitations 

NASA Task Load 
Index (NASA TLX; 
Hart & Staveland, 
1988) 
 
 

NASA TLX has six scales: 

 mental demand 

 physical demand 

 temporal demand 

 performance 

 effort 

 frustration 

 No interruption on primary task 
performance 

 Relatively easy to use 

 NASA TLX scale is reliably sensitive to 
experimental manipulation (Hart & 
Staveland, 1988) 

 Provides task information that is not 
available from SWAT (Rubio, Díaz, Martín, 
& Puente, 2004) 

 Less sensitive to task combinations  

 Less sensitive to output modality (i.e., 
speed and manual) manipulations  
(Hart & Staveland, 1988) 
 

Raw Task Load Index 
(RTLX; Byers, 1989) 

The average of all six NASA 
TLX scales (Byers, 1898) 

  

Subjective Workload 
Assessment 
Technique(SWAT; 
Reid & Nygren, 1988) 

SWAT has three scales:  

 time load 

 mental effort load 

 psychological stress 
load 

 Ease to use 

 Not intrusive 

 Low cost 

 High validity 

 High sensitivity to workload variations  

 Low sensitivity to low mental 
workload 

 It requires a time-consuming card 
sorting pre-task procedure (Luximon 
& Goonetilleke, 2001) 

Workload Profile 
Method (Tsang & 
Velazquez, 1996) 

WP has eight scales: 

 perception 

 response selection 
and execution 

 spatial processing 

 verbal processing 

 visual processing 

 auditory processing 

 manual output 

 speech output 

 It shows the highest sensitivity to sources 
of workload, comparing to NASA-TLX and 
SWAT (Rubio, Díaz, Martín, & Puente, 
2004)  

 It has higher power of diagnosticity than 
NASA-TLX and SWAT 

 WP is sensitive to task combination 

 WP is appropriate when we need to 
analyze cognitive demands or attention 
resources demanded by a particular task 
(Rubio, Díaz, Martín, & Puente, 2004) 
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Continued 

Measures Dependent Variables Advantages Limitations 

Simplified Workload 
Assessment 
Technique (Luximon 
& Goonetilleke, 
2001) 

Five variables: 

 𝐴𝑆𝑊𝐴𝑇   
 𝐷𝑆𝑊𝐴𝑇   
 𝑊0  
 𝑊1  
 𝑃𝐶𝑐   

 𝐴𝑆𝑊𝐴𝑇  has the highest sensitivity 

 The sensitivity of 𝐷𝑆𝑊𝐴𝑇  is still better than 
SWAT, although not good as 𝐴𝑆𝑊𝐴𝑇  

 Less time cost compared to SWAT  

 Further validation may be needed with 
tasks of varying workload to confirm 
the findings 

 

Modified Cooper-
Harper Scale (MCH; 
Wierwille & Casali, 
1983) 
 
 
 

  The ability to analyze  a remote operator’s 
ability to effectively and efficiently complete 
and manage higher-level system tasks 
(Cummings, Myers, & Scott, 2006) 

 Evaluate how well operators can achieve the 
goal of  higher level tasking 

 Illustrate relationship between display and 
cognition process (Cummings, Myers, & Scott, 
2006)  

 Variation in measures can be significant 

  Subjective measures may not 
necessarily guide interface design 

 The numerical result should be 
interpreted in light of user’s comment 
(Cummings, Myers, & Scott, 2006) 

Rating Scale Mental 
Effort (RSME; Zijlstra 
& Meijman, 1989; 
Zijilstra & Van Doon, 
1985) 

   

Bedford Scale 
(Roscoe, 1987; 
Roscoe & Ellis, 1990) 
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Performance Measure 

Measures Dependent Variables Advantages Limitations 

Primary-task 
Performance (O’ 
Donnell & Eggemeier, 
1986) 

 The performance 
on the system of 
primary interests, 
such as the 
number of error 
and speed of 
performance 

 It’s a direct measure of mental workload   The ‘underload’ condition can reduce 
the sensitivity of the measures 

 Two primary tasks to be compared 
may differ in how they are measured  

 Sometimes it’s impossible to obtain 
good measures of primary-task 
performance 

 The difference of two primary task 
performance may be caused by the 
difference of the limitation of data   

Secondary-task 
Performance (Ogden, 
Levine, & Eisner, 
1979) 

The measured variables 
of secondary-task 
performance usually 
include:  

 reaction time 

 mental 
arithmetic  

 self-adaptive 
tracking 

 monitoring 
 
 

 Noninterference 

 Ease to use 

 Self-pacing 

 Continuity of scoring 

 Compatibility with the primary task 

 High sensitivity 

 Good representativeness  

 Secondary task index is not always 
sensitive 

 Secondary task may interfere with and 
disrupt the primary-task performance 
(Wickens, Hollands, Parasuraman, & 
Banbury, 2012) 

 Selection of secondary task could be a 
complex process 
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Physiological Measure 

Measures  
(De Waard, 1996) 

Dependent Variables Advantages Limitations 

Cardiac Functions 
Electrocardiogram(ECG) 

 Heart Rate 

 Heart Rate Variability 

 T-wave 

 
 
 
 
 
 
 
 
The general advantages of physiological 
measures include (De Waard, 1996): 
 

 they do not require an overt 
response by the operator; 

 most physiological variables can be 
recorded continuously; 

 they are unobtrusive due to 
miniaturization. 

 
 
 
 
 
The general limitations of physiological 
measures are summarized at several points 
below 
 

 Individual differences, such as age, could 
affect physiological measures; 

 Environmental factors, such an ambient 
light and temperature, can affect some 
physiological measures. For example, 
strong ambient light can affect the pupil 
diameter; 

 Data of physiological measure could still 
be noisy; 

 Wearing sophisticated physiological 
devices might discomfort the 
participants 

  

Electroencephalogram 
(EEG) 

 Alpha waves 

 Beta waves 

 Delta waves 

 Theta waves 

Eye fixations 
Electroculogram (EOG) 

 Fixation time 

 Range of saccadic 

Pupil diameter  Size of Pupil diameter 

Endogenous Eye Blinks  Eye blink rate 

 Blink duration 

 Eye blink latency 

Blood Pressure  Blood pressure 
variability 

Respiration  Respiration rate 

Electrodermal Activity 
(EDA) 

 Skin conductance level 

 Skin conductance 
response 

Event-related 
Potentials 
(ERP) 

 

Hormone Levels  

 


