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ABSTRACT 

 

This dissertation focused on three emerging/reemerging diseases posing 

economic impacts on Texas livestock producers.  Bovine trichomoniasis is a regulated 

disease requiring diagnostic testing; however, current diagnostic protocols are 

problematic.  Major obstacles resulting from variable collection procedures and 

discrepancies in sample handling and laboratory test accuracy need further investigation.  

Epizootic hemorrhagic disease primarily affects white-tailed deer; however, it is unclear 

why clinical disease is rarely exhibited in cattle in the same region, requiring the 

investigation of seroprevalence in Texas cattle.  Bovine viral diarrhea (BVD) causes 

significant reproductive loss and complicates other diseases through 

immunosuppression.  Although vaccination is the primary method of mitigating fetal 

infection, a systematic review assessing fetal protection from vaccination is needed.     

Methods to examine the collection, shipment, and diagnostics associated with 

bovine trichomoniasis included (1) testing of infected bulls for sample quality and 

testing accuracy related to time, collectors, and individual bulls; (2) evaluation of 

samples with temperature sensors in a controlled environment when shipped by common 

carrier; and (3) evaluation of a patented polymerase chain reaction (PCR) technique for 

expedient sample handling and improved diagnostic sensitivity.  Methods to evaluate 

prevalence of epizootic hemorrhagic disease in Texas cattle were based on random blood 

sera collections from 11 auction markets. Methods to assess safety and efficacy of BVD 
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vaccines for fetal protection were based on a systematic review of the scientific 

literature. 

There was little variation in bovine trichomoniasis test results due to collector or 

bull, indicating proper and standardized sample collection protocol increased test 

accuracy.  Shipping samples in temperature-controlled containers to arrive at the 

laboratory within 24 hours also improved diagnostic accuracy.  The newly patented PCR 

test exhibited 100% diagnostic sensitivity and 99% specificity for field samples from 56 

positive and 110 negative bulls for improved test accuracy. 

A high seroprevalence of epizootic hemorrhagic disease (70% to 97% depending 

on different threshold titer positive cutoff values) was seen in Texas auction cattle, but 

clinical disease is rare. 

Much of the scientific literature dealing with BVD supports vaccination for fetal 

protection but lacks transparency regarding experimental design, creating a potential for 

bias and making evaluation of these studies difficult. 
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CHAPTER I 

INTRODUCTION 

 

This dissertation focuses on different aspects of 3 emerging or reemerging 

diseases affecting Texas cattle producers, bovine trichomoniasis, bovine viral diarrhea 

virus, and epizootic hemorrhagic disease.  An emerging or reemerging disease is defined 

as “infection that has newly appeared in a population or has existed but is rapidly 

increasing in incidence or geographic range (Morse, 1995).  Understanding the 

epidemiology of these diseases and developing management protocols must be based on 

evidenced based information not just past experiences and “common sense.”  Cockcroft 

and Holmes (2003) define evidence-based medicine as “the use of current best evidence 

in making clinical decisions,” and this includes searching the current literature, not 

relying on an old textbook.  Evidence based decisions must be based on the knowledge 

and experience of the veterinary practitioner, the needs of the patient (producer and 

animals), and the best external evidence as expressed in Figure 1.1.  Published peer 

reviewed manuscripts must be critically evaluated for the accuracy and applicability of 

the information.  A representation of the hierarchy of information is depicted in Figure 

1.2 with systematic reviews representing the most reliable quality of external evidence 

while expert opinions and case reports provide the least reliable evidence. 
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Figure 1.1. Evidence-based medicine is the integration of best research evidence with 

clinical expertise and patient value (Sackett et al., 2000). 
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Figure 1.2. Pyramid representing the hierarchy of published evidence (Glover et al., 

2006). Reprinted with permission. 

 

Bovine Trichomoniasis 

Bovine trichomoniasis probably became rampant in Texas after importation of 

cattle from the drought stricken west and mid-western states.  Agricultural Economist 

with Texas A&M AgriLife Extension (D. Anderson and T. Hairgrove, unpublished data) 

has estimated that the annual cost of trichomoniasis to the cow-calf sector is $100 

million or $25 per cow in Texas herds.  Currently bovine trichomoniasis is a regulated 

disease in Texas, and testing of all breeding bulls is required when they change 

possession.  The producer’s cost for testing is $70-100 per bull.  Disease management 

requires best management practices be based on scientific evidence, not “cowboy logic.”  
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Diagnostic testing for a disease of such a high economic consequence requires collection 

techniques that are simple and reproducible between collectors, shipping requirements 

that are uniform regardless of weather, an accurate diagnostic test with high 

sensitivity/specificity and a rapid laboratory turn-around time.  

I serve on the Bovine Trichomoniasis Subcommittee of the United States Animal 

Health Association, which makes recommendations to regulatory veterinarians 

concerning diagnostic testing and control measures.  Unfortunately, many regulations 

are based on non-peer reviewed information presented at conferences, often in the 

abstract form or worse dogma based on opinions; for example, Mukhufhi et al. (2003) 

reported a significant drop in the sensitivity of the polymerase chain reaction (PCR) 

when testing for Tritrichomonas foetus using samples 30 hours post collection, yet 

regulatory officials allow samples to arrive at the laboratory 120 hours post collection 

(Texas Administrative Code, 2010).  

I have examined the literature to ascertain the quality of available evidence and 

designed a study comprised of 3 experiments to investigate methods to improve the 

diagnostic accuracy related to this costly disease.  This study examined the diagnostic 

protocol for bovine trichomoniasis, examining collection techniques, shipping protocols, 

and improved laboratory diagnostic methodology.  Information gathered in this study 

resulted in the validation of a recently patented novel RT-qPCR developed by the Texas 

A&M Veterinary Medical Veterinary Diagnostic Laboratory.  Results from this study 

have practical application and contribute to the body of evidence concerning bovine 

trichomoniasis and emphasizes the need for more practical research, for example factors 
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affecting the repeatability of test results within individual bulls over time need to be 

investigated in depth.  

Epizootic Hemorrhagic Disease 

The second aspect of this dissertation focuses on epizootic hemorrhagic disease, 

perceived as a relatively new emerging cattle disease in Texas.  The international 

association for animal health (OIE, 2014) considers this disease to be reportable and its 

existence could affect trade.  There have been recent increases in clinical epizootic 

hemorrhagic disease in cattle in the mid-western states but there have been no reported 

outbreaks in Texas.  Serologic testing of diagnostic samples procured for a study to 

investigate late term cattle abortions indicated a high seroprevalence of epizootic 

hemorrhagic virus in Texas cattle.  To begin to understand the potential statewide 

ramifications of this disease, a study was developed to estimate spatial serologic 

prevalence using serum collected at auction markets for the purpose of brucellosis 

testing.  Knowing the seroprevalence as well as the spatial and temporal distribution of 

this virus is essential to making sound decisions regarding cattle movement and trade 

issues. 

Bovine Viral Diarrhea 

Bovine viral diarrhea virus infection is a reemerging viral disease that is 

associated with significant reproductive wastage and immunosuppression.  The 

production of immune-tolerant calves is necessary for maintaining bovine viral diarrhea 

virus in the cattle population.  When a dam is exposed to the non-cytopathic biotype of 

the virus during the first 125 days of gestation the fetus can become immune tolerant or 
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persistently infected.  If the fetus survives it will shed the virus in all body secretions 

throughout its life, providing a source of infection to herd mates.  Vaccines for bovine 

viral diarrhea have been available since the 1960s; however, when Perino and Hunsaker 

(1997) performed a systematic review of the literature to determine the field efficacy of 

vaccines for bovine respiratory disease they found no reliable reports examining the 

effects of bovine viral diarrhea vaccines in North American beef cattle.  Vaccination is 

important in the management of this disease in the United States, but there is conflicting 

data on the efficacy and safety of modified live vs. killed vaccines given to dams for 

prevention of fetal infection.  Much of the literature cited by competing vaccine 

manufacturers in support of their claims is in the form of case reports or company trials, 

in which materials and methods are often only partially, reported leading to potential risk 

of bias.  Veterinary practitioners and livestock producers are very busy, but they can use 

systematic reviews based on scientific principles to summarize the existing evidence to 

aid in management decisions.  Publication does not ensure proper experimental design, 

or that the study reached valid scientific conclusions, but a systematic review enables the 

reader to objectively evaluate the manuscripts (Sebastien and Vanderweerd, 2012).  A 

systematic review of the scientific literature to determine the results of controlled trials 

with statistically significant findings concerning the safety and efficacy of bovine viral 

vaccines for fetal protection was performed.    

The 3 studies reported on in this dissertation all focus on emerging/reemerging 

diseases perceived by the Texas cattle Industry as problematic and needing further 

investigation.  After reviewing and reporting the existing literature, studies were 
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designed to address targeted problems, thereby providing new evidence that can be 

applied after critical evaluation.  
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CHAPTER II 

BOVINE TRICHOMONIASIS 

 

Literature Review 

Tritrichomonas foetus (T. foetus) is the parasite responsible for bovine 

trichomoniasis, which causes a venereal disease resulting in infertility, early fetal death, 

extended calving intervals, and late term abortions (Rae and Crews, 2006).  Kunstler 

recorded observing the parasite in the vagina of a cow; however, Mazzanti was later 

credited with its discovery when he described trichomonads in the reproductive of 3 

infertile cows (Morgan, 1946; Skirrow and BonDurant, 1988; Rae and Crews, 2006).  

Bang’s 1897 discovery of the causative agent for contagious bovine abortion (later 

named Brucella abortus) overshadowed trichomoniasis research for the next 20 years 

(Emmerson, 1932).   

Interest in bovine trichomoniasis increased in the mid-1920s after 2 independent 

investigators, Hofengartner and Pfenninger, identified trichomonads in aborted fetuses 

(Emmerson, 1932; Morgan, 1946).  Riedmuller, focusing on abortion, described the 

infectious nature of the parasite in the fetus in 1928-1929, and proposed the name 

Trichomonas foetus (Emmerson, 1932).  Riedmuller evaluated 105 cases of abortion in 

which he attributed 9 nine cases to T. foetus (Rae and Crews, 2006).  Emmerson (1932) 

discovered bovine trichomoniasis in Pennsylvania, the first case reported in the United 

States. 
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Increased disease prevalence is associated with natural breeding (Ladds et al., 

1973) and infection is uncommon in intensively managed systems that use artificial 

insemination (Skirrow and BonDurant, 1988).  Trichomoniasis is endemic to many areas 

of the United States (Szonyi et al., 2012; Yao, 2015), with reported beef herd infection 

rates of 30.4% in Florida (Rae et al., 2004), 15% in California (BonDurant et al., 1990), 

and 44% in Nevada (Kvasnicka et al., 1989).  The disease prevalence in Texas beef 

herds has not been determined.  The negative economic impact of this disease has 

resulted in 28 states, including Texas, enacting regulatory programs that primarily focus 

on the testing and slaughter of infected males with minor emphasis on the female’s role 

in disease transmission (Jin et al., 2014).   

Taxonomic classification of T. foetus has been a topic of debate, but using the 

most current information based on morphological and molecular data, Cepicka et al. 

(2010) recommended the classification: Phylum Parabasalia: Class Tritrichomonadae; 

Family Tritrichomonadae.  There are the 3 recognized serotypes of T. foetus, var. 

manley, var. belfast, and var. brisbane; however, genetic variation does not appear to 

alter host immunity or disease epidemiology with all serotypes being equally pathogenic 

(BonDurant and Honigberg, 1994; Rae and Crews, 2006).  There are reports of serotypes 

var. belfast and var. brisbane coexisting as mixed populations in males and females 

(Dennett et al., 1974; Wosu, 1977). 

The life cycle of T. foetus is simple with reproduction by longitudinal binary 

fission (Levine, 1973).  This unicellular parasite is aerotolerant, thriving in a 

microaerophilic environment, but it can adapt to higher levels of oxygen over time 
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(Lloyd et al., 1987).  The parasite lacks mitochondria and thus does not depend on a 

functioning Krebs Cycle; rather it relies on the cytosolic fraction and hydrogenosomal 

organelles for energy production (Lloyd et al., 1987; BonDurant and Honigberg, 1994; 

Silva et al., 2011).  Tritrichomonas foetus is pleomorphic appearing as pear shaped 

organisms with a single nucleus approximately 20 X 10 microns in size with a somewhat 

shorter undulating membrane with 3 to 5 waves, supported by a costa (BonDurant and 

Honigberg, 1994; Rae and Crews, 2006).  The parasite has 3 anterior flagella 11 to 17 

microns in length and posterior flagellum, which is an extension of the external margin 

of the undulating membrane, and is approximately 16 microns in length (BonDurant and 

Honigberg, 1994).  The movement of the undulating membrane produces the 

characteristic “rolling jerking” movement associated with T. foetus (Rae and Crews, 

2006).   

Unfavorable conditions such as changes in temperature decrease in nutrients, or 

exposure to drugs prompts the pear shaped trophozoite to internalize its flagella and 

transform into a spherical shaped cell termed a pseudocyst, which lacks a true cell wall 

(Mariante et al., 2004; Pereira-Neves et al., 2011).  It has long been thought that the 

pseudocyst was a degenerative form of T. foetus, but recent studies have shown that over 

50% of parasites recovered from preputial scraping are in the pseudocyst stage, and the 

condition is reversible (Pereira-Neves et al., 2011). The pseudocyst is a functional form 

of the parasite that is able to adhere to epithelial cells, to reproduce by budding, and has 

the ability to produce cytotoxic effects (Mariante et al., 2004; Pereira-Neves et al., 

2012).    
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Tritrichomonas foetus infects the lumen and mucosal surfaces of the respiratory, 

gastrointestinal, or reproductive tract of mammals (Robertson, 1963; Stockdale et al., 

2007).  Tritrichomonas foetus associated with the gastrointestinal tract and nasal cavity 

of swine and the gastrointestinal tract of felines are both similar morphologically and 

molecularly to the parasite associated with bovine trichomoniasis causing speculation 

that T. foetus may be a multi-host protozoon spp. (Fitzgerald et al., 1955; Stockdale et 

al., 2007).  Researchers have been successful in establishing infection in cattle with both 

the feline and porcine trichomonads, but have not demonstrated reproductive loss 

(Fitzgerald et al., 1955; Stockdale et al., 2007), while others were unable to colonize 

bovine heifer reproductive tracts by vaginal inoculation with T. foetus of porcine origin 

(T. suis) (Cobo et al., 2001).  Infection of cattle with T. foetus of feline origin resulted in 

less destruction of the endometrial surface epithelium than did the cattle parasite, 

suggesting a different parasite host relationship (Stockdale et al., 2007).  Some have 

concluded that on the basis of morphology, ultrastructure, host specificity, immunology, 

biochemistry, and current molecular biology that T. foetus and T. suis are a single 

species (Lun et al., 2005; Slapeta et al., 2010); while others have reported minor 

differences (Frey and Muller, 2012; Reinmann et al., 2012).  

Bulls exhibit no noticeable signs of the disease other than possible early 

observance of an insignificant purulent preputial discharge that fails to develop into a 

noticeable pathologic lesion.  Tritrichomonas foetus is known to localize on the 

epithelial lining of the penis, prepuce, and distal urethra, and limited observations 

indicate the organism may even occasionally inhabit the testes, epididymis, ampulla, 
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prostate and proximal urethra (Morgan, 1947; Ladds et al., 1973).  Tritrichomonas foetus 

is believed to cause no change in semen quality (Rae and Crews, 2006); however, recent 

reports indicate cytotoxicity to the bovine sperm cell as the result of parasite adhesion, 

phagocytosis of sperm and agglutination with a resulting decrease in progressive motility 

(Benchimol et al., 2008; Ribeiro et al., 2010). 

The most important feature of T. foetus infection in the bull is the development of 

persistent infection resulting in a chronic carrier state (Rae and Crews, 2006).  Persistent 

infection is primarily observed in bulls ≥ 4 years of age, believed to be related to 

increase in depths of epithelial folds of the penis and prepuce (Rae and Crews, 2006; 

Silva et al., 2011).
   

These deeper epithelial folds sometimes referred to as crypts, were 

thought to provide the microaerophilic environment necessary for the establishment and 

maintenance of chronic infections; however, recent research indicates depths in 

epithelial folds are similar in bulls of all ages (Strickland, 2010).  Australian researchers 

established experimental infections in 12 of 13 bulls ages 3 to 7 years, and could only 

established infection in 3 of 19 bulls that were 1 to 2 years of age (Clark et al., 1974).  

Studies suggest that a reduction in the incidence of infection can be achieved by the 

exclusive use of young bulls, and their use during a limited breeding season can be used 

to moderate overall disease transmission (Clark et al., 1974; Christensen et al., 1977).  

Bulls are believed to have a very limited local immune response, and antigen does not 

appear to be absorbed from the mucosal surface of the external genitalia (Robertson, 

1963).  
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Age alone does not preclude the possibility of a carrier state as bulls’ ≤2 years 

old have been identified as carriers (Clark et al., 1974).  Several studies have examined 

differences in breed susceptibility to T. foetus, but none are conclusive (Dennett et al., 

1974; Rae and Crews, 2006).  Venereal transmission of the disease occurs when an 

infected bull breeds a non-infected cow or a non-infected bull breeds an infected cow 

(Morgan, 1947).  Passive transfer is considered to be a less efficient method of disease 

transmission, especially when using young bulls (BonDurant and Honigberg, 1994; Rae 

and Crews, 2006).  Abbitt (1980) suggests homosexual activity in bulls could be a mode 

of parasite transmission, but this has not been investigated. 

The parasite colonizes the vagina, uterus and oviduct of the female after coitus 

with a chronically infected carrier bull or by passive transfer with a previously 

uninfected bull that has had recent coitus with an infected female (BonDurant, 1997; 

Skirrow and BonDurant, 1988; Rae and Crews, 2006).  There is high rate of passage 

from infected male to naïve female, with colonization of the entire reproductive tract 

occurring within 1 to 2 weeks (Clark et al., 1983; Rae and Crews, 2006).  

Tritrichomonas foetus causes genital inflammation to include vaginitis, cervicitis, and 

endometritis, which are often undetected by the producer (Rae and Crews, 2006; Cobo 

and Favetto, 2014).  The number of parasites in the vagina peak 14-18 days after natural 

breeding (Hammond and Bartlett, 1945).  The parasite is deposited in the vagina and 

moves through the cervix, gaining access to the uterus and oviducts due in part to the 

parasites mobility and to the relaxation and contraction of the uterus due to estrus 

(BonDurant and Honigberg, 1994).  The infection is cleared or minimized in the vaginal 
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tract fairly rapidly; however, the parasites remained confined to the uterus except during 

estrus, which complicates culture of female vaginal secretions (Bartlett, 1947).  The 

cytotoxicity produced by T. foetus is a result of the parasite using adhesions to bind to 

the host epithelial cells (Corbeil et al., 1989) and then interacting with those cells to 

cause the secretion of enzymes to include extracellular proteases and glycosidases (Silva 

et al., 2011).  Through cytolysis, the epithelial junctions are damaged, resulting in 

remodeling of the surrounding extracellular structure, which enables the parasite to 

create an environment conducive to survival in various parts of the host (Petropolis et 

al., 2008; Silva et al., 2011).   

Though immune function allows the vagina to clear the initial infection, there is 

brief re-colonization of the vagina occurring during estrus that is instrumental to the 

transfer of the parasite to naïve bulls (Bartlett, 1947). Tritrichomonas foetus is not 

believed to interfere with fertilization and the reason for reproductive loss, although not 

fully understood, is believed to be associated with endometritis (Rae and Crews, 2006); 

however, recent research has demonstrated in vitro reactions of T. foetus with 

spermatozoa and oocytes which may interfere with fertility (Benchimol et al., 2007; 

Benchimol et al., 2008).  Fetal death is thought to occur most often at approximately 60 

days in gestation; however, death of the embryo/fetus can occur at any time during 

gestation, with 1 report of 33% of the losses occurring during the last trimester (Rhyan et 

al., 1988).  Bartlett (1947) reported that older cows previously infected, upon reinfection, 

are more likely to develop pyometra, have later term abortions, or carry infection over 

into next gestation.  In less than 5% of cases the fetus is not expelled, resulting in a 
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retained corpus luteum causing continual secretion of fluid and development of 

pyometra (BonDurant, 1997).   

Tritrichomonas foetus remains in the female reproductive tract for a variable 

period ranging from 3 to 22 months (Bartlett, 1947; Alexander, 1953; Clark et al., 1983). 

Heifers retained the pathogen in the reproductive tract for 13 to 28 weeks following 

experimental infection (Skirrow and BonDurant, 1990).  Females are infertile for 2 to 5 

months following reproductive loss, after which time they usually acquire short- term 

immunity and conceive (Rae and Crews, 2006).  Phagocytosis and vaginal secretion of 

IgG1 and IgA are important in the removal of the parasite from the uterus (BonDurant 

and Honigberg, 1994).  Vaccination or infection can result in the female producing 

circulating antibodies, but humoral immunity is not protective (Robertson, 1963). 

Although most cows will eliminate the organism at the first or second postpartum 

estrous cycle, they occasionally retain infection throughout their pregnancy (Rae and 

Crews, 2006).  Cows persistently infected throughout gestation and into the subsequent 

breeding season are continual sources of herd infection (Morgan, 1944; Skirrow, 1987).  

The frequency of persistently infected cows is thought to be less than 1%; but the 

presence of 1 cow in a herd can be disastrous to a disease control program (Rae and 

Crews, 2006). 
 

 Diagnosis of T. foetus, while appearing to be straightforward can be challenging.  

There are 3 distinct stages that represent the important links in the diagnostic chain, 

which are collection, transport, and laboratory diagnosis.  Failure to adhere to stringent 

protocol during any stage can result in misdiagnosis.  There are many factors beyond the 



 

16 

 

control of the veterinary practitioner collecting field samples, but diagnosis can be 

improved if collection procedures are well planned and everyone involved understands 

their role.   The current testing methodology is based on the polymerase chain reaction 

(PCR), which is required by many regulatory agencies and preferred by veterinary 

practitioners.  The PCR test detects the presence of nucleic acid associated with T. 

foetus, so prevention of cross contamination of diagnostic samples is important.  

Samples need to be protected from light and temperature extremes, with shipment to the 

appropriate laboratory immediately post collection.  Delay in shipment will allow 

overgrowth of contaminants in the transport media, which can result in production of 

DNAase and destruction of nucleic acid necessary for diagnosis.  Heat has a negative 

impact on the protozoa and causes a breakdown of nucleic acid resulting in a false 

negative test (Clavijo et al., 2011; Davidson et al., 2011).  Bryan and coworkers (1999) 

found a negative effect on the viability of T. foetus when temperatures were 4.0
0 

C for 

more than 5 days or -20.0
0
 C for more than 3 hours.  Historically, diagnosis has focused 

on recovery of the parasite from the genitalia of the male or female.  The organism was 

either identified upon collection or grown in culture in order produce viable organism 

that could be identified (Bartlett, 1947).  Current diagnostic protocols focus on the 

analysis of preputial smegma, using either culture or PCR testing (Cobo and Favetto, 

2014).  Intestinal trichomonads sometimes contaminate the preputial area and when 

observed microscopically they can be mistaken for T. foetus, resulting in a false positive 

diagnosis; however, molecular diagnostics will differentiate the organisms (Cobo et al., 

2003; Dufernez et al., 2007; Agnew et al., 2008).  Collection methodology in the male 
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has been evaluated over time; obtaining samples by swabbing the preputial fornix with 

gauze, lavage of preputial area with saline, scraping with a glass pipette, wire brush, or 

an inseminating pipette have all been deemed acceptable; however, the use of a 

disposable large animal-inseminating pipette is considered the most practical (Hammond 

and Bartlett, 1943; Abbitt and Meyerholz, 1979; BonDurant and Honigberg, 1994; 

Parker et al., 1999). Current collection methodology involves blindly scraping the 

preputial cavity, and several investigators have determined that the parasite is more 

likely to be adhered to the penis than the prepuce (Hammond and Bartlett, 1943; Bartlett, 

1947; Parker et al., 2003).  Parker et al. (2003) reported that preputial collections from 

the right side of the bull were 4 times more likely to be positive than samples taken from 

the left side.  Culture media that is overly contaminated with fecal debris and associated 

bacteria is more likely to result in a false negative result (Clothier et al., 2015).    

Modified Diamonds Media (MDM) was considered the media of choice for 

shipment and culture of trichomonads; however a more recently a commercialized 

plastic pouch (BioMed in pouch) utilizing a proprietary media has shown to be 6.95 

times more likely to be positive as samples tested using MDM (Diamond, 1957; Parker 

et al., 1999).  Most regulatory agencies require use the specialized pouch containing a 

proprietary media.   

Once samples are collected, packing and method of shipment are critical to 

accurate laboratory diagnosis.  Samples should be packed in container that will maintain 

the pouch near room temperature during shipment, and samples should be shipped for 

overnight delivery to the laboratory.  Investigators have determined that heat above 
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42.0°C is detrimental to T. foetus, resulting in false negative tests by both PCR and 

culture, and temperatures ranging between 4.0°C and 20.0°C are detrimental to growth 

of the organism; therefore, failure to control temperature compromises diagnosis (Bryan 

et al., 1999; Davidson et al., 2011; Clavijo et al., 2011).  

Because of the female’s role in disease transmission, there is interest in 

developing reliable diagnostics for use in females.  The use of direct microscopic 

examination of vaginal secretions, measuring vaginal antibodies, or measuring systemic 

immune response has been examined as a diagnostic protocol for decades (Pierce, 1950).  

Currently, detection of the organism by culture or PCR is the standard; however, the 

sensitivity of these methods is lower in the female (Skirrow and BonDurant, 1990).  

Tritrichomonas foetus initially infects the vagina, then travels through the cervix, and 

ultimately infects the uterus (Morgan, 1947).  Tritrichomonas foetus is likely to be 

detected in the vagina only during estrus (Bartlett, 1947; Abbitt and Ball, 1978).  The 

female secretes vaginal IgG1, which has been shown to persist in vaginal secretions for 2 

months, and IgA, which persists for 6 months post infection (Skirrow and BonDurant, 

1990).  Diagnosis centered on recovery of the organism is difficult in the female due to 

the above-mentioned hormonal and immune response resulting in systemic and secretory 

antibody production, which can eliminate the parasite (Bartlett, 1947; Cobo and Favetto, 

2014).  Because some studies indicate the PCR is more sensitive and specific than 

culture many regulatory agencies only approve the PCR for diagnostic testing; however, 

other investigators have found the tests to be comparable (Mukhufhi et al., 2003; 

McMillen and Lew, 2006; Ondrak et al., 2010; Guerra et al., 2013).  The PCR provides 
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faster laboratory turnaround time, is able to differentiate non-pathogenic trichomonads, 

and is often able to detect nucleic acid in culture media after the parasites have died; but 

the sensitivity of the PCR can decrease rapidly after sample collection due to 

accumulation of inhibitory compounds or sample contamination (Mukhufhi et al., 2003; 

Kennedy et al., 2008).  

Biosecurity focuses on the precluding the introduction of disease agents into a 

group of animals while biocontainment refers to the control of the disease once 

introduced into the group (Dargatz et al., 2002).  Because males usually remain 

persistently infected, avoiding the introduction of infected males is essential to the 

control of T. foetus transmission (Clark et al., 1974).  The female often develops limited 

short-term immunity to T. foetus, clearing the infection and rebreeding (Morgan, 1946).  

Before purchasing replacements, investigating the herd of origin and purchasing from 

herds with excellent reproductive histories will lower the risk of importing 

trichomoniasis (Sanderson and Gnad, 2002).  

 Previous proposed control measures have focused on developing immunity in 

heifers by allowing them to be bred by infected bulls, thus allowing the heifers to 

become infected and develop immunity, which results in natural vaccinates entering the 

cow herd (Ball et al., 1987).  Herds with long standing infections have calving rates in 

the upper 70 to lower 80 range, but failure to remove infected animals and institute 

management measures still result in significant losses (Clark et al., 1983; Goodger and 

Skirrow, 1986; Ball et al., 1987).   
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Introduction 

Bovine trichomoniasis is an emerging disease that is currently regulated by 28 

states including Texas (Personal communication TAHC).  The disease leaves a large 

economic footprint on the cattle industry due to fewer weaned calves and a less uniform 

calf crop because of a longer breeding and calving season.  There is also an added 

financial burden of disease control because of regulatory testing.  All bulls of breeding 

age are required to be tested prior to change ownership or management (Texas Animal 

Health Commission, 2015) and producers are required to bear the burden of diagnostic 

testing which ranges from $70 to $100 per animal.  Rae (1989) conducted a spreadsheet 

simulation model based on 20 to 40% infection prevalence with  T. foetus in the bull 

population, and he estimated a reduction of 14 to 50% in annual calf crop and net return 

per cow exposed to an infected bull was reduced 5 to 35%.  Anderson (2014), 

extrapolating from data collected from 5 counties in northwest Texas, estimated T. foetus 

infection impacted approximately 20% of Texas beef herds, resulting in approximately 

96,000 fewer calves weaned per year and a loss to the cow-calf industry of $95 million 

dollars based on 2013 calf prices.   

Regulatory disease programs entail structured management and testing protocols 

that are not necessarily evidenced based, for example regulatory officials permitted 

samples to be evaluated up to 120 hours after collection (Texas Animal Health 

Commission, 2015), even though Mukhufhi et al. (2003) showed a decline in tests 

sensitivity at 30 hours post collection.  
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The objective of this study was to evaluate the perceived shortcomings of the 

diagnostic process and their impact on disease diagnosis and management.  Processes 

evaluated included minor variations in sample collection technique, variations in 

temperature and time during shipment, and laboratory diagnosis.  In concert with this 

study a novel real time polymerase chain reaction test (RT-qPCR) was developed and 

patented (Patent # 62/033,893, filed August 6, 2014).  This novel RT-qPCR test does not 

require sample incubation, can be accomplished using direct smegma shipped on ice, 

and produces more sensitive quantitative test results allowing easier interpretation of 

disease status.   

Materials and Methods 

Institutional Animal Care and Use Committee –Texas A&M University (AUP 

2013-00680 and the Agriculture Care and Use Committee-Texas A&M AgriLife 

Research (AUP 2014.022A) approved these studies. 

Experiment One 

This experiment was designed to investigate variation between individuals 

collecting preputial scrapings for diagnostic sampling, and to evaluate variation in 

weekly diagnostic results between bulls.  Four bulls testing positive to T. foetus on 2 

separate occasions were purchased for this study.  One bull remained consistently 

negative for the duration of this experiment and is included in the analysis.  The bulls 

were maintained at the Texas A&M College of Veterinary Medicine Research Facility at 

College Station, Texas. 
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Four veterinary students with no prior experience collecting preputial scrapings 

to diagnose T. foetus, along with an experienced veterinary clinician from the Texas 

A&M University College of Veterinary Medicine were recruited for this experiment.  

The clinician mentored the participants, provided initial instruction, and also served as a 

control, collecting scrapings 5 minutes after each student participant’s collection.   

The experimental design was based on Latin Square requiring each participant to 

sample a different bull each week; thus allowing each student to examine each individual 

bull over the course of 4 weeks.  To ensure baseline sample collection competency, 

participants were given instruction in sample collection by the clinician.  During the 

experiment, the student participant first collected smegma by preputial scraping, and the 

clinician serving as a control performed a follow up scraping on the same bull 5 minutes 

later so each bull was collected twice weekly with a 5 minute interval between 

collections.  After each individual collection, the smegma was placed in the falcon tube 

(Thermo Fisher, Scientific, Waltham, MA) containing 1 ml of saline and homogenized; 

the contents were then equally divided and placed into a Transit Tube and InPouch 

containing a commercial proprietary growth media (Biomed Diagnostics Inc., P.O. Box 

2366, White City, OR 97503).  Chute side the samples were immediately placed in an 

insulated container without ice to provide protection from direct sunlight.  The 

dimensions of the container (manufactured by Polyfoam Packers Corp., Wheeling, IL) 

were 11 cm wide, 16 cm long, 16 cm deep and 5 cm thick.  Immediately after all 

preputial scrapings were completed, Transit Tubes and InPouch containing the smegma 

were immediately transported to the Texas A&M Veterinary Medical Diagnostic 
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Laboratory and incubated at 37.0°C for 48 hours in a Precision incubator (Thermos 

Scientific, Waltham, MA).  Samples were observed microscopically at 10 X 

magnification daily for 6 days and culture reports noted.  The Texas A&M Veterinary 

Medical Diagnostic Laboratory’s standard qPCR was used to analyze InPouch and 

Transit Tube samples at 48 hours post collection.  Microscopic evaluation of InPouch 

culture was considered the gold standard for this analysis. 

Statistical analysis was conducted using Stata (StataCorp, 4905 Lakeway Drive, 

College Station, TX 77845).  Culture and qPCR were evaluated as binomial data 

positive/negative.   McNemar’s and Kappa were used to evaluate agreement between 

InPouch, Transit Tube, and culture.  Logistic regression for binary data was used to 

evaluate difference between collectors, bull or week.  Data was considered significant 

when the p value of ≤0.05.  

Experiment Two 

The purpose of this experiment was to determine temperatures to which 

diagnostic samples were subjected during shipment by common carrier during 

temperature extremes.  Temperature recording devices, iButtons (iButton, model 1921G, 

Maximum Integrated Products, Sunnyvale, CA) were used to record temperature 

changes at 3-minute intervals (480 measurements in 24 hours).  Calibrated iButtons were 

placed in shipping containers and shipped from College Station, TX to 3 locations, 

Silver City, NM, Corpus Christi, TX, and Amarillo, TX during the summer of 2013.  

Shipping containers, consisted of 2 un-insulated cardboard boxes measuring 20 cm wide, 

24 cm long and 20 cm deep, and 4 insulated styrofoam containers (Polyfoam Packers 
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Corp., Wheeling, IL) that were 11 cm wide, 16 cm long, 16 cm deep and 5 cm thick.  

Two insulated containers contained an icepack to provide refrigeration and 2 insulated 

containers did not contain ice packs.  To provide refrigeration in the insulated containers, 

1 Black Ice cold pack (Polar Tech Industries, Inc., Genoa IL) measuring 14 cm long and 

10 cm wide and 3 cm thick was placed in the in the insulated container.  Paper towels 

were placed between the icepack and the iButton to avoid direct contact.  

The samples were packaged in accordance with laboratory instructions accessed 

at the diagnostic laboratories website (Texas Veterinary Medical Diagnostic Laboratory, 

2013), with iButtons sensors replacing the diagnostic samples in the packing process.  

The common carrier used in this experiment was FedEx and containers were shipped 

“FedEx Priority Overnight” with instructions for the recipient to ship the container back 

to College Station, TX using the same carrier and shipping priority.  The recipient was 

instructed not to open the package, and to immediately ship back to the sender.   

When packages arrived in College Station, the iButtons were removed and the 

data extracted and entered into a spreadsheet (Microsoft Excel 2010) for analysis.   

Clavijo et al. (2011) reported that when an InPouch containing T. foetus was 

exposed to temperatures of ≥42.0°C for 24 hours all qPCR diagnostic testing was 

negatively affected, resulting in false negative results.  Temperatures of 60.0°C have 

been recorded in non-climate controlled parcel delivery vehicles (Davidson et al., 2011).  

In an attempt to determine the period of time the diagnostic sample would reach the 

critical temperature of ≥42.0°C, 3 containers identical to those used in the shipping 

phase of the experiment were used, 1 un-insulated container, 1 container insulated 
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without an ice pack and 1 container insulated with an ice pack.  The containers were 

packaged as described in the shipping phase, with 2 calibrated iButtons placed in the 

container to record sample temperature and 1 calibrated iButton placed on the outside to 

record external temperatures.  The iButtons were calibrated to record temperature 

changes every 10 minutes.  The containers were placed in a forage drying furnace 

(Stabil-Therm, Blue M Electric Company, Blue Island, IL) with a temperature setting of 

48.8°C.  The samples were left in the drying furnace for 48 hours and then removed and 

data on the iButtons was entered in an Excel spreadsheet to determine when the 

threshold temperature was reached. 

Experiment Three 

This experiment involved a novel RT-qPCR developed by researchers at The 

Texas A&M Veterinary Medical Diagnostic Laboratory.  The novel RT-qPCR reported 

in this study and the intellectual property acquired with the development of this test, has 

been patented (Patent # 62/033,893, filed August 6, 2014) and the rights to patent use are 

in negations between The Texas A&M University System and a private cooperation, 

therefore this paper will focus on the field validation of this novel RT-qPCR and the 

advantages it affords in collection and shipment. 

A total of 166 bulls were sampled to evaluate diagnostic performance of the 

novel RT-qPCR; 56 positives and 110 negatives hereafter denoted as reference samples.  

Positive reference samples were identified through routine diagnostic submissions to 

The Texas A&M Veterinary Medical Diagnostic Laboratory.  Owners and veterinarians 

were contacted after bulls tested positive on the current diagnostic laboratory employed 
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culture qPCR test and bulls were resampled with the owners’ consent.  Negative 

reference samples were identified as having negative culture qPCR results and being 

from a herd with a good reproductive history.  Microscopic examination of culture 

media is considered the “gold standard” for this experiment and all reference samples 

were positive by that method before being considered for test validation. 

These reference samples were collected by first washing the prepuce area with 

~10 ml or more of saline to remove dirt or fecal contamination, followed by scraping of 

the inside of the prepuce 10 times with a sterile artificial insemination pipette.  For some 

samplings, multiple collections were required to obtain sufficient sample (i.e., at least 

500 µl smegma).  Smegma was collected into a 5 ml polypropylene tube (Thermo Fisher 

Scientific, Waltham, MA) containing ~1000 µl of Phosphate Buffered Saline (PBS).  

Each sample was mixed to homogeneity using a transfer pipette (Thermo Fisher 

Scientific, Waltham, MA); approximately 200 μl of each sample was reserved in the 

original tube and the rest of the sample was deposited into the InPouch media (BioMed 

Diagnostics, White City, OR).  The tube containing the smegma was placed in an 

insulated Styrofoam cooler with ice packs and the InPouch sample was placed in a 

similar container without ice packs and transferred to the laboratory.  All samples were 

delivered to the laboratory within 8 hours of collection and upon arrival at the 

laboratory, the smegma sample was refrigerated and the InPouch was incubated at 

37.0°C in a Precision incubator for up to 96 hours (at which time the microscopic 

examination was completed).    
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For microscopic examination, the 37.0°C incubated reference InPouch samples 

were observed daily for T. foetus following The Texas A&M Veterinary Medical 

Diagnostic Laboratory employed culture microscopic examination method.  This method 

consisted of 4 readings, each 24 hours apart, within 6 days.  The first reading occurred 

after 24 hours incubation at 37.0°C.  InPouches were examined at 10X magnification.  

The entire bottom edge of the InPouch was scanned, as well as, approximately 2.5 cm up 

each side.  If no motile T. foetus were observed, the InPouch was identified as negative 

for that reading and additional incubation and 3 additional readings at 24 hour intervals 

were required.  If motile T. foetus were observed during any of the 4 readings, the 

InPouch was identified as positive and no further incubation or readings were required.   

In order to determine the diagnostic sensitivity of the newly developed molecular 

test, bulls that tested positive by microscopic culture were subsequently tested by the 

culture qPCR currently employed by The Texas A&M Veterinary Medical Diagnostic 

Laboratory, as well as, the novel RT-qPCR under development.  

Results and Discussion 

Experiment One 

Quantitative tests results on the qPCR are reported as Cq values.  The larger the 

quantity of nucleic acid amplified by the qPCR, the lower the Cq value, and conversely 

the higher the Cq value the less nucleic acid amplified, values of 40 indicating no 

amplification.  There was variation in Cq values between bulls, but each individual bull 

was fairly consistent testing in a similar quantitative value range. 
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Quantitative Cq values are converted to qualitative binary data with positive 

results being determined by a cutoff value of <35.  Bull 77 consistently tested positive 

and bulls 53 and NT usually tested positive but were occasionally negative, while bull 54 

was consistently negative on all tests (Figure 2.1).    Interestingly, 2 of 24 InPouch 

samples (8.3%) and 4 samples of 24 Transit Tube samples (16.6%) were positive by 

microscopic culture while negative by culture qPCR (Table 2.1).  The culture qPCR and 

microscopic culture results were evaluated as either positive or negative (Cq value <35 

reported as positive) as would be reported to practitioners submitting field samples.    

Even though bull 54 was consistently negative, results obtained for all 4 bulls were 

analyzed with a P value of ≤0.05 being considered significant. 

InPouch, culture, and Transit Tube were analyzed as dependent variables with 

bull, week, and collector analyzed as independent variables.  There was a consistent 

difference in bulls (P=0.005) when analyzed with all 3 dependent variables.  This was 

not surprising in that 1 bull was consistently negative throughout the 4-week period of 

the experiment. InPouch and culture results were not influenced by week (P=0.696 and 

0.248) respectively; however, there was a statistically insignificant trend (P=0.082) for 

week to affect Transit Tube.  InPouch, culture, and Transit Tube were not affected by 

collector variation (P=0.249, 0.805, and 0.688) respectively. 

Proportions of agreement (McNemar’s Test) and Kappa were used to evaluate 

agreement between culture qPCR of the InPouch and Transit Tube, as well as the 

microscopic culture.  The Transit Tube and InPouch, although not significant did tend to 

lack show lack of agreement with McNemar’s test (P=0.083), with a Kappa value of 
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0.805.  The microscopic culture demonstrated agreement both with the Transit Tube and 

InPouch with McNemar’s test (P=0.179 and 1.0) and Kappa values of 0.675 and 0.723 

respectively.  The second collector (veterinarian) tended to obtain more positive tests 

(94%) compared with the first collector (students) (72%), which is compatible with 

results reported by Canadian workers where a second collection 5 minutes after the 

initial collection was more likely to result in a positive test (Parker et al., 1999).  

 

 

Figure 2.1. Cq values over the 4 weekly collection periods organized by students and 

veterinarians evaluating InPouch and Tube tests.  A Cq value >35 is considered positive. 
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Figure 2.1. Continued.  
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Table 2.1. Values used in the graphs in Figure 2.1 are taken from this table.  Cq values 

<35 are reported as positive with 35≥ reported as negative.  Test values for the 3 tests 

evaluated, obtained by students and veterinarian from each bull, taken each week are 

listed below. 

Bull 

ID 

Week 

Sampled 

Collector InPouch ( 

qPCR) 

Transit Tube 

(qPCR) 

Culture 

Microscope 

77 1 Student 1 30.8 32.5 Positive 

  
Veterinarian 28.8 33.2 Positive 

 
2 Student 4 29.9 30.4 Positive 

  
Veterinarian 29.5 28.8 Positive 

 
3 Student 3 29.7 29.1 Positive 

  
Veterinarian 27.5 28.4 Positive 

 
4 Student 2 30.2 31.8 Positive 

  
Veterinarian 29 32.1 Positive 

53 1 Student 2 Negative 35.6 Negative 35.5 Negative 

  
Veterinarian 30.5 32.9 Positive 

 
2 Student 1 34.3 32.6 Positive 

  
Veterinarian 33 33.3 Positive 

 
3 Student 4 Negative 36.2 Negative 40 Positive 

  
Veterinarian 32.4 31.5 Negative 

 
4 Student 3 30.6 31.5 Positive 

  
Veterinarian 31.9 33 Positive 

NT 1 Student 4 34.3 Negative 35.7 Negative 

  
Veterinarian 33.3 Negative 36.6 Positive 

 
2 Student 3 34.1 32.9 Positive 

  
Veterinarian 34.2 Negative 36 Positive 

 
3 Student 2 Negative 37.3 Negative 36.6 Positive 

  
Veterinarian 32.6 32.7 Positive 

 
4 Student 1 32.7 32.9 Positive 

  
Veterinarian 30.7 34 Positive 

54 1 Student 3 40 40 Negative 

  
Veterinarian 40 40 Negative 

  
Student 2 40 40 Negative 

  
Veterinarian 40 40 Negative 

  
Student 1 40 40 Negative 

  
Veterinarian 40 40 Negative 

  
Student 4 40 40 Negative 

  
Veterinarian 40 40 Negative 
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The results of this experiment indicate that with minimal instruction, an 

inexperienced individual can collect an acceptable preputial scraping and package it for 

shipment.  There were no differences in diagnostic testing sensitivity as a result of 

collection technique between student collectors or between students and an experienced 

veterinary clinician.  This experiment was carried out over a 4-week period and it was 

noted that quantitative test results over time for each individual bull tended to be similar, 

but there were differences between bulls.  One bull consistently recorded a qPCR value 

< 35 considered the cutoff for a positive test, while 2 bulls were recorded qPCR values 

on either side of the cutoff of < 35.  All samples were protected from temperature 

extremes and sunlight and were delivered to the diagnostic laboratory within 1 hour of 

collection; reducing the confounding effects of sample shipment on the experiment.   

Experiment Two  

The purpose of the second experiment was to evaluate temperature extremes 

inside the shipping container during routine ground shipment and to determine time 

needed to reach the critical temperature of 42.0°C and the duration of time until 

temperature subsided.  Packages were shipped in the summer of 2013 when weather 

forecast indicated triple digit temperatures for Texas (National Oceanic and Atmospheric 

Administration, 2016).  

Samples were all in transit for 4 days, and the only container to approach 42.0°C 

in 24 hours was the un-insulated cardboard box sent to Corpus Christi (Figure 2.2), but 5 

of the packages sent to New Mexico exceeded 42.0°C during the 96 hour time period.   
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Figure 2.2. The temperatures recorded in the un-insulated container shipped to Corpus 

Christi, TX.  Temperatures were recorded at 3-minute intervals and the threshold 

temperature of 42.00°C was reached in approximately 24 hours, reinforcing the need to 

expedite shipping. 

 

A follow-up experiment was conducted using controlled temperature 

environments.  A calibrated iButton was placed on the exterior of each package to ensure 

recorded external temperature was similar on all packages.  The external monitors 

recorded a consistent 49.4°C (+-.5°C).  The iButtons in the cardboard container recorded 

temperatures in excess of 42.0°C within 1 hour, the insulated container with no ice pack 

exceeded 42.0°C in 1.5 hours, and the insulated container with ice did not exceed the 

threshold temperature for 8.5 hours (Figure 2.3). 
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Figure 2.3. Temperatures were recorded every 30 minutes in an insulated container 

containing the ice pack.  The container reached the threshold temperature of 42.00°C in 

8 hours and 30 minutes, reinforcing the need to take extra precautions during 

temperature extremes and expedite shipping. 

 
 
Packing and shipping samples to the laboratory is a critical link in the diagnostic 

chain.  Clavijo et al. (2011) demonstrated a negative effect on the diagnostic accuracy of 

microscopic or culture qPCR evaluation when T. foetus was subjected to temperatures of 

42.0°C for 24 hours, with neither test being interpreted as positive.  Some diagnostic 

laboratories have advocated refrigerating or even freezing samples in culture upon 

collection and shipping to the laboratory on ice (Oregon Department of Agriculture, 

2016).  Biomed Diagnostics, the manufacturer of the InPouch recommends maintaining 

the pouch at 15.0-20.0°C for a maximum time of 48 hours prior to incubation and they 

state “NEVER refrigerate or freeze the specimen” (Biomed Diagnostics, 2016).  
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Davidson et al. (2010) reported temperatures in excess of 60.0°C or 140.0°F 

measured in non-climate controlled parcel delivery vehicles.  Experiment 2 focused on 

the use of a common carrier to ship samples containing iButton temperature sensors in 

insulated containers, with and without ice packs, and non-insulated containers.  Results 

of this experiment indicate that packing specimens in an insulated container with an ice 

pack is most effective for mitigating temperature extremes.  The ice pack should be 

wrapped in paper towels or similar insulating material eliminating direct contact with the 

specimen.  Temperature sensors (iButtons) transported in un-insulated or insulated 

containers without ice packs recorded temperatures of 42.0°C early in shipment, which 

is detrimental to maintenance of a viable laboratory sample, and even when supplied 

with ice packs, samples only remained in a safe temperature range for approximately 24 

hours.  Guaranteed overnight delivery and shipping in an insulated container with an 

icepack is the preferred method of shipment during summer months.   

 A more controlled experiment where samples packed identical to the shipping 

experiment was placed in a forage-drying oven at a constant temperature of 49.4°C for 

48 hours.  The un-insulated cardboard box and un-insulated box recorded a specimen 

temperature in excess of 42.0°C within 1 hour and 1.5 hours respectively.  The insulated 

box containing an ice pack took 8.5 hours to reach the same threshold temperature 

(Figure 2.3).  Results of both experiments show the need to expedite shipping so the 

sample arrives at the laboratory within 24 hours.   
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Experiment Three 

The diagnostic sensitivity and specificity of the novel RT-qPCR (proprietary 

patented technology negations with Texas A&M System and a private cooperation) were 

calculated using a reference set of Culture microscopic examinations collected from 

animals in the field that determined 56 bulls to be positive and 110 bulls to be negative.  

The novel RT-qPCR exhibited 100% diagnostic sensitivity and 99% specificity; the 

agreement between the novel RT-qPCR and Culture readings was 99% (kappa = 0.99); 

McNemar’s Chi-square test for paired nominal data (P-value=1.00, indicating no 

significant difference between these 2 tests.  Specificity of the novel RT-qPCR was also 

assessed using 543 preputial samples collected from low-risk herds exhibiting good 

reproductive history that had previously tested negative by the Culture qPCR; these 

samples were found to be negative by the novel RT-qPCR and the concurrent Culture 

qPCR testing. 

The diagnostic sensitivity and specificity of the Culture qPCR were also 

calculated using the same reference set of Culture readings.  The Culture qPCR 

exhibited 95% diagnostic sensitivity and 100% specificity; the agreement between the 

Culture qPCR and Culture readings was 98% (kappa = 0.96); McNemar’s Chi-square 

test for paired nominal data (P-value =0.25), indicated no significant difference between 

the 2 tests.     

The agreement between the Culture qPCR and novel RT-qPCR was 98% (kappa 

= 0.95) and McNemar’s Chi-square test for paired nominal data (p=0.125), indicated no 

significant difference between the 2 tests.  However, the novel RT-qPCR identified 4 
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additional positive animals and Cq values were significantly lower for the positive 

specimens: 13.6-33.5 for Direct Sample RT-qPCR vs. 18.7-37.4 for Culture qPCR 

(p<0.050).  The average Cq value for the Direct Sample RT-qPCR was 22.9 ± 4.5, while 

the average Cq value for the Culture qPCR was 26.5 ± 4.6, and a paired t-test indicated 

significant difference (p = 0.0007).  The difference between Cq values (novel RT-qPCR 

minus Culture qPCR) ranged from (-) 11.0 to (+) 3.4 (Figure 2.4).  The lower Cq range 

of the Direct Sample RT-qPCR results enabled better data interpretation since all Cq 

values were outside of the inconclusive and suspect range. 

 

 

Figure 2.4. Direct sample RT-qPCR and culture qPCR Cq values difference plot for 56 

culture reading positives.  The y-axis represents the difference in Cq value between the 2 

PCR tests; negative values indicates that the direct sample RT-qPCR results in lower Cq 

values, indicating enhanced detection sensitivity.  
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This experiment entailed validating a more sensitive novel RT-qPCR that is 

performed on direct smegma and does not require incubation, eliminating many of the 

problems encountered with collection and shipment.  The T. foetus organism survives in 

a microaerophilic environment and historically this has been a factor in shipment.  When 

transport media is upright in a fixed position, the protozoa is in an environment 

conducive to growth, but during shipment if the tube does not remain upright, allowing 

T. foetus to be exposed to oxygen the survival and growth of the protozoa can be 

compromised.  The design of the InPouch circumvents this problem limiting oxygen 

exposure and allowing growth of the organism, but temperature must remain 18-20°C 

until placed in an incubator.   

The increased sensitivity of the novel qPCR eliminates the need to enhance the 

organism to grow in culture media; therefore, the sample can be promptly placed on ice 

and shipped to the laboratory. The qPCR currently in use requires 48 hours incubation 

prior to testing; the new novel RT-qPCR requires no incubation, shortening turnaround 

time significantly.   

The novel RT-qPCR, if accepted by regulatory agencies and diagnostic 

laboratories, mitigates most of the concerns with diagnostic variability at collection, 

shipment, and testing at the laboratory.  Veterinary practitioners would place the sample 

on ice immediately after collection, with no need for growth media or incubation.  The 

samples would be shipped on ice to arrive at the laboratory within 24 hours.  Once at the 

laboratory there would be no need for 48-hour incubation and producers could have test 

results with 48 hours of arrival at the laboratory.  The only major drawback is the 
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inability to identify organisms on culture using direct smegma.  Many regulatory 

agencies only recognize PCR as an official test, but veterinary practitioners may still use 

culture in their initial herd diagnostic plans.   

 In summary, this study evaluates the 3 links in the diagnostic chain; collection, 

shipping, and laboratory testing and contributions of each link to the interpretation and 

reporting of reliable diagnostic data to assist in effective disease monitoring and control.  

Bovine trichomoniasis is considered to be a reemerging disease in Texas, as defined by 

Morse (1995) “as a disease that has existed, but has newly appeared in a population or 

has existed but is rapidly increasing in incidence in geographic range.”  The historic 

prevalence of bovine trichomoniasis within Texas has been the subject of debate, with 

much speculation that trichomoniasis became a threat during the last decade when 

producers imported bulls from drought stricken western states where public grazing is 

common.   

The disease was probably more common than perceived and recent 

improvements in diagnostic techniques have made it easier to identify infected animals.  

Development of the InPouch, a culture media and container specifically adapted to 

trichomonads has contributed significantly to diagnostics; however advanced PCR 

technology no longer requires additional growth of the protozoa after collection, 

eliminating the need for culture media.  The employment of PCR testing, centering on 

the detection of nucleic acid has also improved diagnostic testing, eliminating the 

requirement for live protozoa.  Polymerase chain reaction methodology can also 

differentiate non-pathogenic enteric protozoa that sometimes contaminate the culture 
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from T. foetus lowering the risk of reporting a false positive test.  Many regulatory 

agencies recognize the PCR as the only official test.  The perceived superiority of the 

PCR test has been a blessing and a curse for disease management.   It is a common belief 

among producers, veterinary practitioners, and regulatory officials this test can 

overcome compromised collection and shipping techniques.  They believe that only 

small quantities of nucleic acid are necessary for the diagnosis regardless of the sample 

condition.  Bacterial overgrowth with subsequent production of deoxyribonuclease 

(DNase) can degrade the sample, resulting in false negative results.  Excess temperature 

variation can result in trichomonas death and production of DNase (Mukhufhi et al., 

2003).  Laboratory technique and chance events can result in inconsistent results, for 

example, in the first experiment using known positive bulls, 8-11% of the test results 

were culture positive, but incorrectly classified by being negative by PCR.   

The economic impact of bovine trichomoniasis is believed to be substantial; 

Anderson (2014) has estimated that bovine trichomoniasis costs the Texas cow-calf 

sector $95 million.  There are approximately 4 million cows in Texas, making the impact 

of this disease to be $23.75 per cow in Texas herds.  Currently, bovine trichomoniasis is 

a regulated disease in Texas requiring testing of all breeding bulls that change 

possession.  The producer’s cost for diagnostic testing is $70-100 per bull, so it is 

important that all links in the diagnostic chain, which includes sample collection, sample 

preparation, and shipment to the laboratory, and diagnostic testing, be as efficient and 

accurate as possible.  Environmental conditions during collection and shipping are not 

always optimal, nor are diagnostic tests flawless; however, because of the large 
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economic footprint of this disease, it is imperative that everyone, including, producers, 

veterinary practitioners, laboratory diagnosticians, and regulatory officials understand 

and mitigate impediments to the control of this disease. 
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CHAPTER III 

SEROPREVALENCE OF EPIZOOTIC HEMORRHAGIC DISEASE IN TEXAS 

CATTLE 

 

Literature Review 

Epizootic hemorrhagic disease is a non-contagious infectious viral disease of 

wild and domestic ruminants transmitted by biting midges of the genus Culicoides 

(Jones et al., 1977; Savini et al., 2011; Maclachlan et al., 2015).  The causative agent 

epizootic hemorrhagic disease virus is a double stranded RNA virus, belonging to the 

family Reoviridae, genus Orbivirus (Aradaib et al., 2005; Savini et al., 2011).  Orbivirus 

viruses such as bluetongue virus and African horse sickness virus are similar in 

morphology and structure and The Animal World Health Association (OIE) lists, 

epizootic hemorrhagic disease, bluetongue, and African horse sickness as notifiable 

diseases, and their presence can negatively impact trade (Boyer et al., 2010; Savini et al., 

2011).  Globally there are 7 recognized serotypes of epizootic hemorrhagic disease virus, 

(EHDV-1, EHDV-2, EHDV-4, EHDV-5, EHDV-6, EHDV-7, and EHDV-8), with 3 

serotypes (EHDV-1, EHDV-2, and EHDV-6) being found in North America (Anthony et 

al., 2009a; Ruder et al., 2015b).  

Epizootic Hemorrhagic Disease is believed to be the causative agent of black 

tongue, a disease of deer observed by hunters in the southeastern United States since the 

1890s (Ruff, 1950).  Shultz (1979) describes white-tailed deer (Odocoileus virginianus) 

die offs in Wyoming during 1886 and 1901 where mule deer (Odocoileus heminous) 
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were not affected.  Both die off events followed unusually high precipitation, involving 

sudden death of white-tailed deer, with disease ceasing after frost (Schultz, 1979).  

Epizootic hemorrhagic disease virus was first described in the United States by 

Shope (1955), who determined that a severe 1955 disease outbreak in New Jersey 

affecting 500-700 deer and a similar outbreak in South Dakota during 1956, were caused 

by 2 different strains of a similar virus, which had been designated epizootic 

hemorrhagic disease virus (EHDV) (Shope et al., 1960).  

The generic term hemorrhagic disease is defined as a condition caused by either 

bluetongue virus or epizootic hemorrhagic disease virus (Nettles et al., 1991; Yadin et 

al., 2008).  In 1966, the first case of hemorrhagic disease in Texas deer was diagnosed in 

a captive white-tailed deer, followed by the discovery of hemorrhagic disease in a 

bighorn sheep (Ovis Canadensis) in 1967 (Robinson et al., 1967; Stair et al., 1968).  

Cattle readily seroconvert to enzootic hemorrhagic disease virus without 

observable clinical lesions and while there is uncertainty, cattle are probably involved in 

the epidemiology of epizootic hemorrhagic disease virus in white-tailed deer (Gibbs and 

Lawman, 1977).  While not generally considered a significant disease of cattle, there 

have been sporadic national and international outbreaks for decades (Yadin et al., 2008; 

Kdemi et al., 2011; Cetre-Sossah et al., 2014; Maclachlan et al., 2015; Hirashima et al., 

2015).  Cattle infected with epizootic hemorrhagic disease virus amplify the virus and 

provide infectious virus for vector transmission to more susceptible species (Aradaib et 

al., 2005). 
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Since its isolation in North America in 1955, epizootic hemorrhagic disease is 

considered the most important viral agent affecting white-tailed deer populations in the 

United States; with sudden death outbreaks occurring in the summer and early fall, 

coinciding with vector seasonality (Shultz, 1979; Nettles et al., 1991; Hecht, 2010).  In 

North America white-tailed deer are the most commonly affected wildlife species but 

mule deer (Odocoileus heminous), elk (Cervus elaphus), and pronghorn (Antilocapra 

americana) have developed fatal disease (Nettles et al., 1991; Fischer, 2010; Weaver, 

2013).  Though there are documented reports of epizootic hemorrhagic disease virus in 

mule deer, massive mule deer die offs attributed to this virus was determined to be an 

adenoviral infection (Woods et al., 1996; Maclachlan et al., 2015).  While epizootic 

hemorrhagic disease can be catastrophic to white-tailed deer, clinical disease in other 

wildlife species and domestic ruminants is sporadic and generally subclinical (Nettles et 

al., 1991; Maclachlan et al., 2015).  Favero et al. (2013) reported the only confirmed 

clinical case of epizootic hemorrhagic disease in wild ruminants outside of North 

America, occurred in a captive pygmy brocket deer (Mazama nana) in South America; 

however epizootic hemorrhagic disease virus antibodies have been detected in numerous 

wildlife species (Ruder et al., 2015a).  

Epizootic hemorrhagic disease virus was diagnosed in cattle disease outbreaks 

with lesions suggestive of vesicular disease: in Oregon cattle in 1969, in Tennessee and 

Colorado cattle in 1972 (House et al., 1998; Boyer et al., 2008), in cattle, bison, and Yak 

herds in Colorado in 2012-13 (Van Campen et al., 2013); in cattle in Indiana, Illinois, 

South Dakota, and Nebraska in 2012-13 (Garrett et al., 2015; Stevens et al., 2015).  The 
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average in-herd morbidity for Colorado cattle and bison during the 2012-13 disease 

outbreaks was 7% (Stevens et al., 2015).  In 1955, the year of the deer die offs in New 

Jersey; hundreds of cases of a cattle vesicular disease were observed in southeastern 

Pennsylvania and Delaware (Hollister et al., 1956; Shope et al., 1960; Metcalf et al., 

1992).  Hollister et al. (1956) reported low morbidity and mortality associated with this 

outbreak referred to as “muzzle disease” which caused erosions in the tongue, dental 

pad, teats, feet, encrustations of the skin, and gastrointestinal lesions on necropsy.   

There are global reports of severe epizootic hemorrhagic disease outbreaks in 

cattle during the last 50 years such as Ibarake virus, an EHDV-2 serotype in Japan and 

Korea (Hirashima et al., 2015), and recent cattle disease outbreaks of various serotypes 

in the France’s Reunion Island (Cetre-Sossah et al., 2014), Israel, Turkey, Morocco, 

Algeria, Jordan, and portions of North America (Yadin et al., 2008; Kedmi et al., 2011; 

Maclachlan et al., 2015).   

There are statements in the literature that infection of cattle in endemic areas is 

associated with indirect losses such as decreased milk production, loss of weight and 

body condition score and poor reproductive performance, (Mohammed et al., 1996; 

Aradaib et al., 2005) but when traced to the original reference Mohammed and Mellor 

(1990) the authors only propose those production losses as a possibility.  There is limited 

information on the economic impact of epizootic hemorrhagic disease on the cattle 

industries.  Kedmi et al. (2010) determined a loss of US $25.50/cow to the Israeli dairy 

industry as a result of their 2006 epizootic hemorrhagic disease outbreak.  
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Epizootic hemorrhagic disease virus and bluetongue virus are antigenically 

different orbivirus that share common vectors and hosts, as well as similar spatial and 

temporal distributions (Gibbs and Lawman, 1977; McLaughlin, 2003; Hecht, 2010; 

Savini, 2011; Schoenthal, 2015).  Epizootic hemorrhagic disease virus and bluetongue 

virus produce disease in white-tailed deer that is clinically and pathologically parallel 

and can only be diagnosed by pathogen identity (Rudder et al., 2015).  Epizootic 

hemorrhagic disease virus and bluetongue virus are transmitted by Culicoides midges 

located in the world’s temperate and tropical regions between the latitudes of 40-50°N 

and 35°S (Arby, 1997; Maclachlan et al., 2015; Schoenthal, 2015).  While Culicoides 

midges are associated with the spatial and temporal distribution of epizootic 

hemorrhagic disease virus and bluetongue virus there is evidence that epizootic 

hemorrhagic disease virus is shed in oral and fecal contents of infected animals and 

contract transmission is possible (Gaydos et al., 2002a). 

Previous reports listed up to ten serotypes of epizootic hemorrhagic disease virus 

in the world.  Anthony et al. (2009a) determined by molecular sequencing of the outer 

coat proteins VP2 and VP5 region of the genome and serologic analysis that only 7 

serotypes can be defined.  Currently, EHDV-1, 2 and 6 are the three serotypes known to 

be circulating in the US (Fischer, 2010; Ruder et al., 2015b).  Shope (1960) reported the 

strain of epizootic hemorrhagic disease virus isolated in New Jersey was different than 

the South Dakota isolate.  Unfortunately, the South Dakota strain that Shope (1960) 

reported as different from the New Jersey strain was no longer available for analysis 
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when Barber et al. (1975) proposed designating the New Jersey stain reported by Shope 

(1960) as EHDV-1 and a strain isolated in Alberta as EHDV-2.  

Epizootic hemorrhagic disease strains EHDV-1 and EHDV-2 have been 

associated with epidemics in North American white-tailed deer for decades and in 2006 

EHDV-6 was first isolated in the United States from a dead white-tailed deer (Allison et 

al., 2010) and in subsequent years continues to be isolated over a larger geographic area 

of the United States (Hecht, 2010; Allison et al., 2012).  The most common viral 

ancestor of EHDV-2 may have emerged in North America approximately 100 years ago 

as a result of host shift or introduction from another continent (Biek, 2007).  The first 

known reports of deer die offs were in the 1800s, which coincide with the time EHDV-2 

is proposed to have emerged in North America (Shope et al., 1960; Schultz, 1979; Biek, 

2007; Anthony et al., 2009b).    

There appears to be no correlation between virulence and epizootic hemorrhagic 

disease serotype, for example Ibaraki virus, a stain of EHDV-2 is very pathogenic to 

cattle in Japan and Korea, while EHDV-2 strains in North America usually do not cause 

clinical disease in cattle (Savini et al., 2011).  Western and eastern strains have specific 

sequences and Anthony (2009b) suggests that western stains are more virulent than 

eastern stains as most clinical disease has been associated with western strains with the 

exception of Ibaraki (EHDV-2) causing severe clinical disease in Japan and Korea (Ali, 

2012; Hirashima et al., 2015; Maclachlan et al., 2015).  Ibaraki is considered an eastern 

virus, but has a typical western sequence (Anthony et al., 2009b).  
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Pathogenesis of epizootic hemorrhagic disease infection in cattle is similar to 

other wild and domestic ruminants (McLaughlin et al., 2003).  Initially the virus 

replicates in the lymph nodes and lymphatic vessels that drain the area of vector 

inoculation (McLaughlin et al., 2003; Savini et al., 2011; Maclachlan et al., 2015).  

Epizootic hemorrhagic disease virus is then hematogenously disseminated to secondary 

sites and replicates in the endothelial cells of tissues such as lung and spleen 

(Maclachlan et al., 2015).  Clinical signs of vascular injury and associated intravascular 

coagulation include hemorrhage, edema, and tissue necrosis (Tsai et al., 1973; 

Maclachlan et al., 2015).  Virus is associated with the cell fractions of the blood, 

especially the erythrocytes, resulting in a prolonged viremia, providing a source of 

continued vector infection, important in the epidemiology of epizootic hemorrhagic 

disease (Gibbs and Lawman, 1977; Abdy et al., 1999; Savini et al., 2011; Maclachlan et 

al., 2015).    

Culicoides biting midges are represented by 1400 species and are a common 

global vector for about 50 different viruses most of which are animal pathogens (Mellor 

et al., 2000).  Culicoides are responsible for transmitting bluetongue virus and epizootic 

hemorrhagic disease virus.  Epizootic hemorrhagic disease virus is most often found 

between 45°
 
latitude north and 35°

 
latitude south, with viral enzootic stability being 

associated with more tropical regions (Maclachlan et al., 2015).  Culicoides variipennis 

sonorensis is considered the primary vector in United States, but other Culicoides spp. is 

associated with viral transmission in other geographical areas (Foster et al., 1977; Mellor 

et al., 2000; Stevens et al., 2015).  Increased environmental temperatures are more 



 

49 

 

conducive to viral replication within the Culicoides spp. vector (Mellor, 2000; Ruder et 

al., 2015c).  Movement of the vector and/or movement of infected animals are associated 

with disease spread.  Kedmi et al. (2010) determined the 2006 epizootic hemorrhagic 

disease outbreak in Israeli cattle was not associated with animal movement, rather high 

altitude wind movement of Culicoides spp. vectors.  

A nationwide survey measuring morbidity and mortality in wild ungulates was 

conducted from 1980 to 1989 and found only 0.06% of reported wildlife (10 of 1,608) 

diagnosed with hemorrhagic disease were of Texas origin and 9 of the reports were from 

the eastern part of the state indicating disease variation based on geographical 

distribution (Nettles et al., 1991; Stallknecht et al., 1996).  Stallknecht et al. (1996) also 

noted geographical distribution of epizootic hemorrhagic disease when he serologically 

evaluated 685 white-tailed deer throughout Texas, with samples being collected over a 

5-month period during the winter of 1991-1992.  State seroprevalence was 84% but 

varied with ecological regions, increasing in a westerly direction with 100 % 

seroprevalence in the northwest Edwards Plateau; considerably higher than the 57% 

observed in the Gulf Prairie region (Stallknecht et al., 1996).  Increase in seroprevalence 

as a result of exposure increase was associated with decrease in clinical disease 

speculated to be related to enzootic stability as a result of a near perfect host-virus 

relationship (Stallknecht et al., 1996; Martinez et al., 1999; Gaydos et al., 2002c).  

Nettles et al. (1991) noted more deer die offs in temperate regions and deer mortality 

observed by Shultz (1979) in Wyoming and Pasick et al. (2001) in British Colombia 

would suggest that the lack of enzootic stability contributes to more clinical disease in 
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deer.  Extensive mortalities have been observed in farmed white-tailed deer moved from 

temperate to more tropical regions (Fischer, 2010).  

A serological survey of auction market cattle in British Colombia and Alberta 

was conducted in the fall of 1987 following an disease outbreak in the Okanagan valley 

of British Colombia and indicated a seroprevalence of only 3%, indicating a lack of 

enzootic stability (Shapiro et al., 1991).  Enzootic stability associated with more tropical 

regions would explain high seroprevalence and associated lack of clinical disease 

associated with epizootic hemorrhagic disease virus in Kenya, French Guiana, and 

northern Australia and the extensive disease outbreaks in more temperate regions such as 

Israel, Morocco, Algeria, Jordan, and frequent epidemics of Ibarake disease in Japan 

(Weir et al., 1997; Temizel et al., 2009; Toye et al., 2013; Viarouge et al., 2014; 

Hirashima et al., 2015).  Gaydos et al. (2002c) observed differences in innate resistance 

among epizootic hemorrhagic disease virus in challenged white-tailed deer subspecies; 

subspecies originating in more temperate climates (Odocoileus virginianus borealis) 

experienced higher mortality than subspecies from subtropical climates (Odocoileus 

virginianus texanus) but humoral immune responses were similar, indicating acquired 

immune responses were similar (Ruder et al., 2015c).  Deer challenged with EHDV-1 or 

EHDV-2 appear to be protected against clinical disease when later challenged with the 

same strain, and deer infected with EHDV-2 were protected against clinical disease 

when exposed to EHDV-1, but deer still developed viremia to the challenged epizootic 

hemorrhagic disease virus serotype, indicating challenged deer serve as viral amplifying 

hosts (Shope et al., 1960; Quist et al., 1977; Gaydos et al., 2002b; Hecht, 2010). 
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There have been sporadic severe global disease outbreaks in domestic ruminants, 

namely the Ibaraki disease (EHDV-2) outbreaks in Japan, Korea and Taiwan, 1 

occurring in the 1960s and the second in Japan in 1997 (Savini et al., 2011). There are 

studies where cattle were clinically infected with enzootic hemorrhagic disease and 

subsequently developed viremia, but did not develop clinical disease, suggesting that 

cattle are involved as a reservoir in the transmission cycle of the virus (Boyer et al., 

2008).  Although there are numerous publications on the seroprevalence of epizootic 

hemorrhagic disease in wild cervids, there is limited data on seroprevalence in cattle 

(Boyer et al., 2008).  Cattle are involved in the epidemiology of epizootic hemorrhagic 

disease, serving as amplifying hosts and because sampling of individual wildlife is 

usually a single event, cattle are employed as sentinel animals (Aradaib et al., 2005; 

Boyer et al., 2008).  

Introduction 

Epizootic hemorrhagic disease virus periodically causes clinical disease in cattle; 

with clinical disease being associated with the more temperate geographical regions of 

the United States.  News of recent outbreaks in other states caused some Texas 

producers to question the risk of a clinical disease outbreak in Texas (Stevens et al., 

2015).  The objective of this study was to estimate the seroprevalence of epizootic 

hemorrhagic disease in Texas cattle.  This study entailed the use of serum samples 

collected at 11 Texas auction markets for the purpose of brucellosis testing, which is the 

most practical way to sample cattle over a large geographical area.  One limitation to the 

study is only cattle ≥18 months were evaluated, so seroprevalence in younger cattle was 
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not measured.  This study only reports on the seroprevalence of epizootic hemorrhagic 

disease in cattle marketed through the 11 respective auction markets; however, the 

inference is that market seroprevalence is related to seroprevalence of cattle in the 

surrounding area.  Seroprevalence in cattle was hypothesized to be high as a result of 

enzootic stability due to the presence of an abundant disease vector Culicoides spp.  

Establishing an estimate of seroprevalence of epizootic hemorrhagic disease virus in the 

cattle population is necessary to evaluate of the impact of this disease on the Texas beef 

industry.   

 Materials and Methods 

This study was approved by the Agriculture Animal Care and Use Committee—

Texas A&M AgriLife Research (AUP 2014.022A).   

Sample Procurement  

Serum samples were obtained from eleven auction markets; all located in cattle 

dense regions of Texas and are also engaged in first point brucellosis testing (Figure 

3.1).  The Texas Animal Health Commission-State Federal Laboratory confirms 

brucellosis test results and the Texas State Veterinarian supplied serum samples.  

Samples were from breeding cattle ≥18 months, and to ensure that samples were 

collected within the vector season and to reduce temporal confounding only samples 

collected during the month of June 2014 were utilized.  Serum samples were transported 

from the State Federal Laboratory to the Animal Science Department at Texas A&M 

University by common carrier for next day delivery.  The number of samples submitted 

from each market and the sample size for analysis are depicted in Table 3.1. 
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Table 3.1. Population samples from each market collected from 11 livestock markets in 

June, 2014.  Sample size was determined in Epi Info version 7.1.5.  

Markets North to South Population Sample From Market  Sample Size to Analyze 

1 396 32 

2 360 32 

3 353 32 

4 120 27 

5 303 31 

6 606 33 

7 82 25 

8 88 25 

9 17 12 

10 199 30 

11 153 29 

Totals 2,677 308 

 

 

 

Previous laboratory submissions indicated that the seroprevalence of EHDV-2 to 

be substantial, therefore true prevalence was estimated at 90%.  Epi Info version 7.1.5 

was used to determine the market sample size based on a prevalence of 90% (+ of- 

10%), a confidence limit of 10% and 95% degree of confidence.  Once the market 

sample size was determined, samples were numbered in sequence and a random 

generator available on line was used to select samples for testing (Table 3.1).  Samples 

were delivered to the Texas A&M Veterinary Medical Veterinary Diagnostic Laboratory 

for serologic analysis. 

Virus Neutralization Test 

OIE (2014) considers virus neutralization (VN) to be the gold standard for 

identification and quantification of EHDV antibodies and was the diagnostic protocol 

used in this project.  The test is labor intensive and required 3-5 days to complete, but is 



 

54 

 

considered by the OIE to be superior to other immune response tests to determine 

prevalence during surveillance, to assist in eradication efforts and to determine the 

immune status of other individual animals in the environment (OIE, 2014). 

The Texas A&M Veterinary Medical Diagnostic Laboratory utilizes the 

microtiter virus neutralization test for detection of EHDV antibodies.  This procedure 

quantifies antibody level of various serum dilutions against a constant dilution of known 

virus.  Observance of the virus’s cytopathic effect on susceptible cell cultures indicates 

that the sample being tested does not contain detectable neutralizing antibodies against a 

virus at a certain dilution. 

The OIE (2014) Terrestrial Manual describes the procedure: “Approximately 100 

TCID50 (50% cell culture infective dose) of the standard or serial dilution of the un-

typed virus is added in 50 μl volumes to test wells of a flat bottomed microtiter plate and 

mixed with an equal volume of a constant dilution of standard antiserum in tissue culture 

medium.  After one hour incubation at 37.0°C and 5% CO2 approximately 104 cells are 

added per well in a volume of 100 μl, and the plates incubated for 3–5 days at 37°C and 

5% CO2.  The test is read using an inverted microscope.  Wells are scored for the degree 

of cytopathic effects (CPE) observed.  Those wells that contain cells only or cells and 

antiserum, should show no CPE.  In contrast, wells containing cells and virus should 

show 75–100% CPE.  The unidentified virus is considered to be serologically identical 

to a standard EHDV serotype if both are neutralized in the test to a similar extent, i.e. 

75% and preferably 100% protection of the monolayer is observed.” 
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Statistical Analysis   

 Raw data was entered into a spreadsheet (Microsoft Excel 2010) and imported 

into Stata (StataCorp, 4905 Lakeway Drive, College Station, TX 77845) for analysis.  

Titers received from the diagnostic laboratory ranged from <20 to >1280 with no titer 

endpoints.  Titers reported as <20 were assigned a value 10, the nearest lower dilution 

and titers reported as >1280 were assigned a value of 2560, the next higher dilution.  

There are no published reports on the sensitivity or specificity of the virus neutralization 

(VN) test for epizootic hemorrhagic disease virus; therefore, sensitivity and specificity 

are assumed to be 100%.  The United States Department of Agriculture, National 

Animal Disease Center reports titer values cutoffs of ≥10 as positive (House et al., 

1998), and TVMDL reports epizootic hemorrhagic disease virus titers of ≥20 as positive.    

Data was analyzed to determine prevalence associated with all cutoff values 

reported by the laboratory.  Mean titers were converted to logbase
2
 to check for normal 

distribution.  Titers were also converted into binary data negative=0 positive=1 and 

analyzed to determine % positive at each market and region and to determine if titers 

were similar in frequency across markets.  

Mean Titers converted to logbase
2
 were used to analyze the difference in mean 

titers across markets.  Markets were also grouped into 5 regions representing the extreme 

north central Texas, central Texas markets north of Waco, central Texas markets south 

of Waco, one market east of San Antonia and one market west of San Antonio (see 

Figure 3.1). The number of markets was small, but data were analyzed to determine if 

there were differences between regions of the state. 
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Figure 3.1. Locations of 11 auction markets denoted by numbers 1-11.  The letters A-E 

denote regional grouping of auction markets. 

 

 

 

Results and Discussion 

Seroprevalence was measured using the VN test, which quantifies the level of 

antibody in various serum dilutions against a constant dilution of known virus.  The 

Texas A&M Veterinary Medical Diagnostic Laboratory reports epizootic hemorrhagic 

disease titers ≥20 as positive, which is the lowest definitive titer they report.   The 

sensitivity and specificity have not been described for this test, thus to preclude reporting 

false positive results, the effects of positive cutoff values at each titer dilution were 

analyzed as binary data for their impact on seroprevalence.  Even when serial dilution 

titers ≥320 were evaluated as positive, seroprevalence approached 70%; therefore, using 
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≥20 positive cutoff with the respective 97.2% seroprevalence is reasonable for this 

study.  Table 3.2 details the seroprevalence of markets when animals were considered 

positive at each specific cutoff.   

A X
2
 test was performed on binary data from each market to determine if there 

were differences in seroprevalence between markets at different titer levels shown in 

Table 3.3.  When titer cutoff values of 20, 40, and 80 were used, and there were no 

difference in p-values between markets, whereas titers >80 were associated with 

differences in P-value.   

To evaluate differences in mean titers among auction markets, titer dilutions 

were log
2
 transformed and analyzed as a generalized linear model.  Results indicate a 

variance of 0.09 from the mean between markets (P<0.01), but this does not identify the 

variation between individual markets.  Analyzing mean titers data as grouped by region 

seem to be of more practical relevance.   

Markets were grouped into 5 regions from north to south; the hypotheses 

that mean titers would increase as the groups took on more southerly distribution.  

A generalized linear model was used to determine that there was a 0.20 variance 

from the mean titer values between regions (P=0.01).  To determine regional 

differences, mean titers across markets in different regions were analyzed using 

pairwise t-tests with Tukey-Kramer adjustment.  The lowest mean titers were in 

the most northern part of the state and the highest mean titers were in the most 

southern part of the state, with intermediate mean titer in central Texas as 

depicted in Table 3.4.   
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Table 3.2.  Seroprevalence of EHDV-2 in cattle >18 months of age marketed through 11 

Texas markets comparing different positive cutoff values. 

Titer Cutoffs Designating Positive (All 

Markets) 

Seroprevalence All Markets 

≥20=Positive                                                                                                      97.08% 

 ≥40=Positive                                                                                                      94.81% 

 ≥80=Positive                                                                                                      94.10% 

 ≥160=Positive                                                                                                    87.66% 

 ≥320=Positive                                                                                                    69.16% 

 ≥640=Positive                                                                                                    44.16% 

≥1280=Positive                                                                                                  20.13% 

 

 

Table 3.3.  Chi-square analysis on each market for differences across markets. 
Titer Pearson Chi-

Square (10) 

P-

value 

Similar 

Across 

Markets 

≥20=Positive                                                                                                      13.54 0.195 Yes 

 ≥40=Positive                                                                                                      11.94 0.289 Yes 

 ≥80=Positive                                                                                                      17.24 0.069 Yes 

 ≥160=Positive                                                                                                    27.97 0.002 No 

 ≥320=Positive                                                                                                    80.27 0.0 No 

 ≥640=Positive                                                                                                    72.38 0.0 No 

≥1280=Positive                                                                                                  56.76 0.0 No 

 

 

Table 3.4. Pairwise t-test with Tukey-Kramer adjustment to determine mean titers across 

livestock markets by region. 
Regional Clustering Mean 

Titers 

Ranking 

1. Extreme North Texas (2 

Markets) 

8.28 B 

2. Central North Texas (3 

Markets) 

8.32 AB 

3. Central South Texas (4 

Markets) 

8.48 AB 

4. South East Texas (1 Market) 9.34 A 

5. South West Texas (1 Market) 8.78 A 
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Seroprevalence studies have largely focused on epizootic hemorrhagic disease in 

wild cervids and the impact of the virus in captive and wild deer (Chomel et al., 1994; 

Stallknecht et al., 1995; Stallknecht et al., 1996; Weaver, 2013).  Massive white tailed 

deer die-offs were noted in the late 1800 and early 1900s in Montana and retrospectively 

they are believed to be the earliest reports of epizootic hemorrhagic disease (Shultz, 

1979).   Variability in spatial distribution of morbidity and mortality was reported in 

nationwide studies of wild ungulates conducted during the 1980s, and those studies 

found only 0.06% of reported cases (10 of 1,608) of hemorrhagic disease were of Texas 

origin, with 9 of those cases associated with the eastern part of the state, indicating 

disease variation based on geographical distribution (Nettles and Stallknecht, 1992; 

Stallknecht et al., 1996).  Stallknecht et al. (1996) also noted geographical distribution of 

epizootic hemorrhagic disease when he serologically evaluated 685 white-tailed deer 

throughout Texas, with samples collected over a 5-month period during the winter of 

1991-1992.  He recorded a state seroprevalence of 84.0% that varied with ecological 

regions, increasing in a westerly direction with 100 % seroprevalence in the northwest 

Edwards Plateau; much higher than observed in the Gulf Prairie region.  Increase in 

seroprevalence, as a result of exposure increase was associated with decrease in clinical 

disease; speculated to be related to enzootic stability as a result of a near perfect host-

virus relationship (Stallknecht et al., 1996; Martinez et al., 1999; Gaydos et al., 2002c).  

Nettles et al. (1991) noted more deer die offs in temperate regions and deer mortality 

observed by Shultz (1979) in Wyoming and Pasick et al. (2001) in British Colombia,  

suggesting the lack of enzootic stability contributes to clinical disease in deer.  Extensive 
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mortalities have been observed in farmed white tailed-deer moved from temperate to 

more tropical regions (Fischer, 2010).  

The results of this study focusing on cattle appear validated by previous work 

cited on wild and captive cervids.  It must be stressed that this study only measured 

seroprevalence of cattle moving through auction markets and the animals may have 

originated from other geographic areas, but this is the most expedient method to sample 

different geographical regions of the state, and there is reasonable assumption that most 

of these cattle originated in proximity to the market.   

Even in endemic populations a seroprevalence of 97.2% measured at a titer 

cutoff of 20, appears high.  Cutoff titers at each dilution were analyzed and a similar 

trend was observed, with approximately 70.0% of the population remaining positive at 

dilution titer of 320, 4 dilutions above the reported positive titer of 20, indicative of a 

high seroprevalence of epizootic hemorrhagic disease in cattle moving through Texas 

auction markets.  Differences in seroprevalence observed across markets at cutoffs of 20, 

40, and 80 were similar (X
2
 P-value>0.05).     

Differences across markets and across market clusters were measured comparing 

mean titers.  Analyzing markets using generalized mixed modeling indicated there was 

difference between markets, but determining which markets were different became 

problematic.  A pairwise t-test with Tukey-Kramer adjustment was considered, but there 

was concern of introducing a type-1 error because of the large number of markets.  

Markets were grouped into 5 regions and a pairwise t-test with Kramer adjustment was 

used to determine mean titer differences between regions (Table 3.4).  There was a 
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difference in mean titers between regions; the highest mean titers were in the southern 

most regions and the lowest mean titers in the northern most regions with intermediate 

titers in between.   

Clinical disease associated with epizootic hemorrhagic disease virus in cattle is 

extremely rare in Texas, due to enzootic stability as a result of vector stability; likewise, 

clinical disease in cervids is more common progressing into northern latitudes due to the 

lack of enzootic stability associated with erratic populations of Culicoides spp.  In areas 

where seroprevalence is high, occurrence of clinical disease is rare because a large 

percent of the population process circulating protective antibodies.   

The trends in seroprevalence as measured by mean titers observed in this study 

are consistent with the concept of enzootic stability; with mean titers increasing 

progressing toward southern latitudes.  Cattle also serve as amplifying hosts and with 

10.8 million cattle in Texas, one could argue cattle density contribute to enzootic 

stability, but Texas land mass is 261,797 square miles, while Kansas and Nebraska have 

combined cattle numbers similar to Texas, their land mass is only 158,687 square miles.  

Kansas and Nebraska have greater cattle density, fluctuating vector populations and 

sporadic outbreaks of clinical disease associated with epizootic hemorrhagic disease, 

indicating that the largest contribution to enzootic stability is consistent exposure to 

vectors.    

As with other vector borne diseases, ranchers should be aware that movement of 

naive cattle into endemic areas with abundant vectors can result in clinical disease.  

Nationwide movement of cattle has increased in the last decade as a result of drought.  
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Moving cattle from temperate to tropical regions could conceivably be problematic, 

introducing naïve cattle into areas with high pathogen load and abundant vectors.  

Currently a licensed vaccine is not available, but if required an inactivated product 

should provide sufficient immunity (McVey and MacLachlan, 2015).  Although this 

study focused on auction market cattle, information gained from this study provides the 

Texas cattle industry with an indication of epizootic hemorrhagic disease prevalence and 

its association with the stability of the Culicoides spp. vector.   
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CHAPTER IV 

SYSTEMIC REVIEW OF SAFETY AND EFFICACY OF BOVINE VIRAL 

DIARRHEA VACCINES FOR FETAL PROTECTION 

 

Introduction 

Bovine viral diarrhea is a complex of clinical presentations that collectively 

results in significant reproductive wastage, immunosuppression, and substantial 

economic losses to beef cattle producers (Kleiboeker et al., 2003).  Bovine viral diarrhea 

is a reemerging disease that was first described in 1946 (Olafson et al., 1946) and was 

characterized by diverse clinical signs including high fever, depression, diarrhea, 

salivation, and nasal discharge (Deregt, 2005).  The causative agent is a single stranded 

RNA virus designated bovine viral diarrhea virus (BVDV) (Lee and Gillespie, 1957).  It 

was not until the 1970s that the concept of immunotolerance and resulting persistent 

infection (PI) with bovine viral diarrhea virus was beginning to be understood (Coria and 

McClurkin, 1978; McClurkin et al., 1979).  Subsequently it was determined that bovine 

viral diarrhea could be caused by 1 of 3 species of virus, BVDV1, BVDV2 and putative 

species HoBi-like viruses, with only BVDV1 and BVDV2 being present in the United 

States (Ridpath et al., 2013)  

The economic losses associated with the introduction of bovine viral disease 

virus into a herd of susceptible pregnant cows result from suboptimal reproductive 

performance caused by infertility, abortion, congenital defects, stillbirths, increased 

neonatal mortality, prenatal and postnatal growth retardation, deaths from mucosal 
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disease and early disposal of persistently infected animals (Kelling, 2004; Smith et al., 

2013).  

Persistent infection is the result of fetal immunotolerance, developed as a 

consequence of the virus invading the fetus during the first trimester of gestation.  Cattle 

persistently infected with bovine viral diarrhea virus are the major source of 

disseminated virus within and between livestock operations (Grooms, 2004; Kelling et 

al., 2005).  The typical scenario for a cattle herd exposed to bovine viral diarrhea virus is 

an initial disease peak followed by low-level chronic reproductive disease in subsequent 

months and years (Larson et al., 2004).  Fulton et al. (2006) reported that approximately 

0.5% of cattle entering feedlots are persistently infected, but this may be an 

underestimation of cattle born persistently infected because many will die prior to 

weaning and do not enter the stocker or feeder phase  

Vaccination is frequently used in the control of bovine viral diarrhea infections 

(Dargatz et al., 2002; England, 2002).  The goal of a vaccination program in a cow-calf 

operation is to reduce the risk of viral exposure to the fetus through vaccination of the 

dam (Kelling et al., 2005).  The ability of maternal vaccination to provide fetal 

protection when the dams were challenged experimentally has been reported to range 

from 25% to 100% for inactivated vaccines and from 58% to 92% for modified-live 

vaccines (Dean et al., 2003; Grooms, 2004; Larson et al., 2004).  A multitude of factors 

such as stress, nutrition, concurrent disease exposure, and improper vaccine handling can 

affect immune response, so persistently infected calves and reproductive losses resulting 

from bovine viral diarrhea virus can occur in vaccinated herds (Kelling, 2004).   
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There is controversy and confusion concerning the use of modified-live and 

killed vaccines used in cowherds.  While there is a wealth of published literature on the 

efficacy and safety of bovine viral diarrhea vaccines, there is also a plethora of methods 

and metrics which makes it difficult to draw conclusions.  A detailed systematic review 

of the literature was undertaken to evaluate published data on the safety and efficacy of 

vaccines administered to cows for control of persistently infected calves and to evaluate 

the bias of the published data (PRISMA, 2016). 

Systematic reviews support the concept of Evidence Based Veterinary Medicine 

by providing veterinary practitioners and cattle producers an objective evaluation of the 

scientific literature to aid in development of vaccine protocols.  This review focused on 

the use of modified-live, killed, or combination vaccine programs and their impact on 

vaccine safety and efficacy as related to reproductive efficiency.   

Material and Methods 

Identification of Studies 

Searches in CAB Abstracts (Ovid), Medline (Ovid), and Searchable Proceedings 

of Animal Conferences (SPAC) were conducted in February 2014.  In addition The 

Bovine Practitioner was hand searched from 1980 to February 2014.  The focus of the 

search was on peer-reviewed manuscripts, but conference proceedings were also 

evaluated.  Concepts searched included cattle and (BVDV and vaccine) and pregnancy 

or fetus or fetal death.  Details of the search format are shown in Table 4.1.   

During the search, articles were uploaded into RefWorks, (ProQuest, Ann Arbor, 

MI) and duplicates removed.  Manuscripts were screened in 2 phases, first by abstract 
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and then by full text.  Two individuals independently screened each manuscript using the 

criteria: bovine viral diarrhea, BVD, vaccine, cattle, and evaluation of results.  

Elimination of manuscripts from the study was determined by consensus of the 2 

individuals.   

Eligibility Criteria 

Eligibility criteria included a study design focused on randomized controlled 

trials, with methods and results fully described in the manuscript.  In addition only 

manuscripts published after 1979 were considered, because prior to that time the concept 

of fetal immunotolerance to bovine viral disease virus and its contribution to disease 

pathogenesis was not well known (Coria and McClurkin, 1978; McClurkin et al., 1979).  

This study only considered manuscripts published in English.  
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Table 4.1. The standard format for the Cochrane search and is included to allow readers 

to replicate the search in CAB Abstracts (Ovid), Medline (Ovid), and Searchable 

Proceedings of Animal Conferences (SPAC). 

Cochrane Standards for Search 

1. cattle.od 

2. (cattle or cow or cows or bovine* or heifer*).ti.ab 

3.  or/1-2 

4. ((virus or viral) adj2 diarrh*).ti,ab,od 

5. (1 or 2) and 4 

6. Bovine viral diarrhea virus 2/ or Bovine viral diarrhea virus 1/ 

7. bvdv.ti,ab 

8. or/5-7 

9. exp vaccination/ 

10. vaccin*.ti,ab. 

11. or/9-10 

12. exp pregnancy/ or exp fetal death/ 

13. (pregnan* or fetal* or foetal* or fetus*).ti,ab,od. 

14. 12 or 13 

15. 8 and 11 and 14 

16. limit 15 to English  
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Data Abstraction  

A data collection form was piloted allowing 2 individuals to independently 

complete the forms using Qualtrics (http://www.qualtrics.com/).  Each manuscript were 

reviewed for the following criteria:  

 Study design, which included randomized controlled trials, controlled trails and 

case reports. 

 Vaccine safety and how it was measured, by a variety of methods to include, 

virus isolation and serology using fetal and maternal blood, as well as evaluation 

of the dam’s pregnancy status. 

 Vaccine efficacy and how it was measured, by determining the number abortions, 

persistently infected calves, and serology to access maternal and fetal antibodies 

with a limited number of studies measuring duration of immunity 

 Effect of vaccination on reproductive efficiency, which included conception 

rates, and losses during gestation and the neonatal period. 

 Type of vaccine, which included modified-live, killed or combinations. Timing 

of vaccination was also assessed; for example, were vaccines given to cows pre-

breeding or during pregnancy? 

 Year of publication. Only manuscripts published after 1979 were included 

because the concept of immunotolerance was not fully understood until the late 

1970s. 

 Country of origin for the study. 

 Type of cattle, dairy, beef or dual purpose. 
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 Vaccine manufacture’s involvement in study and tendency for bias as a result of 

their support.   

 Risk of Bias List Assessment  

Full text screening was accomplished using 2 independent evaluators, which 

included the author and a graduate student.  Additionally, several faculty from the 

College of Veterinary Medicine and Department of Animal Science at Texas A&M 

University, as well as subject matter experts from Agricultural Research Service, United 

States Department of Agriculture, critically appraised each study, allowing a more broad 

based evaluation. The form, developed in Qualtrics, asked evaluators to rate different 

aspects of the study: randomization, allocation concealment, blinding of participants, 

blinding of outcomes assessment, completeness of outcome data, selective reporting, and 

any other noted bias.  Ethical approval and sponsor involvement were also recorded.  

At the conclusion of the full text screening, the author and graduate student 

evaluated the manuscripts to be included in the qualitative synthesis using the PICO 

model (Table 4.2), the acronym denotes Patient or population, Intervention or exposure, 

Comparison or intervention, Outcomes to measure or achieve.  
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Table 4.2.  PICO model definitions for clinical questions (University of Illinois, 2016).   

P 
Patient, Population, or 
Problem  

How would I describe a group of patients 
similar to mine?  

I Intervention, Prognostic 
Factor, or Exposure  

Which main intervention, prognostic factor, 
or exposure am I considering? 

C 
Comparison or Intervention 
(if appropriate)  

What is the main alternative to compare  
with the intervention? 

O 
Outcome you would like to 
measure or achieve 

What can I hope to accomplish measure,  
improve, or affect? 

  
What type of question are 
you asking? 

Diagnosis, Etiology/Harm, Therapy, Prognosis,  
Prevention 

  
Type of study you want to 
find 

What would be the best study  

 

 

 

Results  

Nine hundred twenty seven records were retrieved from the databases, and after 

removing 85 duplicates, 2 evaluators screened the remaining 842 records by abstract 

reading and excluded 529 manuscripts for the following reasons: not specific to cattle, 

not specific to bovine viral diarrhea vaccine, vaccine safety not addressed, fetal 

protection not evaluated, or the wrong study type (Figure 4.1).  The same 2 independent 

evaluators screened 313 manuscripts by full text reading and excluded 292 records for 

reasons noted in Figure 4.1.  Subject matter experts, university faculty, and graduate 

students also assisted with each individual screening 2 to 4 papers; however, the 2 

independent evaluators ultimately made all decisions by consensus, resulting in 20 

manuscripts being chosen for the final analysis.    
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Figure 4.1.  PRISMA flow chart depicts the screening and appraisal process.  After 

searching databases to retrieve scientific articles and conference proceedings 927 articles 

were retrieved and with 85 duplicates removed, the remaining 842 articles were screened 

by abstract and 313 by full text screening, resulting in 20 articles being included in this 

review, all randomized control trials. 

 

 

 

927 Records retrieved  
from database searching  

Medline (487) 
CAB Abstracts (144) 

Searchable Proceedings of Animal 
Conferences (S-PAC) (295) 

Reference searching (1) 

 

842 Records screened by 
abstract 

(85 Dups removed) 

529 Records excluded  
122 not about cattle 

106 not about BVD vaccine 
223 not about safety 

73 not about fetal protection 

5 wrong study type 

 

313 Records screened by 
full text  

 

292 Records excluded  
11 not about cattle 

6 not about vaccine 

45 not about safety 

173 not about fetal protection 

4-unavailable/lacking 

information 

35 methods were very 

unclear 

15 were not randomized 

3 lacked control group 

20 Records included in 
qualitative synthesis 

In
cl

u
d

ed
 

Sc
re

en
in

g 
E

li
gi

b
il

it
y 

Id
en

ti
fi

ca
ti

o
n

 



 

72 

 

Population and Intervention 

There were 26 separate studies reported in the 20 manuscripts examined.  The 

These manuscripts encompassed 2,118 animals focusing on beef cattle, 1 article with 37 

animals dealt with dairy cattle, and 1 study with 30 animals did not define the cattle 

type.  Sixteen of the studies were conducted in the United States and 1 each in Canada, 

The Netherlands, The United Kingdom, and Germany.  

Four of the manuscripts examined killed vaccines (Brownlie et al., 1995; Zimmer 

et al., 2002; Grooms et al., 2007; Rodning et al., 2010) while the remaining 16 papers 

focused on modified live products.  Six papers described administering a minimum 

immunizing dose of vaccine (Fairbanks et al., 2004; Ellsworth et al., 2006; Ficken et al., 

2006a; Ficken et al., 2006b; Schnackel et al., 2007; Leyh et al., 2011) while the 

remaining papers used a commercially available product.  Brownlie et al. (1995) 

administered killed products pre-breeding and at breeding, and all other studies 

addressed vaccines pre-breeding.  

Twenty-two studies examined the ability of vaccines to provide fetal protection 

after challenging pregnant animals.  All studies except Brownlie et al. (1995) described 

using a heterologous strain of virus for challenge.  Dean et al. (2003) administered 

challenge virus by the intravenous route, while 15 studies in 10 manuscripts described 

intranasal challenge (Brownlie et al., 1995; Zimmer et al., 2002; Grooms et al., 2003; 

Kovacs et al., 2003; Fairbanks et al., 2004; Ficken et al., 2006a; Ficken et al., 2006b; 

Schnackel et al., 2007; Xue et al., 2009; Xue et al., 2011).  Five studies in 5 manuscripts 
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used persistently infected animal to disseminate a viral challenge (Ellsworth et al., 2006; 

Grooms et al., 2007; Rodning et al., 2010; Leyh et al., 2011; Givens et al., 2012).     

Comparison and Outcomes 

One important clinical concern related to vaccine use is the effects of modified 

live vaccines on conception when given in close proximity to breeding.  The 4 studies 

that examined the question of vaccine safety pre-breeding in Table 4.3 concluded that 

modified live vaccines administered as early as 3 days pre-breeding demonstrated no 

negative effects on conception (Tucker et al., 1989; Campbell and Myers, 1999; Bolton 

et al., 2004; Walz et al., 2014).  Campbell and Myers (1999) reported the majority of the 

mature cows in their study had been previously vaccinated and the other 3 studies 

reported a primary vaccination given prior to the pre-breeding immunization regimen, so 

these cattle were not naïve when they received their pre-breeding vaccination.  The label 

on most modified live vaccines indicate vaccines should be given 28 days prior to 

breeding (Walz et al., 2014); therefore, nothing in the literature reviewed indicates 

modified live products would reduce conception when given according to label.  It must 

be noted that all 4 studies reviewed were sponsored totally or in part by vaccine 

manufacturing entities, and sponsored studies in this review tend to report only positive 

results. 

Vaccine protection in response to challenge was measured by evaluation of 

harvested fetal tissues in 5 studies (Fairbanks et al., 2006; Grooms et al., 2007; 

Schnackel et al., 2007; Xue et al., 2009; Leyh et al., 2011).  Analysis of the fetal tissues 

after abortions and measurement of viremia and pre-colostrum seroconversion of calves 
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at parturition in the remaining 15 studies are detailed in Table 4.4.  Eighteen of the 

papers described the statistical evaluation of their research, while 3 studies did not 

describe the statistical analysis used in their manuscript.  Vaccine manufacturers were 

listed as authors and sponsored all or portions of the research in all but 2 of the 

manuscripts (Zimmer et al., 2003; Rodning et al., 2010), and these were the only papers 

to report negative results after vaccine intervention. 

 

Table 4.3.  Studies measuring the effect of vaccine on conception when given in close 

proximity to breeding. Population includes numbers and type, intervention includes 

vaccines and time given, and conclusions are based on measurement of pregnancy status. 

Studies Measuring Conception Rates 

Manuscript Authors 

(year) 

Population 

Sample size 

(cattle type) 

location 

Intervention 

 Groups 

control 

experimental 

(vaccine type) 

Conclusions/ 

Outcome 

Pregnancy rate 

Bolton et al. (2007) 799 

(beef)  

US 

con: vax2  45d  pb  con: 341/399 

exp: vax2 3d pb 

vax mlv 

exp: 346/400 

Campbell & Myers 

(1999) 

146 

(beef)  

Canada 

con: nonvax   con: 43/48   

exp1: vax1 14d pb   exp 1: 45/49   

exp2: vax1 day of breeding 

vax mlv 

exp 2:  42/49 

Tucker et al. (1989) 84 

(beef)  

US 

con: vax1/dewormed 30 days prior to 

syncro   

con: 32/43 

exp: vax1/dewormed 9 days prior to 

syncro 

vax mlv 

exp: 29/38  

Walz et al. (2014) 60 

(beef)  

US 

con 1: inactivated vax1 10d pb  con 1: 9/10 

 exp 1: vax1 10d pb exp 1: 14/20   

con 2: inactivated vax1 30d pb   con 2: 10/10 

exp 2: vax1 30d pb 

vax mlv      

exp 2: 17/20 

pb=prebreeding     vax: vaccinated 
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Table 4.4.  Population, interventions, and conclusion—reproductive loss post viral 

challenge. 
Manuscript 

Authors 

(year) 

Population 

Sample 

size 

(cattle 

type) 

location 

Intervention 

Vaccine 

Groups 

control 

experimental 

(Vaccine type) 

Intervention 

Challenge (BVDV 

type) 

Intervention 

Challenge & 

vax 

heterologous? 

Conclusion/ 

Outcomes 

Measure of 

fetal protection 

Brownlie et 

al. (1995) 

30 

(not stated) 

UK 

con: unvax intranasal (type 1) not clear con: 15/15 VI 

exp 1: vax2   exp1&2*: 0/15 

VI    

exp 2: vax3  *not reported 

separately vax: killed 

Cortese et al. 

(1998) 

32 

(beef) 

US 

con: unvax intranasal (type 1) yes con: 6/6 PI  

exp: vax1 pb 

vax: mlv 

exp: 2/12 PI 

Dean et al. 

(2003) 

40 

(beef) 

US 

con: sham injection IV  

(type 1) 

yes con: 11/11 PI 

exp 1: vax1 IM exp 1: 1/11 VI 

exp 2: vax1 SQ 

vax: mlv 

exp 2: 2/13 PI 

Ellsworth et 

al. (2006) 

30  

(beef)  

US 

con: sham injection x1  PI calves (type 2)  yes con: 9/10 conv 

exp: vax1 pb mid-level 

vax: mlv 

exp:1/20 conv 

Fairbanks et 

al. (2004) 

28  

(beef)  

US 

con: unvax intranasal (type 1) yes  con: 10/10 

conv 

exp: vax1 pb mid-level 

vax mlv 

exp: 0/18 conv 

Fairbanks et 

al. (2004) 

27  

(beef)  

US 

con: unvax intranasal  (type 2) yes  con: 8/8 conv 

exp: vax1 pb mid-level 

vax: mlv 

exp: 1/19 conv 

Ficken et al. 

(2006a) 

100  

(beef)  

US 

con: sham vax intranasal (type 2) yes  con: 9/10 PI 

exp 1: vax1 exp 1: 6/18 PI 

exp 2: vax2  exp 2: 7/19 PI 

vax: type 1 BVD, mid-

level virus, mlv 

  

Ficken et al. 

(2006a) 

60  

(beef)  

US 

con: sham vax intranasal (type 2) yes  con: 9/9 PI 

exp: vax1 pb exp: 0/18 PI 

vax: type 1 & 2, mlv   

Ficken et al. 

(2006b) 

29  

(beef)  

US 

con: sham vax  intranasal (type 1)   yes  con: 8/9 PI 

exp: vax1 pb exp: 0/20 PI 

vax: type 1 & 2, mlv   

Ficken et al. 

(2006b) 

30  

(beef)  

US 

con: sham vax  intranasal (type 2)   yes  con: 10/10 PI 

exp: vax1 pb exp: 0/19 PI 

vax: type 1 & 2 mid-

level, mlv 
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Table 4.4. Continued. 
Manuscript 

Authors 

(year) 

Population 

Sample 

size 

(cattle 

type) 

location 

Intervention  

Vaccine  

Groups 

control 

experimental 

(Vaccine type) 

Intervention 

Challenge (BVDV 

type) 

Intervention 

Challenge & 

vax 

heterologous?  

Conclusion/ 

Outcomes 

Measure of 

fetal protection 

Givens et al. 

(2012) 

29  

(beef)  

US 

con: unvax  3 PI steers (type 

1a, 1b, & 2) 

yes  con: 6/6 PI  

exp: vax1 pb 

vax mlv 

exp: 2/12 PI 

Grooms et al. 

(2007) 

60  

(beef)  

US 

con: sham vax   4 PI cows 2 (type 

1b), 2 ( type 2) 

yes con: 14/14 VI 

exp: vax2   pb  exp: 4/15 VI 

 vax: commercial killed 

BVD product w/ heat 

sensitive BHV 

  

Kovacs et al. 

(2003) 

19  

(dairy)  

US 

con: sham vax intranasal (type 1) yes  con: 8/8 VI 

exp: vax1 pb exp: 0/11 VI 

vax: type 1, mlv   

Kovacs et al. 

(2003) 

18  

(dairy)  

US 

con: sham vax intranasal (type 2) yes  con: 7/7 VI 

exp: vax1 pb exp: 0/11 VI 

vax: type 2, mlv   

Leyh et al. 

(2011) 

50  

(beef)  

US 

con: sham vax PI cattle  

( type 1b) 

yes con: 10/10 VI 

exp 1: vax1 IM exp 1: 1/20 VI 

exp 2: vax1 SQ exp 2: 2/20 VI 

vax: type 1 & 2 mid-

level, mlv 

  

Rodning et al. 

(2010) 

70 

(beef)  

US 

con: sham vax PI cattle (type 1a, 

1b, and 2) 

yes con:  10/10 PI 

exp 1: company A vax1 exp 1: 0/19 PI 

exp 2: company B vax1 exp 2: 0/18 PI 

exp 3: company C vax1 exp 3: 2/18 PI 

vax: type 1 & 2, mlv 

and killed 

  

Schnackel et 

al. (2007) 

35  

(beef)  

US 

con: unvax intranasal (type 2) yes  con: 10/10 PI 

exp: vax1 pb exp: 0/25 PI 

vax: type 1, midlevel, 

mlv 

  

Schnackel et 

al. (2007) 

35  

(beef)  

US 

con: unvax intranasal (type 1b) yes  con: 6/6 PI 

exp: vax1 pb exp: 1/24 PI 

vax: type 1, midlevel, 

mlv 

  

Xue et al. 

(2009) 

37  

(beef)  

US 

con: unvax intranasal (type 1)  yes  con: 5/12 PI 

exp: vax1 pb 

vax mlv 

exp: 0/25 PI 
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Table 4.4. Continued. 

 

 

 

Risk of Bias 

Assessment of bias was accomplished using the Cochrane Collaboration’s tool 

for assessing risk of bias (see Table 4.5).  The questions and guidelines were very 

specific, examining the described methods of randomization, allocation concealment, 

blinding of participants, blinding of outcome assessment, incomplete outcome data, and 

selective reporting.  To ensure the evaluations were objective, 2 manuscripts (Grooms et 

al., 2007; Givens et al., 2012) were evaluated by 2 individuals, and the remaining papers 

were evaluated by a minimum of 3 individuals comprised of graduate students and 

faculty from the Department of Animal Science and faculty from the College of 

Veterinary Medicine at Texas A&M University. 

  

Manuscript 

Authors 

(year) 

Population 

Sample 

size 

(cattle 

type) 

location 

Intervention 

Vaccine 

Groups 

control 

experimental 

(Vaccine type) 

Intervention 

Challenge 

(BVDV type) 

Intervention 

Challenge & 

vax 

heterologous? 

Conclusion/ 

Outcomes 
Measure of 

fetal protection 

Xue et al. 

(2009) 

46  

(beef) 

 US 

con: unvax 

intranasal (type 2) 

yes  con: 17/18 PI 

  

exp: vax1 pb 

vax mlv 

exp: 2/28 PI 

Xue et al.  

(2011) 

35  

(beef)  

US 

con: unvax intranasal (type 

1b) 

yes  con: 12/12 PI 

exp: vax1 pb exp: 1/23 PI 

vax: mlv, type 1a & 2   

Zimmer et al. 

(2002) 

41  

(beef) 

Netherlan

ds 

con: unvax intranasal (3 NCP 

strains)  

yes  con: 12/12 PI 

exp1: company A vax2 

(cytopathic) 

exp 1: 6/9 VI  

exp 2: company B vax2 

(noncytopathic) 

vax: killed 

exp 2: 8/15 VI  

vax2: vaccinated twice 

pb: pre-breeding 

mid-level: minimum immunizing dose 
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Table 4.5. Cochrane evaluations for risk of bias with assessments of potential risks for 

bias for each study reviewed.  Instructions for completion found in chapter 8.5 d, 

Cochrane Handbook (Higgins et al., 2011). 

Author 

(year) 

Random 

sequence 
generation 

Allocation 
Concealment 

Blinding of 
Participants  

Blinding of 

Outcomes 
Assessment 

Incomplete 

Outcome  
Data 

Selective 
Reporting Other Bias 

Fund-
ing 

Bolton et 

al. (2007) Unclear Unclear Low Unclear Low Low Unclear Yes 

Brownlie 

et al. 
(1995) Unclear Unclear Unclear Unclear Unclear Low Unclear Yes 

Campbell 

& Myers 
(1999) High Unclear Low Low Unclear Unclear Unclear Yes 

Cortese et 

al. (1998) Unclear Unclear Unclear Unclear Unclear Low 

  Unclear 

Health Yes 

Dean et al. 

(2003) Unclear Unclear Unclear Unclear Unclear Low Unclear Yes 

Ellsworth 
et al. 

(2006) Unclear Unclear Low Low Unclear Low Unclear Yes 

Fairbanks 
et al. 

(2004) Unclear Unclear Unclear Unclear Unclear High Unclear Yes 

Ficken et 

al. (2006a) Unclear Unclear Unclear Unclear Low Unclear Unclear Yes 

Ficken et 
al. 

(2006b) Unclear Unclear Unclear Unclear Low Low Unclear Yes 

Givens et 
al. (2012) Unclear Low  Low Low Low Low Unclear Yes 

Grooms et 

al. (2007) Unclear  Unclear Unclear Unclear Low Low Unclear Yes 

Kovacs et 

al. 
(2003) Unclear Unclear Unclear Unclear High High Unclear Yes 

Leyh  

et al. 
(2011) Unclear Unclear Unclear Unclear Low Low Unclear Yes 

Rodning 

et al. 
(2010) Unclear Unclear Unclear Unclear Low Low Unclear No 

Schnackel  

et al. 

(2007) Low Unclear Unclear Unclear High Low Unclear Yes 

Tucker et 
al. (1989) Unclear Unclear Unclear Unclear High Low Unclear Yes 

Walz  

et al. 
(2014) Low Low Unclear Unclear Low Low Unclear Yes 

Xue 

et al. 

(2009) Unclear Unclear Unclear Unclear Low Low Unclear Yes 

Xue  

et al. 

(2011) Unclear Unclear Unclear Unclear Low Low Unclear Yes 

Zimmer et 
al. (2002) Unclear Unclear Unclear Unclear Low Low Unclear No 
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Only 3 manuscripts described in detail their methods of randomization, 

(Campbell and Myers, 1999; Schnackel et al., 2007; Walz et al., 2014).  Only 2 

manuscripts (Givens et al., 2012; Walz et al., 2014), described blinding participants to 

allocation of animals.  Only 4 papers described the blinding of participants (Campbell 

and Myers, 1999; Ellsworth et al., 2006; Bolton et al., 2007; Givens et al., 2012), and the 

same authors with the exception of Bolton et al (2007) describe blinding of outcomes 

assessment.  Eleven papers describe or account for all outcome data, and 15 manuscripts 

report on all described criteria.  Eighteen of the studies indicated the involvement of 

commercial vaccine manufacturers in the study, either through sponsorship or having 

employees listed as authors on papers.  In 3 studies, statistical analysis was not even 

mentioned or described (Brownlie et al., 1995; Cortese et al., 1998; Campbell et al., 

1999). 

Discussion  

The role of fetal infection and immunotolerance in the epidemiology of bovine 

viral diarrhea is established (Newcomer et al., 2015).  The employment of sound 

vaccination programs to prevent fetal infection and thus the viral shedding by immune-

tolerant animals is essential to control of this disease.  In order to make sound 

management decisions, veterinary practitioners, animal scientists, and cattle producers 

need access to peer-reviewed articles with detailed descriptions of experimental design, 

including randomization, as efforts to blind participants, ensuring all outcome data is 

reported, and any potential bias from private funding or participation declared.  Due to 

the role of bovine viral diarrhea virus as an immunosuppressant and its association with 
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bovine respiratory disease complex, winter dysentery, and other cattle diseases, unbiased 

information concerning the safety and effectiveness of vaccine programs is essential.   

Only 2 manuscripts reported negative findings concerning safety and efficacy of 

bovine viral diarrhea vaccines and those 2 studies that did not have support of the 

vaccine industry.  The materials and methods generally lacked transparency, the methods 

used in randomization and the protocol to blind participants/investigators was seldom 

reported, and details of experimental design were many times ambiguous.   Often the 

only part of the paper that was easy to follow was the abstract and conclusion, and it was 

difficult to surmise how the authors determined their findings.  This review does not 

insinuate that industry involvement in research is always biased, only that publications 

should be transparent and diligently describe all procedures in sufficient detail to allow 

critical analysis of the research.  Logical recommendations relating to animal health 

programs require access to all the pieces of the puzzle. 

This review did not address reported abortions due to bovine herpes virus 

following use of multivalent vaccines containing bovine viral diarrhea, only the safety 

and efficacy of bovine viral diarrhea vaccines as related to fetal protection.  The included 

trials were slanted toward modified-live vaccines, with only 4 studies involving killed 

vaccines (Brownlie et al., 1995; Zimmerman et al., 2002; Grooms et al., 2007; Rodning 

et al., 2010).  While there is much rhetoric concerning the safety and effectiveness of 

modified live bovine viral diarrhea vaccines, none of the reviewed manuscripts 

demonstrated negative effects of a modified-live vaccine on reproduction.  One study 

from the Netherlands (Zimmer et al., 2002) reported on the ineffectiveness of a killed 
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product after challenge with 3 non-cytopathic strains of virus, and Rodning et al. (2010) 

evaluated 2 modified live and 1 killed vaccine , while all remaining articles only 

described positive attributes of the vaccines.  Perino and Hunsaker (1997) when 

evaluating vaccine field efficacy for bovine respiratory disease found that when 

manuscripts reported a negative or neutral effect of vaccine, the authors were 2.8 times 

more likely not to have affiliation with manufacturer or developer of the vaccine.   

A similar systematic review was recently performed (Newcomer et al., 2015) in 

order to calculate a more precise vaccine effect estimate via meta-analysis. From 41 

references, the authors estimated a 45.0% decrease in abortions and 85.0% decrease in 

fetal infections attributed to vaccination.  The current systematic review is an attempt to 

add to the evidence about vaccine efficacy by critically appraising many of the same 

studies to assess the risk of bias.  It also provides an understanding of the quality gaps in 

the literature. Information from both reviews is needed for practicing veterinarians to 

make vaccination decisions based on evidence.  

The ultimate end users of information provided by the scientific literature are 

practicing veterinarians, livestock producers, and Extension faculty.   Transparent 

reporting of both the positive and negative findings of a research project allows the end-

user to objectively evaluate its value.  Often journals will not accept manuscripts that 

report insignificant findings or negative results.   It is imperative that authors, editors, 

reviewers, and all others involved in research and publication transparently report all 

findings in the scientific literature.  There is frustration in the agricultural community 

that consumer’s lack confidence in the science we report, but lack of full disclosure only 
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contributes to their mistrust.  Programs such as the Vetalltrials (2016) that encourage 

registering clinical trials at their inception and reporting all results are encouraging, but 

are in their infancy.  Registering clinical trials and reporting on all outcomes increases 

transparency, which can increase consumer confidence in the agricultural scientific 

community. 

With the recent 2014 Presidential executive order (Executive Order-Combating 

Antibiotic-Resistant Bacteria, 2014) and the subsequent call for new and effective 

vaccine development in order to reduce the use of antibiotics, hopefully, there will be 

more public funding available for field evaluation of vaccines used in animal health 

programs. The application of efficient vaccination programs would logically lower 

morbidity and mortality associated with the diseases in question; however, it is 

impossible to make an informed decision without access to transparent research.   
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CHAPTER V 

CONCLUSIONS  

 

This dissertation addresses 3 emerging-reemerging cattle diseases that affect the 

profitability of Texas livestock producers.  Bovine trichomoniasis and bovine viral 

diarrhea virus infections have a negative effect on reproduction, resulting in fewer and 

lighter calves being marketed each year.  Bovine viral diarrhea virus infection is a risk 

factor for bovine respiratory disease complex and winter dysentery, mainly through the 

ability of the virus to suppress immune function.  Clinical epizootic hemorrhagic disease 

is not common in Texas cattle, presumably due to enzootic stability; the virus is common 

and cattle are protected against clinical disease as a result of their previous viral 

exposure.  Epizootic hemorrhagic disease is an OIE reportable disease, and the presence 

of clinical disease could impact trade.   

The study focusing on bovine trichomoniasis is described first.   Experiment 1 

illustrates that even with limited training; a suitable preputial diagnostic sample can be 

collected.  This study indicated that when sampling the same bull over time, the 

quantitative results were similar for that bull; however, only 4 bulls were sampled for 

this experiment.   There is a need to examine the variability of samples taken from the 

same bull over time using a larger number of bulls.  The experiment involving 

temperature fluctuation of samples while they are in transit emphasizes the need to use 

next day delivery; even in a constant temperature of 107.0°C a sample properly 

packaged with an ice pack and insulated would not exceed the threshold of 104.0°
 
for 8.5 
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hours.  The less time spent in transit, the less likely temperature extremes will affect 

diagnostic outcomes.  The results of the trichomoniasis study indicate that adoption of 

the novel RT-qPCR developed during the course of experiments described in this 

dissertation would reduce costs, by providing a more sensitive test with timelier results, 

allowing producers to more effectively manage the disease.  The newly developed RT-

qPCR does not require growth of the protozoa, therefore neither growth media nor 

incubation are required, allowing the sample to be shipped on ice.   

Seroprevalence of epizootic hemorrhagic disease in 11 auction markets was 

determined to be 97.2%, much higher than anticipated.  Veterinary practitioners, animal 

scientists, and cattle producers need to be aware the disease is endemic in Texas and 

importing cattle from non-endemic areas can result in the imported animals developing 

clinical disease.  Clinical signs of epizootic hemorrhagic disease in cattle are similar to 

many vesicular diseases such as foot and mouth disease, so it is important that ALL 

vesicular diseases are reported to regulatory officials immediately.  

Bovine viral diarrhea virus can produce clinical disease associated with the 

respiratory and gastrointestinal tract, but a large economic impact of this disease is 

associated with subclinical reproductive diseases, often resulting in the birth of 

immunotolerant persistently infected animals.  Vaccination of breeding females to 

prevent fetal infection is considered an important management tool addressing 

persistently infected offspring.  Results of a systematic review of safety and efficacy of 

bovine viral diarrhea vaccines indicate that few manuscripts describe the materials and 
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methods in enough detail to objectively evaluate results.  There are very few studies that 

report negative results, and most studies are supported by manufactures of biologics.   

The public appears to lack faith in science (Cockcroft and Holmes, 2003), and 

consumers appear skeptical about any scientific evidence related to their food source.  

Those of us involved an animal agriculture must embrace critical evaluation of the 

scientific literature, and we must be more concerned with appropriate experimental 

design and diligent transparent reporting our all-valid results.   
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