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ABSTRACT 

With the rising demand for sustainably producing fresh water from saline sources, 

many researchers have been attracted to develop new reverse osmosis (RO) 

membranes with high water flux and salt rejection. Despite the great achievements 

researchers have made, there is still significant room for improving the water 

permeability and salt rejection of an RO membrane. Herein, we fabricated a RO 

membrane of advanced 3-layer structure and better performance both in anti-fouling 

and in water flux. This advanced membrane contains three layers with different 

modifications. The first modification was done by embedding zeolite and graphene 

oxide (GO) in the selective polyamide (PA) layer to introduce water flux channel. The 

second modification was an additional GO layer on the PA surface working as an 

anti-fouling layer. For final modification, we added a polyethylene glycol (PEG) layer 

which could serve to repel the organic foulant. The water permeability, salt rejection 

property, and anti-fouling ability of this new membrane have been investigated. We 

concluded that the combination of these structures led to an overall excellent RO 

performance which was supported by our experimental results.  
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NOMENCLATURE 

Reverse Osmosis RO 

Multi-stage flash distillation MSF 

Sea water reverse osmosis SWRO 

Brackish water reverse osmosis BWRO 

Polysulfone PSF 

Polyethersulfone PES 

Trimesoyl chloride TMC 

1, 3-phenylene diamine MPD 

Linde type A LTA 

Bovine Serum Albumin BSA 

Interfacial Polymerization IP 

Fourier transform infrared (FTIR) 
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1. INTRODUCTION AND BACKGROUND 

1.1 Research background 

It is well-known that Reverse Osmosis (RO) is a popular water treatment during 

which the dissolved inorganic solids such as various salts can be removed from a 

solution with a semi-permeable membrane. There are also several other treatments 

available in the market. When compared with those water treatment methods, RO 

method is found to be superior due to various reasons. Firstly, in RO process, there is 

only consumption of electricity. This makes RO more environmentally friendly than 

other methods like multi-stage flash distillation (MSF), which needs steam and thermal 

energy.
2
 Secondly, the RO process can be utilized in significantly larger water sources 

where other methods fail and is applicable for sea water reverse osmosis (SWRO), lake 

water and brackish water reverse osmosis (BWRO) treatment etc. Those advantages 

make RO one of the most popular water treatment methods.
3
 

The most important part in RO technology is the semi-permeable membrane 

mentioned above. Semi-permeable membrane is a kind of membrane that only allows 

the transportation of water molecules and rejects ions and solid particles. There are 

some polymeric membranes, such as polysulfone (PSF) and polyethersulfone (PES) 

membranes are already commercialized in the market as ultrafiltration membranes. 

However, these membranes have several problems that limit their further development, 
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such as low hydrophilicity and short lifetime.
4, 5

 For futuristic, a cheap and readily 

affordable membrane with high reliability water treatment ability is essential.
5
 The 

mechanism and the development of the semi-permeable membrane will be discussed in 

the following section. 

1.2 Mechanism of reverse osmosis desalination 

There are mainly two ways to separate ions and water molecules by 

semi-permeable membranes. They are size effect and electricity repulsion effect. 

It is easy to understand that the radius difference of water molecules and hydrated 

ions can be used to separate ions and molecules. Generally, the hydrated ions have the 

radius of 0.5 nm while the radius of water molecules is about 0.275 nm.
6
 However, if 

we only use the size effect to reject ions, the water flux will not be sufficient for large 

scale application. Also, the small differences between the radiuses of those ions make it 

is harder to develop good membranes. 

In order to have high water flux and ions rejection at the same time, another 

phenomenon, Gibbs-Donnan effect is introduced here. This phenomenon is the 

thermodynamic calculation of the behavior of charged particles near a semi-permeable 

membrane. In most RO membranes, the selective layer is negatively charged. The 

negatively-charged ions cannot pass through this negatively-charged membrane.  

To understand this phenomenon, we now establish a condition that NaCl and KCl 
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solutions are on the two sides of the membrane. The concentration of NaCl solution is 

c1 and that of KCl solution is c2. The membrane itself is negatively charged so Cl
-
 

cannot go through the membrane. After some time, the system will reach equilibrium, 

the concentration of Na
+
 decreased x  on the side of NaCl solution.        

Initial              1c     
Na                       K      2c  

1c     
Cl                       

Cl      2c  

mEquilibriu       xc 1     
Na        Membrane      

Na      x  

x     K                        K      xc 2  

1c     
Cl                       

Cl      2c  

(1)                               (2) 

Then based on the thermodynamic laws, we have following equations.  

WdNPdVSdTdF        

                                                            

Equation 1 
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                                                         Equation 2 

After the calculation, we will get the result. 
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    Equation 3 

The result above is also true for a system of salt water and useable water. 

Equation 3 shows that the salt concentration of two different solutions will hold at 

equilibrium state. The ions that can travel through the membrane are linearly related to 

the initial salt concentration. With the Gibbs-Donnan effect, water molecules can be 

transported from the concentrated side to diluted side while the charged ions are 

rejected by the semi-permeable membrane. Only applied pressure is needed to 

overcome the osmotic pressure between the concentrated solution and diluted solution. 

Generally, the pressure needed to overcome the osmotic pressure between sea 

water and usable water is more than 20 bars.
7
 This means that we need an additional 

pressure supply, so a power pump is necessary for the operation of the RO system. This 

pump will consume most of the energy needed for the RO desalination process. The 

energy consumption of water is calculated by dividing pump power by water 

permeability. In order to reach low energy consumption, high water permeability is 

needed. Another practical problem is the solid particles other than ions. Organic 

particles can attach to the surface and pores of the membrane because of the 

hydrophobicity of the membrane and organic foulant.
8
 This phenomenon will also 

decrease the water permeability and increase the energy consumption of the system. 

https://en.oxforddictionaries.com/definition/phenomenon
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When we put the developed membrane into practice, the anti-fouling property is also 

important.  

1.3 Approaches to increase membrane performance 

Enormous efforts have been made to increase the water permeability and 

anti-fouling property of the membrane. Basically, there are two different methods of 

membrane modification. The first one is the introduction of nanoparticles to the 

selective layer, mainly by physical attachment. The second one is the surface 

modification of the selective layer by chemical graft. 
9,10,11, 12

 

The method that introduces nanoparticles to the selective layer in attempts to 

enhance the water permeability and anti-fouling property has attracted much attention 

during the past few years. There are several different introduction methods including 

functional groups assisted nanoparticles immobilization and interfacial polymerization 

(IP) assisted nanoparticles immobilization. 

The immobilization of nanoparticles (like TiO2) via self-assembly with terminal 

functional groups on the PA membrane is a method that directly attaches the 

nanoparticles to the surface of selective membrane. Those immobilized nanoparticles 

worked as hydrophilic sites and led to good anti-fouling property. Kim et al. decorated 

the TiO2 nanoparticles on the PA membrane surface by a simple dipping method. They 

claimed that their fabricated membrane showed a significant higher anti-fouling 
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property than the pristine membrane.
13

 Similar methods and results were reported by 

other researchers for PES membrane.
14, 15

 Other nanoparticles like Ag, sliver nitrate, 

and copper were also proved to have similar function in enhancing the membrane 

properties.
16-18

 

Another immobilization of nanoparticles is conducted through the IP process. 

This method is basically embedding the nanoparticles in the selective layer. 

Mansourpanah et al. proposed a method of embedding GO in the PA layer to increase 

the water flux and anti-fouling property.
10

 Further, Safarpour et al. demonstrated that 

addition of inorganic particles like TiO2 with reduced GO could improve water flux 

property.
11

 Duan et al. highlighted that the addition of zeolite to the framework of the 

PA layer could reach a high water flux without decreasing the salt rejection properties.
1
 

Also, Kim et al. embedded Ag nanoparticles and functionalized multi-walled carbon 

nanotubes in the membrane. Their membrane showed improved water permeability and 

anti-fouling property compared with the pristine membrane.
19

 

However, problems for nanoparticles immobilization are contradictory. 

Nanoparticles decorated on the surface are not sufficient for long term operation of the 

membrane because of the physical bonding while embedded nanoparticles will not be 

able to enhance the membrane property to the level of surface decoration. 

Surface modification of the selective layer is done by attaching macromolecular 



 

7 
 

chains to the surface of selective membrane by covalent bonds. Popular surface 

modification methods include UV-graft, Plasma induced grafting, chemical vapor 

deposition, and direct reaction. 

The UV-graft is an approach involves the generation of free radicals from the 

membrane surface and monomer attachment with the help of UV irradiation. 

Yamagishi et al, successfully grafted 2-hydroxyethyl methacrylate onto the PES 

surface. This modified membrane reduced Bovine Serum Albumin (BSA) attachment 

by 15% compared with the unmodified membrane.
20

 Also, Ma et al. claimed a 

modified membrane by grafting PEG, acrylic acid, and 2-(dimethyl- amino) ethyl 

methacrylate onto selective layer surface using UV-graft polymerization. Their 

modified membrane showed higher recovered flux than unmodified membrane.
21

 

Mansourpanah et al. also used acrylic acid together with UV irradiation to modify PA 

membrane. A membrane with improved salt rejection and water flux performance was 

observed.
22

 So far, UV-graft has been properly investigated and widely reported. 

Plasma induced grafting is similar to UV-graft. Both of them started from the 

generation of radicals. The advantage of plasma induced grafting is the controlled 

grafting density and grafted chain length. Yu et al. attached polyvinylpyrrolidone on 

the polypropylene membrane by using plasma induced grafting. Their result showed 

that the water flux recovery ratio for the modified membrane was 79% higher than 
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unmodified membrane.
23

 Researches of plasma induced grafting of polyacrylamide 

onto polyamide membrane were conducted by different groups. All of them observed 

increase in water flux and anti-fouling property.
24, 25

 

The chemical vapor deposition involves the introduction of vapor phase monomer 

to the surface of the membrane and the direct thin film formation on that membrane. 

Gleason et al. grafted poly-(sulfobetaine) zwitterionic groups onto commercial 

membrane by using chemical vapor deposition. Their results showed a 60% increase in 

water flux as well as good anti-fouling property.
26

 Matin et al. also used this method to 

modify a commercial membrane with 2-hydroxyethyl methacrylate-co-perfluorodecyl 

acrylate copolymer. When compared with pristine PA membrane, the water flux of the 

modified membrane is increased by 15%.
27

 

However, UV-graft, Plasma induced grafting, and chemical vapor depositions 

share a same problem. Their high requirement for operational environment and 

complex fabrication procedure make them hard to be used in large-scale production. 

Recently, Choi et al. has developed a layer-by-layer method to coat GO on the 

surface of the PA membrane by direct reaction between GO and polyamide. Their 

modified membrane showed great resistance against chlorine.
9
 Also, different methods 

of layer-by-layer assembly were reported, such as the combination of Poly (sodium 

4-styrenesulfonate) together with poly (allylamine hydrochloride)
28

 and Poly 
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(styrenesulfonic acid) sodium salt together with poly (diallyldimethylammonium 

chloride).
29

 Both of those modified membranes showed higher water flux and better 

anti-fouling property than unmodified membranes. 

Besides the layer-by-layer assembly, single-layer coating was also reported. 

Jessica et al. reported the improved anti-fouling property of RO membrane by grafting 

PEG onto the surface of the PA membrane using potassium persulfate and potassium 

disulfite as surfactant.
30

  

Advantages of this direct reaction coating method are its simple fabrication 

procedure and low requirement for operational environment. These advantages make 

the direct reaction coating method a promising alternative method for future research. 

1.4 Motivation and experimental design 

Those two methods mentioned above have different advantages and drawbacks. 

Researchers mainly concentrated on one of those methods. The reports of 

multi-modification and simplified fabrication methods are few. It’s important to find an 

advanced method and take the membrane research to a new stage. 

In our research, we were trying to solve the anti-fouling and water flux problem 

by combining the surface modification and nanoparticles introduction together. 

Inspired by those references mentioned above, we decided to embed nanofillers as 

water flux channels and decorate surface modification polymers as organic foulant 
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repelling layer as a beginning. Based on this, we developed a 3-layer structure 

membrane which includes a PA selective layer filled with nanofillers, an additional GO 

layer on the top of PA layer, and a PEG anti-fouling layer on the top of GO layer to 

reach an optimal condition for anti-fouling and water flux property (Scheme 1).  

 

Scheme 1. Schematic illustration of the 3-layer membrane 

It was expected that the introduction of nanoparticles into PA layer would increase 

the water flux. This could be attributed to the super hydrophilic surface of 

nanoparticles.
31, 32

 However, we expected that there would be some compromises 

between the water flux and some other membrane properties, such as the salt rejection. 

In addition, some morphology changes caused by the nanoparticles could happen. 

Firstly, the pores of the selective membrane could be blocked by those additional 

particles. Those blocked pores could lead to low water permeability property. Secondly, 

the particles might form clusters and cause the overall salt rejection decrease.
33

 Even in 
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the ideal case, the salt rejection performance would still show slightly decrease due to 

the molecular-scale voids between the nanoparticles and the polymer. We hypothesized 

that those two factors would change in an acceptable range and the overall 

performance would increase. 

The role of GO surface coating was expected to be a denser layer which would 

increase the salt rejection performance and work as the graft position for PEG, but this 

denser layer would lead to the decrease in water flux because of the longer water 

transport path created after GO coating. We hoped that the salt rejection would increase 

and the water flux would not significantly decrease. 

The PEG is well known for its extraordinary ability of resisting protein adsorption 

due to its hydrophilicity, large excluded volume, and unique coordination with 

surrounding water molecules in an aqueous medium.
34

 The schematic illustration is 

shown in Scheme 2. The PEG molecules are almost neutral and possess no acidic sites 

except the weak hydrogen-bond acid, hydroxyl groups. The PEG will be heavily 

hydrated in the water because of the hydrogen binding between hydroxyl groups, ether 

groups, and water, so the sites for organic molecules to bind are limited. Also, it is 

reported that when protein approaches towards the PEG, the chains of the PEG will 

generate a repulsive elastic force because of the compression of PEG chains. Also, the 

removal of the water molecules from the chains is thermodynamically unfavorable, 
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which will further repel the organic molecules.
35, 36

 The PEG can also further enhance 

the water flux because the water will be attracted by the PEG. By grafting PEG, we 

wanted to introduce the great anti-fouling polymer layer onto our membrane and 

significantly increase the lifetime of the membrane.  

 

Scheme 2. Schematic illustration of PEG anti-fouling layer 
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2. CHEMICALS AND MATERIALS 

The PSF membrane we used here was purchased from Nanostone Water, Inc. 

Membranes were used as received. The n-hexane, trimesoyl chloride (TMC) and 1, 

3-phenylene diamine (MPD) were purchased from Sigma Aldrich and used as received. 

The Linde type A (LTA) zeolite was purchased from Sigma Aldrich. The certified 

material reference showed that the median micropore width is 0.59 nm. The LTA 

zeolite has the Si/Al ratio of 1.0, which leads to negatively-charged surface. The 

zeolite was milled with 4” extra deep agate mortar (Across International) for further 

usage. The GO was used as received. The BSA was also purchased from Sigma 

Aldrich. The BSA was stored under refrigeration before use. The PEG-8000 was 

purchased from Sigma Aldrich and stored at room temperature.  
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3. EXPERIMENTAL

3.1 Zeolite preparation 

Zeolite (1mm diameter particles) was milled in the mortar for 1 hour to get small 

particles. Bath type sonication was used to disperse the fine powder in DI water. After 

the sonication, the suspension was centrifuged at 8000 RPM for 10 minutes to get the 

precipitation. The remained top solution was centrifuged for another 10 minutes. Then 

the remained upper solution was collected and dried overnight at vacuum oven to get 

dry zeolite powder. 

3.2 Preparation of PA layer with nanofillers 

The schematic illustration of nanofillers decoration is shown in Scheme 3. We 

were expecting uniformly embedded nanoparticles. It was widely reported that the 

nanoparticles could be embedded in the polymer layer through the IP process.
1,37

In this research, the TMC and MPD were used as reagents to activate the IP 

reaction on a PSF membrane. In detail, the TMC was dissolved in n-hexane with a 

concentration of 0.15 wt% and the MPD was dissolved in the distilled water with a 

concentration of 2 wt%. At the same time, the nanofillers GO (0 to 0.5 wt%) and 

zeolites (0 to 0.08 wt%) were added to the MPD solution with different concentrations 

to test how those nanofillers would influence the performance of membranes. 

The as purchased PSF membrane was immersed in the MPD solution for 1 hour to 
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fully saturate the pores of the membrane with MPD solution. The treated membrane 

was taken out and the excess solution on the surface of the membrane was removed. 

Then the membrane was immersed in TMC solution for two minutes to finish the IP 

process. This process embedded the nanofillers in the PA selective layer. After the IP 

process, the membrane was rinsed with DI water. Prepared membranes were stored in 

DI water before further treatment. 

 

Scheme 3. Schematic illustration of nanoparticles decoration 

3.3 Surface modification of PA layer with GO layer 

The GO could be coated on the surface of the polyamide selective layer by the 

reaction between the functional groups on GO and PA. The mechanism schematic is 

shown in Scheme 4. The two monomer chemicals shown in (a) and (b) are TMC and 

MPD. After the IP process, the remained –COCl groups on the surface of GO would 

react with the –OH through equation 4. This chemical bonding would generate a 

uniform layer of GO on the surface of PA selective layer.  
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HClCOOCOClOH             (Equation 4) 

         

 

Scheme 4. (a) TMC, (b) MPD, and (c) schematic illustration of the GO coating 

mechanism
8
 

In this research, we achieved the reaction by immersing the membrane into the 

GO solution (0.05 wt%) for 1 hour to finish the reaction between functional groups of 

PA and GO. After that, the membrane was rinsed with DI water to remove the excess 

solution. 

3.4 Surface modification of GO layer with PEG layer 

The PEG layer was grafted on the surface of GO by the reaction between –OH 

groups of PEG and –COOH groups of GO. The chemical structure of the reaction 

product is shown in Scheme 5. 

The PEG aqueous solution was prepared with the concentration of 50 wt%. The 

dried GO coated membrane was soaked in the PEG solution for 24 hours. After the 

reaction, the membrane was rinsed with DI water and stored in DI water for further 
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test.  

 

Scheme 5. Chemical structure of PEG modified GO  

After the preparation of the membranes, we got 7 different types of membranes. 

They were named in Table 1   
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Table 1. List of samples 

Name Nanofillers Coat Graft 

PA 

PA-Ze Zeolite (0 to 0.08 wt%) 

PA-GO GO (0 to 0.5 wt%) 

PA-Ze-C Zeolite (0 to 0.08 wt%) GO 

PA-GO-C GO (0 to 0.5 wt%) GO 

PA-GO-Ze-C GO (0 to 0.5 wt %), Zeolite (0.04 

wt %) 

GO 

PA-GO-Ze-C-PEG GO (0 to 0.5 wt %), Zeolite (0.04 

wt %) 

GO PEG 

3.5 Characterization methods of nanofillers and membranes 

FTIR characterization results were collected using fourier transform infrared 

(ATR-FTIR) spectrometer (Shimadzu IR Prestige). Film samples were prepared before 

the FTIR characterization. 

The zeta potential was tested to confirm the zeta potential change of the graphene 

oxide before and after the PEG modification. The reaction between the functional 

groups on GO and PEG would consume the -COOH of the GO. The consumption of 

those functional groups would lead to the reduction of zeta potential. This might 
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potentially decrease the salt rejection rate of the membrane.  

The zeta potential results were collected with DelsaNano C DLS. The GO+PEG 

suspension was prepared before testing. Firstly, we dissolved 45 mg GO and 10g PEG 

in 20 mL DI water. Then the result suspension was sonicated for 24 hours to finish the 

reaction. After reaction, the solution was centrifuged under 8000 RPM for 30 minutes. 

The precipitation was collected and washed with DI water. Then the precipitation was 

dissolved again and went through this process for 3 times to fully remove the excess 

PEG in the solution. Then the GO+PEG was dissolved in DI water. The GO solution 

was prepared by dispersing GO into DI water. The pH values of these solutions were 

adjusted to 7 before zeta potential tests. 

In order to investigate the structures of the membrane and confirm the attachment 

of GO and PEG, SEM images was collected with JEOL JSM-7500F. The samples were 

coated with platinum before taking SEM images to avoid the surface charge of the 

insulating polymer surface. Besides this, the aggregation of nanoparticles was also 

characterized by drying zeolite solution, GO solution, and GO + Zeolite solution on a 

copper foil. Images of the dried particles were taken using SEM to observe the 

aggregation tendency. 

The contact angle results were characterized by using high pixels camera. The 

images were enlarged and contact angles were measured based on that. 



 

20 
 

3.6 Performance and fouling characterization methods 

The membrane was assembled into a homemade cross-flow equipment to test the 

water flux. The salt solution was NaCl solution (0.35 wt%) and the applied pressure 

was 250 Psi.  

After collecting the permeated water from the setup, the conductivity of the 

permeated water was tested by a conductivity meter (Iso Pod, Australia). The salt 

rejection rate was calculated by using the conductivity & concentration chart.  

The anti-fouling property was tested with the same equipment. The test solution 

was BSA aqueous solution with a concentration of 0.01 wt%. Water flux was tested at 

the beginning, 2 hours, 4 hours and 6 hours of the experiment. After 6 hours, the 

membrane was taken out and cleaned with DI water for 5 minutes. The membrane was 

tested again to get the recovery rate (water flux after cleaning / initial water flux). 
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4. RESULTS AND DISCUSSION 

4.1 Characterization results of membranes 

The FTIR results are shown in Figure 1. Two new peaks were observed at 1541 

cm
−1

 and 1667 cm
−1

 after IP process. These two peaks were attributed to the PA skin 

layer on the PSF support.
38

 The peak at 1541 cm
−1

 was due to the N-H in-plane 

bending and N-C stretching vibration of a -CO-NH- group. The peak at 1667 cm
−1

 was 

assigned to the C=O stretching vibration in a secondary amide group.
38

 These peaks 

confirmed the successful IP process. 

For the GO layer modification and PEG layer modification, it was hard to directly 

get information from the peak location results. However, information could still be 

found from the relative peak intensity information. As can be seen, the peak intensity at 

1090 cm
−1

 and 1150 cm
−1

 (Figure 1) varied a lot during the GO and PEG modification 

process. The peaks at 1090 cm
−1

 and 1150 cm
−1

 could be the -C-O stretching vibrations 

near the aromatic C=C bonds and -C-O near -C-C bonds, which corresponded to GO 

and PEG.
39

 The increased ratio of Peak 1 and Peak 2 could be explained by the 

introduction of aromatic C=C bonds together with GO. In that case, the overall -C-O 

near the aromatic C=C groups increased while the -C-O near -C-C bonds remained 

constant. After grafting PEG, the ratio became low again due to the large amount of 

-C-C- bonds on PEG molecules. The graft of PEG increased the amount of -C-O near 
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-C-C bonds on the surface of membrane and led to the observed peak change. This 

result supported the proposed reaction between PA, GO and PEG in each different 

membrane layer. FTIR results showed the evidence of successful surface modification. 

The SEM images also confirmed the success of GO and PEG modification on the 

surface of the membrane, which are shown below. 

 

Figure 1. FTIR results of membranes with different modifications 

SEM images of different samples are shown in Figure 2. As we can see from the 

results, there were clear GO coating and PEG grafting on the surface of the membrane. 

The GO layer and PEG layer also led to change of the surface morphology between 

pristine PA membranes, GO coated membrane, and PEG grafted membrane. 
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Figure 2. SEM images of PA (a and b), PA-GO-C (c and d), and PA-GO-Ze-C-PEG (e 

and f)  

Also, images of nanoparticles aggregation are shown in Figure 3. The 
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concentration of GO and zeolite used here was the same with the GO and zeolite 

concentration in MPD solution. We calculated the pixels of the zeolite particles we 

could find on the image. (Figure 3 a, b red square) The number of pixels of zeolite 

image was 38966 while that was 41382 for zeolite + GO image. This showed that the 

particles densities were the same in two samples. At the same time, the particle number 

was 32 for zeolite sample and 49 for zeolite + GO sample. This result showed that the 

aggregation was reduced when adding GO and zeolite together into the solution. The 

reason could be the surface charge of GO and zeolite. The same surface charge made 

them repelling each other. This aggregation result showed the tendency of aggregation 

behaviors of nanoparticles in the selective membrane layer. This decreased aggregation 

could lead to a membrane with few defects and high salt rejection. 
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Figure 3. SEM images of (a) zeolite aggregation, (b) GO + zeolite aggregation, and (c) 

GO aggregation 
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The contact angle images of pristine membrane, GO coated membrane, and PEG 

grafted membrane are shown in Figure 4. The measured contact angles of different 

examples are shown in Table 2. 

Table 2. Contact angles of different samples 

Name Contact angle (
o
)

PA 62.3 ( 767.1 ) 

PA-GO(0.3%)- Ze(0.04%)-C 55.5 ( 875.1 ) 

PA-GO(0.3%)-Ze(0.04%)-C-PEG 44.4 ( 2 ) 

The contact angle decreased from 62.3
 o

 to 55.5
 o 

after the GO modification. This

result is similar to the finding of Liu et al.
40

 In their researches, they tested GO

embedded PA membrane with 0.6 wt% concentration, which reduced the contact angle 

from 63.74
 o
 to 55.04

 o
. In another research, PA membrane with GO loading from 0.25

wt% to 15 wt% was tested by He et al. With the increased GO loading, the contact 

angle decreased from 68
 o

 to 57
 o
.
41

 As mentioned before, this contact angle change was

attributed to the hydrophilicity of nanoparticles. After grafting PEG onto the surface of 

GO, we observed the decrease of contact angle which was from 55.5
 o

 to 44.4
 o
. This

was also because of the hydrophilic property of grafted PEG. 

The reduction of the contact angle showed a successful surface modification. This 

result also partly explained increase of the water flux and anti-fouling performance in 
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those modified samples. 

Figure 4. Contact angle images of (a) PA, (b) PA-GO-Ze-C, and (c) PA-GO-Ze-C-PEG 

4.2 Membrane performance and antifouling properties 

The water flux and salt rejection of different samples are shown below. The 

results of PA-GO series samples are shown in Figure 5. According to the result, PA-GO 

membrane showed an increased water flux and decreased salt rejection when compared 

with pristine membrane. The water flux increased from 4.6 L/m
2
/h/bar to 10.6

L/m
2
/h/bar. At the same time, the salt rejection rate decreased from 98.5% to 94%. This

increase in the water flux could be explained by the defects created on the PA layer due 

to GO introduction. Those defects worked as new water flux channels and increased 

both water and salt permeability. When the GO concentration was further increased, 
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the salt rejection rate decreased more. The first possible reason could be the increasing 

defects concentration that made more channels for salt to permeate. Another possible 

explanation could be that higher GO concentration led to a higher possibility of GO 

aggregation. The GO aggregation may lead to larger defects and voids for water 

molecules and salt ions to pass.  

When the GO layer was added to the membrane, the salt rejection increased and 

water flux decreased. When the GO concentration was 0.1%, the salt rejection 

increased from 95.5% to 96.3% and the water flux decreased from 7.8 L/m
2
/h/bar to 

6.0 L/m
2
/h/bar. The decreased water flux was caused by the thicker selective layer. The 

salt rejection change could also be attributed to the GO layer. Different from the 

embedded GO, the GO layer had a negatively-charged surface without many defects 

for salt to permeate. In this case, PA-GO-C showed a good salt rejection rate and 

reasonable water flux.  
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Figure 5. (a) Water flux and (b) salt rejection of GO embedded membranes 

When zeolite was added to the membrane (Figure 6 a, b), the water flux increased 

from 4.6 L/m
2
/h/bar to 7.3 L/m

2
/h/bar at zeolite concentration of 0.04% and to 

14.02/m
2
/h/bar at zeolite concentration of 0.08%. At the same time, the salt rejection 

decreased from 98.5% to 98.1% at the concentration of 0.04%. When the zeolite 

concentration was 0.08%, the salt rejection decreased to 95.1% (Figure 6). The overall 
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high performance at zeolite concentration of 0.04% was mainly because of high zeta 

potential and water flux channel property of zeolite. However, when the concentration 

was increased, the more voids between zeolite and PA layer and possible zeolite 

aggregation led to higher salt permeability, which was similar to the situation of GO 

modification. 

For the zeolite embedded membrane with GO layer, similar to the situation of GO 

modification, small increase in salt rejection and decrease in water flux were observed. 

At the zeolite concentration of 0.04 wt%, the water flux was 6.72 L/m
2
/h/bar and the 

salt rejection was 98.5%. 

 

 

 

 

 



 

31 
 

 

 

Figure 6. (a) Water flux and (b) salt rejection of zeolite embedded membranes 

When we added zeolite and GO together to the membrane, as shown in Figure 7, 

interestingly, the water flux showed a higher value than that of PA-Ze and PA-GO. 

After adding the 0.04% zeolite, at the GO concentration of 0.1%, the water flux 

increased to 11 L/m
2
/h/bar and the salt rejection maintained the value of 98.3%. 

The overall high performance of PA-GO-Ze-C membrane could be attributed to 
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the individual zeolite and GO decoration as well as the interaction between zeolite and 

GO. As mentioned before, the zeolite had a higher surface charge than GO, which help 

rejecting the salt ions. Also, the super hydrophilic zeolite worked as flux channel that 

increased the water flux together with GO. What’s more, both zeolite and GO showed 

a negatively-charged surface, which gave rise to their tendency of repelling each other. 

Because of this, the aggregation and defects were reduced. When GO concentration 

was increased, the decreased zeolite/GO ratio could not hinder the aggregation of GO. 

This led to the decrease of salt rejection like the PA-GO series membrane.  

By grafting PEG (PA-GO-Ze-C-PEG) on the surface of the membrane, we 

observed that the salt rejection of PA-GO-Ze-C-PEG was lower than that of 

PA-GO-Ze-C. At GO concentration of 0.3%, the salt rejection of the 

PA-GO-Ze-C-PEG decreased to 95.8%. The decreased salt rejection was probably 

caused by the reaction between GO and PEG. This reaction consumed -COOH groups 

on GO, which led to the reduction of the surface charge. This surface charge reduction 

was already shown during the zeta potential discussion. Besides decrease of the salt 

rejection, the water flux showed increase when PEG was coated, the water flux 

increased from 11.9 L/m
2
/h/bar to 13.2 L/m

2
/h/bar This result consisted with the claim 

of Zhao et al.
42

 However, the reason of this water flux increase was not discussed in 

those literatures. The possible reason could be the super hydrophilic property of PEG. 
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PEG contains ether functional group in every repeat unit, which makes it easy to form 

hydrogen bond between ether and water molecules. In our research, water molecules 

were attracted to the surface by PEG modification and water flux was increased.  

 

Figure 7. (a) Water flux and (b) salt rejection of PEG grafted membranes 

Figure 8 shows the anti-fouling characterization with the normalized water flux 
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(real flux/initial flux) of membranes after operation time of 2, 4, 6 hours. After 6 hours, 

the membrane was washed with DI water to remove the organic foulant. The water flux 

of the cleaned membrane was tested again. As can be clearly seen from the result, the 

membranes with PEG modification showed a better anti-fouling performance against 

BSA and a better water flux recovery rate than pristine membranes. The normalized 

water flux of pristine PA membrane decreased to 70% after 6 hours and recovered to 

80% after cleaning. The GO coated membrane showed slightly increased anti-fouling 

performance after 2 hours. The normalized water flux increased about 5% than the 

pristine membrane. It’s also interesting that the coated membrane showed a high 

recovery rate after washing. This could be attributed to the flat and hydrophilic surface 

of GO layer, which led to the easy detachment of organic foulant when washed with DI 

water. 

At the same time, PEG grafted membrane maintained more than 80% normalized 

water flux after 6 hours operation. After the cleaning, the PEG grafted membrane 

reached a normalized water flux of more than 87%.  

Despite the lower salt rejection, fouling test results showed that the PEG graft 

could largely improve the anti-fouling property (Figure 8). The largely-improved 

anti-fouling property made the little decrease in salt rejection a reasonable trade-off. 

When compared with other literature results, our membrane showed higher potential in 
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both water flux and anti-fouling properties.  

 

Figure 8. Anti-fouling properties of different membranes 
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5. CONCLUSION AND FUTURE WORK 

The impacts of nanofillers and surface modification have been investigated in this 

research. Results showed that the fabricated 3-layers structure modification could 

decrease the contact angle from 62.3
o
 to 44.4

o
. We also observed an impressive 

improvement in water flux from 4.6 L/m
2
/h/bar to 13.2 L/m

2
/h/bar. At the same time, 

the salt rejection was still maintained within an acceptable range. Results also revealed 

that the anti-fouling performance was largely improved by surface modification. The 

GO layer used in this membrane helped the introduction of PEG. At the same time, the 

GO layer itself could improve the membrane performance. This was not reported in 

other literatures using surfactant. What’s more, the fabrication process was easy and no 

special chemicals were needed for this low-cost technique. This added a huge 

advantage to the 3-layer membrane with regard to mass production.  

When compared with other recent research results, our 3-layer membrane shows a 

better performance in terms of water flux and salt rejection. The comparison is shown 

in Table 3. 

In the future, further material characteristic jobs and membrane development 

should be done: 

• Nanoparticles aggregation analysis 

The BET analysis can determine the specific surface area of aggregated 
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nanoparticles. This test result will further support our hypothesis of particles 

aggregation. The evidence we used in this paper is not really sufficient enough to 

support our aggregation hypothesis. 

• Membrane performance characterization

The fabricated membranes will be sent to labs of cooperator in Qatar to further 

confirm the results we got in our lab. 

In order to further describe the advantages of the new fabricated membrane, the 

traditional PEG grafted membrane using UV-graft or plasma induced grafting will be 

tested. The purpose of doing this experiment is to confirm that our “surfactant” GO 

also contributes to the membrane performance. 

• Composite optimization

We will change the composition of nanoparticles to find more possible optimal 

conditions. 

• Future research

In this research, we fabricated an advanced membrane with improved water flux 

and anti-fouling property. In the future, it’s also important to investigate and enhance 

the anti-bacteria performance of the membrane because bacteria were not included in 

this research. Also, the membrane fabrication method used in this research can be used 

to develop other membranes for pressure retarded osmosis and forward osmosis. We 
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hope that this kind of multi-layer structure fabrication can lead to membrane 

development to a new stage. 

Table 3. Comparison of RO membranes from literature 

Name Water flux Salt rejection reference 

3-layer modified 

membrane 

13.2 L/m
2
/h/bar 95.8% This research 

AgNPs embedded 

membrane 

3.4 L/m
2
/hr/bar 93.4%  Yin, Jun, et al.

43
 

GO sublayer adjusted 

membrane 

4-8L/m
2
/hr/bar 99.3% Liu, Qian, et al.

40
 

Hyperbranched polyester 

enhanced membrane 

11 L/m
2
/hr/bar 98% Kong, Xin, et al.

44
 

Sulfonated Polyamide 

Thin-Film 

12.1L/m
2
/h/bar 92.5% Lv, Zhiwei, et al.

45
 

surface modification via 

covalent attachment of 

polyvinyl alcohol (PVA) 

6.16L/m
2
/h/bar 98.45% Hu, Yutao, et al.

46
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