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ABSTRACT 

 

The aim of this research was to investigate the potential of silica-based surface 

modification methods to prevent bacterial attachment to material surfaces. This 

dissertation presents the sol-gel method, reactive-ion etching (RIE) method, and dip-

coating method to fabricate bacteria repelling hygienic materials. 

The bacterial antiadhesion properties of hydrophobically-modified silica aerogels, 

with other distinctive characteristics including superior thermal insulation and ultra-light 

weight, make these aerogels attractive candidates for novel food-contact surfaces to 

improve food safety. Moreover, healthcare-associated infections (HAIs) caused by 

pathogenic bacteria are a worldwide problem and are responsible for numerous cases of 

morbidity and mortality. Findings from the study also showed that hydrophobic 

nanoporous silica aerogel (HNSA) has potential as an antiadhesive hygienic material that 

can inhibit exogenous bacterial contamination. The results suggest that the use of HNSA 

as surfaces that come into contact with bacterial pathogens in the healthcare environment 

can improve bacterial hygiene, and therefore, may reduce the rate of HAIs. 

Because of the growing prevalence of antimicrobial-resistant strains, there is an 

increasing need to develop material surfaces that prevent bacteria in the absence of 

antibiotic agents. Herein, we present a self-masking reactive-ion etching (SM-RIE) 

approach for bacterial antiadhesive “rice leaf-like surfaces” (RLLS). RLLS surfaces 

showed exceptional bacterial antiadhesion properties with a >99.9% adhesion inhibition 

efficiency, as well as demonstrated optical-grade transparency (i.e., ≥92% transmission). 
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We anticipate that the combination of bacterial antiadhesion efficiency, optical-grade 

transparency, and convenient single-step method of preparation makes RLLS a very 

attractive candidate surface for biosensors, endoscopes, microfluidic and bio-optical 

instruments, lab-on-a-chip, and touchscreen devices. 

Gloves made of materials such as latex, nitrile, and polyethylene are the most 

common types of protective equipment used to prevent cross-contamination and 

transmission of pathogenic bacteria in the food industry. In this study, we report a surface 

modification by dip-coating method involving “fluorinated silica nanoparticles” (FSNs) 

to improve the protective ability against bacterial contamination of disposable glove 

surfaces. The bacterial populations on FSN-coated latex, nitrile and polyethylene gloves 

was reduced by 1–2 log units in comparison to bare gloves, which already reduce the 

bacterial attachment to some extent. 
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NOMENCLATURE 

 

AFM Atomic force microscopy 

AMR Antimicrobial resistance 

ANOVA Analysis of variance 

ATCC American Type Culture Collection 
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GFP  Green fluorescent protein 
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KOH Potassium hydroxide 

LBADSA Low-bond axisymmetric drop shape analysis 
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SEM Scanning electron microscope 
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XPS X-ray photoelectron spectroscopy 
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CHAPTER I 

INTRODUCTION 

 

1.1. Objectives 

The primary objectives of the proposed work are to generate an enhanced 

understanding of bacterial adhesion while developing new bacterial antiadhesive materials. 

As part of this objective, we seek to determine the effect of the surface topography and 

the effect of surface chemistry on bacterial attachment to material surfaces. For 

accomplishing this task, we have fabricated materials that can prevent bacterial attachment 

effectively without generating any antimicrobial activity. Studies of bacterial adhesion 

behavior are important because of their relevance to human health and diseases. Food 

safety related bacteria (i.e., Salmonella and Listeria) and healthcare-associated infections 

(HAIs) related bacteria (i.e., Escherichia coli and Staphylococcus aureus) were selected 

for the studies. 

Foodborne disease cases arising from the bacterial cross-contamination of food-

contact surfaces and the subsequent cross-contamination of food products represent a 

significant concern for public health and have emerged as a global challenge.1 The sources 

of pathogenic bacteria contaminating food-contact surfaces are typically soil, water, 

contaminated foods, equipment, animals, humans, and aerosols.2 Salmonella spp., 

Escherichia coli O157:H7, Listeria monocytogenes, Campylobacter spp., Shigella spp., 

and Bacillus cereus are bacterial pathogens that can exist on food and food-contact 

surfaces.3 Currently, there are a number of studies reporting the mechanisms for 
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interaction of these microorganisms with common materials of food-contact surfaces such 

as stainless steel, glass, polyethylene, polycarbonate, polyurethane, and 

polytetrafluoroethylene (PTFE).4 

Moreover, bacterial contamination is one of the major causes of HAIs. E. coli, S. 

aureus, and Pseudomonas aeruginosa are known as the most common pathogens involved 

in hospital infections.5 The Centers for Disease Control and Prevention (CDC) estimates 

that there were 721,800 HAIs from all kinds of bacteria in the United States in 2011.6 The 

sources of pathogenic bacteria are typically equipment, packaging materials, and storage 

facilities.7,8 Hospital supplies and equipment that gets contaminated and is not properly 

cleaned is a major concern. When bacterial adhesion and subsequent biofilm formation 

has occurred on a surface, it is difficult to remove microorganisms by post-treatment such 

as physical washing (e.g., rubbing, brushing, and sonication) and chemical washing (e.g., 

chlorine-based sanitizer, hydrogen peroxide solution, and alcohol-based disinfectant). One 

of the main reasons is that microorganisms are protected by extracellular polymeric 

substances (EPSs), which guard against external physical and chemical attack.2 Also, it 

has been reported that pathogenic bacteria can survive on inanimate surfaces for several 

months.9 Thus, contaminated surfaces have the ability to transfer microorganisms to 

equipment resulting in myriad of potential health risks. 

Developing bacterial antiadhesive materials are important because of 

microorganisms that are resistant (i.e., antimicrobial-resistant bacteria and thermo-

resistant bacteria) to disinfectants are important issues.10,11 Also, the integration of 

bacterial antiadhesion properties and transparency within a single surface is one of the key 
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challenges. With the increasing number of emerging biomedical applications and optical 

devices requiring high levels of transparency and operations in bacterial media,12,13 the 

need for overcoming this challenge has intensified. The ultimate goal of this research will 

be to fabricate bacterial antiadhesive materials with optical-grade transparent properties. 

Therefore, we plan to pursue the following specific aims to meet the demands required for 

bacterial antiadhesive materials: (i) fabricate nanoporous hydrophobic silica aerogel and 

compare bacterial adhesion behavior with other silica-based materials,14,15 (ii) fabricate 

bioinspired “rice leaf-like surfaces” (RLLS) with bacterial antiadhesion properties and 

transparency within a single surface,16 and (iii) develop bacterial antiadhesive dip-coating 

method involving “fluorinated silica nanoparticles” (FSNs).17  

 

1.2. Background and Significance 

1.2.1. Influence of Material Surface Physical Properties on Bacterial Adhesion 

Many factors such as material properties, biological factors, and environmental 

factors contribute to bacterial antiadhesion on surfaces. Surface topography related to 

roughness and porosity can be considered as material properties.18 Biological factors 

include, for instance, gene transfer, quorum sensing, cell surface hydrophobicity, and 

surface charge of cells.19 Environmental factors include the effect of the pH and 

temperature. However there are limits to change intrinsic properties, i.e., biological and 

environmental conditions. Thus, understanding the effect of the surface topography is 

important to control fouling behavior. It is known that surface roughness and texture can 

greatly influence bacterial adhesion.20 Taylor et al.21 used poly(methyl methacrylate) 
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(PMMA) surfaces of varying roughness to investigate the effect of the substratum 

roughness on the adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis. 

They found that for the range of 0.04 μm to 1.24 μm a small increase in roughness resulted 

in a significant increase in bacterial attachment. 

1.2.2. Influence of Material Surface Chemical Properties on Bacterial Adhesion 

Hydrophilic materials tend to aggregate on hydrophilic surfaces.22 While bacteria 

can adhere on both hydrophobic and hydrophilic surfaces, bacterial attachment tends to 

occur significantly more on hydrophilic surfaces due to their hydrophilic nature.23 

Therefore, it is necessary to investigate the surface chemistry characteristics of the 

developed surfaces to gain insight into their bacterial adhesion behaviors. However, most 

past studies have focused on the effect of the surface properties on the thermodynamical 

aspects of bacterial adhesion, i.e., experiments were performed under a fixed time period 

of bacterial exposure. There exists a limited number of studies on the initial behavior and 

kinetics of bacterial adhesion to surfaces. This is especially important for the situations 

where the adsorption is not limited by diffusion. 

1.2.3. Fabrication of Antifouling Materials: Antimicrobial Approach 

Previous work reported surface pre-treatment methods focused on the 

antimicrobial surface modification. For example, antimicrobial polymer coating and 

surface functionalization with antibiotic agents are appropriate method to avoid initial 

contact to prevent bacterial attachment.24,25 Moreover, a number of studies on mechanisms 

for interaction of microorganisms with antimicrobial agents and active release of 

antibiotics facilitate the development of new antifouling materials that can prevent 
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bacterial attachment effectively.26 However, using antimicrobial agents involves 

limitations such as sustainability of antibiotic release over long period,27 toxicity to human 

tissues,28 effectiveness against antimicrobial-resistant bacteria,10,29 and lower long-term 

antimicrobial activity.30 In summary, there is a need to develop antifouling materials that 

robustly inhibit the attachment of pathogens in the absence of antimicrobial agents. 

1.2.4. Fabrication of Antifouling Materials: Antiadhesion Approach 

Many studies have shown that bacterial antiadhesion properties of materials have 

great potential for biological applications. For example, polyethylene glycol (PEG)-based 

coating and zwitterionic polymer coating to minimize the intermolecular interactions 

between bacteria and surfaces,31,32 changing surface properties, i.e., wetting behavior and 

topography, by using stimuli-responsive polymer materials that response to changes in 

stimuli such as heat and shear force,33,34 and surface coating containing heparin as an 

antiadhesive agent by layer-by-layer assembly.35 However, the above-mentioned methods 

are based on nonporous materials, thus, the effect of bacterial adhesion behavior on 

nanoporous materials has been investigated far less. To design bacterial antiadhesive 

surfaces more profitably, nanoporous materials can be utilized. This can be achieved by 

applying concept that repulsive force between bacteria and surfaces can be enhanced by 

nanoporous structured surfaces.36 

 

1.3. Dissertation Outline 

This dissertation is divided into seven chapters, including this introduction 

(Chapter I). Chapter II of this dissertation provides a general overview and relevant 
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information about the effect of the surface properties on bacterial adhesion. Chapter III 

describes sol-gel synthesis and functionalization methods to fabricate hydrophobically-

modified silica aerogels and its potential application for food safety. Chapter IV describes 

another competitive advantage of hydrophobically-modified silica aerogels, i.e., 

nanoporous silica aerogel (HNSA), hygienic surfaces for healthcare-related applications. 

In Chapter V, by using self-masking reactive-ion etching (SM-RIE) technique, “rice leaf-

like surfaces” (RLLS) were fabricated. A synergistic combination of bacterial 

antiadhesion properties and optical-grade transparency of RLLS are confirmed for a broad 

set of biomedical applications. Chapter VI describes disposable gloves coated with 

“fluorinated silica nanoparticles” (FSNs) by dip-coating method. FSN coating provided 

gloves a superhydrophobic character and demonstrated bacterial antiadhesion properties. 

Finally, in Chapter VII, the conclusions drawn from this dissertation are presented and 

possible future work is discussed.  



 

7 

 

CHAPTER II 

EFFECT OF THE SURFACE PROPERTIES ON BACTERIAL ADHESION 

 

2.1. Bacteria Preparation, Inoculation, and Enumeration 

2.1.1. Bacterial Growth 

Working cultures of Salmonella enterica subsp. enterica serovar Typhimurium str. 

LT2, Escherichia coli O157:H7, and Staphylococcus aureus were obtained by transferring 

a loopful of culture from tryptic soy agar (TSA) slant to 9.0 mL of tryptic soy broth (TSB) 

and working cultures of Listeria innocua NADC 2841 was obtained by transferring a 

loopful of culture from a TSA slant containing 0.6% yeast extract to 9.0 mL of TSB 

containing 0.6% yeast extract. The tubes for all strains were incubated aerobically without 

agitation at 37 °C for 24 h. After 24 h, a loopful of culture was transferred to fresh TSB 

(or TSB containing 0.6% yeast extract for L. innocua), and incubated aerobically for 24 h 

at 37 °C twice consecutively. In order to utilize fluorescent microscope for visualization 

of the microorganisms on the surfaces, Salmonella enterica subsp. enterica serovar 

Typhimurium 14028s and enterohemorrhagic Escherichia coli O157:H7 str. EDL933 

strains were transformed with a green fluorescent protein (GFP) expressing plasmid 

pCM18.37 The final concentration reached by all strains in the growth medium ranged 

from 8.7 to 9.1 log CFU/mL. 

2.1.2. Inoculation of Surfaces with Bacteria 

For bacterial inoculation purpose under static conditions, samples were immersed 

in 9.0 mL bacterial suspensions (8.7‒9.1 1og CFU/mL), and incubated for 4 h at room 
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temperature. The treated samples were then gently removed from the bacterial suspensions 

to count attached bacteria on surfaces. When removing the samples, they were drawn in a 

single vertical motion from the bacterial suspension and held vertically for 3 min to allow 

remaining droplets to slide away so that drying effects were not superimposed on the 

results of adhesion. All inoculation experiments were replicated four times. 

For bacterial inoculation purpose under dynamic conditions, flow experiments 

were carried out using custom flow chamber with 1 cm × 1 cm window made out of the 

material of interest. Bacterial adhesion behavior on developed window (i.e., RLLS) was 

compared with pristine quartz window (uncoated) and hydrophobic quartz window 

(methylated) by replacing chamber window in each experiment. For all surfaces, the flow 

rate of bacterial suspension inside chamber was controlled to be 2.5 µL/s.  

2.1.3. Bacterial Adhesion Assay 

SEM was employed to quantify the attachment of bacteria strains on surfaces. To 

ensure electrical conductivity required by SEM technique, 10 nm of gold coating was 

applied to sample surfaces. For quantitative analysis, 100 µm × 100 µm of SEM images 

from at least nine different areas were analyzed to count the number of attached bacteria. 

Experiments were repeated three times for each sample. 

Images of flowing bacteria were visualized using differential interference contrast 

(DIC) microscopy at a frame rate of 0.5 fps. Movies created by stacking images obtained 

at various time points were analyzed manually with ImageJ (National Institutes of Health 

(NIH), Bethesda, MD, USA) software to count attached bacteria on surfaces. 

Fluorescent S. Typhimurium 14028s and E. coli O157:H7 EDL933 strains were 
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Figure 1. SEM micrographs of 18 different surface roughness of quartz surfaces. Smooth 

pristine quartz surface (red dot), TMCS-functionalized nanorough quartz surfaces, and 

TMCS-functionalized microrough quartz surfaces (yellow dot) were present. 

 

determined by using an Axiovert 200M inverted fluorescent microscope. Micrographs 

obtained with fluorescent microscope were analyzed with ImageJ software. 

We also enumerated bacteria on material surfaces by using pour plating method. 

Briefly, samples inoculated by bacteria were vortex-mixed in sterile water for 10 min to 

detach bacteria from surfaces. Then, serial dilutions of the suspension containing detached 

bacteria were made and plated on TSA. Bacterial densities were determined after 24 h of 

aerobic incubation at 37 °C. The plating experiments were replicated six times. 

Screening of antimicrobial activity was carried out to determine if antimicrobial 

activity or bacterial antiadhesion is responsible for the observed results in each specific 

study. All strains were grown in the presence of TMCS-functionalized materials and in 

the presence of 1% (v/v) bleach solution for 4 h at room temperature. Bacteria in the 

absence of any treatment were used as negative controls. The results are reported as 

colony-forming units per milliliter (CFU/mL) and replicated least three times. 

 

2.2. Effect of the Surface Topography 

2.2.1. Nano/Mircorough Quartz Surfaces 

The effect of the nano/microscale roughness on bacterial adhesion behavior were 
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Figure 2. SEM micrographs of (a) pristine quartz surface (hydrophilic), (b) nanorough 

quartz surface (hydrophobic, region I), (c) nanorough quartz surface (superhydrophobic, 

region II), and (d) microrough quartz surface (hydrophobic, region III) after inoculated 

with S. Typhimurium LT2. (e) Graph shows the density of attached bacteria on surfaces 

with different roughness and hydrophobicity (x-axis and y-axis has logarithmic scales). 

 

studied on controlled surfaces with 18 different surface roughness (Figure 1) to distinguish 

how bacterial attachment decrease or increase on the basis of surface 

nano/microroughness. For sample preparation, reactive-ion etching (RIE) process using 

tetrafluoromethane (CF4)/oxygen (O2) gas mixture has enabled to fabricate nanoscale 

precise control of nanorough quartz (SiO2) surfaces by varying etching time. Microrough 

quartz surfaces were obtained by surface roughening using different grit size of sandpaper 

and followed by etching with 30% potassium hydroxide (KOH) solution to remove scraps. 

In addition, nano/microrough quartz slides were functionalized with trimethylsilyl 

chloride (TMCS) by placing the slides in solution of 6% TMCS in hexane for 24 h. Surface 

properties were investigated using attenuated total reflectance-Fourier transform infrared 

(ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force 

microscopy (AFM), and contact angle measurement. 
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Figure 3. Schematic illustration of photolithography process using photoresist patterns on 

silicon wafer (stamp) for transferring patterns onto PDMS. 

 

By modifying surface nano/microroughness, we are able to vary contact angle of 

water on surfaces from 90 to 150 or higher. Comparing 18 different surfaces of 

roughness within this regime shows full range of nano/microroughness effects on bacteria 

adhesion, as shown in Figure 2. Results can be explained in two points of view based on 

previously reported results tendency. Bacteria adhesion increase by microscale hummock 

and hollow structures on surfaces.38 On the other hand, mostly decrease on nanoscale 

roughness surfaces with reducing possibility of bacterial to adhere on wavy surfaces.39 

Until water contact angle reach to plateau state (~150), behavior follows Wenzel model. 

In contrast, non-wetting state follows Cassie-Baxter model.40 Bacteria adhesion increase 

until roughness reach around 35 nm, which is also critical point to change to 

superhydrophobic regime. Results show similar trend reported by Singh et al. on titania 

thin films; bacteria attachment increased as roughness up to 20 nm, decreased above 20 

nm.41 Microbes entrapped on microrough surfaces. Surface topography feature size bigger 

than bacteria size makes easier to bacteria trapped. 
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Figure 4. (a)‒(f) SEM micrographs of bacteria remain after dry on smooth and hole-

patterned PDMS surfaces with different depths (5‒25 μm). Empty regions are highlighted 

with blue. (g) Schematic illustration of three different possible wetting states (i.e., wetting, 

partial-wetting, and non-wetting) of bacterial suspension associated with air pocket. 

 

2.2.2. Hole-Patterned PDMS Surfaces 

Hole-patterned polydimethylsiloxane (PDMS) surfaces with different depth 

ranges were prepared to study the effect of the trapped air pockets on bacterial adhesion. 

Photolithography technique was used to make photoresist master to transfer pattern onto 

PDMS substrates (Figure 3). Thickness of photoresist was controlled by spin coating 

speed and time, which makes pattern height different after development process. As a 

result, depth range of 5 μm to 25 μm with diameter of 128 µm and spacing between each 

pattern of 100 µm patterns were fabricated. Static contact angle of a water droplet was 

measured to determine wetting characteristics of surfaces. The pattern depth was measured 

by using stylus contact profilometry. 

Surface structure provides air pocket formation, leading to increase in 

hydrophobicity as air pocket volume increase. Liquid drying effect induced by a passing 

air-liquid interface. Non-wetting state is proposed by hydrophobic microstructures by gas 

lubricated surfaces.42 Also, some researcher find air retained air-grid surface which 



 

13 

 

 

Figure 5. Schematic representation of alkanethiol self-assembled monolayers (SAMs) on 

gold (Au) substrate used in this work. 

 

prevent liquid from contact area.43 Increase of trapped air volume lead to increase of 

hydrophobicity which is expressed by Cassie-Baxter equation.44 Yoshimitsu et al.45 

reported surfaces structure that can trap more air show high hydrophobicity. Bacteria 

suspension will be detached by passing through air-liquid interface by inducing shear force. 

This can be support explaining our results shown in Figure 4, deep hole-patterned surfaces 

present less bacteria attachment after drying process. There is more possibility to form air 

bubble which will lead to increase shear force to make drying process more effective to 

prevent bacterial attachment to surfaces. Hydrodynamic shear force can be determined by 

Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions. Forming air pockets are 

making three phase interaction; air-liquid-surface instead of two phase; liquid-surface 

interaction.46 

 

2.3. Effect of the Surface Chemistry 

2.3.1. Thiol Coatings on Gold Sensor Surfaces 

For studying the effect of the surface chemistry on smooth surfaces were carried 
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Figure 6. Light micrographs of gold sensor surfaces (a) before and (b) after QCM-D 

experiment (green dashed circle indicates attached bacteria on sensor surfaces). (c) QCM-

D results show the change in the frequency upon exposing thiol surfaces to bacterial 

suspension with a flow rate of 2.5 μL/s. 

 

out using quartz crystal microbalance with dissipation monitoring (QCM-D) which enable 

to measure nanoscale mass change. Linear alkanethiols were used to prepare hydrophobic 

surfaces with systematically varying hydrophobicities (Figure 5). Self-assembly solution 

was prepared by dissolving thiol in ethanol at a concentration of 5 mM. Then, a smooth 

gold (Au) sensor (root-mean-square (RMS) roughness < 2 nm) was placed in thiol solution 

for 24 h at room temperature (23 °C) to yield monolayer formation on the sensor. Surface 

coverage of alkanethiol functionalized gold surfaces were analyzed by secondary ion mass 

spectrometry (SIMS). 

We have investigated initial bacterial adhesion behavior as a function of time via 

QCM-D. Figure 6 shows a typical QCM-D frequency data for adsorption of S. 

Typhimurium LT2 onto the alkanethiol surfaces as a function of time. The adhering 

bacteria gave rise to a decrease in resonant frequency as they adsorb to the QCM-D 

electrode, due to the increased effective mass on the electrode. In general, a larger 

frequency shifts corresponds to a larger mass change for a given rigidity and density of 

the adsorbate. Hence, the frequency response suggests that for a given time, the more 
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Figure 7. Schematic illustration of fabrication process for obtaining PVA spinach mold 

and PDMS spinach replica. After 20 nm thickness of gold (yellow layer) coating, 

substrates were modified by alkanethiols. 

 

hydrophobic surfaces are, the less favorable bacterial attachment becomes. For all surfaces, 

while, at early times (<350 s), the frequency data followed an exponential trend while at 

later times (>350 s), the exponential trend evolved into a steady-state, linear regime. 

2.3.2. Thiol Coatings on PDMS Spinach Replica Surfaces 

Polydimethylsiloxane (PDMS) spinach replica surfaces were used to study the 

effect of the surface chemistry on microrough surfaces. The first step in fabricating PDMS 

spinach replica is rinsing spinach with water to remove dirt and other residues from 

surfaces. After, a solution of 10 wt% polyvinyl alcohol (PVA) in water was prepared to 

cast spinach mold. PVA solution was poured over spinach surfaces and left to dry at room 

temperature for 3 days before peeling. When PVA mold is prepared, PDMS was poured 

into a PVA mold and placed in oven to cure PDMS at 60 °C for 24 h before peeling. 

Subsequently, 20 nm gold sputter coating was applied on PDMS spinach replica surfaces 

for thiol-functionalization (Figure 7). Thiol-functionalized surfaces were characterized by 

measuring contact angle of water and diiodomethane to calculate surface tension (σ) of 

each surface. 
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Figure 8. (a) Confocal microscope image of fresh spinach surfaces. Inset: photograph of 

fresh spinach leaf. (b) 3D projection of fresh spinach by using z-stacked confocal 

microscope images. SEM micrographs of (c) hydrophilic PDMS spinach replica and (d) 

hydrophobic PDMS spinach replica surfaces. Inset: detail view of bacterial attachment to 

valleys. 

 

As surface hydrophobicity increase, bacterial attachment to microrough PDMS 

spinach replica surfaces reduced. However, SEM micrograph results from PDMS spinach 

replica surfaces indicate not only surface chemistry but also microscale surface texture 

effects on bacterial adhesion and makes slightly different trends. As shown in Figure 8, 

bacteria tend to stay more at the valleys of rough surfaces. This behavior can be explained 

by previous research report that scale of surface roughness larger than bacteria size 

(dimensions ranging from 700 nm to 4000 nm) enhanced bacterial colonization, because 

bacteria prefer surfaces that can increase surface-bacteria total contact area such as valleys, 

depressions, pits, and edges.47 
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CHAPTER III 

HYDROPHOBICALLY-MODIFIED SILICA AEROGELS: NOVEL FOOD-

CONTACT SURFACES WITH BACTERIAL ANTIADHESION PROPERTIES* 

 

3.1. Introduction 

Foodborne disease cases arising from the bacterial cross-contamination of food-

contact surfaces and the subsequent cross-contamination of food products represent a 

significant concern for public health and have emerged as a global challenge.1,48,49 The 

sources of pathogenic bacteria contaminating food-contact surfaces are typically soil, 

water, contaminated foods, equipment, animals, humans, and aerosols.2 Salmonella spp., 

Escherichia coli O157:H7, Listeria monocytogenes, Campylobacter spp., Shigella spp., 

and Bacillus cereus are bacterial pathogens that can exist on food and food-contact 

surfaces.3,50,51 Currently, there are a number of studies reporting the mechanisms for 

interaction of these microorganisms with common materials of food-contact surfaces such 

as stainless steel, glass, paper, high density polyethylene, polycarbonate, polyurethane, 

and polytetrafluoroethylene (PTFE).52–60  

After attachment, pathogenic bacteria can survive on food-contact surfaces such 

as stainless steel for hours or days after initial contact.61 Thus, contaminated food-contact 

surfaces have the ability to transfer microorganisms to raw foods resulting in the potential 

 

*Reprinted with permission from “Hydrophobically-modified silica aerogels: Novel food-contact 

surfaces with bacterial anti-adhesion properties” by Jun Kyun Oh, Keila Perez, Nandita Kohli, 

Veli Kara, Jingyu Li, Younjin Min, Alejandro Castillo, Matthew Taylor, Arul Jayaraman, Luis 

Cisneros-Zevallos, Mustafa Akbulut, 2015. Food Control, 52, 132‒141, Copyright 2014 by 

Elsevier Ltd. 
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for foodborne illnesses.62,63 When good hygienic practices are applied, such as washing 

with hot water and soap, it is possible to reduce the number of viable pathogens on food-

contact surfaces.64 However, if cleaning and sanitizing procedures are inadequate, 

multiple scenarios for bacterial contamination where food safety and quality is 

compromised emerge.65 Furthermore, as food-contact surfaces are used and abraded with 

time, cleaning and sanitizing may be even more difficult due to the development of 

crevices and other rough surfaces on them, thereby resulting in bacterial attachment and 

potential cross-contamination of foods.66 In summary, there is a need to develop novel 

food-contact surfaces that robustly inhibit the attachment of pathogens. 

Mérian and Goddard67 have recently reviewed the emerging classes of non-fouling 

materials that have a potential for food applications. To this end, protein-repellent 

surfaces,68,69 zwitterionic surfaces,70 stimuli-responsive polymers,34 biomimetic materials 

(e.g., lotus leaf, rice leaf, butterfly wing, fish scale, and shark skin),71 and amphiphilic 

surfaces72 have been considered. In this study, we investigated the feasibility of 

hydrophobically-modified silica aerogels, an advanced material that can be prepared in an 

economical fashion, as a food-contact surfaces that could have antiadherent activity 

against bacteria. Silica aerogel was selected based on reports on the use of functionalized 

silica mesoporous structures in several biomedical applications such as antifouling 

surfaces against proteins and cells. For instance, poly(carboxybetaine methacrylate) 

functionalized silica hydrogel was shown to resist protein (fibrinogen) adsorption.73 In 

another study, fluoroalkoxysilane coated structures involving silica colloids were found 

to reduce adhesion of Staphylococcus aureus and Pseudomonas aeruginosa.74 Hu et al.75 
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showed that composite structures involving poly(L-lactide) and silica nanoparticles 

exhibited antiadhesion behavior towards bacteria and cells. In addition, silica aerogels are 

very good thermal insulators.76,77 Such a property can be useful for some food-contact 

surfaces or process environment (e.g., post-lethality environment for the 

handling/packaging of fully cooked meats, produce cooling chambers, or other chilled 

food storage environment). 

Gram-negative Salmonella Typhimurium LT2 and Salmonella Typhimurium 

14082s, and Gram-positive Listeria innocua NADC 2841 were utilized for studying the 

interactions of the developed food-contact surfaces with bacteria through dip-inoculation. 

The bacterial adhesion behavior was evaluated using conventional plating and scanning 

electron microscopy (SEM). The surface and porosity properties of the silica aerogel were 

characterized using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) 

spectroscopy, atomic force microscopy (AFM), contact angle measurements, Brunauer-

Emmett-Teller (BET) analysis, and ellipsometry techniques. 

 

3.2. Materials and Methods 

3.2.1. Preparation of Quartz and Silica Aerogel and their Methylated Versions 

1 cm × 1 cm quartz (SiO2) slides (Ted Pella, Inc., Redding, CA, USA) were first 

rinsed with Milli-Q water (resistivity ≥ 18.2 MΩ·cm) produced by an ultrapure water 

purification system (Milli-Q Advantage A10; EMD Millipore Corp., Billerica, MA, USA), 

and left dry at room temperature (23 °C). Subsequently, oxygen (O2; Brazos Valley 

Welding Supply, Inc., Bryan, TX, USA) plasma treatment by CS-1701 reactive-ion etcher 
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Figure 9. Schematic of hydrophobization of silica (SiO2) materials (a) quartz and (b) silica 

aerogel via methylation reaction using TMCS. 

 

(RIE; Nordson March, Concord, CA, USA) was applied to remove organic adsorbates on 

surfaces and further clean the surfaces. In addition, plasma treatment is known to be an 

effective method for sanitizing surfaces from bacteria,78,79 and can eliminate pre-existing 

bacteria, if any, present on surfaces.  

After rinsing with sterile Milli-Q water again, these slides were used as the 

negative controls. In addition, some of the quartz slides were functionalized with 

trimethylsilyl chloride (TMCS; Sigma-Aldrich Co., St. Louis, MO, USA) by placing the 

clean slides in 6% TMCS solution. The silanation reaction was allowed to take place for 

24 h (Figure 9). The slides were then rinsed with ethanol (200 proof; Koptec, King of 

Prussia, PA, USA) and purged with a stream of nitrogen (N2; Brazos Valley Welding 

Supply, Inc., Bryan, TX, USA) for 10 min and left dry at room temperature (23 °C) before 

use (positive controls). 
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Silica (SiO2) aerogel was synthesized by the sol-gel polymerization of tetraethyl 

orthosilicate (TEOS; Sigma-Aldrich Co., St. Louis, MO, USA) via hydrolysis and 

condensation reaction.80 Ammonium fluoride (NH4F; Sigma-Aldrich Co., St. Louis, MO, 

USA) was used as a hydrolysis catalyst, and ammonium hydroxide (NH4OH; Sigma-

Aldrich Co., St. Louis, MO, USA) as a condensation catalyst. TEOS was dissolved in 

ethanol and the resultant solution was mixed with NH4F, NH4OH, and water to initiate the 

gelation. The reaction was allowed to take place for 24 h and the silica aerogel formed 

was dried using supercritical carbon dioxide (CO2; Brazos Valley Welding Supply, Inc., 

Bryan, TX, USA) at the critical point (31.1 °C, 72.9 bar). This resulted in hydrophilic 

silica aerogel which was submerged in 6% TMCS solution for 24 h to functionalize silica 

surfaces with TMCS. Next, the functionalized silica aerogel was rinsed with hexane 

(Avantor Performance Materials, Inc., Center Valley, PA, USA) to eliminate excess 

TMCS and byproducts, and dried at 60 °C until hexane evaporated completely. 

3.2.2. Characterization of Quartz and Aerogel 

The chemical interactions of TMCS with silica materials (i.e., quartz and silica 

aerogel) were characterized by attenuated total reflectance-Fourier transform infrared 

(ATR-FTIR) spectroscopy. ATR-FTIR spectra were measured using an IRPrestige-21 

(Shimadzu Corp., Kyoto, Japan) system and analyzed using IRsolution version 1.40 

(Shimadzu Corp., Kyoto, Japan) software. 

Surface topography of the samples was characterized using atomic force 

microscopy (AFM, Dimension Icon; Bruker, Santa Barbara, CA, USA). For AFM sample 

preparation, a stream of nitrogen gas was gently directed downward onto the surface of 
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the samples to remove any potential dust, and then fixed on the stage with a super glue to 

decrease data noise due to its extremely light weight. Topographical micrographs were 

obtained by using ScanAsyst™ mode in air. The silicon tip had the nominal spring 

constant 0.4 N/m, nominal tip radius 2 nm, and the nominal resonant frequency of 70 kHz. 

In order to determine the surface hydrophobicity, static water contact angles were 

measured for different types of surfaces using the sessile drop technique.81,82 Reported 

contact angles on each surface were obtained by averaging six measurements at room 

temperature (23 °C). The contact angles were analyzed by ImageJ (National Institutes of 

Health (NIH), Bethesda, MD, USA) software via contact angle plug-in. 

The Brunauer-Emmett-Teller (BET) method was used to determine surface area, 

average pore diameter, and pore volume distribution of the hydrophobic silica aerogel. 

This was achieved by nitrogen adsorption isotherms at a temperature of 77 K by using 

ASAP2010 (Micromeritics Instrument Co., Norcross, GA, USA). The surface area was 

computed from N2 adsorption curves following the Barret-Joyner-Halenda (BJH) 

method.83 

The refractive index of silica aerogel was measured using an angle dependent 

ellipsometer (Nanofilm EP3-SE; Nanofilm Technology GmbH, Göttingen, Germany) 

under dry and wet conditions to calculate what fraction of nanopores of silica aerogel was 

filled with water upon water contact. 

3.2.3. Chemical Stability Tests 

Chemical stability of hydrophobic silica aerogel was monitored in deionized (DI) 

water (H2O) and in 10% hydrogen peroxide (H2O2, 30% solution; Avantor Performance 



 

23 

 

Materials, Inc., Center Valley, PA, USA), a commonly used sanitizer in food industry, as 

a function of time. This was achieved through analysing aliquots collected from solutions 

containing submerged hydrophobic silica aerogel pieces using ATR-FTIR. These 

measurements were conducted at immersion times of 4 h, 3 days, 1 week, and 2 weeks for 

both DI water (H2O) and 10% hydrogen peroxide (H2O2) solutions. 

3.2.4. Growth and Maintenance of Microorganisms 

Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 (ATCC 

700720; American Type Culture Collection, Manassas, VA, USA) and L. innocua NADC 

2841 (NADC 2841; National Animal Disease Center, Ames, IA, USA) were obtained 

from the Center for Food Safety Culture Collection in the Department of Animal Science 

(Texas A&M University, College Station, TX, USA). Working cultures of S. 

Typhimurium LT2 were obtained by transferring a loopful of culture from tryptic soy agar 

(TSA; Becton, Dickinson and Co., Sparks, MD, USA) slant to 9.0 mL of tryptic soy broth 

(TSB; Becton, Dickinson and Co., Sparks, MD, USA) and working cultures 

of L. innocua NADC 2841 was obtained by transferring a loopful of culture from a TSA 

slant containing 0.6% yeast extract (Becton, Dickinson and Co., Sparks, MD, USA) to 

9.0 mL of TSB containing 0.6% yeast extract. The tubes for all strains were incubated 

aerobically without agitation at 37 °C for 24 h. After 24 h, a loopful of culture was 

transferred to fresh TSB (or TSB containing 0.6% yeast extract for L. innocua NADC 

2841), and incubated aerobically for 24 h at 37 °C twice consecutively. The final 

concentration reached by S. Typhimurium LT2 and L. innocua NADC 2841 in the growth 

medium ranged from 8.8 to 9.1 log CFU/mL. 
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3.2.5. Inoculation of Surfaces with Bacterial Organisms 

For sterilization purpose, each sample i.e., hydrophilic nonporous silica (negative 

control), hydrophobic nonporous silica (positive control), and hydrophobic silica aerogel 

(nanoporous) was washed in 70% ethanol for 5 min and then rinsed in sterile Milli-Q water. 

After completion of the sterilization process, the absence of microorganisms was 

confirmed by SEM. Next, the samples were immersed in 9.0 mL bacterial suspensions 

(8.8–9.1 log CFU/mL) for 4 h at room temperature (23 °C). Then, the samples were gently 

removed from the bacterial suspension in a single vertical motion, and held vertically for 

5 min to eliminate the remaining droplet so that drying effects were not superimposed on 

the adhesion effects. Finally, nitrogen gas was gently blown on the sample to further 

remove the thin liquid film. The treated samples were then isolated for counting attached 

bacterial cells. All of these experiments were carried out under sterile conditions in 

biological safety cabinet to prevent any contamination. 

For the comparison purposes, the above mentioned dipping inoculation assay was 

also utilized for common food-contact materials such as polytetrafluoroethylene (PTFE), 

polycarbonate, stainless steel, and glass. The disk shape samples (10 mm in diameter and 

5 mm in height) were sterilized and inoculated as described above. All inoculation 

experiments were replicated four times. 

3.2.6. Enumeration of Attached Bacteria 

As a direct counting approach, a scanning electron microscope (SEM, JSM-7500F; 

JEOL, Tokyo, Japan) was used to observe S. Typhimurium LT2 and L. innocua NADC 

2841 on surfaces to quantify bacterial adhesion on various types of silica surfaces. In SEM 
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experiments, a thin layer (15 nm) gold (Au) film was deposited on the bacteria adhered 

surfaces to ensure the scattering contrast and electrical conductivity required by SEM 

technique. The SEM micrographs were analyzed by ImageJ to quantify S. Typhimurium 

LT2 and L. innocua NADC 2841 attachments. For statistical reliability, at least nine 

different areas of 100 μm × 100 μm from three different samples were observed to count 

number of attached bacteria. 

We also enumerated bacteria on silica aerogel using pour plating approach. Briefly, 

silica aerogel samples (5 mm × 5 mm) inoculated by bacteria were vortex-mixed in sterile 

water for 10 min to detach bacteria from surfaces. Then, serial dilutions of the suspension 

containing detached bacteria were made and plated on TSA containing 0.1 g/mL of 

rifampicin (Sigma-Aldrich Co., St. Louis, MO, USA) for S. Typhimurium LT2 and TSA 

containing 6.0 μg/mL yeast extract for L. innocua NADC 2841. Bacterial densities were 

determined after 24 h of aerobic incubation at 37 °C. The plating experiments were 

replicated six times. 

3.2.7. Bacterial Proliferation Assay 

After observing significant reductions in bacterial attachment on silica aerogel, we 

performed an additional assay to determine if bacterial antiadhesion or antimicrobial 

activity is responsible for the observed trends. Briefly, bacterial (S. Typhimurium LT2 and 

L. innocua NADC 2841) suspensions (8.8–9.1 log CFU/mL) were exposed to TMCS-

functionalized silica aerogel through immersion or to 1% (v/v) bleach solution through 

mixing (positive control) for 4 h at room temperature (23 °C). Bacterial suspension 

without any exposure step was used as the negative control. Then, pour plating method 



 

26 

 

was utilized by taking 1.0 mL of bacterial suspension from each solution to make serial 

dilutions and then by counting the total number of bacteria. These experiments were 

replicated three times for each condition.  

3.2.8. Characterization of Thermal Properties 

The thermal insulation behavior was evaluated using a thermochromic film placed 

directly on top of the surface of interest (see Appendix A: Supplemental Information, 

Section A1 for further details). The prepared thermochromic film was found to change its 

color from blue to red at temperatures 40 °C or above. PTFE, polycarbonate, stainless 

steel, and glass samples having similar shape and dimensions to hydrophobic silica aerogel 

sample (10 mm in diameter and 5 mm in height) was manufactured. After the 

thermochromic film was placed on top of the manufactured samples, they were placed on 

a hot plate at a temperature of 100 °C for an hour. The time at which the color of the 

thermochromic film on the samples changed from blue to red was used as a criterion of 

comparison for the thermal insulation behavior. 

3.2.9. Statistical Analysis 

Microbiological data from plate counts and SEM were transformed into logarithms 

of cells/mm2. One-way and two-way analysis of variance (ANOVA) with Tukey's post 

hoc test were used to determine significant differences between microbiological data from 

surface types and bacterial (S. Typhimurium LT2 and L. innocua NADC 2841) types 

(p < 0.05). All analyses were performed by using Microsoft Office Excel (Microsoft Corp., 

Redmond, WA, USA) statistical software packages. 

http://www.sciencedirect.com/science/article/pii/S0956713514007191#appsec1
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Figure 10. AFM micrographs and RMS roughness values of (a) hydrophilic quartz, (b) 

hydrophobic quartz, and (c) hydrophobic silica aerogel. 

 

3.3. Results and Discussion 

3.3.1. Topography and Porosity Characteristics of Silica Aerogel 

Previous studies have shown that surface roughness can influence bacterial 

adhesion.20,84 Hence, we characterized the surface topography of the materials used in this 

study to better compare their adhesion behavior. Figures 10(a)‒(c) display AFM 

micrographs of hydrophilic nonporous quartz (SiO2), hydrophobic nonporous quartz 

(SiO2), and hydrophobic silica (SiO2) aerogel (nanoporous) surfaces at a lower 

magnification. The analysis of the AFM micrographs revealed that the root-mean-square 

(RMS) roughness was 0.95 ± 0.05 nm, 1.44 ± 0.14 nm, and 104.01 ± 22.69 nm for 

hydrophilic quartz, hydrophobic quartz, and hydrophobic silica aerogel surfaces, 

respectively. This means that while hydrophobic silica aerogel surfaces were rougher than 

hydrophilic and hydrophobic quartz surfaces, the length scale of roughness for 

hydrophobic silica aerogel was still much smaller than diameter and length of bacteria 
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used in this study (i.e., 1.0–1.5 μm × 2.0–6.0 μm).85 

BET studies on hydrophobic silica aerogel revealed that the Barrett-Joyner-

Halenda (BJH) average pore diameter of hydrophobic silica aerogel was 6.58 ± 0.59 nm, 

the BJH pore volume was 1.10 ± 0.10 cm3g−1, and the BET surface area was 

761.54 ± 3.15 m2g−1. These values are comparable with functionalized silica aerogel 

described in the literature.86–88 Herein, it is important to note that the length scale of the 

bacteria is much larger than the pore diameter of the silica aerogel (i.e., 1000–

1500 nm × 2000–6000 nm versus ~7 nm), thereby inhibiting the penetration of bacteria 

into the hydrophobic silica aerogel. 

3.3.2. Characterization of Functional Groups on Silica Aerogel 

To confirm the methylation reaction on quartz and silica aerogel, ATR-FTIR 

spectroscopy was used. Figures 11(a),(b) display ATR-FTIR spectra of pure (unreacted) 

TMCS, TMCS-functionalized (methylated) quartz, and TMCS-functionalized 

(methylated) silica aerogel surfaces. While the bare quartz and bare silica aerogel surfaces 

had no peak between 2800 cm−1 and 3000 cm−1, the hydrophobic (methylated) quartz had 

peaks at 2850 cm−1, 2920 cm−1, and 2967 cm−1 and the hydrophobic (methylated) silica 

aerogel at 2900 cm−1, 2962 cm−1, and 2978 cm−1. The presence of these peaks are 

attributed to symmetric and asymmetric C–H stretching from methyl groups formed upon 

the reaction of TMCS with silica surfaces. Unbound (free-standing) TMCS molecules had 

symmetric and asymmetric C–H stretching peaks at 2900 cm−1 and 2962 cm−1. The 

changes in C–H stretching behavior are due to the substitution of Cl atoms by O atoms 

during methylation reaction and because of the transformation from the liquid state to 
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Figure 11. (a) C–H stretching region, (b) Si–Cl stretching region from ATR-FTIR spectra 

of TMCS, quartz (hydrophilic), silica aerogel (hydrophilic), TMCS-functionalized quartz 

(hydrophobic), and TMCS-functionalized silica aerogel (hydrophobic). (c) Static water 

contact angle measurements of quartz (hydrophilic), TMCS-functionalized quartz 

(hydrophobic), and TMCS-functionalized silica aerogel (hydrophobic). 

 

crystalline state.89 In addition, Si–Cl stretching vibration region ~620 cm−1 only existed 

for TMCS,90 supporting the methylation reaction shown in Figure 9.   

3.3.3. Wetting Characteristics of Silica Aerogel 

Hydrophilic materials tend to aggregate on hydrophilic surfaces.22,91 While 

bacteria can adhere on both hydrophilic and hydrophobic surfaces, bacterial attachment 

tends to occur significantly more on hydrophilic surfaces.92 Therefore, it is necessary to 

investigate the hydrophobicity of surfaces to better explain the bacterial attachment data. 
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Figure 12. Characterization of chemical stability of hydrophobic silica aerogel in (a) DI 

water (H2O) and (b) 10% hydrogen peroxide (H2O2) using ATR-FTIR spectroscopy. The 

absence of C–H stretching region in aqueous media suggests chemical durability of 

functional groups on silica aerogel surfaces. 

 

The static water contact angle measurements (Figure 11(c)) revealed that while the neat 

quartz was hydrophilic (θ < 10.0°), methylated quartz (θ = 95.5 ± 1.2°) and methylated 

silica aerogel (θ = 132.4 ± 3.7°) were hydrophobic. The difference between the contact 

angles of methylated quartz and silica aerogel can be explained by previous studies 

showing that surfaces with different roughness, textures, or crystal structures often display 

a variation in water contact angle values although their surface chemistry is the same.93–95 

3.3.4. Chemical Stability of Silica Aerogel 

The potential toxicity, if any, of the developed silica aerogel surfaces is directly 

related to their ability to release chemicals from their surfaces through detachment, 

degradation, or decomposition. Hence, we investigated chemical integrity and stability of 

hydrophobic silica aerogel in DI water (H2O) and 10% hydrogen peroxide (H2O2) as a 

function of time using ATR-FTIR spectroscopy. As shown in Figure 12, the spectroscopic 



 

31 

 

 

Figure 13. SEM micrographs of (a) hydrophilic quartz, (b) hydrophobic quartz, and (c) 

hydrophobic silica aerogel (black circle indicates attached bacteria) after inoculation 

with S. Typhimurium LT2. Panel (d) relates the number of bacteria per unit area (mm2) 

remaining on surfaces (a logarithmic scale is chosen for the y-axis). Bacterial adhesion 

was statistically different between all surfaces as determined by mean numbers of attached 

cells following counting (p < 0.05). (e) Microbiological data obtained by pour plating 

method. Different letters indicate statistically significant difference. 

 

analysis revealed that solutions containing submerged silica aerogel had no free chemicals 

within the detection limit of 1 ppm at least for two weeks. 

3.3.5. Bacterial Adhesion Behavior of Silica Aerogel 

Figures 13(a)‒(c) show the SEM micrographs of three different types of silica 

materials described above following inoculation and attachment of S. Typhimurium LT2. 

http://www.sciencedirect.com/science/article/pii/S0956713514007191#fig5
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The pristine quartz surface (hydrophilic, negative control) supported the greatest bacterial 

adhesion with a mean density of 5.6 ± 0.0 log cells/mm2 (Figure 13(d)). When the quartz 

was methylated (hydrophobized) i.e., positive control, the bacterial adhesion decreased to 

a mean density of 4.6 ± 0.1 log cells/mm2 which corresponds to 90.38 ± 2.75% of 

reduction. Bacterial adhesion on hydrophobic (methylated) silica aerogel surfaces led to a 

mean density of 2.6 ± 0.3 log cells/mm2 which achieved a relatively high reduction of 

99.91 ± 0.05%. One-way ANOVA analysis showed that the difference in the adhesion of 

S. Typhimurium LT2 with respect to the sample type is statistically significant (p < 0.05). 

In addition to direct counting via scanning electron microscopy (SEM), pour plating was 

used to enumerate microorganisms on these samples (Figure 13(e)). Plating studies 

showed that compared with the negative control (pristine quartz), the positive control 

(methylated quartz) and silica aerogel led to a reduced number of salmonellae by 1.2 ± 0.1 

log units (93.23 ± 0.91%) and by 3.1 ± 0.1 log units (99.93 ± 0.01%), respectively. 

According to one-way ANOVA test, these values were significantly different at p < 0.05 

level. We note that the log reduction values were smaller in plating studies, presumably 

due to the lack of bacterial growth step in direct counting studies via SEM. Similar 

reduction trends were also observed for pathogenic Salmonella 

enterica subsp. enterica serovar Typhimurium str. 14028s (see Appendix A: 

Supplemental Information, Section A2 and Figure 36 for further details). 

To determine if the above observed trends also take place for Gram-positive 

bacteria, we repeated direct counting via SEM and plating experiments 

using L. innocua NADC 2841. Figures 14(a)‒(c) show the SEM micrographs 

http://www.sciencedirect.com/science/article/pii/S0956713514007191#fig5
http://www.sciencedirect.com/science/article/pii/S0956713514007191#appsec1
http://www.sciencedirect.com/science/article/pii/S0956713514007191#fig6
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Figure 14. SEM micrographs of (a) hydrophilic quartz, (b) hydrophobic quartz, and (c) 

hydrophobic silica aerogel (black circles indicate attached bacteria) after inoculation 

with L. innocua NADC 2841. Panel (d) relates the number of bacteria per unit area (mm2) 

remaining on surfaces (a logarithmic scale is chosen for the y-axis). Bacterial adhesion 

was statistically different between all surfaces as determined by mean numbers of attached 

cells following counting (p < 0.05). (e) Microbiological data obtained by pour plating 

method. Different letters indicate statistically significant difference. 

 

of L. innocua NADC 2841 attachment on three different types of silica materials 

described above.  While hydrophilic quartz surfaces yielded a mean bacterial density of 

5.8 ± 0.1 log cells/mm2, hydrophobic quartz surfaces had a reduced number of bacteria 

attached with a mean density of 4.7 ± 0.0 log cells/mm2, corresponding to 92.01 ± 1.03% 

reduction (Figure 14(d)). Hydrophobic silica aerogel surfaces displayed much lower 
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degree of bacterial attachment with a mean density of 2.5 ± 0.2 log cells/mm2, indicating 

99.94 ± 0.03% reduction in comparison to the hydrophilic quartz (negative control). In 

pour plating studies, using the negative control (the pristine quartz) as reference, the log 

reduction values were calculated to be 1.3 ± 0.0 log units (94.82 ± 0.21%) and 3.0 ± 0.0 

log units (99.91 ± 0.01%) for methylated quartz (positive control) and silica aerogel, 

respectively (Figure 14(e)). One-way ANOVA analysis indicated that the difference in the 

number of L. innocua NADC 2841 with respect to sample type was statistically significant 

(p < 0.05) for both direct counting and traditional plating approaches. The comparison of 

microbiological data on three types of silica surfaces with respect to the bacterial types 

via two-way ANOVA indicated that for all surface types, the adhesion behavior of Gram-

negative (S. Typhimurium LT2) and Gram-positive (Listeria NADC 2841) on these was 

not significantly different (p > 0.05). 

Bacteria with hydrophobic cell surface tend to adhere more extensively on 

hydrophobic material surfaces while those with hydrophilic properties prefer hydrophilic 

surfaces.96,97 Given the contact angles of water on S. Typhimurium and L. innocua NADC 

2841 are between 26° and 36°, thus fairly hydrophilic, the reduction in the bacterial 

adhesion on the hydrophobic quartz surfaces in comparison to the hydrophilic ones is 

consistent with the above-mentioned phenomena.98,99 However, the complete elimination 

of bacterial attachment upon changing the surface from hydrophobic quartz to 

hydrophobic silica aerogel cannot be explained solely by the hydrophobic effect, 

especially given both surfaces were functionalized with the same chemical group. 

Because tail groups of TMCS are methyl groups, acid-base, hydrogen-bond, and 
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Figure 15. Comparison of bacterial (S. Typhimurium LT2 and L. innocua NADC 2841) 

adhesion behavior on (a), (b) hydrophobic (methylated) silica aerogel (black circles 

indicate attached bacteria) and (c)–(j) common food-contact materials: PTFE, 

polycarbonate, stainless steel, and glass. 

 

specific ligand-receptor types of interactions between TMCS and bacteria are non-existing. 

Therefore, van der Waals interactions are expected to primarily govern the 

thermodynamics of bacterial adhesion on methylated quartz and methylated silica aerogel 

surfaces. The strength of van der Waals forces is directly related to the refractive index of 

interacting materials and dispersing medium.36 For a given bacteria and aqueous medium, 

a lower refractive index of substrate will lead to a decrease in attractive van der Waals 
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interactions between the substrate and bacteria (see Appendix A: Supplemental 

Information, Section A3 for further details). Due to their nanoporous nature, silica 

aerogels can have much lower refractive index than nonporous silica materials (i.e., 

quartz).100 Using spectroscopic ellipsometry, we found that for the methylated silica 

aerogel prepared, the refractive index was 1.008 ± 0.001, which is indeed much smaller 

than the refractive index of nonporous silica materials, 1.45–1.55. Hence, the superior 

ability of hydrophobic silica aerogel to inhibit bacterial attachment is attributed to the 

reduction of attractive van der Waals interactions due to their nanoporous nature. 

 

Table 1. Comparison of bacterial proliferation behavior in the absence and in the presence 

of TMCS-Silica aerogel sample, and in the presence of 1% bleach solution against S. 

Typhimurium LT2 and L. innocua NADC 2841. Significant reduction was only observed 

for 1% bleach solution. 

Bacteria 
Bacterial suspension 

alone (control) 

Bacterial suspension 

with 

TMCS-Silica aerogel 

Bacterial suspension 

with 

1% bleach solution 

S. Typhimurium LT2 3.7 × 108 CFU/mLa 3.2 × 108 CFU/mLa <1 (zero) CFU/mLa 

L. innocua NADC 2841 1.1 × 109 CFU/mLa 1.2 × 109 CFU/mLa <1 (zero) CFU/mLa 

aValues of bacterial population (CFU/mL) after 4 h of exposure. 

 

3.3.6. Comparison of Bacterial Adhesion Behavior 

For a direct comparison purpose, we carried out identical dipping inoculation tests 

with common food-contact materials such as PTFE, polycarbonate, stainless steel, and 

glass as well as silica aerogel. Figure 15 displays SEM micrographs of hydrophobic 

(methylated) silica aerogel and common food-contact materials after inoculation 

http://www.sciencedirect.com/science/article/pii/S0956713514007191#appsec1
http://www.sciencedirect.com/science/article/pii/S0956713514007191#appsec1
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by S. Typhimurium LT2 and L. innocua NADC 2841 bacterial suspensions. Methylated 

silica aerogel clearly displayed superior antiadhesion performance in comparison to PTFE, 

polycarbonate, stainless steel, and glass. Considering that PTFE is very hydrophobic 

surface, improvements in inhibition of bacterial adhesion behavior for silica aerogel also 

support the above-mention discussion that hydrophobic effect cannot be solely responsible 

for the observed adhesion trends. Overall, these promising findings indicate a high 

inhibition efficiency of hydrophobic silica aerogel against bacterial adhesion and also 

show how effectively hydrophobic silica aerogel can prevent bacterial attachment 

compared to common food-contact materials. 

3.3.7. Screening of Antimicrobial Activity 

To determine if bacterial antiadhesion or antibacterial property is responsible for 

the log reduction trends in the bacterial attachment on silica aerogel, we carried out 

bacterial growth studies in the presence of silica aerogel (Table 1). In comparison to 

bacterial suspension without any treatment, for bacterial suspension with 1% bleach 

solution, a log reduction of 8–9 was observed. On the other hand, there was no change in 

the number of bacteria growing in the presence of silica aerogel (see Appendix A: 

Supplemental Information, Figure 37 for further details). Overall these findings indicate 

that silica aerogel displays no antibacterial activity, and hence, bacterial antiadhesion is 

indeed responsible for the observed inhibition trends in bacterial adhesion. 

3.3.8. Measurement of Thermal Insulation Properties 

The thermal insulation behavior of methylated silica aerogel and commonly used 

food-contact materials were compared using a thermochromic film that changes its color 

http://www.sciencedirect.com/science/article/pii/S0956713514007191#appsec1
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Figure 16. Comparison of thermal insulation properties of (a) hydrophobic silica aerogel 

(TMCS-Silica aerogel) and (b)–(e) common food-contact materials: PTFE, polycarbonate, 

stainless steel, and glass. 

 

from blue to red at temperatures 40 °C or above (Figure 16). It was found that after keeping 

all of the surfaces on hot plate for 1 h at 100 °C, thermochromic film on all materials 

except hydrophobic silica aerogel changed its color blue to red. These findings indicate 

that methylated silica aerogel displayed superior thermal insulating performance in 

comparison to common food-contact surfaces. In addition, by measuring the temperatures 

of the silica aerogel surfaces and hot plate and the time of heating, we estimated the 

thermal conductivity of hydrophobic silica aerogel to be 0.052 ± 0.015 W/m·K, which is 

about an order of magnitude smaller than typical plastics and ceramics.101,102 

 

3.4. Conclusions 

In this work, we showed that the attachments of S. Typhimurium 

LT2, L. innocua NADC 2841, and S. Typhimurium 14028s on methylated (hydrophobic) 

silica aerogel were significantly inhibited due to its bacterial antiadhesion properties. 

Direct comparative studies indicated that methylated silica aerogel can prevent bacterial 

attachment much more effectively compared to common food-contact materials such as 

http://www.sciencedirect.com/science/article/pii/S0956713514007191#fig8
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polycarbonate, stainless steel, glass as well as hydrophobic PTFE. The superior ability of 

methylated silica aerogel to inhibit bacterial attachment is attributed to its nanoporous 

nature and porosity-induced reduction in the attractive van der Waals interactions between 

silica aerogel and bacteria. Overall, combining bacterial antiadhesion properties of 

hydrophobic silica aerogel with their other unique properties such as thermal insulation 

and ultra-light weight, can open up new avenues in the design of food-contact surfaces. 
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CHAPTER IV 

NANOPOROUS AEROGEL AS A BACTERIA REPELLING HYGIENIC 

MATERIAL FOR HEALTHCARE ENVIRONMENT* 

 

4.1. Introduction 

Bacterial contamination is one of the major causes of healthcare-associated 

infections (HAIs). According to the statistics by the United States (US) Centers for 

Disease Control and Prevention (CDC), there were 721,800 HAIs due to bacteria in the 

US in 2011.6 The European Centre for Disease Prevention and Control (ECDC) estimates 

that about 4.2 million patients acquire a HAI in the European Union (EU) each year, about 

60% of which are caused by bacteria.103,104 The recent studies on the analysis of 

surveillance data from the CDC and ECDC revealed that Escherichia coli, Staphylococcus 

aureus, Enterococcus, and Pseudomonas aeruginosa are the bacterial pathogens most 

commonly associated with HAIs.5,105  

It has been well-documented that pathogenic bacteria can survive on inanimate 

surfaces for several months or even longer.9 Hence, one source of pathogenic bacteria 

contributing to the transmission of HAIs is the healthcare environment and surfaces (e.g., 

bed rails, bedside tables, toilet seats, toilet rails, door handles, chairs, floor, infusion pumps, 

and blood pressure cuffs).106,107 Furthermore, depending on the number, location, 

 

*Reprinted with permission from “Nanoporous aerogel as a bacteria repelling hygienic material 

for healthcare environment” by Jun Kyun Oh, Nandita Kohli,  Yuanzhong Zhang, Younjin Min, 

Arul Jayaraman, Luis Cisneros-Zevallos, Mustafa Akbulut, 2016. Nanotechnology, 27, 085705, 

Copyright 2016 by IOP Publishing Ltd. 
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inoculation time, and resistance types of microorganisms, it can be difficult to completely 

disinfect microorganisms on these surfaces using standard chemical germicides and 

sterilization processes.108 For instance, upon biofilm formation, microorganisms can 

protect them from external physical and chemical attack through multiple mechanisms 

such as physical characteristics of older biofilms, genotypic variation of the bacteria, 

microbial production of neutralizing enzymes, and physiologic gradients within 

biofilms.2,109 Attributable to these protection mechanisms, bacteria within biofilms were 

reported to be up to thousand times more resistant to antimicrobials than the same bacteria 

in suspension.110 Considering the bacterial pathogens on hospital surfaces have been 

occasionally observed and the contaminated hospital surfaces lead to a myriad of potential 

health risks,111,112 there is a need to develop more advanced healthcare surfaces that 

prevent cross-contamination and reducing transfer of microorganisms.113 As a potential 

solution, previous efforts have mostly focused on the development of hygienic surfaces 

that are either embedded with antimicrobial agents,26,114 grafted with antimicrobial 

agents,115–117 inherently antimicrobial in nature,118,119 or specially textured to result in 

bacterial repellency.120,121 However, there are several intrinsic limitations to such 

strategies such as the lack of sustainable antibiotic release,27 the toxicity to human 

tissues,28 the ineffectiveness against antimicrobial-resistant bacteria,29 the development of 

resistance due to continuous exposure to antimicrobial agents,122 and the long-term 

bactericidal inefficiency (i.e., dead bacteria attached to surfaces still can provide 

attachment sites for upcoming bacteria and hinders bactericidal activity).30 

As an alternative solution, the strategies relying on bacterial antiadhesive materials 
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have been utilized to produce hygienic surfaces for biotechnological and healthcare-

related applications.15,123–125 Some of these include, for example, polyethylene glycol 

(PEG) or zwitterionic polymer surfaces to minimize the intermolecular interactions 

between bacteria and surfaces,31,32,68 stimuli-responsive surfaces with changing surface 

properties (i.e., wetting behavior and topography) induced by heat or shear forces,33,34 and 

surface containing heparin as an antiadhesive agent prepared by layer-by-layer 

assembly.35 The main limitation of these strategies is that due to their soft and hydrophilic 

nature, such surfaces can erode over time with physical contact or exposure to water. 

As yet another alternative solution, nanotextured hygienic surfaces with 

superhydrophobic properties have recently gained much attention due to their ability to 

form air pockets that restricts bacteria on the water-side of the air-water interface.126 In 

particular, surfaces with nanopillars,127 hollow nanodiscs,16 nanotubes,128 hierarchical 

nanowrinkles,129 and nanochannels130 have been reported to have promising bacterial 

antiadhesion properties. The main concern with these strategies is that the upon prolonged 

exposure to water and humidity, the trapped air can be displaced, thereby decreasing their 

effectiveness in keeping bacterial away from the surfaces.131 

Herein, we report the ability of hydrophobic nanoporous silica aerogel (HNSA) to 

inhibit the adhesion of bacteria associated with HAIs, and hence, their potential to be used 

as materials for healthcare environment. It is important to note that many other biomedical 

applications of silica aerogels such as implantable devices,132 scaffolds,133 and drug carrier 

systems134 have recently emerged. Therefore, the knowledge of bacterial antiadhesion 

properties of HNSA can also be beneficial for the development of multifunctional hygienic 
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materials and biomedical surfaces. 

 

4.2. Materials and Methods 

4.2.1. Preparation of Substrates 

Nanoporous silica (SiO2) aerogels were synthesized via sol-gel polymerization of 

tetraethyl orthosilicate (TEOS; Sigma-Aldrich Co., St. Louis, MO, USA) at room 

temperature (23 °C). Gelation of 5 mL TEOS dissolved in 11 mL of ethanol (200 proof; 

Koptec, King of Prussia, PA, USA) was initiated by mixing solution with 0.37 mL of 

catalyst solution which was prepared by adding 1.85 g of ammonium fluoride (NH4F; 

Sigma-Aldrich Co., St. Louis, MO, USA) and 22.8 mL of ammonium hydroxide (NH4OH; 

Sigma-Aldrich Co., St. Louis, MO, USA) to 100 mL of water. The reaction was allowed 

to take place for 24 h. Once the gel had set, ethanol inside the gel was extracted by 

supercritical carbon dioxide (CO2; Brazos Valley Welding Supply, Inc., Bryan, TX, USA) 

at the critical point (31.1 °C, 72.9 bar). After the supercritical CO2 extraction, the obtained 

hydrophilic silica aerogels were submerged in 6 wt% trimethylsilyl chloride (TMCS; 

Sigma-Aldrich Co., St. Louis, MO, USA)/hexane (ACS grade; Avantor Performance 

Materials, Inc., Center Valley, PA, USA) solution for 24 h to functionalize silica aerogel 

as schematically illustrated in Figure 17(a). Resultant methylated silica aerogel was rinsed 

with hexane and dried at 60 °C until hexane evaporated completely. 

Since silicon dioxide (SiO2) was the main constituent of the developed samples, 

quartz (SiO2) was selected as a control surface to ensure a chemical similarity between 

these. Quartz slides (Ted Pella, Inc., Redding, CA, USA) cut into 1 cm × 1 cm ×  1 mm 
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Figure 17. Schematic representation of surface modification of silica materials, (a) 

nanoporous silica aerogel (HNSA, scale bar: 1 cm) and (b) nonporous quartz (scale bar: 1 

cm) via methylation reaction using TMCS. 

 

were first rinsed with Milli-Q water (resistivity ≥ 18.2 MΩ·cm; EMD Millipore Corp., 

Billerica, MA, USA), then dried under a stream of nitrogen (N2; Brazos Valley Welding 

Supply, Inc., Bryan, TX, USA). Subsequently, oxygen plasma treatment was applied at a 

power of 20 W, pressure of 80 mTorr, oxygen flow rate of 20 sccm, and a time of 1 min 

by using CS-1701 reactive-ion etcher (Nordson March, Concord, CA, USA) for cleaning 

purposes. We also note that oxygen plasma treatment can effectively sanitize surfaces 

from pre-existing bacteria.78 Methylated quartz slides were prepared by placing quartz 

slides in solution of 6 wt% TMCS in hexane for 24 h, as shown in Figure 17(b). The 

samples were then purged under a stream of nitrogen before use. 

4.2.2. SEM and AFM 

Surface morphology of all samples was characterized by scanning electron 

microscope (SEM, JSM-7500F; JEOL, Tokyo, Japan) and atomic force microscopy (AFM, 

http://iopscience.iop.org/article/10.1088/0957-4484/27/8/085705/meta;jsessionid=358CC3281900E848AE72E8D55C04D0B7.c5.iopscience.cld.iop.org#nanoaa101cf1
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Dimension Icon; Bruker, Santa Barbara, CA, USA). Before SEM examination, the 

samples were coated with 8 nm of platinum/palladium to minimize possible charging 

effects. The SEM micrographs were obtained at an accelerating voltage of 1 kV and 

emission current of 20 μA. 

AFM topographic micrographs were obtained by using tapping mode in air at room 

temperature. Specifications of the silicon tip cantilever are nominal tip radius of 2 nm, 

nominal spring constant of 0.4 N/m, and nominal resonant frequency of 70 kHz. Extremely 

light weight HNSA samples were mounted on a glass slide by using instant glue and then 

placed on the stage to decrease data noise. 

4.2.3. BET Measurements 

Specific surface area, pore diameter, and pore volume distribution of HNSA were 

characterized by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) 

methods.83 To achieve these values, nitrogen adsorption isotherms were measured with an 

ASAP2010 (Micromeritics Instrument Co., Norcross, GA, USA) at liquid nitrogen 

temperature of 77 K. 

4.2.4. ATR-FTIR Spectroscopy and XPS 

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy 

was used to characterize TMCS-functionalized quartz and TMCS-functionalized silica 

aerogel (i.e., HNSA) surfaces at ambient conditions. ATR-FTIR spectra were recorded 

with an IRPrestige-21 (Shimadzu Corp., Kyoto, Japan) system and data were analyzed 

using IRsolution (Shimadzu Corp., Kyoto, Japan) software version 1.40. 

To confirm TMCS coverage, X-ray photoelectron spectroscopy (XPS) spectra of 
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TMCS-functionalized quartz and TMCS-functionalized silica aerogel (i.e., HNSA) 

surfaces were recorded with a PHI VersaProbe II Scanning XPS Microprobe (Physical 

Electronics, Chanhassen, MN, USA). XPS measurements were carried out using an Al 

Kα radiation source (1486.6 eV) operating at 25 W, and at a working pressure of 10−7 Pa. 

4.2.5. Contact Angle Measurements 

The surface hydrophobicity was determined by a sessile drop technique, a 5 μL 

water droplet was placed on different types of surfaces. The static contact angle values 

were measured by ImageJ (National Institutes of Health, Bethesda, MD, USA) software 

via low-bond axisymmetric drop shape analysis (LBADSA) plug-in.135 The values 

reported are an average of six measurements. 

4.2.6. Growth and Maintenance of Microorganisms 

Working cultures of Escherichia coli O157:H7 (ATCC 700728) 

and Staphylococcus aureus were inoculated into 9 mL of tryptic soy broth (TSB; Becton, 

Dickinson and Co., Sparks, MD, USA) by transferring a loopful of culture from tryptic 

soy agar (TSA) slant. Both strains were incubated aerobically without agitation for 24 h 

at 37 °C. A loopful of culture was then transferred every 24 h for 2 days to fresh TSB and 

incubated aerobically at 37 °C. The final concentration ranging from 8.7 to 9.1 log CFU/ 

mL were reached by E. coli O157:H7 and S. aureus in the growth media, as determined 

by plate count method. 

4.2.7. Inoculation of Surfaces with Bacterial Organisms 

Prior to inoculation experiments, the samples (i.e., hydrophilic bare quartz, 

hydrophobic quartz, and HNSA) were sterilized by washing with 70% (v/v) ethanol 
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followed by sterile Milli-Q water rinsing. After the sterilization procedure, the samples 

were inoculated with bacteria by submerging them in 9 mL bacterial suspensions (8.7–9.1 

log CFU/mL) for 4 h at room temperature. The treated samples were then gently removed 

from the bacterial suspensions to count bacteria attached to surfaces. All inoculation 

experiments were replicated four times. 

4.2.8. Enumeration of Attached Bacteria 

SEM was used to quantify the attachment of E. coli O157:H7 and S. aureus to 

various surfaces by direct counting. After acrolein (Sigma-Aldrich Co., St. Louis, MO, 

USA) inactivation, 10 nm thickness of gold coating was applied to sample surfaces to 

ensure electrical conductivity required by SEM technique. For quantitative analysis, at 

least ten different 100 μm ×  100 μm scan areas (total scan area larger than 100,000 μm2) 

were analyzed to count the number of attached bacteria. 

4.2.9. Ellipsometry Analysis 

Angle dependent ellipsometer (Nanofilm EP3-SE; Nanofilm Technology GmbH, 

Göttingen, Germany) was utilized to obtain the refractive index of HNSA. The 

measurements were carried out before and after 4 h exposure to bacterial suspensions. 

4.2.10. Screening Method for Antimicrobial Activity 

Bacterial suspensions of E. coli O157:H7 and S. aureus strains were grown in the 

presence of HNSA and in the presence of 1% (v/v) bleach solution for 4 h at room 

temperature. Bacterial suspensions without any treatment were used as negative control. 

The number of bacteria remaining in suspension was determined by pour plate method. 

Each condition was replicated three times. 
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4.2.11. Statistical Analysis 

Microbiological data obtained by SEM were converted to logarithm of a cell 

density (log cells/mm2). All analyses were performed by using statistical package for 

Microsoft Office Excel (Microsoft Corp., Redmond, WA, USA) software. The data were 

analyzed by one-way and two-way analysis of variance with Tukey's test to determine 

significant differences at a p-value of <0.05. 

 

4.3. Results and Discussion 

4.3.1. Topographical Characterization and Analysis of Materials 

It is well-established that surface texture and roughness play an important role in 

bacterial adhesion on surfaces.20,84 Hence, before proceeding with bacterial attachment 

experiments, we first characterized the surface topography of materials prepared for this 

study to better understand and compare their adhesion behavior. Figures 18(a)‒(c) display 

SEM micrographs of hydrophilic bare quartz, hydrophobic quartz, and HNSA surfaces, 

showing the surface texture of each material. SEM micrographs visually highlight the 

differences and reveal the highly nanoporous structure of HNSA. 

When the length scale of surface roughness is larger than bacteria size, bacterial 

colonization is enhanced because bacteria prefer surfaces/textures that increase the total 

contact area of bacteria-material interfaces such as valleys, depressions, pits, and edges.47 

To quantitatively compare the characteristic sizes of bacteria and surface roughness, AFM 

measurements on three different material surfaces were performed over a 5 μm ×  5 μm 

area, as shown in Figures 18(d)‒(f). The root-mean-square (RMS) roughness value of bare 
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Figure 18. SEM micrographs of (a) hydrophilic bare quartz, (b) hydrophobic quartz, and 

(c) HNSA. (d)–(f) AFM micrographs show depth profile of each surface. RMS roughness 

values are shown at the bottom of AFM micrographs. 

 

quartz surfaces were found to be 0.96 ± 0.05 nm. After surface functionalization with 

TMCS, RMS roughness reached 1.52 ± 0.11 nm. The small difference in RMS roughness 

can be attributed to the surface reaction, which introduces new Si–O bond (~148 pm) 

connected to Si–C bond (~318 pm) on top of bare quartz surfaces. RMS roughness of 

118.58 ± 19.02 nm was obtained from HNSA surfaces.  While surface roughness of 

HNSA surfaces was more than fifty times rougher than bare quartz and hydrophobic 

quartz surfaces, the scale of surface roughness was still much smaller than length and 

diameter of bacteria (i.e., rod-shaped E. coli O157:H7 is 0.5–1.0 μm wide by 1.0–4.0 μm 

long and spherical-shaped S. aureus is 0.7–1.0 μm in diameter). Thus, the physical 

attachment such as penetration and trapping of bacteria to HNSA surfaces can be 

prevented. In addition, these roughness values of HNSA meet the criterion of surface 
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roughness (≤1.0 μm) outlined for hygienic materials.136 

Quantitative details of porosity characteristics of HNSA such as specific surface 

area (646.70 ± 5.04 m2g−1), pore diameter (19.85 ± 0.10 nm), and pore volume 

(3.21 ± 0.02 cm3g−1) were determined by BET and BJH methods. These values are 

comparable to functionalized silica-based aerogels reported previously.87 Here, we note 

that pore diameter (~19 nm) of HNSA is much smaller than the bacteria dimensions 

ranging from 700 nm to 4000 nm as described above, thereby preventing bacterial 

penetration. This explanation is consistent with the reported data that pore diameter of 

0.1μm was not sufficient to allow bacteria to penetrate.137 Furthermore, HNSA showed 

extremely low thermal conductivity due to its high surface area and low density (see 

Appendix B: Supplementary Information, Section B1 and Figure 38). We calculated the 

thermal conductivity of HNSA to be 0.047 ± 0.015 W/m·K using time-resolved 

temperature measurements, which is about an order of magnitude smaller than common 

thermal insulation materials.138 

4.3.2. Characterization of Functional Groups on Surfaces 

Chemical modification of quartz and silica aerogel surfaces by methylation were 

characterized by ATR-FTIR spectroscopy, as shown in Figures 19(a),(b). ATR-FTIR 

spectra of pure (unreacted) TMCS, TMCS-functionalized quartz, and TMCS-

functionalized silica aerogel (i.e., HNSA) surfaces showed multiple peaks that are 

significant, while bare quartz and bare silica aerogel surfaces had no peak between 2800 

cm−1 and 3000 cm−1. Chemically unbound TMCS molecules had symmetric and 

asymmetric C–H stretching peaks at 2900 cm−1 and 2962 cm−1. On the other hand, 
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Figure 19. ATR-FTIR spectra showing (a) C–H stretching region and (b) Si–Cl stretching 

region of TMCS, bare quartz, TMCS-functionalized quartz, bare silica aerogel, and 

TMCS-functionalized silica aerogel (i.e., HNSA). 

 

methylated quartz had peaks at 2850 cm−1 and 2916 cm−1, and HNSA had peaks at 2900 

cm−1 and 2970 cm−1, respectively. The presence of these spectrum peaks are due to 

overtones and combinations of symmetric and asymmetric C–H stretching vibrations upon 

functionalization reactions. Furthermore, peak shifts in C–H stretching region can be 

explained by replacement of chlorine (Cl) atoms by oxygen (O) atoms during methylation 

and phase transformation of samples from the liquid state to the crystalline state.89 In 

addition, Si–Cl stretching vibrations near 620 cm−1 only existed for TMCS, providing 

clear evidence of methylation.90 

After successful functionalization of silica aerogel with TMCS, chemical stability 

test was conducted. HNSA samples were submerged in DI water and 10% (w/v) hydrogen 

peroxide (H2O2) for two weeks to prove chemical resistance against common 

environmental conditions that material may be exposed. Any chemical release, leaching, 
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Figure 20. (a) XPS spectra of quartz and silica aerogel surfaces functionalized with TMCS. 

(b) The static water contact angle measurements of bare quartz, TMCS-functionalized 

quartz, and TMCS-functionalized silica aerogel (i.e., HNSA). 

 

and degradation was not detected from ATR-FTIR measurements with detection limit of 

<1 ppm (see Appendix B: Supplemental Information, Section B2 and Figure 39). 

It is known that bacterial adhesion is sensitive to the surface chemistry.139 

Therefore, it is essential to determine the degree of methylation on quartz and silica 

aerogel surfaces to better understand their bacterial adhesion behavior. To this end, XPS 

technique was used to obtain chemical information about the surface of solid materials. 

As shown in Figure 20(a), O 1s, C 1s, Si 2s, and Si 2p were the main peaks observed in 

the XPS spectra. The integration of area under these peaks was conducted to determine 

the relative atomic concentration of O, C, and Si atoms. The atomic percentages for C, O, 

and Si were ~16%, 26%, and 58%, respectively, for hydrophobic quartz. While the atomic 

percentages for C, O, and Si were ~15%, 25%, and 60%, respectively, for HNSA. Given 

that the penetration depth of XPS is about 8 nm to 10 nm and RMS roughness for HNSA 



 

53 

 

was about 118 nm, the effect of the porosity (i.e., methyl groups in the pores of HNSA) 

on the XPS spectra is expected to be small.140 Therefore, these findings suggest that the 

degree of methylation is similar for both quartz and silica aerogel. 

4.3.3. Characterization of Surface Wettability 

It is well-established that surface hydrophobicity of the material has an effect on 

bacterial attachment. As most of the bacteria surfaces are fairly hydrophilic, it is important 

to study hydrophobicity of material surfaces because hydrophilic materials tend to 

aggregate more on hydrophilic surfaces.141 Therefore, we have investigated surface 

hydrophobicity of samples to better understand bacterial attachment to material surfaces. 

As shown in Figure 20(b), while contact angle measured on bare quartz was hydrophilic 

(θ < 10.0°), methylated quartz (θ = 95.1 ± 1.0°) and methylated silica aerogel 

(θ = 134.4 ± 1.1°) were hydrophobic. The contact angle difference in these three types of 

surfaces can be explained on the basis of previous studies showing that the effect of 

structural properties. Although materials have the same surface chemistry, physical factors 

such as roughness, texture, or crystal structure can result in variations in water contact 

angle values.95 

4.3.4. Bacterial Adhesion Characteristics 

SEM micrographs of E. coli O157:H7 strain attached to three different types of 

silica-based materials upon dip-inoculation are shown in Figures 21(a)‒(c). Bacterial 

adhesion was greatest to hydrophilic bare quartz with a mean density of 5.79 ± 0.01 log 

cells/mm2. Inoculation of hydrophobic quartz with bacteria resulted in a mean density of 

5.02 ± 0.03 log cells/mm2, which corresponds to 82.95 ± 0.90% reduction in bacterial 
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Figure 21. SEM micrographs of (a) hydrophilic bare quartz, (b) hydrophobic quartz, and 

(c) HNSA (black circle indicates attached bacteria) after inoculation with Gram-

negative E. coli O157:H7. The insets show magnified images of attached bacteria (scale 

bar: 2 μm). (d) The average number of bacteria per unit area (mm2) on different surfaces 

(y-axis has a logarithmic scale). Different letters (i.e., A, B, and C) indicate statistically 

significant difference (p < 0.05). 

 

attachment in comparison to bare quartz. Bacterial adhesion on HNSA was much less, 

with a mean density of 2.67 ± 0.24 log cells/mm2, indicating a reduction of 99.91 ± 0.05% 

in bacterial attachment in comparison to bare quartz, as shown in Figure 21(d). Similar 

reduction trends were also confirmed by fluorescent E. coli O157:H7 EDL933 strain (see 

Appendix B: Supplemental Information, Section B3 and Figure 40). 

We also investigated the attachment of Gram-positive bacteria, S. aureus, to each 

silica-based surface using the same inoculation conditions described above (Figure 22). 

Mean densities of bacteria present on hydrophilic bare quartz, hydrophobic quartz, and 
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Figure 22. SEM micrographs of (a) hydrophilic bare quartz, (b) hydrophobic quartz, and 

(c) HNSA (black circle indicates attached bacteria) after inoculation with Gram-

positive S. aureus. The insets show magnified images of attached bacteria (scale bar: 

2 μm). (d) The average number of bacteria per unit area (mm2) on different surfaces (y-

axis has a logarithmic scale). Different letters (i.e., A, B, and C) indicate statistically 

significant difference (p < 0.05). 

 

HNSA were 6.05 ± 0.02 log cells/mm2, 5.23 ± 0.04 log cells/mm2, and 2.89 ± 0.10 log 

cells/mm2, respectively. These data indicate that bacterial adhesion was reduced by 

84.90 ± 1.52% on hydrophobic quartz compare to bare quartz. The reduction reached up 

to 99.93 ± 0.02% on HNSA. Statistical analysis revealed that bacterial 

(i.e., E. coli O157:H7 and S. aureus) reduction on each surface with respect to bacterial 

types were not statistically significant (p ≥ 0.05), which means they show similar 

reduction behavior. 

Differences in bacterial adhesion behavior were observed on hydrophilic and 
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hydrophobic surfaces. This phenomenon can be explained in terms of the hydrophobic 

effect. It is known that bacteria with high surface hydrophobicity adhere more extensively 

on hydrophobic surfaces while bacteria with low surface hydrophobicity prefer 

hydrophilic surfaces.96 Hence, considering that E. coli O157:H7 and S. aureus are 

hydrophilic with water contact angles of 15–32°,99 our observed trends are in accordance 

with prior studies. 

However, the reduction in bacterial adhesion to HNSA compared to hydrophobic 

quartz cannot be entirely explained by the hydrophobic effect. We attributed the superior 

bacterial antiadhesion characteristics of HNSA to two phenomena: (i) the formation of air 

pockets upon contacting with aqueous suspensions and (ii) the reduction of van der Waals 

interactions between bacteria and HNSA due to the porosity. First, considering the highly 

hydrophobic nature of HNSA, the trapping of air pockets inside surface roughness is likely 

to occur. Such gas pockets have previously been reported to prevent bacteria to reach the 

crevices and valleys of surfaces.142 This phenomenon reduces the effective contact area 

between bacteria and solid surfaces, thereby leading to the reduced probability of adhesion. 

Second, since both hydrophobic quartz and HNSA were functionalized with methyl 

groups, van der Waals interactions are expected to make a significant contribution to the 

bacterial adhesion on these surfaces. As a first approximation, van der Waals interactions 

are additive (body forces), and can, hence, be calculated by integrating the pairwise 

potentials from individual dipoles that are distributed over the volume of bacteria and 

HNSA.143,144 Hence, one can expect that the attractive van der Waals interactions between 

bacteria and HNSA will significantly weaken due to the presence of pores in HNSA. 
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However, this is only true when pores are filled with air (or empty), not filled with water. 

To check this point, using spectroscopic ellipsometry, the refractive index of HNSA was 

measured under dry conditions and after submerging in bacterial suspensions for 4 h and 

found to be 1.008 ± 0.001 and 1.013 ± 0.001, respectively. These values are much lower 

than the refractive index of nonporous silica materials (i.e., 1.45–1.55), indicating that 

almost all pores are filled with air. 

 

Table 2. Screening of antimicrobial activity of HNSA against E. coli O157:H7 

and S. aureus. Different letters (i.e., A and B) indicate statistically significant difference 

(p < 0.05). 

Bacteria Negative controla with HNSAb with 1% bleach solutionc 

E. coli O157:H7 1.2 × 109 CFU/mL (A) 1.3 × 109 CFU/mL (A) <1 (zero) CFU/mL (B) 

S. aureus 4.3 × 108 CFU/mL (A) 3.8 × 108 CFU/mL (A) <1 (zero) CFU/mL (B) 

aBacteria cultured under standard growth conditions. bBacteria cultured in the presence of 

HNSA. cBacteria cultured in the presence of 1% bleach solution. 

 

4.3.5. Screening of Antimicrobial Activity 

To confirm that our observation is due to the antiadhesion properties of material 

not antimicrobial activity, additional screening tests were performed. Studies 

of E. coli O157:H7 and S. aureus growth were carried out in the presence of HNSA and 

1% bleach solution by pour plate method (Table 2). Comparison of bacterial colony-

forming unit (CFU) revealed that 8–9 log reduction was observed for samples containing 

1% bleach solution. On the other hand, bacterial growth behavior was similar in the 

absence (negative control) and in the presence of HNSA. Overall, antimicrobial activity 
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was not detected in samples tested with HNSA, showing bacterial antiadhesion properties 

of HNSA is indeed responsible for the observed inhibitory effects. 

 

4.4. Conclusions 

Nanoporous silica aerogels were synthesized by using a sol-gel method and 

modified into a hydrophobic surface via a silane-based methylation reaction. The success 

of surface modification and hydrophobization was confirmed using ATR-FTIR 

spectroscopy, XPS, and contact angle measurements. Hydrophobically-modified 

nanoporous silica aerogel (HNSA) showed excellent antiadhesion properties against 

common Gram-negative and Gram-positive bacterial pathogens (i.e., E. coli and S.aureus) 

that cause nosocomial infections. The superior antiadhesive behavior was attributed 

primarily to the formation of air pockets preventing bacteria to reach to crevices and 

valleys of surfaces, and secondarily to the decreased strength of attractive van der Waals 

interactions between bacteria and HNSA due to the reduced body-forces arising from the 

existence of pores throughout HNSA. Overall, the observed bacterial antiadhesion 

properties of HNSA, combined with its other intriguing properties such as extremely light 

weight, superior acoustic absorption, and biocompatibility can offer new opportunities in 

designing novel multifunctional hygienic materials for healthcare environment. 
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CHAPTER V 

BACTERIALLY ANTIADHESIVE, OPTICALLY TRANSPARENT SURFACES 

INSPIRED FROM RICE LEAVES* 

 

5.1. Introduction 

Bacterial fouling is responsible not only for the functional deterioration of 

numerous surfaces and devices but also for the transmission of infection and disease 

through such surfaces and devices.2 Bacterial adhesion to a surface, which is the first step 

in bacterial fouling, is governed by the interplay among the physicochemical, interfacial, 

and geometrical characteristics of the surface and bacteria.145 Hence, various surface-

modification approaches have been applied and considered to manipulate the interactions 

between bacteria and surfaces and to prevent bacterial attachment to surfaces.24,30,127 To 

this end, in particular, surfaces based on nature-inspired approaches have shown 

promising potential in the reduction and inhibition of bacterial adhesion.33,125 In the light 

of increasing global concerns about antimicrobial resistance (AMR),29 such surfaces are 

increasingly needed to provide alternative or complementary solutions to antimicrobial 

surfaces. 

One of the key challenges for nature-inspired bacterial antiadhesive surfaces is the 

integration of transparency and the bacterial antiadhesion within a single surface. This is 

 

*Reprinted with permission from “Bacterially antiadhesive, optically transparent surfaces inspired 

from rice leaves” by Jun Kyun Oh, Xiaoxu Lu, Younjin Min, Luis Cisneros-Zevallos, Mustafa 

Akbulut, 2015. ACS Applied Materials & Interfaces, 7, 19274‒19281, Copyright 2015 by 

American Chemical Society. 
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primarily because surface texture and roughness including the ones inspired from 

biological materials often lead to light scattering as predicted by analytic scattering models 

and rigorous electromagnetic theories.146,147 The transparency is generally inversely 

correlated with the scattering of light.148 With the increasing number of emerging 

biomedical applications and optical devices requiring high levels of transparency, as well 

as operations in bacterial media,12,13 the need for overcoming this challenge has intensified. 

Plant tissues display a unique and rich variety of optical properties governed by 

their ultrastructure.149 When light travels across different tissue layers, its characteristics 

are modified. Depending on the photosynthetic or photomorphogenic needs, a tissue layer 

can be responsible for light propagation, light trapping, light gradients, focusing and lens 

effects, and wavelength-specific surface reflection.150 For instance, to achieve the efficient 

use of light energy, upper layers of most leaves (i.e., cuticle and epidermis) are often 

designed to allow an efficient passage of light.151 On the other hand, the mesophyll, which 

is packed with chloroplasts, is responsible for the scattering and absorption of light.152 One 

can hypothesize that it is possible to use the guiding principles behind plant tissues to 

design new optical materials through bioinspiration. 

Herein, we report a rice leaf-inspired approach to produce novel surfaces with 

optical transparency and repellency against bacterial suspensions. The rice leaf was 

especially selected for bioinspiration due to its unique hollow nanodisc texture, which 

reduces “the total roughness volume” compared to solid pillar-type bioinspirations. The 

biomimetic “rice leaf-like surfaces” (RLLS) showed strong water and bacterial suspension 

repellency with static contact angles of 155.7 ± 1.2° and 150.6 ± 1.0°, respectively. In 
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addition, RLLS displayed excellent bacterial antiadhesion properties with an adhesion 

inhibition efficiency of >99.9% for both pathogenic Gram-negative Escherichia 

coli O157:H7 and Gram-positive Staphylococcus aureus in comparison to pristine quartz 

surfaces (negative control). In this study, these two microorganisms were selected for two 

reasons: first, pathogenic bacterial strains tend to adhere to surfaces more strongly than 

nonpathogenic ones;153 and second, according to the US Centers for Disease Control and 

Prevention (CDC), the most common pathogens that cause hospital-acquired infections 

are E. coli, S. aureus, and Pseudomonas aeruginosa. Furthermore, RLLS demonstrated 

optical-grade transparency (i.e., ≥92% transmission) due to the relatively small roughness 

volume achieved through hollow nanodisc morphology. 

 

5.2. Materials and Methods 

5.2.1. Leaf Materials from Rice Plant 

Fully developed rice leaf (Oryza sativa L. ssp. japonica cv. Calmati-202) was 

obtained from the Division of Agriculture and Natural Resources at University of 

California, Davis, CA, USA. The received rice leaves were kept in a water bath before 

use. Fresh leaves were cut into 5 mm × 5 mm flat areas and immediately used afterward 

to prevent drying. 

5.2.2. Bioinspired Surface Preparation 

Quartz (SiO2) slides (Ted Pella, Inc., Redding, CA, USA) cut into 1 cm × 1 cm × 

1 mm were first rinsed with water purified by a Milli-Q Advantage system A10 (EMD 

Millipore Corp., Billerica, MA, USA), yielding Milli-Q water with resistivity of 18.2 
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MΩ·cm, and left to dry at room temperature (23 °C). Subsequently, oxygen plasma 

treatment by CS-1701 reactive-ion etcher (RIE; Nordson MARCH, Concord, CA, USA) 

was applied to remove organic adsorbates on the surfaces: these slides were used as 

hydrophilic quartz controls. “Rice leaf-like surfaces” (RLLS) were fabricated by self-

masking reactive-ion etching (SM-RIE) of quartz surfaces for which the operational 

parameters were critical in manipulating surface morphology. The following conditions 

gave rise to RLLS: flow rates of tetrafluoromethane (CF4) at 22.5 sccm and oxygen (O2) 

at 2.5 sccm, pressure of 80 mTorr, radio frequency (RF) power of 200 W, and etching time 

of 20 min. 

To enable superhydrophobicity, the etched quartz surfaces with rice leaf-like 

surface texture were functionalized with trimethylsilyl chloride (TMCS; Sigma-Aldrich 

Co., St. Louis, MO, USA) by placing these in 6% TMCS in hexane (Avantor Performance 

Materials, Inc., Center Valley, PA, USA). The silanation reaction was allowed to take 

place for 24 h. Afterward, surfaces were rinsed with hexane and dried under a stream of 

nitrogen gas (N2; Brazos Valley Welding Supply, Inc., Bryan, TX, USA) before use. The 

same functionalization procedure was also used for the smooth (unetched) quartz surfaces 

to create hydrophobic quartz controls. 

5.2.3. Physical and Chemical Characterization of Surfaces 

Surface morphology of the samples was characterized using scanning electron 

microscope (SEM, JSM-7500F; JEOL, Tokyo, Japan). In SEM experiments, the surfaces 

were coated with 8 nm of platinum/palladium (Pt/Pd) to reduce charging effects. 

The surface roughness was quantified by atomic force microscopy (AFM, 
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Dimension Icon; Bruker, Santa Barbara, CA, USA). Amplitude and height images were 

obtained in the tapping mode. The silicon tip cantilever with nominal spring constant of 

0.4 N/m, nominal tip radius of 2 nm, and the nominal resonant frequency of 70 kHz were 

used. 

The TMCS functionalized silica-based materials (i.e., quartz and RLLS) were 

characterized using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) 

spectroscopy. ATR-FTIR spectra were recorded on an IRPrestige-21 (Shimadzu Corp., 

Kyoto, Japan) system and analyzed using IRsolution (Shimadzu Corp., Kyoto, Japan) 

software version 1.40. 

X-ray photoelectron spectroscopy (XPS) measurements of TMCS coverage on 

silica surfaces were characterized using PHI VersaProbe II Scanning XPS Microprobe 

(Physical Electronics, Chanhassen, MN, USA). The measurements were carried out using 

an Al Kα radiation source (1486.6 eV) operating at 25 W and under high-vacuum 

conditions at a pressure of 10–7 Pa. 

To determine the wetting characteristics of surfaces, static and dynamic contact 

angles of water and bacterial suspension were measured.154 The contact angles were 

analyzed by contact angle plug-in for ImageJ (National Institutes of Health (NIH), 

Bethesda, MD, USA) software. The contact angle values reported on each surface were 

obtained by averaging six measurements at room temperature (23 °C). 

5.2.4. Growth and Maintenance of Microorganisms 

Escherichia coli O157:H7 and Staphylococcus aureus were obtained from the 

Food Microbiology Laboratory Culture Collection in the Department of Animal Science 
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at Texas A&M University, College Station, TX, USA. Working cultures of E. 

coli O157:H7 and S. aureus were grown in tryptic soy broth (TSB; Becton, Dickinson and 

Co., Sparks, MD, USA) with 24 h incubation aerobically at 37 °C. A loopful of bacterial 

culture in TSB was transferred twice to fresh TSB every 24 h and reincubated at 37 °C, 

resulting in bacterial suspensions to a final concentration of 8.7–9.1 log CFU/mL. 

5.2.5. Bacterial Adhesion Assay Under Static Conditions 

Rice leaves cut into 5 mm × 5 mm were immersed in 9.0 mL of bacterial 

suspensions (8.7–9.1 log CFU/mL) and incubated for 4 h at room temperature (23 °C). 

The treated rice leaves were then gently removed from the bacterial suspensions to count 

attached bacteria on surfaces. When removing the samples, we made sure that samples 

were drawn in a single vertical motion from the bacterial suspension and held vertically 

for 3 min to allow remaining droplets to slide away so that drying effects were not 

superimposed on the results of adhesion. All inoculation experiments were replicated four 

times. The same experimental procedure was used for pristine quartz, hydrophobic quartz, 

and RLLS. 

SEM was employed to quantify the attachment of E. coli O157:H7 and S. 

aureus on various surfaces. After acrolein (Sigma-Aldrich Co., St. Louis, MO, USA) 

inactivation, 10 nm of gold (Au) coating was applied to sample surfaces to ensure 

electrical conductivity required by SEM technique. For quantitative analysis, 100 μm × 

100 μm of SEM images from at least nine different areas were analyzed to count the 

number of attached bacteria. Experiments were repeated three times for each sample. 
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5.2.6. Bacterial Adhesion Assay Under Dynamic Conditions 

Flow experiments were carried out using a custom flow chamber with 1 cm × 1 

cm window made out of the material of interest. Bacterial adhesion behavior on RLLS 

window was compared with pristine quartz window (uncoated) and hydrophobic quartz 

window (methylated) by replacing the chamber window in each experiment. For all 

surfaces, the flow rate of bacterial suspension inside the chamber was controlled to be 2.5 

μL/s. 

Images of flowing bacteria were visualized using differential interference contrast 

(DIC) microscopy (Stallion Digital Imaging Workstation; Carl Zeiss, Jena, Germany) at a 

frame rate of 0.5 fps. Movies created by stacking images obtained at various time points 

were analyzed manually with ImageJ software to count attached bacteria on surfaces. 

5.2.7. Screening of Antimicrobial Activity 

To determine if antimicrobial activity or bacterial antiadhesion is responsible for 

the observed trends, E. coli O157:H7 and S. aureus strains were grown in the presence of 

TMCS-functionalized RLLS and in the presence of 1% (v/v) bleach solution for 4 h at 

room temperature (23 °C). Bacteria in the absence of any treatment were used as negative 

controls. To count the number of bacteria remaining, pour plate method was used by taking 

1.0 mL of bacterial suspension from each dilution to make serial dilutions. The results are 

reported as colony-forming units per milliliter (CFU/mL) and replicated three times. 

5.2.8. Optical Transparency 

Transparency of material was studied by measuring transmittance via UV-vis-NIR 

spectrophotometry (U-4100; Hitachi, Tokyo, Japan). Transmission spectra were recorded 
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at a wavelength range of 400–800 nm. 

5.2.9. Pressure and Chemical Stability Tests 

Autoclaving is one of the most effective and common methods for sterilization. To 

confirm mechanical stability of RLLS upon autoclaving, RLLS was placed in an autoclave 

(Amsco Lab 250; Steris Corp., Mentor, OH, USA) chamber at 121 °C for 20 min under 

20 psi pressure conditions. 

Chemical stability of RLLS immersed in 10% hydrogen peroxide (H2O2, 30% 

solution; Avantor Performance Materials, Inc., Center Valley, PA, USA) solution was 

monitored as a function of time. To confirm if any of surface groups are detaching from 

RLLS with time, aliquots from the solution containing immersed RLLS were collected 

and analyzed using ATR-FTIR spectroscopy at 4 h, 3 days, 1 week, 2 weeks, and 3 weeks. 

5.2.10. Statistical Analysis 

Statistical analysis was performed by using the statistical package for Microsoft 

Office Excel (Microsoft Corp., Redmond, WA, USA) software. Microbiological data from 

microscope images were log-transformed prior to statistical analysis. One-way and two-

way analysis of variance (ANOVA) with Tukey’s post hoc test was used to determine 

statistical significance of differences between microbiological data from surface types and 

types of bacteria at a p-value of <0.05. 

 

5.3. Results and Discussion 

5.3.1. Interfacial and Bacterial Adhesion Characteristics of Rice Leaf 

Plant surfaces, highly sophisticated structures, are responsible for multiple 
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Figure 23. (a) Photograph of Oryza sativa rice leaf, (b) wetting characteristics of water 

on rice leaf, (c) SEM micrograph showing the texture (ultrastructure) of rice leaf, and (d) 

bacterial adhesion behavior on rice leaf. 

 

functions such as the reduction of water loss, the control of surface wetting, the recognition 

of pathogens and insects, the inhibition of contaminant adhesion, the maintenance of 

physiological integrity, and the reduction of surface temperature. These functions are 

strongly dependent on the surface chemistry and structure.155 As such, our initial focus 

was on the interfacial characteristics of rice leaves (Oryza sativa), which resulted in a 

water contact angle of 135.1 ± 1.4° on them under static conditions, indicating their highly 

hydrophobic nature (Figures 23(a),(b)). The morphology responsible for such a wetting 

behavior involved multiple length scales: (i) submillimeter-scale groove array with an 

average width of 155.4 ± 14.2 μm and depth of 19.6 ± 1.7 μm, (ii) highly ordered, 

microscale, and clover-shaped features located on the apex of grooves with a radius of 6.3 

± 0.5 μm, and (iii) hollow microdiscs located at the bottom and sides of grooves with an 

http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig1
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outer diameter of 3.4 ± 0.5 μm, inner diameter of 1.5 ± 0.4 μm, and height of 3.4 ± 0.6 μm 

(Figure  23(c) and see Appendix C: Supplemental Information, Figure 41). Previous 

studies on rice leaves reported that the microdiscs and microclovers are responsible for 

their superhydrophobicity while the groove arrays provide an energy barrier to travel in 

orthogonal directions and contribute to the anisotropic sliding phenomenon.156 

It is known that surface roughness and texture can greatly influence bacterial 

adhesion.20 Hence, after characterizing the surface structure of rice leaves, we focused on 

their bacterial adhesion behavior. As shown in Figure 23(d), there were two distinct 

behaviors: while there was significant bacterial (E. coli O157:H7) adhesion on the regions 

where microclovers are located, i.e., the apex of grooves, there was no detectable bacterial 

adhesion on the regions where microdiscs are located, i.e., the bottom and sides of grooves. 

This trend can be attributed to the morphological characteristics of bacterial antiadhesion 

regions: micropillar-type structures including microdiscs are known to often cause the 

transition from the Wenzel state to the Cassie-Baxter state, where the formation of air 

pockets can prevent bacterial attachment.43 In addition, due to their hollow nature, the total 

volume of air pockets on hollow microdiscs can be enhanced in comparison to the Cassie-

Baxter state of solid microdiscs and micropillars, thereby further inhibiting bacterial 

access to the surface. In addition to the surface structure, there may be additional factors 

responsible for the observed trend such as surface chemistry of microdiscs (see Appendix 

C: Supplemental Information for further discussion). 

5.3.2. Fabrication of RLLS 

Bioinspired surfaces are typically fabricated via bottom-up approaches such as 

http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig1
http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig1
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layer-by-layer assembly and nanoparticle deposition, direct replicating method using 

polymers (e.g., polydimethylsiloxane, poly(vinyl alcohol), and polyurethane), and top-

down approaches such as soft lithography.157 The main limitation of bottom-up 

approaches is the challenges associated with their scale-up and mass production.158 Direct 

replicating method allows only the exact replication of surface texture. When a 

modification in the texture size or dimension of the fabricated surface is needed, this 

approach becomes unfeasible. Furthermore, direct replication often relies on soft, low 

adhesion energy polymers to enable their peeling off from the original pattern.159 However, 

such soft polymers tend to suffer from the lack of mechanical and scratch resistance.160 

Top-down photolithography, the most common method to fabricate nature-inspired 

surfaces, requires multiple steps, i.e., exposure, development, deposition, and lift-off.161 

Here, we describe a self-masking reactive-ion etching (SM-RIE) approach that 

overcomes the above-mentioned limitations (Figure 24(a)). The principles driving the 

formation of hollow nanodiscs were that (i) due to the preferential vertical transport of 

ions, RIE gives rise to anisotropic etch profiles;162 (ii) due to its crystal structure, the 

etching rates show variations in different crystal planes of quartz;163 and (iii) RIE using 

CF4 often leads to the polymerization of fluorocarbons (CxFy),
164 which can form 

nano/microdroplets on quartz and act as masks for directing etching.165,166 SM-RIE 

allowed a strong control over topographical and structural characteristics of the surfaces 

by adjusting etching time, CF4/O2 flow rates, pressure, and radio frequency (RF) power 

(see Appendix C: Supplemental Information, Figure 42). At relatively low CF4/O2 flow 

rates and low RF power, it was possible to produce hollow nanodiscs that mimicked rice 

http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig2
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Figure 24. (a) Fabrication process of bioinspired “rice leaf-like surfaces” (RLLS), (b) 

photograph of RLLS, (c) SEM micrograph of RLLS surface, and (d) wetting 

characteristics of water on RLLS. Statistical analysis of SEM and AFM micrographs 

revealed that inner diameter of nanodiscs was 163.0 ± 10.5 nm, outer diameter was 198.2 

± 9.3 nm, height was 436.7 ± 12.6 nm, average spacing between nanodiscs was 214.6 ± 

153.4 nm, and ratio of the total rim area to total projection area was ~0.06. 

 

leaf in a single-step process (Figures 24(b),(c)). 

5.3.3. Wetting Characteristics of RLLS 

Hydrophilic materials tend to aggregate on hydrophilic surfaces.22 While bacteria 

can adhere on both hydrophobic and hydrophilic surfaces, bacterial attachment tends to 

occur significantly more on hydrophilic surfaces due to their hydrophilic nature.23 

Therefore, it is necessary to investigate the wetting characteristics of the developed 

surfaces to gain insight into their bacterial adhesion behaviors. The static water contact 

angle measurements revealed that, while the pristine quartz was hydrophilic (θ < 10.0°), 

methylated quartz (θ = 95.9 ± 1.1°) and RLLS (θ = 155.7 ± 1.2°) were hydrophobic and 

superhydrophobic, respectively (Figure 24(d)). The super-repellency of surfaces was also 

valid for concentrated E. coli O157:H7 suspension (9.1 ± 0.1 log CFU/mL) with a static 

http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig2
http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig2
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contact angle of θ = 150.6 ± 1.0° (see Appendix C: Supplemental Information, Figure 43), 

which is quite useful for various purposes such as stain release, lubricity, and water 

repelling.167,168 Advancing and receding contact angle measurements revealed that water 

and bacteria suspension had contact angle hysteresis of ~2.5° and ~2.1°, respectively. Such 

low hysteresis indicates that RLLS surface is uniform and fairly homogeneous and that 

interaction between surface and liquid (or suspension) is weak.169 

Slight differences in surface tensions of water (σ = 72.1 mN/m) and bacterial suspensions 

(σ = 66.3–69.7 mN/m) are likely to be responsible for ~5.0° difference in static contact 

angle and dynamic contact angle measurements.170 Approximately 85.0° increase in the 

contact angle changing from pristine quartz to methylated quartz is attributed to the 

surface chemistry effect, due to intrinsically low surface energy of the methyl group.171 

On the other hand, a difference of ~60.0° in the contact angle of methylated quartz and 

RLLS is ascribed to the surface roughness and topography.95 

5.3.4. Investigation of Bacterial Adhesion on RLLS Under Static Conditions 

Hydrodynamics can significantly influence the transport of bacteria from bulk 

liquid to surfaces.172,173 Hence, bacterial adhesion to the developed surface was 

investigated under both static and dynamic conditions. Upon inoculating surfaces with 

bacterial suspension—i.e., E. coliO157:H7 or S. aureus at a concentration of 8.7–9.1 log 

CFU/mL under static conditions for 4 h—pristine quartz, hydrophobic quartz, and RLLS 

surfaces displayed significantly different bacterial adhesion behavior (Figures  25(a)‒(c)). 

To be specific, for E. coli O157:H7, the pristine quartz surface supported the greatest 

bacterial adhesion with a mean density of 5.8 ± 0.0 log cells/mm2. When the quartz was 

http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05198/suppl_file/am5b05198_si_001.pdf
http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig3
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Figure 25. SEM micrographs of bacterial attachment on pristine quartz (PQ), hydrophobic 

quartz (HQ), and RLLS surfaces for (a)–(c) E. coli O157:H7 and (d)–(f) S. 

aureus (bacteria on RLLS surfaces were highlighted with red). (g) The bacterial 

attachment density as a function of surface type. Different letters (i.e., A, B, and C) 

indicate statistically significant differences (p < 0.05). 

 

methylated, the bacterial adhesion significantly decreased to a mean density of 4.9 ± 0.1 

log cells/mm2. Ultimately, significantly less bacterial adhesion was detected on RLLS 

surfaces, counts were 2.7 ± 0.2 log cells/mm2, corresponding to >99.9% reduction in 

bacterial adhesion in comparison to pristine quartz surfaces. As shown in Figures 25(d)‒

(f), similar trends were also observed for S. aureus: the number of adherent bacteria 

decreased from 6.1 ± 0.0 to 2.9 ± 0.2 log cells/mm2 upon changing the surface from 

pristine quartz to RLLS. A closer look at Figures 25(c),(f) revealed that the attachment of 

bacteria was correlated with the existence of unpatterned regions (see Figure 24(c)) on 

RLLS. This result further highlights the importance of hollow nanodisc texture in 

preventing bacterial attachment (see Appendix C: Supplemental Information, Figure 

44 for further comparison). Figure 25(g) summarizes these adhesion behaviors of E. 

coli O157:H7 and S. aureus with respect to surface type. 

http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig3
http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig3
http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig2
http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05198/suppl_file/am5b05198_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05198/suppl_file/am5b05198_si_001.pdf
http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig3
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Figure 26. (a) Schematic illustration of the experimental setup used in studying bacterial 

adhesion under dynamic conditions. (b) Time-resolved micrographs of bacterial 

attachment on RLLS window obtained via differential interference contrast (DIC) 

microscopy. The fully adhered bacteria are highlighted with green. Comparison of 

bacterial attachment on RLLS with (c) uncoated window and (d) coated window 

(methylated) at a dynamic bacterial exposure time of 60 min. 

 

5.3.5. Investigation of Bacterial Adhesion on RLLS Under Dynamic Conditions 

Prior studies have shown that the presence of a flow-field can facilitate or hinder 

the bacterial adhesion on a surface depending on the shear rates. In general, low shear 

rates result in an increased adhesion whereas high shear rates lead to a decreased 

adhesion.174–176 Therefore, there is a need to ensure that the developed surfaces are also 

effective in reducing bacterial attachment under the flow conditions that promote bacterial 

adhesion. To this end, real-time bacterial adhesion behavior on RLLS was monitored using 

a customized flow chamber that imitates a typical fluidic channel of biosensor at low flow 

(shear) rates. The developed surface demonstrated excellent bacterial (Gram-negative E. 

coli O157:H7) antiadhesion properties during dynamic flow conditions (Figures 26(a),(b)). 

Similar reduction trends were also observed against Gram-positive S. aureus. The number 

http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig4
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of adhering bacteria on RLLS was mostly constant during the continuous operation of 60 

min, indicating the bacterial antiadhesion characteristics of these surfaces. On the other 

hand, the number of adhering bacteria increased linearly with increasing flow time for 

pristine and methylated quartz window surfaces (Figures 26(c),(d) and see Appendix C: 

Supplemental Information, Table 3). The previous studies reported that the initial stages 

of bacterial adhesion tend to follow a linear adhesion kinetics with respect to time,139,177–

179 which is consistent with the trends observed in pristine and methylated quartz surfaces. 

The loss of sensitivity in biosensors due to the accumulation of bacteria on flow chamber 

windows is a major problem in diagnostic assays.180 The superior bacterial antiadhesion 

properties of RLLS window can help maintain sensor sensitivity by minimizing distortions 

in the light or laser path (i.e., interference, absorption, and reflection), flow direction, and 

flow velocity occurring through bacterial adhesion. 

RLLS was chemically functionalized with a monolayer of TMCS in this study. If 

TMCS leaches away from the surfaces, it may lead to bacterial killing through an 

(unexpected) antibiotic effect. Hence, to determine whether the observed trends are indeed 

due to antiadhesion properties rather than an antimicrobial effect, a bacterial proliferation 

assay was performed. The data showed that the growth of bacterial cultures did not change 

in the presence of RLLS: bacterial concentrations reached ~8–9 log CFU/mL for both 

standard culture media (negative control) and standard culture media containing RLLS 

surface (see Appendix C: Supplemental Information, Figure 45). 

5.3.6. Possible Mechanisms of Bacterial Antiadhesion 

The desirable antiadhesion characteristics can be attributed to two factors: (i) a 

http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig4
http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05198/suppl_file/am5b05198_si_001.pdf
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large volume of air pockets (gaps) and (ii) a small ratio of the total rim area to the total 

projection area. First, the contact angle data indicated the superhydrophobic nature of 

RLLS. Superhydrophobic surfaces are associated with the transition from the Wenzel state 

to the Cassie-Baxter state and the formation of air pockets.43 The presence of air pockets 

constitutes a physical barrier for bacteria to reach the material surfaces. Second, the 

structural characterization of hollow nanodiscs indicated that the areal ratio of solid/liquid 

interface to gas/liquid interface is small (i.e., ~0.06) due to their hollow nature. This 

information, coupled with the fact that the rim width (i.e., ~9 nm) of nanodiscs is much 

smaller than the length scales of bacteria (i.e., ~500−4000 nm), suggests a decreased 

probability for a bacterium to find a solid surface on which to attach itself (see Appendix 

C: Supplemental Information, Figure 46). 

5.3.7. Optical Transparency of RLLS 

Although the developed materials have very promising bacterial antiadhesion and 

superhydrophobic properties, they cannot be used as the components of bio-optical 

devices unless these satisfy the optical-grade transparency, i.e., ≥92.0% within the visible 

light spectrum from 400 to 700 nm. It is a well-known challenge that typical surface 

topography and roughness modification strategies used for producing superhydrophobic 

surfaces lead to the loss of transparency to the levels below 90%, sometimes even down 

to 60%.181 By inspiring from the outermost layers of rice leaves, we were able to produce 

surfaces with hollow nanodisc morphology, yielding optically transparent surfaces 

(Figures 27(a),(b)). The comparison of transparency via UV-vis-NIR spectrophotometry 

indicated that pristine quartz (blue square) and RLLS (red circle) had a similar 

http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05198/suppl_file/am5b05198_si_001.pdf
http://pubs.acs.org/doi/10.1021/acsami.5b05198#fig5
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Figure 27. (a) Transmission spectra of pristine quartz (blue square) and RLLS (red circle) 

obtained by UV-vis-NIR spectrophotometry. (b) Wetting behavior of water and bacterial 

suspension on transparent RLLS surface. 

 

transmission level of 92% in the visible light spectrum. This is ascribed to the fact that 

root-mean-square (RMS) roughness of RLLS surfaces (~35 nm) and pristine quartz (~2 

nm) was much smaller than the wavelength of visible light.182 

5.3.8. Mechanical and Chemical Stability 

For optically transparent materials, mechanical integrity and robustness of surface 

texture are important issues to consider because the optical transparency should not 

deteriorate under operational conditions. As such, RLLS was tested under standard 

sterilization conditions, which is a 20 min sterilization process at 121 °C and 20 psi by 

autoclave. These conditions are much harsher than typical operation pressure (i.e., <15 psi) 

of biosensors and microfluidic devices.183 It was found that, after autoclaving, no surface 

deformation occurred, surface superhydrophobicity remained the same, and bacterial 

antiadhesion properties and optical-grade transparency were also preserved, indicating 

robust durability of RLLS (see Appendix C: Supplemental Information, Figure 47). 

http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05198/suppl_file/am5b05198_si_001.pdf
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In addition, devices and surfaces coming in contact with bacteria are generally 

sterilized with chemical sanitizers such as hydrogen peroxide (H2O2). Therefore, it is 

necessary to ensure the chemical stability of the developed bioinspired surfaces in such 

solutions. To this end, we investigated the chemical stability of functional groups of RLLS 

in 10% hydrogen peroxide solution over 3 weeks and observed no significant detachment 

of chemical groups and no change in wetting characteristics of the surface (see Appendix 

C: Supplemental Information, Figure 48). 

 

5.4. Conclusions 

This study presents a single-step approach involving a templateless, self-masking 

reactive-ion etching for producing rice leaf-inspired surfaces that prevent microorganisms 

from attaching to them. In particular, bacterial repellency is demonstrated with respect to 

pathogenic Gram-negative E. coli O157:H7 and Gram-positive S. aureus under both static 

and dynamic conditions. The desirable bacterial antiadhesion characteristics of RLLS are 

ascribed to two factors associated with hollow nanodisc texture: (i) a large volume of air 

pockets (gaps) and (ii) a small areal ratio of solid/liquid interface to gas/liquid interface. 

One distinguishing feature of the developed rice leaf-inspired surfaces is that they also 

display optical-level transparency in the visible spectrum (i.e., ≥92% transmission). The 

combination of bacterial antiadhesion and optical transparency can be achieved 

presumably because of a reduced total roughness volume of hollow nanodiscs compared 

to solid (nonhollow) textures utilized in typical bacterial antiadhesive surfaces. Overall, a 

synergistic combination of bacterial antiadhesion properties and optical-grade 

http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05198/suppl_file/am5b05198_si_001.pdf
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transparency can open up new avenues in the design of antibiofouling surfaces and be 

beneficial for a broad set of applications and devices including biosensors, endoscopes, 

microfluidic, bio-optical, lab-on-a-chip, and touchscreen devices. 
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CHAPTER VI 

SURFACE MODIFICATION OF FOOD PROCESSING AND HANDLING GLOVES 

FOR ENHANCED FOOD SAFETY AND HYGIENE* 

 

6.1. Introduction 

Foodborne illnesses are a global concern as they lead to morbidity and mortality 

with increasing rates throughout the world.48,49 Bacterial pathogens such 

as Salmonella spp., Escherichia coli, Campylobacter spp., Staphylococcus 

aureus, Listeria monocytogenes, and Bacillus cereus are some of the major causes of 

foodborne illnesses.184,185 According to the US Centers for Disease Control and Prevention 

report 2013, bacterial pathogens account for 70.7% of all foodborne illnesses for meat and 

poultry, 43.8% for dairy and eggs, 42.0% for grains and beans, 24.1% for fish and shellfish, 

and 22.3% for produce.186 Bacterial pathogens can come into contact with food and food 

products at any stage of “food-preparation”, i.e., harvesting, slaughtering, processing, 

187handling, and storage.188,189 While there are various procedures for effective 

disinfecting of food-contact surfaces and reducing other bacterial contaminants,187,190–195 

such disinfection could be rescinded due to possible mishandled after cleaning and 

sanitizing. Hence, it is a common practice to use gloves to handle food and food products 

after sanitation processes.196 From a food safety perspective, gloves serve for two purposes: 

 

*Reprinted with permission from “Surface modification of food processing and handling gloves 

for enhanced food safety and hygiene” by Jun Kyun Oh, William Rapisand, Ming Zhang, Yagmur 

Yegin, Younjin Min, Alejandro Castillo, Luis Cisneros-Zevallos, Mustafa Akbulut, 2016. Journal 

of Food Engineering, 187, 82‒91, Copyright 2016 by Elsevier Ltd. 
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(i) to reduce the possibility of cross-contamination from food to food and (ii) to eliminate 

the possibility of transmission of pathogenic bacteria from human hands to food. 

While the use of gloves improves food safety and hygiene, and is desired for food 

processing and handling,197 gloves are not completely problem-free. For instance, when 

glove surfaces come into contact with bacterial pathogens, bacterial adhesion occurs and 

the bacteria can subsequently form biofilm on these surfaces.51 If formed, bacterial 

biofilms are particularly difficult to eliminate using hygienic practices such as physical 

washing (e.g., brushing, scrubbing, and sonication) and chemical treatments (e.g., alcohol-

based disinfectant, chlorine-based sanitizer, and hydrogen peroxide-based solution), 

because bacteria are embedded in their own extracellular polymeric substances (EPSs), 

which guard bacteria against external physical forces and chemical agents attack.198 Along 

these lines,199 have reported the occurrence of bacterial retention on glove surfaces and 

the possibility of glove-facilitated bacterial transport. Kotwal et al.200 found that transfer 

of Salmonella from porcine skins to thick latex, thin latex, and nitrile gloves can take place 

with the transfer rate of 40%, 27%, and 19%, respectively. Brar and Danyluk201 reported 

that Salmonella can transfer from disposable latex gloves to tomatoes with a transfer 

coefficient of 32% and 29% under wet and dry conditions, respectively, and from tomatoes 

to gloves with a transfer coefficient of 37% and 39% under wet and dry conditions, 

respectively. Overall, it is fair to claim that wearing gloves does not fully ensure the 

prevention of cross-contamination and transmission of pathogenic bacteria during food 

processing and handling. 

To avoid the scenarios of cross-contamination and transmission of pathogenic 
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bacteria through glove surfaces, research efforts have been undertaken, in particular, 

towards antimicrobial modifications of glove surfaces.202 Surface functionalization with 

antimicrobial agents have been shown to be capable of preventing the spread of pathogenic 

bacteria. For example, antimicrobial agent (i.e., polyhexanide) generating glove 

surfaces,203 glove surfaces impregnated with antiseptic dye (i.e., chlorhexidine),204 and 

active release of disinfectant (i.e., chlorine dioxide) from the glove surfaces upon 

stimulation with moisture or light205 have recently been reported. However, while gloves 

bearing antimicrobial agents reduce the bacterial growth and improve food safety, there 

are several issues that still need to be overcome such as the ineffectiveness against 

antimicrobial-resistant bacteria,29 the development of antimicrobial resistance (AMR) due 

to continuous exposure to antimicrobial agents,122 and the long-term antimicrobial 

inefficiency.30 

An alternative approach in reducing cross-contamination and transmission of 

pathogenic bacteria is the development of bacteria-repellent and antiadhesive surfaces. 

These surfaces reduce the bacterial adhesion to the surface of interest or repel bacteria 

from the surface of interest.14,206 In other words, the goal is to minimize the number of 

bacteria reaching/attaching to the surface rather than disinfect bacteria reaching/attaching 

to the surface. Some examples of above-mentioned approaches for food safety 

applications can be enumerated, such as bacteria-repellent polyethylene glycol (PEG)-

coated surfaces,68 zwitterionic surfaces,70 functional biomimetic surfaces,71 nanoporous 

methylated surfaces,15 stimuli-responsive surfaces capable of surface deformation induced 

by shear forces,33 and multilayer films containing heparin as an antiadhesive agent.35 
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While there are a number of studies reporting applications of these modifications on 

common food-contact surfaces such as stainless steel,207 quartz glass,16 paper,208 

polycarbonate,209 polytetrafluoroethylene (PTFE),125 and polyurethane,210 the 

incorporation of gloves with bacterial antiadhesion properties have not been achieved yet. 

Herein, we report the preparation of gloves with bacterial antiadhesion properties 

for food processing and handling applications using a scalable and facile dip-coating 

method. The coating has been applied on the three different types of gloves (i.e., latex, 

nitrile, and polyethylene) and achieved through the deposition and polymerization of 

“fluorinated silica nanoparticles” (FSNs) on glove surfaces. To evaluate the bacterial 

antiadhesion properties of the developed gloves, Gram-negative S. Typhimurium LT2 and 

Gram-positive S. aureus were utilized through an inoculation assay. The mechanical 

durability and chemical stability of FSN-coated gloves were investigated using scanning 

electron microscopy (SEM), nanotribometry, and attenuated total reflectance-Fourier 

transform infrared (ATR-FTIR) spectroscopy. 

 

6.2. Materials and Methods 

6.2.1. Preparation of Glove Surfaces 

Three different types of disposable gloves, i.e., latex (Polymed; Sempermed USA, 

Inc., Clearwater, FL, USA), nitrile (Upperhand; Maytex Co., Hayward, CA, USA), and 

polyethylene (Poly-D; Ansell, Richmond, Australia) commonly used glove materials for 

food processing and handling were prepared for the comparative studies. Gloves were first 

rinsed with Milli-Q water (resistivity ≥ 18.2 MΩ·cm) produced by a Milli-Q water 
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purification system (Milli-Q Advantage A10; EMD Millipore Corp., Billerica, MA, USA), 

and left to dry at room temperature (23 °C). 

6.2.2. Preparation of FSNs 

100 mg of silica (SiO2; Sigma-Aldrich Co., St. Louis, MO, USA) nanoparticles 

with average diameter of ~200 nm was suspended in 15 mL of hexane (Avantor 

Performance Materials, Inc., Center Valley, PA, USA), and then 5 mM of trichloro 

(1H,1H,2H,2H-perfluorooctyl)silane (FDTS; Sigma-Aldrich Co., St. Louis, MO, USA) 

was added to obtain “fluorinated silica nanoparticles” (FSNs). FSNs were homogeneously 

suspended under sonication for 20 min using a probe ultrasonicator (SJIA-2000W; Ningbo 

Haishu Sklon Electronics Instruments Co., Ltd., Ningbo, Zhejiang, China). The FSN 

suspension was then left for 1 h to allow the silane to fully react with silica nanoparticles. 

6.2.3. Dip-Coating of Glove Surfaces 

FSNs were deposited on glove surfaces by dip-coating method (Figure 28). Latex, 

nitrile, and polyethylene gloves were first cut into 1 cm × 1 cm pieces. Gloves were then 

dipped into the FSN suspension. The method involved dipping gloves for 30 s and then 

allowing gloves to dry for 30 s five times over a 5-min period. FSN-coated gloves were 

then left to dry at room temperature for 24 h. 

6.2.4. Surface Characterization 

Surface morphology of glove surfaces were examined by scanning electron 

microscope (SEM, JSM-7500F; JEOL, Tokyo, Japan). Before SEM examination, the 

samples were coated with 8 nm of platinum/palladium (Pt/Pd) to minimize possible 

charging effects. The SEM was operated at an accelerating voltage of 1 kV and emission 
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Figure 28. Schematic illustration of surface modification of disposable gloves with 

“fluorinated silica nanoparticles” (FSNs) to achieve bacteria-repellent and antiadhesion 

properties. 

 

current of 20 μA. 

Topographic characteristics of glove surfaces were investigated by Dektak 3 stylus 

profilometer (Veeco Instruments, Inc., Plainview, NY, USA) with a scan length of 100 μm 

to obtain surface roughness values. The samples were mounted on a glass slide by using 

a double-sided tape and then placed onto the stage to decrease data noise. 

The chemical interactions between glove surfaces and FDTS-functionalized silica 

nanoparticles were characterized by attenuated total reflectance-Fourier transform 

infrared (ATR-FTIR) spectroscopy technique. ATR-FTIR spectra were measured using 

IRPrestige-21 (Shimadzu Corp., Kyoto, Japan) system and analyzed using IRsolution 

version 1.40 software (Shimadzu Corp., Kyoto, Japan). 

In order to determine the wetting characteristics of glove surfaces, the static water 

contact angles were measured for the three different types of glove surfaces using the 

sessile drop technique. Reported contact angles on each surface were obtained by 

averaging five measurements at room temperature with the same droplet volume (5 μL). 
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Contact angles were analyzed using ImageJ software (National Institutes of Health (NIH), 

Bethesda, MD, USA) via low-bond axisymmetric drop shape analysis (LBADSA) plug-

in.135 

6.2.5. Growth and Maintenance of Microorganisms 

Working cultures of Salmonella enterica subsp. enterica serovar Typhimurium str. 

LT2 (ATCC 700720) and Staphylococcus aureus (Food Microbiology Laboratory, 

Department of Animal Science, Texas A&M University, College Station, TX, USA) were 

obtained by scraping a portion of a culture on a tryptic soy agar (TSA; Becton, Dickinson 

and Co., Sparks, MD, USA) slant, and transferring to 9 mL of tryptic soy broth (TSB; 

Becton, Dickinson and Co., Sparks, MD, USA). These bacterial cultures were incubated 

aerobically without agitation at 37 °C for 24 h. After 24 h, a loopful of culture was 

transferred to fresh TSB, and reincubated at 37 °C for 24 h twice consecutively. The final 

concentrations reached by S. Typhimurium LT2 and S. aureus in the growth medium 

ranged from 8.6 to 9.0 log CFU/mL. 

6.2.6. Surface Inoculation 

For inoculation, bare and FSN-coated gloves were submerged in 9 mL of a 

bacterial suspension (8.6–9.0 1og CFU/mL) at room temperature for 1 h and 24 h. The 

samples were gently removed from the bacterial suspension in a single vertical motion. 

After, the samples were rinsed in sterile Milli-Q water (10 mL) to dislodge loosely 

attached cells, and then transferred to sterile Petri dish for further bacterial adhesion assay. 

Bacteria that were not removed by Milli-Q water rinse were assumed to be attached. All 

experiments were carried out in an appropriate biological safety cabinet under sterile 
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conditions. Inoculation experiments were replicated four times. 

6.2.7. Bacterial Adhesion Assay 

Bacterial attachment on glove surfaces with and without surface modification was 

assessed by plate count using the pour plating method and by direct enumeration on glove 

surfaces using SEM. For plate counts, gloves that were dip-inoculated for 1 h were vortex-

mixed in 0.1% (w/v) peptone water for 10 min to detach bacteria from the glove surfaces. 

After, serial dilutions of peptone water containing detached bacteria were made and plated 

on TSA plate. Bacterial densities were determined after 24 h of aerobic incubation at 37 °C 

and represented the density of bacteria that were attached onto the glove surfaces. All 

experiments were replicated four times. 

The direct enumeration of attached bacteria on glove surfaces using SEM was 

conducted on gloves that were dipped in the inoculum for 1 h and 24 h. Prior to SEM 

imaging, bacteria were inactivated by acrolein (Sigma-Aldrich Co., St. Louis, MO, USA) 

and a thin layer (10 nm) of Pt/Pd film was deposited on the sample surfaces to ensure the 

electrical conductivity required by SEM technique. For statistical reliability, at least ten 

different areas of 100 μm × 100 μm (i.e., entire scan area larger than 100,000 μm2) from 

the three different samples of the same type of glove surface were observed. As a direct 

counting approach, SEM micrographs were analyzed using ImageJ to quantify the 

attachment of S. Typhimurium LT2 and S. aureus to glove surfaces. 

6.2.8. Mechanical Robustness and Chemical Stability of Glove Coating 

Shear strength of glove coating was investigated using a nanotribometer (NTR; 

Anton Paar TriTec SA, Peseux, Switzerland). Produce-attached tip was used in the 
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measurements. To prepare produce-attached tip, a spinach leaf cut into 3 mm × 3 mm 

piece was attached to the tip by using an instant glue. All tests were conducted using a 

cantilever spring with normal and tangential stiffness of 55.9 N/m and 36.8 N/m, 

respectively, at normal load of 10 mN, which provides a pressure of ~5000 N/m2. These 

experimental conditions were chosen based on a previous report suggesting grip force for 

common produce, e.g., strawberry (~1300 N/m2), carrot (~4300 N/m2), and apple 

(~5000 N/m2).211 Before and after shearing experiments, the presence of wear and surface 

damage were investigated by SEM examination as well as measuring surface roughness 

of FSN-coated gloves using a profilometer. 

Chemical stability of FSN-coated gloves was determined in deionized (DI) water 

as a function of time by monitoring if there is any chemical leaching from FSN-coated 

glove surfaces. This was achieved through analyzing aliquots collected from the samples 

(i.e., FSN-coated glove pieces submerged in DI water) using ATR-FTIR spectroscopy, 

with detection limit of <1 ppm. While average time of wearing disposable glove is usually 

less than 4 h, the measurements were conducted at submersion time of 24 h, which present 

a sufficient condition. 

6.2.9. Statistical Analysis 

The microbiological data were log-transformed prior to the statistical analysis. 

One-way and two-way analysis of variance (ANOVA) with Tukey’s post hoc test was 

used to determine whether there were significant differences in the microbiological data 

between types of glove surfaces and types of bacteria, at a significance level of 0.05. All 

statistical analyses were performed using Analysis ToolPak-Excel (Microsoft Corp., 
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Figure 29. SEM micrographs of FSN-coated (a) latex, (b) nitrile, and (c) polyethylene 

glove surfaces. Insets: SEM micrographs of bare latex, nitrile, and polyethylene glove 

surfaces, respectively. 

 

Redmond, WA, USA) via statistical packages. 

 

6.3. Results and Discussion 

6.3.1. Characterization of FSN-Coated Glove Surfaces 

Previous studies have shown that nanoscale and microscale surface roughness can 

influence bacterial adhesion.20,84 When the length scale of surface roughness is larger than 

bacterial size, bacterial colonization can be enhanced because bacteria prefer to attach to 

concave surfaces (e.g., valleys, pits, edges, and depressions) due to increase in bacteria-

surface total contact area.47 Hence, we characterized the surface topography of glove 

surfaces used in this study to better understand their bacterial adhesion behavior. SEM 

micrographs visually reveal nanostructures covering FSN-coated latex, nitrile, and 

polyethylene glove surfaces without interstices, as shown in Figures 29(a)–(c). To 

quantitatively compare the dimensional characteristics of bacterial size and surface 

roughness of gloves, the profilometer measurements were performed. The surface 

metrology measurements of FSN-coated latex, nitrile, and polyethylene gloves showed 



 

89 

 

that the root-mean-square (RMS) roughness were 419 ± 34 nm, 406 ± 28 nm, and 

395 ± 40 nm, respectively. This means that surface roughness length scales of FSN-coated 

gloves were smaller than bacterial size (e.g., rod-shaped S. Typhimurium LT2 is 700–

1500 nm wide by 2000–5000 nm long and spherical-shaped S. aureus is 600–1000 nm in 

diameter), thereby inhibiting the physical attachment such as penetration and trapping of 

bacteria into FSN-coated glove surfaces. Moreover, surface roughness of FSN-coated 

gloves meets the specific surface roughness value (≤800 nm) for proper hygienic design 

criteria for food-contact surfaces.11 

For the chemical modification of glove surfaces, fluorinated silane compound is 

selected due to its high affinity to silica.212 Also, trifluoromethyl (–CF3) functional groups 

are preferred over other nonpolar functional groups, because surface energy (γ) decreases 

as hydrogen (H) atoms are replaced with fluorine (F) atoms in the following orders: –

CH2 > –CH3 > –CF2 > –CF2H > –CF3.
213 While bacteria can adhere on both hydrophilic 

and hydrophobic surfaces, it is known that bacterial attachment tends to occur significantly 

more on hydrophilic surfaces.46 Hence, we used trifluoromethyl functional groups to coat 

glove surfaces in order to reduce the intermolecular interactions between bacteria and 

surfaces. The presence of trifluoromethyl groups on glove surfaces was confirmed by 

ATR-FTIR spectroscopy analysis for all three different types of gloves (Figure 30(a)). To 

be specific, there was a peak at ~1050 cm−1, corresponding to C–F stretching,214 for each 

glove surface upon dip-coating. 

Surface topography and chemical properties can act synergistically and influence 

the ability of water dispersing bacteria to come in contact with surfaces in a non-linear 
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Figure 30. (a) C–F stretching region from ATR-FTIR spectra of bare and FSN-coated 

gloves. (b)–(g) The static water contact angle measurements of bare and FSN-coated 

gloves. 

 

fashion by creating air-pockets.215 As such, we also studied the wetting characteristics of 

gloves surfaces with water. Figures 30(b)–(g) compare the contact angle of water droplets 

on bare and FSN-coated glove surfaces. The static water contact angle measurements 

revealed that bare latex (θ = 126.7 ± 1.4°), nitrile (θ = 97.2 ± 0.4°), and polyethylene 

(θ = 90.9 ± 0.5°) gloves were hydrophobic. On the other hand, their FSN-coated versions 

were superhydrophobic with a contact angle of θ = 162.5 ± 0.7° (latex), θ = 162.7 ± 1.1° 

(nitrile), and θ = 163.9 ± 0.6° (polyethylene).  Superhydrophobic surfaces are well-known 

as having self-cleaning properties (often termed the “lotus effect”), which is beneficial for 

reducing bacterial adhesion.126,216  

6.3.2. Bacterial Attachment to Glove Surfaces: Plating Counting Method 

After preparing and fully characterizing interfacial properties of the modified 
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glove surfaces, we compared the bacterial adhesion behavior on such surfaces with that 

on bare glove surfaces. Figure 31(a) shows the plate count results of the three different 

types of gloves, following inoculation and attachment of Gram-negative S. Typhimurium 

LT2. The mean populations of bacteria attached on bare latex, nitrile, and polyethylene 

glove surfaces were 5.3 ± 0.1 log CFU/mL, 5.3 ± 0.1 log CFU/mL, and 5.1 ± 0.1 log 

CFU/mL, respectively, indicating that these surfaces supported bacterial attachment. 

When latex, nitrile, and polyethylene gloves were modified with FSNs to achieve a 

superhydrophobic character, bacterial attachment decreased, as indicated by the mean 

bacterial populations of 3.4 ± 0.2 log CFU/mL, 3.4 ± 0.1 log CFU/mL, and 3.3 ± 0.1 log 

CFU/mL, respectively, corresponding to >98.2% in bacterial attachment. One-way 

ANOVA analysis showed the difference in the adhesion of S. Typhimurium LT2 with 

respect to the presence or absence of coating was statistically significant (p < 0.05). 

The above observed trends also took place for Gram-positive bacteria, as observed 

in the plating experiments using S. aureus. Figure 31(b) graph shows the plate count 

results of S. aureus attachment on the three different types of gloves. Bare latex, nitrile, 

and polyethylene glove surfaces yielded mean densities of 5.5 ± 0.1 log CFU/mL, 

5.4 ± 0.1 log CFU/mL, and 5.3 ± 0.1 log CFU/mL, respectively. In contrast, 

superhydrophobic FSN-coated latex, nitrile, and polyethylene gloves had a reduced the 

number of bacteria, with mean densities of 3.5 ± 0.2 log CFU/mL, 3.5 ± 0.2 log CFU/mL, 

and 3.2 ± 0.2 log CFU/mL, respectively, which corresponds to >98.5% reduction. 

According to one-way ANOVA analysis, the difference in the number of S. aureus with 

respect to the presence or absence of coating was statistically significant (p < 0.05).  
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Figure 31. The comparison of bacterial attachment to bare and FSN-coated gloves for 

(a) S. Typhimurium LT2 and (b) S. aureus upon 1 h exposure to bacteria. The data were 

obtained by the pour plating method. The different letters (i.e., A and B) indicate a 

statistically significant difference (p < 0.05) between bare and FSN-coated gloves. 

 

Overall, plating studies showed that the number of S. Typhimurium LT2 

and S. aureus with the use of FSN coating on gloves decreased by 1–2 log units in 

comparison to bare gloves and by 5.3–5.6 log units in comparison to the inoculation 

concentration.  The comparison of microbiological data on the three different types of 

glove surfaces with respect to types of bacteria via two-way ANOVA analysis indicated 

that the adhesion behavior of S. Typhimurium LT2 and S. aureus to glove surfaces were 

not statistically significant (p ≥ 0.05), indicating a similar reduction behavior for all types 

of gloves upon FSN coating. 

6.3.3. Bacterial Attachment to Glove Surfaces: SEM Method 

In addition to the pour plating method, SEM was also used to enumerate bacteria 

on glove surfaces to gain insight into the distribution and localization of bacteria on these 
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Figure 32. SEM micrographs of attached S. Typhimurium LT2 to bare and FSN-coated 

gloves after (a)–(f) 1 h and (g)–(l) 24 h exposure to bacteria. Bacteria on glove surfaces 

were highlighted with green. 

 

surfaces. Figure 32 shows the SEM micrographs of S. Typhimurium LT2 attached on the 

three different types of glove surfaces upon 1 h and 24 h inoculation. After 1 h exposure 

to bacteria, bacterial attachment to bare latex, nitrile, and polyethylene gloves resulted in 

mean densities of 4.1 ± 0.2 log cells/mm2, 4.0 ± 0.2 log cells/mm2, and 4.0 ± 0.1 log 
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cells/mm2, respectively (Figures 32(a)–(c)). Inoculation of FSN-coated latex, nitrile, and 

polyethylene gloves resulted in mean densities of 2.3 ± 0.1 log cells/mm2, 2.2 ± 0.0 log 

cells/mm2, and 2.3 ± 0.2 log cells/mm2, respectively. (Figures 32(d)–(f)), which 

corresponds to >97.7% reduction in bacterial attachment in comparison to bare gloves. 

After 24 h exposure to bacteria, bacterial attachment to bare latex, nitrile, and polyethylene 

gloves resulted in mean densities of 4.9 ± 0.1 log cells/mm2, 5.1 ± 0.1 log cells/mm2, and 

5.0 ± 0.0 log cells/mm2, respectively (Figures 32(g)–(i)). Inoculation of FSN-coated latex, 

nitrile, and polyethylene gloves resulted in mean densities of 2.7 ± 0.2 log cells/mm2, 

2.6 ± 0.2 log cells/mm2, and 2.6 ± 0.2 log cells/mm2, respectively. (Figures 32(j)–(l)), 

which corresponds to >99.3% reduction in bacterial attachment in comparison to bare 

gloves. In essence, bacterial attachment to superhydrophobic FSN-coated gloves was 

much less than bare gloves, with reduced the number of S. Typhimurium LT2 by 1–2 log 

units. 

We also enumerated the attachment of S. aureus to each glove surface using the 

same inoculation conditions. Figure 33 shows the SEM micrographs of latex, nitrile, and 

polyethylene glove surfaces after 1 h and 24 h inoculation with S. aureus. After 1 h 

exposure to bacteria, a mean density of bacteria present on bare latex, nitrile, and 

polyethylene gloves was 4.3 ± 0.3 log cells/mm2, 4.2 ± 0.2 log cells/mm2, and 4.3 ± 0.1 

log cells/mm2, respectively (Figures 33(a)–(c)). Inoculation of FSN-coated gloves resulted 

in mean densities of 2.4 ± 0.0 log cells/mm2, 2.5 ± 0.2 log cells/mm2, and 2.5 ± 0.2 log 

cells/mm2, respectively (Figures 33(d)–(f)), which corresponds to reduction in bacterial 

attachment by >98.1% upon 1 h inoculation. After 24 h exposure to bacteria, a mean 
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Figure 33. SEM micrographs of attached S. aureus to bare and FSN-coated gloves after 

(a)–(f) 1 h and (g)–(l) 24 h exposure to bacteria. Bacteria on glove surfaces were 

highlighted with green. 

 

density of bacteria present on bare latex, nitrile, and polyethylene gloves was 4.9 ± 0.2 log 

cells/mm2, 4.9 ± 0.3 log cells/mm2, and 5.1 ± 0.1 log cells/mm2, respectively (Figures 

33(g)–(i)). Inoculation of FSN-coated latex, nitrile, and polyethylene gloves resulted in 

mean densities of 2.7 ± 0.3 log cells/mm2, 2.9 ± 0.2 log cells/mm2, and 2.9 ± 0.2 log 
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cells/mm2, respectively (Figures 33(j)–(l)). These data indicate that bacterial attachment 

was reduced by >99.1% on FSN-coated gloves compared to bare gloves upon 24 h 

inoculation. 

Both plate count and SEM results demonstrated that superhydrophobic FSN-

coated gloves effectively inhibit bacterial attachment in comparison to bare gloves. Even 

with 24 h exposure to bacterial suspensions, S. Typhimurium LT2 and S. aureus were less 

likely to reside on FSN-coated glove surfaces. This phenomenon can be explained in terms 

of the wetting transition from the Wenzel state to the Cassie-Baxter state due to FSN 

coating on the surfaces.43 The transition into the Cassie-Baxter state implies that air-

pockets form when water comes into contact with glove surfaces, thereby decreasing 

effective (real) contact area between glove surfaces and water containing bacterial 

pathogens.217 Our results can also be explained in terms of hydrophobic effect.22,218 Prior 

studies showed that the contact angle of water on S. Typhimurium LT2 and S. aureus layer 

collected on a filter ranged from 15° to 27°.99,219 When these bacteria with highly 

hydrophilic cell surfaces come into contact with nonpolar surfaces, unfavorable 

intermolecular interactions arise, inhibiting bacterial attachment.   

6.3.4. Mechanical Robustness and Chemical Stability of FSN-Coated Gloves 

Maintaining superhydrophobic properties of FSN-coated gloves are important to 

ensure bacterial antiadhesion performance of the coating during usage. In this context, we 

evaluated shear strength of FSN coating on gloves to determine mechanical durability of 

FSN-coated gloves (Figure 34(a)). All shearing experiments were carried out under the 

normal load of 10 mN for 10 cycles using a produce-attached tip. As shown in Figures 
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Figure 34. (a) Schematic drawing of shear test setup to evaluate mechanical durability 

between produce-attached tip and FSN-coated glove surfaces. SEM micrographs of before 

(b)–(d) and after (e)–(g) shear test, showing shear resistance of FSN-coated gloves. 

 

34(b)–(g), FSN-coated glove surfaces showed similar surface morphology before and after 

shearing with a produce-attached tip, indicating practical mechanical durability. 

Furthermore, difference in surface roughness values before and after shearing were 

measured using a profilometer. Before shearing, RMS roughness of FSN-coated latex, 

nitrile, and polyethylene glove surfaces were 419 ± 34 nm, 406 ± 28 nm, and 395 ± 40 nm, 

respectively. Similar results were obtained after shearing as well: 426 ± 42 nm, 

405 ± 47 nm, and 403 ± 43 nm, respectively, which indicates mechanical durability of 

FSN-coated gloves.   

The potential toxicity, if any, of the developed gloves are directly related to the 

ability to leach chemicals from their FDTS-functionalized silica nanoparticle surfaces 
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Figure 35. ATR-FTIR spectra of aliquots collected from the samples (i.e., FSN-coated 

glove pieces submerged in DI water). The absence of C–F stretching region suggest 

chemical stability of functional groups on glove surfaces. 

 

through detachment, degradation, or decomposition of fluoro groups. Hence, we 

investigated chemical stability of FSN-coated gloves in DI water as a function of time 

using ATR-FTIR spectroscopy. Unbound FDTS molecules had symmetric and 

asymmetric C–F stretching peak near 1050 cm−1. The spectroscopic analysis revealed that 

FSN-coated gloves submerged in DI water has no chemical leaching and present the 

absences of free chemicals within the detection limit of 1 ppm at least in a 24-h period 

(Figure 35). 
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6.4. Conclusions 

Cross-contamination and transmission of pathogenic bacteria during food 

processing and handling has become an issue throughout the world. Gloves are the most 

commonly used protective equipment or barriers against bacterial contamination. 

However, recent studies have pointed out that the use of gloves, while improving food 

safety to some extent, may be insufficient to completely prevent the spread of pathogenic 

bacteria. Herein, we report surface modification of latex, nitrile, and polyethylene gloves 

with “fluorinated silica nanoparticles” (FSNs) to further limit bacteria adhesion. This in 

turn should further reduce the risk of potential cross-contamination and transmission of 

pathogenic bacteria associated with glove surfaces, which already reduces the bacterial 

contamination to some extent. The bacterial antiadhesion properties of FSN-coated gloves 

was confirmed against Gram-negative S. Typhimurium LT2 and Gram-positive S. aureus, 

with significantly greater (1–2 log units) bacterial populations on bare gloves than on 

modified gloves, via plate counting and direct SEM visualization after dip-inoculation. 

The ability of FSN-coated gloves to inhibit bacterial attachment is attributed to their 

nanotextured morphology and low surface energy, the synergistic combination of which 

leads to superhydrophobic surfaces. Superhydrophobicity translates into a reduced 

effective (real) contact between glove surfaces and water containing bacterial pathogens, 

decreasing the probability of bacteria to reach glove surfaces. Overall, the promising 

bacterial antiadhesion properties of FSN-coated gloves as well as a scalable and facile 

nature of the dip-coating method can offer a simple solution for enhancing microbiological 

food safety and hygiene of disposable gloves used in the food industry.  
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CHAPTER VII 

SUMMARY 

 

In Chapter I, a brief review is presented on the importance of bacterial antiadhesive 

materials and the factors that influence bacterial attachment. Studies of bacterial adhesion 

behavior are important because of their relevance to human health and diseases. This 

dissertation provides insights into the effect of the surface properties on bacterial adhesion. 

Also, based on these fundamental studies, materials that can prevent bacterial attachment 

effectively without generating any antimicrobial activity were presented. Sol-gel method, 

reactive-ion etching (RIE) method, and dip-coating method were used to fabricate bacteria 

repelling hygienic materials. Food safety related bacteria (i.e., Salmonella and Listeria) 

and healthcare-associated infections (HAIs) related bacteria (i.e., E. coli and S. aureus) 

were selected for the studies. 

In Chapter II, the effect of the surface physical and chemical properties on bacterial 

adhesion are presented. By modifying surface nano/microroughness of hydrophobic 

surfaces, we are able to vary water contact angle from ~90 to ~160 or higher. Comparing 

18 different surfaces of roughness within this regime show bacterial adhesion trends. 

Water contact angle higher than 150 is so-called superhydrophobic surfaces. We found 

interesting bacterial adhesion behavior in superhyrophobic regime, which significantly 

reduced bacterial attachment to surfaces. Moreover, for a better understanding of the 

chemical properties influencing interactions between bacteria and surfaces, we have 

prepared different well-defined surface chemistry surfaces by self-assembled monolayers 
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(SAMs) of alkanethiols and investigate the kinetics of bacterial adhesion process in terms 

of the effect of the surface chemistry. It was clear that bacteria are more likely to adhere 

to hydrophilic surfaces.  

In Chapter III and Chapter IV, hydrophobically-modified silica aerogels were 

synthesized via sol-gel method. The bacterial antiadhesion properties of hydrophobically-

modified silica aerogels, with other distinctive characteristics including superior thermal 

insulation and ultra-light weight, make these aerogels attractive candidates for novel food-

contact surfaces to improve food safety. Moreover, findings from the study also showed 

that hydrophobic nanoporous silica aerogel (HNSA) has potential as an antiadhesive 

hygienic material that can inhibit exogenous bacterial contamination related to HAIs. The 

results suggest that the use of HNSA as surfaces that come into contact with bacterial 

pathogens in the healthcare environment can improve bacterial hygiene, and therefore, 

may reduce the rate of HAIs. 

In Chapter V, RIE method has been applied and developed rice leaf-inspired 

surfaces. The biomimetic “rice leaf-like surfaces” (RLLS) involved unique hollow 

nanodisc morphology and showed strong bacterial suspension repellency with inhibition 

efficiency of > 99.9%. Furthermore, different from most other bioinspired antibiofouling 

surfaces, we were able to maintain optical-grade transparency (i.e., ≥92% transmission) 

by minimizing roughness volume through hollow nanodisc morphology. We anticipate 

that the combination of bacterial antiadhesion efficiency, optical-grade transparency, and 

convenient single-step method of preparation makes RLLS a very attractive candidate 

surface for biosensors, endoscopes, microfluidic and bio-optical instruments, lab-on-a-
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chip, and touchscreen devices. 

In Chapter VI, surface modification of gloves made of materials such as latex, 

nitrile, and polyethylene are presented. We report a surface modification by dip-coating 

method involving “fluorinated silica nanoparticles” (FSNs) to improve the protective 

ability against bacterial contamination of disposable glove surfaces. The bacterial 

populations on FSN-coated latex, nitrile and polyethylene gloves was reduced by 1–2 log 

units in comparison to bare gloves, which already reduce the bacterial attachment to some 

extent. 

Based on the conclusions of this work, it is believed that the future work should 

focus on fabricating materials with improved bacterial antiadhesion properties for long-

term (i.e., several months or even longer) period. Secondly, determining the effect of the 

surface charge on bacterial adhesion by combining QCM-D, SEM, and DIC microscopy 

techniques should perform to further reduce the bacterial adhesion. Thirdly, determining 

the effect of the microscale surface roughness on bacterial adhesion by combining SEM, 

AFM, and confocal microscopy techniques should perform to prevent bacterial attachment 

more effectively. Finally, fabricating superomniphobic (i.e., repels both water and oil) 

surfaces with ultra-low surface energy is required, which can be utilized as a promising 

antibiofouling surfaces in the near future. 
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APPENDIX A 

SUPPLEMENTAL INFORMATION FOR CHAPTER III 

 

A1. Preparation of Thermochromic Films 

The first step of preparing such a film was to dissolve 10, 12-pentacosadiynoic 

acid (PCDA; TCI America, Portland, OR, USA) in chloroform (CHCl3; Sigma-Aldrich 

Co., St. Louis, MO, USA) to prepare polydiacetylene (PDA) vesicles. After removing 

organic solvent (chloroform) by N2 gas purging, DI water was added to make the final 

concentration 1 mM. Then, PDA was embedded in a polyvinyl alcohol (PVA, 

Mw=89,000‒98,000 g/mol; Sigma-Aldrich Co., St. Louis, MO, USA) film by mixing PDA 

solution to 10 wt% PVA solution. Sequentially, the mixed solution was poured into a mold 

and left to dry at room temperature (23 °C) for 3 days before peeling off from the mold. 

A2. Preparation, Inoculation, and Enumeration of S. Typhimurium 14028s 

Salmonella enterica subsp. enterica serovar Typhimurium (ATCC 14028; 

American Type Culture Collection, Manassas, VA, USA) were obtained from the 

Department of Chemical Engineering Laboratory Culture Collection at Texas A&M 

University (College Station, TX, USA). In order to utilize fluorescent microscope for 

visualization of the microorganisms on the various surfaces, S. Typhimurium 14028s was 

transformed with a green fluorescent protein (GFP) expressing plasmid pCM18.37 

Working cultures of S. Typhimurium 14028s were obtained by transferring an isolate from 

a Luria-Bertani (LB) + 0.2% (w/v) glucose agar plate to 9.0 mL of TSB containing 30 

µg/mL erythromycin to maintain pCM18 in culture. The cultures were incubated 
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Figure 36. Fluorescent microscope micrographs of (a) hydrophilic quartz, (b) 

hydrophobic quartz, and (c) hydrophobic silica aerogel after inoculated by S. 

Typhimurium 14028s. (d) The number of bacteria per unit area (mm2) remaining on 

surfaces (a logarithmic scale is chosen for the y-axis). The bacterial adhesion is 

statistically different between each surface (p < 0.05). Different letters indicate statistically 

significant difference. 

 

aerobically without agitation at 37 °C for 24 h. After 24 h, a loopful of culture was 

transferred to fresh TSB containing 30 µg/mL erythromycin, and incubated aerobically 

for 24 h at 37 °C twice consecutively. First, pre-sterilized quartz, hydrophobic quartz, and 

hydrophobic silica aerogel substratum were immersed in 9.0 mL bacterial suspensions 

(8.2‒8.8 1og CFU/mL) prepared as previously described for 4 h at room temperature 
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(23 °C). After 4 h, the substratum was gently removed from the bacterial suspension in a 

single vertical motion, and held vertically for five minutes to eliminate the remaining 

droplet so that drying effects were not superimposed on the adhesion effects. Finally, 

nitrogen (N2) gas was gently blown on the substratum to further remove the thin liquid 

film. The treated surfaces were then isolated for counting attached bacterial cells. 

Fluorescent S. Typhimurium 14028s cell was determined by using an Axiovert 200M 

(Carl Zeiss, Thornwood, NY, USA) inverted fluorescent microscope. Micrographs 

obtained with fluorescent microscope were analyzed with Photoshop 6.0 (Adobe Systems 

Inc., San Jose, CA, USA) software to obtain fluorescent bacterial (S. Typhimurium 14028s) 

area coverage on each surface. 

A3. Intermolecular Interactions between Silica Aerogel and Bacteria 

Because tail groups of TMCS are methyl groups, acid-base, hydrogen-bond, and 

specific ligand-receptor types of interactions between TMCS and bacteria are non-existing. 

Therefore, van der Waals interactions are expected to primarily govern the 

thermodynamics of bacterial adhesion to TMCS-functionalized quartz and TMCS-

functionalized silica aerogel surfaces. As a first approximation, van der Waals interaction 

energy between a bacteria and a surface can be approximated as an interaction between a 

sphere and flat surface, which is given as: 

 

Equation 1. 

𝐸vdW = −
𝐴H
6
[
𝑅

𝑑
+

𝑅

2𝑅 + 𝑑
+ 𝑙𝑛 (

𝑑

2𝑅 + 𝑑
)] 
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where AH is the Hamaker constant, R is radius of sphere (bacteria), and d is separation 

between bacteria and surface.220 The Hamaker constant will be negative when the 

dielectric constant, ε, and refractive index, n, of the intervening medium is in between 

those of the substrate and adsorbate (e.g., particle and bacteria).36 When the intervening 

medium is water, for which εwater = 80 and nwater = 1.33, and the adsorbate is bacteria, for 

which εbacteria = 60 and nbacteria = 1.39,221,222 there is a repulsive van der Waals interactions 

between a surface and a bacteria as long as the refractive index and dielectric constant of 

the substrate is smaller than those of water. The index of refraction for nonporous silica 

materials is about 1.45‒1.55 depending on the crystallinity and density. Therefore, the van 

der Waals interaction between nonporous silica and bacteria across water is attractive.223 

However, according to the Clausius-Mossotti equation, one obtains the effective index of 

refraction by averaging over the solid phase and the void phase.224,225 Therefore, due to 

their highly porous nature, silica aerogel can have much lower refractive index and 

dielectric constants than water.100 Thus, the dispersion interactions between bacteria and 

silica aerogel are repulsive assuming that water does not fill the pores of the hydrophobic 

silica aerogel. To check this assumption, we conducted ellipsometry experiments to 

measure the index of refraction of TMCS-functionalized silica aerogel under dry and wet 

conditions. These measurements showed that the index of refraction was 1.008 ± 0.001 

under dry conditions while it was 1.013 ± 0.001 after immersing in bacterial suspension 

for 4 h. Here, it is important to mention that if the porosity of materials were large and 

allowed water to fill the pores, then the effective index of refraction for porous substrate 

would be larger than 1.33, leading to attractive van der Waals interactions and the 
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Figure 37. Comparison of bacterial (S. Typhimurium LT2 and L. innocua NADC 2841) 

proliferation behavior (a), (d) in the absence and (b), (e) in the presence of TMCS-Silica 

aerogel sample, and (c), (f) in the presence of 1% bleach solution. Significant reduction 

was only observed for 1% bleach solution. 

 

promotion/facilitation of bacterial adhesion. Therefore, porosity is not often desired in 

food-contact surfaces. However, we showed that this is not true for materials with ultra-

small, hydrophobic pores where water molecules cannot fill them. 
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APPENDIX B 

SUPPLEMENTAL INFORMATION FOR CHAPTER IV 

 

 

Figure 38. (a) A photograph showing the color transition of thermochromic film upon 

heating. Comparison of the thermal insulation properties of (b) HNSA and (c) glass disc 

were carried out by placing samples of the same thickness on a hot plate for 1 h at 100 °C. 

There was no color change in thermochromic film residing on HNSA surfaces while there 

was color change in thermochromic film residing on glass disc surfaces. 

 

B1. Thermal Properties of Materials 

A thermochromic film was used to compare the thermal insulation properties of 

the samples prepared (Figure 38). The thermochromic films were fabricated by dissolving 

10, 12-pentacosadiynoic acid (PCDA; TCI America, Portland, OR, USA) in chloroform 

(CHCl3; Sigma-Aldrich Co., St. Louis, MO, USA) to prepare polydiacetylene (PDA) 

vesicles.226 After removing chloroform solvent by nitrogen gas purging, deionized (DI) 

water was added to make the final concentration of 1 mM. Subsequently, PDA was 

embedded in a poly(vinyl alcohol) (PVA, Mw = 89,000‒98,000 g/mol; Sigma-Aldrich Co., 
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Figure 39. ATR-FTIR spectra of HNSA submerged in (a) DI water and (b) 10% hydrogen 

peroxide (H2O2). The data revealed that solutions containing HNSA has no chemical 

leaching within 2 weeks duration (detection limit of <1 ppm). 

 

St. Louis, MO, USA) film by mixing PDA solution to 10wt% PVA solution. The 

PDA/PVA solution was poured into a mold and left to dry at room temperature (23 °C) 

for 3 days before peeling. The resultant thermochromic film changed its color from blue 

to red at temperatures 50 °C or above. 

In addition, specific heat (Cp) value of sample (10 mg) was measured by 

differential scanning calorimetry (DSC, Q20; TA Instruments, New Castle, DE, USA) at 

heating rate of 10 °C/min to calculate thermal conductivity. 

B2. Chemical Stability 

To evaluate chemical stability of hydrophobic nanoporous silica aerogel (HNSA), 

samples were submerged in DI water and 10% hydrogen peroxide (H2O2, 30% solution; 

Avantor Performance Materials, Inc., Center Valley, PA, USA), a commonly used 

sanitizer in healthcare industry. Aliquots were collected from solutions at time points of 4 
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Figure 40. Fluorescent microscope micrographs of (a) hydrophilic bare quartz, (b) 

hydrophobic quartz, and (c) HNSA after inoculation with Gram-negative E. coli O157:H7 

EDL933. (d) The average number of bacteria per unit area (mm2) on different surfaces (y-

axis has a logarithmic scale). Different letters (i.e., A, B, and C) indicate statistically 

significant difference (p < 0.05). 

 

h, 3 days, 1 week, and 2 weeks to determine chemical leaching using ATR-FTIR 

spectroscopy. 
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B3. Preparation, Inoculation, and Enumeration of E. coli O157:H7 EDL933 

To express green fluorescent, enterohemorrhagic Escherichia coli O157:H7 str. 

EDL933 (ATCC 43895) was transformed with a green fluorescent protein (GFP) 

expressing plasmid pCM18.37 Working culture of E. coli O157:H7 EDL933 was obtained 

by transferring a loopful of culture from a Luria-Bertani (LB) agar plate (0.2% (w/v) 

glucose) to 9 mL of TSB containing 30 µg/mL erythromycin. The culture was incubated 

for 24 h at 37 °C. After 24 h, a loopful of culture was transferred twice to fresh TSB 

containing erythromycin every 24 h and reincubated at 37 °C. 

For inoculation, hydrophilic bare quartz, hydrophobic quartz, and HNSA were 

submerged in 9 mL bacterial suspension (8.7 ± 0.1 1og CFU/mL) for 4 h at room 

temperature. The samples were gently removed from the bacterial suspensions in a single 

vertical motion after inoculation. 

Fluorescent E. coli O157:H7 EDL933 was determined by using an Axiovert 200M 

(Carl Zeiss, Thornwood, NY, USA) inverted fluorescent microscope. Micrographs 

obtained with fluorescent microscope were analyzed with ImageJ (National Institutes of 

Health (NIH), Bethesda, MD, USA) software.  
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APPENDIX C 

SUPPLEMENTAL INFORMATION FOR CHAPTER V  

 

 

Figure 41. (a) SEM micrograph of Oryza sativa rice leaf surfaces. (b) SEM micrograph 

of rice leaf surfaces after inoculated in E. coli O157:H7 suspension for 4 h at room 

temperature (23 ºC). White regions indicate attached bacteria on rice leaf surfaces. (c) 

Detail view of E. coli O157:H7 biofilm formation on clover-shaped features of rice leaf 

surface. 

 

C1. Photochemistry of Rice Leaf  

Surface chemistry is an important factor to consider in the context of bacterial 

adhesion. Given the hydrophobic nature of leaf surfaces and the localization of the hollow 

structures on the leaves, these structures are leaf wax. Uchiyama and Okuyama227 reported 

that rice leaf wax consists mainly of primary alcohols (20.4%), wax esters (27.8%), 

aldehydes (30.8%), and hydrocarbons (6.2%). However, in light of our overall conclusion 

that it is possible to prevent bacterial attachment by just mimicking the surface texture 

rather than the exact chemistry, we believe that wax chemistry plays a secondary role on 

the observed trends in this particular study.  
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Figure 42. (a)‒(c) SEM micrographs showing surface morphology of pristine quartz, 

hydrophobic quartz, and RLLS. SEM micrographs of results from different self-masking 

reactive-ion etching (SM-RIE) process conditions, (d) high oxygen (O2) flow rate (5.0 

sccm), (e) low pressure (100 mTorr), and (f) high radio frequency (RF) power (300 Watt), 

respectively. 
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Figure 43. Contact angle measurement of E. coli O157:H7 suspension droplet (5 µL) on 

RLLS surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. (a) The highlight of unpatterned regions (defects) arising during the 

preparation of RLLS and (b) the preferential attachment of bacteria on these regions. 
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Table 3. Comparison of the bacterial adhesion behavior on pristine quartz, methylated 

quartz, and RLLS surfaces for E. coli O157:H7 and S. aureus as a function of time. 

 Pristine quartz Methylated quartz RLLS 

 E. coli O157:H7 S. aureus E. coli O157:H7 S. aureus E. coli O157:H7 S. aureus 

10 min 17 ± 3 21 ± 3 3 ± 1 9 ± 4 1 ± 1 2 ± 1 

20 min 35 ± 5 43 ± 3 10 ± 4 14 ± 2 1 ± 1 2 ± 2 

40 min 53 ± 2 66 ± 5 15 ± 2 21 ± 5 1 ± 1 3 ± 2 

60 min 97 ± 12 110 ± 9 21 ± 3 36 ± 4 1 ± 1 3 ± 2 

Number of attached bacteria were expressed per unit area (25 µm × 25 µm)  
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Figure 45. Comparison of (a)‒(c) E. coli O157:H7 and (d)‒(f) S. aureus growth in the 

absence of treatment or in the presence of RLLS and 1% bleach solution after 4 h cultured 

period by pour plating method. Only results from 1% bleach solution were statistically 

significant (p < 0.05).  



 

134 

 

 

Figure 46. A schematic illustration of two key factors presumably responsible for 

desirable antiadhesion characteristics of RLLS.  
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Figure 47. (a) RLLS (red circle) was tested under autoclave conditions (at 121 ºC and 20 

psi for 20 min). Inset: photograph of RLLS placed inside chamber. (b) SEM micrograph 

of RLLS after autoclave treatment. No damage occurred on surfaces. (c) Contact angle 

measurement of water droplet (5 µL) on autoclaved RLLS surfaces showing that stable 

superhydrophobicity (θ > 150°). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Chemical stability of RLLS immersed in (a) DI water (H2O) and (b) 10% 

hydrogen peroxide (H2O2) were confirmed using ATR-FTIR spectroscopy. Samples do 

not have C‒H stretching region (in detection limit of 1 ppm), which represents no unbound 

TMCS chemical from RLLS surfaces. 
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Figure 49. Successfully methyl (CH3) functionalized RLLS and quartz surfaces were 

characterized by ATR-FTIR spectroscopy. (a) The presence of peaks are attributed to 

combination of symmetric and asymmetric C‒H stretching from methyl groups formed 

upon the reaction of TMCS with silica surfaces. Peak shifts in C‒H stretching region are 

due to the substitution of chlorine (Cl) atoms by oxygen (O) atoms during methylation 

reaction and because of the transformation from the liquid state to the crystalline state.89 

(b) Si‒Cl stretching vibration region around ~620 cm-1 only existed for TMCS, provides 

evidence for the methylation reaction.90  
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Figure 50. XPS spectra show that the atomic percentages for C, O, and Si were ~19%, 

24%, and 57%, respectively, for hydrophobic quartz. While the atomic percentages for C, 

O, and Si were ~15%, 26%, and 59%, respectively, for RLLS. Therefore, these findings 

suggest that the degree of methylation for quartz and RLLS were very similar. 


