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ABSTRACT 

Researchers at Texas A&M University have developed the Pavement Analysis 

using Nonlinear Damage Approach (PANDA) for predicting the performance of asphalt 

concrete mixtures. PANDA offers substantial improvements in mechanistic modeling 

and simulation of pavement performance over other existing approaches. However, in 

order to facilitate the use of PANDA, there is a need to develop a systematic approach 

for determining the input parameters of its constitutive models. 

In this dissertation, a well-designed experimental testing protocol is developed to 

characterize the resistance of asphalt concrete mixtures to permanent deformation. This 

approach involves conducting two experimental tests in order to extract the PANDA 

model parameters: the dynamic modulus test (DMT) and repeated creep-recovery test at 

various stresses (RCRT-VS). Then, a systematic analytical approach is used to determine 

the linear viscoelastic, nonlinear viscoelastic, and viscoplastic PANDA model 

parameters for different types of asphalt mixtures and at different temperatures, air void 

contents, and aging levels. The analytical method employs DMT data to determine the 

long-term linear viscoelastic properties and time-temperature shift factors, and it 

employs the RCRT-VS data to determine the nonlinear viscoelastic and viscoplastic 

properties. 

A significant part of this dissertation focuses on the implementation of the 

global sensitivity analysis (GSA) approach to determine the sensitivity of the asphalt 

mixture performance to the PANDA’s input parameters. This analysis is performed in  
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order to reduce the output uncertainty to input uncertainty, focus the experimental 

methods on evaluating the key parameters that influence performance, and simplify the 

analytical approach to extract significant model parameters from experimental data. 

The GSA results show that the viscoelastic nonlinearity parameter (g2), viscoplastic 

hardening function parameters (k1 and k2), and viscoplasticity-relaxation time (1/ Гvp) 

are the most significant and sensitive parameters. 

The PANDA constitutive modeling framework is used to efficiently simulate and 

predict the viscoelastic and viscoplastic responses of asphalt pavements. Two different 

scales of asphalt mixture performance are investigated: macro-scale (full dense-graded 

mixture, DGM) and meso-scale (fine aggregate matrix, FAM, and coarse aggregate 

matrix, CAM). The computational results show that the FAM controls the viscoelastic 

response of asphalt mixtures, while the CAM properties primarily influence the 

viscoplastic response of asphalt mixtures. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

Recent studies at Texas A&M University have led to the development of an 

advanced constitutive model called Pavement Analysis Using Nonlinear Damage 

Approach (PANDA) for predicting the performance of asphalt concrete including fatigue 

damage, permanent deformation, and overall life span (Darabi et al. 2012a, 2012b, 

2012c, and 2013). PANDA incorporates Schapery’s (1969a) nonlinear viscoelastic 

model with Perzyna’s (1971) viscoplastic model and continuum damage principles in 

order to predict the performance of asphalt concrete under various loading and 

environmental conditions. Schapery’s nonlinear viscoelastic model accounts for the 

impact of stress level on the nonlinear material response, time-temperature shift, time-

stress shift, and environmental factors (Huang et al. 2007, Saadeh et al. 2007, Masad et 

al. 2008, Masad et al. 2009). Perzyna’s theory, with extended Drucker-Prager yield 

surface, is used to represent the material viscoplastic response. The model contains 

parameters to account for various frictional characteristics, anisotropy, hardening, and 

dilation (Tashman et al. 2005a, Tashman et al. 2005b, Saadeh et al. 2007, Masad et al. 

2007). 

The objective of developing PANDA is to analyze and predict the performance 

of asphalt concrete, and compare the utility of various material constituent combinations. 

In order to achieve this goal, systematic and well-designed experimental methods are 
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needed to determine PANDA model parameters, which define the asphalt concrete 

material properties. There are traditional experimental methods currently in use to 

characterize material response: 

1. Static creep tests: Applying a static load to a test specimen and measuring

recoverable and irrecoverable (or permanent) deformation when the load is removed.

Test results generally do not correlate well with actual in-service pavement rutting

measurements (Brown et al. 2001).

2. Repeated load tests: Applying a repeated load at a constant frequency to a test

specimen for many repetitions (often in excess of 1000) and measuring the

specimen’s recoverable strain and permanent deformation. In general, test results

correlate with in-service pavement rutting measurements better than static creep test

results (Brown et al. 2001). Test observations and theoretical analysis indicate that

asphalt concrete in compression experiences primary, secondary, and tertiary

deformation stages. During the three stages, two types of deformation are developed

simultaneously: recoverable viscoelastic deformation and irrecoverable viscoplastic

deformation. The rate of accumulation of viscoplastic strain during early cycles is

higher than during the preceding cycles.

3. Dynamic modulus tests (DMTs): Applying a repeated load at varying frequencies to

a test specimen over a relatively short period of time and measuring the specimen’s

recoverable strain and permanent deformation. DMTs are also used to measure the

lag between peak applied stress and peak resultant strain, providing insight into a

material’s viscous properties. The test captures only the small portion of permanent
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deformation associated with viscous deformation, but it does not account for 

viscoplastic deformation. 

4. Laboratory wheel-tracking tests: Test results can correlate well with in-service 

pavement rutting measurements, but these tests do not provide any fundamental 

material parameters.  

In addition to developing an experimental protocol to measure material 

properties, there is a need to develop analytical methods to extract PANDA model 

parameters from the experimental measurements. The experiments and analytical 

methods need to be implemented, and their efficacy should be evaluated for different 

mixture types, temperatures, air void contents, and aging levels. Once the model 

parameters are determined, the next step is to assess the sensitivity of asphalt material 

performance to changes in model parameters. This sensitivity analysis reduces output 

uncertainty and increases model robustness. 

 

1.2 Problem Statement 

The behavior of asphalt materials (binders, mastics, and asphalt composite 

mixtures) is complex and is influenced by temperature, stress/strain level, and 

stress/strain rate. Furthermore, the total response of asphalt materials subjected to an 

applied stress contains recoverable (viscoelastic) and irrecoverable (viscoplastic) strain 

components that could occur simultaneously. The viscoelastic component of the 

response becomes more dominant as temperature decreases and loading rate increases. 

The relationship between stress and the recoverable strain component can be nonlinear, 
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depending on the applied stress/strain limits and temperature. The viscoplastic response 

is also complex, and it becomes more dominant as temperature increases and loading 

rate decreases. 

The microstructure of asphalt concrete is a combination of coarse and fine 

aggregate matrices. A fine aggregate matrix (FAM) is a composite of fine fillers, fine 

aggregates, air voids, and asphalt binder, while a coarse aggregate matrix (CAM) is 

composed of coarse aggregates coated with asphalt binder and surrounded by air voids. 

By designing FAM and CAM as derivatives of a dense-graded mixture (DGM) based on 

their aggregate gradation, they can represent typical fine-graded and coarse-graded 

mixtures, respectively. This approach allows for exploring the effects of FAM and CAM 

on the overall mechanical response of asphalt concrete, which is controlled by the 

properties of its constituents. For example, it can be postulated that the viscoelastic 

response of asphalt concrete is mainly controlled by the FAM properties. On the other 

hand, aggregate structure, aggregate orientations, friction between aggregate particles, 

and aggregate interlocking in a CAM mainly control the viscoplastic response of asphalt 

concrete, especially in compression. Therefore, investigation of the performance of each 

matrix is required to correlate asphalt mixture characteristics to constituents. In order to 

effectively and efficiently predict asphalt pavement deformation, the viscoelastic and 

viscoplastic responses of asphalt material should be modeled rigorously in order to 

reflect their effects on pavement performance. 

PANDA offers substantial improvements in modeling and simulating capabilities 

of pavement performance with mechanistic approaches, replacing the empirical methods 
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of pavement design and analysis. The mechanistic method is based on fundamental 

aspects of pavement mechanics, as well as the properties of the material components that 

comprise asphalt pavements, such as asphalt binder, mastic, and aggregate. This 

approach allows the user to readily compare the utility of various material constituent 

combinations. The main challenge in using PANDA is the complexity of its constitutive 

models. This requires the development of robust experimental and analytical methods to 

determine the parameters of these models. Improving the robustness of PANDA 

predictions is also achieved by identifying model inputs that have significant effect on 

the output. In summary, the main motivations of this dissertation are the need to develop 

experimental and analytical methods to calibrate PANDA models and the importance of 

determining the sensitivity of the models’ response to their parameters. 

 

1.3 Research Objectives and Scope 

The overall objectives of this research are to develop methods to characterize the 

response of asphalt concrete materials, determine PANDA model parameters for various 

types of mixtures under different loading and environmental conditions, and assess the 

sensitivity of the PANDA response to model parameters. These objectives are achieved 

through the following tasks: 

1. Review of literature: The goal of the literature review is to fully understand the 

behavior of asphalt materials under complex states of stress, strain, and environment. 

A brief literature review is presented in order to describe different domains of 

behavior for asphalt materials, as well as research efforts in modeling and defining 
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the characteristics of each domain. A summary of PANDA capabilities is also 

documented. 

2. Development of experimental methods: Experiments are developed to characterize 

the resistance of asphalt concrete materials to permanent deformation. Experiments 

are conducted on FAM, CAM, and DGM mixtures. In addition, DGM specimens are 

fabricated with different air void contents and aging levels. Cylindrical specimens 

are prepared to conduct dynamic modulus test (DMT) and repeated creep-recovery 

test at various stresses (RCRT-VS). Different test protocols are conducted to obtain 

the desired model parameters. Experimental tests are conducted in a multiaxial 

compression setup, in which axial and radial deformations are measured by axial and 

radial linear variable differential transformers (LVDTs), respectively. 

3. Application of a robust analytical procedure to identify linear viscoelastic, nonlinear 

viscoelastic, and viscoplastic PANDA model parameters: The systematic analysis 

procedure can separate recoverable and irrecoverable components and obtain model 

parameters in order to calibrate PANDA constitutive models. Experimental data 

from the DMT and RCRT-VS are analyzed in order to identify linear (time-

temperature shift factor and Prony series coefficients of long-term response) and 

nonlinear (g1 and g2) viscoelastic PANDA model parameters, respectively. After 

extracting linear and nonlinear viscoelastic parameters, the viscoplastic response can 

be determined by separating the recoverable response out of the total response. 

RCRT-VS output data are analyzed in order to identify viscoplastic PANDA model 

parameters. 
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4. Investigation of testing temperature, air void content, and aging level effects on 

asphalt mixture performance: After identifying linear viscoelastic, nonlinear 

viscoelastic, and viscoplastic PANDA model parameters, different temperatures (20, 

40, and 55°C), confinement levels (70 and 140 kPa), air void contents (4, 7, and 

10%), aging levels (0, 3, and 6 months), and asphalt mixture types (DGM, FAM, and 

CAM) are investigated for their effects on asphalt mixture response. 

5. Global sensitivity analysis (GSA) of PANDA model parameters: This sensitivity 

analysis tests the robustness of the PANDA model prediction results in the presence 

of uncertainty and increases the understanding of the relationships between the input 

and output variables. The sensitivity analysis can be used to simplify the PANDA 

model by fixing the values of the model inputs that have no significant effect on the 

output and by identifying and removing the redundant parts of the model structure. 

GSA methods based on the Fourier amplitude sensitivity test (FAST) and Sobol 

sequence approach are implemented in the Global Sensitivity Analysis Toolbox 

(GSAT) in MATLAB. 

6. Finite element (FE) simulation of asphalt concrete mixtures using PANDA: Two-

dimensional (2D) axisymmetric FE models of four-layer pavement structure under 

pulse wheel loading are used to conduct FE simulations. These simulations are used 

to show PANDA capabilities in predicting rutting and to compare the performance of 

different asphalt pavements that incorporate different materials, mixture designs, air 

voids, and aging levels. 
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1.4 Dissertation Organization 

This dissertation is organized in eight chapters as follows. 

• Chapter I presents the introductory discussion, purpose, objectives, and scope of this 

research. 

• Chapter II presents a comprehensive literature review related to asphalt material 

response, modeling, characterization, and PANDA capabilities and research efforts. 

• Chapter III describes the design of asphalt mixtures and test specimen fabrication 

and instrumentation, as well as testing protocols and setup. 

• Chapter IV presents an extensive characterization of asphalt mixtures by determining 

viscoelastic and viscoplastic properties using PANDA models. In addition, the 

evolution of shear strength parameters determined from the RCRT-VS data is 

compared with the traditional method of Mohr-Coulomb criteria. 

• Chapter V discusses the effects of temperature, air void content, and aging level on 

the linear viscoelastic, nonlinear viscoelastic, and viscoplastic responses of asphalt 

mixtures. 

• Chapter VI describes the implementation of FAST and Quasi-Monte Carlo 

simulation approaches in the GSAT to investigate the sensitivity of the viscoelastic 

and viscoplastic PANDA models to their parameters. 

• Chapter VII presents 2D FE simulation of the viscoelastic and viscoplastic behaviors 

of different asphalt concrete mixtures at different temperatures, air void contents, and 

aging levels. 
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• Chapter VIII is dedicated to summarizing the research effort and presenting the 

conclusions and recommendations obtained from this research. 

The dissertation includes three appendices that describe the design of FAM and 

CAM as derivatives of a DGM, the American Association of State Highway and 

Transportation Officials (AASHTO) standard for calibration of PANDA and its 

constitutive relationships, and an overview of the PANDA user interface (PUI). 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

The mechanical behavior of asphalt materials is affected by complex states of 

stress, strain, and environmental factors (Lemaitre 2001). Calculating the mechanical 

behavior of asphalt materials under different conditions requires the different parameters 

involved in defining the behavior to be linked to the following fundamental equations 

(Findley and Davis 2013): (a) the equilibrium equations stating the relationships among 

the various stress components at any given point required for equilibrium; (b) the 

kinematic equations expressing the strain components in terms of displacements, which 

in turn describe the deformation of the body; (c) the compatibility equations stating the 

relationship required among the several strain components so that the strain components 

in a continuous medium do not produce discontinuities; and (d) the constitutive equation 

describing the relationship among stress, strain, and time in terms of the material 

constants (Haddad 1995). 

2.2 Asphalt Material Behavior 

2.2.1 Elastic Behavior 

Most materials behave elastically (or can be approximated as such) under small 

stresses and certain climatic conditions. In Figure 2.1, the solid curve represents an 

immediate elastic strain response, which is obtained upon loading (Lemaitre 2001, Lakes 
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2009). The strain remains constant as long as the stress is fixed and disappears 

immediately upon removal of the load. The main characteristic of elastic is reversibility. 

Most elastic materials are linearly elastic so that there is a proportional relationship 

between stress and strain. 

Figure 2.1 Various Strain Responses to a Constant Load (adapted from Parente Jr 

et al. 2014) 
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2.2.2 Plastic Behavior 

If stress exceeds a certain limit, behavior is no longer elastic (Lemaitre 2001, 

Findley and Davis 2013). The limiting stress under which behavior is no longer elastic is 

called the elastic limit. The strain that does not disappear after removing the stress is 

called the inelastic strain. In some materials, the strain continues to increase for a short 

while after the load is fully applied and then remains constant under a fixed load. When 

the stress is removed, a permanent (residual) remains, as shown by the dashed curve in 

Figure 2.1. Plastic strain is defined as time-independent, although some time-dependent 

strain is often observed accompanying plastic strain. 

2.2.3 Viscoelastic Behavior 

Some materials exhibit elastic action upon loading if loading is rapid enough, 

followed by a slow and continuous increase of strain at a decreasing rate (Haddad 1995, 

Lakes 2009, Findley and Davis 2013). When the stress is removed, a continuously 

decreasing strain follows an initial elastic recovery. Such materials are significantly 

influenced by the rate of straining or stressing; e.g., the longer the time to reach the final 

value of stress at a constant rate of stressing, the larger the corresponding strain. These 

materials are called viscoelastic, as shown by the dotted-dashed curve in Figure 2.1. 

Asphalt materials exhibit viscoelastic behavior at various temperatures. Because 

time is a very important factor in their behavior, they are also called time-dependent 

materials. As its name implies, viscoelasticity combines elasticity and viscosity. The 

time-dependent behavior of viscoelastic materials is expressed by a constitutive 

equation, which includes time as a variable, in addition to the stress and strain variables. 
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Even under a simple loading pattern, as shown in Figure 2.1, the shape of the strain-time 

curve (creep curve) may be rather complicated. Because time cannot be kept constant, 

reversed, or eliminated during an experiment, the experimental study of the mechanical 

behavior of such materials is much more difficult than the study of time-independent 

materials. Creep (including recovery following creep), stress relaxation, and constant 

rate stressing (or straining) experiments are used to explore the time-dependent behavior 

of materials under a quasi-static state (Findley and Davis 2013). 

2.2.4 Creep Behavior 

Creep is a slow, continuous deformation of a material under constant stress 

(Lemaitre 2001, Findley and Davis 2013). Creep behavior is the result of viscoelastic 

and/or viscoplastic behaviors. In general, creep may be described in terms of three 

different stages, as illustrated in Figure 2.2. 

Figure 2.2 Three Stages of Creep (adapted from Findley and Davis 2013) 

13 



The first stage in which creep occurs at a decreasing rate is called primary creep; 

the second, called the secondary stage, proceeds at a nearly constant rate; and the third, 

or tertiary stage, occurs at an increasing rate and terminates in fracture. Most creep 

experiments are performed under a constant load, even when the cross-section of the 

specimen changes significantly with time. Total strain, ε, at any instance of time, t, in a 

creep test of a linear material is represented as the sum of the instantaneous elastic strain, 

εe, and the creep strain, εc. 

e cε ε ε= +                                                                                                                     (2.1) 

The strain rate,
.
ε , is found by differentiating Equation (2.1) and noting that εe is 

a constant, as shown below. 

.cd d
dt dt
ε ε ε= =                                                                                                                (2.2)

2.2.5 Recovery Behavior 

If the load is removed, a reverse elastic strain, followed by recovery of a portion 

of the creep strain, occurs at a continuously decreasing rate (Haddad 1995; Lakes 2009; 

Kim at al. 2009). The amount of the time-dependent recoverable strain during recovery 

is generally a very small part of the time-dependent creep strain for metals, whereas for 

plastics it may be a large portion of the time-dependent creep strain that occurred, as 

shown in Figure 2.3. The amount of recovered portion of the time-dependent creep strain 

curve for asphalt materials varies depending on the surrounding temperature; it increases 

as temperature increases. Strain recovery is also called delayed elasticity. 
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Figure 2.3 Creep and Recovery of Different Materials (adapted from Kim at al. 

2009) 

2.2.6 Relaxation Behavior 

Viscoelastic materials subjected to a constant strain relax under constant strain so 

that the stress gradually decreases, as shown in Figure 2.4 (Junisbekov et al. 2003, Liu et 

al. 2015). 

Asphalt materials may be subjected to one of the three time-dependent responses 

explained above or to a mixture; i.e., creep and relaxation may occur simultaneously 

15 



under combined loading, or the load or strain history may be a cyclic or random 

variation. 

 

σ 
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ε 
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Figure 2.4 Stress Relaxation at Constant Strain (adapted from Liu et al. 2015) 

 

2.2.7 Linearity Behavior 

A material is said to be linearly viscoelastic if stress is proportional to strain at a 

given time and if the linear superposition principle holds (Starodubsky et al. 1994; 

Nguyen et al. 2015). Most materials, including asphalt materials, are nearly linear over 

certain ranges of stress, strain, time, and temperature variables; they are nonlinear over 

larger ranges of some of the variables. The maximum permissible deviation from linear 

behavior of a material, which allows a linear theory to be employed with acceptable 

16 



accuracy, depends on stress distribution, type of application, and background of the 

experience. Under a very short duration of loading and small deformation, asphalt 

materials behave linearly, even at stresses for which considerable nonlinearity is found if 

the duration of loading is much longer. In fact, the strain during creep can be separated 

into a time-dependent linear part and a time-dependent nonlinear part. 

2.3 Mechanical Modeling for Viscoelasticity 

Viscoelastic mechanical models are helpful in representing viscoelastic behavior 

of materials. Various combinations of the basic rheological elements may create 

complex models. The basic elements considered, as shown in Figure 2.5, are the 

Hookeian element (spring), which is perfectly elastic, and the Newtonian element 

(dashpot), which is perfectly viscous. In the spring, all energy imparted to the specimen 

is stored as strain energy, while all energy is dissipated in the dashpot (Tanaka and 

Eijden 2003). 

Figure 2.5 The Basic Elements (adapted from Tanaka and Eijden 2003) 
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With the basic rheological elements, increasingly complex rheological models 

may be built to account for the simulation of viscoelastic material behavior. The simplest 

rheological models are the Maxwell model and the Kelvin model. 

2.3.1 Maxwell Model 

The Maxwell model consists of a spring and a dashpot in series. The same stress 

acts on both elements, so the total strain is equal to the sum of the strains of the two 

elements. The extension of the spring is given by εs = σ/E; the extension of the dashpot 

obeys the relationship έd =σ/η (Tanaka and Eijden 2003). Differentiating εs with respect 

to time and summing produces the following equation: 

.
. . .

s d
E
σ σε ε ε

η
+ = = +                                                                                                      (2.3) 

The response of the Maxwell model is limited to two loading cases: constant 

stress and constant deformation. Under constant stress,
.

0σ =  and 
.

s
σε
η

= . At an 

instantaneous elastic strain, given by σ/E, which is recoverable, is going to be followed 

by a linearly increasing strain, which is irrecoverable, as shown in Figure 2.6.a. This 

type of behavior is referred to as creep. On the other hand, if a strain is suddenly applied 

to the system and held constant, έ = 0, then stress is a function of time and is given by 

.

0
E
σ σ

η
+ = . The following equation is thus produced: 

/Et
oe

ησ σ −=                                                                                                                    (2.4) 
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This means that there is an exponential stress relaxation, as shown in Figure 

2.6.a. 

Figure 2.6 Two Element Rheological Models (adapted from Tanaka and Eijden 

2003) 

2.3.2 Kelvin (Voigt) Model 

The Kelvin model consists of a spring and a dashpot in parallel. In this case, the 

elongation in each element remains the same (Tanaka and Eijden 2003). Therefore, σs = 

Eε, and σd = ηέ, so that the following exists: 

.

s d Eσ σ σ ε η ε= + = +              (2.5) 

Under a constant stress, σo, a creep behavior is obtained, with the solution of 

differential Equation (2.5): 
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( )/1 Eto e
E

ησε −= −                                                                                                           (2.6) 

Then, the strain σo/E, which is obtained instantaneously in the absence of a 

dashpot, is instead approached exponentially. Under a constant strain, έ = 0, there will 

be some stress relaxation, and then the stress remains constant at σ = Eε, as shown in 

Figure 2.6.b. If the material is given a sudden displacement and then released, there is an 

exponential strain relaxation as follows: 

/Et
oe

ηε ε −=                                                                                                                    (2.7) 

2.3.3 Complex Rheological Model: Burger’s Model 

Burger’s model is a combination of Maxwell and Kelvin elements in series, as 

shown in Figure 2.7 (Feng et al. 2015). Under a constant stress, σo, three types of 

deformation are distinguished: spring deformation, which is ε1 = σ/E1, Kelvin element 

deformation, which is ( )2 2/
2

2

1 E to e
E

ησε −= − , and dashpot deformation, which is 3
1

otσε
η

= . 

The total deformation is as follows: 

( )2 2/

1 2 1

1 1 1 E t
o

te
E E

ηε σ
η

− 
= + − + 

 
                                                                                (2.8) 

This means that the material response includes spontaneous elastic deformation, 

delayed elastic deformation, and irreversible creep. 
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Figure 2.7 Burger’s Model (adapted from Feng et al. 2015) 
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The viscoelastic behavior of asphalt materials with the greatest practical 

significance is creep. The rheological models described in the previous section provide 

mathematical formulations to describe creep curves. The characteristic rheological 

model and the constants composing the basic rheological units are usually determined by 

matching a model to an experimental creep curve. Therefore, to understand creep 

behavior, it is essential to address experimental creep curves, as well as the mechanisms 

by which creep is generated in asphalt material. Creep behavior is discussed in detail in 

Section 2.2.4. 

 

2.4 Yield Surface Criteria for Plasticity 

Defining the onset of plasticity or the point at which the elastic relations cease to 

be valid is necessary. Yield conditions and strength parameters are very important in 

understanding the behavior of asphalt materials. Many yield surface models have been 

proposed to characterize the yielding properties of an asphalt mixture. The most widely 

used yield surface criteria are the Mohr-Coulomb model, Drucker-Prager model, 

extended Drucker-Prager model, Matsuoka-Nakai model, hierarchical single-surface 

model (HISS), etc. The typical functions and problems associated with these yield 

surface models are presented as follows. 

2.4.1 Mohr-Coulomb Model 

The function of the Mohr-Coulomb yield surface model is shown as follows 

(Fwa et al. 2004): 

tan 0Cτ σ φ− − =                                                                                                         (2.9) 
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where τ is the yield shear stress; σ is the normal stress; and C and φ  are cohesion and 

internal friction angle of the asphalt mixture, respectively. Researchers found that φ  is 

primarily a function of aggregate contacts and interlocks, which are insensitive to 

temperature and strain rates, whereas C depends on testing temperature, strain rate, and 

properties of binder and fine aggregates (Tan et al. 1994). Figure 2.8 shows an example 

of a Mohr-Coulomb yield surface, which is an irregular hexagon on the octahedral plane. 

2.4.2 Drucker-Prager Model 

The Drucker-Prager yield surface model is expressed as follows (Tan et al. 1994, 

Seibi et al. 2001, Park et al. 2005): 

2 1 0oJ Iα κ− − =                                                                                                       (2.10) 

where 2
1( )
2 ij jiJ S S= is the second invariant of the deviatoric stress tensor, 

1
1( )
3ij ij ijS Iσ δ= − ; ijδ is Kronnecker delta; 1( )kkI σ= is the first invariant of the stress 

tensor ( )ijσ ; and α and oκ  are material properties, which can be determined by the 

cohesion and internal friction angle. By matching the Drucker-Prager yield surface with 

the external apices of the Mohr-Coulomb criterion (as shown in Figure 2.8), the 

following relationships are obtained (Chen and Mizuno 1990, Tashman et al. 2004): 

( )
2sin

3 3 sin
φα
φ

=
−

                                                                                                       (2.11) 

( )
6 cos

3 3 sino
C φκ

φ
=

−
                                                                                                      (2.12) 
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2.4.3 Extended Drucker-Prager Model 

The extended Drucker-Prager yield surface model is expressed as follows 

(Argyris et al. 1974, Dessouky and Masad 2006, Saadeh et al. 2007, Darabi et al. 2011a 

and 2011b): 

( )
2 3

13
2

2

3 31 11 1 0
2 3

J J I
d d J

α κ
   + + − − − =    

                                                            (2.13) 

where ( )3 ( det )ijJ S=  is the third invariant of the deviatoric stress tensor; κ  is the strain-

hardening parameter and is a function of viscoplastic strain; and d is an extension ratio 

that is the ratio of yield strength in extension to that in compression, which is the length 

ratio of segment PE to segment PF in Figure 2.8. d is related to the internal friction angle 

of geomaterials as follows (Bardet 1990, Maiolino and Luong 2009): 

3 sin
3 sin

d φ
φ

−
=

+
                                                                                                                (2.14) 

The value of the d range from 1 to 0.5 corresponds to the internal friction angle 

value from 0 to 90°. A d value less than 1 indicates that the yield strength in extension is 

lower than that in compression, which is true for an asphalt mixture. When d = 1, the 

extended Drucker-Prager model reduces to the Drucker-Prager model. To ensure 

convexity of the extended Drucker-Prager yield surface, the d value is limited to 

between 1 and 0.778 (Lin and Bazant 1986, Maiolino 2005, Masad et al. 2007, 

ABAQUS 2010), which corresponds to the internal friction angle from 0 to 22° based on 

Equation (2.14). Examples in Figure 2.8 show that the extended Drucker-Prager model is 

convex when φ  =15° and is concave when φ  = 35°. 
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Figure 2.8 Yield Surfaces on an Octahedral Plane (adapted from Chen and Liu 

1990; Chen and Mizuno 1990) 

 

To consider the strain-hardening and temperature effect on the yield surface, κ  

can be written as follows (Abu Al-Rub et al. 2010):  

( )1 21 exp vp
oκ κ κ κ ε = + − −                                                                                       (2.15) 

where oκ , 1κ , and 2κ  are material parameters related to strength and hardening; oκ  

defines the initial yield strength; 1κ  determines the amplitude of strain hardening; 2κ  is 

the strain-hardening rate; and vpε is the effective viscoplastic strain, the rate of which is 

expressed as follows (Dessouky 2005, Huang et al. 2011a): 
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2 2. . .0.5 / 31 2

1 / 3

vp vp vp

ij ij
βε ε ε
β

−

  +
= +  −   

                                                                        (2.16) 

where β  is the slope of the viscoplastic potential and 
. vp

ijε  is the rate of viscoplastic strain 

tensor. 

In addition to the above three well-known yield surface models, pavement 

researchers also introduced yield surface models of geomaterials into the viscoplastic 

modeling of asphalt mixtures, which are briefly discussed as follows.  

2.4.4 Extended Matsuoka-Nakai Model 

Bahuguna et al. (2006) extended the Matsuoka-Nakai model (Matsuoka and 

Nakai 1974, and 1985) and proposed the following yield surface equation: 

1 2 3 0I I I Hkα+ − =                                                                                                       (2.17) 

where 1( )kkI σ= , ( )2
1( )
2 ii jj ij jiI σ σ σ σ= − , and ( )3 ( det )ijI σ= are first, second, and third 

invariants of the stress tensor; H is an isotropic hardening parameter; and k is a friction-

dependent parameter. The Matsuoka-Nakai model is an excellent yield surface model for 

cohesionless geomaterials (e.g., sands), and it is inherently smooth and convex 

(Haythornthwaite 1985, Mortara 2008). However, Equation (2.17) cannot address the 

effect of rate- and temperature-dependent cohesion and strain hardening on the yielding 

properties of the asphalt mixture. 

2.4.5 Di Benedetto Model 

Di Benedetto et al. (2007) proposed a yield surface based on the Lode angle and 

a hardening variable. The yield surface is expressed as follows: 
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1
2

3cos 0
3 3

oI SJ Rπ ψ + − − = 
 

                                                                               (2.18) 

where R is a scalar hardening variable; So is a parameter; and ψ  is the Lode angle, 

which is defined as follows: 

( )
3

3/2
2

1 3 3arccos , 0,
3 2 3

J
J

πψ
   = ∈      

                                                                         (2.19) 

The value of ψ , as shown in Figure 2.8 as <EPP’, is 0 in extension and π/3 in 

compression. The yield surface derived by Equation (2.18) is an equilateral triangle on 

the octahedral plane. Thus, the yield strength ratio of extension to compression is always 

0.5 (i.e., d = 0.5, φ  = 90), which is not reasonable for asphalt mixtures, as the d-value is 

recommended to not be less than 0.778 to ensure convexity of the yield surface. 

2.4.6 Desai’s HISS Model 

Desai et al. (1986) proposed a HISS model to constitutively model geologic 

materials, and the yield surface function has a form as follows: 

( ) ( ) ( )2
2 1 11 cos 3 0

m nJ B I S I Sθ γ α − − + − + =                                                        (2.20) 

where γ is a softening parameter; α is a hardening parameter, S is a cohesion-related 

parameter; n is a parameter determining yield surface shape in the deviatoric-hydrostatic 

stress (�𝐽𝐽2 −  𝐼𝐼1) plane (or meridian plane); and B and m are parameters determining 

yield surface shape on the octahedral plane. Pavement researchers used Desai’s HISS 

model for asphalt mixtures by setting m as 0.5 (Muraya et al. 2009) and sand/aggregate 

base by setting m as 1 (Bonaquist and Witczak 1996). Several problems exist in Desai’s 

HISS model when applied to model asphalt mixture:  
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• The value of m must be 0.229 to ensure a convex yield surface for the full range of 

the internal friction angle from 0 to 90° (Van Eekelen 1980). 

• Desai’s HISS model exhibits a spindle shape, and the yield surface becomes 

nonlinear at relatively high confining pressures, which are normally used to 

characterize the nonlinear softening of soils or granular base. In contrast, the 

confinement in an asphalt layer cannot reach a very high level, and the yield surface 

remains linear on the meridian plane for the asphalt mixture. 

• Too many fitting parameters in the HISS model require complicated laboratory 

experiments for the determination of the model parameters. 

• Rate- and temperature-dependent strain hardenings are not accounted for in Desai’s 

HISS model. 

 

2.5 Hot-Mix Asphalt (HMA) Characterization for Constitutive Models 

Tashman (2003) developed an isotropic viscoplastic continuum damage model 

describing the permanent deformation of asphalt concrete at high temperatures. His 

model is based on Perzyna’s viscoplasticity theory associated with a modified Drucker-

Prager yield function. The Drucker-Prager yield function was modified to account for 

the dependency of strain rate and confining level, dilation, aggregate friction, anisotropy, 

and damage. The capabilities of the model and its sensitivity to changes in the 

microstructure distribution and loading conditions were investigated using laboratory 

experimental measurements from the Federal Highway Administration (FHWA) 

Accelerated Loading Facility (ALF). The model parameters were determined by 
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conducting a comprehensive set of compressive triaxial strength tests with different 

confining levels and strain rates. This set of experiments describes hardening, 

anisotropy, and damage within asphalt concrete. In addition, damage evolution was 

captured by a predefined triaxial compression setup, as well as X-ray computed 

tomography (CT) and image analysis techniques. 

Saadeh (2005) integrated the damage viscoelasticity model developed by 

Schapery (1969) with a viscoplasticity model based on Perzyna’s theory. The damage 

viscoelastic constitutive relationship was employed to demonstrate the recoverable 

response, while the viscoplastic relationship was employed to present the irrecoverable 

response. After integration, the anisotropic damage viscoelastic-viscoplastic model was 

capable of predicting HMA performance under a wide range of temperatures, loading 

rates, and stress states. A set of experimental testing, including triaxial repeated creep 

and recovery tests, as well as monotonic constant strain rate tests, was conducted to 

quantify both the viscoelastic and viscoplastic response. X-ray CT and image analysis 

were also included to characterize the three-dimensional (3D) aggregate orientation and 

air void distribution.  

Dessouky (2005) developed an elastic-viscoplastic continuum model to predict 

HMA performance taking into account the effects of microstructure distribution in 

modeling the macroscopic behavior of HMA. The model includes a modified Drucker-

Prager yield surface to capture the impact of stress path direction on material response 

and material parameters, which reflect the directional distribution of aggregate and 

damage density at the micro-scale. 
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2.6 PANDA 

Pavement design and analysis have gradually moved from empirical approaches 

to include more mechanistic principles. Various types of tests and mechanistic-based 

models have been used to characterize the response of asphalt concrete materials. 

PANDA seeks to provide an advanced mechanistic approach to predict rutting and 

fatigue damage subjected to general loading and environmental conditions. The goal for 

PANDA is to be used by both researchers at academic institutions and practitioners. 

2.6.1 Advantages of PANDA 

• PANDA is a comprehensive mechanistic-based modeling approach that can predict 

the response of asphalt pavements subjected to traffic loading and environmental 

conditions. PANDA includes constitutive relationships and evolution functions for 

the most important mechanisms occurring in pavements, such as viscoelastic, 

viscoplastic, viscodamage, micro-damage healing, moisture-induced damage, 

moisture damage, and oxidative aging constitutive relationships. 

• The constitutive relationships implemented in PANDA are developed for general 

multiaxial stress states. It represents the behavior of asphalt concrete materials under 

general 3D stress states and realistic environmental conditions that actually occur in 

the field. 

• PANDA captures the interactions and coupling among different components of 

constitutive relationships, enabling the model to predict the performance life of 

asphalt pavement more accurately. 
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• PANDA includes evolution functions coupled with other components of the model in 

order to consider the effect of environmental factors, such as moisture damage and 

oxidative aging, on pavement performance. PANDA is capable of predicting change 

in failure mode, as well as the location of crack initiation due to moisture presence or 

aging effects. 

• PANDA is used to simulate asphalt concrete microstructure and investigate the effect 

of asphalt concrete constituents on the response and performance of asphalt mixes. 

Pavement design engineers can use the model and the software to analyze and 

predict the performance of pavements of various material combinations and, thus, 

select the best and most cost-effective materials for a proposed project. 

2.6.2 PANDA Research Efforts 

Asphalt concrete materials clearly display viscoelastic, viscoplastic, 

viscodamage, and healing responses. Huang (2008) presented a nonlinear viscoelastic-

viscoplastic model for predicting the behavior of asphalt concrete mixtures under 

different conditions. The model employs both the Schapery nonlinear viscoelastic theory 

and Perzyna’s theory for viscoplasticity with modified Drucker-Prager yield surface. In 

addition, he presented a new method for separating viscoelastic and viscoplastic 

responses from the total response of asphalt concrete materials. The nonlinear 

viscoelastic-viscoplastic constitutive model was implemented in the ABAQUS FE 

package using the user material (UMAT) subroutine to simulate fatigue and permanent 

deformation distresses of asphalt concrete pavements. 

31 



Darabi (2011) proposed a thermodynamic-based framework to derive thermo-

viscoelastic, thermo-viscoplastic, thermo-viscodamage, and micro-damage healing 

constitutive relationships for asphalt concrete mixtures. In addition, he proposed a 

hardening-relaxation model to account for the viscoplastic hardening and relaxation 

response of asphalt concrete subjected to cyclic loading. The proposed framework, 

PANDA, is validated with comprehensive experimental testing including creep, creep 

and recovery, dynamic modulus, constant strain rate, and cyclic stress/strain-controlled 

tests in both compression and tension modes and over a wide range of testing conditions. 

The PANDA model demonstrates that it is capable of predicting time-rate and 

temperature-dependent performance of asphalt concrete mixtures subjected to different 

loading conditions. 

Abu Al-Rub et al. (2012) investigated the effects of different FE modeling 

techniques and material constitutive models on predicting asphalt concrete performance 

under repeated loading patterns. Different coupling techniques of PANDA constitutive 

relationships, such as elasto-viscoplastic, viscoelastic-viscoplastic, and viscoelastic-

viscoplastic-viscodamage, were used to evaluate permanent deformation predictions of 

asphalt concrete performance. In addition, different modeling techniques (2D and 3D) 

and loading patterns (pulse and equivalent) were used to evaluate and compare rutting 

predictions in asphalt pavements. 

You (2013) used the coupled thermo-viscoelastic, thermo-viscoplastic, and 

thermo-viscodamage constitutive model in developing 2D and 3D methods to represent 

the microstructure of asphalt concrete materials. X-ray CT images were used to generate 
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2D representative volume elements (RVEs) based on identifying three phases of 

aggregate, matrix, and interfacial transmission zone (ITZ), representing the interface 

between the aggregate and the matrix. Then, the generated 2D X-ray CT images were 

gathered to construct a 3D microstructure of asphalt mixtures. You (2013) used the 2D 

and 3D microstructural modeling in investigating the effect of aggregate shape, 

distribution, volume fraction, ITZ strength, strain rate, loading rate, loading type, and 

temperature on the asphalt concrete response. In addition, the nonlinear constitutive 

model, FE analysis, and X-ray CT were combined to link the microstructural properties 

represented in the FAM with the macroscopic response of the full asphalt mixture. 

Shakiba (2013) developed a physically based constitutive relationship that 

captures the moisture-induced damage of asphalt concrete. Based on the principle of 

virtual power and the laws of thermodynamics, Shakiba coupled the effects of moisture 

diffusion and pore water pressure to propose the Continuum Moisture-Mechanical 

Damage Mechanics (CMMDM) theory, which captures moisture degradation effect. The 

proposed moisture-induced damage constitutive relationships are implemented in 

PANDA to simulate moisture damage effect on pavement performance. The PANDA 

framework is used to fundamentally analyze combined mechanical and moisture-induced 

damage effect on the complex environmental-mechanical response of asphalt concrete. 

In addition, 2D and 3D micromechanical simulations were performed using the proposed 

framework to predict the microstructural response of asphalt concrete under the 

combined effect of moisture diffusion and traffic loading. 
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Rahmani (2015) developed a mechanistic-based aging constitutive relationship 

that captures oxidative aging damage in asphalt concrete. Based on continuum theory, an 

aging-state variable, which is correlated with oxygen content via an evolution function, 

was proposed to represent the thermo-dynamical change in mechanical and macroscopic 

properties of asphalt concrete due to oxidative aging damage. The developed aging 

constitutive relationship is implemented in PANDA by introducing the aging-state 

variable to Schapery’s viscoelastic model. PANDA models the oxidative aging damage 

in asphalt concrete based on oxygen content, temperature, and level of aging at a certain 

time. 

 

2.7 Summary 

Asphalt concrete materials exhibit complex mechanical behavior under general 

traffic loading and environmental conditions. The literature review, presented in this 

chapter, describes the general behavior aspects for asphalt materials and research efforts 

to model this behavior. During the last decade, several research efforts have been 

conducted at Texas A&M University to better model asphalt concrete based on 

mechanistic approaches. PANDA is the comprehensive product of these efforts; it is 

capable of analyzing the performance of asphalt materials based on a nonlinear damage 

approach. 

One advantage of PANDA is that it compares the utility of several material 

constituent combinations, which affects the whole mechanical response. Therefore, 

determining the response of PANDA model parameters to these material components is 
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essential for knowing which mixture component affects which parameter. Various 

environmental conditions, as well as a wide range of asphalt mixtures based on different 

aggregate gradations, should be investigated to assess the sensitivity of model 

parameters. In order to perform these investigations, robust experimental tests and 

standard analytical methods are needed to determine PANDA parameters and calibrate 

its models. In addition, the complex response of asphalt materials should be modeled 

rigorously using noncomplex and sensitive models in order to effectively and efficiently 

predict performance under traffic loading and environmental conditions. The complexity 

of PANDA constitutive relationships is the motivation for this dissertation to develop 

experimental and analytical methods to identify PANDA model parameters and test the 

model sensitivity to its parameters, as described in detail in the following chapters. 
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CHAPTER III 

EXPERIMENTAL WORK 

 

3.1 Introduction 

This chapter describes the materials and asphalt mixtures used in the 

experimental program. In addition, it presents detailed information of test specimen 

fabrication and instrumentation, testing setup, laboratory testing techniques, and testing 

protocols. An asphalt mixture is composed of two matrices: CAM and FAM, and the 

properties of these constituents control the overall mechanical response of the mixture. 

FAM and CAM mixtures are designed as derivatives of a DGM in order to represent a 

wide range of mixtures. Consistent and controlled methods are followed in preparing 

FAM, CAM, and DGM specimens, as well as aging specimens for 3 and 6 months. A 

robust experimental setup is established to control temperature, confinement level, 

loading stress, and rate of loading. This experimental setup is used to apply various 

states of stresses in order to determine the material parameters of the PANDA model. 

DMT is used to identify linear viscoelastic parameters and time-temperature shift 

factors. RCRT-VS is used to identify nonlinear viscoelastic and viscoplastic parameters. 

The material parameters, or constants, determined experimentally using the proposed 

testing technique, are used in PANDA constitutive relationships to predict the 

performance of asphalt pavements. 
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3.2 Mixtures Overview 

The DGM used in this study follows the gradation design of C-type mixtures in 

the state of Texas, as presented in Table 3.1 (TxDOT 2004). The C-type mixture is 

produced by combining 30% C-rock, 36% F-rock, 24% washed screening, and 10% sand 

of limestone materials, which are provided with its gradation from stockpiles of the 

asphalt plant. An unmodified binder of PG 67-22 is used to produce DGM specimens 

with 4.4% asphalt binder; its crude oil source is Venezuela. 

 

Table 3.1 Specification Limits of Aggregate Gradation for Designing C-Type 

Asphalt Mixture (TxDOT 2004) 

 

 

The composition of asphalt concrete consists of two matrices: FAM and CAM. 

FAM is a composite of fine fillers, fine aggregates, air voids, and asphalt binder, while 

CAM is a coarse aggregate coated with asphalt binder and surrounded by air voids. 

Figure 3.1 represents the DGM composition. 

The FAM and CAM asphalt mixtures are designed based on the gradation and 

composition of the reference DGM. The FAM consists of the fine portion of the mixture 

with aggregates passing sieve #16 (1.18 mm) (Sousa et al. 2013), while the CAM 

consists of the coarse portion of the mixture with aggregates retained on sieve #16 (1.18 
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mm). The proportions of fine aggregates comprising the FAM are kept the same as in the 

full mixture aggregate gradation, but they are normalized with respect to the largest 

sieve in the FAM (#16). This means that 100% of the aggregate in the FAM passes sieve 

#16, and the percentage passing the smaller sieves is calculated as follows: 

 
Cumulative percent passing sieve x in FAM = 

Cumulative mass of aggregate passing sieve x in reference mixture *100%
Cumulative mass of aggregate passing sieve #16 in reference mixture

           (3.1) 

 

 

Figure 3.1 Composition of DGM 

 

The proportions of the coarse aggregates comprising the CAM are kept the same 

as in the full mixture aggregate gradation, but they are normalized with respect to the 

lowest sieve in the CAM (#16). This means that 100% of the aggregate in the CAM 

remains on sieve #16. The percentage passing the larger sieves is calculated as follows: 

 
Cumulative percent passing sieve x in FAM = 100 -

Cumulative mass of aggregate retained on sieve x in reference mixture *100%
Cumulative mass of aggregate retained sieve #16 in reference mixture

 
 
 

  (3.2) 
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After determining the percentage passing each sieve in the FAM and CAM, FAM 

and CAM aggregate gradations and the corresponding DGM gradation are compared, as 

given in Figure 3.2. Appendix A explains in detail the procedure of designing the FAM 

and CAM as derivatives of a DGM. 

 

 

Figure 3.2 Different Proportioning of Aggregate Gradations 

 

3.3 Test Specimen Fabrication and Instrumentation 

HMA specimens are prepared, as illustrated in Figure 3.3, in accordance with 

AASHTO standard T 312 (AASHTO 2016). The Superpave gyratory compactor (SGC) 

is used to compact cylindrical 170±1-mm-height and 152.4±1-mm-diameter HMA 

specimens. The SGC specimens are cored to 101.6±1-mm diameter and are trimmed 

using a double or single saw cut to 152.4±1-mm height. The sides and ends of test 
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specimens are required to be smooth and parallel. The ends of test specimens are kept 

perpendicular to the axis of specimens. Each specimen is checked using a machinist’s 

square. The air void content of test specimens is determined in accordance with 

AASHTO standard T 269 (AASHTO 2016). A tolerance is allowed of 0.5% from the 

target-percent air voids. Any specimen exceeding this tolerance is discarded. At least 

two specimens are tested at each test condition.  

The method for determining binder content relies on experimentally separating 

the fine portion of the mixture (passing sieve #16) from the coarse portion and 

determining the asphalt content of the fine portion and the coarse portion individually, as 

described in detail in Appendix A (Sousa et al. 2013). The determined asphalt contents 

are used to mix and compact FAM and CAM specimens in the SGC. The method takes 

advantage of the procedures described in AASHTO standards T 209 and T 308 

(AASHTO 2016) for determining the theoretical maximum specific gravity and binder 

content in asphalt mixtures, respectively. 
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Figure 3.3 Steps for Preparation of Test Specimens  

 

Three axial LVDTs are mounted to the sides of the test specimens at 120° apart. 

Figure 3.4 presents a schematic view of the test setup with mounted axial LVDTs. The 

gauge length of the axial LVDTs is 101.6±1 mm. Metal studs are mounted at a distance 

of 25.4 mm from the top and bottom of the test specimens. The mounting studs for axial 

LVDTs are glued directly to test specimens. Three metal studs for the radial LVDTs are 

mounted in the center of the test specimens at 120° apart and 60° from the axial LVDTs. 

The gauge length of the radial LVDTs is equal to the radius of the test specimens 

(50.8±0.5 mm). The mounting studs for radial LVDTs are glued directly to test 
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specimens. When confining pressure is required, a latex membrane is stretched over the 

test specimen. O-rings are used to seal the membrane to the top and bottom plates. 

Test 
Specimen

Loading Cell

Bottom Metal 
Plate

Top Metal 
Plate

Fixed Base

Axial LVDT

10
1.

6 
m

m

15
2.

4 
m

m

101.6 mm  

Figure 3.4 Schematic View of Test Setup with Mounted Axial LVDTs 

 

3.4 Testing Setup 

Some general principles and precautions are considered in setting up the 

experimental apparatus and executing creep and recovery experiments. In order to obtain 

desirable results with high precision and consistency, specific apparatus parts and 

methods are used, as described in detail below. 
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3.4.1 Loading Apparatus for Creep Testing 

For constant load creep testing, loading weight is the simplest and generally the 

most satisfactory. For applying higher weights, this method is not very satisfactory 

because of difficulty in applying the load without undesirable disturbances. Loading 

weights applied to a lever may be employed for greater loads. Some situations require 

servo control to be used to obtain a controllable and repeatable loading pattern during 

application of the load. The force on the specimen is determined by a load cell or other 

force-measuring device, and the stress is determined directly from the load and the 

geometry of the specimen. 

As long as load application method includes hydraulic or pneumatic (by means 

of pistons) and power screws, friction must be kept to a minimum if the stress is to be 

controlled and measured separately by means of a load-measuring device placed 

between the specimen and any apparatus subject to friction. Devices for applying load, 

such as pistons involving sliding seals and rings, generally involve too much friction to 

either control the load or determine stress from the fluid pressure. The challenge is to 

reduce the coefficient of friction as much as possible by either replacing sliding friction 

with rolling element friction or improving overall lubrication. 

The supporting frame of the MTS machine, which is used for applying creep 

testing, must be stiff enough that its deflection under loading does not disturb the load-

measuring or strain-measuring systems. The machine should be capable of producing 

controlled load in both compression and tension. It should be equipped with a ±22-kN 

(5,000-lb) load cell. The load cell should be calibrated in accordance with ASTM 
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standard E 4 “Standard Practices for Force Verification of Testing Machines” (ASTM 

2015). The system should be fully computer-controlled, capable of measuring and 

recording time, load, deformation, and confining pressure. 

3.4.2 Load Application 

During analysis and interpretation of the creep tests, it is usually assumed that 

load is applied instantaneously and remains constant after application. This is, of course, 

impossible to achieve because of the dynamics of the spring-mass system involved in the 

used machine. Thus, in practice, the load is applied gradually over a very short time span 

by using automated systems of load application to avoid bouncing, vibration, or 

overshooting the desired load. When servo control is employed, a step-change in input is 

a satisfactory means of load application if overshoot and vibration results are smoothed 

and minimized. While different rates of loading are applied, programmed loading is 

employed in order to have no difficulty achieving repeatable and consistent creep results. 

3.4.3 Test Specimen 

The common asphalt mix specimens for creep testing are cylindrical ones of 

101.6±1-mm (4-in) diameter and 152.4±1-mm (6-in) height (TxDOT 2004). It is 

important for all specimens that the cross-sectional area be uniform over gauge length 

covered by the LVDT. 

3.4.4 Uniform Application of Stresses and Strains  

Application of uniform stress is very important in creep testing in order to 

accurately determine stress and strain. In order to achieve uniform stress or strain, it is 

necessary to eliminate bending stresses as much as possible. This can be accomplished 
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by adjusting the axis of the loading rod with respect to the specimen axis. Positioning the 

specimen properly requires the use of three strain gages on the specimen or the use of a 

bending detector. These tools are used to observe bending that may occur when a small 

test load is applied. When bending occurs, one of the three strain gauges will detect more 

strain than the others.  

3.4.5 Strain Transducers 

LVDTs are used to measure strain during the creep test. LVDTs are robust, 

absolute linear position/displacement transducers and are inherently frictionless. As 

LVDTs do not contain any electronics, they are designed to operate at high temperatures, 

under high vibration, and under shock levels with high sensitivity, stability, repeatability, 

and accuracy. 

During long-term experiments, the stability of LVDTs becomes more important. 

It is very difficult to keep the alignment of the LVDT axis accurate enough while the 

specimen deforms, especially at high temperatures. Errors due to such misalignment are 

difficult to avoid. Factors such as creep of the adhesive or creep of the gauge backing 

can result in unacceptable drift of the gauge output. Frictional effects should be checked 

by placing small loads on the specimen in the elastic range and removing them to verify 

that the strain indicated by the LVDT returns to the original value. Sensitivity of the 

LVDT may be verified by reducing test load size. For some situations, it is convenient to 

employ manual data observations in order to ensure consistent deformation in the 

attached LVDTs. Three LVDTs are used to record axial deformation, as well as three 

other LVDTs to record radial deformation. The three LVDTs that measure radial 
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deformations are mounted 120° apart at the mid-height of the specimen and 60° from the 

LVDTs used to record axial deformations. 

3.4.6 Temperature Control 

Temperature control is essential during creep experiments, not only because 

temperature affects creep rate, but also because asphalt concrete behavior is temperature-

dependent. Various means of temperature control and temperature distribution are 

employed. The testing machine includes a temperature-controlled chamber to provide a 

well-controlled environment for the testing specimen. Rapid air circulation is used 

around the specimen to counteract the stack effect and improve temperature distribution. 

Temperature-sensing instrumentation may include resistance elements (thermistors) or 

voltage elements (thermocouples). The temperature-controlled chamber is provided with 

closed-loop servo-type automatic controllers for controlling heat input. It should be 

capable of controlling the temperature of test specimens over a temperature range of -10 

to 55°C. Opening the temperature-controlled chamber during creep experiments is not 

allowed to minimize change in environment temperature surrounding the specimen 

during testing. Any possible room in the interior of the building with heating and cooling 

temperature control is desirable. The room should involve circulation of air through 

some type of duct work, which may also serve to distribute air uniformly throughout the 

room. This allows for controlling the room’s relative humidity, which introduces the 

most problems affecting the test specimen. 
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3.4.7 Internal Pressure 

Maintaining an internal pressure in creep experiments is a challenging task. Air is 

the most common pressurizing medium in this type of experiment. The other media, 

liquids and gases, are hard to use without affecting creep behavior. A rubber membrane 

is used to cover the specimen during testing to ensure consistent distribution of confining 

pressure on the circumferential face of the specimen. As an asphalt specimen has air 

voids, the rubber membrane prevents air from flowing through the specimen during 

testing. Therefore, good-quality rubber membranes with enough thickness are required 

for creep experiments involving internal pressure. It is recommended to use one rubber 

membrane per experiment, especially at elevated temperatures. 

A triaxial cell is required for applying a confining pressure on the test specimens. 

The cell should withstand a working pressure up to 400 kPa (air). The cell should 

accommodate test specimens, with each having the dimensions of 101.6-mm (4-in) 

diameter × 152.4-mm (6-in) height. The cell should facilitate up to three “through-the-

wall” radial strain transducers, as shown in Figure 3.5. 
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Figure 3.5 Laboratory Testing Setup 

 

3.5 Testing Protocols 

3.5.1 DMT According to AASHTO TP-62 

A DMT is used to determine linear viscoelastic model parameters and time-

temperature shift factors. This test is conducted in accordance with AASHTO standard 

TP 62 (AASHTO 2016) using Universal Testing Machine-25 (UTM-25), as shown in 

Figure 3.6. This test is conducted at five different temperatures (−10, 4.4, 21.1, 37.8, and 

54.4°C) and six loading frequencies (0.1, 0.5, 1.0, 5, 10, and 25 Hz) at each temperature. 

Each test specimen, individually instrumented with LVDT brackets, should be tested for 

each of the 30 combinations of temperature and frequency of loading, starting with the 

lowest temperature and proceeding to the highest. Testing at a given temperature should 

begin with the highest frequency of loading and proceed to the lowest. Sinusoidal 
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loading is applied and adjusted to obtain axial strain between 80 to 110 microstrains in 

order to remain within the linear viscoelastic response. Testing starts from the lowest to 

highest temperature and from the highest to lowest frequency. The applied stress and 

recorded strain are used to calculate the dynamic modulus and phase angle. 

 

 

Figure 3.6 UTM-25 

 

3.5.2 RCRT-VS 

The MTS machine with a triaxial cell is used to conduct the RCRT-VS, as shown 

in Figure 3.7. The RCRT-VS is conducted at different temperatures with different 

confinement levels to identify nonlinear viscoplastic model parameters. The RCRT-VS 

includes six loading blocks. Each loading block consists of eight creep-recovery cycles 

with increasing applied deviatoric stress levels. The loading and unloading times of each 
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loading cycle remain constant through the entire test. The loading time is 0.4 seconds 

while the unloading time is 30 seconds. The deviatoric stress of the first loading cycle of 

the first loading block is 140 kPa, and it increases by a factor of 1.2(n–1); where n is the 

number of loading cycle in a specific loading block for the next loading cycle until the 

eighth loading cycle. The first deviatoric stress of the subsequent loading blocks equals 

the third stress level in the previous loading block, and it increases by the same factor of 

1.2(n–1) for the next loading cycle until the eighth loading cycle of that loading block. The 

test is conducted at different confining pressures (e.g., 70, 140 … kPa). Each applied 

confining pressure is maintained during the entire test. Figure 3.8 shows an example of 

the first three sequences of loading blocks of the RCRT-VS. 

 

 

Figure 3.7 MTS Machine with a Triaxial Cell 
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Figure 3.8 Applied Deviatoric Stresses in the First Three Loading Blocks of the 

RCRT-VS 

 

3.5.3 Uniaxial Constant Strain Rate Compression Test (UCSRCT) 

A constant uniaxial strain rate of 0.021 mm/sec is applied to test specimens in 

compression until failure. This test is conducted at different levels of confining pressure 

and temperature. Two replicates are tested at each confining level. The test is performed 

to determine the shear strength parameters of the Mohr-Coulomb failure criterion: 

cohesion (C) and internal friction angle (φ). 
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3.6 Summary 

PANDA incorporates several material constitutive relationships that define the 

behavior of asphalt mixtures at a wide range of stress and temperature levels. In order to 

better utilize PANDA capabilities, there is a need to develop a robust experimental 

approach to determine its parameters and to evaluate the influence of asphalt material 

composition on these parameters. This chapter presents the design of derivative 

mixtures, which represent the composition of DGM, to assess the sensitivity of model 

parameters to a wide range of mixture types. In addition, it describes the experimental 

setup and factors used to test asphalt mixtures at various testing conditions. A DMT is 

used to characterize linear viscoelastic parameters and time-temperature shift factors, 

while an RCRT-VS is used to characterize nonlinear viscoelastic and viscoplastic 

parameters. 
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CHAPTER IV 

VISCOELASTIC AND VISCOPLATIC PROPERTIES OF ASPHALT CONCRETE 

MIXTURES 

 

4.1 Introduction  

This chapter presents the characterization of viscoelastic (recoverable) and 

viscoplastic (irrecoverable) behavior of asphalt mixtures. The Schapery viscoelastic 

model is employed to represent the recoverable behavior, while the irrecoverable 

component is modeled by a modified Perzyna viscoplastic theory. First, the linear 

viscoelastic properties are obtained by measuring the dynamic modulus and phase angle 

at certain combinations of temperatures and frequencies. Then, an RCRT-VS is 

conducted at different temperatures (20, 40, and 55°C) and confinement stresses (70 and 

140 kPa). This test identifies Schapery nonlinear parameters and viscoplastic parameters. 

The systematic analytical procedure described in this chapter is used to determine 

the parameters of viscoelastic and viscoplastic PANDA models for three mixture types 

at different temperatures. Then, the results from the RCRT-VS are used to determine the 

evolution of shear strength parameters. 

 

4.2 Background 

Asphalt concrete mixtures consist of two matrices: (a) FAM, where fine 

aggregates passing sieve #16 are coated with asphalt binder and are surrounded by air 

voids (Sousa et al. 2013), and (b) CAM, where coarse aggregates retained on sieve #16 
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are coated with asphalt binder and are surrounded by air voids. The complex interactions 

between these matrices are affecting the total mechanical response of asphalt concrete 

mixtures. By designing the FAM and CAM as derivatives of a DGM, a wide range of 

mixtures is considered in the study. 

Numerous experimental studies have shown that asphalt mixtures have a time-, 

rate-, and temperature-dependent response. Various types of experimental tests and 

models have been used to characterize the mechanical response of asphalt concrete 

mixtures, which exhibit nonlinear responses under different loading conditions 

(Schwartz and Carvalho 2007). Nonlinear responses are exhibited, even at very small 

strain or stress levels, due to the combined effect of different phenomena (Masad et al. 

2005; Saadeh et al. 2007; and Im 2012), such as the difference between stiffness of the 

aggregate and the binder, interaction between aggregates and binder during the loading 

process, rotation and slippage of aggregates, temperature sensitivity of asphalt mixtures, 

and the evolution of micro-cracks and rate-dependent plastic response of asphalt 

concrete mixtures. 

Most numerical models are developed to predict responses under specific test 

conditions. Therefore, they do not represent the behavior of asphalt materials under 

general 3D stress states and realistic environmental conditions that actually happen in 

the field (AASHTO 2008 and Roque et al. 2010). This raises another challenging task: 

identifying proper computational techniques for asphalt pavement performance 

predictions. The long life of pavements, a very large number of loading cycles (millions 

of loading cycles), complex constitutive relationships, and the complex nature of applied 
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loading conditions make developing accurate and affordable computational techniques a 

challenging task. 

This chapter contributes to filling the gap in constitutive modeling and 

computational techniques of a wide range of asphalt concrete mixtures under the 

compression state of cyclic creep loading by describing the coupled viscoelastic and 

viscoplastic constitutive relationships of PANDA. PANDA constitutive relationships are 

developed to model the complex response of these materials under more realistic 

conditions (Darabi et al. 2012a, 2012b, 2012c and 2013). The viscoelastic response can 

be dominant at low temperatures and low stress levels, whereas both viscoelastic and 

viscoplastic responses become significant at high temperatures. The developed 

constitutive relationships are calibrated, validated, and subsequently implemented in the 

well-known FE code ABAQUS using the UMAT subroutine. A robust and 

straightforward analytical procedure is developed to extract material parameters 

associated with each component of the PANDA model. This procedure is based on raw 

data analysis of the designed tests, which are described in the previous chapter. Then, the 

implemented constitutive model of PANDA is used to predict the complex mechanical 

response of asphalt mixtures and to conduct performance simulation of asphalt 

pavements. 

 

4.3 PANDA Constitutive Model 

In this section, a summary is presented of the main constitutive equations for the 

derived viscoelastic and viscoplastic PANDA models by Abu Al-Rub et al. (2010) and 

55 



Darabi et al. (2011a, 2011b, and 2012). Assuming small deformations, the total strain is 

decomposed into a viscoelastic (recoverable) strain and viscoplastic (irrecoverable) 

strain, such that: 

ve vp
ij ij ijε ε ε= +                                                                                                                  (4.1) 

where ε , veε , and vpε  are the total, viscoelastic, and viscoplastic strain tensors, 

respectively. 

4.3.1 Linear Viscoelastic PANDA Model 

Schapery’s (1969a, 1969b) nonlinear viscoelastic model is implemented in 

PANDA. The nonlinear viscoelastic model can be written as follows: 
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= + ∆ −∫                                                            (4.2) 
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t

T

d
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ξψ = ∫                                                               (4.3) 

where ve
ijε  is the viscoelastic strain tensor; ijσ  is the stress tensor; Do is the instantaneous 

compliance; D∆  is the transient compliance; Dn and nλ  are the Prony series coefficients; 

N is the number of Prony series; Ta  is the time-temperature shift factor; and go, g1, and 

g2 are the nonlinear viscoelastic model parameters. For the linear viscoelastic model, go 

= g1 = g2 = 1 is assumed. Table 4.1 lists the parameters associated with the linear 

viscoelastic constitutive relationship and their physical significance. 

 

56 



Table 4.1 List of Linear Viscoelastic Parameters and Their Physical Significance 

Parameter Physical Meaning 

Ta  Time-temperature shift factor. Captures the response at different 

temperatures. 

0D  Instantaneous compliance. Related to the instantaneous 

viscoelastic response. 

nD  thn  Prony series coefficient related to transient compliance. 

nλ  thn  Retardation time associated with the thn  transient compliance

nD . 

N  Number of Prony series to acquire desired accuracy. 9N =  is 

recommended. No need to be determined. It should be assumed. 

 

4.3.2 Nonlinear Viscoelastic PANDA Model 

Using the RCRT-VS protocol (Schapery 1969b, Masad et al. 2008, and Rahmani 

et al. 2013), three nonlinear parameters, go, g1, and g2, can be determined, as listed in 

Table 4.2. However, the nonlinear parameter go only affects the instantaneous response 

of asphalt mixes. Due to the time-dependent response of asphalt mixes, it is very 

difficult to measure the instantaneous strain response of asphalt mixes to characterize go. 

Even if measured, the instantaneous strain response has a high level of variability. 

Therefore, it is assumed that go = 1. Viscoelastic nonlinearity is captured through 

parameters g1 and g2. 
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Table 4.2 List of Nonlinear Viscoelastic Parameters and Their Physical Significance 

Parameter Physical Meaning 

0g  Affects the instantaneous response. It is recommended to 

assume 0 1g =  because it is very difficult to measure the 

instantaneous response of asphalt mixtures. Nonlinear 

viscoelastic response is captured through nonlinear parameters 

1g  and 2g . Time-temperature shift factor captures the response 

at different temperatures. 

1g  Controls nonlinearity in the transient compliance. Affects 

viscoelastic nonlinearity mostly during the loading stages. 

2g  Controls the nonlinear response during the recovery and at 

different loading rates. 

 

To capture the effect of the multiaxial state of stresses on the nonlinear 

viscoelastic response of asphalt mixes, the total nonlinear viscoelastic strain tensor, nve
ijε , 

is decomposed into deviatoric strain tensor nve
ije  and volumetric component nve

kkε , such 

that: 

1
3

nve nve nve
ij ij kk ijeε ε δ= +                                                                                                        (4.4) 

Deviatoric and volumetric components of the viscoelastic strain can be expressed 
as: 
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where ijS are the components of the deviatoric stress tensor and kkσ  is the volumetric 

stress. 

Shear and bulk instantaneous ( oJ  and oB ) and transient ( J∆  and B∆ ) 

compliances are calculated based on the identified linear viscoelastic model parameters 

using the following equations: 

 
( ) ( ) ( ) ( )2 1 ; 2 1o oJ D J Dν ψ ν ψ= + ∆ = + ∆                                                                    (4.7) 

( ) ( ) ( ) ( )3 1 2 ; 3 1 2o oB D B Dν ψ ν ψ= − ∆ = − ∆                                                                (4.8) 

 

Deviatoric and volumetric components of the stress for the RCRT-VS under 

confinement stress, cσ , and additional axial stress, σ∆ , are calculated as follows: 
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4.3.3 Viscoplastic PANDA Model 

Perzyna’s (1971) viscoplastic model with modified Drucker-Prager yield surface 

is implemented in PANDA. The viscoplastic flow rule can be written as: 

. . .
;    

N
vp vp vp

vp
ij o

ij y

F fε γ γ
σσ

∂
= = Γ

∂
                                                                             (4.10) 

where vp
ijε is the viscoplastic strain tensor and 

. vp

γ is the viscoplastic multiplier. Perzyna 

expressed the viscoplastic multiplier in terms of an overstress function and a viscosity 

parameter that relates the rate of viscoplastic strain to the current stresses. N is the 

viscoplastic rate-sensitivity exponent parameter,  are the Macaulay brackets defined 

by ( ) / 2X X X= + , and o
yσ is a yield stress quantity used to normalize the yield 

surface and can be assumed as unity.  

Drucker-Prager yield surfaces have been used by a number of researchers for 

describing the viscoplastic flow behavior of HMA because they consider confinement, 

aggregate friction, aggregate interlocking, and HMA dilative behavior. A modified 

Drucker-Prager yield function, f, is employed that distinguishes between HMA behavior 

in compression and extension and also considers pressure sensitivity and plastic potential 

function F, such that: 

( ) 2 3
1 1 3

2

3 31 1;   ;   1 1
2 3vp vp

J Jf I p F I
d d J

τ α κ τ β τ
   = − − = − = + + − 

   
                (4.11) 

where α  and β  are the pressure-sensitive material parameters; k(p) is the isotropic 

hardening function associated with the cohesive characteristics of the material and 
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depending on the effective viscoplastic strain p; 1 kkI σ=  is the first stress invariant; τ  is 

the deviatoric effective shear stress modified to distinguish between HMA behavior 

under compression and extension loading conditions; 2
1
2

ij ijJ S S= and 3
1
2

ij jk kiJ S S S=  

are second and third deviatoric stress invariants, respectively; and vpd  is the model 

parameter that distinguishes the viscoplastic responses during extension and contraction 

modes of loadings. 

The vpd  value should have a range of 0.778 1vpd≤ ≤  to ensure that the yield 

surface convexity condition is maintained. The effect of parameter vpd  on the 

viscoplastic response of bituminous materials is shown schematically in Figure 4.1. 

Point A in this figure represents a point under hydrostatic pressure. Increasing the axial 

stress causes both the first stress invariant, 1I , and the second deviatoric stress invariant, 

2J , to increase. Hence, point A follows the stress path AB until the material yields at 

point B. On the other hand, by decreasing the axial stress (extension test), point A 

follows the stress path AC. The modified Drucker-Prager yield surface ( 0.778vpd = ) 

shows that the material yields sooner at point C because the inclusion of the vpd  

parameter reduces both the internal slope, α , and the hardening, κ , (at point B) to α′  

and κ′ (at point C), respectively. This feature of the modified Drucker-Prager yield 

function helps distinguish the yield behavior in the compression or extension mode of 

loading. 
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a) 

 

b) 

 

Figure 4.1 Graphical Schematic Illustration of the Influence of the Stress Path on 

the Modified Drucker-Prager Yield Surface 
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Table 4.3 List of Viscoplastic Parameters (Huang 2008, Abu Al-Rub et al. 2009, and 

Darabi et al. 2012c) 

Parameter Physical Significance 

α  Related to the angle of friction of the asphalt mixtures and ranges from 

0.1 to 0.3. 

β  Material parameter describing dilation or contraction behavior, related 

to the angle of friction and the dilation characteristics of asphalt 

mixtures. 

o
yσ  Yield stress quantity used to normalize the overstress function and can 

be assumed unity. 

vpΓ  Viscoplastic fluidity parameter such that its inverse has the units of time 

and represents the viscoplasticity-relaxation time. 

vpd  Ratio of yield strength in tension to that in compression. Fixed for most 

asphalt mixes = 0.778. 

N Viscoplastic rate sensitivity exponent. 

0κ  Initial yield strength. It has a very low value at high temperatures. Does 

not affect the results very much and can be assumed to have a small 

value between 50 and 150 kPa for most asphalt mixtures.  

1κ  The hardening limit of asphalt mixtures against viscoplastic 

deformation. Is in the order of compressive strength of asphalt mixtures 

at 40oC. 

2κ  Strain-hardening rate. 
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The isotropic hardening function, κ , is expressed as an exponential function of 

the effective viscoplastic strain, p, such that: 

( ) ( )
0.5

. . .

1 2
0.5 / 31 exp ;    1 2
1 / 3

vp vp

ij ijop p p βκ κ κ κ ε ε
β

−
  +

= + − − = +      −  
                  (4.12) 

Table 4.3 lists the viscoplastic parameters and their physical significance (Huang 

2008, Abu Al-Rub et al. 2009, and Darabi et al. 2012c). 

 

4.4 Calibration of PANDA Constitutive Model Parameters 

The procedure for identifying linear viscoelasticity, nonlinear viscoelasticity, and 

viscoplasticity parameters for the DGM, FAM, and CAM is presented as follows. 

4.4.1 Calibration of Linear Viscoelastic PANDA Model Using DMT 

This section presents a systematic procedure to identify time-temperature shift 

factors, as well as linear viscoelastic parameters based on DMT data. Dynamic modulus 

E* and phase angle θ  at each frequency and temperature are the outputs of the DMT. 

Values of complex compliance D* is determined such that: 

* *log logD E= −                                                                                                          (4.13) 

A sigmoidal-type function is used to fit the experimental data and to obtain the 

time-temperature shift factors. The sigmoidal function for the complex compliance can 

be written as: 

( )
*log

1 exp log r

D αδ
β γ ω

− = +
+ +  

                                                                      (4.14) 
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where rω  is the reduced frequency, δ  is the maximum value of the dynamic 

compliance, δ α+  is the minimum value of the dynamic compliance, and β  and γ  are 

parameters describing the shape of the sigmoidal function. Figure 4.2 represents the 

development of the dynamic modulus master curve before and after the time-temperature 

shifting. Time-temperature shift factor is defined as: 

r
Ta ω

ω
=                                                                                                                        (4.15) 

where ω  is the angular frequency. The term Ta  is the time-temperature shift factor at 

each temperature, as presented in Figure 4.2. Equations (4.14) and (4.15) introduce 4 + (

Tn –1) unknowns that should be determined: T 1 T 2 T Tα, β, δ, γ, a (n ), a (n ), ....a (n -1) ; where

Tn  is the number of temperatures at which the test is conducted. It should be noted that 

the number of unknown time-temperature shift factors are ( Tn –1) because Ta  is known at 

the selected reference temperature rT  (i.e., ( ) 1T ra T = ). The error function is defined as: 

2 1 SSER
SST

= −                                                                                                                (4.16) 

where ( )
2

exp
1

log log
M

fit
i

SSE D D
=

= −∑ , ( )
2

exp
1

log log
M

i

SST D D
=

= −∑ , M is the number of 

data points obtained from the DMT, explog D  is the experimentally measured 

compliance, log fitD  is the compliance fitted using Eq. (4.14), and log D  is the mean 

value of the measured compliance. 
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The 4 ( 1)Tn+ −  unknown variables are determined by minimizing the error 

function, 2R , using the Generalized Reduced Gradient (GRG) algorithm, which is also 

available in the Microsoft Excel® solver. Initial values for the unknown variables are set 

in the Excel solver by selecting the corresponding cells for each variable. The objective 

cell is the calculated value of 2R . The sigmoidal function parameters and time-

temperature shift factors are identified by minimizing 2R . The fitting parameters are 

determined by a numerical optimization using the solver function in Excel. 

 

 

Figure 4.2 Development of a Dynamic Modulus Master Curve 
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a) Dynamic Modulus Master Curves 

 

 

b) Time-Temperature Shift Factors 

Figure 4.3 Development of Dynamic Modulus Master Curves for DGM, FAM, and 

CAM 
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Figure 4.3 shows the dynamic modulus master curves generated for the three 

types of asphalt mixtures (DGM, FAM, and CAM). The master curves show that CAM 

behaves like DGM at high temperatures. The similarity in both mixtures’ behavior can 

be related to the drop of the viscoelastic role of the FAM in the DGM. In addition, the 

binder contents of the DGM and CAM are close: 4.4 and 3.4% by mixture weight, 

respectively. However, the FAM behaves differently due to a high binder content of 8%. 

This proves that the viscoelastic response could be dominant at low temperatures, 

whereas both viscoelastic and viscoplastic responses become significant at high 

temperatures. 

Once the time-temperature shift factors are identified, linear viscoelastic model 

parameters can be determined. Using the experimental data, storage compliance, 

*' cosD D δ= , and loss compliance, *" sinD D δ= , are calculated, as shown in Figure 

4.4.a. The Prony series coefficients shown in (Eq. 4.16) can be obtained by minimizing 

the error function, shown in (Eq. 4.17). 

 
( )

0 2 2 2 2
1 1

/
' ; "

1 / 1 /

N N
n nn

Model Model
n nn n

DDD D D
ω λ

ω λ ω λ= =

= + =
+ +∑ ∑                                                 (4.16) 

2 2
' "1 1
' "
Model Model

Exp Exp

D DERR
D D

   
= − + −      
   

                                                                        (4.17) 

 
where N is the number of Prony series coefficients, Do is the instantaneous compliance,  

and Dn is the nth transient compliance associated with the nth retardation time, nλ . 
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a) Storage and Loss Compliances 

 

b) Complex Compliance 

Figure 4.4 Development of Storage, Loss, and Complex Compliances in Frequency 

Domain 

0D

nλ
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Once the Prony series coefficients are determined in the frequency domain, as 

shown in Figure 4.4.b, the compliance in time domain can be formulated, as shown in 

Equation (4.18) with the same Prony series coefficients. 

0
1

( ) 1 exp
N

n
n n

tD t D D
τ=

  −
= + −     

∑                                                                                (4.18) 

The Prony series coefficients for the DGM, FAM, and CAM are identified based on the 

aforementioned interconversion relationships between the Prony series coefficients and 

the loss and storage dynamic moduli using the nonlinear GRG method. These Prony 

series values are tabulated in Table 4.4. 

Table 4.4 Linear Viscoelastic Model Parameters 

 DGM FAM CAM 

n ( )1/ snλ  nD  (MPa-1) ( )1/ snλ  nD  (MPa-1) ( )1/ snλ  nD  (MPa-1) 

D0  5.16×10-5  6.34×10-5  5.92×10-5 

1 2.38×102 1.20×10-5 3.47×102 2.65×10-5 3.16×102 1.11×10-5 

2 1.73×101 2.95×10-5 3.35×101 4.73×10-5 2.09×101 2.77×10-5 

3 1.25×100 6.23×10-5 3.22×100 7.55×10-5 1.39×100 6.12×10-5 

4 9.07×10-2 1.40×10-4 3.11×10-1 1.80×10-4 9.19×10-2 1.53×10-4 

5 6.57×10-3 4.82×10-4 3.00×10-2 2.97×10-4 6.09×10-3 4.14×10-4 

6 4.76×10-4 7.03×10-4 2.89×10-3 6.47×10-4 4.04×10-4 6.86×10-4 

7 3.45×10-5 3.14×10-3 2.78×10-4 8.17×10-4 2.68×10-5 2.49×10-3 

8 2.50×10-6 4.79×10-3 2.68×10-5 2.30×10-3 1.77×10-6 3.58×10-3 

9  
 

2.59×10-6 1.23×10-2   
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4.4.2 Calibration of Nonlinear Viscoelastic PANDA Model Using RCRT-VS 

This section outlines the procedure for identifying nonlinear viscoelastic 

parameters using RCRT-VS data of the DGM, FAM, and CAM. The instantaneous strain 

response at high temperatures is very small compared to the total viscoelastic strain 

level. In addition, measuring such small values during the cyclic creep-recovery test is 

very difficult and depends on several other factors such as date collection rate, loading 

time, and rest period. The measured value of the instantaneous strain has a high level of 

variability, making it difficult to assign it a unique value. Thus, 0g is assumed to be unity, 

and viscoelastic nonlinearity is captured through the parameters 1g  and 2g . Nonlinear 

viscoelastic parameters 1 2andg g govern the nonlinearity of the transient portion of the 

strain response (or equivalently, the time-dependent portion of the viscoelastic strain 

response). During creep (i.e., loading stage), viscoelastic nonlinearity is stemmed 

through the combined effects of 1g  and 2g . However, 2g  is the parameter controlling the 

nonlinear response during recovery (i.e., the unloading stage). The time-temperature 

shift factor captures the response at different temperatures (AASHTO 2008). 

To characterize nonlinear viscoelastic responses, irrecoverable strain has to be 

removed from the strain response. During creep, both recoverable and irrecoverable 

strains evolve. During recovery, however, viscoplastic strain remains constant and 

viscoelastic strain recovers. A data reduction method is used to characterize nonlinear 

viscoelastic parameters using the RCRT-VS. Stress and strain responses during the first 

loading cycle of the RCRT-VS are schematically presented in Figure 4.5 to show the 

procedure for identifying nonlinear viscoelastic parameters. 
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Figure 4.5 Schematic Representation of the Strain Response During a Cycle of 

RCRT-VS 

 

Parameter 2g  is determined by selecting an arbitrary point during recovery (e.g.,

0t ). It is recommended to assume 0t  such that 0 at t−  is 
1

10
 of the rest period. Then, the 

recovered strain, rε∆  is calculated for every point after 0t  during the rest period. rε∆ can 

easily be calculated using experimental data, such that: 

( ) ( ), ,
0

total r total r
r t tε ε ε∆ = −                                                                                          (4.19) 
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Using Equations (4.5) to (4.9) and assuming the viscoelastic response under pure 

confinement to be linear yields the following relations for deviatoric and volumetric 

components of viscoelastic strain during recovery: 

( ) ( )( ),
11 2 1

1 2
2 3

atr t a t te g J Jψ ψ ψ σ= ∆ −∆ − ∆                                                                  (4.20) 

( ) ( )( ) ( )( ),
2 1 0

1 1 3
3 3

atr t a t t t
vol cg B B B Bε ψ ψ ψ σ ψ σ= ∆ −∆ − ∆ + + ∆                                (4.21) 

where at  is the time corresponding to the end of loading. Deviatoric and volumetric 

components of rε∆  are calculated using Equations. (4.20) to (4.21), such that: 

0 0, ,, ,
11, 11 11 ,;       r t r tr t r t

r vol r vol vole e e ε ε ε∆ = − ∆ = −                                                                       (4.22) 

Equations (4.20) to (4.22) show that the only unknown to analytically calculate 

deviatoric and volumetric components of rε∆  is 2g . 2g  is calculated by minimizing the 

error between experimentally measured components of rε∆   (i.e., Eq. (4.19)) and 

analytically calculated components of rε∆  (i.e., Eq. (4.21)). 

Once the parameter 2g  is defined, 1g  can be calculated. cε∆ is determined from 

the experimental measurements. The term cε∆  is the difference between the total strain 

at the end of loading and the strain at an arbitrary point during the rest period (i.e., 

( ) ( ),total total r
c at tε ε ε∆ = − ), as shown in Figure 4.3. cε∆  is calculated using the nonlinear 

viscoelastic constitutive relationship, such that: 

( ) ( )nve nve
c at tε ε ε∆ = −                                                                                                (4.23) 
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2g  is the only unknown in calculating cε∆  using Equations (4.20) to (4.21). 1g  is 

identified by minimizing the error between the experimentally measured and calculated 

values of cε∆ . If both axial and radial strains are measured, the procedure outlined above 

is repeated for both volumetric and deviatoric components of cε∆ . The parameter 1g  is 

the average of the 1g  parameters obtained from deviatoric and volumetric components of

cε∆ . 

Having the nonlinear parameters on hand for different stress levels during the 

RCRT-VS (as shown in Figure 4.6) allows the nonlinear viscoelastic behavior of the 

asphalt mixtures to be characterized. Figure 4.7 shows that the nonlinear viscoelastic 

parameters predict the recovered strain well. Once the linear and nonlinear viscoelastic 

parameters are known, the irrecoverable strain response can be obtained by subtracting 

the viscoelastic behavior from the total measured strain response, as presented in Figure 

4.8. Figure 4.9 presents the identified values of the nonlinear parameters for different 

temperatures, while Figure 4.10 presents the identified values of the nonlinear 

parameters for different confinement levels. 
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Figure 4.6 Variation in Nonlinear Viscoelastic Parameters with Respect to Loading 

Cycle 
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a) Recovered Axial Strain Vs. Time 

 

b) Recovered Radial Strain Vs. Time 

Figure 4.7 Experimental Measurements and Model Predictions of the Recovered 

Axial and Radial Strains 
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a) Recovered and Total Axial Strain Vs. Time 

 

b) Recovered and Total Radial Strain Vs. Time 

Figure 4.8 Recovered and Total Axial and Radial Strains  

 

Total Axial Strain 
Recov. Axial Strain 

Total Radial Strain 
Recov. Radial Strain 
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a) 

 

b) 

 

Figure 4.9 Variation in Nonlinear Viscoelastic Parameters with Respect to 

Temperature 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60

g1
 p

ar
am

et
er

Temperature, °C

DGM_70kPA DGM_140kPA FAM_70kPa

FAM_140kPa CAM_70kPa CAM_140kPa

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60

g2
 p

ar
am

et
er

Temperature, °C

DGM_70kPa DGM_140kPa FAM_70kPa

FAM_140kPa CAM_70kPa CAM_140kPa

78 



c) 

 

Figure 4.9 Continued 

 

a) 

 
Figure 4.10 Variation in Nonlinear Viscoelastic Parameters with Respect to 

Confinement Level 
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b) 

 

c) 

 

Figure 4.10 Continued 
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According to Figures 4.9 and 4.10, the 1 2g g×  parameter, which expresses the 

transient response, increases as the temperature increases, while the 1 2g g×  parameter 

decreases as the confinement level increases. The asphalt materials become more 

nonlinear as temperature increases. Due to the effect of confinement level, the asphalt 

materials become more resistant to applied axial stress, producing less strain magnitude. 

As confinement level increases, slippage and change of the aggregate orientation during 

deformation decrease, which means that the confinement pressure makes the material 

stiffer and less time-dependent. 

The nonlinear viscoelastic behavior of the FAM is greater than the nonlinear 

viscoelastic behavior of the DGM, while the nonlinear viscoelastic behavior of the CAM 

is less than the nonlinear viscoelastic behavior of the DGM. The FAM, which has high 

asphalt binder content, has more aggregate mobility than the CAM, which has low 

asphalt binder content. At the same stress level, the nonlinear parameter 2g  values of the 

CAM are lower those of the FAM, and the nonlinear parameter 1g  values of the CAM are 

higher than those of the FAM. The CAM is more resistant to applied stress, producing 

less strain magnitude than the FAM. Especially at high temperatures, a FAM with high 

binder content (soft material) is more susceptible to nonlinear deformation than a CAM 

with low binder content (stiff material). 

The nonlinear viscoelastic parameters of the DGM, FAM, and CAM at different 

temperatures and confining levels are summarized in Table 4.5. 
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Table 4.5 Nonlinear Viscoelastic Model Parameters 

Mixture 

Type 

Temperature

, °C 

Confining 

Level, kPa 
g1 g2 g1 × g2 

DGM 

55 
70 1.13 0.86 0.97 

140 1.17 0.70 0.82 

40 
70 0.99 0.79 0.87 

140 1.04 0.66 0.58 

20 
70 1.00 0.72 0.72 

140 1.05 0.61 0.64 

FAM 

40 
70 0.92 0.92 0.85 

140 1.01 0.89 0.90 

20 
70 0.98 0.87 0.85 

140 0.99 0.80 0.79 

CAM 

40 
70 1.03 0.55 0.57 

140 1.05 0.55 0.58 

20 
70 1.02 0.57 0.58 

140 1.03 0.56 0.58 

 

4.4.3 Calibration of Viscoplastic PANDA Model Using RCRT-VS 

This section outlines the procedure for identifying viscoplastic parameters using 

RCRT-VS data. Several viscoplastic parameters are assumed because they do not vary 
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significantly among asphalt mixtures and can be assumed constant with reasonable 

accuracy. 

Equation (4-2) is used to calculate viscoelastic strain response during the loading 

stage of the RCRT-VS once linear and nonlinear viscoelastic parameters are identified. 

Viscoelastic strain is subtracted from total strain to obtain viscoplastic strain response 

during the creep part of RCRT-VS. Figure 4.11 schematically illustrates the extraction of 

viscoelastic and viscoplastic strain responses from the total measured strain. The 

viscoplastic parameters are identified by analyzing the extracted viscoplastic strain 

response. 

 

 

Figure 4.11 Illustrative Schematic of the Extraction of the Viscoelastic and 

Viscoplastic Components of the Total Strain 

 
The hardening parameter 2κ  is identified by manipulating Equations (4.10) and 

(4.11), yielding: 
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( )( ){ }1 0 1 2

0

1 exp
N

vp

y

I p

t

τ α κ κ κγ
σ

  − − + − −∆   = Γ
 ∆
 

                                                   (4.24) 

vpγ∆  is calculated using the extracted axial viscoplastic strain 1
vpε∆ , such that: 

( )1 / 1 / 3vp vpγ ε β∆ = ∆ −                                                                                                (4.25) 

The effective viscoplastic strain, p , is calculated using extracted axial and radial 

viscoplastic strains ( 1
vpε  and 2

vpε , respectively), such that: 

( ) ( )
0.5

2 2

1 2
0.5 / 3  1 2 2
1 / 3

vp vpp β ε ε
β

−
  +

= + +  −  
                                                           (4.26) 

If radial measurements are not available, radial viscoplastic strain is estimated as

2 1
0.5 / 3
1 / 3

vp vpβε ε
β

 +
=  − 

. Constant values for vpγ∆ are picked at different stress levels of the 

RCRT-VS, as shown in Figure 4.5. Then, Equation (4.24) is rearranged such that: 

( ) ( )( )
1/

0
1 1 1 2 0 11 ;       

Nvp

yI A Exp p A
t

γτ α κ κ κ σ κ κ
 ∆

− − − = − − = + + Γ∆ 
                     (4.27) 

( )1 1I Aτ α κ− − −  is plotted (as shown in Figure 4.12) versus p  at different stress 

levels where p , A , 1κ , and 1Iτ α−  are known. The parameter 2κ  is identified by 

minimizing the error between the experiments and calculations using Equation (4.27). 

Different values for vpγ∆ are picked, and the procedure is repeated to identify 2κ  at 

different values of vpγ∆ . The average 2κ  value is calculated at different vpγ∆ . 
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a) 

 

b) 

 

Figure 4.12 Identification of the Parameter 2κ by Minimizing the Error for Eight 

Successive Cycles 
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The rate-sensitivity exponent parameter, N , is identified by calculating ( )vp tγ∆

and tp  during the loading stage of the RCRT-VS at different stress levels using 

Equations (4.25) and (4.26), respectively. ( )0
vp tγ∆  and 0tp are calculated at the 

beginning of each loading cycle using Equations (4.25) and (4.26), respectively. 

Rearranging the formulation yields: 

( )
( )

( )( )
( )( )0

,
1 0 1 2

,
0 1 0 1 2

1

1

N
vp tvp
e

vp vp t
e

I Expt
t I Exp

τ α κ κ κ εγ
γ τ α κ κ κ ε

  − − + − −∆   =  ∆  − − + − −   

                                              (4.28) 

N is identified by minimizing the error between the experimentally measured 

( ) ( )0/vp vpt tγ γ∆ ∆  and model results using Equation (4.28), as shown in Figure 4.13. 
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Figure 4.13 Identification of the Rate-Sensitivity Exponent Parameter N  from the 

Relationship Between vpγ∆ and Loading Time for Eight Successive Cycles 

 

Once viscoplastic parameters 2κ  and N  are identified, the viscoplasticity 

parameter vpΓ  can be identified by fitting the vpγ∆  in each cycle using Equation (4.24), 

as shown in Figure 4.14. 
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Figure 4.14 Identification of Viscoplasticity Parameter vpΓ  from the Relationship 

Between vpγ∆ and Time for Eight Successive Cycles 

 

By determining the viscoplastic parameters, predicted viscoplastic strain can be 

compared to the measured one, as shown in Figure 4.15. By adding predicted 

viscoelastic strain to predicted viscoplastic strain, predicted total strain can be 

determined and compared to the measured one, as shown in Figure 4.16. The 

viscoplastic model parameters are summarized in Table 4.6 for the DGM, FAM, and 

CAM. 
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Figure 4.15 Measured and Predicted Viscoplastic Strain 

 

 

Figure 4.16 Measured and Predicted Total Strain 
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Table 4.6 Viscoplastic Model Parameters 

Mix. 

Type 

Temp.

, °C 
α β dvp Гvp N k0 k1 k2 

DGM 

55 0.15 0.080 0.778 1.91E-3 1.54 63 1613 322 

40 0.15 0.040 0.778 3.79E-4 1.07 75 1669 512 

20 0.15 0.001 0.778 1.23E-4 1.53 96 1670 5165 

FAM 
40 0.10 0.280 0.778 7.85E-4 2.2 38 759 991 

20 0.10 0.040 0.778 1.68E-4 1.5 40 1110 2150 

CAM 
40 0.12 0.180 0.778 3.02E-4 1.2 30 1033 1350 

20 0.12 0.001 0.778 1.14E-4 2.1 30 1237 4344 

 

The viscoplastic deformation of asphalt materials is nonassociative, which 

requires assuming the plastic potential function F to be different than the yield function 

f. By doing so, the direction of the viscoplastic strain increment is not normal to the yield 

surface, but to the plastic potential surface. In order to obtain nonassociative 

viscoplasticity, the Drucker-Prager–type function is used, where parameter α is replaced 

by another parameter, β (Huang 2008, Darabi 2011). Figure 4.17 shows different values 

of dilation parameter for the DGM, FAM, and CAM. The results show an increase in 

dilation characteristics for asphalt mixtures with an increase in temperature, which 

explains why the material expands more at high temperatures. The FAM has a high 

angle of friction, which is why it dilates more than the CAM and DGM. 
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Figure 4.17 Dilation Characteristics of DGM, FAM, and CAM 

 

As the asphalt materials become stiffer at low temperatures, they require more 

time to relax. Figure 4.18 shows that CAM, which have lower binder content, need more 

time to relax than FAM, which have higher binder content. FAM act more 

viscoelastically than CAM. As temperature increases, the difference increases between 

the orientation and position of the aggregates at the end of loading and during unloading. 

This is because the binder gets softer and deforms more easily as temperature increases, 

which provides more mobility for the aggregates. Moreover, because the binder and the 

residual stresses relax faster during the rest period as temperature increases, the time-

dependent residual stresses cause faster rearrangement of the microstructure and, in turn, 

more recovery at the hardening level. 
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Figure 4.18 Viscoplasticity-Relaxation Time of DGM, FAM, and CAM 

 

 

Figure 4.19 Hardening Functions of DGM, FAM, and CAM 
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Figure 4.19 shows how the hardening function evolves with an increase in 

effective viscoplastic strain. At low temperatures, asphalt materials hardens faster, 

meaning that the material becomes harder as a result of plastic deformation, while the 

strengthening due to strain hardening can be lost at elevated temperatures. Therefore, the 

DGM gains more strain hardening than the CAM and FAM due to aggregate sizes, 

aggregate structure, and aggregate interlocking, which add more strength to the material. 

 

4.5 Development of Shear Strength Envelopes During RCRT-VS 

Strength parameters are very important in understanding the behavior of asphalt 

mixtures. There are various functions, or models, to describe failure criteria, such as 

Tresca criterion, von Mises criterion, Mohr-Coulomb criterion, and Drucker-Prager 

criterion (Chen & Liu 1990). 

 In general, the simple one-parameter models of Tresca and von Mises cannot be 

applied to asphalt concrete because they neglect the major effect of the hydrostatic stress 

component on strength. Mohr-Coulomb and Drucker-Prager criteria are commonly used 

for geomaterials. According to the Mohr-Coulomb criterion, shear strength increases 

with increasing normal stress on the failure plane. It can be represented by the following 

equation: 

tanCτ σ φ= +           (4.29) 

where τ is the shear stress; σ is the normal stress; C is the cohesive strength; and φ   is 

the internal frictional angle. The Mohr-Coulomb failure function, f, can be written in 

terms of the stress invariants (Chen and Baladi 1985), which results in: 
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21
2sin sin( + )+ cos( + )sin C cos

3 3 33
JIf J π πφ ψ ψ φ φ= + −                 (4.30) 

where I1,J2, J3 are the first , second, and third stress invariants of deviatoric stress tensor, 

ψ  is the angle of similarity (lode angle) 1 13 3
3 3

2
2

21 3 3 1cos cos
3 2 3 oct

J J

J
ψ

τ
− −
   
 = =       

, and 

octτ  is the octahedral shear stress ( ) ( ) ( )
1

2 2 2 2
1 2 2 3 3 1

1
3octτ σ σ σ σ σ σ = − + − + −  . 

The Mohr-Coulomb yield surface represents the yield criterion at its simplest; 

however, the failure surface has sharp corners (singularities) (Meyer and Labuz 2013). 

Shear strength properties (C and φ ) have well-defined physical interpretation, and they 

can easily be determined from experimental testing data. 

An approximation of the Mohr-Coulomb criterion is presented as an extended 

Mohr-Coulomb rule (Drucker and Prager 1952). The material constants in Drucker-

Prager criterion can be determined by matching two particular points with those of the 

Mohr-Coulomb criterion; thus, the two constants α and k can be expressed in terms of 

the Mohr-Coulomb parameters C and φ . 

In 3D stress-matching, if the points are selected in such a way that the failure 

surface circumscribes the Mohr-Coulomb hexagonal pyramid, as shown in Figure 2.8, 

the material constants are (Chen and Liu 1990, Chen and Mizuno 1990): 

( ) ( )
2sin 6 cos;         

3 3 sin 3 3 sin
Ckφ φα

φ φ
= =

− −
                  (4.31) 
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The traditional method for determining shear strength properties of asphalt 

materials at the failure stage is determined by analyzing the output of the UCSRCT 

based on the Mohr-Coulomb yield failure criteria. Equation (4.29) is used to capture the 

Mohr-Coulomb envelope for the DGM, FAM, and CAM. Figure 4.20 presents the 

experimental measurements of monotonic tests for unconfined conditions and 

confinement stress of 140 kPa, strain rate of 0.021 mm/sec, and temperatures of 40 and 

55°C. Shear strength parameters C and φ  are determined at failure stage as the intercept 

and slope of the Mohr-Coulomb envelope, respectively, as shown in Figure 4.21. 

 

 
a) Mohr-Coulomb Envelope for DGM at 55°C 

Figure 4.20 Monotonic Test Measurements for Unconfinement and Confinement 

Stress of 140 kPa at a Strain Rate of 0.021 mm/sec and Temperatures of 40 and 

55°C 
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b) Mohr-Coulomb Envelope for DGM at 40°C 

 
c) Mohr-Coulomb Envelope for FAM at 40°C 

Figure 4.20 Continued 
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d) Mohr-Coulomb Envelope for CAM at 40°C 

Figure 4.20 Continued 

 

A new approach is presented to extract the shear strength parameters of the 

asphalt materials by analyzing the output of the RCRT-VS based on the modified 

Drucker-Prager yield surface, which is implemented in PANDA. The new approach 

evaluates the evolution of shear strength parameters during creep and relaxation 

behavior, taking into consideration the hardening effect generated during testing. 

This section evaluates the validity of the value α by analyzing the RCRT-VS. 

After separating the viscoelastic response from the total response of the material under 

the RCRT-VS as described in Section 4.4.2, the viscoplastic response can be plotted 

with time. Figure 4.21 shows an example of viscoplastic strain versus time for a DGM at 

unconfined conditions and at a confinement level of 140 kPa. From the experimental 
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data, the first component of the deviatoric stress tensor (S11) can be plotted with 

viscoplastic strain, as shown in Figure 4.22. In Figures 4.21 and 4.22, S11 can be read for 

both confinement levels at the same time of loading, as shown graphically. Then, the 

relationships of the first stress invariant (I1) and the deviatoric effective shear stress ( octτ

) can be generated at different times of loading, as shown in Figure 4.23 as an example. 

It is noticeable that the intercept and slope of the relationship between the first stress 

invariant and the deviatoric effective shear stress increase with time as testing proceeds. 

 

 

Figure 4.21 Viscoplastic Strain Vs. Time 
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Figure 4.22 First Component of Deviatoric Stress Tensor Vs. Viscoplastic Strain 

 

 

Figure 4.23 Relationship Between Octahedral Shear Stress and First Stress 

Invariant 
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a) Intercept vs. Time 

 

b) Alpha vs. Intercept 

Figure 4.24 Evolution of Intercept and Slope During RCRT-VS 
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Using Equation (4.31), shear strength parameters are determined at each loading 

cycle. Figure 4.24 presents the evolution of the intercept and slope (i.e., shear strength 

parameters) during the RCRT-VS. Alpha is not constant during the RCRT-VS; however, 

its variation may be negligible. The asphalt material shear strength parameters are stress-

sensitive and time-dependent. 

By comparing the hardening function calculation from Section 4.4.3 and this new 

approach, for example at a viscoplastic strain of 0.1%, k equals 507 kPa when assuming 

a constant alpha, while it is 326 kPa when alpha is determined. At a viscoplastic strain of 

0.2%, k equals 829 kPa when assuming a constant alpha, while it is 477 kPa when alpha 

is determined. These values come from measurements of the DGM at 55°C. As a result, 

assuming alpha overestimates the hardening function. 

 

4.6 Summary 

This chapter presents a framework for analyzing linear viscoelastic, nonlinear 

viscoelastic, and viscoplastic behaviors of different asphalt mixtures at different 

temperatures and loading conditions. Two different tests are conducted to extract the 

viscoelastic and viscoplastic parameters. A systemic analysis procedure is developed to 

identify linear viscoelastic properties, nonlinear viscoelastic parameters, and viscoplastic 

parameters using the DMT and RCRT-VS. This analysis determines the long-term linear 

viscoelastic properties and time-temperature shift factors from dynamic modulus. Then, 

these linear viscoelastic coefficients are employed to decouple the recoverable and 

irrecoverable response from the RCRT-VS and obtain the nonlinear parameters. The 

101 



viscoelastic and viscoplastic PANDA models are used in this study to investigate the 

effect of temperature (20, 40, and 55°C) and asphalt mixture type (DGM, FAM, and 

CAM) on the response and performance of asphalt mixes. The results demonstrate that 

this material model has the ability to describe asphalt material behavior under different 

loading paths, and the results show reasonable correlation with experimental 

measurements. Pavement engineers can use PANDA to analyze and predict the 

performance of pavements of various material combinations and, thus, select the best 

and most cost-effective materials for a proposed project. 

The analysis applies only to one asphalt mixture. It is necessary to evaluate the 

applicability of the analysis method for more asphalt binders and aggregate sources that 

exhibit different properties from different sources. 
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CHAPTER V 

EFFECT OF AIR VOID CONTENT AND AGING LEVEL ON LINEAR 

VISCOELASTIC, NONLINEAR VISCOELASTIC, AND VISCOPLASTIC 

RESPONSES OF ASPHALT MIXTURES  

 

5.1 Introduction  

This chapter presents the characterization of linear viscoelastic, nonlinear 

viscoelastic, and viscoplastic behavior of asphalt mixtures, taking into account the 

possible interactions among temperature, aging level, and air void content. The 

analytical procedure described in Chapter IV is followed to determine the viscoelastic 

and viscoplastic PANDA model parameters for a DGM at three aging levels (0, 3, and 6 

months) and various air void contents (4, 7, and 10%). Experimental measurements are 

obtained from testing the mixture using the DMT and RCRT-VS at two different 

temperatures (40 and 55°C). The DMT data is used to identify the linear viscoelastic 

parameters, while the RCRT-VS data is used to identify the nonlinear viscoelastic and 

viscoplastic parameters of the PANDA model. 

 

5.2 Background 

As discussed earlier, asphalt materials are time-dependent materials, which can 

behave linearly or nonlinearly based on stress/strain level, loading rate, and temperature. 

The material behaves linearly when its properties are functions of time and temperature, 

and its response follows superposition and proportionality principles (Ferry 1961). In 
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addition, asphalt materials behave nonlinearly due to slippage and rotation of aggregates 

and localized high strains in the asphalt binder (Kose et al. 2000). 

Aging of asphalt materials causes premature failure, which affects the service life 

of asphalt pavement at high levels (Bell 1989, Campbell et al. 1962). Previous research 

studies show that the rate of oxidation of asphalt binder (i.e., oxidation as a function of 

exposure time) depends on environmental factors such as temperature and relative 

humidity (Chipperfield 1970). Peterson (1984) summarized the basic factors that control 

asphalt binder aging as volatilization, oxidation, and steric hardening. Volatilization 

happens when oily components of the asphalt binder is volatilized or absorbed by porous 

aggregates. Oxidation is the reaction of asphalt binder with oxygen, resulting in a change 

in its chemical composition. Steric hardening happens when thixotropic effects are 

produced due to molecular structuring. Aging phenomenon occurs in both the short and 

long terms (Bell et al. 1994). Short-term aging happens during the mixing process and 

the construction phase. Volatilization and oxidation effects cause short-term aging when 

asphalt mixtures are at elevated temperatures. Long-term aging happens in accordance 

with short-term aging and during the service life of asphalt pavement, as long as it is 

exposed to the environment. Oxidation is the main cause of long-term aging. Aging of 

asphalt binder is influenced by properties and content of asphalt binder, properties and 

gradation of aggregates, air void content of mixtures, and external factors such as time, 

temperature, and production-related factors (Xiaohu and Isaccson 2000). 

Research studies show that mechanical properties of asphalt materials are highly 

dependent on air void content. Air voids in the asphalt mix should be small and well 
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scattered so as to not affect the mix coherence. Having too many air voids allows more 

air and water to access asphalt layers, inducing aging and moisture damage and leading 

to growth of cracks. Not having enough air voids causes bleeding and promotes more 

plastic deformations. Tarefdar et al. (2007) studied the influence of air void content on 

the dynamic modulus and rut potential of asphalt mixtures. They reported that mixtures 

with high air voids have low dynamic modulus and high rut potential. Permanent 

deformation is usually associated with an increase in voids filled with asphalt binder. 

The objective of this part of the study is to characterize linear viscoelastic, 

nonlinear viscoelastic, and viscoplastic behaviors of asphalt mixtures that account for the 

possible interactions among temperature, time of loading (frequency), stress level, aging 

level, and air void content. Analysis of the linear viscoelastic behavior of investigated 

cases is done using DMT data; analysis of the nonlinear viscoelastic and viscoplastic 

behaviors is accomplished using RCRT-VS data.  

 

5.3 Materials and Experimental Testing Matrix 

The materials used in this study are designed, compacted, and fabricated 

following the same procedures described in Chapter III. To obtain uniform air void 

distribution, specimens are cored and cut to a height of 150 mm with a diameter of 100 

mm. The asphalt mixture is designed as a DGM based on Texas Department of 

Transportation (TxDOT) specifications (TxDOT 2004). An unmodified binder, PG 67-

22, is used with 4.4% binder content by asphalt mixture weight. DGM specimens are 

prepared to investigate three air void contents (4, 7, and 10%) and three aging levels (0, 
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3, and 6 months). Two different tests are conducted to extract the viscoelastic and 

viscoplastic PANDA model parameters, as shown in Table 5.1. The first test is the 

DMT, which is used to identify linear viscoelastic parameters. The second test is the 

RCRT-VS in compression. This test is conducted at two temperatures (40 and 55°C) and 

at a 140-kPa confinement level. The RCRT-VS is used to identify viscoplastic 

parameters, as well as nonlinear viscoelastic parameters. 

 

Table 5.1 Experimental Tests Used for Identification of Linear Viscoelastic, 

Nonlinear Viscoelastic, and Viscoplastic Parameters 

Test 
Temperature 

(°C) 

Loading Time/ 

Rest Period(s) 

Confinement 

Level (kPa) 

DMT 
–10, 4, 21, 37, 

54 
- - 

RCRT-VS in compression 40, 55 0.4/30 140 

 

5.4 Linear Viscoelastic Behavior 

The DMT is used to identify linear viscoelastic parameters, as well as 

temperature coupling term parameters (i.e., time-temperature shift factors). AASHTO 

PP62-09 “Standard Practice for Developing Dynamic Modulus Master Curves for Hot 

Mix Asphalt (HMA)” is applied to develop the E* master curves for the investigated 

DGM cases using the following equations (AASHTO, 2016): 

( )
*log

1 exp log r

E αδ
β γ ω

− = +
+ +  

                                                                        (5.1) 
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where |E*| is the dynamic modulus of the mixture in psi; δ, α, β, and γ are fitting 

parameters; and ωr is the reduced frequency in Hz. The reduced frequency is computed 

using time-temperature shift factors based on the second-order polynomial, shown as: 

( ) ( )2
1 2log log ;

log log ;      log log log
r R R

r r T r

a T T a T T
t a t t
ω ω

ω
= + − + −

= − = −
                                                                   (5.2) 

where, ωr is the natural circular frequency normalized by the time-temperature shift 

factor at the reference temperature in Hz; ω is the loading frequency at the test 

temperature in Hz; tr is the reduced time in seconds; a1, a2 are fitting coefficients; TR is 

the reference temperature; T is the test temperature in °F; t is the time in seconds; tr is 

the reduced time in seconds; and aT is the time-temperature shift factor. 

The fitting parameters are determined by a numerical optimization using the 

Solver function in Microsoft Excel. Starting with seed (initial) values for these 

parameters, the Solver function is used to minimize the sum of the squared errors 

between the logarithms of the average measured dynamic moduli at each 

temperature/frequency combination by varying the fitting parameters of the sigmoid 

function. Figures 5.1 and 5.2 show the E* master curves of the investigated DGM cases 

at different aging levels and various air void contents. 

107 



 

a) Dynamic Modulus Master Curves of DGM at 0-Month Aging Level 

 

b) Dynamic Modulus Master Curves of DGM at 3-Month Aging Level 

Figure 5.1 Effect of Air Void Content on Dynamic Modulus Master Curve 

108 



 
c) Dynamic Modulus Master Curves of DGM at 6-Month Aging Level 

Figure 5.1 Continued 

 

 
a) Dynamic Modulus Master Curves of DGM at 4% Air Void Content 

Figure 5.2 Effect of Aging Level on Dynamic Modulus Master Curve 
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b) Dynamic Modulus Master Curves of DGM at 7% Air Void Content 

 

c) Dynamic Modulus Master Curves of DGM at 10% Air Void Content 

Figure 5.2 Continued 
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Figure 5.1.a, Figure 5.1.b, and Figure 5.1.c show the effect of air void content at 

0-, 3-, and 6-month aging levels, respectively. The DGM, which has the lowest air void 

content (4%), has higher dynamic modulus values than the DGM with the highest air 

void content (10%); i.e., the material gets stiffer with decreasing air void content. At the 

0-month aging level, there is no significant difference in the dynamic modulus values for 

mixtures, which have an air void content of 7 or 10%. This means that the variation in 

the dynamic modulus trend decreases with an increase in air void content. After 6 

months of aging, there is no significant difference in the dynamic modulus values for 

mixtures, which have an air void content of 4 or 7%. This is because the low air void 

content reduces oxygen infiltration into the material, which causes less aging. 

Figure 5.2.a, Figure 5.2.b, and Figure 5.2.c show aging level effects at 4, 7, and 

10% air void contents, respectively. It is noticeable that aging level does not have a 

uniform effect on the dynamic modulus trend. The dynamic modulus master curve can 

be divided into two parts: the dynamic modulus trend at high temperatures (lower part of 

the figure) and the dynamic modulus trend at low temperatures (upper part of the figure). 

As observed, aging level does not have much effect on the upper part of the curve, as it 

represents the dynamic modulus trend in cold weather. This is due to the fact that asphalt 

materials become stiffer and purely elastic at low temperatures. On the other hand, there 

is a significant effect of aging level on the lower part of the curve, which represents the 

dynamic modulus trend at high temperatures. At high temperatures, the asphalt material 

behaves more as a viscoelastic material and depends on aging level. It is also obvious 

that dynamic modulus values increase with an increase in aging level. However, it is 
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noticeable that there is not much difference in the dynamic modulus values after 3 

months of aging. It is also noticeable that aging effect is not as significant on the 10% air 

void content mix as it is on the 7% air void content mix. 

The standard procedure is used to identify the linear viscoelastic parameters of 

the creep compliance (Prony series coefficients) and time-temperature shift factors using 

the complex compliance, *D , and the phase angle, θ . After constructing the master 

curves for the dynamic modulus, *E , from which the time-temperature shift factors are 

also identified, the next step is to calculate the complex compliance, *D , the storage 

compliance, * sinD D θ′ = ,  and the loss compliance, * cosD D θ′′ = , versus the 

reduced frequency, Rω . The Prony series coefficients ( nD  and nλ  ) are related to D′  and 

D′′  as follows (Park and Schapery 1999): 

( )0 2
1 1 /

N
n

n n

DD D
ω λ=

′ = +
+

∑ ;          
( )2

1

1
1 /

N
n

n n n

DD ω
λ ω λ=

 
′′ =  

+  
∑                                                (5.3) 

where nD  and nλ  can be identified from the above expressions by minimizing the error 

between the experimental and calculated D′  and D′′ , such that: 

2 2

1 1
Exp Exp

D Derror
D D

   ′ ′′
= − + −      ′ ′′   

                                                                                 (5.4) 

Rahmani (2015) proposed a phenomenological relationship for aged transient 

compliance of a viscoelastic material. Aged transient compliance is expressed as a 

function of the aging state variable and unaged transient compliance, such that: 

( , )AD f D A∆ = ∆                                                                                                           (5.5) 
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where AD∆  and D∆ are the transient compliance of the unaged and aged material in the 

effective configuration, respectively. Equation (5.5) allows for the viscoelastic properties 

of the aged material to be expressed in two different time scales: loading time and aging 

time. In other words, D∆ is a function defined in a time scale when the mechanical 

loading is applied, and the aging state variable, A , is expressed in terms of a time when 

oxidative aging happens. The influence of oxidation on the viscoelastic behavior of the 

aged asphalt mixtures is captured by the following relationships for parameters of aged 

transient compliance: 

( ) 11 kA
n nD A D= −                                                                                                           (5.6) 

( ) 21 kA
n nAλ λ= −                                                                                                             (5.7) 

where A
nD  and A

nλ are compliance terms and retardation times of the aged material, and 

1k  and 2k  are material properties. It is noted that the compliance terms are measures of 

stiffness, whereas the retardation times are the characteristic properties of viscoelastic 

materials being inversely related to viscosity of the matter. It is noted that the 

mechanistic-based relationships, Equations (5.6) and (5.7), imply that the compliance 

terms and  retardation times decrease with aging. Therefore, it is interpreted that the 

proposed relationship for the aged viscoelasticity ensures that the stiffness and viscosity 

of the aged material increases by decreasing the compliance terms and retardation times. 

The dynamic modulus trend of unaged specimens with 7% air void content is 

considered as the reference state. For any other air void content, the shift factor (AV) is 

used to account for vertical shift of the compliance of specimens with other percentages 
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of air voids relative to specimens with 7% air voids. Finally, the change in air void 

content and aged transient compliance of asphalt mixtures can be defined by substituting 

in Equation (5.5), such that: 

( ) ( )( )1 2,

1
. 1 . 1 exp 1 .

N
k kA AV t

n n
n

D AV A D A λ ψ
=

 ∆ = − − − −
 ∑                                              (5.8) 

The proposed shifting factors (AV, A, k1, and k2) can be identified from the above 

expressions by minimizing the error between the experimental and calculated
,A AV

D∆ , 

such that: 

( )2, ,A AV A AV
Experror D D= ∆ −∆                                                                                      (5.9) 

 

Table 5.2 Shifting Parameters at Different Air Void Contents and Aging Levels 

Shifting Parameters 
Air Void Content 

4% 7% 10% 

AV 0.76 1.00 1.03 

A3 0.17 0.17 0.17 

A6 0.22 0.22 0.22 

1k  2.97 2.88 1.79 

2k  0.48 0.56 0.24 
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Table 5.2 summarizes the shift factors. By evaluating the findings in Table 5.2, it 

can be concluded that the air void shift factor is mostly a function of the air void content 

in the asphalt mixture, while the aging shift factor is calculated for each aging level. The 

material properties 1k  and 2k depend on air void content. 

 

5.5 Schapery’s Nonlinear Viscoelastic Constitutive Relationship 

Schapery’s nonlinear viscoelasticity theory (Schapery 1969a and 1969b) is used 

to model the viscoelastic response of HMA, as described earlier in Section 4.3.2. Having 

the nonlinear viscoelastic parameters on hand for different stress levels during the 

RCRT-VS allows for characterization of nonlinear viscoelastic behavior of the asphalt 

mixtures. The irrecoverable strain response can be obtained by subtracting the 

viscoelastic behavior from the total measured strain response. Figure 5.3 presents the 

identified values of the nonlinear parameters at different temperatures, different aging 

levels, and different air void contents. 
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a) 

 

b) 

 

Figure 5.3 Effect of Aging Level and Air Void Content on Nonlinear Viscoelastic 

Properties 
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c) 

 

Figure 5.3 Continued 

 

As 1 2g g×  increases, the nonlinearity in viscoelastic deformation increases. From 

Figure 5.3, nonlinearity increases with an increase in testing temperature and an increase 

in aging level. In addition, the nonlinear viscoelastic deformation reaches its maximum 

at 7% air void content. Linear viscoelastic behavior is the case when the 1 2g g×  

parameter equals 1. However, most of the 1 2g g×  parameter values are less than unity, 

which is an indication that the RCRT-VS causes changes in the material structure (or 

hardening), reducing the viscoelastic response relative to the linear case. 
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5.6 Perzyna’s Viscoplastic Constitutive Relationship 

In order to calculate the viscoplastic deformations in asphalt mixtures, Perzyna-

type viscoplasticity constitutive equations (Masad et al. 2005, Tashman et al. 2005a, 

Huang et al. 2011a, and Huang et al. 2011b), as described earlier in Section 4.3.3, are 

used. By determining the viscoplastic parameters, the predicted viscoplastic strain can be 

determined and compared to the measured. The viscoplastic model parameters are 

summarized in Table 5.3 for different temperatures, aging levels, and air void contents. 

The viscoplastic deformation of asphalt materials is nonassociative, which 

requires assuming the plastic potential function F to be different than the yield function 

f. By doing so, the direction of the viscoplastic strain increment is normal to the plastic 

potential surface and not to the yield surface. In order to obtain nonassociative 

viscoplasticity, the Drucker-Prager-type function is used as the plastic potential function, 

but using the parameter β instead of α (Huang 2008, Darabi 2011). 

Figure 5.4 shows different values of dilation parameter of the investigated cases 

of asphalt mixtures. Results show an increase in the dilation characteristics for asphalt 

mixtures with an increase in temperature, which explains why the material expands more 

at high temperatures. However, the dilation characteristics decrease with an increase in 

aging level and air void content. As the air void content decreases, the angle of friction 

increases with an increase in material dilation. In addition, the material gets stiffer when 

it gets aged, which decreases dilation of the material. 
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Table 5.3 Viscoplastic Parameters for Different Aging Levels and Air Void Contents 

Temp., 
°C 

Air Void 
Content 

Aging 
Level α β dvp Гvp N k0 k1 k2 

40°C 

4% 

0 months 0.15 0.07 0.778 0.000507 1.42 27 1384 573 

3 months 0.15 0.05 0.778 0.000400 1.49 53 1523 2389 

6 months 0.15 0.03 0.778 0.000377 1.32 64 1600 2944 

7% 

0 months 0.15 0.04 0.778 0.000879 1.07 75 1669 512 

3 months 0.15 0.01 0.778 0.000857 1.12 94 1416 975 

6 months 0.15 0.001 0.778 0.000801 1.70 114 1479 1041 

10% 

0 months 0.15 0.03 0.778 0.002935 1.46 55 1365 493 

3 months 0.15 0.009 0.778 0.002495 1.82 92 1388 618 

6 months 0.15 0.001 0.778 0.002054 2.18 129 1411 743 
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Table 5.3 Continued 

Temp., 
°C 

Air Void 
Content 

Aging 
Level α β dvp Гvp N k0 k1 k2 

55°C 

4% 

0 months 0.15 0.12 0.778 0.001152 1.22 33 1858 697 

3 months 0.15 0.10 0.778 0.000931 1.57 41 1881 932 

6 months 0.15 0.08 0.778 0.000829 1.41 51 1901 1239 

7% 

0 months 0.15 0.08 0.778 0.002010 1.54 63 1613 322 

3 months 0.15 0.06 0.778 0.001911 1.63 71 1829 462 

6 months 0.15 0.05 0.778 0.001720 1.44 85 1877 579 

10% 

0 months 0.15 0.05 0.778 0.006300 1.31 70 1363 155 

3 months 0.15 0.04 0.778 0.006079 1.52 81 1417 451 

6 months 0.15 0.03 0.778 0.005507 1.70 89 1504 632 
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Figure 5.4 Effect of Aging Level and Air Void Content on Dilation Characteristics 

 

Asphalt materials get stiffer as temperatures decreases, as aging level increases, 

and as air void content decreases. When they get stiffer, viscoplastic potential decreases 

such that the resistance of the materials to undergo viscoplastic deformation increases. 

Such increase in resistance can be phenomenologically explained by changes in the 

viscoplastic fluidity parameter, Гvp. Figure 5.5 shows that stiff materials need more time 

to relax. 
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Figure 5.5 Effect of Aging Level and Air Void Content on Viscoplasticity-

Relaxation Time 

 

Figure 5.6 shows how the hardening function evolves with an increase in 

viscoplastic strain for different aging levels and air void contents. The asphalt materials 

harden faster as aging level increases and air void content decreases. 
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Figure 5.6 Effect of Aging Level and Air Void Content on Hardening Function 

 

5.7 Summary 

This chapter presents a framework for the analysis of linear viscoelastic, 

nonlinear viscoelastic, and viscoplastic behaviors of asphalt mixtures at different 

temperatures, air void contents, aging levels, and loading conditions. Two different tests 

are conducted to extract the viscoelastic and viscoplastic PANDA model parameters. 

The DMT is used to identify the linear viscoelastic parameters, while the RCRT-VS is 

used to identify the nonlinear viscoelastic and viscoplastic parameters.  
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The asphalt mixture gets stiffer with a decrease in air void content. While aging 

effect is small at low temperatures, there is a significant effect of aging level on the 

dynamic modulus at high temperatures. 

The linear viscoelastic data at different temperatures and loading frequencies are 

shifted horizontally to obtain the long-term response of the asphalt mixture by using the 

time-temperature shift factor (aT). The linear viscoelastic response for any air void 

content or aging level is obtained by vertically shifting the compliance terms and 

retardation times to the reference trend at an unaged 7% air void content. The 

nonlinearity term ( 1 2g g× ) increases with an increase in testing temperature and aging 

level. 

For the viscoplastic properties, the dilation characteristics decrease with a 

decrease in temperature, increase in aging level, and increase in air void content. When 

the asphalt material gets stiffer, its viscoplastic potential decreases such that the 

resistance of the mixture to undergo viscoplastic deformation increases. The asphalt 

material hardens faster, meaning that the material becomes harder as a result of plastic 

deformation, as aging level increases and air void content decreases. 

The analysis in this chapter is conducted for only one asphalt mixture. It is 

necessary to evaluate the applicability of the analysis method for more asphalt binders, 

aggregate sources, and mixture types that exhibit different properties for asphalt 

mixtures.  
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CHAPTER VI 

GLOBAL SENSITIVITY ANALYSIS FOR VISCOELASTIC AND VISCOPLASTIC 

PANDA MODELING OF ASPHALT MIXTURE PERFORMANCE 

 

6.1 Introduction  

The ability of the PANDA constitutive models to describe stress/strain 

relationships with time is dependent on the rational prediction of each model parameters. 

The sensitivity analysis of the PANDA constitutive models’ output is essential in 

identifying the significance of each model parameter’s effect on asphalt mixture 

response. By displaying the range of possible responses of an asphalt mixture for a range 

of input values, the pavement engineer can decide which input values are critical for an 

asphalt mixture to achieve desirable performance. In addition, the outcomes of the 

sensitivity analysis guide the experimental work to focus on determining the parameters 

that significantly affect mixture performance. The GSA methods based on FAST and 

Sobol sequence approaches are implemented in GSAT in MATLAB to evaluate the 

sensitivity of PANDA constitutive models to their input parameters. 

 

6.2 Background 

Several constitutive relationships and mechanistic models are developed for 

simulating, studying, and predicting the performance of asphalt mixtures under 

compression. These modeling approaches, including PANDA models, have many 

parameters that need to be determined experimentally. The uncertainty in model 
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parameters causes uncertainty in the model output prediction (Hornberger and Spear 

1981). As shown in Figure 5.1 (Loucks 2006), a highly sensitive model amplifies the 

uncertainty of the input to the uncertainty of the output. So, identification of the 

relevancy of the input parameters allows model simplification and reduces the 

computational cost. 

 

Figure 6.1 Influence of Model Sensitivity on the Relationship Between Input and 

Output Uncertainties (adapted from Loucks 2006) 
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6.3 Sensitivity Analysis Methods 

Sensitivity analysis allows studying the relationships between input and output 

uncertainties and identifying the most significant input parameters and the contribution 

of the variability input interactions (Sobol 1993, Saltelli et al. 2000, Pradlwarter et al. 

2005).  

Based on the literature of sensitivity analysis, it can be classified into two major 

branches: local sensitivity and global sensitivity. Local sensitivity is the only analysis 

performed in practical cases due to the computational costs (Saltelli 2002a). It refers to 

sensitivity at a certain point in the parameter space (typically at the optimal fit point to 

the real data). The local response of the model, obtained by varying input factors one at a 

time, is investigated while the remaining parameters are set to their nominal values. This 

procedure involves estimating the partial derivatives, possibly normalized by the 

nominal value of the factor or by its standard deviation (Campolongo et al. 1999). 

On the other hand, global sensitivity refers to a consolidated sensitivity over the 

entire input parameter space. The aim of GSA is to partition the whole output 

uncertainty to the different sources of uncertainty in the model inputs (Saltelli 2002b). In 

a complex model with many input parameters, GSA can be useful to simplify the model. 

So, if the model output is not sensitive to an input parameter, xi,, the effect of that 

parameter can be ignored, xi can be fixed, and the complexity of the model is reduced. 

GSA methods are based on estimating the fractional contribution of each input 

factor to the total variance of the model under investigation (Patelli and Pradlwarter 

2010). Too many algorithms are proposed in the literature for GSA. Two vigorous 
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approaches based on analysis of variance (ANOVA) decomposition are implemented 

and used (Cannavo 2012), namely the FAST method and the Sobol sensitivity, discussed 

in the following sections.  

In this study, a free software tool for GSA (named GSAT) is modified for the 

research purpose. The proposed approach of sensitivity analysis is tested and applied on 

the input parameters of both viscoelastic and viscoplastic PANDA models parameters, 

and their effects are studied on both recoverable and irrecoverable deformation. 

 

6.4 Variance-Based Sensitivity Analysis 

Variance-based sensitivity analysis is a form of GSA. Variance-based measures 

of sensitivity are attractive because they measure sensitivity across the whole input 

space, deal with nonlinear responses, and measure the effect of interactions in 

nonadditive systems (Patelli and Pradlwarter 2010). For these reasons, they are widely 

used when it is feasible to calculate them involving the use of Monte Carlo methods. 

Let y = f(X) be the model function, where y is the output and X = xi, where i = 1 

to n input parameters, each one associated with a probability density function (pdf). In 

sensitivity analysis, knowing how much variance would disappear is required if one or 

more input parameters is known and fixed. In other words, in the case of a single input 

factor, we are interested in the conditional variance of y, given }{,  var |i i ix x y x= . 

Because the true value of xi is not known in advance, only the variance of the conditional 

expectation, | iE y x   , for all possible values, xi, can be calculated. This variance, 
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usually indicated with Di, is a measure of the importance of input factor xi on the 

variance of the output, i.e., the sensitivity of y to xi. Normalizing Di by the unconditional 

variance of y, the following quantity is obtained: 

{ }
{ }

var |

var
i

i

E y x
S

y

  =             (6.1) 

The measure Si was referred to by Sobol (1993) as first-order sensitivity index, 

and it measures the only main contribution of the input xi on the output variance, 

neglecting interactions with other input parameters. If an interaction among input 

parameters occurs, the total effect on the output variance is greater than the sum of their 

first-order effects, i.e., Sij ≥ Si + Sj. Each index, Si, ranges between 0 and 1 and grows 

with an increase in input factor importance. The expected value of the output E[y] can be 

evaluated by the n-dimensional integral. 

{ } ( ) 
nI

E y f x dx= ∫              (6.2) 

where, without losing generality nf I⊆  , nI  is the n-dimensional unit hypercube. 

In the following sections, first function decomposition is introduced as useful to 

solve Equation (6.2); then, two methods (FAST and Sobol) are described, which 

basically use Equation (6.2) to calculate the sensitivity indices; and finally, their 

MATLAB implementation is discussed. 
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6.5 ANOVA 

If the mathematical model is described by a scalar function y = f(X), where X is 

the vector of the n-input variables and f(X) is defined and square-integrable in the unit 

hypercube [0, 1]n, it is always possible to write it as an expansion of terms in the 

following form: 

( ) ( )
1 1

n s

o i i
s i

f x f f x
= =

= +∑∑             (6.3) 

where the second summation is made over all the possible combinations of s different 

input variables, at most 2n components. Sobol (1990 and 1993) proved that this 

decomposition is unique and is known as ANOVA, if for all the components of the sum: 

1

0

( )  = 0,  where i = 1 to si i if x dx∫    (6.4) 

and 
1

0

(x)dxof f= ∫             (6.5) 

is the expected value of the model for uniformly distributed input variables. 

This decomposition has the important property of orthogonality, i.e., for any two 

subsets of input variables, α ≠ β, an inner product. 

1

0

 0f f dxα β =∫             (6.6) 
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6.6 FAST 

The FAST has successfully been applied to several linear and nonlinear modeling 

problems (Cukier et al. 1973, Cukier et al. 1975). The main idea underlying the FAST 

method is to convert the n-dimensional integral in Equation (6.2) into a one-dimensional 

(1D) integral using the ergodic theorem (Weyl 1938). Essentially, the function f(X) is 

expressed in a Fourier series: 

( ) 2 ,  where 1 to ni i

i
i

j k x
k

k
f x C e iπ

∞

=−∞

∑= =∑          (6.7) 

with 
2( ) i i

i
n

j k x
k

I

C f x e dxπ− ∑= ∫           (6.8) 

Considering the ANOVA decomposition, the component ( ),  i if x

where i = 1 to s , can be expressed as a Fourier series by taking into account the 

elements in Equation (5.7) with i = 1 to s, the only non-null indices (i.e., ki1 . . . kis ). 

In this way, the variances result in the sums of the modules of the Fourier 

coefficients: 

{ }var | |,  where 1 to s
i

i

i k
k

f C i
∞

=−∞

= =∑          (6.9) 

Because a multidimensional integral must be evaluated to calculate the Fourier 

coefficients in Equation (6.8), the idea is to transform the n-dimensional integral into a 

1D integral by expressing every input as a function of a new independent variable, s, as 

recommended by Saltelli et al. (1999). 
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( ) ( )( )1 arcsin sin
2i ix s sω= +         (6.10) 

where the set {ω1, …, ωn} is linearly independent of integer frequencies. The transform 

in Equation (6.10) defines a search curve in the input space. If the frequencies, ωi, are 

morphologic, the search curve can pass through every point in the input space as s varies 

from 0 to∞ , so the multidimensional integral over the input space can accurately be 

transformed into a 1D integral along the search curve. It is possible to demonstrate that 

the n-dimensional integral in Equation (6.2) can be estimated by integrating over this 

parameterized curve (Saltelli et al. 2000). Because the curve is periodic as in Equation 

(6.10), only the integration over a period of 2π is required: 

{ } 1 ( ) 
2

E y f s ds
π

ππ −
= ∫           (6.11) 

In order to calculate Equation (6.1), the output variance of the first-order 

functions in ANOVA decomposition, i.e., the ones depending only on an input factor xi, 

may be approximated by performing a Fourier analysis: 

[ ]| | |
ii k

i
E y x C=∑           (6.12) 

whose coefficients can be calculated as:  

21 ( )
2

i i

i

j k s
kC f s e ds

π π ω

ππ
−

−
= ∫         (6.13) 

The approximated Fourier coefficients, Cki, can be computed by numerical 

integration of Equation (6.13). 
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6.7 Sobol Sequence Sensitivity 

Sobol sequences are classified as quasi-random, low-discrepancy sequences 

(Sobol 1967). As shown in Figure 6.2, The Sobol sequence covers the space more 

evenly. These sequences use a base of two to form successively finer uniform partitions 

of the unit interval and then reorder the coordinates in each dimension. 

 

  

a) Pseudo-Random Sequence  b) Sobol (Quasi-Random) Sequence 

Figure 6.2 The Difference Between Pseudo-Random and Quasi-Random Sequences 

(adapted from Jheald 2011) 

 

In 1990, Sobol proposed a new approach to determine sensitivity indices based 

on ANOVA decomposition and to determine the sensitivity of coupled input parameters. 

The main concept is to determine variances of the terms in the ANOVA decomposition: 
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1 2

0
 ,  where 1 to i i iD f dx x s= =∫          (6.14) 

while the total variance will be: 

( )
1 2 2

0
1 1

  
n s

o i
s i

D f X dX f D
= =

= − =∑∑∫        (6.15) 

 Sobol (2001) defined the global sensitivity index as the ratio of variances, and all 

sensitivity indices are non-negative. 

, where 1 to i
i

DS i s
D

= =         (6.16) 

1 1
0  0,  and 1, where 1 to 

n s

i i i
s i

S f S i s
= =

= ⇔ = = =∑∑     (6.17) 

Si can be seen as a sensitivity measure of a set of variables xi. It corresponds to a 

fraction of the total variance given by fi (xi). For instance, S2 is the main effect of the 

variable x2; S23 is a measure of interactions between the variables x2 and x3 (i.e., the total 

variance due to parameters x2 and x3 does not equal the sum of the main effects of 

parameters x2 and x3 alone), and so on. From another standpoint, the first-order indices, 

Si, stand for the predicted percentage decrease in variance value, which is obtained when 

the ith parameter has no uncertainty (Borgonovo 2007, Saltelli 2002b). The first-order 

Sobol sensitivity indices are equivalent to the FAST indices (Chan et al. 2000). 

Determining all the sensitivity indices demands the estimation of second 

integrals. For highly dimensional problems, another approach by Sobol (1990) 

introduced sensitivity indices for subsets of variables and total sensitivity indices. If the 

model inputs x1, . . . , xn are assumed as independent random variables, the Sobol 
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approach remains the same. However, the integral functions Equations (6.4) and (6.5) 

must be multiplied by the respective distribution functions, and the integral intervals 

must be extended to [ ],−∞ +∞ , as reported in Sobol and Kucherenko (2005a). 

 

6.8 Quasi-Monte Carlo Approach 

Monte Carlo integration is a method for numerical integration (i.e., numerically 

computing a definite integral) using random sampling. Contradictory to most algorithms 

that usually evaluate the integrand on a regular grid, Monte Carlo integration is 

evaluated at random points (Caflisch 1998). This method is particularly useful for 

higher-dimensional integrals (Press and Farrar 1990). 

The Monte Carlo approach includes generating a sequence of pseudo-randomly 

distributed points inside the unit hypercube. Practically, replacing random sequences 

with low-discrepancy sequences is widely known as the Quasi-Monte Carlo method to 

improve the efficiency of the estimators. Some low-discrepancy sequences commonly 

used in sensitivity analysis include the Sobol sequence and the Latin hypercube design 

(Sobol and Kucherenko 2005b). 

The applicability of the Sobol GSA is related to the possibility of computing the 

multidimensional integrals reported in the previous section. The Monte Carlo quadrature 

formula is based on the probabilistic interpretation of an integral (Kucherenko and Shah 

2007). For a random variable that is uniformly distributed in In: 

( ) ( ){ }1

0
 f x dx E f x=∫           (6.18) 

135 



 

where ( ){ }E f x  is the mathematical expectation and can be approximated as: 

( ){ } ( )
1

1 N

i
i

E f x f x
N =

= ∑           (6.19) 

where ( )ix  is a sequence of random points in In of length N. The approximated Equation 

(6.19) converges to Equation (6.18) with probability 1 for N →∞ . 

For an arbitrary subset of variables { } { }1,...,i mx x xα = ⊂  and its complementary

{ }1,..., /nx xβ α= , two independent random points uniformly distribute in In :

[ ] [ ]1 1 1 2 2 2;  and ;π α β π α β= = . The model f(x) is evaluated in the two points

( ) ( )1 1 2 and ;f fπ α β . For N independent trials at N →∞ , the hypothesis of square-

integrability of f(x) is as follows:  

( )

( )

( ) ( )

1
1

2 2
1

1

2
1 1 2

1

1

1

1 . ;

N

k o
k
N

k o
k
N

k k k o
k

f f
N

f D f
N

f f D f
N α

π

π

π α β

=

=

=

→ 



→ + 



→ + 


∑

∑

∑

        (6.20) 

For the set of α, Sα is the sensitivity index, which includes all its partial 

variances. Each single sensitivity index can be iteratively determined from the following 

formula: 

2
1

1
....( 1) ...( 1) ,  where 1 to m r m

i r o
r

D D D D f i mα α α
α α

−
− −

− −

= − + − + − =∑ ∑    (6.21) 
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The summations are over all the permutations of size m-r of the indices listed in α. The 

estimation of Dα is accompanied by an error with 50% confidence as (Homma and 

Saltelli 1996): 

0.6745 F ID
Nα
−

∆ =           (6.22) 

where 

( ) ( )

( ) ( )

1 1 2
1

2 2
1 1 2

1

1 . ;

1 . ;

N

k k k
k

N

k k k
k

I f f
N

F f f
N

π α β

π α β

=

=

 =

 =


∑

∑
 

On the other side, the estimation of each Di, which follows the relation in Equation 

(6.21), is accompanied by an error of linear combination of the terms in Dα∆ . 

The efficiency of Monte Carlo methods is measured by the properties of random 

numbers. Clustering is a common disadvantage produced by random sampling. For any 

sampling, there will always be both empty areas and areas with dense points wasted due 

to clustering, as shown in Figure 6.2.a. In addition, the new points, which are randomly 

added, will not cover the empty areas precisely. Instead of pseudo-random sequences, 

using deterministic uniformly distributed sequences (low-discrepancy sequences) can 

produce a higher rate of convergence. The discrepancy of a sequence is a measure of its 

uniformity in a given volume of multidimensional space (Kuipers and Niederreiter 

2006). The sequence of low-discrepancy (or Quasi-Random) points, as shown in Figure 

6.2.b, prescribed in the Quasi-Monte Carlo approach (Sobol 1967), is featured by an 

enhanced convergence rate compared to the crude Monte Carlo as presented by Sobol 

(1990) and Homma and Saltelli (1995). For the number of trials, k, the selection of one 
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2n-dimensional quasi-random point, split into two n-dimensional points, reduces the 

number of samples N. 

 

6.9 GSAT 

A MATLAB framework consisting of a main code and a set of subroutines is 

used to determine the aforementioned sensitivity indices of a generic user-defined model 

in a toolbox named GSAT. This MATLAB code is an open source containing other 

features and expandable to any other MATLAB script (Cannavo 2012). Each subroutine 

included in the MATLAB code is responsible for performing a certain function. The 

functions are designed in a sequence for performing the desired sensitivity analysis. 

The basic steps to analyze the global sensitivity of a model are shown in Figure 

6.3. These steps begin with the creation of a new project (pro_Create). Then, for each 

input variable, xi, a new input with its characteristics must be added to the project by 

using the function (pro_AddInput). This function requires the name of the variable and 

its pdf, which allows the (fnc_SampleInputs) subroutine to know how to sample the 

input variables. Two pdfs are already implemented: the uniform distribution for an 

interval and the Sobol one for the Sobol quasi-random distribution. Once the set of input 

variables is specified, the analysis begins with an initialization step by the subroutine 

(GSA_Init). This step is required for generating the two sets of quasi-random points used 

for the quasi-Monte Carlo procedures, as explained in Section 6.8. For this purpose, the 

MATLAB framework should include the Sobol set code for generating the quasi-random 

sequences. In this specific subroutine, more samples are required to obtain similar results 
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in convergence, which enhances the quality of the low discrepancy in the supplied 

sequences. After that, the generic user-defined model is evaluated using the generated 

set of points, and the results are stored for sensitivity computation. Problem definition 

and algorithm initialization are followed by determining the sensitivity indices. 

GSAT includes a subroutine called (GSA_FAST_GetSi) for performing the 

FAST analysis to models with up 50 different input parameters (Cukier et al. 1973). The 

function under consideration is defined as an input parameter, and then the vector of 

sensitivity indices for all the input parameters is produced. On the other hand, the 

subroutine (GSA_GetSi) carries out the Sobol analysis by calculating the sensitivity 

index of a defined input set. The intermediate calculations and partial solutions are saved 

immediately during code processing to avoid repeating the calculations and to save time 

by speeding up the successive calculations on other input sets. All time consumed during 

code processing depends exponentially on the number of input variables. The algorithm 

is checked and tested using some benchmarks included in the GSAT package. 

As GSA’s goal is to assess the sensitivity of an output to a given set of input 

parameters (Saltelli et al. 2009), the implementation of the viscoelastic and viscoplastic 

PANDA models in GSAT is described in the following section. The sensitivity of the 

recoverable and irrecoverable permanent deformation is investigated based on the input 

parameters of the viscoelastic and viscoplastic PANDA models. 
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pro_Create

pro_AddInput

pro_SetModel

GSA_Init

GSA_FAST_GetSi

GSA_GetSy

Subroutine to create a new projectSubroutine to create a new project

Subroutine to add input variables to the project and 
defines its distribution range following a Sobol set
Subroutine to add input variables to the project and 
defines its distribution range following a Sobol set

Subroutine to set the model f(x) which is well-known 
as "Sobol’ function", and name it as 'model', to the 
project  

Subroutine to set the model f(x) which is well-known 
as "Sobol’ function", and name it as 'model', to the 
project  

Subroutine to initialize the project analysis by 
calculating the model at the sample points
Subroutine to initialize the project analysis by 
calculating the model at the sample points

Subroutine to calculate the first order global 
sensitivity coefficients by using FAST algorithm and 
verify that all coefficients equal the real ones in Si

Subroutine to calculate the first order global 
sensitivity coefficients by using FAST algorithm and 
verify that all coefficients equal the real ones in Si

Subroutine to calculate the global sensitivity 
coefficients Si for the set of all the input variables and 
verify that equals 1

Subroutine to calculate the global sensitivity 
coefficients Si for the set of all the input variables and 
verify that equals 1

 

Figure 6.3 Flowchart of the Subroutines Performing the Sensitivity Analysis Steps 

Included in the GSAT Using a MATLAB Code 
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6.10 Implementation of Viscoelastic and Viscoplastic PANDA Models in GSAT 

The PANDA modeling framework seeks to provide an advanced mechanistic 

approach to predict rutting (permanent deformation) with consideration to environmental 

conditions. The responses of asphalt mixes show both recoverable (viscoelastic) and 

irrecoverable (viscoplastic) components (Perl et al. 1983, Collop et al. 2003, Huang 

2008). The recoverable component is usually modeled using the solid-like viscoelasticity 

constitutive relationships, whereas the irrecoverable component is usually modeled using 

fluid-like viscoelasticity and/or viscoplasticity constitutive relationships. The 

viscoelastic and viscoplastic PANDA models couple Schapery’s nonlinear viscoelastic 

model (1969) with Perzyna’s viscoplastic model (1971) described by the extended 

Drucker-Prager yield surface. Schapery’s nonlinear viscoelastic and Perzyna’s 

viscoplastic constitutive relationships characterize and decouple the recoverable and 

irrecoverable strains by analyzing dynamic modulus and repeated creep-recovery 

experimental tests. More details about the PANDA models were mentioned earlier in 

Section 4.3. 

Three different asphalt mixtures are used to build the database of the PANDA 

model input parameters: FAM, DGM, and CAM. The investigated asphalt mixtures 

represent a rational range of commonly used asphalt mixtures in the field. From the input 

parameters database, the definition of each input parameter distribution range is built. 
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6.10.1 Sensitivity of Viscoelastic PANDA Model Parameters 

Schapery’s 1D single-integral viscoelastic model is presented in detail in 

Sections 4.3.1 and 4.3.2. For a specific asphalt mixture, linear and nonlinear viscoelastic 

parameters are extracted from the DMT and RCRT-VS. The DGM linear viscoelastic 

properties are used in the sensitivity analysis process, as shown in Table 6.1. Based on 

the presented data, the investigated sensitivity of Schapery’s model output is based on 

the effect of the nonlinear viscoelastic properties (g1 and g2). The characteristics of the 

nonlinear viscoelastic input parameters are implemented in the algorithm runs, as 

presented in Table 6.2, based on the database ranges of the three mixtures. 

Results from both FAST and Quasi-Random Monte Carlo sampling are both 

included in Table 6.3 for comparison. From the FAST results, it is observed that the 

SFAST for g1 is relatively small compared to the one for g2. These observations are 

consistent with the quasi-random Monte Carlo simulation sampling, with a different 

number of samples. As long as the sampling number increases, the quality of the low 

discrepancy gets enhanced. While the summation of the global sensitivity indices equals 

1, the sensitivity index of the interaction between the input parameters is also small. The 

parameter g2 represents the nonlinear contribution in the viscoelastic response due to the 

level of stress, while parameter g1 represents the nonlinear contribution in the transient 

response. As a result, input parameter g2 is most significant compared to input parameter 

g1. 
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Table 6.1 Linear Viscoelastic PANDA Model Parameters 

n ( )1/ snλ  nD  (MPa–1) 

1 2.38×102 1.20×10–5 

2 1.73×101 2.95×10–5 

3 1.25×100 6.23×10–5 

4 9.07×10–2 1.40×10–4 

5 6.57×10–3 4.82×10–4 

6 4.76×10–4 7.03×10–4 

7 3.45×10–5 3.14×10–3 

8 2.50×10–6 4.79×10–3 

0D  5.16×10–5 

 

 

Table 6.2 Characteristics of Nonlinear Viscoelastic PANDA Model Parameters as 

Sobol pdfs 

Definition 
Input Variables 

g1 g2 

Lower bound 0.6 0.1 

Upper bound 1.7 1.2 
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Table 6.3 Global Sensitivity Indices of Nonlinear Viscoelastic PANDA Model 

Parameters 

GSI g1 g2 

SFAST 0.0295 0.9023 

Si 

No. of 
samples for 

Quasi-
Random 

Monte Carlo 
simulation 

50000 0.0283 0.9031 

100000 0.0282 0.9030 

500000 0.0281 0.9030 

1000000 0.0280 0.9029 

 

A parametric analysis is conducted to capture the total effect of each input 

parameter using the upper and lower bounds in their definitions at a certain set of input 

values. Figure 6.4 shows the sensitivity of the viscoelastic strain due to the variation of 

each input parameter separately. The relative difference of the resulted viscoelastic strain 

is calculated as follows: 

ve ve
i reference

ve
reference

Relative Difference
ε ε
ε
−

=         (6.23) 

As a result, the total effect of the g1 parameter produces 1.77% change in the 

viscoelastic strain value within the lower and upper bounds of 0.6 and 1.7, respectively. 

On the other hand, the total effect of the g2 parameter produces 10.01% change in the 

viscoelastic strain value within the lower and upper bounds of 0.1 and 1.2, respectively. 

These findings confirm the results of the FAST algorithm and the global sensitivity of 

Quasi-Monte Carlo simulations. 
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a) The Effect of g1 Parameter on the Viscoelastic Strain 

 
b) The Effect of g2 Parameter on the Viscoelastic Strain 

Figure 6.4 The Total Effects of Nonlinear Viscoelastic PANDA Model Parameters 
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6.10.2 Sensitivity of Viscoplastic PANDA Model Parameters 

Perzyna-type viscoplasticity constitutive equations with modified Drucker-Prager 

yield surface are used to calculate viscoplastic strain in asphalt mixtures. These 

constitutive equations are presented in detail in Section 4.3.3. For a specific asphalt 

mixture, viscoelastic parameters are extracted from the RCRT-VS after separating the 

viscoelastic strain from the full response. The investigated sensitivity of Perzyna’s 

model output is based on the effect of the viscoplastic properties (α, β, vpΓ , N, ko, k1, and 

k2). The characteristics of viscoplastic input parameters are implemented in the 

algorithm runs, as presented in Table 6.4, based on the database ranges of the three 

mixtures. 

 

Table 6.4 Characteristics of Viscoplastic PANDA Model Parameters as Sobol pdfs 

Definition 
Input Variables 

α β vpΓ  N ko k1 k2 

Lower bound 0.15 0.001 0.0004 1.0 10 1000 150 

Upper bound 0.30 0.30 0.006 5.0 150 2000 600 

 

Results of sensitivity analysis by the FAST and quasi-Monte Carlo algorithms 

are presented in Table 6.5 for comparison. From the FAST results, it is observed that the 

SFAST of k1 is relatively high, followed by the SFAST of vpΓ  and k2 compared to the SFAST 

of other parameters. These observations are consistent with the quasi-random Monte 

Carlo simulation sampling, with a different number of samples. From the observation, 
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increasing the sampling number enhances the quality of the low discrepancy. As the 

summation of the global sensitivity indices equals 1, the interaction effect among these 

parameters, which is represented by 121 sensitivity indices, is remarkable. Where the k1 

parameter represents the hardening limit of asphalt mixtures against viscoplastic 

deformation, the N parameter is an exponent representing the viscoplastic rate 

sensitivity, the vpΓ parameter represents the inverse of viscoplasticity-relaxation time, 

and the ko parameter represents the initial yield strength of the asphalt mixtures. The α 

parameter is related to the angle of friction of the asphalt mixtures, the β parameter 

describes the dilation characteristics of asphalt mixtures, and the k2 parameter is the 

strain-hardening rate. As a result, the input parameter k1 is the most significant parameter 

compared to other input parameters. 

 

Table 6.5 Global Sensitivity Indices of Viscoplastic PANDA Model Parameters 

GSI α β vpΓ  N ko k1 k2 

SFAST 0.0099 0.0116 0.1512 0.0236 0.0120 0.3264 0.1211 

Si 

No. of 
samples 

for 
Quasi-

Random 
Monte 
Carlo 
simul-
ation 

50000 0.0122 0.0117 0.1538 0.0262 0.0138 0.3063 0.1253 

100000 0.0045 0.0117 0.1515 0.0200 0.0116 0.3063 0.1254 

500000 0.0068 0.0116 0.1513 0.0220 0.0118 0.3158 0.1223 

1000000 0.0093 0.0116 0.1512 0.0233 0.0119 0.3260 0.1210 
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A parametric analysis is conducted to capture the main effect of each input 

parameter using the upper and lower bounds in their definitions at a certain set of input 

values. Figure 6.5 show the sensitivity of the viscoplastic strain due to the variation of 

each input parameter separately. The relative difference of the resulted viscoplastic 

strain is calculated as follows: 

vp vp
i reference

vp
reference

Relative Difference
ε ε
ε
−

=         (6.23) 

As a result, the main effect of the k1 parameter produces 103.0% change in the 

viscoplastic strain value within the lower and upper bounds of 1000 and 2000, 

respectively. The main effect of the N parameter produces 13.2% change in the 

viscoplastic strain value within the lower and upper bounds of 1 and 5, respectively. The 

main effect of the k2 parameter produces 230.0% change in the viscoplastic strain value 

within the lower and upper bounds of 150 and 600, respectively. The main effect of the 

vpΓ  parameter produces 77.6% change in the viscoplastic strain value within the lower 

and upper bounds of 0.0004 and 0.006, respectively. The main effect of the ko parameter 

produces 40.3% change in the viscoplastic strain value within the lower and upper 

bounds of 10 and 150 kPa, respectively. The main effect of the β parameter produces 

32.0% change in the viscoplastic strain value within the lower and upper bounds of 

0.001 and 0.30, respectively. The main effect of the α parameter produces 12.0% change 

in the viscoplastic strain value within the lower and upper bounds of 0.15 and 0.30, 

respectively. 
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a) The Effect of k1 Parameter on the Viscoplastic Strain 

 
b) The Effect of N Parameter on the Viscoplastic Strain 

Figure 6.5 The Total Effects of Viscoplastic PANDA Model Parameters 
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c) The Effect of k2 Parameter on the Viscoplastic Strain 

 

d) The Effect of vpΓ Parameter on the Viscoplastic Strain 

Figure 6.5 Continued 
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e) The Effect of ko Parameter on the Viscoplastic Strain 

 

f) The Effect of β Parameter on the Viscoplastic Strain 

Figure 6.5 Continued 
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g) The Effect of α Parameter on the Viscoplastic Strain 

Figure 6.5 Continued 

 

These findings confirm the results of the FAST algorithm and the global 

sensitivity of quasi-random Monte Carlo simulations. The k1 parameter is the most 

significant parameter compared to the others. α, β, and k0 parameters can be assumed to 

be 0.15, 0.10, and 80 to 150 kPa, respectively, to reduce the computational cost and 

simplify the model. The outcomes of the parametric study come in accordance with 

results from both FAST analysis and using quasi-random Monte Carlo sampling, which 

are more accurate and consistent. 
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6.11 Summary 

In this chapter, GSA is used for assessing the sensitivity of the viscoelastic and 

viscoplastic PANDA models to the values of its input parameters. This sensitivity 

analysis allows computing the significance of model parameters, thus giving the 

possibility to focus the experimental work to determine parameters truly related to 

material behavior and significantly affecting the model response. An open-source 

MATLAB toolbox, namely GSAT, is used to perform the described sensitivity analysis. 

This toolbox has been tested by various researchers using different types of test 

functions. In this part of the study, the capabilities of the proposed GSA approach are 

used to test the robustness of the viscoelastic and viscoplastic PANDA models in order 

to simplify the models by fixing the values of their input parameters without significant 

effect on the output. In conclusion, GSAT serves as a flexible design tool for the purpose 

of this part of the study. Based on the GSAT results, some of the input parameters of the 

viscoelastic and viscoplastic PANDA models are relatively sensitive to the type of 

asphalt mixture. These are the nonlinearity parameter (g2), hardening function 

parameters (k1, and k2), and viscoplasticity-relaxation time (1/ Гvp). However, some 

parameters can be assumed as constant values: g1, α, β, and ko parameters can be 

assumed to be 1.0, 0.15, 0.10, and 80 to 150 kPa, respectively, in order to simplify the 

viscoelastic and viscoplastic modeling behaviors. 
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CHAPTER VII 

FIELD PERFORMANCE SIMULATIONS OF ASPHALT CONCRETE MIXTURES 

USING VISCOELATIC AND VISCOPLASTIC PANDA MODEL FRAMEWORK 

 

7.1 Introduction  

This chapter presents PANDA analysis of the effects of mixture type, air void 

content, and aging level on performance. The mixtures considered in the analysis are the 

DGM, FAM, and CAM, discussed earlier in Chapter IV. In addition, the DGM 

properties are determined at three different air void contents (including 4, 7, and 10%) 

and three aging levels (including 0, 3, and 6 months). Simulations are conducted using a 

2D axisymmetric FE model subjected to pulse wheel loading at intermediate and high 

temperatures. 

 

7.2 Background  

Rutting is the accumulation of permanent deformation that grows gradually with 

increasing numbers of loading cycles (Collop et al. 1995). Computer simulations of 

rutting should include structural loading, boundary conditions, and material constitutive 

behavior. The model should account for the effects of different stress levels, loading 

rates, and temperatures (Abu Al-Rub et al. 2012). 

FE analysis has been used extensively in the analysis of asphalt pavement 

performance. Lu and Wright (1998) constructed a 2D plane strain FE model to represent 

a three-layer pavement structure and employed Perzyna’s viscoplastic constitutive 
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relationship to predict permanent deformation under a large number of loading cycles, 

assuming pulse loading. Pulse loading is commonly used to represent a wheel-moving 

load. However, the implicit assumption in conducting 2D plane strain FE simulations is 

that the loading condition is represented as an infinite load strip in the traffic direction. 

Hunter et al. (2007) conducted 2D plane strain FE simulations of the wheel-tracking test 

in order to predict rutting performance assuming pulse loading. However, Hunter et al. 

(2007) used a power law viscoplasticity constitutive relationship and neglected 

viscoelasticity and damage evolution. Their simulations show that the shape of rutting is 

significantly different than that obtained experimentally. Kettil et al. (2007) conducted 

2D axisymmetric FE simulations and compared two different loading assumptions: pulse 

loading and equivalent loading. The equivalent loading assumption, which is another 

commonly adapted loading assumption to represent a wheel-moving load, applies wheel 

loading over the respective accumulative loading time, neglecting the unloading time 

periods. Results from this study show that the equivalent loading assumption gives 

comparable rutting performance predictions from the pulse loading assumption, such 

that by assuming an equivalent loading, one can save a significant amount of 

computational time. However, this conclusion is based on assuming an elasto-

viscoplastic material behavior, neglecting the viscoelastic and damage behavior of 

asphalt materials. Cho et al. (1996) compared rutting predictions from 2D plane strain, 

2D axisymmetric, and 3D FE simulations assuming a linear elastic behavior of asphalt 

materials. Results show that rutting values are similar for 2D and 3D cases when 

material is assumed to be linear elastic. Huang et al. (2001) conducted 2D and 3D 
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axisymmetric simulations of asphalt pavement sections using an elasto-viscoplastic 

constitutive relationship. Results of this research show that 3D FE analysis gives more 

accurate predictions as compared to field measurements. Huang (1995) proposed a step-

loading function to simulate a large number of loading cycles of a moving load in 3D FE 

simulations. This loading function accumulates each wheel pass time to produce a total 

cumulative loading time and then applies a single load step to a set of elements in the 

middle of the whole wheel path. Hua (2000) improved the cumulative loading time 

approach of Huang (1995). The improved approach also accumulates each single loading 

time and then applies a single load step on the whole wheel path to represent the moving 

wheel loading in 3D simulations. However, in both Huang’s (1995) and Hua’s (2000) 

work, an elasto-viscoplastic constitutive relationship is used for validating the proposed 

loading models. Park et al. (2005), Hua and White (2002), and Huang et al. (2001) used 

an elasto-viscoplastic model along with the cumulative loading time approach to 

represent a large number of loading cycles. Saleeb et al. (2005) used a visco-elasto-

plastic constitutive relationship to conduct a 3D FE simulation with a moving loading 

model by applying the loading on one set of elements and then moving forward to the 

next set of elements. However, most of the aforementioned FE simulations focus on the 

effect of loading modes. Rushing et al. (2015) used full-scale test sections subjected to 

heavy aircraft loadings at different temperatures to validate viscoelastic, viscoplastic, 

and hardening-relaxation constitutive relationships implemented in PANDA by 

conducting 2D FE simulations. PANDA simulations successfully evaluate the existing 
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pavement structure, as well as predict the critical locations of tensile and compressive 

stresses within the pavement structure. 

 

7.3 FE Model 

A 2D axisymmetric FE model is used in rutting simulation of a pavement 

structure. The 2D model consists of four layers: asphalt layer of 100-mm thickness, base 

layer of 160-mm thickness, sub-base layer of 400-mm thickness, and subgrade layer of 

300-mm thickness, as shown in Figure 7.1. A pulse wheel load of 44 kN and tire 

pressure of 780 kPa are applied to simulate traffic on the top of an asphalt concrete 

pavement surface. The wheel moves with a speed of 100 passes/min, consisting of 0.2 

seconds of loading time and 0.4 seconds of unloading time. The wheel loading area is 

assumed to have a circular shape with an area of 56400 mm2. The simulated total 

loading-unloading cycles are 10000 load pulses to represent the number of simulated 

wheel passes. The employed asphalt pavement layer thicknesses, loading area 

dimensions, and 2D pulse wheel loading characteristics are representative of those used 

in field testing. Because of the symmetric nature of the wheel loading condition and the 

slab geometry, the FE model can be reduced to half of the slab by constraining the 

horizontal direction on the vertical edge of the model to represent the middle of the slab. 

The boundary conditions in the 2D FE model are imposed such that the 

horizontal direction on the opposite side of the symmetric boundary is fixed, while the 

bottom of the pavement structure model is fixed in the vertical direction. Axisymmetric 

four-node elements with reduced integration (CAX4R) are used for axisymmetric 
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analysis (Abaqus 2010). A maximum element aspect ratio of 2 is used for the 2D 

elements. According to the performed convergence studies for the 2D simulations, 2.5 × 

2.5 mm2 elements (fine mesh) are used under and close to the loads where stress and 

strain levels are relatively high, whereas a maximum element size of 5 × 5 mm2 is used 

for the area far from the loading area. Infinite elements are used to eliminate the impact 

of boundaries on simulation results. Moreover, frictional and tangential loadings from 

the contact of the wheel with the asphalt top surface are neglected. 

 

 

Figure 7.1 2D Axisymmetric FE Model 

 

Nonlinear viscoelastic and viscoplastic behaviors are used in this analysis. Thus, 

viscodamage (due to stiffness loss), moisture damage, and oxidative aging constitutive 
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relationships in the PANDA modeling framework are turned off and not used for the 

purpose of this analysis. 

The toolkit PUI is used to create ABAQUS input files for simulations of pulse 

wheel loading applied to an asphalt concrete pavement surface. Appendix C presents a 

detailed description of PUI. Pavement structure and material properties are selected to 

represent a full-scale pavement section, as shown in Table 7.1. Asphalt concrete material 

properties are extracted from the laboratory RCRT-VS of plant-produced mixtures at the 

target test temperatures (40 and 55°C). 

 

Table 7.1 Material Properties of Asphalt Pavement Structure 

Layer Young’s Modulus (MPa) Poisson’s Ratio 

1 
From experimental testing 

based on the type of 
asphalt mixture 

0.35 

2 150.0 0.40 

3 150.0 0.40 

4 100.0 0.45 

 

Because permanent (viscoplastic) displacement is not considered as a degree of 

freedom at the element’s nodes in the classical FE method, it is impossible to directly 

calculate permanent surface deformation (rutting). However, the magnitude of rutting 

can be calculated numerically by integrating the magnitude of viscoplastic deformation 

through the pavement’s thickness. This can be achieved by dividing the thickness of the 

159 



 

asphalt layer into a number of sublayers, such that the rutting depth can be calculated as 

follows: 

( ) ( )

1

k
vp i i

rutting
i

z hε
=

=∑             (7.1) 

where ruttingz  is the permanent displacement (rutting), ( )vp iε  is the vertical viscoplastic 

strain at the thi  layer through the depth of the asphalt layer, and ( )ih  is the thi  layer 

thickness. In the following, rutting is calculated at the center of the pavement structure 

and for the asphalt layer, only for the purpose of conducting numerical comparisons. 

The rutting simulations of this chapter are conducted for up to 10000 loading 

cycles, which is much lower than the actual number of loading cycles in the wheel-

tracking tests. Hence, it is not a surprise that the predicted values for the surface rutting 

are lower than the actual rutting values in the wheel-tracking tests, which are conducted 

for a huge number of cycles. However, the main purpose of these simulations is 

obtaining qualitative comparisons of rutting values from different simplified 

assumptions. 

 

7.4 First Case Study: Effect of Asphalt Mixture Type on Rutting Performance 

In this study, the DGM, FAM, and CAM are simulated as the top asphalt layer in 

the aforementioned asphalt pavement structure in Figure 7.1. All simulations are 

performed using PANDA capabilities with asphalt layers represented using linear 

viscoelastic, nonlinear viscoelastic, and viscoplastic properties (Darabi et al. 2011a, 

2011b, 2012a, 2012b, 2012c, and 2013). Three different mixture types (DGM, FAM, and 
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CAM) are simulated by changing the viscoelastic and viscoplastic properties of the 

asphalt mix layer at 40°C to represent laboratory measurements. The resultant vertical 

viscoplastic strains are integrated along the depth of asphalt layer only to determine 

permanent deformation at the center of the loading pattern. The resultant rutting in 

pavement sublayers is not included in the calculations of permanent deformation. Figure 

7.2 shows the rutting performance of the DGM, FAM, and CAM as asphalt concrete 

layers at 40°C. The predicted permanent deformation after 10000 passes of DGM as an 

asphalt layer is 0.85 mm, while that of the FAM and CAM as asphalt layers are 1.0 and 

0.4 mm, respectively. These values are presented to show the capability of PANDA to 

simulate the rutting of different mixtures. Recall that the FAM and CAM are derivatives 

of a DGM and are not practical mixtures for road construction. 
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Figure 7.2 Comparison of Rutting Performance of Different Asphalt Concrete 

Layers (DGM, FAM, and CAM) at 40°C 

 

Figure 7.3 represents vertical viscoplastic strains within the investigated asphalt 

layers after 10000 cycles of loading at 40°C. The magnitude of viscoplastic strain is 

shown on the scale beside the figure. Compression strains are positive values, while 

tension strains are negative values. Computational results show that the highest 

magnitude of vertical viscoplastic compressive strain is located along the centerline of 

the loading area and decreases in magnitude toward the edge of the loading area, as 

shown in Figure 7.3. The magnitude of vertical viscoplastic compressive strains resulting 

in the DGM layer is higher than those in the FAM and CAM layers. The CAM has the 

highest resistance to rutting because of its low asphalt binder content. Moreover, DGM 

and CAM layers do not show gradual distribution of viscoplastic strains through the 
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layer thickness compared to the nearly uniform distribution of viscoplastic strains 

through most of the FAM layer thickness in the early stages of pavement life. This can 

be attributed to the homogeneity of the FAM internal structure compared to the DGM 

and CAM. 

 

 

 

a) DGM Layer 

 

b) FAM Layer 

 

c) CAM Layer 

Figure 7.3 Comparison of Vertical Viscoplastic Strain Contours of First Case Study 

at 40°C  

 

Figure 7.4 shows vertical viscoelastic strains within asphalt layers after 10000 

cycles of loading at 40°C. The highest magnitude of vertical viscoelastic strains is 

located along the centerline of the asphalt concrete layer and decreases in magnitude 

toward the edge of the loading area, as shown in Figure 7.4. Vertical viscoelastic 

compressive strains are generated at the top of the layer and decrease with depth. 

Vertical viscoelastic tensile strains are generated at the bottom of the layer. 
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The magnitude of vertical viscoelastic strains resulting in the CAM layer is lower 

than those experienced in the FAM layer. This is because the CAM layer has less asphalt 

binder and fines contents than the FAM layer. The increase in compressive viscoelastic 

strains causes the asphalt material to reach the yielding point faster, leading to the 

development of compressive viscoplastic strains, which are shown in Figure 7.3. 

It is observed that the recoverable viscoelastic strains of the FAM layer, 

compared to other layers, have the highest contribution to total strain generated under 

the loading area. However, the magnitude of viscoplastic strains in the DGM layer is the 

highest due to the wide range of aggregate size distribution in its mix design compared 

to the other asphalt mixtures considered in this study. 

 

 

 

a) DGM Layer 

 

b) FAM Layer 

 

c) CAM Layer 

Figure 7.4 Comparison of Vertical Viscoelastic Strain Contours of First Case Study 

at 40°C 
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7.5 Second Case Study: Effect of Air Void Content on Rutting Performance 

In this part of the study, the DGM is simulated as the top asphalt layer in the 

aforementioned asphalt pavement structure in Figure 7.1, with different air void contents 

(4, 7, and 10%) presenting three different scenarios of viscoelastic and viscoplastic 

PANDA simulations. The resultant viscoplastic strains are integrated along the depth of 

asphalt layer only to determine permanent deformation at the center of the loading 

pattern. As mentioned earlier, the resultant rutting in the pavement sublayers is not 

included in calculations of permanent deformation. Figure 7.5 shows the rutting 

performance of the DGM with different air void contents at 55°C. Accordingly, the 

predicted permanent deformation after 10000 passes is 3.0, 1.65, and 1.25 mm in an 

asphalt layer with air void percentages of 10, 7, and 4%, respectively. The increase in air 

void content significantly increases the accumulated permanent deformation of the 

DGM, as shown in Figure 7.5. 
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Figure 7.5 Comparison of Rutting Performance of Asphalt Concrete Layers with 

Different Air Void Contents at 55°C 

 

Figure 7.6 represents the vertical viscoplastic compressive strains within the 

DGM layer with different air void contents (4, 7, and 10%) after 10000 cycles of loading 

at 55°C. Computational results show that the vertical viscoplastic compressive strains 

evolve beneath the loaded area. Simulation results in Figure 7.6 confirm that the 

magnitudes of vertical viscoplastic compressive strains in the DGM increase with an 

increase in air void content. 
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a) DGM Layer with 4% Air Void Content 

 

b) DGM Layer with 7% Air Void Content 

 

c) DGM Layer with 10% Air Void Content 

Figure 7.6 Comparison of Vertical Viscoplastic Strain Contours of Second Case 

Study at 55°C  

 

Figure 7.7 shows vertical viscoelastic strains within asphalt layers with different 

air void contents (4, 7, and 10%) after 10000 cycles of loading at 55°C. The highest 

magnitudes of vertical viscoelastic strains are located along the centerline of the asphalt 

layer and decrease in magnitude toward the edge of the loading area, as shown in Figure 

7.7. 

However, the magnitudes of vertical viscoplastic strains in the DGM layer with 

an air void content of 10% are the highest, and the magnitudes of vertical viscoelastic 

strains resulting in the DGM layer with an air void content of 7% are the highest. This 

could explain why an air void content of 7% is desirable in the field, as the recoverable 

viscoelastic strains have the largest contribution to the total strain generated under the 

loading area. 
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a) DGM Layer with 4% Air Void Content 

 

b) DGM Layer with 7% Air Void Content 

 

c) DGM Layer with 10% Air Void Content 

Figure 7.7 Comparison of Vertical Viscoelastic Strain Contours of Second Case 

Study at 55°C 

 

7.6 Third Case Study: Effect of Aging Level on Rutting Performance 

In this study, the DGM is simulated as the top asphalt layer in the 

aforementioned asphalt pavement structure in Figure 7.1, with different aging levels (0, 

3, and 6 months) presenting three different scenarios of viscoelastic and viscoplastic 

PANDA simulations. Figure 7.8 shows rutting performance at different aging levels and 

a temperature of 55°C. The predicted permanent deformation after 10000 passes of the 

DGM as an asphalt layer with an aging level of 0 months is 1.65 mm; however, rutting is 

1.1 and 0.85 mm at aging levels of 3 and 6 months, respectively. Permanent deformation 

accumulation decreases with an increase in aging level, as shown in Figure 7.8. The 

accumulated permanent deformation decreases by 33% by comparing the performance 

of the unaged layer to the performance of the 3-month aged layer, while the accumulated 

permanent deformation decreases by 48.5% by comparing the performance of the 
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unaged layer to the performance of the 6-month aged layer after simulating 10000 

loading cycles. 

 

 

Figure 7.8 Comparison of Rutting Performance of Asphalt Concrete Layers with 

Different Aging Levels at 55°C 

 

Figure 7.9 represents vertical viscoplastic strains within the DGM layer with 

different aging levels (0, 3, and 6 months) after 10000 cycles of loading at 55°C. 

Simulation results in Figure 7.9 show that the magnitudes of vertical viscoplastic 

compressive strains in the DGM as an asphalt layer increase as the aging level of the 

asphalt layer decreases. 
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a) DGM Layer with 0-Month Aging Level 

 

b) DGM Layer with 3-Month Aging Level 

 

c) DGM Layer with 6-Month Aging Level 

Figure 7.9 Comparison of Vertical Viscoplastic Strain Contours of Third Case 

Study at 55°C 

 

 

 

a) DGM Layer with 0-Month Aging Level 

 

b) DGM Layer with 3-Month Aging Level 

 

c) DGM Layer with 6-Month Aging Level 

Figure 7.10 Comparison of Vertical Viscoelastic Strain Contours of Third Case 

Study at 55°C 
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Figure 7.10 shows vertical viscoelastic strains within asphalt layers with different 

aging levels (0, 3, and 6 months) after 10000 cycles of loading at 55°C. The highest 

magnitude of vertical viscoelastic strains is located along the centerline of the asphalt 

concrete layer and decreases in magnitude toward the edge of the loading area, as shown 

in Figure 7.10. 

 

7.7 Summary 

PANDA FE simulations can be used to compare the performance of different 

asphalt pavements that incorporate different materials and mixture designs. This chapter 

presents simulations of the response of different mixtures (i.e., different mixture designs, 

air voids, and aging levels). PANDA results show that the maximum compressive strains 

are located along the center of the loading area, whereas the maximum tensile strains are 

located at the edge of the traffic wheel outside the loading area. 

As illustrated, the rutting performance of asphalt concrete varies extensively 

depending, first of all, on the internal structure of the asphalt layer. Based on the 

information provided in Chapters IV, V, and VI, FAM exhibits the lowest values for 

hardening function parameters and viscoplasticity-relaxation time compared to DGM 

and CAM. This means that more permanent deformation takes place in FAM in 

comparison with DGM and CAM. 

Air void content and aging condition significantly influence the behavior of 

asphalt materials in resisting rutting. As temperature increases, the material becomes 

softer, resulting in lower yield strength and more susceptibility to permanent 
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deformation. Hardening function parameters and viscoplasticity-relaxation time increase 

significantly with reducing the air void content or increasing the level of aging 

condition. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusions 

This dissertation addresses the need in the asphalt pavement community to better 

understand and characterize the performance of asphalt mixtures due to the combined 

effects of traffic loading and environmental factors. The primary objectives of this 

research include the following: (1) to develop a robust experimental testing procedure to 

characterize the material resistance of asphalt mixtures to permanent deformation; (2) to 

develop an approach for determining PANDA model parameters for different types of 

asphalt mixtures and at different temperatures and aging levels; (3) to analyze the 

sensitivity of asphalt mixture performance to PANDA model parameters in order to 

reduce output uncertainty and simplify the experimental testing matrix and constitutive 

model; and (4) to use PANDA constitutive modeling to efficiently simulate and predict 

the response of asphalt pavements. 

A robust experimental approach is developed to measure asphalt mixture 

responses. The experimental setup controls temperature, confinement level, loading 

stress, and loading rate. Two experimental tests are conducted to extract the PANDA 

viscoelastic and viscoplastic parameters following a systemic analysis procedure. This 

analysis obtains the long-term linear viscoelastic properties and time-temperature shift 

factors from the DMT. Then, these linear viscoelastic coefficients are employed to 
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decouple the recoverable and irrecoverable response from the RCRT-VS and obtain the 

nonlinear viscoelastic and viscoplastic parameters. 

A new approach is presented to extract shear strength parameters of asphalt 

materials by analyzing the output of the RCRT-VS based on the modified Drucker-

Prager yield surface. The new approach evaluates the evolution of shear strength 

parameters during creep and relaxation behavior, taking into consideration the hardening 

effect generated during testing. Results show that assuming alpha-parameter 

overestimates the hardening function; however, the overestimation is within permissible 

limits. 

Two different scales of asphalt mixture performance are considered in calibrating 

the PANDA constitutive model: macro-scale (DGM) and meso-scale (FAM and CAM). 

These asphalt mixtures are selected in order to correlate the model parameters with 

asphalt mixture components and to evaluate the sensitivity of model parameters for a 

wide range of mixtures. The viscoelastic response of asphalt mixtures, which becomes 

more dominant as temperature decreases, is mainly controlled by the FAM properties. 

Conversely, aggregate structure and interaction, which are clearly represented in the 

CAM, mainly control the viscoplastic response of asphalt concrete. Therefore, the 

viscoplastic properties of asphalt mixtures are strongly related to their microstructure. 

The overall mechanical response of asphalt mixtures is not affected only by the 

individual responses of its constituents but the complex interactions between these 

constituents have a great effect. 
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PANDA models are used to analyze the performance of asphalt mixtures under 

various conditions of temperature, confinement level, stress level, air void content, and 

aging level. The asphalt mixtures behave as a viscoelastic material at low temperatures 

and become more viscous at high temperatures. An increase in confinement level makes 

asphalt mixtures more resistant to applied axial stress, producing less strain magnitude. 

In addition, air void content strongly affects the mechanical properties of asphalt 

mixtures. Air voids in the asphalt mixtures should be small and well distributed so as not 

to affect the coherence of the mixture. Having too many air voids allows more access to 

air and water into asphalt layers, which accelerates aging and moisture damage. Not 

having enough air voids causes bleeding and promotes more rutting. Nonlinearity 

increases with an increase in testing temperature, as well as an increase in aging level. 

Asphalt mixtures get stiffer as aging level increases and air void content decreases. 

When they get stiffer, they become more brittle as the resistance of the materials to 

undergo viscoplastic deformation increases. 

A phenomenological relationship for aged transient compliance of a viscoelastic 

material (proposed by Rahmani 2015) is modified to consider the effect of air void 

content and oxidative aging on the linear viscoelastic response of asphalt mixtures. Shift 

factors are used to vertically shift the compliance function at different aging levels and 

air void percentages to the referenced linear viscoelastic response at 7% air void content 

in unaged condition. 

In order to effectively and efficiently predict the asphalt pavement performance 

under general loading and environmental conditions, GSA is performed to identify the 
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significance of each model parameter on asphalt mixture response. GSA determines 

which model input parameters are sensitive in order to simplify the experimental testing 

matrix so that asphalt concrete performance can be predicted using a more practical, 

simpler, and sensitive model. GSA methods based on FAST and Sobol sequence 

approaches are implemented in GSAT in MATLAB to measure the sensitivity of 

PANDA constitutive model input parameters. Some of the model input parameters are 

relatively sensitive to asphalt mixture type. The output of the model is sensitive to the 

nonlinearity parameter (g2), hardening function parameters (k1, and k2), and 

viscoplasticity-relaxation time (1/ Гvp). However, g1, α, β, and ko parameters can be 

assumed to be consistent for a wide range of mixtures. 

The capabilities of the PANDA constitutive modeling framework to simulate 

rutting performance of asphalt concrete layers is investigated by 2D axisymmetric FE 

simulations performed on the pavement structure. Pulse wheel loading, up to 10000 

cycles, is applied in different case studies to investigate the effect of asphalt mixture 

type, air void content, and aging level on rutting potential. The computational results 

show that the maximum compressive strains are located along the center of the loading 

area, whereas the maximum tensile strains are located at the edge of the traffic wheel 

outside the loading area. FAM shows the lowest values for hardening function 

parameters (k1, and k2) and viscoplasticity-relaxation time (1/ Гvp) compared to DGM 

and CAM. The hardening function parameters and the viscoplasticity-relaxation time 

increase significantly with a decrease in air void content or an increase in the level of 

aging condition. 
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8.2 Recommendations and Future Research Areas 

The following are the main recommendations for future studies: 

• Extend the calibration of PANDA constitutive modeling: Viscoelasticity and 

viscoplasticity are the only components of the PANDA model investigated in this 

study, and the sensitivity of the model output to its input parameters is assessed in 

this dissertation. Additional research is recommended to include other model 

components, such as viscodamage, moisture damage, and aging components. 

• Expand the material database: The analysis conducted in this dissertation is limited 

to one asphalt mixture source. Validating the applicability of the developed analysis 

method for more asphalt binders and aggregate sources, that exhibit different 

properties and responses, is also necessary. 

• Enhance PANDA capabilities: PANDA is calibrated using typical types of mixtures. 

However, its model parameters should be calibrated using other asphalt mixture 

technologies, such as warm-mix asphalt (WMA), recycled asphalt pavement (RAP), 

cold asphalt mixtures, etc. 
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APPENDIX A 

DESIGN OF A FAM AND CAM AS DERIVATIVES OF A DGM 

 

Required conditions to follow for designing FAM and CAM out of DGM: 

1. The gradation design of the CAM follows the same gradation design of the DGM. It 

is designed to represent the portion of aggregate that is retained on sieve #16 only, 

while the gradation design of the FAM follows the same gradation design of the 

DGM. It is designed to represent the remaining portion of aggregate that passes sieve 

#16. 

2. The binder content percent (by aggregate weight) in the FAM is the same as the 

binder content by weight percent of the aggregate passing sieve #16 in the DGM, 

while the binder content by weight percent of the aggregate retained on sieve #16 in 

the DGM is the binder content percent (by aggregate weight) in the CAM. 

The following example illustrates the procedure used to design FAM and CAM mixtures 

as a derivative of a typical DGM: 

A C-type mixture is selected to serve as a DGM basis for designing the FAM and 

CAM: 
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Table A.1 Mix Design for DGM 

Sieve Size Sieve Size (mm) Cum. % Passing 

1 in 25.000 100.0 

¾ in 19.000 99.6 

3/8 in  9.500 73.9 

No. 4  4.750 58.1 

No. 8  2.360 37.3 

No. 16  1.180 25.5 

No. 30  0.600 19.6 

No. 50  0.300 8.1 

No. 200  0.075 2.7 

Binder PG 67-22 4.4 

 

The following information is determined from the DGM design: 

• Total weight of aggregates: Ws = 14000 g 

• Percentage of aggregates retained on #16: Ps-R16 = 74.5% (10430 g) 

• Percentage of aggregates passing #16: Ps-R16 = 25.5% (3570 g) 

• Percentage of binder (by DGM weight): Pb-DGM = 4.4% (644 g) 

• AASHTO T84 is used to determine the specific gravity of fine aggregates: 

Gsb-P16 = 2.541 

• AASHTO T85 is used to determine the specific gravity of coarse aggregates: 

Gsb-R16 = 2.571 

• Bulk specific gravity of DGM aggregates is determined to be 2.563 by the 

following equation: 
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𝐺𝐺𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷𝐷𝐷 = 100
𝑃𝑃𝑠𝑠−𝑅𝑅16
𝐺𝐺𝑠𝑠𝑠𝑠−𝑅𝑅16

+ 𝑃𝑃𝑠𝑠−𝑃𝑃16
𝐺𝐺𝑠𝑠𝑠𝑠−𝑃𝑃16

       (A.1) 

• AASHTO T209 is used to determine the theoretical maximum specific gravity of 

HMA paving mixtures: Gmm-DGM = 2.465 

• Effective specific gravity of aggregates is determined to be 2.634 using the 

following equation: 

𝐺𝐺𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷𝐷𝐷 = 100−𝑃𝑃𝑏𝑏−𝐷𝐷𝐺𝐺𝑀𝑀
100

𝐺𝐺𝑚𝑚𝑚𝑚−𝐷𝐷𝐷𝐷𝐷𝐷
−𝑃𝑃𝑏𝑏−𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝑏𝑏

       (A.2) 

• Percentage of absorbed binder into aggregates (by aggregate weight) is 

determined to be 1.08% (151 g) by the following equation: 

𝑃𝑃𝑏𝑏𝑏𝑏−𝐷𝐷𝐷𝐷𝐷𝐷 = (100∗𝐺𝐺𝑏𝑏)(𝐺𝐺𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷𝐷𝐷−𝐺𝐺𝑠𝑠𝑠𝑠−𝐷𝐷𝐺𝐺𝑀𝑀)
(𝐺𝐺𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷𝐷𝐷∗𝐺𝐺𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷𝐷𝐷)

      (A.3) 

• The amount of effective binder subjected to aggregates is determined to be 493 g. 

 

The following method for determining binder content relies on experimentally 

separating the fine portion of the mixture (passing sieve #16) from the coarse portion 

(retained on #16) and determining the asphalt content of the fine portion. This asphalt 

content is then used to mix and compact FAM specimens in the SGC. This method, 

developed by Sousa et al. (2011), takes advantage of the procedures described in 

AASHTO standards T 209 and T 308 for determining the theoretical maximum specific 

gravity and binder content in asphalt mixtures, respectively. The following information 

is determined for FAM design: 

 

 

198 



 

• Percentage of binder (by FAM weight): Pb-FAM = 8.0% (310 g) 

• AASHTO T209 is used to determine the theoretical maximum specific gravity of 

HMA paving mixtures: Gmm-FAM = 2.374 

• Effective specific gravity of aggregates passing #16 is determined to be 2.678 

using the following equation: 

𝐺𝐺𝑠𝑠𝑠𝑠−𝑃𝑃16 = 100−𝑃𝑃𝑏𝑏−𝐹𝐹𝐹𝐹𝐹𝐹
100

𝐺𝐺𝑚𝑚𝑚𝑚−𝐹𝐹𝐹𝐹𝐹𝐹
−𝑃𝑃𝑏𝑏−𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑏𝑏

         (A.4) 

• Percentage of absorbed binder into aggregates (by aggregate weight) passing #16 

is determined to be 2.07% (74 g) by the following equation: 

𝑃𝑃𝑏𝑏𝑏𝑏−𝑃𝑃16 = (100∗𝐺𝐺𝑏𝑏)(𝐺𝐺𝑠𝑠𝑠𝑠−𝑝𝑝16−𝐺𝐺𝑠𝑠𝑠𝑠−𝑃𝑃16)
(𝐺𝐺𝑠𝑠𝑠𝑠−𝑃𝑃16∗𝐺𝐺𝑠𝑠𝑠𝑠−𝑃𝑃16)

        (A.5) 

• Amount of effective binder subjected to aggregates passing #16 is determined to 

be 237 g. 

Table A.2 Mix Design for FAM 

Sieve Size Sieve Size (mm) Cum. % Passing 

No. 16  1.180 100.0 

No. 30  0.600 77.1 

No. 50  0.300 31.6 

No. 200  0.075 10.6 

Binder PG 67-22 8.0 

 

DGM design integrates FAM and CAM designs based on the previous method of 

dividing the fine and coarse portions of the DGM. So, the information for the CAM 

design is extracted as follows: 
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• Percentage of binder (by CAM weight): Pb-CAM = 3.4% (334 g) 

• AASHTO T209 is used to determine the theoretical maximum specific gravity of 

HMA paving mixtures: Gmm-CAM = 2.489 

• Effective specific gravity of aggregates retained on #16 is determined to be 2.620 

using the following equation: 

𝐺𝐺𝑠𝑠𝑠𝑠−𝑅𝑅16 = 100−𝑃𝑃𝑏𝑏−𝐶𝐶𝐶𝐶𝐶𝐶
100

𝐺𝐺𝑚𝑚𝑚𝑚−𝐶𝐶𝐶𝐶𝐶𝐶
−𝑃𝑃𝑏𝑏−𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑏𝑏

         (A.6) 

• Percentage of absorbed binder into aggregates (by aggregate weight) retained on 

#16 is determined to be 0.74% (77 g) by the following equation: 

𝑃𝑃𝑏𝑏𝑏𝑏−𝑅𝑅16 = (100∗𝐺𝐺𝑏𝑏)(𝐺𝐺𝑠𝑠𝑠𝑠−𝑅𝑅16−𝐺𝐺𝑠𝑠𝑠𝑠−𝑅𝑅16)
(𝐺𝐺𝑠𝑠𝑠𝑠−𝑅𝑅16∗𝐺𝐺𝑠𝑠𝑠𝑠−𝑅𝑅16)

        (A.7) 

• Amount of effective binder subjected to aggregates retained on #16 is determined 

to be 256 g. 

Table A.3 Mix Design for CAM 

Sieve Size Sieve Size (mm) Cum. % Passing 

1 in 25.000 100 

¾ in 19.000 99.5 

3/8 in  9.500 65.0 

No. 4  4.750 43.8 

No. 8  2.360 15.9 

No. 16  1.180 0.0 

Binder PG 67-22 3.4 
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APPENDIX B 

STANDARD METHODS AND REQUIRED TESTS FOR CALIBRATING PANDA 

CONSTITUTIVE RELATIONSHIPS 

This protocol is prepared in an AASHTO standard format 
1. SCOPE 
1.1. This standard covers the test methods required to determine the material 

parameters for the Pavement Analysis using Nonlinear Damage Approach 
(PANDA) constitutive relationships. 

 
1.2. This standard may involve hazardous material, operations, and equipment. This 

standard does not support to address all of the safety concerns associated 
with its use. It is the responsibility of the user of this procedure to 
establish appropriate safety and health practices and determine the 
applicability of regulatory limitations prior use.   

 
2. REFERENCED DOCUMENTS 
2.1. AASHTO Standards: 

 TP 62, Determining Dynamic Modulus of Hot Mix Asphalt 
 T 166, Bulk Specific Gravity of Compacted Hot Mix Asphalt Using 

Saturated Surface-Dry Specimens 
 T 209, Theoretical Maximum Specific Gravity and Density of 

Bituminous Paving Mixtures 
 T 269, Percent Air Voids in Compacted Dense and Open Asphalt 

Mixtures 
 T 307, Determining the Resilient Modulus of Soils and Aggregate 

Materials 
 T 312, Preparing and Determining the Density of the Hot Mix Asphalt 

(HMA) Specimens by Means of the Superpave Gyratory Compactor 
 

2.2. ASTM Standards: 
 E 4, Standard Practices for Force Verification of Testing Machines 

 
3. SIGNIFICANCE AND USE 
3.1. The material parameters or constants determined using this standard are used in 

the constitutive relationships of Pavement Analysis using Nonlinear 
Damage Approach (PANDA) in order to predict the performance of 
asphalt pavements.  PANDA incorporates several material constitutive 
relationships to define the behavior (viscoelastic, viscoplastic, mechanical 
damage, fatigue damage, and fracture) of an asphalt mixture.  
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3.2. PANDA is used in asphalt pavement performance analysis. 
 
4. SUMMARY OF TEST METHODS 
4.1. This standard consists of several test methods required to determine the material 

parameters needed for the calibration of different components of 
PANDA. The dynamic modulus test is used to identify the linear 
viscoelastic parameters and the time-temperature shift factors. The 
repeated creep-recovery test at variable stress level (RCRT-VS) 
conducted at 55oC is used to identify the viscoplastic parameters. The 
repeated creep-recovery test at constant loading and rest times (RCRT-
CLR) is used to identify the hardening-relaxation viscoplastic parameters. 
The uniaxial constant strain rate test in both compression and tension is 
used to determine the viscodamage parameters. Table 1 summarizes the 
test methods required to determine parameters associated with PANDA 
constitutive relationships.  

 
Table B.1 Summary of the Test Methods Required for Calibration of PANDA 

Constitutive Relationships. 

Test Mode 
Total No. 

of 
Specimens 

Test 
Method 

Temperature 
(oC) Level 

Loading 
Time/Resting 

Time (sec) 

Confining 
Pressure 

(kPa) 

Compression 

2 TP-62 Varies 80-110 με N/A 0 

2 RCRT-VS 55 Varies 0.4/5 140 

6 RCRT-
CLR 55 840 kPa 0.4/0.4, 1, 5 140 

4 
Uniaxial 
Constant 

Strain Rate 
55 0.021 

mm/sec N/A 140, 380 

Tension 6 
Uniaxial 
Constant 

Strain Rate 
5 

5× 10-6,  
1× 10-5, 
5× 10-5  
1/sec 

N/A 0 

 
5. APPARATUS 
5.1. Dynamic Modulus Test System—The system should be capable of conducting 

the Dynamic Modulus Test at specified temperatures and frequencies in 
accordance with AASHTO Standard TP 62.  

 
5.2. Universal Materials Testing System—The machine should be capable of 

producing controlled load in both compression and tension. It shall be 
equipped with ±22 kN (5,000 lb) load cell. The load cell should be 
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calibrated in accordance with ASTM E 4. The system shall be fully 
computer controlled capable of measuring and recording the time, load, 
deformation, and confining pressure.  

 
5.3. Environmental Chamber—The chamber is required to control the temperature of 

the test specimens at the desired temperatures. It should be capable of 
controlling the temperature of the test specimens over a temperature 
range of -10oC to 55oC. The chamber should accommodate the triaxial 
cell, which is shown schematically in Figure 1. 

 
5.4. Triaxial Cell—A triaxial is required for applying a confining pressure on the test 

specimens. The cell should stand a working pressure up to 400 kPa (air). 
The cell should accommodate test specimens, with each has the 
dimensions of 101.6 mm diameter by 152.4 mm height. The cell shall 
facilitate up to three “through-the-wall” radial strain transducers. Figure 1 
shows a schematic for a triaxial. 
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Load Cell

Pressure Gauge Pressure 
Relief Valve

Radial LVDT

Tie Bar

Test Specimen

Pore Pressure 
Outlet

Solid Base

Specimen 
Membrane

Base Plate

Top Plate

Cell Pressure 
Inlet
Cell Base

Cell Wall

Cell Cap

Loading 
Piston Rod

Actuator

 
 

Figure B.1 Schematic View of Typical Triaxial Cell with through-the-wall Radial 

LVDTs  

 
5.5. Pressure gauge—The pressure inside the triaxial cell shall be monitored using a 

conventional pressure gauge with working pressure of up to 600 kPa and 
minimum accuracy of 0.7kPa.  

 
5.6. Strain Transducers—The axial and radial deformations shall be measured using 

linear variable differential transformers (LVDTs). Three axial LVDTs 
shall be used to measure axial deformation. The LVDTs shall be placed 
on the test specimens at 120 degree apart. A schematic view of the test 
setup with mounted axial LVDTs is given in Figure 2. Three LVDTs shall 
be used to measure the radial deformation at the center of the test 
specimens. Figure 1 shows a tri-axial with “through-the-wall” radial 
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LVDTs. The LVDTs shall have a linear range of ±2.50 mm and meet the 
following minimum specifications: linearity, ±0.15 percent of full scale; 
sensitivity, 156.43mV/V/mm; and repeatability, ±1 percent of full scale.   
Note 1—The specifications of the LVDTs used in the dynamic modulus 
test shall comply with the TP 62 specifications.  
 

Test 
Specimen

Loading Cell

Bottom Metal 
Plate

Top Metal 
Plate

Fixed Base

Axial LVDT

10
1.

6 
m

m

15
2.

4 
m

m

101.6 mm  
Figure B.2 Schematic View of Test Setup with Mounted Axial LVDTs 

5.7. Loading platens—The loading platens should be made of stainless steel or high-
strength aluminum. The size of the loading platens (104.5±0.5 mm) 
should be slightly larger than diameter of the test specimens. 

 
5.8. Pressurized air supply—A compressed air supply that is capable of supplying 

clean, dry, oil-free air up to 400 kPa 
 
5.9. Calipers—Digital or analog calipers with an accuracy of ±0.01 mm. 
 
5.10. Glue—must be able to withstand force applied to the sample by a machine and 

must bond well to the test specimen and loading platens.   
 

5.11. Superpave Gyratory Compactor—A compactor and associated equipment 
needed to compact 152.4-mm diameter and 170-mm height specimens in 
accordance with the AASHTO T 312 Standard. 
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5.12. Core Drill—A coring machine with a diamond coring bit should be able to cut 
101.6-mm diameter specimens out of 152.4-mm diameter SGC 
specimens. 

 
5.13. Saw—Single or double saw with diamond cutting edge should be capable of 

trimming 170-mm height SGC specimens to 152.4-mm height specimens. 
 

5.14. Balance—A balance shall meet the requirements of AASHTO M 231 Standard. 
 
5.15. Thermometers—A thermometer should be able to measure the temperature of 

test specimens over the range of -10o C to 55o C. 
 
5.16. Latex Membrane—71.1 mm diameter by 0.3mm thick rubber membrane is used 

when confining pressure is required.  
 
5.17. End-Friction Reducer—Greased double latex is placed between the specimen 

and loading platen.  
 
5.18. Other apparatus—other apparatus required to perform the procedures described 

in this document include a recipient for the applied vacuum saturation. 
 

6. HAZARDS 
6.1. Observe and practice standard laboratory safety precautions when preparing, 

handling, and testing hot mix asphalt (HMA) specimens. Caution should 
be taken when applying confining pressure on test specimens. The 
confining pressure must not exceed the limit specified by the 
manufacturer of the tri-axial cell. 

 
7.  TEST SPECIMENS FABRICATION AND INSTRUMENTATION 
7.1. HMA specimens are prepared in accordance with T 312. A SGC is used to 

compact cylindrical 170±1-mm tall and 152.4±1-mm diameter specimens.  
 

7.2. The SGC specimens are cored to 101.6±1-mm diameter, and trimmed using a 
double or single saw cut to 152.4±1-mm tall. The sides and ends of test 
specimens shall be smooth and parallel. 

 
7.3. The ends of the test specimens should be perpendicular to axis of the specimens. 

Each specimen shall be checked using a machinist’s square.  
 
7.4. The air void content of test specimens shall be determined in accordance with T 

269. A tolerance of 0.5 percent from the target percent air voids is 
allowed. Any specimen that exceeds this tolerance shall be discarded.    

 
7.5. At least two specimens shall be tested at each test condition. 
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7.6. Three axial LVDTs shall be mounted to the sides of the test specimens at 120 

degree apart. Figure 2 presents a schematic view of the test setup with 
mounted axial LVDTs. The gauge length of the axial LVDTs shall be 
101.6±1 mm. The metal studs are mounted at a distance of 25.4 mm from 
the top and bottom of the test specimens. The mounting studs for axial 
LVDTS should be glued directly to test specimens. 
Note 2—Quick setting epoxy and glue accelerator such as E-Z BOND 
and MAXI-CURE exhibit satisfactory performance.    
 

7.7. Three metal studs for the radial LVDTs shall be mounted in the center of the test 
specimens at 120 degree apart and 60 degree from the axial LVDTs. The 
gauge length of the radial LVDTs shall be equal to the radius of the test 
specimens (50.8±0.5 mm). The mounting studs for radial LVDTS should 
be glued directly to test specimens. 
 

7.8. When confining pressure is required, a latex membrane should be stretched over 
the test specimen. O-rings should are used to seal the membrane to the 
top and bottom plates.  
 

8. TEST PROTOCOLS 
8.1. Dynamic Modulus Test According to AASHTO TP-62 

The dynamic modulus test is used to identify the linear viscoelastic 
parameters and time-temperature shift factors. This test is conducted in 
accordance with the AASHTO TP 62. This test is conducted at five 
different temperatures (−10 °C, 4.4 °C, 21.1 °C, 37.8 °C, and 54.4 °C) 
and six loading frequencies (0.1, 0.5, 1.0, 5, 10, and 25 Hz) at each 
temperature. A sinusoidal loading is applied and adjusted to obtain axial 
strain between 80 to 110 microstrain. Testing starts from the lowest to 
highest temperature and from highest to lowest frequency. The applied 
stress and recorded strain are used to calculate the dynamic modulus and 
phase angle.  
 

8.2. Repeated Creep-Recovery Test at Variable Stress Levels (RCRT-VS) 
The repeated creep-recovery test at variable stress level (RCRT-VS) is 
conducted at 55oC to identify the viscoplastic parameters. The test 
includes six loading blocks. Each loading block consists of eight creep-
recovery cycles with increasing applied deviatoric stress level. The 
loading and unloading times of each loading cycle remain constant 
through the entire test. The loading time is 0.4 sec while the unloading 
time is 30 sec. The deviatoric stress of the first loading cycle of the first 
loading block is 140 kPa and it increases by a factor of 1.2(n-1); where n is 
the number of loading cycle in a specific loading block; for the next 
loading cycles until the 8th loading cycle. The first deviatoric stress of the 
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subsequent loading blocks equals to the third stress level in the previous 
loading block, and it increases by the same factor of 1.2(n-1) for the next 
loading cycles until the 8th loading cycle of that loading block. A 
confining pressure of 140 kPa is maintained during the entire test. Figure 
3 shows an example of the first three loading blocks of the RCRT-VS. 
 

 
Figure B.3 Applied Deviatoric Stress in the First Three Loading Blocks of the RCRT-

VS 
 
 

8.3. Repeated Creep-Recovery Test at Constant Loading and Rest Times 
(RCRT-CLR) 
The creep-recovery test at constant loading and rest times (RCRT-CLR) 
is performed to identify the hardening-relaxation viscoplastic parameters. 
The RCRT-CLR consists of repeated creep-recovery loading cycles. The 
applied confinement and deviatoric stresses in the RCRT-CLR test are 
140 kPa and 840 kPa, respectively. The loading time and rest period of all 
loading cycles are maintained constant throughout the test. A loading 
time of 0.4 sec and rest periods of 0.4, 1, and 5 sec are used. Two 
specimens are tested at each rest period as given in Table 1. Figure 4 
illustrates a schematic for the RCRT-CLR test. 
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Figure B.4 Schematic for loading cycles of the RCRT-CLR 
Note: LT is loading time and RT is rest time 

 
8.4. Uniaxial Constant Strain Rate Compression Test 

A constant uniaxial strain rate of 0.021 mm/sec is applied on test 
specimens in compression until failure. This test is conducted at 55oC and 
two levels of confining pressure; 140 kPa and 380 kPa are required. Two 
specimens are tested at each confining level as given in Table 1.  
 

8.5. Uniaxial Constant Strain Rate Tension Test 
This test is conducted in tension at 5oC to determine the viscodamage 
parameter. The test is performed without confining pressure at three 
different constant strain rates of 5× 10-6, 1× 10-5, and 5× 10-5/sec until 
failure. Two specimens are tested at each strain rate as given in Table 1.  
Note 3: The uniaxial constant strain rate in tension can be performed 
without using the tri-axial cell since no confining pressure is required. In 
this test the test specimen must be glued to the top and bottom plates. The 
used glue shall be able to withstand force applied to the sample by a 
machine and must bond well to the test specimen and loading platens. 
The J-B WELD steel reinforced epoxy is found to provide satisfied 
adhesion between specimen surface and end plates, and it stands the 
tensile force. A schematic of the test specimen for the uniaxial constant 
strain rate in tension is illustrated in Figure 2.  
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9. TEST PROCEDURE 
9.1. Attach the mounting metal studs of the radial and axial LVDTs to the test 

specimens as described in Sections 7.6, and 7.7.  
 

9.2. Stretch the rubber membrane over the test specimen described in Section 7.8., 
and fix the fixtures of the LVDTs. 

 
9.3. Place friction reducers between the test specimen and loading platens, and seal 

the rubber membrane to the top and bottom platens using O-rings as 
discussed in Section 7.8. When applying confining pressure, the bottom 
friction reducer should have a hole to allow a passage for specimen’s 
entrapped air to pass to the atmospheric pressure through the base plate as 
shown in Figure 1.  

 
9.4. Set the temperature of the environmental chamber to the desired test 

temperature. 
 
9.5. Place the test specimen inside the triaxial cell and adjust the position of the 

specimen so that the loading piston rod is right in the middle of the top 
loading platen as shown in Figure 1.  

 
9.6. Install the axial LVDTs, and ensure that the deformation of each axial LVDT is 

within the calibrated linear range.  
 
9.7.  Close the triaxial test and tighten the tie bars. 
 
9.8. Adjust the through-the-wall radial LVDTs and ensure that the deformation of 

each radial LVDT is within the calibrated linear range.  
 
9.9. Open the pore pressure outlet valve of the triaxial cell (Figure 1). 
 
9.10. Place a dummy specimen inside the environmental chamber and monitor the 

temperature of this specimen. 
 
9.11. Open the software select pre-programmed testing protocol as described in details 

in Section 8.  
Note 4: The dynamic modulus test should be conducted in accordance 
AASHTO TP 62. 
 

9.12. Start the test when the temperature of the dummy specimen reaches the desired 
value. When applying confining pressure, a conditioning period of 2 
hours is required after applying the required confining pressure and 
before loading. This conditioning time is found sufficient to ensure that 
the bulk creep occurred before loading. 
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9.13. The RCRT tests are performed until a test specimen fails. 
 
9.14. Perform data quality check on axial deformation measurements. Ensure that the 

average coefficient of variation of the three axial LVDTs readings, 
throughout the test and before test specimen fails, is less than 20 percent.  

 
10. CALIBRATION PROTOCOL FOR PANDA CONSTITUTIVE RELATIONSHIPS 
10.1. Calibration of Linear Viscoelastic Constitutive Relationship using Dynamic 

Modulus Test 
This section presents a systematic procedure to identify time-temperature 
shift factors as well as the linear viscoelastic parameters based on 
dynamic modulus test data. 

 
10.1.1   Linear viscoelastic constitutive relationship and its associated parameters 

Schapery’s (1969) nonlinear viscoelasticity is implemented in PANDA. 
The nonlinear viscoelastic constitutive relationship can be written as 
follows: 

( ) ( )2
0 0 1 0

tt ijve t
ij ij

d g
g D g D d

d

τ
τ

ψ ψ σ
ε σ τ

τ
−

= + ∆∫  (1) 

where 

( )
0

1

1 exp ;              
t

N tt t
n n

n T

dD D
a

ψ ξλψ ψ
=

 = − − = ∑ ∫  (2) 

where ve
ijε  is the viscoelastic strain tensor; ijσ  is the stress tensor; 0D  is 

the instantaneous compliance; D∆  is the transient compliance; nD  and 

nλ  are the Prony series coefficients;  N  is the number of Prony series; Ta  
is the time-temperature shift factor; and 0g , 1g , and 2g  are the nonlinear 
viscoelastic parameters. For the linear viscoelasticity 0 1 2 1g g g= = =  is 
assumed. The procedure for identification of nonlinear parameters will be 
presented in the next section. Table 2 lists the parameters associated with 
the linear viscoelastic constitutive relationship and their physical 
significance.  
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Table B.2 List of linear viscoelastic parameters and their physical 
significance 

Parameter Physical meaning 

Ta  Time-temperature shift factor. Captures the response at different 
temperatures. 

0D  Instantaneous compliance. Related to the instantaneous viscoelastic 
response. 

nD  thn  Prony series coefficient related to transient compliance.  

nλ  thn  Retardation time associated with the thn  transient compliance nD
. 

N  Number of Prony series to acquire desired accuracy. 9N =  is 
recommended. No need to be determined. It should be assumed. 

 
10.1.2 Obtaining time-temperature shift factor  

• Dynamic modulus *E  and the phase angle θ  at each frequency and 
temperature are the outputs of the dynamic modulus test. Values of 
dynamic compliance *D  is determined, such that: 

* *log logD E= −   (3) 

• A sigmoidal-type function is used to fit the experimental data and to 
obtain the time-temperature shift factors. The sigmoidal function for 
the complex compliance can be written as:  

( )
*log

1 exp log r

D αδ
β γ ω

− = +
+ +  

  (4) 

where rω  is the reduced frequency, δ  is the maximum value of the 
dynamic compliance, δ α+  is the minimum value of the dynamic 
compliance, and β  and γ  are parameters describing the shape of the 
sigmoidal function. Time-temperature shift factor is defined as: 

r
Ta ω

ω
=   (5) 

where ω  is the angular frequency. The term Ta  is the time-
temperature shift factor at each temperature. Eqs. (4) and (5) 
introduce 4 ( 1)Tn+ −  unknowns which should be determined (

( ) ( ) ( )1 2, , , , , 1T T T Ta n a n a nα β δ γ −K ); Tn is the number of 
temperatures at which the test is conducted. It should be noted that 
number of unknown time-temperature shift factors are ( 1)Tn − since 

Ta  is known at the selected reference temperature rT  (i.e. ( ) 1T ra T = ). 
• The error function is defined as: 

212 



 

2 1 SSER
SST

= −   (6) 

where 

( )
2

exp
1

log log
M

fit
i

SSE D D
=

= −∑   (7) 

( )
2

exp
1

log log
M

i

SST D D
=

= −∑   (8) 

where M  is the number of data points obtained from dynamic 
modulus test, explog D  is the experimentally measured compliance, 

log fitD  is the compliance fitted using Eq. (4), log D  is the mean 
value of the measured compliance. 

• The  4 ( 1)Tn+ −  unknown variables are determined by minimizing the 

error function 2R  using Generalized Reduced Gradient (GRG) 
algorithm which is also available in the excel solver. Initial values for 
the unknown variables will be set in Excel solver by selecting the 
corresponding cells for each variable. The objective cell would be the 
calculated value of 2R . The sigmoidal function parameters and the 
time-temperature shift factors will be identified by minimizing 2R . 

• Excel solver or other optimization algorithms available in other 
software such as Matlab can be used to obtain the 4 ( 1)Tn+ −  
parameters. 

 
10.1.3 Identification of Linear Viscoelastic Parameters of PANDA 

• Once the time-temperature shift factors are identified, the linear 
viscoelastic parameters can be identified. 

• Using the experimental data, storage compliance D′  and loss 
compliance D′′  can be calculated using the values of the complex 
compliance and phase angle, such that: 

* *cos ;       sinD D D Dθ θ′ ′′= =   (9) 

• The loss and storage compliances are related to the Prony series 
coefficients and angular frequencies, such that: 

( ) ( ) ( )
0 2 2 2 2

1 1

/
;       

/ 1 / 1

N N
i ii

i ii i

DDD D D
ω λ

ω ω
ω λ ω λ= =

′ ′′= + =
+ +∑ ∑  (10) 

where N  is the number of Prony series coefficients, 0D  is the 
instantaneous compliance, iD  is the thi  transient compliance 
associated with the thi  retardation time iλ . 

• The error function is defined as:  
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1 exp exp

1 1 1
N

fit fit

i

D D
error

M D D=

    ′ ′′
 = − + −      ′ ′′     

∑  (11) 

where M  is the number of data points. fitD′  and fitD′′  are based on Eq. 
(10) while expD′  and expD′′  are calculated experimentally. 

• The linear viscoelastic PANDA model parameters (i.e. Prony series 
coefficients) will be identified by minimizing the error function 
presented in Eq. (11). Eq. (11) can be minimized using excel solver or 
using other commercial software such as Matlab. 

• There is no need to identify N . Based on the desired accuracy, N  can 
be assumed between 5 and 9. 9N =  is recommended. 

10.2. Calibration of Nonlinear Viscoelastic PANDA Model Parameters using 
Repeated Creep-Recovery Test at Various Stress levels (RCRT-VS) 
This section outlines the procedure for identification of the nonlinear 
viscoelastic parameters using repeated creep-recovery test at various 
stress levels (RCRT-VS), refer to Masad et al. (2008) and Rahmani et al. 
(2013) for more details on identification of nonlinear viscoelastic 
parameters. To accurately represent the stress states in the pavements, it is 
recommended to conduct this test at a confinement level of 140-250 kPa. 
Based on RCRT-VS, three nonlinear parameters 0g , 1g , and 2g  should 
be determined. It is assumed that 0 1g = . The viscoelastic nonlinearity 
will be captured through parameters 1g  and 2g .   Tables 3 and 4 list the 
parameters that are fixed and the parameters that should be identified 
along with their physical significances. 

 

Table B.3 List of nonlinear viscoelastic parameters that are fixed and can be assumed. 
No need to identify these parameters. 

Parameter Recommended value Physical significance 

0g  1.0 Affects the instantaneous response. It is 
recommended to assume 0 1g =  since it is very 
difficult to measure the instantaneous response of 
asphalt mixtures. The nonlinear viscoelastic 
response will be captured through nonlinear 
parameters 1g  and 2g Time-temperature shift 
factor. Captures the response at different 
temperatures 
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Table B.4 List of nonlinear viscoelastic parameters that should be identified. 
Parameter Physical meaning 

1g  Controls the nonlinearity in the transient compliance. Affects the 
viscoelastic nonlinearity mostly during the loading stages. 

2g  Controls the nonlinear response during the recovery and at different 
loading rates. 

 
10.2.1 Viscoelastic strain decomposition 

  
• To capture the effect of multi-axial state of stresses on nonlinear 

viscoelastic response of asphalt mixes, the total nonlinear viscoelastic 
strain tensor nve

ijε  is decomposed into deviatoric strain tensor nve
ije  and 

volumetric component nve
kkε , such that: 

1
3

nve nve nve
ij ij kk ijeε ε δ= +   (12) 

• Deviatoric and volumetric components of the viscoelastic strain can 
be expressed as: 

( ) ( )2,
0 0 1 0

1 1
2 2

t ijnve t t t
ij ij

d g S
e g J S g J d

d

τ
τψ ψ τ

τ
= + ∆ −∫  (13) 

( ) ( )2
0 0 1 0

1 1
3 3

t kkt t t
kk kk

d g
g B g B d

d

τ
τ

σ
ε σ ψ ψ τ

τ
= + ∆ −∫  (14) 

where ijS  are the components of the deviatoric stress tensor and kkσ  is 
the volumetric stress. 

 
• Shear and bulk instantaneous (i.e. 0J  and 0B ) and transient (i.e. J∆  

and B∆ )  compliances are calculated based on the identified linear 
viscoelastic parameters and using the following equations: 

( ) ( ) ( ) ( )0 02 1 ;       2 1J D J Dν ψ ν ψ= + ∆ = + ∆  (15) 

( ) ( ) ( ) ( )0 03 1 2 ;       3 1 2B D B Dν ψ ν ψ= − ∆ = − ∆  (16) 
 
• Assume the Poisson’s ratio to be 0.35, 0.35ν = . 
• Deviatoric and volumetric components of the stress for RCRT-VS 

under confinement stress cσ  and additional axial stress of σ∆  are 
calculated as follows: 
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 
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 
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 (17) 

10.2.2  Parameter 0g  
• Assume nonlinear parameter 0g  to be unity, 0 1.0g = . 
 

10.2.3 Parameter 2g  
Figure 5 schematically represents the strain response during a cycle of 
RCRT-VS test.  

 
Figure B.5 Schematic representation of the strain response during a cycle of RCRT-VS 

test. 
 

• Select an arbitrary point during the recovery (e.g. 0t ). It is 

recommended to assume 0t  such that 0 at t−  is 1
10

 of the rest period. 
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• Calculate the recovered strain rε∆  for every point after 0t  during the 
rest period. rε∆  can easily be calculated using experimental data, 
such that: 

( ) ( ), ,
0

total r total r
r t tε ε ε∆ = −   (18) 

• Using Eqs. (13)-(17) and assuming that the viscoelastic response 
under pure confinement to be linear yields the following relations for 
deviatoric and volumetric components of viscoelastic strain during the 
recovery: 

( ) ( )( ),
11 2 1

1 2
2 3

atr t a t te g J Jψ ψ ψ σ= ∆ −∆ − ∆  (19) 

( ) ( )( ) ( )( ),
2 1 0

1 1 3
3 3

atr t a t t t
vol cg B B B Bε ψ ψ ψ σ ψ σ= ∆ −∆ − ∆ + + ∆  (20) 

 where at  is the time corresponding to the end of loading. 
 
• Deviatoric and volumetric components of rε∆  are calculated using 

Eqs. (19)-(20), such that: 
0 0, ,, ,

11, 11 11 ,;       r t r tr t r t
r vol r vol vole e e ε ε ε∆ = − ∆ = −   (21) 

Eqs. (19)-(21) show that the only unknown to analytically calculate 
deviatoric and volumetric components of rε∆  is 2g . 

• Calculate 2g  by minimizing the error between experimentally 
measured components of rε∆  (i.e. Eq. (18)) and analytically 
calculated components of  rε∆  (i.e. Eq. (21)). 

 
10.2.4 Parameter 1g  

Once the parameter 2g  is defined, the parameter 1g  can be identified as 
follows: 

 
• Calculate cε∆  based on the experimental measurements.  The term 

cε∆  is the difference between the total strain at the end of the loading 
and the strain at an arbitrary point during the rest period (i.e. 

( ) ( ),total total r
c at tε ε ε∆ = − ), see Figure 5. 

• Calculate cε∆  using the nonlinear viscoelastic constitutive 
relationship, such that: 

( ) ( )nve nve
c at tε ε ε∆ = −   (22) 

• Using Eqs. (19) and (20), the only unknown in calculating cε∆  is the 

2g  parameter. 
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• Identify 1g  by minimizing the error between the experimentally 
measured and calculated values of cε∆ . 

• If both axial and radial strains are measured, repeat the procedure 
outlined above for both volumetric and deviatoric components of cε∆ . 
The parameter 1g  will be the average of the 1g  parameters obtained 
from deviatoric and volumetric components of cε∆ . 

  
10.3. Calibration of Viscoplastic PANDA Model using Repeated Creep-Recovery 

Test at Various Stress levels (RCRT-VS) 
 
10.3.1 Viscoplastic constitutive relationship and its associated parameters 

Perzyna’s (1971) viscoplastic constitutive relationship with modified 
Drucker-Prager yield surface has been implemented in PANDA. The 
viscoplastic flow rule can be written as: 

. . .
;    

N
vp vp vp

vp
ij o

ij y

F fε γ γ
σσ

∂
= = Γ

∂
  (23) 

where  
vp

ijε  is the viscoplastic strain tensor,
. vp

γ  is the viscoplastic 
multiplier, N  is the viscoplastic rate-sensitivity exponent parameter,  

is the Macaulay brackets defined by ( ) / 2Χ = Χ+ Χ , and 0
yσ  is a yield 

stress quantity which is used to normalized the yield surface and can be 
assumed as unity.  Functions f  and F  are yield surface and plastic 
potential functions, respectively, such that: 

( )1 1

2 3
3
2

;        ;  

3 31 11 1
2 3vp vp

f I p F I

J J
d d J

τ α κ τ β

τ

= − − = −

  = + + −  
   

  (24) 

where α  and β  are the pressure-sensitivity material parameters; 1 kkI σ=  
is the first stress invariant; τ  is the deviatoric effective shear stress; 

2
1
2 ij ijJ S S=  and 3

1
2 ij jk kiJ S S S=  are second and third deviatoric stress 

invariants, respectively; vpd  is the parameter that distinguishes the 
viscoplastic responses during extension and contraction mode of 
loadings; and κ  is the hardening function expressed as: 
( ) ( )1 2

0.5
. . .

1 exp ;   

0.5 / 31 2
1 / 3

o

vp vp

ij ij

p p

p

κ κ κ κ

β ε ε
β

−

= + − −  

  +
= +  −  

  (25) 
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where p  is the effective viscoplastic strain. 
 

10.3.2 Assumed Viscoplastic parameters 
Several of viscoplastic parameters are assumed because they do not vary 
significantly from one asphalt mixture to the other and can be assumed 
constant with reasonable accuracy. These parameters, their physical 
meaning and the recommended values are listed in Table 5, please refer to 
Huang (2008), Abu Al-Rub et al. (2009), and Darabi et al. (2012a) for 
more details on the identification of viscoplastic parameters. 

 
Table B.5 List of viscoplastic parameters that are fixed and can be assumed. No need to 

identify these parameters. 
Parameter Recommended value Physical significance 

α  0.15-0.3 Related to the angle of friction of the asphalt 
mixtures. 

β  0.05α −  Related to the angle of friction and the dilation 
characteristics of asphalt mixtures. 

vpd  0.78 Ratio of yield strength in tension to that in 
compression. Fixed for most asphalt mixes.  

0κ  50-150 kPa Initial yield strength. It has a very low value at high 
temperatures. Does not affect the results very 
much and can be assumed to have a small value 
between 50-150kPa for most asphalt mixtures.  

1κ  Compressive strength of 
asphalt mixture at 40oC 

The hardening limit of asphalt mixtures against 
viscoplastic deformation. Is in the order of 
compressive strength of asphalt mixtures at 40oC 

  
10.3.3 Extraction of viscoplastic strain during the creep part of RCRT-VS 

• Use Eq. (1) to calculate the viscoelastic strain response during the 
loading stage of RCRT-VS once linear and nonlinear viscoelastic 
parameters are identified.  

• Subtract the viscoelastic strain from the total strain to obtain the 
viscoplastic strain response during the creep part of RCRT-VS. 

• Figure 6 schematically illustrates the extraction of the viscoelastic and 
viscoplastic strain responses from the total measured strain. The 
viscoplastic parameters will be identified by analyzing the extracted 
viscoplastic strain response. 
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Figure B.6 Schematic illustration of the extraction of the viscoelastic and viscoplastic 

components of the strain.  
 
10.3.4 Identification of hardening parameter 2κ  

• Manipulating Eqs. (23)-(24) yields: 

( )( ){ }1 0 1 2

0

1 exp
N

vp

y

I p

t

τ α κ κ κγ
σ

  − − + − −∆   = Γ
 ∆
 

 (26) 

• Calculate vpγ∆ using the extracted axial viscoplastic strain 1
vpε∆ , such 

that: 
( )1 / 1 / 3vp vpγ ε β∆ = ∆ −   (27) 

• Calculate  effective viscoplastic strain p  using extracted axial and 
radial viscoplastic strains (i.e. 1

vpε  and 2
vpε , respectively) , such that: 

( ) ( )
0.5

2 2

1 2
0.5 / 3  1 2 2
1 / 3

vp vpp β ε ε
β

−
  +

= + +  −  
 (28) 

• Estimate radial viscoplastic strain as 2 1
0.5 / 3
1 / 3

vp vpβε ε
β

 +
=  − 

 if radial 

measurements are not available. 
• Pick constant values for vpγ∆  at different stress levels of RCRT-VS 

test. 
• Rearrange Eq. (26), such that: 

0.0
0

St
ra

in
 (%

)

Time (Sec)

Experimental data for total strain
Separated viscoelastic strain
Separated viscoplastic strain
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( ) ( )( )1 1 1 2

1/
0

0 1

1 ;
Nvp

y

I A Exp p

A
t

τ α κ κ κ

γσ κ κ

− − − = − −

 ∆
= + + Γ∆ 

  (29) 

• Plot ( )1 1I Aτ α κ− − −  versus p  at different stress levels. Note that 
p , A , 1κ , and 1Iτ α−  are known. 

• Identify the parameter 2κ  by minimizing the error between the 
experiments and calculations using Eq. (29). 

• Pick different values for vpγ∆  and repeat the procedure to identify 2κ  
at different values of vpγ∆ . 

• Calculate the average  2κ  value at different vpγ∆ .  
 

10.3.5 Identification of rate-sensitivity exponent parameter N  
• Calculate ( )vp tγ∆ and tp  during the loading stage of RCRT-VS at 

different stress levels using Eqs. (27) and (28), respectively. 
 
• Calculate  ( )0

vp tγ∆  and 0tp  at the beginning of each loading cycle 
using Eqs. (27) and (28), respectively. 

• Rearranging the formulation yields: 

( )
( )

( )( )
( )( )0

,
1 0 1 2

,
0 1 0 1 2

1

1

N
vp tvp
e

vp vp t
e

I Expt
t I Exp

τ α κ κ κ εγ
γ τ α κ κ κ ε

  − − + − −∆   =  ∆  − − + − −   

 (30) 

• Identify N  by minimizing the error between the experimentally 
measured ( ) ( )0/vp vpt tγ γ∆ ∆  and the model results using Eq. (30). 

 
10.3.6 Identification of viscoplastic viscosity parameter vpΓ  

Once viscoplastic parameters 2κ  and N  are identified, the viscoplasticity 
parameter vpΓ  can be identified by fitting the vpγ∆  in each cycle using 
Eq. (26).   
 

10.4. Calibration of Hardening-Relaxation Viscoplastic PANDA Model using 
Repeated Creep-Recovery Test at Constant Loading and Rest times 
(RCRT-CLR) 

 
10.4.1. Hardening-relaxation constitutive relationship and its associated 

parameters 
When subjected to cyclic creep loading with rest periods between the 
loading cycles, the viscoplastic behavior of asphalt concrete materials 
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changes such that the rate of accumulation of the viscoplastic strain at the 
beginning of  a loading cycle increases comparing to that at the end of the 
preceding loading cycle. This phenomenon is referred to as the 
hardening-relaxation and is a key element in predicting the permanent 
deformation (rutting) of asphalt pavements. The hardening relaxation 
phenomenon is modeled using the hardening-relaxation memory concept 
(Darabi et al., 2012b). To model the hardening-relaxation, static and 
dynamic hardening-relaxation memory surfaces are defines as: 

0h r vpf p q− = − ≤ ;      
1

1
.

0

vp S

h r vp
h r

qp qχ −
−

 
 = − − ≤ Γ 
 

 (31) 

where h rf −  and h rχ −  are static and dynamic hardening-relaxation 

memory surfaces, respectively. The term vpq  is the hardening-relaxation 

internal state variable that memorizes the maximum experienced 

viscoplastic strain for which the hardening-relaxation has occurred while 

p  is the effective viscoplastic strain. Parameters h r−Γ  and 1S  are 

hardening-relaxation parameters. The rate of relaxation in the hardening 

parameter is calculated, such that: 

. .

1 2

vp vp

S qκ = −   (32) 
where 2S  is another parameter associated with the hardening-relaxation 

constitutive relationship. Table 6 lists the parameters associated with the 

hardening-relaxation constitutive relationship and their physical 

significance. Repeated creep-recovery test at constant loading and rest 

times (RCRT-CLR) will be used to identify the hardening-relaxation 

parameters. 

Table B.6 List of hardening-relaxation viscoplastic parameters. 
Parameter Physical meaning 

h r−Γ  Hardening-relaxation fluidity parameter controlling the rate of evolution 
of the hardening-relaxation state variable. 

1S  Hardening-relaxation exponent controlling the time-dependency of the 
hardening-relaxation state variable. 

2S  Hardening-relaxation parameter controlling the rate at which the 
hardening parameter relaxes.  
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10.4.2. Calculation of hardening parameter 1κ  
Figure 7 schematically shows the evolution of the effective viscoplastic 
strain p  and the hardening-relaxation state variable vpq  during a cycle of 
RCRT-CLR.  
 
• From the experimental measurements, calculate the rate of the 

effective viscoplastic strain at the end of the loading and at the 
beginning of the following loading cycles: (i.e. times 1t  and 2t , 
respectively).  

• Apply Eq. (23) and (25) to times 1t  and 2t , such that: 

( ) ( ) ( ) ( ) ( ) ( )
. .

1 1 1 1 2 1 2 1;       
N Nvp vpp t A t B t p t A t B tκ κ= Γ − = Γ −        (33) 

where 1 0
0
y

IA τ α κ
σ

− −
=  and ( ) ( )2 1

1 0

1 exp ( )

y

p t
B t

κ
σ

− −
= . 

• Calculate the hardening parameter 1κ  at the end of loading and at the 
end of the rest period, such that: 

( ) ( )
( ) ( ) ( )

( )
1/ 1/. .

1 2
1 1 1 2

1 1

1 1;    

N N

vp vp

p t p t
t A t A

B t B t
κ κ

      
      = − = −      Γ Γ
         

 (34) 

 
Figure B.7 Schematic representation of the evolution of the effective viscoplastic strain and the 

hardening-relaxation internal state variable during a cycle of RCRT-CLR. 

 

p

t

vpq

p

Loading stage Unloading stage 

 (the driving force for recovery 
in the viscoplastic hardening)

vpp q−

1t 2t
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• Plot ( )1 tκ  and ( )p t  versus the accumulative resting time t  for the all 
RCRT-CLR tests. 

• Integrate Eq. (32), such that: 
( ) ( )1 1

2

initial
vpt

q t
S

κ κ−
− =   (35) 

• Pick the average values of p  and 1κ  at the end of the test for different 
rest periods. Set vpq  as the average p  at the end of the tests (i.e. 

finalp ) and calculate 2S , such that: 

1 1
2

initial final

finalS
p

κ κ−
=   (36) 

• Calculate ( )vpq t∆  using Eq. (32) once 2S  is known, such that: 

( ) ( )1

2

vp t
q t

S
κ∆

∆ = −   (37) 

where t  is the accumulative unloading time. 
 

• Calculate vpq∆ , vpq , and p  for all cycles of RCRT-CLR tests from 
experimental measurements and Eq. (37).  

• Manipulate Eq. (31), such that: 

( ) 1
vp Sh r vpq p q
t

−∆
= Γ −

∆
  (38) 

• Plot 
vpq
t

∆
∆

 versus vpp q−  in log-log scale for all available data.  

• Calculate h r−Γ  as the intersection of 
vpq
t

∆
∆

- ( )vpp q− curve with Y-

axis and 1S  as the slope of the fitted line using the following 
equation: 

( ) ( )1

vp
h r vpqLn Ln S Ln p q

t
− ∆

= Γ + − ∆ 
  (39) 

10.5. Calibration of Viscodamage PANDA Model using Uniaxial Constant Strain 
Rate Tests 

 
10.5.1. Viscodamage constitutive relationship and its associated parameters 

The viscoelastic-viscoplastic constitutive relationships are coupled with 
damage within the context of continuum damage mechanics using the 
damage density variable φ , such that: 

( )1ij ijσ φ σ= −   (40) 

224 



 

where ijσ  is the stress tensor in the nominal configuration which is 
identical to the experimentally measured stresses while ijσ  is the true 
stress tensor in the undamaged configuration which is the resulting stress 
if the damage density φ  is assumed to be zero. The evolution function for 
damage density is expressed as (Darabi et al., 2013): 

( )
.

1
0

;       ;       
q

kvd
eff eff ij ij

Y Y I
Y

φ ε τ α ε ε ε
 

= Γ = − = 
 

 (41) 

where   Y  is the damage force and effε  is the total effective strain. The 
term 0Y  is the reference damage force which is used for dimensional 
consistency and can be assumed to be unity. 

 
Table 7 lists the parameters associated with the viscodamage evolution 
function and their physical significance. 
 

Table B.7 List of viscodamage parameters that should be identified. 
Parameter Physical meaning 

vdΓ  Viscodamage fluidity parameter controlling the rate of damage evolution. 
q  Stress sensitivity parameter. Controls the effect of stress level on damage 

evolution and growth. 
k  Strain sensitivity parameter. Controls the effect of total strain level on 

damage evolution and growth. 
 

10.5.2. Calculation of damage density during uniaxial constant strain rate test 
The first step in calibrating the damage evolution function is to calculate 
the damage density variable during the uniaxial constant strain rate test. 
The constant strain rate test should be conducted at minimum of three 
strain rates at low temperatures (e.g. 5oC). 

 
• Select the constant strain rate tests at a low temperature (5oC is 

recommended) where the viscoplastic strain can be neglected. The 
strain input for constant strain rate test can be expressed as: 

( )t Ctε =   (42) 
 where C  is the strain rate. 

• Calculate the induced stress in the undamaged configuration, such 
that: 

( ) ( )
0

t
t C E dσ τ τ= ∫   (43) 

where ( )E t  is the relaxation modulus which is known from the dynamic 
modulus test.  
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• Calculate the damage density using the calculated stress in the 
undamaged configuration and the experimentally measured stress, 
such that: 

( ) ( )
( )

1
t

t
t

σ
φ

σ
= −   (44) 

• Calculate the rate of the damage density using the calculated damage 
density, such that: 

( ) ( ). t t t
t t

φ φφφ
+ ∆ −∆

= =
∆ ∆

  (45) 

10.5.3. Identification of q  parameter 
• Select four arbitrary strain levels. 
• Plot 0/Y Y  versus rate of the damage density at different strain rates 

for each selected strain level in logarithmic scale. 
• Figure 8 schematically shows the procedure to select and plot 0/Y Y  

versus 
.
φ  

 

Figure B.8 Schematic presentation of: (a) Rate of the damage density versus the 

effective strain plotted at different strain rates for the uniaxial constant strain rate tests; 

(b) Plot of the damage density rate versus the normalized effective damage force which 

is used to identify q . 

 

• Calculate the slope of the fitted lines in the 0/Y Y  versus 
.
φ  plot at 

each strain level. 
• The parameter q  is the average of the measured slopes. 
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10.5.4. Identification of k  parameter 
• Select four arbitrary calculated stress levels at undamaged 

configuration, σ . 
• Calculate  0/Y Y  for each selected stress level. 
• Plot effε  versus rate of the damage density at different stress levels in 

logarithmic scale. 
•  Figure 9 schematically shows the procedure to select and plot effε  

versus 
.
φ . 

 

 

Figure B.9 Schematic presentation of: (a) Rate of the damage density versus the 

dimensionless effective damage force (i.e. 0/Y Y ) plotted at different strain rates for the 

uniaxial constant strain rate tests; (b) Plot of the damage density rate versus the effective 

strain which will is used to identify k . 

• Calculate the slope of the fitted lines in the effε  versus 
.
φ  plot at each 

strain level. 
• The parameter k  is the average of the measured slope. 
 

10.5.5. Identification of vdΓ   
 

• Select the data points used to identify q  and k . 
• Calculate 0/Y Y  and effε  for the selected data points. 

• Calculate 
0

YqLn
Y
 
 
 

 and ( )effkLn ε  once q  and k  are identified. 

• Record rate of the damage density for the selected data points. 
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• Calculate ( )
.

0
eff

YLn qLn kLn
Y

φ ε
   − −      

. 

• Calculate vdΓ  for each data point as: 

( ) ( )
.

0

vd
eff

YLn Ln qLn kLn
Y

φ ε
  Γ = − −      

. 

• Identify the parameter vdΓ  by averaging the calculated vdΓ  for each 
data point. 
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APPENDIX C 

PUI 

 

ABAQUS provides wide flexibilities in terms of analysis type, material 

properties, mesh type, load and boundary conditions, etc. In order to allow users to 

utilize these versatile features without having in-depth knowledge of ABAQUS 

preprocessing functions, the PUI was developed at Texas A&M University by a team of 

researchers who are familiar with ABAQUS and who have expertise in the development 

of user-friendly interfaces. PUI is customized for pavement applications such that users 

can conduct performance simulations of pavements without having the in-depth 

knowledge of using ABAQUS. In PUI, users are required to specify the thickness of 

each layer, the properties of each layer, the wheel load magnitude, and the mode of 

analysis (e.g., 2D plane strain, 2D axisymmetric, or 3D). PUI translates these inputs into 

ABAQUS language and creates the input file that can be used directly by ABAQUS to 

perform the simulations. Therefore, users benefit from all preprocessing and 

postprocessing capabilities of ABAQUS through PUI.  

The process for generating the input file is almost identical to the process in 

ABAQUS. Figure C.1 shows the main window for selecting the model and loading type. 

The interface provides four types of model and loading combinations: 

• 2D axisymmetric model under pulse loading 

• 3D model under equivalent loading 

• 3D model under pulse loading 
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• 3D model under moving loading 

 

 
 

Figure C.1 Main Window of PUI 

 

Figure C.2 shows an example of inputting the data required for a 3D model 

subjected to pulse loading. As shown in Figure C.2(a), the analysis model is composed 

of four layers, including an asphalt concrete layer, and the thickness of each layer is the 

only data required in the Layer Thickness tab to construct the 3D analysis model. The 

optimized longitudinal and transverse size of the model and mesh density (or element 

size) of each layer are predetermined in PUI based on comprehensive parametric studies 

conducted for different cases. Once the thickness of each layer is provided, the user can 

go to the Material Properties tab, as shown in Figure C.2(b), to select the type of 

constitutive relationship, such as elastic, viscoelastic, viscoelastic-viscoplastic, 

viscoelastic-viscoplastic-viscodamage, etc. Layers 2 to 4 are modeled as linear elastic. 

However, different constitutive relationships can be used for the asphalt layer (layer 1). 
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Moreover, the user can easily select several combinations of constitutive relationships by 

turning on and off each model.  

 
                     (a) Layer thickness                                                    (b) Material properties 

 

 
     (c) Magnitude and amplitude of pulse load                       (d) Step and output requests 

 
Figure C.2 Input Data Managing Process (3D Model Under Pulse Loading Case) 

 

The magnitude of wheel load and pulse loading amplitude can be controlled in 

the Load tab, as shown in Figure C.2(c). A rectangular tire contact area is assumed for 

simplicity. A constant pressure is applied over the entire contact area. Moreover, the 

pulse loading amplitude is generated automatically based on the moving speed, loading 

time, resting time, total time, and number of loading cycles. Finally, the time increment 
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size, increment size control type, and output data type preferred by the user can be 

managed in the Step & Output Requests tab, shown in Figure C.2(d). Similar to 

ABAQUS, both fixed and automatic incrimination techniques are offered in PUI. 

Six different material constitutive relationships are available for the asphalt 

concrete layer, as shown in Figure C.2(b). Each parameter can be entered in its window, 

as shown in Figure C.3. The hardening-relaxation constitutive relationship is also 

available, and the user can activate the model simply by checking the option box on the 

viscoplastic parameters window. In addition, a default value for almost all parameters 

will be given for user convenience. Moreover, the format of the input file generated from 

the developed software is exactly the same as that generated from ABAQUS itself, such 

that advanced ABAQUS users can modify the input file once generated. 

 

 
           (a)  Viscoelastic properties                               (b) Viscoplastic properties 

 

Figure C.3 Parameters Associated with the Constitutive Relationships 
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As illustrated through several figures, PUI is a powerful tool to create analysis 

models for simulating the performance of pavement structures. PUI can be utilized by 

users who do not have in-depth experience with the ABAQUS software. It is important 

to note that all constitutive relationships are integrated in PUI so that the user can take 

full advantage of the power of PANDA material characterization and constitutive 

relationships while utilizing the powerful and sophisticated ABAQUS FE model 

software. 
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