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ABSTRACT 

Several empirical or analytical/semi-analytical simulation models have been 

developed to assess the Estimated Ultimate Recovery (EUR) of an oil or gas formation for 

a short or long term of production. Furthermore, providing the EUR of a set of regional 

wells, it often becomes essential to perform a spatial analysis to develop the overall 

perception of possible depletion rate across the play. However, the lack of knowledge 

regarding the likely statistical structure of simulation models’ parameters coupled with the 

unknown influence of correlation amidst wells’ locations, makes it pertinent to apply a 

mechanism to quantify the uncertainty associated with the analysis. Therefore, in this 

study, researchers initially exerted the principles of the Bayesian paradigm together with 

the Markov Chain Monte Carlo (MCMC) theory to capture the posterior of the simulation 

model random field. Also, a vector of randomly drawn samples from the retrieved 

posterior allows delineation of the expected model realizations for a course of progressive 

time. 

Despite the fact that MCMC incorporating the acceptance-rejection criterion of the 

Metropolis-Hastings (MH) algorithm eventually converges to the true mean of the random 

process, it appears that the general trend of sampling often suffers from being 

computationally inefficient. Accordingly, to address the aforementioned issue, a novel 

sophisticated framework which is called “Parallel Scaled Adaptive Metropolis-Hastings” 

is developed. PSAMH constructs several synchronous chains to adapt the step size of MH 

proposal distribution and hence optimize the acceptance rate. 
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Moreover, in this study, three major EUR evaluation techniques are employed. The 

Power Law Exponential Decline (PLED) and Modified Hyperbolic Decline (MHD) 

functions, along with a semi-analytical method, serve to project the well production 

performance over the varying time. Additionally, the depletion logs given from the Eagle 

Ford Shale and Barnett Shale deliver the required observation data. Besides, the Ordinary 

Kriging and Inverse Distance Weight are two key techniques that are applied to 

approximate the spatial behavior of the formation. 

In addition, researchers elaborated a sequential Bayesian updating mechanism to take 

the updating evidence into the prior’s computation for various time intervals. Also, a 

Bayesian-spatial algorithm is used to feature the spatial characteristics of unexplored 

locations hypothesizing the fact that the only given information comprises the production 

observed data and corresponding coordinate for each individual well. 

It is implied that exerting the Bayesian approach permits quantifying the inherent 

uncertainty in the model analysis. Furthermore, it is concluded that the sequential 

Bayesian updating mechanism is able to noticeably increase the performance and 

efficiency of the process by precisely constructing an appropriate prior distribution.  Also, 

it is connoted that, given merely the observation data, associated coordinates and EUR 

evaluation models, it becomes possible to estimate the statistics of model variables and 

the production behavior for different courses of time at desired locations. Last but not 

least, attaining the Bayesian-spatial production forecasting for varying depletion times, it 

becomes plausible to generate the daily basis and cumulative production dynamic maps. 
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1. INTRODUCTION 

 

The Bayesian paradigm is defined by the influence of the combination of the tradeoff 

between observations and model predictions (Likelihood) and the impact of the prior 

knowledge about model parameters (Prior) (Bayes and Price 1763; Vidakovic 1962; 

Gelman et al. 2013). The implementation of the Bayesian paradigm is also known as a 

probabilistic inversion or a probabilistic solution to an inverse problem. The resulting 

distribution from a Bayesian analysis is called the Posterior, from which inferences can be 

generated to assess the model parameters, and consequently the model predictions. A 

Bayesian formulation accounts by a) the number of random parameters, b) the accuracy 

and complexity of predictive models and c) the amount of observed data from the process 

of interest. In addition, it populates the correlation structure among the  model parameters, 

and provides statistical inferences that increases the apprehension of the model behavior 

by accounting for the uncertainty inherent to the available evidence (a, b and c from above)  

(Gelman et al. 2013). 

Additionally, the Markov Chain Monte Carlo technique (MCMC) (Berg and Billoire 

2008; Gilks and Richardson 1996; W. Al-mudhafar 2015) coupled with Metropolis-

Hastings (MH), Random Walk Metropolis (RWM) algorithm (Metropolis et al. 1953; 

Hastings 1970) and Gibbs sampler (Gelman et al. 2013) as subordinates of the Bayesian 

paradigm, have recently become common practices dealing with complicated probabilistic 

problems. MCMC integrates thousands of randomly generated samples to eventually 
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converge to the mean of random process, utilizing the acceptance-rejection criterion of the 

MH algorithm. Cipra (2000), in addition, listed the Metropolis-Hastings algorithm among 

the top 10th remarkable algorithms in 20th century. MH algorithm draws random samples 

through an auxiliary distribution, which is denoted as “Proposal distribution”, “Kernel 

MCMC” or “Transition Kernel” (Sims 1998; Haario, Saksman, and Tamminen 2001; 

Gareth O. Roberts and Rosenthal 2002; Xifara et al. 2014). However, implementing 

MCMC applying the MH algorithm requires drawing random samples with a considerable 

chance of rejection. Accordingly, an undetermined and long convergence time, 

reasonably, initiates a critical drawback making MCMC computationally inefficient. That 

is for, inevitable argues have been sparked among scholars concerning the efficiency of 

MH or RWM algorithms. So far, a number of attempts have been conducted to overcome 

the convergence pitfall. However, a robust framework that consistently optimizes the 

machine energy and running time without significantly increasing the complexity of the 

problem, yet to be addressed. Typically, recent developments deal with the MCMC 

convergence efficiency regulating two constitutive approaches. Several methods, in one 

side, expedite the convergence with optimizing or tuning the proposal distribution (Sims 

1998; Haario, Saksman, and Tamminen 2001; Gareth O. Roberts and Rosenthal 2002; 

Xifara et al. 2014), whilst in the other side, some other frameworks improve capturing the 

target distribution by exploiting an ensemble of likely distributions (Kendall, Liang, and 

Wang 2005b; Wang and Swendsen 2004; Liu, Liang, and Wong 2000; Earl and Deem 

2005). Nevertheless, it is investigated that a combination of both strategies can be a 

solution to the MH drawback.  
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Adaptive Markov Chain Monte Carlo (Adaptive-MCMC) (Rosenthal 2011; Graves 

2011; Andrieu and Thoms 2008; Sims 1998) and Adaptive Metropolis Hastings are two 

methods that allow us to tune the step size of the MH proposal distribution and hence 

expedite the convergence time. The acceptance-rejection criterion of random samples 

serves as the core controller in Adaptive-MCMC which is frequently invoked as the 

acceptance rate. Nonetheless, applying the Adaptive-MCMC method, one requires to 

utilize several trials and errors to manually adjust the step size and optimize the acceptance 

rate. Furthermore, it is evident that an acceptance rate amidst 0.44 and 0.234 optimally 

maps the RWM algorithm when the size of random space fluctuates between one to 

infinity. Also, note that, selection of an appropriate proposal distribution appears as 

another significant property of adaptive methods which should be properly addressed. 

Ideally, the best proposal distribution is the target distribution (Posterior) itself, 

nevertheless, in MCMC, presumably, it is either impossible or extremely difficult to 

sample directly from the target distribution. 

In accordance to the aforementioned Adaptive-MCMC difficulties, in this study, a 

novel framework is constructed that by applying several synchronous chains aims to adapt 

the step size of the proposal distribution to eventually optimize the acceptance rate. Note 

that, although, the parallelizing concept has previously employed in the Parallel 

Tempering (PT) (Wang and Swendsen 2004; Earl and Deem 2005) and Multiple Tries 

Metropolis (MTM) (Liu, Liang, and Wong 2000) , we merged the similar notion into the 

genuine structure of Adaptive-MCMC to develop a robust and sophisticated method which 

is called the “Parallel Scaled Adaptive Metropolis-Hastings” (PSAMH) framework. It 
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should be noticed that, any method that exerts the parallel chain technique as the core 

mechanism, performs efficiently when the computational model which the samples are 

drawn from that is able to be iterated substantially fast.  

 Several well-known models allow practitioners to evaluate the Estimated Ultimate 

Recovery (EUR) of conventional or unconventional oil or gas reserves. Generally, three 

groups of EUR acquisition approaches are developed (Arps 1944; Ilk et al. 2008), which 

are categorized into the history matching, empirical decline curve (Arps) and 

analytical/semi analytical decline curve models. Provided that, three key EUR simulation 

methods are proposed in this work comprising two empirical methods, the Modified 

Hyperbolic Decline (MHD) and Power Law Exponential Decline (PLED) curve (Seshadri 

and Mattar 2010; Ilk et al. 2008) and the “Hydraulically Fractured wells based on the Non-

uniform Induced Properties” (HFNIP) model (Fuentes-Cruz, Gildin, and Valkó 2014) 

which incorporates the hydro-chemo-mechanical characteristics of a play into calculation 

. The production flow rate units for empirical models is defined as Barrels of Oil 

Equivalent per Day (BOED), whilst the semi-analytical framework drives the computation 

in Thousand Standard Square Feet per Day (Mscf/D). Hereafter and according to the 

Bayesian literature, the EUR simulation models are referred as “forward model”. 

Additionally, to be able to assign appropriate values to the forward model parameters, 

often several trials and errors require to be driven incorporating subjective reasoning.  To 

diminish the subjectivity of assigning process, this study constitutes a methodology to 

assess the forward model parameters by the use of the Bayesian paradigm, which allows 

estimating the first and second order statistics of random field. Moreover, the posterior 
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vector retrieved from the probabilistic analysis, makes it possible to delineate the likely 

model realizations for various production time. In addition, recently, Gong et al. (2011),( 

2014); Cheng et al. (2010) and Moridis et al. (2017) exerting the model realizations have 

directly quantified the associated uncertainty within the oil or gas well production. 

A key characteristic of the Bayesian paradigm appears in the updating capability of 

the random field in the light of the new available evidence (i.e. a) experimental 

observations b) model complexity c) expert beliefs). Therefore, we suggested a 

methodology to investigate the influence of adding new evidence on the performance of 

Bayesian analysis, and in particular the uncertainty quantification.  That is for, an 

algorithm is constructed to readily generate a hybrid prior to not only take the advantage 

of retrieved posteriors from previous MCMC computations but also be able to freely 

explore the entire random space by switching to a more broaden prior when the employed 

posterior imposed unnecessary constraints.  

Also, in the field of oil and gas, it is intuitively known that, decision-makers 

frequently encounter numerous challenges that require an abstract and quick treatment 

regarding the next investment step. To deal with similar challenges, providing a reliable 

production data, expert’s beliefs and precise prediction models appear as practical 

functions to support their decisions. To elucidate the issue, a relevant example turns to be 

the possible location of the next drilling within the in-potential oil and gas reserves (Sidler, 

Prof, and Holliger 2003). In such cases, it is a common practice to employ the current 

available data to determine the possible potential of formation at unexplored coordinates, 

exerting the previously provided production in proximity of regional wells. Therefore, 
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taking advantage of applying the previous probabilistic inversion statistics of interested 

region is one of the economical methods which not only preserves the exploration budget 

of a project but also substantially enlightens the direction of decision. Despite the 

significant developments have recently been occurred in the technology, yet, the 

complexity and confusion associated with the accuracy of provided data need to be 

addressed. A practical method that is able to increase the precision of the analysis over the 

acquired data is the spatial geo-statistics analysis of model parameters and flow rate 

prediction (Fotheringham, Charlton, and Brunsdon 1998; Weber and Englund 1992). 

Spatial mapping or spatial statistics, studies the topological, geometric or geographic 

properties of target entities via formal techniques  (Lehmann, Overton, and Leathwick 

2002; Mitas and Mitasova 1999). In other words, the spatial analysis provides a reliable 

tool to develop the current knowledge about the unknown property at unexplored 

coordinates through interpolation amidst known quantities of specific parameter(s) 

(Caruso and Quarta 1998). Therefore, obtaining  Bayesian statistics (Banerjee and Fuentes 

2012) for a short and long term production together with the corresponding well 

coordinates allow us to derive the spatial characteristics of the target entity and thus 

enables us to delineate a dynamic map over the desired region. This goal has become 

achievable exploiting the geo-statistics data analysis and in particular the Kriging 

approach(Brown and Falade 2003; Bohling 2005b). Kriging which is identified as one of 

the most widely applied spatial analysis techniques, splits the surface into segments aims 

to govern the probabilistic analysis over entire area. Besides, the Inverse Distance Weight 
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is another reliable spatial method that has additionally been utilized in this study (Yasrebi 

et al. 2009).  

The current context outlines several sections incorporating under-publication 

progress papers. Initially, an introduction into the PSAMH framework, implementation 

techniques, augmentation features and two numerical examples are elaborated in sections 

2 and 3. The application of PSAMH on the empirical simulation models, MHD and PLED, 

exerting the Eagle Ford Shale data and a comparison amid the mentioned functions are 

delivered in section 4. In section 5, we employed the semi-analytical model in association 

with the Barnett Shale data to quantify the uncertainty inherent in simulation 

computations. The updating Bayesian methodology along with the PSAMH algorithm is 

comprehensively delineated in section 6. Then using the provided Bayesian inferences, a 

thoroughly comparison derived between four wells of the Eagle Ford Shale applying the 

MHD empirical model. Section 7 encompasses both Bayesian paradigm coupled with the 

PSAMH and the spatial analysis technique exerting the observed data attained from 43 

wells of the Eagle Ford Shale development. Some concise remarks of entire previous 

sections are recapitulated in section 8. The results of Bayesian and spatial analysis 

computed in section 7, are tabulated in Appendices A and B, respectively.   
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2. PRACTICAL BAYESIAN FRAMEWORK TO PARALLELIZE 

ADAPTIVE MARKOV CHAIN MONTE CARLO: MECHANISM 

AND APPLICATION 

 

2.1. Overview 

The full integration of posterior distribution applying Markov Chain Monte Carlo 

(MCMC) and Metropolis-Hastings (MH) algorithm in Bayesian analysis requires drawing 

thousands of samples prior the stationary, which often turns to be computationally 

inefficient. So far, several methods have been constructed to deal with this inefficiency; 

however, they often increase the order of complexity of MCMC implementation and also 

entail acquisition a comprehensive knowledge in Bayesian techniques. Therefore, this 

study aims to develop a practical framework to optimize the convergence of MCMC 

needed to formulate the Bayesian inference. Parallel Scaled Adaptive Metropolis-Hastings 

(PSAMH) exerting the adaptive MCMC methodology, randomly draws synchronous 

chains and automatically tunes the step size of proposal distribution to attain the optimum 

MH acceptance rate, whilst eventually ensures capturing all posterior modes in a more 

computationally efficient approach. Additionally, a synthetic experiment is employed to 

delineate the implementation sequence of PSAMH framework. The results imply that 

PSAMH by efficiently exploring the entire random field is capable to precisely capture all 

posterior modes in a more reasonable computational time. 
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2.2. Introduction 

The Bayes theorem has recently become a common tool to develop the statistical 

inferences with the engineering applications. Whenever, a practitioner takes the prior 

knowledge of an event into the calculation, the Bayes theorem is unconsciously exerted. 

One simple example of the application of Bayesian theorem is “Bayesian Spam filter” in 

the computer science which provides a mechanism to detect a spam email according to the 

prior pattern of received emails in the daily basis routine. Another application appears in 

the risk assessment whereas the term of “vulnerability” and “hazard” are in fact 

conditional probability quantities. 

In this study, a practical adaptive Markov Chain Monte Carlo (AMCMC) framework 

(Sims 1998; Andrieu and Thoms 2008; Atchadé et al. 2009; Rosenthal 2011; Graves 2011) 

is proposed  aimed to automatically tune the step size of the proposal distribution in the 

Metropolis-Hastings (MH) (Metropolis et al. 1953; Hastings 1970) algorithm. The Parallel 

Scaled Adaptive Metropolis-Hastings (PSAMH) is a robust algorithm that draws several 

concurrent chains to optimize the acceptance rate, whereas the acceptance rate indicates 

the ratio of the accepted to the total number of generated samples in the MH algorithm.  

The Bayesian inference assesses the current state of belief by relying on the 

conditional probability of the physical model and observation (Hoff 2009; Gelman et al. 

2013). That is for, the Bayesian paradigm incorporates the tradeoff between the observed 

data and physical model results (known as the Likelihood) and the prior knowledge of the 

model parameters as the evidence to draw the posterior distribution. The product of 

likelihood and prior distributions is often addressed as the target distribution and the 
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physical model, according to the Bayesian literature, is invoked as “forward model”. 

However, the posterior distribution within the Bayesian paradigm is often difficult to 

sample directly, therefore using the method of Markov Chain Monte Carlo (MCMC) 

permits generating random samples from the target distribution to capture the mean of 

random process. 

MCMC (Gilks and Richardson 1996; Geyer 2002; Faming, Chuanhai, and Raymond 

2010; Berg and Billoire 2008) coupled with the Metropolis-Hastings (MH) algorithm are 

subordinates of the Bayesian paradigm which have recently found their applications in the 

probabilistic analysis due to their capability in dealing with complicated posteriors. 

MCMC integrates thousands of drawn random samples to converge to the expected value 

of the random process by essentially accounting merely on a generated sample prior to the 

current state. It is, therefore, assumed that the generated random samples forget the 

influence of starting point when the number of samples significantly increases, which is 

also known as the Markovian state of MCMC. Additionally, MH, on the other hand, 

provides the required criterion to accept or reject the generated samples when it is 

impossible to directly sample from the target distribution. MH samples an auxiliary 

distribution, which is called proposal or kernel distribution, and computes the probability 

of proceeding the chain. Random Walk Metropolis (RWM), moreover, drives the MH 

criterion when the proposal distribution is symmetrical. However, generating Markov 

Chains through MH requires drawing random samples with a noticeable chance of 

rejection. Furthermore, despite an irrefutable convergence to the true posterior via 

MCMC, an inherent dependency of generated samples and an unknown convergence time 
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are critical drawbacks which make scholars be reluctant in applying this method. 

Researchers, so far, have formulated a number of approaches to diminish the 

aforementioned difficulties. 

In general, most alternative methods sample the posterior space by either tuning the 

step size of the proposal distribution or altering the target distribution (Kendall, Liang, 

and Wang 2005a). Adaptive Markov Chain Monte Carlo (AMCMC) and Adaptive 

Metropolis (AM) (Haario, Saksman, and Tamminen 1999; Haario, Saksman, and 

Tamminen 2001) are two well-known methods that contribute the correlation structure 

amidst random variables by imposing the empirical covariance into random sampling 

when they become available. These techniques are required to deterministically tune the 

step size of the proposal distribution to optimize the acceptance rate. Gelman et al. (1996) 

and Roberts et al. (1997) proved that an acceptance rate of 0.234 optimally maps the RWM 

algorithm when the size of random field tends to infinity and also gets 0.44 when the size 

of parameter space becomes one. In addition, they mainly assumed that the experiment 

acceptance rate is only a function of parameter space size. Furthermore, the dependency 

on the previously generated samples, has become a considerable drawback inherent in 

Adaptive methods that eventually invalidates the fundamental hypothesis of the MCMC 

Markovian state in Adaptive samplers. Also, when adaptive methods are employed, it 

appears necessary to investigate the state of ergodicity (reversibility of MCMC) of sampler 

case by case (Craiu et al. 2014). Andrieu  and Thoms (2008) and Roberts and Rosenthal 

(2009) immersed deeply into the application and implementation of the adaption theory in 

the MH algorithm and recommended several remedies to diminish adaption method’s 
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pitfalls. Another augmentation on adaptive technique introduced by Craiu et al. (2009) 

when the notion of AMCMC merged with the parallel sampling notion by running several 

parallel chains and recalling them after a predefined batch size iterations. 

Provided that, this work by advocating the aforementioned techniques elaborates the 

PSAMH framework that automatically tunes the step size of the proposal distribution and 

optimizes the acceptance rate empowered by parallelizing independent synchronous 

chains. The proposal distribution is modified subsequently after a fix number of iterations 

(batch sizes) such that it enables the sampler to freely explore the entire parameter space 

in order to capture all possible posterior modes. The key technique used in the sampling, 

initiates from developing ensembles of random coefficient of variation (CoV) in the 

parallel chains. The coefficient of variation (CoV) (Everitt 2006; Forkman and Verrill 

2008; Forkman 2009) exhibits the state of dispersion of data with respect to the mean of 

samples. Since the step size is, in fact, the standard deviation of the proposal distribution, 

it can be substituted by the production of the CoV and mean of random samples. CoV, 

which is often indicated as a percentage value and greater than zero, augments generating 

of random samples by adding an extra level of information to supervise the standard 

deviation of random field in the proposal distribution. Subsequently, initially, the 

formulation required to implement the PSAMH method in association with the supported 

evidence are outlined. Later, a synthetic case delineates the sequence of PSAMH 

implementation in a comprehensive approach. It should be noted that the presented study 

is followed by another paper that evaluates the performance of various well-known 

MCMC samplers in addition to the PSAMH method. 
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2.3. Methodology  

2.3.1. Bayesian and Markov Chain Monte Carlo (MCMC)  

 

Bayes and Price (1763) introduced the conditional probability which later became the 

backbone of the probabilistic inversion solutions (Vidakovic 1962; Gelman et al. 2013). 

When the prior and likelihood are assumed to be independent, the posterior distribution is 

defined as:  

𝜋(𝜽|𝒅𝒐𝒃𝒔) =
𝜋(𝜽)𝑔(𝒅𝒐𝒃𝒔|𝜽)

∫ 𝜋(𝜽)𝑔(𝒅𝒐𝒃𝒔|𝜽)𝑑𝜽
 

 (2.1) 

 

Where, 𝜋(𝜽) and 𝑔(𝒅𝑜𝑏𝑠|𝜽) represent the prior and likelihood, respectively. 𝜽 (𝜽 =

𝜃1, 𝜃2, … , 𝜃𝑑) denotes the vector of model random variables, and 𝒅𝑜𝑏𝑠 indicates a vector 

of observed data. ∫ 𝜋(𝜽)𝑔(𝒅𝑜𝑏𝑠|𝜽)𝑑𝜽 is a normalization constant and marginal 

distribution of joint distribution of priors and likelihood. Since often in Bayesian analysis, 

it is required to drive the fraction of two distributions, the constant marginal distribution 

cancels out from the fraction; and Eq. (2.1) becomes a target distribution as follows:  

𝜋(𝜽|𝒅𝑜𝑏𝑠) ∝ 𝑔(𝒅𝑜𝑏𝑠|𝜽) ∗ 𝜋(𝜽) (2.2) 

 

MCMC and MH are well-accepted algorithms when it is either difficult to derive the 

analytical solution or the posterior is complicated to be sampled. Eq. (2.3) provides the 

acceptance probability in the MH algorithm. 

𝛼(𝜽𝑖, 𝜽𝑖−1) = 𝑚𝑖𝑛 {1,
𝜋(𝜽𝑖|𝒅𝑜𝑏𝑠)𝑓(𝜽𝑖−1|𝜽𝑖)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)𝑓(𝜽𝑖|𝜽𝑖−1)
} (2.3) 
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𝑓(. |. ) represents the proposal distribution conditioned on the previous step.  𝜽𝑖 and 𝜽𝑖−1  

denotes the candidate and current samples, respectively. 𝛼(𝜽𝑖, 𝜽𝑖−1) provides a 

probability value indicating how fast the chain moves forward. In addition, MH must 

satisfy the following condition. 

𝑟𝑎𝑡𝑖𝑜 =
𝛼(𝜽𝑖, 𝜽𝑖−1)

𝑈
= {

𝑎𝑐𝑐𝑒𝑝𝑡                 𝑟𝑎𝑡𝑖𝑜 ≥ 1   
𝑟𝑒𝑗𝑒𝑐𝑡                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (2.4) 

 

Where, 𝑈 indicates a randomly drawn number from the Uniform distribution. If the 

candidate sample is accepted, it stores as the current new sample and the chain moves 

forward; otherwise, the current sample remains unchanged. Also, the proportion of the 

accepted samples to the total number of samples determines the acceptance rate. 

Additionally, random walk metropolis (RWM) defines a special form of MH when the 

proposal distribution is symmetrical (𝑓(𝜽𝑖|𝜽𝑖−1) = 𝑓(𝜽𝑖−1|𝜽𝑖)) so that they cancel out 

from the MH probability criterion.  

𝛼′(𝜽𝑖, 𝜽𝑖−1) = 𝑚𝑖𝑛 {1,
𝜋(𝜽𝑖|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)
} (2.5) 

 

For now, due to the simplification of the computation, it is assumed that the proposal 

distribution is symmetrical and in particular is the Multivariate Normal distribution (Hoff 

2009; Gareth O Roberts et al. 2009). Eq. (2.6) draws a set of random samples at 𝑖𝑡ℎ 

iteration. 

𝑓(𝜽𝑖|𝜽𝑖−1) = 𝜽𝑖−1 + 𝑁(𝟎̂, ∑) (2.6) 

 

Where, 𝑁(. ) indicates the Multivariate Normal random density function with a zero mean 

and covariance ∑. The function of Multivariate Normal distribution (𝑓𝑚𝑣𝑛) is given as 

follows:  
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𝑓𝑚𝑣𝑛(𝜽,𝑗) = (2𝜋)−𝑛/2|∑|−1/2exp (−0.5(𝜽 − 𝝁)𝑇∑−1(𝜽 − 𝝁))  (2.7) 

 

Where, |∑| denotes the determinant of covariance, and 𝜇 presents the mean of random 

parameters. In addition, Eq. (2.8) defines the matrix of covariance. 

∑ = [
𝜎1

2 ⋯ 𝜎1𝜎2𝜌12

⋮ ⋱ ⋮
𝜎1𝜎2𝜌12 ⋯ 𝜎𝑑

2
] (2.8) 

 

Where, 𝜌.. indicates the correlation coefficient amidst parameters. In this study, the model 

random variables are assumed to be independent and identically distributed (i.i.d). 

Considering the independency of random parameters, (𝜌𝑗𝑗′ = 0 , 𝑗 ≠ 𝑗′) and (𝜌𝑗𝑗′ =

1 , 𝑗 = 𝑗′), ∑ becomes 

∑ = [
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑑

2
] (2.9) 

2.3.2. Parallel Scaled Adaptive Metropolis-Hastings (PSAMH) 

Authors proposed the Parallel Scaled Adaptive Metropolis-Hastings (PSAMH) 

algorithm as an augmentation on the adaptive MCMC method that allows automatically 

optimizing the acceptance rate by constituting several synchronous chains. In order to 

illustrate how to implement the algorithm, at the current iteration, and using Eq. (2.6), Eq. 

(2.7) and Eq.(2.9), firstly presume 𝑚 concurrent chains using the proposal distribution is 

drawn. Then applying the RWM criterion, Eq.(2.5), the acceptance-rejection state of 

candidate samples is assessed and accepted samples are stored. Suppose 𝑙 (0 ≤ 𝑙 ≤ 𝑚) 

concurrent chains successfully deliver the RWM criterion. Since it is hypothesized that 

the model random variables are i.i.d and invoking the definition of RWM, for any two 

arbitrary chains, 𝑘 and 𝑘′, where 1 ≤ 𝑘 𝑎𝑛𝑑 𝑘′ ≤ 𝑙, the RWM probability ratios become    
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𝑟𝑖,𝑘 =
𝜋(𝜽𝑖,𝑘|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)
  and 𝑟

𝑖,𝑘′
=

𝜋(𝜽
𝑖,𝑘′|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)
. Furthermore, the ratio of 𝑟𝑖,𝑘 and 

𝑟
𝑖,𝑘′

approximates by Eq. (2.10). 

𝑟
𝑖,𝑘,𝑘′

=
𝑟𝑖,𝑘

𝑟𝑖,𝑘′
=

𝜋(𝜽𝑖,𝑘|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖,𝑘′|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)

=
𝜋(𝜽𝑖,𝑘|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖,𝑘′|𝒅𝑜𝑏𝑠)
 (2.10) 

 

If 𝑟
𝑖,𝑘,𝑘′

≥ 1, then 𝜽𝑖,𝑘 sets as the 𝑖𝑡ℎ accepted random sample; otherwise, 𝜽𝑖,𝑘′ 

substitutes by the primary candidate sample. Eq. (2.10) iterates 𝑙 times to evaluate all 

accepted samples and eventually identifies the final accepted sample. The above condition 

implies that the relative probability of occurrence of 𝜽𝑖,𝑘  is higher than 𝜽𝑖,𝑘′ when 

𝑟
𝑖,𝑘,𝑘′

≥ 1. Therefore, the sampler enables to generate discrete jumps and explore the 

entire parameter space readily. Note that, the above criterion precisely pursues the RWM 

acceptance-rejection criterion, hence the detail equilibrium is held; and it is reversible 

(ergodicity). Moreover, by dropping the term of empirical covariance stemmed in adaptive 

techniques and accounting on merely the current step sample, the Markovian state of 

sampling is sustained. 

In the general form of MH, when 𝑟̂𝑖,𝑘 =
𝜋(𝜽𝑖,𝑘|𝒅𝑜𝑏𝑠)𝑓(𝜽𝑖−1|𝜽𝑖,𝑘)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)𝑓(𝜽𝑖,𝑘|𝜽𝑖−1)
 and 𝑟̂

𝑖,𝑘′
=

𝜋(𝜽
𝑖,𝑘′

|𝒅𝑜𝑏𝑠)𝑓(𝜽𝑖−1|𝜽
𝑖,𝑘′

)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)𝑓(𝜽
𝑖,𝑘′

|𝜽𝑖−1)
, Eq. (2.10) is reconstructed as 

𝑟̂
𝑖,𝑘,𝑘′

=
𝑟̂𝑖,𝑘

𝑟̂
𝑖,𝑘′

=

𝜋(𝜽𝑖,𝑘|𝒅𝑜𝑏𝑠)𝑓(𝜽𝑖−1|𝜽𝑖,𝑘)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)𝑓(𝜽𝑖,𝑘|𝜽𝑖−1)

𝜋(𝜽
𝑖,𝑘′

|𝒅𝑜𝑏𝑠)𝑓(𝜽𝑖−1|𝜽
𝑖,𝑘′

)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)𝑓(𝜽
𝑖,𝑘′

|𝜽𝑖−1)

=
𝜋(𝜽𝑖,𝑘|𝒅𝑜𝑏𝑠)

𝜋(𝜽
𝑖,𝑘′

|𝒅𝑜𝑏𝑠)

𝑓(𝜽𝑖−1|𝜽𝑖,𝑘)𝑓(𝜽
𝑖,𝑘′

|𝜽𝑖−1)

𝑓(𝜽𝑖−1|𝜽
𝑖,𝑘′

)𝑓(𝜽𝑖,𝑘|𝜽𝑖−1)
  (2.11) 
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Eq.(2.11) provides a comprehensive solution when the proposal distribution is 

asymmetrical. Note that, according to the authors’ experience, the rule of thumb for the 

number of concurrent chains suggested as 5 chains per each random variable; however, it 

can be different from one case to another. 

Additionally, exerting PSAMH method, it is required to approximate the standard 

deviation of model random variables to derive ∑ in Eq.(2.9). That is for, the coefficient of 

variation (CoV) is used as an operator to supervise the magnitude of the standard 

deviation. The using of CoV turns to be essential, since most often there is no constructive 

information about the metric of standard deviations of model random parameters to drive 

the proposal distribution. Therefore, adopting the idea of tuning the proposal distribution 

step size by Rosenthal (2011) conveys the problem to the application of coefficient of 

variation (CoV). By definition, CoV defines the ratio of standard deviation to the mean of 

samples (Everitt 2006; Forkman and Verrill 2008; Forkman 2009).  

CoV =
σ

μ
 (2.12) 

Where, 𝜎 and 𝜇 indicate the standard deviation and expected value of generated samples, 

respectively. Reordering the above equation, the standard deviation computes by 

Eq.(2.13). 

σ = CoV ∗ μ (2.13) 

 

By substituting Eq. (2.13) in Eq. (2.9), the general form of the covariance matrix 

becomes as follows: 

∑ = [
(CoV1 ∗μ1)2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ (CoV𝑑 ∗μ𝑑)2

] (2.14) 
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μ updates at each iteration when the chain moves forward. Note that, it is often 

preferred to set the coefficient of variation equal to a constant number greater than zero 

(CoV1 = ⋯ = CoV𝑑 = 𝑝 > 0). However, when the order of magnitude of random 

variables is not similar, employing inhomogeneous proposal distribution is recommended 

(Andrieu and Thoms 2008; Rosenthal 2011). Although, in the case of inhomogeneous 

proposal distribution, the same principle is applicable regarding the concurrent chains; and 

despite the analogy of optimum acceptance rate quantities, the algorithm becomes less 

efficient in comparison to the homogeneous proposal distribution (Gareth O. Roberts and 

Rosenthal 2002).  

It is also necessary to generate random combinations of CoV such that they fulfill the 

optimum acceptance rate criterion. Forkman and Verrill (2008) and Forkman (2009) 

suggested the Chi square distribution as an approximation of CoV distribution for the 

Normal proposal distribution when the ratio of σ μ⁄  becomes less than 1/3 (𝐶𝑜𝑉 =

𝑐ℎ𝑖2(1.5)). Fig. 2.1 demonstrates an example of the combinations of CoV when the 

random field size is three.  

Additionally, take into consideration that, often one requires applying constraints on 

the generated random samples through the Normal proposal distribution. The truncated 

Normal distribution (Robert 1995; Burkardt 2014) is an alternative which enables the 

practitioner to take advantage of general configuration of Normal distribution and 

supervise generated samples. Eq.(2.15) presents the two-sided truncated Normal 

distribution. The significance of mentioned equation is in its application in Eq. (2.11) due 

to asymmetrical shape of the proposal distribution.   
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𝑓(𝜽|𝝁, 𝜽𝑙𝑜𝑤𝑒𝑟 , 𝜽𝑢𝑝𝑝𝑒𝑟 , 𝜎) =
exp (− (𝜽 − 𝝁)2 2𝜎2)⁄

√2𝜋𝜎(𝛷 (
𝜽𝑢𝑝𝑝𝑒𝑟 − 𝝁

𝜎 ) − 𝛷 (
𝜽𝑙𝑜𝑤𝑒𝑟 − 𝝁

𝜎 ))

 
(2.15) 

 

Where, 𝛷 denotes the standard cumulative Normal distribution. 𝜽𝑢𝑝𝑝𝑒𝑟 and 𝜽𝑙𝑜𝑤𝑒𝑟 

represent the constraint of Normal proposal distribution, respectively. 

 

 

 

 

 

Fig. 2.1. Left, typical configuration of 1000 combinations of CoV, and right, 

histogram of CoV corresponding with each random variable  

 

 

Exerting Eq. (2.15) in the second term of the general form of MH criterion in Eq.(2.3), 

the subsequent formula is obtained. 

𝑓(𝜽𝑖|𝜽𝑖−1)

𝑓(𝜽𝑖−1|𝜽𝑖)
=

√2𝜋𝜎 exp (− (𝜽𝑖 − 𝜽𝑖−1)2 2𝜎2)⁄ (𝛷 (
𝜽𝑢𝑝𝑝𝑒𝑟 − 𝜽𝑖

𝜎
) − 𝛷 (

𝜽𝑙𝑜𝑤𝑒𝑟 − 𝜽𝑖

𝜎
))

√2𝜋𝜎 exp (− (𝜽𝑖−1 − 𝜽𝑖)
2 2𝜎2)⁄ (𝛷 (

𝜽𝑢𝑝𝑝𝑒𝑟 − 𝜽𝑖−1

𝜎
) − 𝛷 (

𝜽𝑙𝑜𝑤𝑒𝑟 − 𝜽𝑖−1

𝜎
))

 (2.16) 

 

By equality of exp (− (𝜽𝑖 − 𝜽𝑖−1)2 2𝜎2)⁄ = exp (− (𝜽𝑖−1 − 𝜽𝑖)2 2𝜎2)⁄ , Eq. (2.16) 

becomes: 
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𝑓(𝜽𝑖|𝜽𝑖−1)

𝑓(𝜽𝑖−1|𝜽𝑖)
=

𝛷 (
𝜽𝑢𝑝𝑝𝑒𝑟 − 𝜽𝑖

𝜎 ) − 𝛷 (
𝜽𝑙𝑜𝑤𝑒𝑟 − 𝜽𝑖

𝜎 )

𝛷 (
𝜽𝑢𝑝𝑝𝑒𝑟 − 𝜽𝑖−1

𝜎 ) − 𝛷 (
𝜽𝑙𝑜𝑤𝑒𝑟 − 𝜽𝑖−1

𝜎 )

 (2.17) 

 

Henceforth, when it becomes necessary, the second term of MH criterion substitutes 

by Eq. (2.17). 

2.3.3. Acceptance rate  

It is observed that when the step size of proposal distribution gets a noticeably small 

value, chain subsequently takes a considerable long time to move forward. In contrast, a 

large step size induces more sample rejection, and hence, the chain will not progress. 

Gelman et al. (1996), Roberts et al. (1997), and Bédard (2007) separately investigated the 

optimized acceptance rate for RWM and recommended that the optimal number when the 

parameter space size (𝑑) tends to infinity is 23.4% and when 𝑑 is unit, acceptance rate 

becomes about 44%. Gelman et al. (1996) specifically tabulated the correlation amid the 

random field size, 𝑑, and the acceptance rate up to d=10. Fig. 2.2 demonstrates the same 

data and a proposed hyperbolic fit curvature applying the non-linear least square method 

(The parameter space size is set up to d=100) to be able to approximate the optimum 

acceptance rate when the space dimension varies. 

Eq. (2.18), which is retrieved from the optimization analysis, develops an analytical 

solution to compute the associated acceptance rate where the dimension size is other than 

already computed. 

𝜉𝑡𝑎𝑟𝑔𝑒𝑡(𝑑) = 0.234 +
0.654

(1 + 1.4307𝑑)1/0.775
 (2.18) 

 



 

21 

 

Moreover, in the absence of any preferred sampling method, it is generally 

recommended that the acceptance rate should not be less than 15% or larger than 50% 

(Gareth O. Roberts and Rosenthal 2002; Rosenthal 2011).  

2.4. PSAMH augmentation features  

In this section, several possible features are introduced that allow to expedite the 

MCMC convergence and optimize the running time.  

 

Fig. 2.2. Hyperbolic curvature fits to the acceptance rate corresponding to the 

parameter space size 

 

2.4.1.  Scaling factor (γ) 

The scaling factor defines a multiplication term to optimize the acceptance rate by 

fluctuating the proposal step size. Although, the scaling factor induces to the proposal 

distribution after a fixed number of iterations (batches), assigning the batch size appears 

as an essential step that should be dealt with wisely. In order to reduce the unnecessary 

alteration impact on the generated samples’ process, it is advisable to assign a fairly small 

value to the batch size on the course of early stage of sampling (such as 50 or 100 
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iterations); and then after a specific iteration (for instance, the Burn-In point) it is increased 

to a larger quantity (such as 500 or 1000 iterations). Haario et al. (2001) and Roberts & 

Rosenthal (2009) introduced the scaling term and how to apply it over the computation 

procedure. The scale factor, 𝛾, invariably begins with the unit value. Then, recurrently, 

after a certain number of iterations (batch size) the state of the current acceptance rate, 𝜉𝑖, 

compares with the optimum acceptance rate, 𝜉𝑡𝑎𝑟𝑔𝑒𝑡 via Eq. (2.19).  

𝛾𝑖 = {
𝛾𝑖−1 +ε             𝜉𝑖 > 𝜉𝑡𝑎𝑟𝑔𝑒𝑡

𝛾𝑖−1 − ε            𝜉𝑖 < 𝜉𝑡𝑎𝑟𝑔𝑒𝑡
 (2.19) 

 

Where, 𝛾𝑖 denotes the scaling factor at the current iteration, 𝑖. 𝜉𝑖 and 𝜉𝑡𝑎𝑟𝑔𝑒𝑡 indicate the 

current and optimum acceptance rate. The quantity of ε should be assigned 

deterministically; and it can be obtained by trials and errors aimed to make 𝜉𝑖 becomes as 

close as possible to the optimum acceptance rate. Nevertheless, in this study, Eq. (2.20) is 

suggested as another alternative which admits the same result but removes the necessity 

of manually tuning the value of ε.  

𝛾𝑖 = 𝜉𝑖/𝜉𝑡𝑎𝑟𝑔𝑒𝑡 (2.20) 

 

If the current acceptance rate is larger than the target, 𝛾𝑖 becomes larger than one, 

hence, enlarges the proposal step size. When the current acceptance rate, in contrary, turns 

to be smaller than the target, the step size consequently becomes smaller. Moreover, Eq. 

(2.20) is implicitly analogous to the gradient of the current and target acceptance rate. It 

also connotes that the order of magnitude of scaling factor automatically adjusts by taking 

apart or approaching to the true mean of the process. Note that, in the PSAMH framework 
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the scale factor applies to the entire matrix of step size to shift them to the optimum 

acceptance rate through Eq. (2.21). 

∑ = 𝛾𝑖
2 ∗ [

(CoV1 ∗μ1)2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ (CoV𝑑 ∗μ𝑑)2

] (2.21) 

 

2.4.2. Reduction of redundancy in concurrent chains  

Earlier, it is mentioned that, 𝑚 concurrent chains with distinct combination of CoV 

should be drawn to construct MCMC. Considering the histogram plot of CoV in Fig. 2.3, 

left, it is observed that some combinations of CoV are invoked more frequently in compare 

to others. Therefore, using the histogram function allows to keep more frequent applied 

combinations and remove the redundant CoV after a fix number of iteration (Fig. 2.3, 

right).  

  

Fig. 2.3. Frequency of selection of CoV, left, 10 concurrent chains and right, after 

reduction to 5 chains 

 

In order to identify the number of iteration which after that the reduction mechanism 

is applicable, it becomes, hence, necessary to diagnose the state of stationary. Monitoring 

the online mean and standard deviation (also known as the cumulative mean and standard 

deviation) of random variables develops the notion of recognition the MCMC stationary 
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condition. Acquiring the stationary condition allows to set the burn-in point, which 

indicates the number of iteration denoting the stationary condition of experiment. When 

corresponding plots of the online mean and standard deviation turn to straight lines, it can 

be interpreted as achieving the stationary condition (see Fig. 2.6 for examples). Note that, 

the reduction of redundant CoV is mainly important when the number of synchronous 

chains is initially large, and reducing the number of chains plays a key role to optimize 

the experiment running time. 

2.4.3. Adaption mechanism vanishing after stationary condition 

Intuitively, it is preferred to remove any adaption mechanism and continue the chain 

merely relying on the regular MH criterion. Andrieu & Thoms (2008) described a 

formulation to vanish the adaption. However, it can also be implemented by simply 

removing any adaption mechanism after the stationary condition.  

2.4.4. Employing empirical covariance  

In analogy to AMCMC methods, it is plausible to induce the correlation structure 

between random parameters through the empirical covariance. However, applying the 

empirical covariance requires investigating the state of ergodicity in MCMC for each 

proposal distribution and yet would not guaranty the convergence to the true posterior and 

also removes the Markovian state of the experiment. 

2.4.5. Using parallel computing toolbox  

Considering a circumstance that the forward model is substantially sophisticated or 

robust, it is useful to split the concurrent chains into several single tasks to be able to 
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assign them to separate physical computer cores (workers). Applying the parallel toolbox 

of modeling software, the system technically breaks the chain and sends the information 

to the workers. Workers, accomplishing the assigned tasks, return the results to the main 

system and the procedure continues to the last chain. The main system, after assembling 

all information from workers, performs the final computation, reserves the result and 

proceeds to the next step. Note that the procedure of sending and receiving information is 

relatively time consuming; hence, this feature is not recommended for simple forward 

models.  

2.5. PSAMH implementation pseudo procedure 

The concise implementation sequence of PSAMH framework is recapitulated 

subsequently. 

• Set the initial values for random variables, such that they provide a non-zero target 

distribution function results. A recommended mechanism to obtain appropriate 

initial values is discussed later in the case study one.  

• Set the number of concurrent chains, 𝑚, and the batch size. 

• Approximate the optimum acceptance rate using Eq. (2.18) 

• Generate once 𝐶𝑜𝑉𝑗 = [1, 𝑑], (𝑗 ∈ [1, 𝑚]) from Chi square distribution 

(𝐶ℎ𝑖2(1.5)) and construct ∑𝑖,𝑗 applying Eq. (2.14) 

• Draw 𝑚 concurrent candidate samples from the proposal distribution using Eq. 

(2.6) and Eq.(2.7). Also, supply the truncated normal distribution from Eq.(2.17) 

in the case of constraint proposal distribution 
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• Accept candidate samples by probability of 𝛼 and reject them by 1 − 𝛼 (Eq. (2.3) 

or Eq.(2.5) and Eq.(2.4)) and store 𝑙 accepted samples 

• Identify the final accepted candidate by inserting 𝑙 accepted samples into Eq. 

(2.10) or Eq.(2.11) 

• Compare the current acceptance rate, 𝜉𝑖, with the optimum acceptance, 𝜉𝑡𝑎𝑟𝑔𝑒𝑡, 

for the iteration equals the batch size and update the scale factor applying Eq. 

(2.20) and Eq. (2.21) 

• Remove the redundant CoV combinations after the stationary condition achieved 

• Store the final accepted sample and proceed to the next iteration 

Fig. 2.4 displays the diagram of PSAMH framework in order to provide a visual 

perception of implementation sequences.  

2.6. Experimental design 

A numerical synthetic case elaborates the implementation sequence of a 

stochastic process in MCMC using the PSAMH framework. It is assumed that an 

experiment with 10 fix locations which indicates the time or displacement of the 

process constitutes a set of observation.  

Table 2.1 exhibits three case studies that is constructed by varying the repetition 

of observations at fix locations. The use of repetition aims to provide a tool to assess 

the influence of increasing the number of observations applying PSAMH method. 
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Fig. 2.4. PSAMH implementation diagram 

 

 

Table 2.1 Experimental design for the stochastic process 

Case Locations Repeats Total number of observation 

P10R1 10 1 10 

P10R5 10 5 50 

P10R10 10 10 100 

 

Compute optimum acceptance rate applying Eq. (18), ξtarget(d)

Set the number of concurrent chains, 𝑚, and batch size

Generate 𝑚 × [1, 𝑑] matrix of 𝐶𝑜𝑉 from 𝐶ℎ𝑖2(1.5)

Set the inital values of 𝑑 variables 

At iteration 𝑖, draw 𝑚 set of candidates from the proposal 

distribution

Feature acceptance-rejection state of candidate samples exerting 

Eq. (3) or Eq.(5) and Eq.(4), then store 𝑙 accepted samples

Indicate the final accepted sample by inserting 𝑙
accepted candiates into Eq. (10) or Eq. (11)

At iteration equals the batch size, apply Eq. 

(20) and Eq. (21) to scale the step size

Store the final accepted candidate and proceed to 

the next iteration

Remove CoV combinations' redundency after stationary
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2.7. Stochastic process  

Eq. (2.22) serves as the forward model function to represent the negative exponential 

behavior of the observation. 

𝑓(𝑥) = 𝐼𝑒−𝐶𝑥 (2.22) 

 

Where, 𝐼 and 𝐶 are the intercept and curvature coefficients of the exponential function 

and they are respectively set to 1 and 0.4. The synthetic observations, which are randomly 

generated applying the Normal distribution with the expected values retrieved from the 

forward model, is obtained from Eq. (2.23) and demonstrated in Fig. 2.5. 

𝑑𝑜𝑏𝑠𝑒𝑟𝑣𝑒(𝑥)~𝑁(𝑓(𝑥), 𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 0.1) (2.23) 

 

   

Fig. 2.5. Observation and exponential curve corresponding to Table 2.1, for cases 

from left to right P10R1, P10R5 and P10R10 

 

In this experiment, 𝐼, 𝐶 and the standard deviation of likelihood (𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) indicate 

the random variables in the MCMC stochastic analysis. The priors are assumed to be i.i.d. 

and non-informative. Following, procedures required to implement the Bayesian process 

applying PSAMH framework are elaborated.  
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2.7.1. Optimization 

Often there is no initial information about the statistics of likelihood or initial values 

of random variables. The least square optimization method initiates an alternative to 

provide the preliminary information for MCMC. The residual (error) between the least 

square fit and observation data develops an insight about the distribution of likelihood 

whilst the optimized values serve as the starting points in MCMC. In this experiment, it is 

hypothesized that the distribution of error projects the Normal distribution. 

2.7.2.  Sampling using PSAMH algorithm 

Approximating the distribution of likelihood and initial values, and by applying 

PSAMH method, allow to draw 𝑚 candidate samples from the proposal distribution. 

Additionally, two features of scaling factor and reduction of chains redundancy are 

employed to augment the sampling mechanism. The initial number of concurrent chains 

is set to 10 (𝑚 = 10); however, after 40,000 iterations (stationary condition) it is reduced 

to 5 chains. The MCMC lasted for 200,000 iterations to provide enough samples after 

stationary. The burn-in point gets the value of 40,000, which is concluded from the online 

mean and standard deviation plots. MCMC experiments of three experimental designs 

exerting the PSAMH algorithm and online mean and standard deviation associated with 

random variables are demonstrated in Fig. 2.6. Furthermore, the fixed scale of plots aimed 

to readily compare experiments in one plot.  

Considering Fig. 2.6, it is realized that by increasing the number of observations the 

MCMC experiment presents less dissemination. The same behavior can be concluded 

from the plots of online mean and standard deviation. Comparing P10R1, P10R5, and 
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P10R10, it is implied that while the online mean almost constantly approximates the same 

value, standard deviation depicts smaller values by adding more data progressively. 

  

  

  

Fig. 2.6. Left, MCMC experiments, and right, online mean and standard deviation of 

random variables  

 

Table 2.2 illustrates the associated input data, constraints of random variables, and 

Bayesian inferences after computation. The considerable wide ranges of priors’ 

constraints using the Uniform distribution allow to avoid the influence of limitations on 
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sampling. Also, the likelihood of target distribution sets as the Normal distribution with 

unknown standard deviation (𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) alluded from the Optimization section. 

Table 2.2 Input values and statistics of experiments 

Variable 
Parameter Range 

[min, max] 
Case 

True 

Value 
Mean Mode 

Standard 

Deviation 

5% 

Percentile 

95% 

Percentile 

𝐼 [1e-5,9.99] 

P10R1 

1 

1.036 1.055 0.064 0.94 1.140 

P10R5 0.997 0.998 0.039 0.932 1.063 

P10R10 1.002 1.021 0.027 0.959 1.046 

𝐶 [1e-5,9.99] 

P10R1 

0.4 

0.389 0.397 0.039 0.328 0.456 

P10R5 0.412 0.418 0.027 0.369 0.458 

P10R10 0.416 0.417 0.018 0.386 0.446 

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 [1e-5,1e2] 

P10R1 

0.1 

0.081 0.065 0.021 0.055 0.121 

P10R5 0.108 0.109 0.011 0.092 0.127 

P10R10 0.102 0.092 0.007 0.091 0.113 

 

Retrieved means and modes of random variables connote the fact that by increasing 

the number of observations at each location the precision of computed results improves 

progressively. In accordance, by souring the number of observations the standard 

deviation of each variable admits a similar conclusion by producing smaller values. The 

same state holds for 5% and 95% percentiles, as they provide smaller ranges by increasing 

the number of observations. 

2.7.3.  Statistics  

In addition to the first and second order of statistics presented in Table 2.2, the relative 

frequency histogram, joint density and cumulative distribution function also deliver the 

statistics of random variables.  

The influence of updating observations is better depicted in the relative frequency 

histogram and cumulative density function plots (Fig. 2.7). The tip of the histogram plot 
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gradually elevates from P10R1 to P10R10; whereas, the dispersion in data abates. 

Moreover, 𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 of P10R1 presents some degree of right skewness as it is expected 

for the standard deviation.  

  

  

  

Fig. 2.7. Left, relative frequency histogram, and right, cumulative density function 

of experiments  

 

It is well evident that the standard deviation of random samples approximates Chi 

square distribution when samples express the Normal behavior. However, when the 
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number of observation increases, the configuration of histogram and CDF plots 

asymptotically approximate the central limit theorem, hence, presenting some degrees of 

Normality. 

Fig. 2.8 demonstrates the joint frequency histogram of variables 𝐼 and 𝐶 regarding all 

numerical experiments. Histograms are plotted in the same scale to be able to compare 

them. Plots of joint density histogram clearly exhibit the influence of updating 

observations on increasing the confidence over the analysis. Fig. 2.8 also illustrates the 

positive correlation structure among the random variables 𝐼 and 𝐶. Inferences retrieved 

from the vector of posterior have become a common practice to predict the characteristics 

of random field, especially when the information regarding one random variable is 

unreliable or unachievable, whereas the correlation coefficient and statistics with respect 

to the other conjugated random variable are known.  

   

Fig. 2.8. Comparison between the joint frequency histogram of case studies 

 

2.7.4. Model realizations 

Bayesian paradigm constructs a full access to not only the posterior space, but also 

the event space through model realizations. Model realization features an applicable tool 

to pass thousands of realizations through the observation by randomly drawing thousands 

of pair of samples from the posterior vector and inserting them into the forward model. 
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Thus, it becomes possible to retrieve the inferences such as mean and standard deviation 

of model realizations. Note that, the standard deviation of the model realizations often 

serves as a reliable gauge to assess the certainty of analysis. 

Fig. 2.9 and Fig. 2.10 illustrate 10,000 realizations together with the mean and 

standard deviation of model realizations.  

  

  

  

Fig. 2.9. Top, 10,000 realizations and observation, bottom, mean and standard 

deviation of realization 
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Also, the disseminations of 10,000 realizations coupled with the observation are 

shown in Fig. 2.9 left. Fig. 2.9 right exhibits the diffusion of realizations around the 

mean. By moving from up to down, it is observed that the level of confidence increases 

by adding more data. In all cases, the uncertainty from the analysis appears higher for 

the smaller x and decreases by progressing on the course of increasing x. 

Fig. 2.10, additionally, depicts a comparison between mean and standard deviation of 

10,000 realizations for experiments together.   

  

Fig. 2.10. Comparison between left, means and right, standard deviations of model 

realization of experiments and forward model 

 

Mean of realizations, left, displays the significance of obtaining more data when the 

mean of model realization plots of cases P10R5 and P10R10 are coincided and close to 

the forward model curvatures. The same trend can be better perceived from the standard 

deviation comparison plots where the plot of P10R10 lies beneath all cases. 
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2.7.5. Acceptance rate and scale factor 

Fig. 2.11 depicts a typical trend of acceptance rate and scale factor for 2e5 iterations 

after the convergence is achieved. It is earlier mentioned that one option to determine the 

burn-in point (stationary condition) is examining plots of online mean and standard 

deviation, and in the current case study by assessing the associated plots the burn-in 

point is set to 40,000.   

 

Fig. 2.11. Acceptance rate and scaling factor for P10R1 

 

Plots of acceptance rate and scale factor as another alternative are proposed to 

evaluate the stationary condition of experiment. Both plots demonstrate a constant trend 

after almost 40,000 iterations which are in compliance to the chosen burn-in point. Some 

concise remarks of conclusions are provided in section 8.1.1. 
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3. PRACTICAL BAYESIAN FRAMEWORK TO PARALLELIZE 

ADAPTIVE MARKOV CHAIN MONTE CARLO: PERFORMANCE 

ASSESSMENT 

 

3.1. Overview 

Several Markov Chain Monte Carlo (MCMC) techniques have been recently 

developed which couple the acceptance-rejection criterion of Metropolis-Hastings (MH) 

algorithm with either the parallel mechanism of synchronous independent chains or tuning 

the proposal distribution of MH to fully integrate the random space. This study, by 

assessing the performance of several robust MCMC methods, recognizes the 

implementation sequence of a novel approach that is called the Parallel Scalded Adaptive 

Metropolis-Hastings (PSAMH), which is introduced in the part one of this study. The use 

of a synthetic experiment, additionally, allows the practitioner to comprehensively percept 

the discrepancy amidst driven MCMC methods in order to eventually appreciate the more 

applicable sampler. Random Walk Metropolis (RWM), Parallel Tempering (PT), 

Multiple-Tries Metropolis (MTM), Adaptive Metropolis (AM) and so called Scaled 

Adaptive Metropolis (SAM) are other chosen frameworks to constitute the performance 

evaluation. Also, altering the standard deviation and correlation coefficient of the 

proposed target distribution is the key technique to incorporate the synthetic experiment. 

The results, by advocating the functionality of all samplers, finally imply that methods of 

PSAMH and then PT perform better where the problem becomes substantially 

sophisticated. 
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3.2. Introduction 

This work develops a complement study of a recently introduced MCMC sampling 

method which is called the Parallel Scaled Adaptive Metropolis-Hastings (PSAMH) in 

section 2 and aims to provide an insight regarding the performance of this method when 

compared with several well-known samplers.  

Recent significant developments in the computational technology have made scholars 

able to constitute more robust techniques dealing with Bayesian inferences. Despite the 

irrefutable privileges have been provided by constructed frameworks, practitioners 

inevitably committed to a higher level of perplexity in selecting the appropriate 

probabilistic method aimed to perform better concerning their specific problems. That is 

for, in this study, the implementation mechanism of several Markov Chain Monte Carlo 

samplers (MCMC) (Gilks and Richardson 1996; Geyer 2002; Faming, Chuanhai, and 

Raymond 2010; Berg and Billoire 2008) in addition to PSAMH are elaborated to delineate 

the performance of each method when some contributing factors are varied.  

Bayesian theorem applying MCMC together with the Metropolis-Hastings (MH) 

(Metropolis et al. 1953; Hastings 1970) algorithm permits integrating random samples 

using the acceptance-rejection criterion of MH to eventually converge to the true mean of 

the posterior space. Besides, the proportion of accepted samples to the total number of 

generated samples constitutes the acceptance rate of sampling. Typically, MCMC 

samplers applying the prior evidence associated with the random field and accurate 

physical models (also known as forward model) are formulated to either tune the proposal 

distribution of MH algorithm or alter the target distribution (Kendall, Liang, and Wang 
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2005a). Subsequently, several MCMC samplers are introduced that share the application 

of MH algorithm in their structures. 

Random Walk Metropolis (RWM) (Hoff 2009; Gelman et al. 2013) denotes a 

common MCMC sampler when the proposal distribution of MH algorithm becomes 

symmetrical. RWM as a basic algorithm defines an essential baseline to be able to compare 

the performance of other samplers. 

In addition, Adaptive Markov Chain Monte Carlo (AMCMC) (Sims 1998; Andrieu 

and Thoms 2008; Atchadé et al. 2009; Rosenthal 2011; Graves 2011) and Adaptive 

Metropolis (AM) (Haario, Saksman, and Tamminen 1999; Haario, Saksman, and 

Tamminen 2001) induces the correlation structure between random variables applying the 

empirical covariance. The step size of proposal distribution in AM algorithm requires to 

be tuned deterministically to optimize the acceptance rate. It is evident that the search 

becomes optimized when the space size varies between one to infinity, the acceptance rate 

fluctuates from 0.44 to 0.234, respectively (Gelman, Roberts, and Gilks 1996; G. O. 

Roberts, Gelman, and Gilks 1997). Furthermore, Haario et al. (2001),; Andrieu and Thoms 

(2008); and Roberts and Rosenthal (2009), defined a scaling factor that by multiplying to 

the AM main formula enables the sampler to achieve the optimum acceptance rate, that in 

this study is so called Scaled Adaptive Metropolis (SAM). Craiu et al. (2009), besides, 

aggregated the method of AMCMC with parallelizing chains and invoking the concurrent 

chains after a fix number of iterations (batch size).  

Author, as it mentioned earlier, introduced PSAMH as a robust framework that 

constitutes synchronous MCMC chains merged with the Adaptive MCMC methodology. 
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PSAMH, hence, automatically tunes the step size of MH proposal distribution aims to 

optimize the acceptance rate of posterior space. The formulation and implementation 

sequence of PSAMH algorithm is comprehensively elaborated in the first part of the 

presented series works. 

Another method which constitutively relies on the MH algorithm is the Parallel 

Tempering framework (PT) (Hukushima and Nemoto 1996; Wang and Swendsen 2004; 

Earl and Deem 2005). PT generates several parallel chains while tempering the target 

distribution. This method is constructed applying the concept of traveling from a chain to 

another in order to reduce the level of energy among the parallel chains. It is initially 

hypothesized that chains tend to be stabilized by moving from the higher to lower energy 

state. Miasojedow et al. (2013), Calderhead (2014) and Cotter et al. (2015) assembled the 

PT and AMCMC and proposed robust algorithms to contribute the influence of both 

methods. In addition, Calderhead (2014) described a general approach toward 

parallelizing Adaptive Metropolis framework (AM).  

Multiple-Tries Metropolis (MTM) (Liu, Liang, and Wong 2000; Craiu and Lemieux 

2007) is another alternative technique to explore the posterior space by also applying the 

MH algorithm. Multiple chains that run synchronously construct the elements of weighted 

acceptance probability criterion. Yang et al. (2016) recently assessed the effect of merging 

the adaptive sampling into MTM and exhibited some degrees of improvements in the 

efficiency of MTM. The privilege of applying MTM or PT is embedded in their 

independency of selecting appropriate MCMC starting values and generating less 

dependent random samples. However, implementation of these methods requires a higher 
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level of probabilistic and statistic expertise when several strata of acceptance-rejection 

criteria should be constructed. Subsequently, the implementation sequences required to 

drive RWM, PSAMH, AM, SAM, PT and MTM sampling techniques in association with 

a synthetic case study are outlined. 

3.3. Methodology  

Subsequently, in addition to PSAMH, several MCMC samplers’ techniques that are 

employed to evaluate their performance are elaborated. 

3.3.1. Random Walk Metropolis (RWM) 

RWM sampler signifies a special form of MH when the proposal distribution is 

symmetrical, hence (𝑓(𝜽𝑖|𝜽𝑖−1) = 𝑓(𝜽𝑖−1|𝜽𝑖)), therefore, they cancel out from the MH 

criterion.  

𝛼(𝜽𝑖, 𝜽𝑖−1) = 𝑚𝑖𝑛 {1,
𝜋(𝜽𝑖|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖−1|𝒅𝑜𝑏𝑠)
} (3.1) 

 

RWM exhibits the core technique of MH sampling also exerted in other samplers and 

is delineated by the following steps. 

• Set the initiate quantities of random variables 

• Draw candidate sample applying Eq.(2.6)  

• Tune the step size (with trial and error) such that the acceptance rate approaches 

to the optimum acceptance rate (Eq.(2.18))  

• Investigate the acceptance state of candidate samples with the RWM criterion 

using Eq.(3.1) 

• Substitute the current with accepted samples 
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• Proceed to the next iteration  

3.3.2. Parallel Scaled Adaptive Metropolis-Hastings (PSAMH)  

PSAMH, technically, draws several synchronous chains from a proposal distribution 

to automatically optimize the acceptance rate of MH criterion. The use of a scaling 

mechanism, in addition, allows to fluctuate the step size of proposal distribution. The 

implementation sequence of PSAMH framework is concisely elaborated subsequently. 

• Set the initial values for random variables, such that they provide a non-zero target 

distribution function results  

• Set the number of concurrent chains, 𝑚, and the batch size 

• Generate once 𝐶𝑜𝑉𝑗 = [1, 𝑑], (𝑗 ∈ [1, 𝑚]) from Chi square distribution 

(𝐶ℎ𝑖2(1.5)) and construct ∑𝑖,𝑗 applying Eq.(3.2)  

∑𝑖,𝑗 = [
(CoV1 ∗ θ𝑖−1,1)2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ (CoV𝑑 ∗ θ𝑖−1,𝑑)2

] (3.2) 

• Draw 𝑚 concurrent candidate samples from the proposal distribution using Eq. 

(2.6)  

• Accept candidate samples by probability of 𝛼 and reject them by 1 − 𝛼 (Eq. (2.3)) 

and store 𝑙 accepted samples 

• For any two arbitrary chains, 𝑘 and 𝑘′, where 1 ≤ 𝑘 𝑎𝑛𝑑 𝑘′ ≤ 𝑙, identify the final 

accepted candidate by inserting 𝑙 accepted samples into Eq.(3.3)  

𝑟̂
𝑖,𝑘,𝑘′

=
𝜋(𝜽𝑖,𝑘|𝒅𝑜𝑏𝑠)

𝜋(𝜽
𝑖,𝑘′

|𝒅𝑜𝑏𝑠)

𝑓(𝜽𝑖−1|𝜽𝑖,𝑘)𝑓(𝜽
𝑖,𝑘′

|𝜽𝑖−1)

𝑓(𝜽𝑖−1|𝜽
𝑖,𝑘′

)𝑓(𝜽𝑖,𝑘|𝜽𝑖−1)
  (3.3) 
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Where, 𝑟
𝑖,𝑘,𝑘′

, specifies the ratio of two accepted samples with respect to the current 

sample. Furthermore, Eq.(2.4) permits evaluating the state of final accepted sample 

retrieved ratio from Eq.(3.3)  

𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜽𝑖 = {
𝜽𝑖,𝑘                  𝑟̂

𝑖,𝑘,𝑘′
≥ 1   

𝜽
𝑖,𝑘′

                𝑟̂
𝑖,𝑘,𝑘′

< 1 
 (3.4) 

 

Eq. (3.3) and Eq. (2.4), together, iterate 𝑙 times to assess all accepted samples and 

eventually identify the final accepted sample. 

• At iteration equals to the batch size, recurrently, compare the current acceptance 

rate, 𝜉𝑖, with the optimum acceptance, 𝜉𝑡𝑎𝑟𝑔𝑒𝑡, and update the scale factor 

applying Eq.(3.5) and Eq. (3.6) 

𝛾𝑖 = 𝜉𝑖/𝜉𝑡𝑎𝑟𝑔𝑒𝑡 (3.5) 

 

∑ = 𝛾𝑖
2 ∗ [

(CoV1 ∗ θ𝑖−1,1)2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ (CoV𝑑 ∗ θ𝑖−1,𝑑)2

] (3.6) 

 

Take into consideration that, the scale factor, originally is a vector contains value 

one and merely updates at the batch size iteration.  

• Store the final accepted sample and proceed to the next iteration 

3.3.3. Adaptive Metropolis (AM) 

Gareth O. Roberts and Rosenthal (2009) denoted the proposal distribution of AM as 

follows. 
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𝑓(𝜃𝑖|𝛽, 𝑑, ∑𝑖) =  {

𝑁(𝜃𝑖−1, (0.1)2𝐼𝑑/𝑑)                                                                   𝑖 ≤ 2𝑑  

(1 − 𝛽)𝑁 (𝜃𝑖−1,
(2.38)2∑𝑖

𝑑
) + 𝛽𝑁 (𝜃𝑖−1,

(0.1)2𝐼𝑑

𝑑
)         𝑖 < 2𝑑  

 (3.7) 

 

Where, 𝑑 indicates the parameter space size, ∑𝑖 presents the empirical covariance matrix 

for 𝑖 − 1 iterations and 𝛽 identifies a very small positive value, in this case 0.05. 𝐼𝑑 denotes 

the identity matrix for the space size, 𝑑. Note that, computation of ∑𝑖 when the iteration 

becomes large turns to be very time consuming and adversely kills the process. Therefore, 

instead of computing the empirical covariance matrix at iteration 𝑖, the online empirical 

covariance, ∑(𝑖,𝑜𝑛𝑙𝑖𝑛𝑒), is recommended. 

∑(𝑖,𝑜𝑛𝑙𝑖𝑛) = (∑(𝑖−1,𝑜𝑛𝑙𝑖𝑛𝑒)(𝑖 − 1) + (
𝑖 − 1

𝑖
) (𝜃𝑖,𝑗

− 𝜇(𝑖−1,𝑗,𝑜𝑛𝑙𝑖𝑛𝑒))(𝜃𝑖,𝑗′ − 𝜇(𝑖−1,𝑗′,𝑜𝑛𝑙𝑖𝑛𝑒)))/𝑖 
(3.8) 

 

Where, 𝜇(𝑖,𝑗,𝑜𝑛𝑙𝑖𝑛𝑒) obtains from Eq.(3.9). 

𝜇(𝑖,𝑗,𝑜𝑛𝑙𝑖𝑛𝑒) = (𝜇(𝑖−1,𝑗,𝑜𝑛𝑙𝑖𝑛𝑒)(𝑖 − 1) + 𝜃𝑖,𝑗)/𝑖 (3.9) 

 

 

To implement AM the following steps are outlined. 

• Initiate the random variables’ starting values 

• Draw candidate sample exerting Eq.(3.7), Eq.(3.8) and Eq.(3.9) 

• Accept or reject the candidate sample according to the MH criterion 

• Store the accepted sample 

• Proceed to the next iteration 
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3.3.4. Scaled Adaptive Metropolis (SAM) 

Haario et al. (2001),; Andrieu & Thoms (2008); and Roberts & Rosenthal (2009) 

separately discussed the application of scaling factor, 𝛾𝑖, in AM. The use of scale factor 

allows to vary the proposal tune factor (step size) by applying a very small constant value, 

𝜀, to approach to the optimum acceptance rate. In this study, after several trials, 𝜀 sets to 

1e-2 for a fix number of iterations (batch size=500). Eq.(2.19) delivers the condition 

required to drive the scale factor. Note that, the same comment which is expressed in the 

PSAMH scale factor is also valid here. 

𝛾𝑖 = {
𝛾𝑖−1 +ε             𝜉𝑖 > 𝜉𝑡𝑎𝑟𝑔𝑒𝑡

𝛾𝑖−1 −ε            𝜉𝑖 < 𝜉𝑡𝑎𝑟𝑔𝑒𝑡
 (3.10) 

 

Moreover, applying Eq.(2.19), it becomes plausible by redefining Eq.(3.7) to 

formulate Eq.(3.11) 

𝑓(𝜃𝑖|𝛽, 𝑑, ∑𝑖) =  {

𝑁(𝜃𝑖−1, (𝛾𝑖0.1)2𝐼𝑑/𝑑)                                                                     𝑖 ≤ 2𝑑  

(1 − 𝛽)𝑁 (𝜃𝑖−1,
(𝛾𝑖2.38)2∑𝑖

𝑑
) + 𝛽𝑁 (𝜃𝑖−1,

(𝛾𝑖0.1)2𝐼𝑑

𝑑
)         𝑖 < 2𝑑  

 (3.11) 

 

Method implementation procedure described as follows 

• Set starting quantities of sampler 

• Draw the candidate sample from Eq.(3.11) 

• Accept the candidate sample exploiting the MH criterion 

• Assess the acceptance rate at batch size and update the scaling factor 𝛾𝑖, Eq. 

(2.19), by appreciating the optimum acceptance rate, 𝜉𝑡𝑎𝑟𝑔𝑒𝑡  

• Store the accepted sample and proceed to the next iteration 



 

46 

 

3.3.5. Parallel Tempering (PT) 

Parallel Tempering (PT) algorithm captures the target distribution by constituting two 

strata acceptance-rejection conditions. The first criterion allows generating 𝑚 parallel 

samples, while the second condition provides a replacement term which is often invoked 

as the swapping move. In this study, standard deviations of target distribution construct 𝑚 

parallel tempers and they are defined such that always the required standard deviation 

locates at the center of predefined vector. The diversity of standard deviation vector is 

illustrated in Table 3.3. In order to implement the PT method, following steps are proposed 

(Hukushima and Nemoto 1996; Wang and Swendsen 2004; Earl and Deem 2005).  

• Set the initial quantities of random field 

• Identify the number of 𝑚 parallel chains and mean of target distribution, 𝜇, which 

in this case assigned by the value of one. Also, generate the tempering vector 

which in this case is the standard deviation of target distribution 

• Draw candidate samples from the Multivariate Normal distribution supplying the 

identify matrix as the proposal distribution covariance for 𝑚 parallel chains 

(Eq.(2.6) and Eq.(3.12)).  

∑ = 𝜏𝐼𝑑 (3.12) 

 

Note that, in this study, after several trial and errors, the tune factor (step size), 𝜏, of the 

proposal distribution takes the value of 2 to enable the sampler to readily explore the entire 

parameter space. 
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•  Investigate the state of generated samples with the MH criterion (Eq.(3.13)) and 

store the accepted samples 

𝛼𝑎,𝑃𝑇 = min (1,
𝜋(𝜃𝑖,𝑘|𝜇, 𝜎𝑘)

𝜋(𝜃𝑖−1,𝑘|𝜇, 𝜎𝑘)
) (3.13) 

 

Where, 𝑖 and 𝑘 are the current iteration and number of parallel chains, respectively. 𝜇 and 

𝜎𝑘, denote the expected value and the vector of standard deviation of the proposal 

distribution, respectively, defined in Table 3.3. Note that 𝜎𝑘 indicates a vector of tuning 

quantities that deterministically aims to alter the target distribution. 

• Set the swapping move by drawing a parallel chain number uniformly from the 

vector of 𝑚 number of parallel chains, and exclude the target chain number. Bear 

in mind that, the target chain number indicates the chain that sustains the desired 

target standard deviation  

• Generate the following probability condition and accept it when  𝛼𝑏,𝑃𝑇  is larger 

than uniform random value 

For each pair of concurrent chain, 𝑘 and 𝑘′, which are randomly selected from the 

swap move 

𝛼𝑏,𝑃𝑇 = min (1,
𝜋(𝜃𝑖,𝑘|𝜇, 𝜎𝑘) ∗ 𝜋(𝜃𝑖,𝑘′|𝜇, 𝜎𝑘′)

𝜋(𝜃𝑖,𝑘|𝜇, 𝜎𝑘′) ∗ 𝜋(𝜃𝑖,𝑘′|𝜇, 𝜎𝑘)
) (3.14) 

 

In this case, 𝑘 denotes the target chain and 𝑘′ indicates the uniformly selected integer 

number from the remaining concurrent chains. 

• If the above condition is accepted, substitute 𝜃𝑖,𝑘 with 𝜃𝑖,𝑘′. 

• The above move iterates to the last chain  
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• Store the final 𝜃𝑖,𝑘 as the current accepted sample 

• Proceed to the next iteration. 

3.3.6. Multiple Tries Metropolis (MTM) 

In analogy to PT, the MTM technique (Liu, Liang, and Wong 2000; Craiu and 

Lemieux 2007) also employs several synchronous chains to alter the target distribution. 

However, the mechanism required to vary the target distribution induced through the 

weighted samples. Notice that, in contrast to other samplers, however, it is observed that 

the generated candidate samples varied in the broaden range which justified applying some 

constraint on the proposal distribution; hence, the proposal distribution inevitably 

becomes asymmetrical. In order to implement the MTM algorithm, succeeding steps are 

delineated. 

• Set the starting random variables quantities 

• Draw 𝑚 candidate samples from the Normal distribution 

• Obtain the value of weight, 𝜔 given Eq.(3.15) 

𝜔(𝜽𝑖,𝑘 ) = 𝜋(𝜽𝑖−1)𝑓(𝜽𝑖,𝑘|𝜽𝑖−1)𝜆(𝜽𝑖,𝑘 , 𝜽𝑖−1) (3.15) 

 

Where, 𝜋(𝜽.,.) and 𝑓(. |. ) denote the target and proposal distribution functions, 

respectively. 𝜆( , ) indicates a nonnegative symmetrical function which in this case is 

achieved by Eq.(3.16). 

𝜆(𝜽𝑖,𝑘 , 𝜽𝑖−1) = (𝑓(𝜽𝑖,𝑘|𝜽𝑖−1)𝑓(𝜽𝑖−1|𝜽𝑖,𝑘))−𝜗 (3.16) 
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When, 𝜗 accepts the value of 1, 𝜔(𝜽𝑖,𝑘 ) turns to normalized target distribution defined 

by Eq.(3.17). 

𝜔(𝜽𝑖,𝑘 ) = 𝜋(𝜽𝑖−1)𝑓(𝜽𝑖−1|𝜽𝑖,𝑘)
−1

 (3.17) 

Bear in mind that other alternatives is also presumable for 𝜆(𝜽𝑖,𝑘 , 𝜽𝑖−1), however in this 

case the recommended combination by Liu et al. (2000) is selected. 

• Set 𝜽𝑖,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝜽𝑖,𝑘, such that 𝜽𝑖,𝑘 is drawn randomly from 𝜽𝑖,. =

{𝜃𝑖,1, … , 𝜃𝑖,𝑚} proportional to 𝜔(𝜽𝑖,𝑘)  

• Draw 𝑚 − 1 candidate samples {𝜃1, … , 𝜃𝑚−1} from the proposal distribution with 

𝜇 = 𝜃𝑖,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 

•  Set 𝜃𝑚 = 𝜃𝑖−1 as the 𝑚𝑡ℎ candidate sample 

• Accept 𝜃𝑖,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 with the following probability 

𝛼𝑀𝑇𝑀 = min (1,
∑ 𝜔(𝜃𝑖,𝑘)𝑚

𝑘=1

∑ 𝜔(𝜃̂𝑘)𝑚
𝑘=1

 )  (3.18) 

• Proceed to the next iteration 

Following, the techniques required to evaluate the performance of samplers are 

outlined. 

3.4. Techniques to assess the performance of samplers 

3.4.1. Integrated autocorrelation time function 

Integrated autocorrelation time function (ACT) (Thompson 2010a) permits to 

compare the efficiency of a sampler, which is specified via Eq. (3.19). 
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𝜏 = 1 + 2 ∑ 𝜌𝑓(𝛿)

∞

𝛿=1

 (3.19) 

 

Where, 𝜌𝑓(𝛿) denotes the correlation coefficient  (Box, Jenkins, and Reinsel 2008) and 

produces a number between -1 and 1and is calculated using Eq.(3.20).  

𝜌𝑓(𝛿) =
∑ (𝑥𝑖 − 𝜇)(𝑥𝑖+𝛿 − 𝜇)𝑛−𝛿

𝑖=1

∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1

 (3.20) 

 

𝑛 indicates the number of iterations while 𝛿 presents the lag between two randomly 

generated samples.  

Thompson (2010b) described several approaches to attain ACT. In this experiment, 

the method of initial positive sequences (IPS) is selected which truncates the sum of the 

autocorrelation coefficient by removing the sum of adjacent negative quantities. The 

smaller IPS denotes the more efficient sampler in the sense of generating less dependent 

random samples, and identified with the number of effective samples, 𝑛𝑒𝑓𝑓.. 

𝑛𝑒𝑓𝑓. =
𝑛𝐵𝑢𝑟𝑛−𝑖𝑛

𝛿𝐴𝐶𝐹=0
 

(3.21) 

 

Where, 𝑛𝐵𝑢𝑟𝑛−𝑖𝑛 presents the number of generated random samples after stationary (Burn-

in point).  

3.4.2. Number of lags ACF=0 

Furthermore, the number of lags (𝛿) which defines a condition that the autocorrelation 

function (ACF) becomes zero, is computed and shown as an extra comparison criterion. 

The lag corresponding to the ACF=0 expresses the state of independency of random 
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variables and is an essential component for computing the number of effective samples, 

𝑛𝑒𝑓𝑓. Similar to ACT, the smaller lag denotes a better performance. 

3.4.3. CPU running time 

Another possibility to assess the efficiency of sampler appears as the CPU running 

time that implicitly indicates the effort should be taken to run the MCMC sampler. Smaller 

quantity of CPU running time, hence, exhibits a better sampler. 

3.4.4. Modes recognition based on the relative frequency histogram 

The next alternative is the ability of a sampler in properly capturing all modes of 

target distribution when the standard deviation and correlation coefficients amidst random 

field varied. Therefore, the plot of relative frequency histogram can be employed to 

indicate the capability of sampler regarding capturing all target distribution modes. 

3.4.5. CDF plot of experimental and true distribution 

The last option to feature the performance of samplers is the comparison plot of the 

cumulative density function of both the random samples and the genuine target 

distribution. 

3.5. Experimental design 

A synthetic case constitutes a tetra-modal target distribution in order to elucidate the 

performance of aforementioned frameworks. A tetra-modal target distribution 

incorporating the univariate (𝜃) and bivariate (𝜃1, 𝜃2) random field serves to delineate the 

characteristics of the target distribution. Table 3.1 categorizes the experimental cases 

regarding the tetra-modal target distribution case. 
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Table 3.1 Experimental design of univariate and bivariate target distribution 
Univariate (𝜽) Bivariate (𝜃1, 𝜃2) 

Case Standard deviation, 𝜎 Case Standard deviation, 𝜎 Correlation Coefficient, 𝜌 

𝐶𝑈1 1 𝐶𝐵1 1 0 

𝐶𝑈2 0.5 𝐶𝐵2 0.5 0.3 

𝐶𝑈3 0.1 𝐶𝐵3 0.1 0.8 

 

The use of various standard deviation and correlation coefficient permits to constitute 

the case study.  

3.6. Univariate and bivariate tetra-modal target distributions 

A tetra-modal target distribution comprising one (𝜃) and two (𝜃1, 𝜃2) random 

parameters designed to address the performance of PSAMH framework together with 

several MCMC well-known samplers. The tetra-modal target distribution is formulated in 

Eq.(3.22). 

𝜋(𝜽) = ∑ 𝜔𝑒 ∗ 𝑁(𝜽, 𝜇𝒆, 𝜎)

4

𝑒=1

 (3.22) 

 

Eq. (3.22) projects a tetra-modal distribution with a constant standard deviation, 𝜎 

and various mean, 𝜇𝑒. 𝜽 denotes a vector of random variables constrained, in this case, in 

the range of -10 to 10. 𝜔𝑒 provides a vector of magnifying coefficients to construct the 

height of modes. The associated constant quantities which are common in all samplers are 

illustrated in Table 3.2. 

Table 3.2 Input values of tetra-modal target distribution 

Parameter Value 

𝜇 -6, -2, 2, 6 

𝜎 1, 0.5, 0.1 

𝜌 (Bivariate) 0, 0.3, 0.8 

𝜔 0.2, 0.4, 0.1, 0.3 
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𝜎 and 𝜌 denote two key altering components that begin with an easy to capture (𝜎 =

1 and 𝜌 = 0) to extremely challenging case (𝜎 = 0.1 and 𝜌 = 0.8). Applying the last case, 

allows to generate a target distribution with distanced modes, and that is for, it becomes 

difficult for most samplers to explore the entire random field and hence consequently stick 

in one or two modes. 

Additionally, according to the definition, it is known that the standard deviation 

supervises the dispersion of a distribution. A larger standard deviation, therefore, 

constitutes a wider distribution and eventually, in the case of constraint multimodal 

distribution, modes become connected together; whilst a smaller standard deviation 

concludes in a slimmer distribution. The distance between modes, on the other hand, can 

be interpreted as the level of energy or temperature of distribution. It is evident that further 

distance between modes implies the higher level of energy and is more difficult for 

sampler to jump from one mode to another one. Provided that, Fig. 3.1 demonstrates the 

configuration of the univariate experiment for standard deviations accepts values of 0.1, 

0.5, and 1 which states the dissemination of distribution modes when the standard 

deviation varies.  

Applying the same mechanism, the significance between the univariate and bivariate 

experiments appears in inducing the correlation structure amidst the random variables in 

the bivariate target distribution. 

Fig. 3.2 aims to delineate the influence of variations in 3D and 2D bivariate target 

distributions and to visualize the state of modes when the standard deviation (𝜎) and 

correlation coefficient (𝜌) are manipulated. 
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𝐶𝑈1 𝐶𝑈2 𝐶𝑈3 

   

Fig. 3.1. The configuration of univariate tetra-modal target distribution with 

various standard deviations 

 

Additionally, the projection of 3D distributions on the side planes demonstrates the 

histograms of random variables (Fig. 3.2, left). Also, considering the 2D joint histogram 

in Fig. 3.2, right, it is evident that by decreasing the standard deviation and increasing the 

correlation coefficient gaps between modes are expanded, which consequently make it 

more difficult for the sampler to jump from one mode to another. 

3.7. Samplers input values 

Several assigned initial quantities are earlier provided when each sampler is 

elaborated. Nevertheless, the remaining necessary input data to be able to implement 

samplers are identified subsequently. 

3.7.1. PSAMH 

The number of concurrent chains, 𝑚, in this method is set to 5 and 10 for univariate 

and bivariate target distribution cases, respectively. The initial searching values are 

selected randomly but investigated that they provide a non-zero values when they are 

inserted in the tetra-modal distribution. It is known that the adaptive methods would trap 

in a point without progress, if wrong initial searching values are picked. 
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Fig. 3.2. Left, 3D and right, 2D configuration of bivariate tetra-modal distribution 

 

3.7.2. PT 

Table 3.3 illustrates the input quantities of PT method. 

Table 3.3 PT input data 

𝜎 Univariate, 𝑚 = 5 Bivariate, 𝑚 = 9 

0.1 0.05, 0.075, 0.1, 0.2, 0.3 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18 

0.5 0.1, 0.3, 0.5, 0.7, 0.9 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

1 0.4, 0.7, 1, 1.3, 1.6 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8 
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In each of above cases, temperatures are specified such that they allow the sampler to 

readily explore the parameter space providing a wide range of constraints. 

3.7.3. MTM 

The tune factor values and number of tries corresponding to each case study is 

presented in Table 3.4. 

Table 3.4 MTM input values 

 Univariate Bivariate 

m 10 10 

Tune factor 3 2 

 

Defining the entire initiate values and conditions permit to drive MCMC samplers. 

The associated results are provided and discussed in the next section.  

3.8. Results and discussion  

Following tables present the results obtained from the implementation of 

aforementioned sampling methods. The tables constructed such that, the name of samplers 

is indicated in the column one. Moreover, the ability of samplers to capture all tetra modes 

is denoted in the second column. Columns three and four illustrate the acceptance rate and 

CPU running time, respectively. Column five provides the number of lag when the auto 

correlation function takes the value of zero. Finally, the last column shows the retrieved 

value of IPS. 

The subsequent figures demonstrate some plots in the proceeding order. The first 

column indicates the name of each sampler. The MCMC experiment plots are depicted in 

the second column. In addition, the plots of relative frequency histogram and the 
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comparison between the cumulative density function of empirical (gray dashed line) and 

true target distribution (black solid line) are exhibited in the last two columns. 

3.8.1.1. 𝐶𝑈1: 𝜎 = 1  

𝐶𝑈1 denotes the univariate tetra-modal distribution when the standard deviation sets 

as 1(Table 3.5). In this case, all samplers enabled to successfully capture posterior modes 

(Fig. 3.3). RWM required less running time, which is the basic sampler. However, AM 

and SAM together presented the smallest values of lags corresponding to ACF=0, while 

PT provided the smallest ACT. PSAMH and SAM developed acceptance rates close to the 

optimum acceptance, which in this case is %44.2. 

Table 3.5 Results of case 𝐶𝑈1, σ = 1, univariate 

Method 
Able to Capture 

all modes 

Acceptance 

rate (%) 

Running 

Time (s) 

ACF=0 ACT (IPS) 

PSAMH Yes 43.13 62.28 80 556.71 

 PT Yes 64.57 257.37 80 296.1 

MTM Yes 89.21 98.18 20 509.75 

AM Yes 34.32 53.07 10 381.98 

SAM Yes 44.17 50.87 10 431.16 

RWM Yes 73.8 30.39 230 1734.8 

 

The point that is worthwhile to mention in the MCMC experiment (Fig. 3.3) regarding 

the PSAMH technique is the appeared gaps in random samples. The gaps indicate those 

iterations that the sampler scaled the step size to approach to the optimum acceptance rate. 

In other words, for several intervals the sampler rejected more random samples than other 

iterations to achieve the optimum acceptance rate. In addition, other results inferenced 

from Fig. 3.3 summarized as the relative frequency histogram plots display the successful 

performance of samplers in capturing all posterior modes.  
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 MCMC experiment Relative frequency histogram Cumulative density function 

PSAMH 

   

PT 

   

MTM 

   

AM 

   

SAM 

   

RWM 

   

Fig. 3.3. Experiment and statistics results for 𝐶𝑈1 

 

Furthermore, cumulative density function plots demonstrate an acceptable agreement 

between the empirical CDF and target distribution CDF. Nevertheless, CDF of MTM 

method exhibits some degree of distortion in compare to the target CDF. 
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3.8.1.2. 𝐶𝑈2: 𝜎 = 0.5  

Computation results in Table 3.6 reveals the capability of all samplers to 

independently explore the posterior modes when σ = 0.5. RWM provided less running 

time but the highest lag to ACF=0 and ACT. PT demanded more running time, however, 

attained ACT became slightly smaller than PSAMH. MTM presented less sensitivity to 

the variation of standard deviation since the acceptance rate remained unchanged. 

Nevertheless, except PSAMH, SAM and MTM other samplers experienced more rejection 

in compare to 𝐶𝑈1.  

Table 3.6 Results of case 𝐶𝑈2, σ = 0.5, univariate 

Method Able to Capture 

all modes 

Acceptance 

rate (%) 

Running 

Time (s) 

ACF=0 ACT (IPS) 

PSAMH Yes 45.78 70.71 10 379.98 

 PT Yes 36.9 284.4 260 359.7 

MTM Yes 80.18 91.43 10 508.25 

AM Yes 18.13 47.3 30 548.34 

SAM Yes 44.18 51.41 1910 2306 

RWM Yes 50.59 30.04 2310 5413.7 

 

According to Fig. 3.4, MTM and SAM methods illustrate more deviation regarding 

the CDF plots than other samplers. Despite MTM is capable to inspect all target 

distribution modes, the trend of CDF plots not entirely coincident with each other. 

3.8.1.3. 𝐶𝑈3: 𝜎 = 0.1   

Table 3.7 coupled with Fig. 3.5 evidenced that AM, SAM, and RWM disabled to 

capture all posterior modes when 𝜎 became extremely small. Despite the optimized 

acceptance rate of SAM, this sampler still stuck in one mode. 
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 MCMC experiment Relative frequency histogram Cumulative density function 
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Fig. 3.4. Experiment results for 𝐶𝑈2 

 

Therefore, approaching to an optimized acceptance rate solely is not able to assure 

the properly exploring of the entire posterior space to capture all modes. PSAMH and PT, 

in general, produced acceptable results in compare to other samplers. 
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Table 3.7 Results of case 𝐶𝑈3, σ = 0.1, univariate 

Method Able to Capture 

all modes 

Acceptance 

rate (%) 

Running 

Time (s) 
ACF=0 ACT (IPS) 

PSAMH Yes 43.13 62.28 80 556.71 

 PT Yes 10.1 294.2 580 633.4 

MTM Yes 57.83 96.81 40 599.9 

AM No 45.47 142.65 - - 

SAM No 44.2 137.1 - - 

RWM No 24.46 31.9 - - 

 

In the case of 𝜎 = 0.1, as seen in Fig. 3.5, AM, SAM, and RWM failed to capture all 

posterior modes. MTM also suffers from the lack of proper jumps through the parameter 

space. PSAMH and PT methods displayed appropriate jumps and acceptable adaption to 

the CDF plots. 

3.8.1.4. 𝐶𝐵1: 𝜎 = 1, 𝜌 = 0 

The same procedure that applied to the univariate case is also exerted regarding the 

bivariate tetra-modal target distribution with altering the correlation structure between 

random variables in addition to the standard deviation. Table 3.8 introduced the numerical 

computational results of the case 𝐶𝐵1. 

Table 3.8 Results of case 𝐶𝐵1 , σ = 1 and 𝜌 = 0, bivariate 

Method Able to Capture 

all modes 

Acceptance 

rate (%) 

Running 

Time (s) 

ACF=0 ACT (IPS) 

𝜃1 𝜃2 𝜃1 𝜃2 

PSAMH Yes 34.51 259.9 150 150 944.9 942.2 

PT Yes 33.75 2237.2 280 280 306.7 303.6 

MTM Yes 51.9 2095.3 440 1000 1876.2 1855.3 

AM Yes 21.9 263.2 80 70 556.1 558.8 

SAM Yes 34.57 266.5 1450 1380 1061.5 1134.8 

RWM Yes 49.1 182.2 1410 1420 4178.8 4173.8 

 

Considering Table 3.8, it is evident that all samplers were able to properly capture all 

posterior modes. 
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 MCMC experiment Relative frequency histogram Cumulative density function 
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Fig. 3.5. Experiment results obtained from 𝐶𝑈3  

 

  Although, RWM exhibited less running time, PSAMH, AM and SAM took the next 

place. As it is expected, both PSAMH and SAM delivered acceptance rate close to the 

optimum. Although, PT produced smaller values of IPS but suffered from the noticeably 
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longer running time. In addition, AM and then PSAMH provided more independent 

samples in comparison to the other samplers. The quantities of IPS and lags of ACF=0 are 

varied depend on the samplers, however, RWM produced larger values.  

The relative frequency histogram of all methods in Fig. 3.6 except MTM 

demonstrated an acceptable behavior. Even though, MTM captured all modes, the state of 

modes is not distinguishable. The same inference can also be implied by observing the 

CDF plots. 

3.8.1.5. 𝐶𝐵2: 𝜎 = 0.5, 𝜌 = 0.3  

Table 3.9 demonstrates the outcomes of the moderate case where standard deviation 

and correlation coefficient get the values of 0.5 and 0.3, respectively. Considering the 

ability of samplers in capturing all modes, it is revealed that, RWM, AM and SAM 

disabled to appropriately explore the entire random space. 

 

Table 3.9 Results of case 𝐶𝐵2 , σ = 0.5 and 𝜌 = 0.3, bivariate 

Method Able to Capture 

all modes 

Acceptance 

rate (%) 

Running 

Time (s) 

ACF=0 ACT (IPS) 

𝜃1 𝜃2 𝜃1 𝜃2 

PSAMH Yes 33.84 257.77 360 350 1466.8 1470.7 

 PT Yes 11.76 2261.9 1360 1360 550.6 555.3 

MTM Yes 40.02 2030.4 790 800 2292.9 2305.6 

AM No 37.22 268.8 - - - - 

SAM No 34.8 275.6 - - - - 

RWM No 40.9 170.5 - - - - 

 

The running time of samplers outweighed the technique of PSAMH in compare to PT 

and MTM. PSAMH additionally provided ACF=0 with smaller magnitudes, while PT 

illustrated better IPS. In general, the use of PSAMH method allowed to both save the 

running time and generate more independent samples. 
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 MCMC experiment Relative frequency histogram Cumulative density function 
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Fig. 3.6. Experiment results for 𝐶𝐵1 

 

 

A new stage of difficulty is depicted in Fig. 3.7 as AM, SAM, and RWM grinded to 

a halt in capturing all modes. Furthermore, the relative frequency histogram plots 

demonstrated the uncertain in modes captured by MTM algorithm. Regardless of the 
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degree of difficulty presented in this case, either, the CDF plots or relative frequency 

histograms depicted the capability of PSAMH and PT to readily jump in the parameter 

space and capture all target modes. 

3.8.1.6. 𝐶𝐵3: 𝜎 = 0.1, 𝜌 = 0.8 

By progressively increasing the correlation coefficient between random variables, the 

running time, lags of ACF=0 and IPS escalated dramatically in all samplers (Table 3.10). 

In this case, AM, SAM and RWM, in analogy to the previous case, were not able to explore 

the posterior space properly. PSAMH, however, generated random samples in a more 

efficient computational time. Nevertheless, MTM provided substantially smaller values of 

ACF=0. Also, while PSAMH sustained the acceptance rate close to the optimum quantity, 

PT surprisingly rejected most of generated samples.  

 

Table 3.10 Results of case 𝐶𝐵3 , σ = 0.1 and 𝜌 = 0.8, bivariate 

Method Able to 

Capture all 

modes 

Acceptance 

rate (%) 

Running 

Time (s) 

ACF=0 ACT (IPS) 

𝜃1 𝜃2 𝜃1 𝜃2 

PSAMH Yes 32.62 257.8 41880 41880 23887 23882 
 PT Yes 0.5 2259.4 20240 20240 4420.5 4444 
MTM Yes 61.32 1909.3 510 910 2317.7 2214.5 
AM No 28.3 300.7 - - - - 
SAM No 35.03 250.8 - - - - 
RWM No 16.03 175.14 - - - - 

 

In contrary, MTM stated more acceptance rate when it compared with the previous 

case. PT and PSAMH presented extremely large numbers regarding the ACF=0 and IPS. 
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 MCMC experiment Relative frequency histogram Cumulative density function 
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Fig. 3.7. Experiment results for 𝐶𝐵2 

 

Fig. 3.8, additionally, appreciated the results expressed in Table 3.10. MTM presented 

persistency in the ill jump pattern by removing the gap between target distribution modes. 

PSAMH and PT yet exhibited successful jumps in the posterior space. However, 
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considering the trend of CDF plots, PSAMH sampled the entire space with more precision 

than PT. 

 MCMC experiment Relative frequency histogram Cumulative density function 
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Fig. 3.8. Experiment results for 𝐶𝐵3 

 

3.8.2. Acceptance rate and scaling factor in PSAMH and SAM 

Graphical comparisons of the case of univariate target experiment amidst the PSAMH 

and SAM techniques in the acceptance rate and scale factor are demonstrated in Fig. 3.9. 
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SAM modified the acceptance rate relatively faster while depicting more fluctuation 

regarding the scale factor. The scale factor of PSAMH, additionally, provides a numeric 

to implicitly assess the state of stationary condition for chains where after some iteration, 

it becomes stable around number one. The noticeable oscillation of scale factor in SAM 

for σ = 0.1, clearly depicts the level of difficulty imposed to the sampler. A brief 

conclusion is drawn in section 8.1.2. 

   

Fig. 3.9. Comparison of acceptance rate and scale factor between PSAMH and 

SAM 
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4. A NOVEL PROBABILISTIC BAYESIAN APPROACH TO 

QUANTIFY THE UNCERTAINTY ASSOCIATED WITH THE 

MODIFIED ARPS MODELS 

 

4.1. Overview 

Empirical or Arps-based models allow us to assess the Estimated Ultimate Recovery 

(EUR) of wells by matching the likely model approximation to the completion logs, 

accounting only the general trend of productions. Despite their wide application due to the 

simplicity in the implementation, scholars yet endeavor to extent a practical technique that 

precisely quantifies the inherent uncertainty in the EUR analysis when the statistical 

comprehension of the incorporated model parameters appears to be obscure. Hence, that 

is for, it is pertinent to study the model performance via exerting the Bayesian paradigm. 

The Bayesian probabilistic analysis coupled with the Markov Chain Monte Carlo 

(MCMC) and Metropolis-Hastings (MH) develops a mean to not only calibrate the model 

variables but also evaluate the associated uncertainty of well productions. However, it is 

connoted that often, due to the complexity of the problem, MH becomes deficient of 

readily sampling the random filed. In such cases, a more sophisticated sampling method 

such as the Parallel Scaled Adaptive Metropolis-Hastings (PSAMH) framework is 

required. PSAMH constitutes several concurrent chains to optimize the acceptance rate by 

adapting the proposal distribution of MH algorithm. Also, to be able to delineate the well’s 

behavior over the course of varying time, two Arps-based models, the Modified 
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Hyperbolic Decline (MHD) and the Power Law Exponential Decline (PLED) in 

association with four sets of wells’ production data retrieved from the Eagle Ford Shale 

are exploited. In addition, the vector of posterior acquired from MCMC, permits the 

extrapolation of model realizations for the short and long term of production. The study 

eventually implies that, the Bayesian paradigm along with the PSAMH method is enough 

to provide a metric to quantify the computational uncertainty by ensuring the exploration 

of the entire parameter space. Moreover, considering the given well depletion data, a 

comparison amid two modified Arps’ models, exhibits the overestimation of EUR together 

with the confidence’s diminution corresponding to the MHD model. 

4.2. Introduction 

Arps (1944) introduced several empirical decline curve models, which by tuning the 

model parameters match a decline curvature to well depletion logs to evaluate the 

estimated ultimate recovery (EUR) of reserves. The simplicity in the implementation of 

models and noticeably less number of constitutive variables in compare to the analytical 

models have founded the extended popularity of these models. Despite that Arps’ decline, 

models were initially designed to evaluate the conventional reservoirs productions, later 

applying some modifications, the same models also exploited for unconventional 

reservoirs. The modified Arps models exerted in this research are the Modified Hyperbolic 

(MHD) (Robertson 1988) and Power Law Exponential (PLED) (Ilk et al. 2008) Decline 

curve models. A comprehensive comparison between two aforementioned models is 

driven by Seshadri and Mattar (2010). According to the Bayesian literature and hereafter, 

the empirical models will be called “forward models”.  
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The major difficulty in the EUR assessment methods lays in the quantification of their 

inherent uncertainty associated with both model parameters and production forecasting 

(Capen 1976). Recently, several scholars have attempted to address the confidence of 

modeling’s results by employing probabilistic frameworks such as the Bootstrap method 

(Jochen, Spivey, and Holditch 1996) or Bayesian approaches (Cheng et al., 2010; Xie et 

al., 2011; Gong et al., 2014; Purvis and Kuzma, 2016). Abdollahzadeh et al. (2011) 

provided several Bayesian optimization algorithms to quantify the uncertainty associated 

with applying the history matching method. A Bayesian solution considering a frequent 

transition between different covariance model in MCMC is introduce by Elsheikh et al. 

(2012) employing the history matching for oil reservoirs. Moridis et al. (2017)  employed 

the Bayesian paradigm and MCMC to calibrate empirical decline curve models and used 

the provided statistics to extrapolate the projection for a long-term production. 

Bayesian paradigm has become one of the most invoked methods dealing with the 

uncertainty quantifications (Gong et al. 2014; Vink and Gao 2015). Markov Chain Monte 

Carlo among several Bayesian approaches has been introduced as a computational 

framework which by integrating random samples across the entire parameter space and 

employing some accepting or rejecting criteria such as Metropolis-Hastings (MH) 

(Metropolis et al. 1953; Hasting 1970) eventually captures the posterior (Gelman et al. 

2013). Since it is initially presumed that in most probabilistic analysis problems, it is 

almost impossible to directly take the sample from the posterior space, MH exploits an 

auxiliary distribution to as a replacement option generate the random samples from it. The 

auxiliary distribution is often recalled as “proposal distribution.”  
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The proposal distribution incorporates of two terms, a tuning factor which adjusts the 

step size of the random movement and the initial random sample (Gareth O. Roberts and 

Rosenthal 2002).  

Adaptive Markov Chain Monte Carlo methodology (Adaptive MCMC) establishes a 

mechanism which by tuning the step size optimizes the MH acceptance rate (Haario et al., 

2001; Rosenthal et al., 2010; Whiteley et al., 2010; Roberts et al., 2012).  

Parallel Scaled Adaptive Metropolis Hasting (PSAMH) introduced as a sophisticated 

framework which augments (see section 2.3.2) the Adaptive MCMC with parallelizing 

several concurrent chains in order to automatically tune the step size and capture the 

optimized acceptance rate. In this research, by applying PSAMH, we conducted several 

experimental cases on the wells depletion logs extracted from the Eagle Ford Shale 

formation to assess the uncertainty associated with forward models. Furthermore, a 

comparison between two forward models are derived to generate a better cognition of 

application of models. The advantage of PSAMH is concisely embedded in the simplicity 

of implementation and promising features to capture the true posterior of the Bayesian 

process.  

4.3. Methodology 

Decline Curve Analysis (DCA) has become a common practical method to simulate 

the conventional or unconventional plays’ depletion for either a short or a long term of 

well production. According to Arps, there are various decline curve functions, which are 

suitable for assorted formations. Power Law Exponential (PLED) and Modified 



 

73 

 

Hyperbolic (MHD) decline curves are among the modified Arps methods, which have 

recently found their popularity in the case of hydro-fractured reserves. 

4.3.1. Modified Hyperbolic Decline (MHD) 

Hyperbolic decline curve equation (Fetkovich, Fetkovich, and Fetkovich 1996) is 

given by 

𝑞 =
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 (4.1) 

 

Where, 𝑞 and 𝑞𝑖 represent the reserves production rate and the initial rate, respectively. 𝑏 

indicates the exponential (typically between 0 and 1) and 𝐷𝑖 denotes the initial decline 

rate.  

In Eq. (4.1), the decline rate, 𝐷, is not constant and can be reckoned by Eq. (4.2). 

𝐷 =
1

1
𝐷𝑖

+ 𝑏𝑡
 

(4.2) 

 

Note that, when D becomes too small, the gas rate, no longer declines significantly 

and the reserves can be over predicted. To diminish the mentioned pitfall, 𝐷𝑙𝑖𝑚𝑖𝑡 is 

modified and plugged into the Eq. (4.1) as subsequent. 

𝑞 = {

𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

                     𝑡 ≤  𝑡∗ 

𝑞𝑖 exp(−𝐷𝑙𝑖𝑚𝑖𝑡 𝑡)            𝑡 > 𝑡∗   

 (4.3) 

 

Eq. (4.3) presents Modified Hyperbolic Decline curve (MHD) (Robertson 1988). 

Where, 

𝐷𝑙𝑖𝑚𝑖𝑡 = −
ln [1 − 𝑝]

365
 (4.4) 

And 
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𝑡∗ =
(

𝐷𝑖

𝐷𝑙𝑖𝑚𝑖𝑡
− 1)

𝑏𝐷𝑖
 

(4.5) 

 

The value of 𝑝 sets to 10%. 

4.3.2. Power Law Exponential Decline (PLED) 

Eq. (4.6) defines the Power Law Exponential decline model (Ilk et al. 2008).  

𝑞 = 𝑞𝑖 exp (−𝐷∞𝑡 − 𝐷𝑖  𝑡𝑛) (4.6) 

 

Where, 𝑛 denotes the time exponent (typically between 0 and 1). 𝑞𝑖 indicates the initial 

rate 𝑞 (t=0). 𝐷∞ and 𝐷1 present the decline rate at infinite time and instantaneous decline 

at time t=1, (assuming 𝐷∞=0), respectively. 

𝐷𝑖 =
𝐷1

𝑛
 (4.7) 

 

Typically the value of 𝑏 in MHD and 𝑛 in PLED should be between 0 and 1, however, 

Seshadri and Mattar (2010) denoted that this range is not suitable when the permeability 

is extremely low and hence it is necessary to increase 𝑏 or 𝑛 to more than 1. 

In the current research, 𝑞𝑖, 𝑏 and 𝐷𝑖 of MHD and 𝑞𝑖, 𝐷∞, 𝐷𝑖 and 𝑛 of PLED are set as 

the Bayesian random variables. 

4.3.3. Bayesian paradigm and Markov Chain Monte Carlo (MCMC) 

The notions of Bayesian paradigm and Markov Chain Monte Carlo along with all 

equations and functions are similar to what is discussed in section 2.3. Therefore, we avoid 

reiterating all materials in this section and encourage the reader to study the cited section. 
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4.3.4. Parallel Scaled Adaptive Metropolis Hasting (PSAMH) 

Although, the concept of PSAMH comprehensively is initiated in section 2.3.2 and 

extra augmentation features are explained in section 2.4 and the implementation sequence 

is delineated in section 2.5, due to importance of PSAMH framework, a concise 

computation procedure together with some significant equations are recapitulated in this 

section. 

Authors in section 2.3.2 constructed the PSAMH framework to draw a set of random 

samples utilizing 𝑚 concurrent chains considering the optimum acceptance rate, 𝜉𝑡𝑎𝑟𝑔𝑒𝑡, 

of Adaptive MCMC approach. PSAMH elaborates the coefficient of variation (CoV) to 

regulate the proposal distribution step size. CoV indicates the fraction of the standard 

deviation (σ) and mean (μ) of generated random variables (Forkman 2009). 

CoV =
σ

μ
 (2.12) 

 

Subsequent, we briefly describe the required steps should be taken to implement 

PSAMH, however, we recommend the practitioner to read section 2 to better discern the 

gist of PSAMH framework prior proceeding to the next section. 

• Retrieve the optimum acceptance rate, 𝜉𝑡𝑎𝑟𝑔𝑒𝑡(𝑑), from Eq.(2.18).  

𝜉𝑡𝑎𝑟𝑔𝑒𝑡(𝑑) = 0.234 +
0.654

(1 + 0.775 ∗ 1.846 ∗ 𝑑)1/0.775
 (2.18) 

 

𝑑 indicates the parameter space size or in other words, the number of random variables. 

• Draw [𝑚×𝑑] combination of the coefficient of variation (CoV) from the Chi 

square distribution with degree of freedom of 1.5 ( 𝐶ℎ𝑖2(1.5)). 
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• Obtaining the initial values of CoV, construct the covariance matrix, ∑ of the 

Multivariate Normal distribution applying Eq.(2.14) . 

∑ = [
(CoV1 ∗μ1)2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ (CoV𝑑 ∗μ𝑑)2

] (2.14) 

 

Where, for 𝑖 = 1, μ𝑗 denotes the initial values of forward model parameters whereas for 

𝑖 > 1, μ𝑗 is determined by 𝜽𝑖−1 . 

• At iteration 𝑖, assess the state of MH criterion (Eq.(2.3)) in each single 𝑚 

concurrent chains. Determine the final accepted sample among 𝑙 presumably 

accepted samples, (0 ≤ 𝑙 ≤ 𝑚), adapting the following condition. 

𝑟̂𝑖,𝑘,𝑘′ =
𝜋(𝜽𝑖,𝑘|𝒅𝑜𝑏𝑠)

𝜋(𝜽𝑖,𝑘′|𝒅𝑜𝑏𝑠)

𝑓(𝜽𝑖−1|𝜽𝑖,𝑘)

𝑓(𝜽𝑖,𝑘|𝜽𝑖−1)

𝑓(𝜽𝑖,𝑘′|𝜽𝑖−1)

𝑓(𝜽𝑖−1|𝜽𝑖,𝑘′)
 (2.11) 

 

𝑘 and 𝑘′ are two accepted concurrent chains of 𝑙 total accepted samples. If 𝑟̂𝑖,𝑘,𝑘′ > 1, 

then 𝜽𝑖,𝑘 would be perpetuated as the accepted sample otherwise, 𝜽𝑖,𝑘′ would be replaced 

as the current accepted sample. Terms 
𝑓(𝜽𝑖−1|𝜽𝑖,𝑘)

𝑓(𝜽𝑖,𝑘|𝜽𝑖−1)
  and 

𝑓(𝜽
𝑖,𝑘′|𝜽𝑖−1)

𝑓(𝜽𝑖−1|𝜽𝑖,𝑘′)
 are substituted by 

Eq.(2.17). The above step should be repeated 𝑙 − 1 times to the last accepted concurrent 

chain. 

• Specify the batch size iteration (e.g.  500 or 1000) and evaluate the state of 

proximity of the current acceptance rate to the optimum acceptance at iterations 

equal to the batch size by applying Eq.(2.20).  

𝛾𝑖 = 𝜉𝑖/𝜉𝑡𝑎𝑟𝑔𝑒𝑡 (2.20) 
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Where, 𝛾𝑖 presents the scaling factor. In addition, impose 𝛾𝑖 via Eq. (2.21) into the 

covariance of the proposal distribution. 

∑ = 𝛾2 ∗ [
(CoV1 ∗ μ1)2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ (CoV𝑑 ∗ μ𝑑)2

] (2.21) 

 

• Other feature appeared in this research is the reduction of redundancy of the 

number of concurrent chains, 𝑚 to 𝑚′ at 𝑖 = 10000. The notion is choosing 𝑚′ 

number of more frequent selected of the combination of CoV relying on the 

histogram of CoV. This feature eventually deals with the computational time 

efforts (see section 2.4.2).  

4.4. Observed data 

The observed data in this research retrieved from the Eagle Fort Shale formation and 

comprises of four wells (Table 4.1). Since, wells produced both oil and gas, the production 

flow rate unit is set as the Barrels of Oil Equivalent per Day (BOED). 

Table 4.1 Well's number and production duration 

Well name Well 1 Well 2 Well 3 Well 4 

Production duration (Day) 738 727 721 740 

 

Fig. 4.1 also demonstrates four wells production rate on the daily basis with the 

normal and log-log scales.  
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Fig. 4.1. Daily production rate of wells, right, normal scale and left log-log scale 

 

4.4.1. Preparation of observed data 

Considering the wells’ production plot (Fig. 4.1), some outliers are observed which 

unnecessarily mislead the general trend of data. In the decline curve methods, moreover, 

it is recommended to remove outliers to better assess the well behavior. To approximate 

the possible shape of the error of observed data, which is the tradeoff between the data 

and fit curve, it is required to compare the empirical cumulative density function (CDF) 

of all wells with known distribution functions. The Normal and Lognormal distribution 

functions are served as the error distribution alternatives and the results are depicted in 

Fig. 4.2, left. The comparison of CDF plots substantiates the meticulous selection of the 

Normal distribution as the plausible shape of the error. By examining the error of the 

observed data in proximity of the Nonlinear Least Square (NLS) optimized fit curve, the 

same conclusion also can be drawn, Fig. 4.2, right. Note that, to evaluate the state of 

lognormal CDF for error of NLS optimized curve (Fig. 4.2, right), initially the vector of 

residual is shifted to the positive values - Lognormal function does not accept negative 

numbers- and after obtaining the CDF, the result is dragged back to the original values. 
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Fig. 4.2. Left, CDF plots of raw data, Normal and Lognormal distribution and 

right, CDF plots of residual of optimized NLS curve and raw data, 

Normal and Lognormal distributions 

 

Therefore, for each forward model, a code is scripted to remove the outliers in the 

several running strata and trim the skewness of data to fit the shape of the error as close 

as possible to the Normal distribution. The subsequent steps are mapped to filter the raw 

data and augmented by the following flowchart (Fig. 4.3). 

 

• Set the confidence interval (for example 95%) of the raw data that is presumed to 

be trimmed, then the error becomes Alpha=5%. The main notion is to remove 

Alpha percent of raw data along to the skewness.  

• Specify the Alpha reduction factor (0.3) to taper the size of Alpha in each loop. 

This quantity takes a portion of the Alpha value out of the calculation each time. 

In addition, set the target alpha value (Beta=1e-3). Beta is the minimum error, 

which is intended to obtain. 

• Set the Gamma value (Gamma=3.5). Gamma is used to outweigh on the tail that 

has the skewness during the filtering.  

• Determine the residual of the NLS optimized curve and raw data. 
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• Identify the skewness of the residual. 

• If skewness>0, compute the succeeding conditions 

 

𝐿𝑜𝑤𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙,
Alpha

2 𝐺𝑎𝑚𝑚𝑎
) 

(4.8) 

𝑈𝑝𝑝𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, 100 −
Alpha ∗ 𝐺𝑎𝑚𝑚𝑎

2 
) 

 

If skewness<0 

 

𝐿𝑜𝑤𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙,
Alpha ∗ 𝐺𝑎𝑚𝑚𝑎

2 
) 

(4.9) 

𝑈𝑝𝑝𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, 100 −
Alpha

2 𝐺𝑎𝑚𝑚𝑎
) 

 

• Remove the points which their quantities are more than 𝑈𝑝𝑝𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 and 

less than 𝐿𝑜𝑤𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 . 

• Determine the new value of Alpha. 

 

Alpha𝑛𝑒𝑤 = reduction factor ∗ Alpha (4.10) 

 

• If Alpha𝑛𝑒𝑤 ≥ Beta, repeat the steps from the computation of the residuals, 

otherwise halt the loop. 

 

Note that, values of Alpha, Beta, Gamma and Alpha reduction factor are determined by 

trial and error and can be different from case to case. 
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Fig. 4.3. Flowchart of filtering implementation 

 

Fig. 4.4 demonstrates the sequence of implementation of filtering mechanism in the 

schematic format. The red curvature depicts the target distribution of residual, which 

presumably there is no information about it. The Gray curvature illustrates the long left 

tailed distribution of residual. The Blue star and Gray cross represent the percentile of raw 

data, which is identified as the outlier by the filtering algorithm and the trimmed data, 

respectively.  

Set the initial values: Alpha, Beta, Gamma, Alpha reduction factor

Drive the NLS and determine the residuals 

Identify the skewness of the residuals 

 

Halt the loop 

    Eq.(3.10)  

No 

Yes 

Skewness >0 => Eq.(3.8), Skewness <0 => Eq.(3.9)  

Alpha ≥ Beta 

Remove the points beyond the limits indicated by Eq.(3.8) or Eq.(3.9)  
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Fig. 4.4. Schematic configuration of residual of NLS and the raw data alongside 

the target error curvatures according to each skewness reduction step. 

Respectively from step one, top left to the step four down right  

 

The observed data before (red square) and after (gray star) filtering alongside the NLS 

optimized curves (dashed and solid lines represent raw and filtered data, respectively) in 

the normal and log-log scales for Well 1-MHD is demonstrated in Fig. 4.5.  

  

Fig. 4.5. Observed data and nonlinear least square fit before and after filtering 
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Fig. 4.6 depicts the state of the error between the observed data and optimized curves 

associated with the raw and filtered data. The boundary lines vividly display the oscillation 

of the error around zero. The skewness trimming mechanism clearly has put the observed 

data into more organized order. 

 

Fig. 4.6. Error between data and optimized curve before and after filtering 

 

A comparison of the raw and observed relative frequency histograms and cumulative 

density functions are shown in Fig. 4.7. The plot of CDF as well as the relative frequency 

histogram of raw data illustrates an extreme left and moderate right skewness, which are 

removed after applying the filtration.  

  

Fig. 4.7. Comparison of the relative frequency histogram and cumulative density 

function of raw and filtered data 
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Furthermore, Fig. 4.8 exhibits the Normal distribution fits to the filtered data in the 

relative frequency histogram and CDF plots. Fig. 4.8 develops the possible shape of the 

likelihood of Bayesian analysis, which is the trade of between the observed data and 

forward model’s outcome.  

  

Fig. 4.8. Normal distribution fits to the filtered data, left, relative frequency 

histogram, right, cumulative density function 

 

4.5. Experimental design and input data 

In this research, eight case studies encompass the ensemble of four wells and two 

forward models are driven. Table 4.2 illustrates the range and initial values of random 

variables corresponding each forward model. The range is defined to provide a wide 

constraint for Uniform distribution as the non-informative prior. The initial values and 

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 are obtained from the NLS optimization of data and statistics of residuals.  

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 denotes the standard deviation of the likelihood which is set as a constant value 

for PSAMH. 

Applying Eq. (2.18) quantities of the target optimized acceptance rate for MHD and 

PLED become 0.31 and 0.289, respectively.  
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Table 4.2 Initial and range of variables in addition to the standard deviation of 

likelihood of experimental cases 

Forward 

model 

Variable Range of 

variables 

 [min, max] 

MCMC initial values 

Well 1 Well 2 Well 3 Well 4 

MHD 

𝑏 [1e-4, 2] 1.38 1e-4 0.726 0.24 

𝐷𝑖 [1e-4, 20] 0.004 0.0028 0.003 0.0027 

𝑞𝑖 (BOED) [0.5, 2.5] 

×max(data) 

757.17 647.85 475.95 514.39 

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 - 45.24 31.93 19.51 34.2 

PLED 

𝑛 [1e-4, 2] 0.145 0.01 0.11 0.06 

𝐷𝑖 [1e-4, 20] 0.1 0.928 0.885 0.982 

𝐷∞ [1e-14, 2e3] 0.0011 0.0027 0.0011 0.0018 

 𝑞𝑖 (BOED) [0.5, 2.5] 

×max(data) 

1301.3 1698.2 1734.8 1685 

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 - 42.83 31.94 20.39 32.67 

 

Max (data) in Table 4.2 indicates the maximum value of the observed data in each 

case.  

4.6. MCMC implementation 

We implemented MCMC experiment, firstly by selecting the initial values of random 

variables, recognition of the plausible shape of the likelihood and determination of priors. 

To achieve the initial values and associated distribution of likelihood along with the 

quantity of standard deviation, the NLS optimization is employed (Fig. 4.8). The number 

of concurrent chains for both methods is initially set to 𝑚 = 100 and after 1e4 iteration is 
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reduced to 𝑚′ = 30. The values of iteration for MHD and PLED are set to 1e6 and 2e6, 

respectively.  

In MCMC, it is a common practice to set a point (burn-in), which indicates the state 

of stationary. The cumulative mean and standard deviation (sometime they are referred as 

the online mean and standard deviation) besides the general trend of MCMC experiment 

for each variable are the methods which are applied to identify the burn-in point. The burn-

in point eventually is set to 20% of total iterations for either forward models. 

The Bayesian calibration implementation, subsequently, is merely delineated through 

the comprehensive description of cases Well 1-MHD and Well 1-PLED and the associated 

results of entire cases are provided in the section 0.  

4.6.1.1. Well 1-MHD 

MCMC experiments 

MCMC experiments of three parameters of MHD model, which are set as random 

variables are demonstrated in Fig. 4.9, left. The Cumulative mean and standard deviation, 

which are initiated by C.M. and C.STD, demonstrate the state of stationary of MCMC 

experiment, Fig. 4.9, right. 

MCMC experiment as well as the cumulative mean and standard deviation reveal the 

rapid convergence of MCMC chain. The stationary is presumably achieved when both 

cumulative mean and standard deviation become straight lines.  
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Fig. 4.9. MCMC experiments and the corresponding cumulative mean and standard 

deviation of MHD 

 

Relative frequency histogram and cumulative density function 

The vector of random samples after burn-in point construct the posterior space. 

Obtaining the posterior space, one would be able to infer the statistics. The relative 

univariate frequency histogram (R.F.H), joint distribution and CDF plots of random 

variables are demonstrated in Fig. 4.10.  

The formation of joint distribution plots unveils the strong positive correlation 

between random variables, whilst the red zones at the center represent the higher 

probability of occurrence in compare to the edges. The relative frequency histograms and 

CDF plots also present some degree of tendency toward the Normal distribution. 



 

88 

 

 

  

 

  

 

 

    

Fig. 4.10. Joint distribution, relative frequency histogram and CDF of MHD 

model random variables 

 

Three-dimensional joint distribution 

Fig. 4.11 also displays the joint distribution of MHD random variables in an oval 

configuration. The rad region at the center of oval volume indicates the higher probability 

of occurrence. 

 
Fig. 4.11. Three-dimensional joint distribution of MHD random variables 

 

Realizations 

It is evident that, one of the main advantages of the Bayesian analysis is the ability of 

prediction of model behavior by drawing thousands of random samples from the posterior 
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and plugging them into the forward model. The whole procedure appears as the realization 

in the Bayesian literature. In the subsequent section, we deliver Bayesian inference 

through the 10,000 realizations of forward models. 

Current production time (daily basis) 

Likely realizations corresponding the current production time in compare to the 

observed data (red stars) in normal and log-log scales are displayed in Fig. 4.12, top right 

and left. The mean of realizations, furthermore, demonstrate a perfect match to the 

observed data (Fig. 4.12, middle, left and right). The standard deviation of model 

realizations, which is occasionally interpreted as the level of confidence or inference 

certainty, are depicted in Fig. 4.12, down, left and right.  

  

  

  

Fig. 4.12. 10,000 realizations, mean and standard deviation of realization in normal 

and log-log scales 
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The plot of standard deviation connotes that at the beginning of the process, the level 

of confidence is lower than the other times. By proceeding, the certainty gradually sours 

whilst at the end it is slightly altered. 

Current production time (cumulative) 

Another significance of Bayesian model realization emerges from the computation of 

the cumulative production. In this research, we applied the principles of the numerical 

integration to achieve the cumulative production out of the forward model functions.  

  

Fig. 4.13. Left, cumulative production and right, mean of, model realizations 

 

The dispersion of model realizations is soared by proceeding in time (Fig. 4.13, right)  

30 years’ prediction of production time (daily basis) 

 

In order to provide some insights about the future production’s status of a well, by 

supplying the model realization method, the current production data extrapolates to 20 or 

30 years of productions. Note that, empirical models sometimes underestimate or 

overestimate the long-term production; hence taking precautions are advisable concerning 

the type of forward models. Fig. 4.14 demonstrates the 30 years production realization as 

well as the mean and standard deviation of realizations in both normal and log-log scaled. 
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Fig. 4.14. 30 years realization, mean and standard deviation of model realization 

in both normal and log-log scales 

 

Considering the plot of standard deviation of realizations, it is alluded that by 

increasing the production time up to 2000 days, the level of certainty is declined and after 

that, it is continuously improved. 

30 years’ prediction of production time (cumulative) 

Similar to the current time production, the 30 years’ cumulative realization is also 

provided (Fig. 4.15). However, the diffusion of realization is considerably higher than the 

current time production.  

  

Fig. 4.15. Left, 30 years and right, mean of cumulative realizations 
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4.6.1.2. Well 1-PLED 

The entire aforementioned procedures about MHD are also held for PLED model. 

Nevertheless, PLED comprises one more random variable in compare to MHD and hence 

is necessitated to run to more iterations (2e6). Thus, MCMC computationally takes more 

time.  

MCMC experiments 

MCMC experiments and cumulative means and standard deviations of PLED random 

variables are shown in Fig. 4.16. Despite the immediate convergence of MCMC, the 

pattern of sampling is clearly changed in comparison to the MHD.  

  

  

  

  

Fig. 4.16. MCMC experiments and the associated cumulative mean and standard 

deviation of PLED 
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Relative frequency histogram and cumulative density function 

The univariate relative frequency histograms along with the joint distribution of 

random variables for PLED, distinctly imply the irregularity in the structure of the 

posterior in compare to the MHD (Fig. 4.17).  

 

   

 

  

  

 

   

 

 

     

Fig. 4.17. Joint distribution, relative frequency histogram and CDF of PLED 

random variables 

 

Generally, on contrary to the MHD, the correlation coefficient of variables in PLED 

appears in both negative and positive quantities. 
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Realizations 

Current production time (daily basis) 

Realization of PLED in both normal and log-log scales are matched to the observed 

data, Fig. 4.18. In addition, the mean and standard deviation of model realization are 

retrieved and illustrated in the same figure. 

  

  

  

Fig. 4.18. 10,000 realizations, mean and standard deviation of realization in 

normal and log-log scales, PLED model 

 

The mean of realization presents a perfect match to the observed data. Moreover, as 

it is expected, the standard deviation begins with the larger quantity and accepts smaller 

values by increasing the production time. 
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Current production time (cumulative) 

Realizations of the cumulative production of current time elucidates more diffusion 

at the end of current production time (Fig. 4.19).  

  

Fig. 4.19. Left, cumulative production and right, mean of, model realizations 

 

30 years’ prediction of production time (daily basis) 

30 years realization of model prediction, the mean and standard deviation of 

realizations plots in PLED depict similar behavior as MHD (Fig. 4.20). However, the level 

of confidence is slightly less than MHD model at the beginning. 

  

  

  

Fig. 4.20. 30 years realization, mean and standard deviation of model realization in 

both normal and log-log scales 

 



 

96 

 

30 years’ prediction of production time (cumulative) 

Fig. 4.21 demonstrates the cumulative production for 30 years. The trend of 

production after 2000 days almost appears to be constant. Some deviation can be seen in 

the developed configuration, although it is far less than MHD. 

  

Fig. 4.21. Left, 30 years and right, the mean of cumulative realizations 

 

4.7. Results and discussion 

Following, the retrieved values of mean and standard deviation of forward models’ 

random variables as well as the acceptance rate of experimental cases are provided in 

Table 4.3. The captured acceptance rates produced a great degree of agreement to the 

optimized acceptance rates. Nevertheless, the general trend of variables is altered from 

one well to another. For instants, variable 𝑏 of MHD extended from 0.0068 in Well 2 to 

1.39 in Well 1, while n covered a range between 0.0039 and 0.16. Parameter 𝐷∞ provided 

small quantities in all cases. Variable 𝑞𝑖 presented no consistency in MHD and PLED. 𝑞𝑖 

is accepted noticeable larger mean and standard deviation values in PLED. 
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Table 4.3 Mean and standard deviation of model varaiables along with the 

acceptance rate of MCMC experiments 

Forward 

model 

Variable Well 1 Well 2 Well 3 Well 4 

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

MHD 

𝑏 1.4E0 9.4E-2 6.8E-3 9.4E-3 7.3E-1 4.9E-2 0.25 
5.4

E-2 

𝐷𝑖 4.2E-3 3.1E-4 2.8E-3 3.0E-6 3.1E-3 1.0E-4 2.7E-3 
1.0

E-4 

𝑞𝑖 (BOED) 758.7 10.6 648.5 3.56 476.3 4.1 514.7 
4.9

9 

Acceptance 

rate % 
31.03 31.02 31.14 30.99 

PLED 

𝑛 1.6E-1 5.3E-2 3.9E-2 1.2E-1 1.3E-1 1.6E-2 7.5E-2 
1.6

E-2 

𝐷𝑖 3.9E-1 1.7E-1 2.6E-1 3.1E-1 7.4E-1 1.1E-1 7.8E-1 
1.6

E-1 

𝐷∞ 1E-3 8.0E-5 2.7E-3 2.3E-4 1.1E-3 5E-5 1.8E-3 
5E-

5 

 𝑞𝑖 (BOED) 1301.9 223.6 896.9 314.1 1505.3 161.3 1386.5 
206

.6 

Acceptance 

rate % 
29.1 28.73 28.99 28.95 

4.7.1. Comparison of MHD and PLED 

Comparison plots of all experimental cases are demonstrated and discussed here, to 

be better able to perceive the behavior of forward models regarding the different 

production data.  

4.7.1.1. Well 1 

Current production time (daily basis) 

The mean of realization in both models show a good match with the observed data. 

However, they crossed each other in several times (Fig. 4.22). The plot of standard 

deviation also exhibits a good agreement between both methods.   

Current production time (cumulative) 

Both methods present the same cumulative production mean and standard deviation 

for the current time (Fig. 4.23).  
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A slight divergence between the cumulative standard deviation of models introduced 

more confidence in MHD. 

  

  

Fig. 4.22. Mean and standard deviation of MHD and PLED in normal and log-log 

scaled, Well 1 

 

  

  

Fig. 4.23. Mean and standard deviation of the cumulative production of MHD and 

PLED in normal and log-log scales, Well 1 
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30 years’ production time (daily basis) 

PLED in Fig. 4.24 depicts less production for a long period of time, although, the 

corresponding standard deviation becomes less which means more confidence about the 

modeling by proceeding in time. 

 

  

  

Fig. 4.24. Mean and standard deviation of 30 years production for MHD and PLED 

in normal and log-log scales, Well 1 

 

30 years’ production time (Cumulative) 

The cumulative production also pursues the same trend. Although, the cumulative 

mean of MHD provides more production during 30 years, the level of certainty is relatively 

less than PLED (Fig. 4.25). 



 

100 

 

  

  

Fig. 4.25. Mean and standard deviation of 30 years cumulative production for 

MHD and PLED in normal and log-log scales, Well 1 

 

4.7.1.2. Well 2 

Current production time (daily basis) 

The mean of realizations in both methods entirely cover each other (Fig. 4.26). The 

standard deviation of MHD, however, started with smaller quantity but after 300 days, 

both methods coincide each other.   

Current production time (cumulative) 

The difference between two methods is not distinguishable in Fig. 4.27. Nevertheless, 

a trivial departure in the standard deviation is captured. 
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Fig. 4.26. Mean and standard deviation of MHD and PLED in normal and log-log 

scales, Well 2 

 

  

  

Fig. 4.27. Mean and standard deviation of the cumulative production of MHD 

and PLED in normal and log-log scales, Well 2 
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30 years’ production time (daily basis) 

The agreement in the production is continued into 30 years of prediction (Fig. 4.28). 

In the normal plots, no significance can be recognized while the log-log scale provides a 

better assessment regarding the productions. 

  

  

Fig. 4.28. Mean and standard deviation of 30 years production for MHD and 

PLED in normal and log-log scales, Well 2 

 

30 years’ production time (Cumulative) 

The only noticeable difference in the cumulative production for 30 years appears in 

Fig. 4.29 regarding standard deviations when the level of confidence become less in the 

MHD model. 
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Fig. 4.29. Mean and standard deviation of 30 years cumulative production for 

MHD and PLED in normal and log-log scales, Well 2 

 

4.7.1.3. Well 3 

Current production time (daily basis) 

The mean and standard deviation of realization of both methods coincide with each 

other and a slight difference can be observed for the current production time.  

Current production time (cumulative) 

The mean of cumulative production depicts similar trend; however, some deviation 

can be recognized in the plot of standard deviation. The certainty of PLED method on 

contrary to the earlier cases moderately becomes less than MHD. 
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Fig. 4.30. Mean and standard deviation of MHD and PLED in normal and log-

log scales, Well 3 

  

  

  

Fig. 4.31. Mean and standard deviation of the cumulative production of MHD and 

PLED in normal and log-log scales, Well 3 
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30 years’ production time (daily basis) 

The comparison plots of mean of 30 years’ production depicts an extra production in 

MHD over PLED. Meanwhile, the level of confidence in MHD gradually declines after a 

certain production time. 

  

  

Fig. 4.32. Mean and standard deviation of 30 years production for MHD and 

PLED in normal and log-log scales, Well 3 

 

30 years’ production time (Cumulative) 

Fig. 4.33 displays the diffusion between the cumulative mean and standard deviation 

of realization during 30 years of production. MHD provides a developed production while 

PLED shows less progress after about 2000 days. In addition, MHD demonstrates less 

certainty regarding the production time. 
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Fig. 4.33. Mean and standard deviation of 30 years cumulative production for 

MHD and PLED in normal and log-log scales, Well 3 

 

4.7.1.4. Well 4 

Current production time (daily basis) 

The mean of realizations of both methods features an acceptable match with observed 

data. The plot of standard deviation almost present similar trend for MHD and PLED. 

Current production time (cumulative) 

The plot of cumulative production in MHD and PLED pursues the same behavior for 

daily production. In this case either methods provide similar results associated with the 

mean and standard deviation of realizations. 



 

107 

 

  

  

Fig. 4.34. Mean and standard deviation of MHD and PLED in normal and log-log 

scaled, Well 4 

  

  

  

Fig. 4.35. Mean and standard deviation of the cumulative production of MHD and 

PLED in normal and log-log scales, Well 4 
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30 years’ production time (daily basis) 

Whereas the plot of mean of 30 years’ production demonstrates the identical 

inclination, the degree of confidence in the result of MHD is relatively less than PLED. 

  

  

Fig. 4.36. Mean and standard deviation of 30 years production for MHD and 

PLED in normal and log-log scales, Well 4 

 

30 years’ production time (Cumulative) 

Despite MHD provides more cumulative production during 30 years, the standard 

deviation of realization significantly sours in compare to the PLED. 
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Fig. 4.37. Mean and standard deviation of 30 years cumulative production for 

MHD and PLED in normal and log-log scales, Well 4 

 

The brief conclusion of this section can be found in section 8.1.3.  
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5. UNCERTAINTY ASSESSMENT OF A SEMI-ANALYTICAL 

MODEL APPLYING BAYESIAN PARADIGM FOR 

UNCONVENTIONAL RESERVOIRS 

 

5.1. Overview 

Semi-analytical models (Thermo-Chemo-Geomechanical) serve to evaluate the 

estimated ultimate recovery (EUR) of conventional/unconventional reservoirs. These 

models exhibit high parameter dimensionality, for which it becomes relevant to assess the 

influence of the parameters uncertainty into the model predictions. The objective of this 

work is to apply the Bayesian probabilistic calibration methodology that can delineate the 

impact of the experimental observations (field production data), the model predictions 

(from the semi-analytical model), and the expert judgment, onto EUR predictions. 

We exploited a semi-analytical model to account for the heterogeneous characteristics 

of fractured wells and its influence on a shale gas reservoir. Three key parameters are 

defined as control variables: Maximum Permeability (𝐾0), Threshold Permeability (𝐾𝐷
∗), 

and Skin Factor (s). Together, the Markov Chain Monte Carlo (MCMC) method and the 

Metropolis-Hasting (MH) rule allow for the sampling of the posterior distributions 

corresponding to each one of these calibration experiments. From these distributions, it is 

then possible to generate likely model realizations representing the well’s expected 

production. First and second order statistics of these realizations are used to assess 

confidence levels of production estimates from short to long term.  
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The probabilistic calibration permits to assess the expected value and variance of the 

model parameters. That is, for each calibration experiment, not only a probability density 

function can be retrieved for each random parameter, but also, the correlation structure 

among the parameters. The posterior generated for each calibration experiment, allows 

computing the cumulative means of the model production realizations. The use of 

Bayesian inference to assess the performance of the proposed analytic model for a given 

well production data shows that this uncertainty varies as the model parameters are 

allowed to vary. 

5.2. Introduction 

The semi-analytical production models allow us to simulate the behavior of the 

conventional and recently unconventional reserves incorporating the chemo-hydro-

geomechanical characteristics of a play (Mattar and Anderson 2003; Fuentes-cruz, Gildin, 

and Valkó 2013; Tarrahi, Gonzales, and Gildin 2014). These models, however, in 

particular suffer from the high dimensionality of parameter space, which requires several 

in-situ or laboratory tests to obtain appropriate values and yet for some of them it is 

impossible to suggest a straightforward acquisition method. Thus, a considerable degree 

of uncertainty in the computation and model parameters’ estimation is inevitable. The 

uncertainty in the observed data appears as another factor that also should be addressed. 

The inherent uncertainty may trigger the divergence of the outcome by overestimating or 

underestimating the estimated ultimate recovery (EUR). Therefore, it has become 

pertinent to assess the influence of uncertainty associated with the model parameter 

exerting probabilistic methods.  
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Bayesian probabilistic inference has become a reliable framework to assess the 

uncertainty embedded in the model results (Rotondi et al. 2006; Hoff 2009; Gelman et al. 

2013; Bedi and Harrison 2013). In order to assess the Bayesian inference, it often become 

necessary to apply the Markov Chain Monte Carlo (MCMC) (Faming, Chuanhai, and 

Raymond 2010) and Metropolis-Hastings algorithm together to be able to feature the 

posterior. However, it should be taken into consideration that sometimes the complexity 

of the problem makes the MCMC algorithm computationally inefficient.  Hence, these 

problems unavoidably lead the inverse solution to the more sophisticated Bayesian 

techniques such as Adaptive MCMC ensemble or Parallel Tempering frameworks which 

noticeably enhance the efficiency of sampling.  

Roggero and Guérillot (1996) demonstrated the application of Bayesian analysis for 

the reservoir numerical modeling considering the uncertainty of geological parameters. A 

comparative study also derived to quantify the uncertainty of production forecasts in Floris 

et al. (2001). Furthermore, the application of deterministic and Bayesian probabilistic 

methods considering the scaling properties are broadly discussed in Vega, Rojas, and 

Datta-Gupta (2004). The significance of Bayesian analysis initially presented for the 

uncertainty assessment of Decline Curve models (Jimenez et al. 2005; Gong et al. 2011; 

Moridis et al. 2017).    

 Ibegbuna et al. (2012) employed the geometry of reservoir as the probabilistic 

random field to assess the behavior of Barnett Shale. A variety of techniques for 

forecasting a well production relying on the physical properties of a reservoir and 

corresponding limitations are provided and discussed in Lee and Sidle (2010). Moreover, 
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authors emphasized the importance of statistical approaches in analyzing production 

forecasting via comparison of most recent practical methods.   

In addition, Zhang and Srinivasan (2005) exhibited the application of Markov Chain 

Monte Carlo (MCMC) and Metropolis-Hastings sampler (MH) in identifying the variation 

of permeability in reservoirs.  

5.3. Methodology 

5.3.1. Semi-analytical model 

The exerted semi-analytical model incorporates the linear and exponential function 

planes alongside the dimensionless threshold permeability to address the non-uniform 

behavior of the permeability-area product (Fuentes-cruz, Gildin, and Valkó 2013). 

Besides, the model constructs the flow rate (Mscf/D) of production relying on several 

assembled Stimulated Reservoir Volume (SRV) to create a hydro-fractured block (Fig. 

5.1). The semi-analytical model employs the physical, fluid and mechanical characteristics 

of the reserve with the contribution of sixteen parameters. Although the majority of 

contributed parameters could be invariably acquired applying field or laboratory tests, yet 

there is no meticulous approach to approximate the initial value of some of them. Thus, it 

is recommended to elaborate the probabilistic inversion solution to retrieve the 

corresponding statistics and assess the associated uncertainties.  

In this study, the maximum permeability in millidarcy (𝐾0), threshold permeability 

(𝐾𝐷
∗), and skin factor (𝑠) all together represent three key variables which serve as the 
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random field of the Bayesian paradigm. The semi-analytical model, hereafter, calls 

“forward model” that is a common expression in the Bayesian literature.  

 

Fig. 5.1. The schematic configuration of the stimulated reservoir volume (SRV) 

and underlined production matrix, (reprinted with the permision from 

Fuentes-Cruz, Gildin, and Valkó 2014) 

5.3.2. Bayesian and Markov Chain Monte Carlo (MCMC) 

The applied method of Bayesian, MCMC are thoroughly discussed in section 2.3. 

5.4. Experimental design 

Table 5.1 illustrates the permutation of three random variables defining the case 

studies. Assimilation of variables eventually provides an insight, not only about the first 

and second order statistics of random field, but also the influence of the correlation 

structure on delineation of posteriori.   

Table 5.1 The permutation of random variables 

Parameters One parameter Two parameters Three parameters 
Maximum Permeability (𝐾0) 𝐶𝐾0  𝐶𝐾0−𝐾𝐷

∗  𝐶𝐾0−𝐾𝐷
∗ −𝑠  

Threshold Permeability (𝐾𝐷
∗

) 𝐶𝐾𝐷
∗  𝐶𝐾0−𝑠 

Skin Factor (s) 𝐶𝑠  𝐶𝐾𝐷
∗ −𝑠  
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5.5. Observed data and parameter initial quantities 

A set of Gas depletion log retrieved from the Barnett Shale development, provides 

the analysis observed data. The well log encompasses the total number of 988 days of 

production, which is also enclosed the entire required test results.  

In addition, the initial values assigned to forward model are given in Table 5.2. The 

initial values, represent the state of expert believe about the parameters, thus we invoke 

them as the “expert belief.” 

Table 5.2 The semi-analytical forward model parameters and initial assigned 

values   
Parameter Nomenclature Initial values 

1  Effective hydraulic- fracture half-length, ft. xf 400 

2  Dimensionless threshold permeability kD* 0.0021 

3  Maximum induced permeability, md k0 1.93E-03 

4  Skin factor, - s 0.216 

5  Bottomhole flowing pressure, psia pwf 500 

6  Half-length of SRV element, ft. y* 552 

7  Porosity, fraction fi 0.048 

8  Rock compressibility, psi-1 cf 0 

9  Water saturation, fraction Sw 0.169 

10  Formation thickness, ft h 306 

11  Reservoir temperature, °R  633.5 

12  Initial pressure, psia pi 3115 

13  Number of main hydraulic-fracture planes, nHF 0 

14  Langmuir storage capacity, scf/ton Vm 0 

15  Matrix density, gm/cc rB 2.38 

16  Langmuir pressure, psi pL 650 

 

Fig. 5.2 depicts the observed data (Red Cross) coupled with the expert model (Blue 

solid line) in normal and log-log scales. Both plots exhibit a subtle match amid observation 

and expert model.  
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Fig. 5.2. The well production of observed data (red cross) and expert belief (blue 

solid line), left daily normal and right, log-log scales  

 

Note that, not all set of observed data precisely demonstrates the cogent trend of 

production due to the outliers, hence requires to be filtered. In section 0, we featured a 

systematic filtering method that will become especially useful when a noticeable number 

of wells should be analyzed and applying a systematic filtering mechanism is inevitable.   

5.5.1. Implementation of MCMC 

In this section, we outline the methodology of MCMC in the format of 

implementation sequence of case 𝐶𝐾0−𝐾𝐷
∗ . Note that, we later demonstrate the results of 

entire case studies in the subsequent section.  

5.5.1.1. Optimization 

Optimization provides two major advantages featuring MCMC; comprising the initial 

values of random variables, and the possible shape of the likelihood distribution. The 

MCMC initial guess is achievable directly through the optimization when whole 

parameters but the random variables set as constant. Moreover, the approximation of 

likelihood distribution is developed from the residual (error) between the optimized fit 

curvature and the observed data. In this study, to address the optimization issue, the 
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method of non-linear least square method (NLS) is exerted. The fit of observed data and 

NLS optimization in normal and log-log scales is depicted in Fig. 5.3. 

  

Fig. 5.3. A fit of NLS optimization and observed data, left, normal scale, and 

right, log-log scale 

 

Fig. 5.4 , furthermore, shows the relative frequency histogram along with the 

cumulative density function plot of residuals.  

  

Fig. 5.4. Left, normal density function fits to the relative frequency histogram of 

residual, and left, the cumulative density function of residual and normal 

distribution  

 

The appropriate synchrony amid the Normal distribution and residual in the above 

figure, also appreciates the initial perception of the likelihood distribution configuration.  

In addition, the standard deviation retrieved from the Normal density function can be later 

induced in the likelihood distribution of MCMC experiment.  
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5.5.1.2. MCMC experiment    

We employed Eq.(2.3) and Eq.(2.6) to delineate the MCMC experiment. In this case, 

parameters 𝐾0 and 𝐾𝐷
∗  serve as the random variables whilst the other parameters are kept 

constant. An important question considering the MCMC is how to detect the convergence 

of sampling. There are several methods available which among them the cumulative mean 

and standard deviation plots of MCMC experiment are more favorable. The MCMC is 

converged when both the cumulative mean and standard deviation plots become straight 

lines. The similar conclusion also can be drawn by eyeballing the MCMC experiment 

plots. The point which after that the cumulative plots become straight indicates the 

stationary condition or convergence of samples and is invoked as the “Burn-In point.” 

 Fig. 5.5 depicts the MCMC experiment driven for 5e5 iterations on left and the 

cumulative mean and standard deviation of experiment on right. Moreover, the Burn-In 

point sets as 2e5. 

  

  

Fig. 5.5. Left, the MCMC experiment of 𝐾0 and 𝐾𝐷
∗ , and right, the cumulative 

mean and standard deviation of experiments 
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5.5.1.3. Posterior distribution and statistics 

The samples provided from MCMC, eventually generates the vector of posterior 

distribution that permits to capture the first and second order of statistics coupled with the 

correlation structure among the random variables. The associated plots presented in Fig. 

5.6 provide a vivid insight regarding the possible distribution of random variables as well 

as the state of correlation among them. In this case, the analogy between the Normal 

distribution and drawn histograms is irrefutable. Besides, the plot of joint distribution 

exhibits the negative correlation between variables. 

 

 

  

Fig. 5.6. The relative frequency histogram of random variables, left top and right 

down and the joint distribution of variables, left down 

 

Table 5.3 illustrates the numerical quantities associated with the mean, standard 

deviation, mode and correlation coefficient of the vector of random field.  

Table 5.3 The statistics of the vector of posterior and correlation coefficient of 

random variables 

Parameters Mean Mode Standard 

Deviation 
Correlation 

coefficient 

𝐾0, 𝑚𝐷 2.094e-03 2.093e-03 7.621e-06 
-5.829e-01 

𝐾𝐷
∗  4.774e-03 5.011e-03 2.817e-04 
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5.5.1.4. Current production realizations 

Drawing a number of random samples (for instance 1000) from the posterior and 

plugging them into the forward model allows us to capture the most likely vector of 

together expect values and standard deviations of the model realizations. The vector of 

expected values then approximates the trend of observed data regarding the current 

production time. Then, the plot of standard deviation quantifies the level of confidence 

about the Bayesian analysis which also sometimes recalls as the uncertainty assessment. 

The plot of 1000 realizations along with the observed data, mean and standard deviation 

of realizations in both normal and log-log scales are demonstrated in Fig. 5.7.        

  

  

  

Fig. 5.7. Top, 1000 realization and observed data, middle, mean and down, 

standard deviation of realization in left, normal and right, log-log scales 
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The plot of standard deviation depicts the state of certainty by progressing in time. 

Despite the certainty is less at the beginning of the process, the level of confidence sours 

after 200 days of depletion. 

5.5.1.5. 20 years’ production realization                         

A substantial application of the Bayesian analysis appears as a mean to anticipate the 

well production for long term. The extrapolation of realizations has become a reliable 

practice to approximate the well future depletion. Fig. 5.8 presents the 1000 realization 

plot together with the mean and standard deviation or realization in both normal and log-

log scales. 

  

  

  

Fig. 5.8. Top, 20 years’ realization of production, middle, mean and down, standard 

deviation of 20 years’ realization in left, normal and right, log-log scales 
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Standard deviation plot in Fig. 5.8 provides the significant improvement in the level 

of confidence after 2000 days. This plot allows us to perceive the behavior of well 

production for a long term and the necessity of acquiring data merely up to 2000 days.   

5.6. Results and discussion 

The analogy between statistics of entire case studies are illustrated in Table 5.4. 

According to Table 5.4, the expected value and mode of parameter 𝐾0 have not been 

noticeably altered, however, the level of confidence is dropped from one parameter to 

three parameters cases. 

Table 5.4 Mean, mode and standard deviation retrieved from the experimental 

designs  

Parameter Inference Case studies 

𝐶𝐾0 𝐶𝐾𝐷
∗  𝐶𝑠 𝐶𝐾0−𝐾𝐷

∗  𝐶𝐾0−𝑠 𝐶𝐾𝐷
∗ −𝑠 𝐶𝐾0−𝐾𝐷

∗ −𝑠 

𝐾0, 𝑚𝐷 

Mean 2.15e-03 - - 2.09e-03 2.35e-03 - 2.18e-03 

Mode 2.15e-03 - - 2.09e-03 2.35e-03 - 2.09e-03 

Standard 

Deviation 

6.76e-06 - - 7.62e-06 1.77e-05 - 4.28e-05 

𝐾𝐷
∗  

Mean - 1.04e-02 - 4.77e-03 - 8.37e-03 3.69e-03 

Mode - 9.42e-03 - 5.01e-03 - 8.02e-03 4.96e-03 

Standard 

Deviation 

- 5.83e-04 - 2.82e-04 - 4.56e-04 5.13e-04 

𝑠 

Mean - - 1.89e-01 - 2.52e-01 1.93e-01 2.29e-01 

Mode - - 1.89e-01 - 2.55e-01 1.93e-01 2.17e-01 

Standard 

Deviation 

- - 1.09e-03 - 3.09e-03 1.12e-03 6.23e-03 

 

Also, it is observed that the statistics of 𝐾𝐷
∗  varies from case to case, nevertheless, the 

range of variation is almost similar. Despite the mean and mode of parameter 𝑠 exhibits a 
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fluctuation, case by case, the certainty diminished for 𝐶𝐾0−𝐾𝐷
∗ −𝑠. The general pattern 

which can be traced in all cases is that by adding more random variables the level of 

confidence decreases, but the reduction rate is depended to each individual case study.  

Moreover, Table 5.5 provides the state of correlation coefficient among random 

variables in two different scenarios, two parameters together and three parameters 

together. Considering the corresponding quantities, it is observed that by increasing the 

size of random space, not only the order of correlation coefficient is changed, but the sign 

of them is also influenced. 

Table 5.5 The correlation coefficient between random variables 

Case studies 𝐾0 − 𝐾𝐷
∗  𝐾0 − 𝑠 𝐾𝐷

∗ − 𝑠 

Two parameters (𝐶,−,) -0.583 0.911 0.199 

Three parameters (𝐶,−,−,) -0.929 0.983 -0.9013 

 

For instance, the magnitude of correlation coefficient among parameters 𝐾𝐷
∗ − 𝑠 

indicates that the state of correlation has substantially variates from the less positively 

correlated in two parameters case to the highly negative correlated in the three parameters 

case.   

Following, several comparison plots drawn from the current and 20 years’ 

realizations. The current time mean realizations of whole experimental designs together 

exhibit a relatively identical match to the observed data, whilst the log-log scaled reveals 

a slight divergence in the expert model (Green solid line, Fig. 5.9, top). Observing the 

same plot, the 20 years’ realization, and the expert model underestimates the long-term 

production, however, entire study cases produce similar curvatures. 
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In addition, the standard deviation of experimental designs in Fig. 5.10 introduces 

more heterogeneity in the results. Despite beginning all current production time plots at a 

point about 30 Mscf/D, the standard deviation plot of 𝐾𝐷
∗  presents a completely reversed 

behavior and starts in proximity of zero Mscf/D. Also, the plot of skin factor in log-log 

scale depicts a sour in the level of confidence after a drop around 400 days. Generally, the 

state of certainty of analysis becomes vary from case to case. 

  

  

Fig. 5.9.  Analogy between the mean of realization of case studies and expert 

model for the short and long term of production 
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Furthermore, a similar analogy can be seen in the 20 years’ production. Note that, 

regardless of dissemination in the outcomes of standard deviation of realizations, their 

order of magnitude in comparison to the real scale of production is negligible.  

An extra feature to demonstrate the well depletion is the form of cumulative 

production (MMscf). Considering the produced plots, it is evident that, the cumulative 

plot in some cases develops a better perception about the production rate. 

  

  

Fig. 5.10. The standard deviation of realization of whole experimental designs 

regarding the current and long-term production 

 

The current and 20 years’ production time of cumulative mean plots (Fig. 5.11) depict 

a set of distinguished curvatures by progressing in time. The expert model and then case 

𝐶𝑠 exhibit the lower cumulative production rate both in the current and 20 years plots. 
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In analogy with the cumulative mean, the cumulative standard deviation is also can 

be drawn to elucidate the state of confidence of Bayesian analysis. From Fig. 5.12 it is 

alluded that, 𝐶𝑠 provides less uncertainty in both the current and 20 years’ production. 

  

Fig. 5.11. The ensemble of cumulative production rate, left, current and, right, 20 

years’ production time 

 

Furthermore, it is recognized that, although the case 𝐶𝐾𝐷
∗ −𝑠 shows less confidence for 

the current time, the case 𝐶𝐾0−𝐾𝐷
∗ −𝑠 erratically demonstrates a great degree of uncertainty 

regarding the long-term production. 

  

Fig. 5.12. The cumulative standard deviation of whole cases, left, the current, and 

right, the 20 years’ production 

 

The corresponding conclusions are provided in section 8.1.4. 
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6. APPLICATION OF THE SEQUENTIAL BAYESIAN UPDATING 

ON THE UNCERTAINTY QUANTIFICATION FOR AN 

EMPIRICAL OIL AND GAS PRODUCTION MODEL 

 

6.1. Overview 

Despite the recent substantial developments in the methods that deal with the 

Bayesian analysis, yet a straightforward procedure requires to be elaborated to feature the 

implementation mechanism of adding a new set of observations to the already existed data. 

Which is for, it is pertinent to investigate the significance of updating the state of belief 

by exerting the posterior of previously performed Bayesian paradigm as the prior of the 

current step, in compare to the merely derived Bayesian inference based on the aggregate 

vector of previous and updated observations. We also applied the Parallel Scaled Adaptive 

Metropolis-Hastings (PSAMH) framework to develop the Bayesian inference coupled 

with a new algorithm to construct a hybrid prior that allows incorporating the posterior of 

the previous Bayesian assessment. Additionally, whilst four sets of well depletion logs, 

retrieved from the Eagle Fort Shale, constitute the observed data; the Modified Hyperbolic 

Decline (MHD) Curve model delineates the well Estimated Ultimate Recovery (EUR). 

The performance evaluation of the Bayesian regular and updating approaches, 

subsequently implies the persistent reduction in the attained uncertainty using the updating 

technique for the short and long term of production. 
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6.2. Introduction 

The Bayesian paradigm has recently become popular amidst scholars and 

practitioners, due to its definite advantages over other probabilistic inference techniques. 

Also, Bayesian filtering (Z. H. E. Chen 2003; Lauritzen 2008; Sarkka 2013) denotes a 

general term for updating of the Bayesian inference when the new data continuously 

becomes available and encompasses several methods such as Sequential Monte Carlo 

updating (Doucet, Godsill, and Andrieu 2000), Particle filtering (D. S. Lee and Chia 2002; 

Arulampalam et al. 2002; Carvalho et al. 2010; Andrieu, Doucet, and Holenstein 2010; 

Lopes et al. 2012) or in particular, Kalman filtering (R. Chen and Liu 2000) . However, 

Bayesian filtering technically is pertinent to the case of closed-form problems while for 

the class of non-closed-form problems more sophisticated methods are required (Lauritzen 

2008).  

Andrieu, Freitas, and Doucet (1999), outlined the application of MCMC in the online 

updating in association with the Importance Sampling and Reversible Jump MCMC 

methods. The method is mainly useful when a closed-form model is inaccessible or 

unknown. More scholars have gradually incorporated the evolution of MCMC in the 

sequential Bayesian updating (Andrieu, Doucet, and Holenstein 2010; Y. Yang and 

Dunson 2013; Septier and Peters 2016). Despite all aforementioned constructed 

methodologies which deal with the stochastically updating data when the parameter space 

size is either known or unknown and some perception regarding the target distribution 

coexisted, the issue of selection an appropriate prior is yet to be addressed. In the case of 

closed-form problems it is plausible to derive Bayesian equations mathematically to 
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retrieve the Bayesian prior and posterior predictive distributions to enable utilizing them 

in the Bayesian updating analysis (Gelman, Meng, and Stern 1996; Held, Schrodle, and 

Rue 2010).  

The non-informative prior distribution is hypothesized whereas there is less 

knowledge about the possible shape of the target distribution statistics and that, the random 

samples are assumed to be independent and identically distributed (i.i.d). In such a case, 

applying Markov Chain Monte Carlo (MCMC) is inevitable (Gelman et al. 2013). MCMC 

along with the Metropolis-Hastings (MH) (Metropolis et al. 1953; Hasting 1970) 

algorithm integrates random samples over the entire parameter space to eventually 

converge to the true posterior distribution. MH algorithm renders an acceptance-rejection 

criterion by drawing random samples from a proposal distribution when the target 

distribution is inaccessible. 

The conjecture of a well’s depletion applying the production models has become a 

key tool to assess the well Estimated Ultimate Recovery (EUR) in either short or long 

period of time for Hydrocarbon plays (Robertson 1988; Fetkovich, Fetkovich, and 

Fetkovich 1996). In addition, dealing with the continuously incoming data raised the 

concern of how to absorb the outcomes of former analysis with the new data to enhance 

the resolution of future modeling. Considering the wide application of after Arps empirical 

models (Arps 1944) due to their readily implementation and few constitutive parameters, 

the Modified Hyperbolic Decline curve model (MHD) is selected to serve as a reliable 

framework to reproduce the well behavior (Robertson 1988; Ilk et al. 2008). MHD model 

hereafter is referred as the “Forward model” in the Bayesian analysis. 
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We established a mechanism that by obtaining the vector of posterior distribution 

from the former MCMC sampling and updating the observed data after a time interval, 

one shall be able to assimilate the current information as the prior of the next step of the 

MCMC experiment. In order to implement the sequential MCMC updating, firstly a 

sampler is required to readily and precisely constitute MCMC. Therefore, a novel 

methodology which is evoked as the Parallel Scaled Adaptive Metropolis-Hastings 

(PSAMH) is exerted (section 2.3.2). PSAMH by contributing parallelized concurrent 

chains automatically adapts the step size of the proposal distribution in the Metropolis-

Hastings algorithm to optimize the acceptance rate. PSAMH is initially originated from 

the Adaptive MCMC ensemble methods which have been widely iterated in recent 

literatures (Haario, Saksman, and Tamminen 2001; Bedard and Rosenthal 2008; Andrieu 

and Thoms 2008; Gareth O. Roberts and Rosenthal 2009; Rosenthal 2011). The 

applications of PSAMH exploiting empirical decline curves and semi-analytical models 

are thoroughly discussed in section 4, Moridis et al. (2017) and section 5, respectively.  

Secondly, we constructed a hybrid prior which encompasses the relative frequency 

histogram of the retrieved posterior along with the non-informative distribution when it 

becomes necessary which together serve as the next step prior and will discuss thoroughly 

later.  

The results attained from the contribution of aforementioned hybrid mechanism and 

PSAMH algorithm, incorporate to draw the forward model realizations that eventually 

appear as the mean and standard deviation of process. Whilst the mean of realization 

indicates the general trend of well behavior, the standard deviation regulates the inherent 
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uncertainty in the analysis. The comparison between the standard deviation of realizations 

retrieved from the updating and regular techniques utilized to denote the efficiency of 

updating method.  

6.3. Methodology 

6.3.1. Modified Hyperbolic Decline curve 

We exerted the Modified Hyperbolic Decline (MHD) in this section which previously 

discussed in section 4.3.1. 

6.3.2. Markov Chain Monte Carlo (MCMC) and Parallel Scaled Adaptive Metropolis-

Hastings (PSAMH)  

The implemention sequence of MCMC and PSAMH framework are comprehensively 

elaborated in section 2.3.2. 

6.3.3. Last time interval’s posterior as the current prior 

MCMC draws thousands of samples to gradually converge to the true posterior. 

Obtaining a set of posteriors, provides an opportunity to develop the prior of the next 

updating step. The multivariate relative frequency histogram is proposed as the key 

technique to impose the last vector of posterior as the current prior. However, often by 

updating the observed data, it becomes inevitable that the sampler searches the parameter 

space beyond the acquired posterior space. In order to address this issue, we impose the 

non-informative prior (Uniform distribution with a wide range of boundary values) as the 

enclosed term to switch to it when it becomes pertinent. Fig. 6.1 demonstrates a visual 
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configuration of a unimodal hybrid prior which is the combination of the last step posterior 

and the non-informative prior. 

 
Fig. 6.1. Demonstration of combination of posterior and non-informative 

prior as a hybrid prior 

 

6.3.4. Generating the current step prior 

Succeeding, the pseudo-steps employed to constitute the hybrid prior density function 

is featured. 

6.3.4.1. Determination of the bin size and range of histogram 

The following two subsections develop a method that allows generating the histogram 

of a 𝑑 dimensional posterior. 

• Set the number of bins (𝑛𝑏𝑖𝑛) of the relative frequency histogram drawn from the 

vector of last step posterior. 

• Applying the bin-size, split the range of vector of variables from the past posterior 

into 𝑛𝑏𝑖𝑛 segments. 
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∆𝜽 =
𝜽𝑚𝑎𝑥 − 𝜽𝑚𝑖𝑛

𝑛𝑏𝑖𝑛
                (𝜽 = 𝜃1, 𝜃2, … , 𝜃𝑑) (6.1) 

Where, 𝜽𝑚𝑎𝑥 and 𝜽𝑚𝑖𝑛 denote the maximum and minimum values of parameters 

(𝜽) retrieved from the posterior. 

Next, let 

𝑟𝑎𝑛𝑔𝑒(𝜽) = (𝜽𝑚𝑖𝑛 + 𝑖𝑖 ∗ ∆𝜽,  𝜽𝑚𝑎𝑥)        (𝑖𝑖 = 0,1, … , 𝑛𝑏𝑖𝑛 − 1) (6.2) 

 

𝑟𝑎𝑛𝑔𝑒(𝜽) permits to establish a 𝑑 dimensional matrix with equal number of bins at 

each individual direction.  

6.3.4.2. Generating the multivariate relative frequency histogram 

• Reckon the number of set of variables that lays inside each bin (𝑟𝑎𝑛𝑔𝑒(𝜽)) and 

store them in a 𝑀 = 𝑛𝑏𝑖𝑛
𝑑 matrix. Note that, the retrieved matrix encompasses 

several zero value components. 

• Divide the components of matrix, 𝑀 by the vector length of the last step posterior 

(𝑛𝑡𝑜𝑡𝑎𝑙) to derive the relative frequency histogram, 𝜋𝑙𝑎𝑠𝑡 𝑠𝑡𝑒𝑝 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜽).  

• Also, obtain the non-informative prior of random variables. 

𝜋𝑛𝑜𝑛−𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒(𝜽)~𝑈(𝜽𝑙𝑜𝑤𝑒𝑟−𝑏𝑜𝑢𝑛𝑑, 𝜽𝑢𝑝𝑝𝑒𝑟−𝑏𝑜𝑢𝑛𝑑) (6.3) 

 

• Substitute all components of 𝜋𝑙𝑎𝑠𝑡 𝑠𝑡𝑒𝑝 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜽) which are smaller than 

𝜋𝑛𝑜𝑛−𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒(𝜽) with the computed non-informative probability values (Eq. 

(6.3)). Implementing the above steps, a hybrid prior matrix incorporating the past 

posterior and non-informative distribution is achieved, 𝜋𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑝𝑟𝑖𝑜𝑟. Note that 

either limits (lower and upper limits) of the current hybrid prior become the non-

informative prior boundaries that is more broaden. The generated hybrid prior is 
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a matrix developed an equal possibility for all set of samples inside or outside the 

range of the last step posterior when the probability of current prior appears less 

than the non-informative prior.  

A typical configuration of a bi-dimensional histogram is depicted in      Fig. 6.2 with 

the number of bins set as 5. Additionally, considering the plot, some extra information 

such as the either boundaries ( 𝜽𝑚𝑖𝑛,  𝜽𝑚𝑎𝑥), ranges of variables, the rectangular volumes 

representative of the count of samples and the bin interval are pointed by arrows. 

 

 

     Fig. 6.2. A schematic configuration of relative frequency histogram and bin 

arrangements for a 2D random space 

 

6.3.5. Imposing the hybrid prior distribution into the updating MCMC 

• Draw a set of samples from the proposal distribution, 𝜽𝑖 . 

• Determine the position of the new set of drawn samples associated with the 

𝑟𝑎𝑛𝑔𝑒(𝜽) of the hybrid prior matrix. Indicate the corresponding probability 

 𝑟𝑎𝑛𝑔𝑒(𝜃1)  
𝑟𝑎𝑛𝑔𝑒(𝜃2)  

5 
4 

3 
2 

1 1 
2 3 

4 
5 

Number of samples lay amid bin 3, 3 range 

Number of samples lay amid bin 4, 3 range  

𝜃1,𝑚𝑎𝑥 

𝜃2,𝑚𝑖𝑛 

𝜃2,𝑚𝑎𝑥 

𝜃1,𝑚𝑖𝑛 

𝑏𝑖𝑛𝜃2,5  



 

135 

 

quantity from the prior matrix and set it as the current prior distribution value. 

Note that, if the range of current drawn samples is outside of the boundaries of 

𝑟𝑎𝑛𝑔𝑒(𝜽), the 𝜋𝑛𝑜𝑛−𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒(𝜽) is assigned as the associated current prior. 

• Pursue the PSAMH sampling as instructed earlier. 

6.4. Wells’ production logs 

Table 6.1provides four wells’ production data (Well 1 to Well 4) from the Eagle Ford 

Shale which serve as the observed data. We delineated a systematic framework in section 

0 to filter a raw depletion log to remove the unnecessary outliers.  

Table 6.1 Wells’ name and production duration before and after filtering 

Well name Well 1 Well 2 Well 3 Well 4 

Duration –Raw (Day) 738 705 721 740 

Duration –Filtered (Day) 665 592 609 650 

 

Utilizing the same mechanism, the raw data of wells are filtered and demonstrated in 

Fig. 6.3. Note that, in order to save the space in this paper, we avoided repeating the 

filtering procedure here, and thus encourage readers to study the above invoked paper to 

learn how to implement the filtration routine.  

  

Fig. 6.3. Filtered wells’ production data in the regular and log-log scales 
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In addition, the same procedure is employed regarding updating sequence from the 

first to the last time interval (Fig. 6.4, Well 1).  

  

Fig. 6.4. Sequential updating filtered and raw data, left, the regular and right the 

log-log scales for Well 1 

 

6.5. Experimental design and input data 

The computational experiment integrates seven updating sequence with 100 days’ 

intervals. Moreover, another test for the entire production time (Current) which is about 

700 days for all four wells are derived and compared to the last updating results 

corresponding to each case (Table 6.2). 

The procedure that features acquiring the MCMC initial values will be elaborated 

later. The range of random variables for the Uniform distribution set to 𝑏, [1e-4, 2], 𝐷𝑖, 

[1e-4, 20] and 𝑞𝑖 (BOED), ( [0.5, 2.5]×max(observed data)). 

6.6. Implementation of the sequential MCMC updating  

6.6.1. 100 days and the current production time 
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Table 6.2 Initial values of random parameters associated with each updating step 

Name 
Time (day) 

100 200 300 400 500 600 700 Current 
Variable 

Well 1 

𝑏 1e-4 4.2e-3 4.9e-4 1.96 1.98 1.99 1.89 1.38 

𝐷𝑖  3.7e-3 3.6e-3 4.3e-3 6.2e-3 5.1e-3 5.4e-3 5.4e-3 4.1e-3 

𝑞𝑖 (BOED) 772.6 771.08 791.11 796.45 764.78 775.94 782.65 757.16 

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑  31.68 29.52 50.78 42.98 40.53 41.02 45.24 45.24 

Well 2 

𝑏 2.0 0.79 0.36 7.5e-3 1.6e-3 6.3e-4 2.19e-4 1e-4 

𝐷𝑖  2.6e-3 2.2e-3 2.56e-4 1.2e-3 1.7e-3 1.7e-3 1.7e-3 1.7e-3 

𝑞𝑖 (BOED) 270.14 268.27 307.39 266.16 279.23 279.24 279.15 277.50 

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑  16.21 21.43 24.12 23.79 23.51 20.80 19.97 19.97 

Well 3 

𝑏 2 1.95 9.14e-4 5.2e-4 4.77e-4 0.54 0.63 0.73 

𝐷𝑖  1.3e-2 1.29e-2 2e-3 2e-3 2.3e-3 2.7e-3 2.8e-3 3e-3 

𝑞𝑖 (BOED) 623.47 619.43 435.87 437.22 452.2 461.15 462.19 475.95 

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑  33.55 14.35 13.95 13.96 18.89 18.44 19.52 19.52 

Well 4 

𝑏 2 1.93 1.91 1.96 3.3e-3 6.6e-4 1.2e-2 0.24 

𝐷𝑖  1.2e-2 1.2e-2 3.5e-3 3.8e-3 2.5e-3 2.5e-3 2.3e-3 2.7e-3 

𝑞𝑖 (BOED) 626.54 625.25 507.78 516.27 516.45 514.7 500.3 514.39 

𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑  18.3 27.18 33.75 41.17 39.0 38.59 34.21 34.21 

 

Bayesian analysis of the first 100 days as well as the current time production (about 

700 days) corresponds to the regular PSAMH sampling which is comprehensively 

outlined in section 4. The concise vertices of pseudo-sequence are recapitulated as 

subsequent 

• Construct the nonlinear least square optimization to capture the initial quantities 

of random variables coupled with the standard deviation of residual. Additionally, 

the histogram or cumulative density function plots of residuals permit to assess 

the possible configuration of the MCMC likelihood, 𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑.  

• Draw random samples exploiting the PSAMH framework. 
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Note that, the Normal distribution serves as the likelihood in the PSAMH sampling. 

PSAMH is iterated for 2e6 times to ensure attaining enough samples after achieving the 

stationary condition (Burn-In point). 

• Plot the MCMC experience along with the cumulative mean and standard 

deviation of random field to identify the state of convergence and then set the 

Burn-In point. 

• Assess the first and second order of statistics of posterior together with the 

correlation structure amid random variables. 

• Draw the short and long-term production realizations by plugging the vector of 

posterior into the forward model.  

• Plot the expected value and standard deviation of model realization for both the 

current and 30 years’ depletion.  

6.6.2. 200 to 700 days updating 

Obtaining the posterior of the first time-interval (100 days), allows to induce the 

expected values of random variables as the next updating step initial values (See Table 

6.2, for instance production time of 200 days). Furthermore, applying the hybrid prior 

distribution mechanism, the prior of the sequential updating becomes available. The rest 

of computation steps resemble to the PSAMH framework. The aforementioned sequence 

should be replicated to the last production time interval (700 days).  

6.7. Results and discussion 
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In this section, we initially feature the implementation sequence of Well 1 and later 

demonstrate the corresponding comparison results obtained from all case studies. 

Fig. 6.5 encompasses eight compartments, illustrates the evolution of three-

dimensional joint distribution of model random variables for all updating sequences on 

left. In addition, the associated MCMC experiment scaled plot of variable 𝑏 together with 

the current time extrapolation of the mean of realizations coupled with the observed data 

are demonstrated at right, top and down of each time interval. It is alluded that the order 

of magnitude of variable 𝑏 is not constant and changes by progressing in time (Seshadri 

and Mattar 2010; Ilk et al. 2008), for which it becomes pertinent to evaluate the influence 

of updating method by evaluating this variable. Moreover, the mean of realization 

curvature indicates the overall perspective of prediction relying on different time intervals. 

According to Fig. 6.5, posterior layout of 100 days provides a unimodal oval shape 

distribution whilst proceeding to 200 days, the volume manifests a multimodal arbitrary 

distribution with noticeably smaller variance. Simultaneously, examining the discrepancy 

of variable 𝑏 in either configurations reveals a substantial declination in the 200 days’ plot, 

which substantiates the associated shrinkage in the posterior space. However, the posterior 

of 300 days’ production displays again a unimodal oval shape with slander variance. 

Following the sequence of plots from 400 to 500 days, demonstrates the enhancement in 

the confidence of analysis. Nevertheless, considering the posterior and MCMC experiment 

plots of 600 days interval, connotes a decline in the level of certainty which is relevant to 

the scattered nature of observed data. 

 



 

140 

 

100 days (regular method) 200 days (updating method) 

 

 

 

 

  
300 days (updating method) 400 days (updating method) 

 

 

 

 

  
500 days (updating method) 600 days (updating method) 

 

 

 

 

  
700 days (updating method) Current time (regular method) 

 

 

 

 

  

Fig. 6.5. The 3-dimensional posterior, the MCMC experiment of parameter 𝒃 and the 

mean of realization of current time for updating and regular methods 

associated with well 1 

 

The expected value of variable b for 700 days updating, varies from the 600 days and 

is similar to the current time regular analysis. However, the updating method permits an 
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uncertainty reduction in compare to the regular method for the same time interval. Also, 

an overview of the MCMC experiment in all time steps exhibits the inconsistency in the 

order of magnitude together with the heteroscedasticity of random parameter 𝑏. Moreover, 

it is worthwhile to note that, the comparison of posterior plots amid several updating time 

intervals, denotes the efficiency and robustness of the hybrid prior mechanism.   

The gradual evolution of updating methods’ posterior space associated with all times 

intervals are demonstrated in a same-scale formation (Fig. 6.6). The plot allows to 

comprehend the overall performance of updating data in the model results coupled with 

the state of certainty when more data becomes available. It is observed that, despite the 

correlation structure among variables pursue a similar trend the magnitude of it is altered 

case by case. 

  

Fig. 6.6. Comparison plot of posteriors regarding the regular and updating 

methods 

 

Another important feature which should be addressed in detail, is the comparison of 

the last updating step with the regular analysis of current production time.  The MCMC 
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experiment of whole random field as well as the cumulative mean (C.mean) and 

cumulative standard deviation (C.std) is depicted in Fig. 6.7. The MCMC experiment of 

regular method (black dots) scattered more and is partially covered with the updating 

method (gray dots), which justifies the privilege of applying updating over regular 

Bayesian analysis. Additionally, results of cumulative mean and standard deviation plots, 

also supports utilizing the updating method, provided that the magnitude of variance 

appears smaller than the regular method in all experiments.  

  

  

  

Fig. 6.7. Comparison plots of MCMC experiments corresponding with the last step 

updating and the current production time 

 

The mean and standard deviation of model realizations for each individual time 

intervals of updating method along with the current production time of regular method are 

Regular 
Updating 

Regular 

Updating 

Regular 
Updating 
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coupled with the observed data and demonstrated in Fig. 6.8. The comparison of the mean 

of realizations implies the state of unreliability of model analysis when the well production 

is still at the early stages. Which is evident from the considerable deviation between the 

curvatures of 100 and 200 days with the other time intervals. Moreover, the comparison 

plot of standard deviation confirms the higher order of uncertainty in 100 days’ results, 

while 500 days in contrary presents more confidence. Sequentially, the 700 days updating 

plot also provides the next higher computation certainty.  

  

  

Fig. 6.8. Left, the mean and right, the standard deviation of realizations for 

updating time intervals together with the current production time and 

observed data. Top, current time and down, the extrapolation to 30 

years depletion 

 

It is a common practice to extrapolate the forward model outcome to construct the 

long-term production forecasting. Fig. 6.8, down, depicts the mean and standard deviation 

of 30 years’ production associated with various time intervals. The model anticipation of 

100 and 200 days, noticeably underestimate the well production. Provided that, the same 

result can be concluded from the standard deviation plot. Despite the level of confidence 
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become less in the 100 and 200 days results up to the 2000 days’ prediction, by progressing 

in time, the current time production case induces more uncertainty into the statistical 

inference. 

Fig. 6.9 outlines the significance of 700 days updating and regular Bayesian methods 

for whole experimental designs. The mean of realizations of both updating and regular 

Bayesian method, provide a subtle match with the observed data in all cases. However, 

the plot of standard deviation at right, is considerably informative and clearly defines the 

influence of applying different methods.  

The standard deviation plot for Well 1, exhibits several conjunctions of regular and 

updating methods, while eventually, the updating method developed more certain 

analysis. Well 2 presents a distinguishable disagreement between two methods and the 

level of confidence in updating mechanism becomes substantially outweighed. The 

uncertainty in Well 3 is almost analogous, nevertheless, after 200 days of production, the 

updating method proceeds the regular framework. In agreement with other results, Well 4 

demonstrates a similar behavior regarding the improvement in the order of confidence for 

updating method. In addition, the mean and standard deviation of realization of 30 years’ 

production are depicted in Fig. 6.10. The general trend of mean of model realization in 

whole experimental cases indicates the homogeneity in together the methods of updating 

and regular. However, considering all experimental cases, the level of confidence 

undeniably is higher in the updating method. 
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Mean of realization Well 1 Standard deviation of realization Well 1 

  
Mean of realization Well 2 Standard deviation of realization Well 2 

  
Mean of realization Well 3 Standard deviation of realization Well 3 

  
Mean of realization Well 4 Standard deviation of realization Well 4 

  

Fig. 6.9. The mean and standard deviation plots of together 700 days updating and 

regular methods corresponding to each case studies 

 

In general, it is observed that, the updating method provide a constructive influence 

on total performance of the Bayesian analysis, when an appropriate prior is proposed. 
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The concise remarks of this section are visited in section 8.1.5. 

 

Mean of realization Well 1 Standard deviation of realization Well 1 

  
Mean of realization Well 2 Standard deviation of realization Well 2 

  
Mean of realization Well 3 Standard deviation of realization Well 3 

  
Mean of realization Well 4 Standard deviation of realization Well 4 

  

Fig. 6.10. The comparison plots of realizations mean and standard deviation 

regarding the 700 days’ updating and regular frameworks for 30 

years’ production   
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7. SPATIAL DATA ANALYSIS OF UNCONVENTIONAL OIL AND 

GAS FORMATIONS: A BAYESIAN APPROACH 

 

7.1. Overview 

Applying spatial analysis frameworks allow us to approximate the short and long term 

Estimated Ultimate Recovery (EUR) for an unexplored location across a formation relying 

on the observed data at known locations. However, it has alluded that the EUR of wells at 

known locations are most often unidentified and should be retrieved exerting production 

forecasting models. Also, the likely associated correlation coupled with the unknown 

influence of incorporated distance amid the points makes it pertinent to employ a 

mechanism to quantify the uncertainty respected to the prediction model parameters as 

well as model realizations. Hence, that is for, the Bayesian paradigm is exploited as a 

mean to not only provide the inference of random field but also assess the uncertainty 

regarding the computational analysis. 

Therefore, we elaborated a Bayesian-Spatial algorithm to constitute the spatial 

features of untouched locations hypothesizing the fact that the only given information 

encompasses the production observed data and corresponding coordinate for each 

individual well along with an appropriate EUR evaluation model. 

In this study, the Power Law Exponential Decline (PLED) and Modified Hyperbolic 

Decline (MHD) curve methods serve to delineate the well production performance on the 

course of the progressing time. Additionally, the depletion logs of 43 wells, captured from 
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the Eagle Ford Shale demonstrate the observation data required to generate the Bayesian 

inference. 

Moreover, the Markov Chain Monte Carlo (MCMC), Metropolis-Hastings (MH) and 

Parallel Scaled Adaptive Metropolis-Hastings (PSAMH) as the subordinate algorithms of 

the Bayesian approach are used to sample the random field by imposing a suitable 

acceptance-rejection criterion. In addition, in order to deal with the spatial analysis, two 

techniques comprising the Ordinary Kriging (OK) method along with the Inverse Distance 

Weight (IDW) are used and compared together. To address the identified problem, initially 

applying the Bayesian probabilistic approach, the first and second order statistics of model 

parameters altogether with the vector of expected and variance of model realizations for 

the short and long term of production are retrieved. Next, these data coupled with the 

wells’ coordinates feature the required information to establish the spatial analysis. 

It is eventually implied that, given merely the observation data, associated coordinates 

and EUR evaluation models are enough to estimate the model variables and the production 

behavior for different courses of time at desired locations. Comparing different spatial 

analysis techniques, it has appeared that the OK-Exponential and then OK-Spherical 

models exhibited better forecasting results with substantially less associated standard 

errors. 

7.2. Introduction 

The spatial analysis methods have been applied as practical practices to predict 

various characteristics of interest field across the aim space (Ye Zhang 2009). The 

techniques employed to approximate the target quantity often allow to project the 
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influence of given estimates for available points considering the proportional impact of 

the associated distance amidst the current and desired locations (Isaaks and Srivastava 

1989). Furthermore, the Ordinary Kriging (OK) and Inverse Distance Weight (IDW) are 

the local spatial analysis methods that due to their flexibility in implementation are 

selected as the reference spatial methods. Wackemagel, (2003) thoroughly discussed the 

available Kriging methods and their applications. Weber and Englund, (1992) and Lu and 

Wong, (2008), also separately featured various techniques to implement the Inverse 

Distance Weight (IDW). A comparison between the Ordinary Kriging and Inverse 

Distance Weight regarding the contributed chemical specifications of Soil is expanded in 

the Gotway et al., (1996) and Yasrebi et al., (2009). Moreover, Pyrcz and Deutsch, (2014) 

comprehensively elucidated several spatial techniques and their applications in the field 

of oil and gas developments. Additionally, a novel Kriging technique to spatially evaluate 

the permeability of rock mass in a reservoir is introduced in Brown and Falade, (2003). 

The correlation amid the geological characteristics and Kriging method is also discussed 

in Zhang et al., (2005) and Tian et al., (2017). 

Markov Chain Monte Carlo (MCMC) coupled with the Metropolis-Hastings (MH) 

algorithm (Gelman et al. 2013)are subordinates of the Bayesian analysis that develop a 

reliable mechanism to sample the random field by utilizing a rejection-acceptance 

criterion. Nevertheless, it is evident that the MCMC sampling usually suffers from being 

computationally inefficient, which justifies applying more sophisticated methods such as 

the Parallel Scaled Adaptive Metropolis-Hastings (PSAMH) framework (section 2.3.2). 

PSAMH is an augmented framework that ensures capturing all plausible posterior modes 
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together with the computational time reduction by exerting several synchronous chains 

and convergence enhancement features to optimize the acceptance rate. The retrieved 

posterior vector from PSAMH, permits computing the set of expected values and standard 

deviation of model realizations for the short and long terms of productions (section 4 and 

section 6). The standard deviation, hence, later can be used to quantify the uncertainty 

corresponding to the EUR analysis. 

In addition, the Modified Hyperbolic Decline (MHD) and Power Law Exponential 

Decline (PLED) functions are two Modified-Arps’ models that are used to evaluate the 

Estimated Ultimate Recovery (EUR) of each individual well with the unit of the Barrel of 

Oil Equivalent per day (BOE/D). The aforementioned frameworks which hereafter are 

evoked as “forward model” have lately become popular among the scholars and 

practitioners’ due to their simplicity in the implementation together with the extended 

application in either conventional or hydraulic-fractured wells. We separately constituted 

the implementation procedures along with the application of MHD and PLED methods in 

the Eagle Ford Shale considering the regular and updating Bayesian probabilistic 

approaches in sections 4 and 5, and also Moridis et al., (2017). Also, Deutsch and Zanon, 

(2007), Willigers et al., (2014), Al-mudhafar et al., (2015) and Tarrahi et al., (2016) 

developed the notion of exploiting the Bayesian approach in the reservoir spatial analysis 

by providing various techniques when the data requires to be spatially evaluated is initially 

known.  

In this study, by hypothesizing that the observed data, associated coordinates and 

forward models are the only available information, we establish a Bayesian mechanism to 
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attain the statistics of forward model properties and well productions’ realizations for the 

progressing course of time. Furthermore, exerting the retrieved data, allows to derive the 

spatial analysis across the formation by inserting the first and second order statistics 

respected to forward model parameters as well as the daily basis and cumulative 

production for different time intervals, which we call it the dynamic mapping.  

7.3. Methodology 

Initially, we briefly introduce Modified Hyperbolic Decline (MHD) and Power Law 

Exponential Decline (PLED) models, which are discussed in section 4.3.1 and 4.3.2. Also, 

the definition of Markov Chain Monte Carlo (MCMC) and Parallel Scaled Adaptive 

Metropolis-Hastings (PSAMH) are thoroughly elaborated in sections 2.3 and 2.3.2. 

Techniques of spatial analysis comprising the Inverse Distance Weight (IDW) and 

Ordinary Kriging (OK) is discussed in subsequent. 

7.3.1. Spatial data analysis 

We employed two well-known spatial analysis methods comprising the Inverse 

Distance Weight (IDW) and Ordinary Kriging (OK), which are shortly described in this 

section. 

7.3.1.1. Inverse distance weight (IDW) 

Inverse distance weight is a common practice to implement the spatial analysis, 

specifically in the case of point analysis (Weber and Englund 1992; Isaaks and Srivastava 

1989; Ye Zhang 2009). 

𝑍0 =
∑ 𝑍𝑖𝑖. ∆𝑖𝑖

−𝛽𝑚
𝑖𝑖=1

∑ ∆𝑖𝑖
−𝛽𝑚

𝑖𝑖=1

 (7.1) 
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Where, 𝑍0 and 𝑍𝑖𝑖 (𝑖𝑖 ∈ [1, 𝑚]) indicate the estimation value at new coordinate and the 

sample value at point ii, respectively. In addition, ∆𝑖𝑖 denotes the distance sample point to 

estimated point, while 𝛽 presents the power factor to determine the weight influence (in 

this study, after several trial and errors 𝛽 sets as 2.5). 

7.3.1.2. Ordinary Kriging 

In order to derive the Ordinary Kriging (OK), several steps should be implemented 

which are briefly described subsequently.  

Experimental Variogram 

Eq. (7.2) allows us to assess the state of correlation, 𝜔(ℎ) , between the current 

location values (Isaaks and Srivastava 1989; Bohling 2005a) at constant distance intervals, 

h. 

𝜔(ℎ) =
1

2𝑚(ℎ)
∑ [𝑧(𝑥𝑖𝑖 + ℎ) − 𝑧(𝑥𝑖𝑖)]2

𝑚(ℎ)

𝑖𝑖=1

 (7.2) 

 

Where, 𝑚(ℎ) indicates the number of sample pairs within the distance interval h. Also, 

𝑧(𝑥𝑖 + ℎ), 𝑧(𝑥𝑖) manifest the samples’ values at two points separated by the distance 

interval h.  

Semivariogram 

Providing the experimental variogram, several semivariograms (Bachmaier and 

Backes 2008) models can be employed to project the trend of the experimental variogram. 

Exponential, Spherical, Gaussian and Stable models (Wackemagel 2003) are used to 
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approximate the component of variograms. The corresponding mathematical formulation 

of models are given in Eq.(7.3) to Eq.(7.6).  

Spherical model 

𝜔(ℎ) = {
𝑛𝑢𝑔𝑔𝑒𝑡 + 𝑠𝑖𝑙𝑙×(1.5

ℎ

𝑟𝑎𝑛𝑔𝑒
− 0.5(

ℎ

𝑎𝑟𝑎𝑛𝑔𝑒
)3)     ℎ ≤ 𝑟𝑎𝑛𝑔𝑒

𝑛𝑢𝑔𝑔𝑒𝑡 + 𝑠𝑖𝑙𝑙                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7.3) 

 

Exponential model 

𝜔(ℎ) = 𝑛𝑢𝑔𝑒𝑔𝑡 + 𝑠𝑖𝑙𝑙×(1 − exp (−
3ℎ

𝑎𝑟𝑎𝑛𝑔𝑒
)) (7.4) 

Gaussian model 

𝜔(ℎ) = 𝑛𝑢𝑔𝑔𝑒𝑡 + 𝑠𝑖𝑙𝑙×(1 − exp (−
3ℎ2

𝑎𝑟𝑎𝑛𝑔𝑒2
)) (7.5) 

Stable model 

𝜔(ℎ) = 𝑛𝑢𝑔𝑔𝑒𝑡 + 𝑠𝑖𝑙𝑙×(𝛽̃(1 − exp (−3 (
ℎ

𝑟𝑎𝑛𝑔𝑒
)𝛽̃))  ,  0 ≤ 𝛽 ≤ 2 (7.6) 

 

Where, 𝑠𝑖𝑙𝑙 and 𝑛𝑢𝑔𝑔𝑒𝑡 define the maximum variogram and the intercept of the 

semivariogram model with 𝜔(ℎ) axis, respectively. 𝑟𝑎𝑛𝑔𝑒 denotes the maximum 

effective distance from the target location    

OK approximation at new coordinate 

Let 𝑧(𝑥𝑖𝑖) represents the random function and 𝑥𝑖𝑖, presents the sample locations. The 

prediction for the new coordinates with unknown properties is given in Eq. (7.7). 

𝑧(𝑥0) = ∑ 𝜆𝑖𝑖

𝑚

𝑖𝑖=1

. 𝑧(𝑥𝑖𝑖) (7.7) 

 

Where, 𝜆𝑖𝑖 is the assigned weight to each single observed data and must fulfill Eq. (7.8), 

which turns to reckon the Lagrange parameter. 
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∑ 𝜆𝑖𝑖

𝑚

𝑖𝑖=1

= 1 (7.8) 

 

And the weights, 𝜆𝑖𝑖, are retrieved from the subsequent matrix equation. 

𝜆𝑖𝑖 = 𝐾−1𝑘 (7.9) 

 

Where, 𝐾 and k correspondingly indicate the square matrix of semivariograms between 

the known data locations and a vector of estimated semivariograms within the data 

locations and the new target coordinate. Eq.(7.10) and Eq.(7.11) exhibit the mathematical 

interpretation of 𝐾 and 𝑘.  

𝐾 = [
𝜔(𝑥𝑖𝑖,𝑗𝑗) ⋯ 1

⋮ ⋱ ⋮
1 ⋯ 0

]          𝑖𝑖 , 𝑗𝑗 ∈ [1, 𝑚] (7.10) 

 

And  

𝑘 = [
𝜔(𝑥0,𝑖𝑖)

⋮
𝑙𝑎𝑔𝑟𝑎𝑛𝑔𝑒(𝑥0)

]          𝑖𝑖 ∈ [1, 𝑚] (7.11) 

 

𝜔(𝑥𝑖𝑖,𝑗𝑗) and 𝜔(𝑥0,𝑖𝑖) denote the semivariogram weights of previously known locations 

together and know with the target locations, respectively. Note that, the kriging weights 

and covariance are entirely determined by the configuration of locations and the shape of 

the covariance model (semivariogram) and not by the values associated with the known 

locations. The significance of provided locations’ quantities only appears in the 

experimental variograms to determine the appropriate semivariogram model. 

Ordinary Kriging not only permits to compute the estimated quantity at desired 

location, but also the respected variance. Accordingly, Eq. (7.7) expands to a practical 

form of Eq.(7.12) (Bohling 2005b). 
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𝑧(𝑥0) = ∑ 𝜆𝑖𝑖

𝑚

𝑖𝑖=1

. 𝑧(𝑥𝑖𝑖) = ∑ 𝜆𝑖𝑖

𝑚

𝑖𝑖=1

. 𝑧(𝑥𝑖𝑖) + (1 − ∑ 𝜆𝑖𝑖

𝑚

𝑖𝑖=1

)×𝑚𝑒𝑎𝑛(𝑥𝑖𝑖) (7.12) 

 

It should be taken into consideration that 𝑚𝑒𝑎𝑛(𝑥𝑖𝑖) estimates the mean of known 

locations less than the 𝑟𝑎𝑛𝑔𝑒. If the distance exceeds beyond the 𝑟𝑎𝑛𝑔𝑒 somehow an 

effective distance other than 𝑟𝑎𝑛𝑔𝑒 should be determined to be able to compute the mean 

of locations lay inside the effective distance, otherwise the mean substitutes by the mean 

of entire available locations.  Furthermore, the variance of OK estimation becomes 

available through Eq.(7.13). 

𝑣𝑎𝑟(𝑥0) = 𝑠𝑖𝑙𝑙 − ∑ 𝜆𝑖𝑖

𝑚

𝑖𝑖=1

. 𝑘 − 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒(𝑥0) (7.13) 

 

7.3.2. Cross-validation 

Cross-validation permits to assess the performance of a spatial analysis routine by 

providing a metric to approximate the error at proximity of each location. In order to 

implement the cross-validation technique, the location which the corresponding value is 

already known is removed and utilizing the desired spatial analysis framework the 

associated quantity is estimated and it should be iterated to the last location. Then, 

retrieving the residuals between the predicted and known quantities the standard error 

(Everitt and Skrondal 2010) of all known locations can be evaluated. The standard error 

(𝑆𝐸) can be computed exploiting equation (7.14).  

𝑆𝐸 =
√∑ 𝜀2

𝑛
 (7.14) 
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7.4. Observed data 

A set of 43 well depletion logs from the Eagle Ford Shale formation, obtained and 

assigned as the observed data. Fig. 7.1 demonstrates the spatially arrangement of wells for 

the real production time (current) of well together at top in both normal and log-log scales. 

It is mentioned earlier that values of 𝑛 in PLED and 𝑏 in MHD are substantially sensitive 

to the production time. Hence, it makes it pertinent to set an analogous production time 

for all wells. By examining the set of wells, it turned out that 350 days is the minimum 

production time for several wells, hence, 350 days’ production time set as the fix time 

interval for all wells (Fig. 7.1, down). Also, considering the raw data, most often, some 

degree of heteroscedasticity is observed that makes it necessary to filter the data. We 

employed the systematic filtering mechanism constructed and expanded in section 0to 

remove the outliers from the raw data in each single well prior the MCMC experiment 

(Fig. 7.1, down).  

  

  

Fig. 7.1. The production rate of 43 wells from the Eagle Ford shale top, the real 

and down, 350 days production time in left, normal and right, log-log 

scales 
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7.5. Configuration of wells 

Fig. 7.2 depicts the arrangement of wells ensemble in the relative distance measured 

in feet. According to the plot of well locations, it is observed that, despite some wells are 

in the proximity of each other, the others are extensively far and develop less influence on 

the other wells which suggests clustering of the wells ensemble.  

 

Fig. 7.2. The arrangement of 43 wells with the relative distance in feet 

Moreover, we applied the Haversine formula (Van Brummelen 2012) to convert the 

distance between two locations to feet given the coordinates in Degrees. 

In order to assess the distance, firstly it is essential to convert the degrees, minutes, 

seconds’ coordinates to the decimal degrees. 

𝐷𝑒𝑐𝑖𝑚𝑎𝑙 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 = 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 +
𝑀𝑖𝑛𝑢𝑡𝑒𝑠

60
+

𝑆𝑒𝑐𝑜𝑛𝑑𝑠

3600
 (7.15) 

 

Additionally, exerting =
𝐷 𝜋

180
 , we would be able to convert the Degrees (𝐷) to Radiant 

(𝑅). Providing the coordinates in Radiant, now exploiting Haversine equation the distance 

(∆) amid two locations can be approximated via Eq. (7.16) and Eq.(7.17). 
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τ = 𝑆𝑖𝑛2 (
𝜑2−𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 − 𝜑1−𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒

2
)

+ 𝐶𝑜𝑠(𝜑1−𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)𝐶𝑜𝑠(𝜑2−𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)𝑆𝑖𝑛2 (
𝜑2−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 − 𝜑1−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

2
) 

(7.16) 

 

Where, 𝜑,−, indicates the latitude and longitude coordinates in Radiant corresponding to 

either target locations. Eq. (7.17) defines the distance within two coordinates in the desired 

unit. 

∆ = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛𝑒 (√τ) (7.17) 

 

Where, 𝑟 denotes the radius of Earth which respectively in Kilometer, Mile and Feet 

adopts the values of 6371, 3959 and 20,903,520. 

7.6. Experimental design 

In this study, there are two main objectives. The first task is to derive the vector of 

posterior together with the daily basis and cumulative realizations of models’ production 

for short and long-term period of time. The next task is deliverable by applying the spatial 

analysis frameworks. 

7.6.1. Task 1 

To address the first task, it is required to generate the PSAMH sampler for each 43 

well using two empirical models. The list of incorporated variables coupled with the 

experimental cases illustrated in Table 7.1.  

Max (data) denotes the maximum value of production rate for each well. In addition, 

it can be alluded that there are altogether 86 (43×2 = 86) experimental cases retrieved 

from Task 1.  
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7.6.2. Task 2 

To deal with featuring the spatial analysis study cases, considering the arrangement 

of well locations, we hypothesized two scenarios. 

 Table 7.1 Range of variables for experimental cases 
Forward model Variable Range of variables  

[min, max] 

Case Studies 

𝑖𝑖 ∈ [1,43] 

MHD 

𝑏 [1e-4, 2] 

𝐶𝑃𝑆𝐴𝑀𝐻−𝑀𝐻𝐷−𝑊𝑒𝑙𝑙(𝑖𝑖) 𝐷𝑖 [1e-4, 20] 

𝑞𝑖 (BOED) [0.5, 2.5] ×max(data) 

PLED 

𝑛 [1e-4, 2] 

𝐶𝑃𝑆𝐴𝑀𝐻−𝑃𝐿𝐸𝐷−𝑊𝑒𝑙𝑙(𝑖𝑖) 
𝐷𝑖 [1e-4, 20] 

𝐷∞ [1e-14, 2e3] 

𝑞𝑖 (BOED) [0.5, 2.5] ×max(data) 

 

An ensemble of all wells and an aggregate of clusters encompasses of two separated 

units that allow us to investigate the state of errors regarding the effective distance between 

wells. Fig. 7.3 demonstrates all wells ensemble as scenario one at left and the assimilation 

of two assumed clusters, Cluster 1 and Cluster 2 comprising 28 and 15 wells, respectively 

as scenario two at right.  

  

Fig. 7.3. Left, scenario one, all wells together and right scenario two, 

assimilation of two clusters 



 

160 

 

Furthermore, for each individual scenario the experimental studies contain several 

subcases as follows: 

•  The empirical models comprise 3 and 4 parameters corresponding to MHD and 

PLED, respectively. 

• Dynamic production configuration of daily and cumulative productions for 1, 5, 

10, 15, 20, 25 and 30 years of production.  

To elucidate the total number of Task 2 experimental case studies, associated with 

each above aforementioned case, a special case study’s name is introduced to be able to 

thoroughly delineate the intention of the experiment design (Eq. (7.18) and Table 7.2).  

𝐶(1)−(2)−(3)−(4)−(5) (7.18) 

 

Table 7.2 illustrates the definition along with the initiation of subscripts indicated in 

the case study name. 

Table 7.2 List of definitions of subscripts in the experimental design  

Empirical model 
Bayesian 

inference 
Spatial Method Statistics Scenario  

Modified 

Hyperbolic (𝑀𝐻𝐷) 

Decline curve model 

parameters (𝑀𝑃) 

Inverse Distance 

Weigh (𝐼𝐷𝑊) 

Mean (𝑀) All 

Power Law 

Exponential (𝑃𝐿𝐸𝐷) 

Production, daily 

basis (𝑃𝐷) 

Ordinary Kriging-

Spherical (𝑂𝐾𝑆𝑝) 

Standard 

Deviation (𝑆𝑡𝐷) 

Cluster 1 

(𝐶1) 

 Production, 

cumulative (𝑃𝐶) 

Ordinary Kriging-

Exponential (𝑂𝐾𝐸𝑥) 

 Cluster 2 

(𝐶2) 

  Ordinary Kriging-

Gaussian (𝑂𝐾𝐺𝑎) 

  

  Ordinary Kriging-

Stable (𝑂𝐾𝑆𝑡) 
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For instance, 𝐶𝑀𝐻𝐷−𝑀𝑃(𝑞𝑖)−𝐼𝐷𝑊−𝑀−𝐴𝑙𝑙 initiates the case study regarding the mean (𝑀) 

of Modified Hyperbolic Decline (𝑀𝐻𝐷) model parameter (𝑞𝑖) applying the inverse 

distance weight (𝐼𝐷𝑊) as the spatial analysis method considering all wells ensemble 

scenario (𝐴𝑙𝑙).  Another example, 𝐶𝑃𝐿𝐸𝐷−𝑃𝐶(15)−𝑂𝐾𝑆𝑡−𝑆𝑡𝐷−𝐶1 indicates the case study for 

the standard deviation (𝑆𝑡𝐷) of 15 years’ cumulative production (𝑃𝐶 (15)) of Power Law 

Exponential Decline (𝑃𝐿𝐸𝐷) model exerting the Ordinary Kriging-Stable (𝑂𝐾𝑠𝑡) spatial 

analysis method relevant to cluster 1(𝐶1). 

Fig. 7.4 demonstrates the diagram of different incorporated terms to be able to better 

perceive the components of case studies.  

 

Fig. 7.4. The diagram of experimental design for dynamic production mapping (daily 

and cumulative) together with the decline curve models’ parameters 

 

The values inside parentheses (.), identifies the number of possible permutation in 

each case. Note that, regarding the definition provided in Table 7.2 and the diagrams in 

Parameters

PLED (4)

MHD (3)

Mean (2)

Standard Devaition

All (3)

Cluster 1

Cluster 2

Production

PLED or MHD (2)

Cumulative (7)

1, 5, 10, 15, 20, 25 and 30 years

Mean (2)

Standard Devaition

All (3)

Cluster 1

Cluster 2

Daily basis (7)

1, 5, 10, 15, 20, 25 and 30 years

Mean (2)

Standard Devaition

All (3)

Cluster 1

Cluster 2
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Fig. 7.4, in total, 210 (2×[(7×2×3) + (7×2×3)] + 3×2×3 + 4×2×3) = 210) 

experimental cases are constructed applicable to Task 2.  

Also, bear in mind that obtaining the standard error of cluster 1 and 2, the aggregate 

of errors regarding assimilation of clusters is identified by the subsequent equation 

𝑆𝐸𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 =
√(𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 1 𝑆𝐸𝐶𝑙𝑢𝑠𝑡𝑒𝑟 1)2 + (𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 2 𝑆𝐸𝐶𝑙𝑢𝑠𝑡𝑒𝑟 2)2

𝑛𝑇𝑜𝑡𝑎𝑙
 (7.19) 

 

Where, 𝑛𝑇𝑜𝑡𝑎𝑙 = 𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 1 + 𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 2. 

7.7. Results and discussion 

The results of each individual task are delivered and briefly discussed through the 

following subsections.   

7.7.1. Bayesian analysis and MCMC (Task 1) 

We delineate the implementation sequence for MCMC experiment through merely 

case Well 20 MHD, because the rest of Task 1 cases resemble to the provided case.   

7.7.1.1. Raw data filtering and likelihood diagnostic 

Often there are outliers in observed data that unnecessarily disrupt the general trend 

of production projection. We introduced a systematic mechanism that automatically filters 

the raw data by diminishing the skewness and removing outliers in section 0. We avoid 

repeating the procedure here and encourage the reader to study the mechanism from the 

referred paper. Fig. 7.5 depicts a comparison amide the raw observed (red square) coupled 

with the filtered data (gray star) and the fit NLS curvatures in the regular and log-log scale 

(top right and left).    
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Fig. 7.5. Observed data before and after filtering top, left in the regular and right 

log-log scale. Relative frequency histogram and cumulative density 

function of raw and filter data down left and right, respectively  

 

The comparison between the relative frequency histograms, down left, and 

cumulative density functions, down right, before and after filtering manifests the reduction 

of heavy left skewness exerting the filtering mechanism.  

Moreover, the Nonlinear Least Square (NLS) optimization, which appeared in the 

filtering approach has become a key factor to recognize the plausible shape of likelihood 

from the residuals of observed data and optimized curvature. NLS, also, allows obtaining 

the initial values of random variables useful in MCMC. The best fit of Normal density 

function (red solid line) in both relative frequency histogram and the cumulative density 

function displays the precise selection of the Normal distribution as the likelihood (Fig. 

7.6). 
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Fig. 7.6. Normal distribution fit to the relative frequency histogram of residual, 

left, and right the fit of cumulative density function of normal 

distribution to the residual 

 

7.7.1.2. MCMC experiment 

The retrieved optimized quantities associated with forward models’ parameters 

permit to remove the ambiguity of initial values inserted into the MCMC and PSAMH 

sampler. The MCMC experiments for MHD model parameters are demonstrated in Fig. 

7.7. In addition, the cumulative mean and standard deviation of random samples on the 

right side of Fig. 7.7 provides a tool to estimate the state of convergence of MCMC to 

assess the stationary of generated random samples. The MCMC is presumed to be 

converged when the cumulative mean and standard deviation of random field become 

straight lines after a specific iteration (Burn-In pint).  

7.7.1.3. Statistics of posterior 

While the first and second order of statistics can be attained from Fig. 7.7, right; Fig. 

7.8 besides demonstrates the relative frequency histogram as well as the joint distribution 

of random variables. Although, the plot of relative frequency histogram of variable b 

depicts the tendency of the corresponding parameter to exceed beyond the boundaries, 

histogram of 𝑞𝑖 and 𝐷𝑖clearly approximate the Normal distribution. 
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Fig. 7.7. MCMC experiment of MHD, left and cumulative mean and standard 

deviation, right 

 

The joint distribution of  𝑞𝑖 and 𝐷𝑖 reveals the strong state of positive correlation, 

however, two other joint distributions present a partially non-correlated structure. 

 

  

  

 

   

Fig. 7.8. Joint distribution with a side color bar and relative frequency histogram 

of forward model parameters 

 

7.7.1.4. Current time realizations 
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Obtaining the vector of posterior allows us to draw thousands of realizations by 

inserting the pair of random samples into the forward models. Fig. 7.9 shows 10,000 

realizations of daily basis and cumulative current production time. 

  

Fig. 7.9. 10,000 realizations of MHD fit to the observed data, left and associated 

cumulative realizations on right with respect to the 350 days 

 

Fig. 7.10 depicts the mean of daily basis together with the cumulative production at 

top and the corresponding standard deviations at down. The standard deviation often 

interprets as the level of confidence regarding the computation and utilizes to quantify the 

uncertainty. 

  

  

Fig. 7.10. The mean and standard deviation of realizations of both daily and 

cumulative productions for 350 days  
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According to the standard deviation plot of cumulative production, by progressing in 

time the level of confidence decreases. 

7.7.1.5. 30 years’ realizations 

An extrapolation of inserted random set of posteriors incorporated in the forward 

model features the long-term production forecasting. Fig. 7.11 similar to the current time 

realizations, demonstrates 10,000 realizations in accordance with the 30 years 

extrapolation for daily and cumulative productions. 

  

Fig. 7.11. 10,000 realizations of 30 years production in the daily and cumulative 

basis 

 

The mean and standard deviation of 10,000 realization regarding the 30 years of 

production are presented in Fig. 7.12. The rate of growth of uncertainty drops after almost 

2000 days of production (Fig. 7.12, down, left). 

The mean and standard deviation of random fields altogether with the daily and 

cumulative productions associated with MHD and PLED are retrieved and then introduced 

as the input data of the spatial analysis which is initially defined as Task 2. Note that, the 

associated data are delivered in Appendix A. 
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Fig. 7.12. Expected values and standard deviations of 30 years extrapolation in 

the daily and cumulative extraction 

 

7.7.2. Spatial analysis (Task 2) 

The spatial analysis comprises two major techniques, the Inverse Distance Weight 

(IDW) and Ordinary Kriging (OK) which is elaborated via the case of 𝐶𝑀𝐻𝐷−𝑀𝑃−,−𝑀−𝐴𝑙𝑙 

. The rest of computations is analogous to the provided case and pursue Task 2 

experimental cases (Table 7.2 and Fig. 7.4). Furthermore, the configuration of MHD 

model parameters values retrieved from Task 1 are demonstrated in Fig. 7.13. 

   

Fig. 7.13. Configuration of 𝑏, 𝐷𝑖 and 𝑞𝑖 quantities from left to right, respectively 
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7.7.3. Inverse Distance Weight (IDW) 

Fig. 7.14 depicts the contour plots of 𝑏, 𝐷𝑖and 𝑞𝑖 values derived from the IDW 

method. The contour of 𝐷𝑖implies that for a wide distance, IDW predicts similar range of 

quantities, however, contours of other variables convey more diversities. 

   

Fig. 7.14. Contours of IDW spatial method associated with MHD model 

parameters 

 

7.7.4. Ordinary Kriging (OK) 

It is alluded earlier that, four semivariograms are used in this study comprising the 

Spherical, Exponential, Gaussian and Stable models. Fig. 7.15 displays the experimental 

variogram and respected semivariograms. Thus, the semivariograms allow to incorporate 

the reckoned values of 𝑆𝑖𝑙𝑙, 𝑁𝑢𝑔𝑔𝑒𝑡 and 𝑅𝑎𝑛𝑔𝑒 into OK to assess the target location 

quantity.  

   

Fig. 7.15. Experimental and semivariogram associated with MHD mean model 

variables 
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 The OK-Spherical analysis contours coupled with their variance for expected values 

of MHD model parameters are illustrated in Fig. 7.16. Note that, when the distance amidst 

two locations becomes larger than 𝑟𝑎𝑛𝑔𝑒 value, model simply computes the mean of 

neighbor locations and substitute it with the OK approximation. 

That is for, intuitively it is evident that beyond a specific distance the mutual influence 

of locations becomes negligible and the rational option is replacing the estimation with 

the mean of proximate locations. The variance contours conduct the state of spatial 

correlation of OK estimation.  

   

   

Fig. 7.16. OK-Spherical estimated value, top and variance contours for mean of 

MHD  

 

According the presented plots, it is connoted that only locations close enough together 

provide a considerable impact which eventually justifies the notion of clustering. 
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The OK approximation continued with the OK-Exponential semivariogram model 

(Fig. 7.17). A comparison between OK-Spherical and OK-Exponential reveals the 

similarity between models. Observing the variance contours, despite OK-Exponential 

exhibits more dependency in parameter 𝑏, the correlation amid locations of two other 

variables almost disappeared.   

   

   

Fig. 7.17. OK-Exponential, estimated values, top, and associated variances, 

down 

 

The OK-Gaussian semivariogram indicates a poor performance due to lack of enough 

correlation between locations depicted in Fig. 7.18. That is for, this model predicts 

negative quantities for MHD model parameters which is unrealistic.    

Nevertheless, despite the poor performance regarding the target estimation, the 

variance of locations is in analogy with other visited models. 
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Fig. 7.18. OK-Gaussian semivariogram model for target estimations, top and 

down corresponding variances 

 

   

   

Fig. 7.19. Target location approximated by OK-Stable model top and respected 

variance, down 
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Acquisition of OK estimation leads us to the last semivariogram model which is OK-

Stable (Fig. 7.19). OK-Stable is defined as a modification on the OK-Gaussian model by 

enabling manipulating the power of model. Considering the attained contours, it is implied 

that, the general trend of OK-Stable imitates the OK-Gaussian in the term of producing 

negative quantities. However, the order of magnitude of positive and negative values to 

some extent are smaller than OK-Gaussian. 

7.7.5. Cross-validation results 

Cross-validation appears as a reliable mechanism to evaluate the performance of 

spatial analyzing techniques. The computed standard errors (SE) associated with cross 

validation for case MHD parameter 𝑏 are illustrated in Table 7.3 and rest of results in the 

form of two categories attributed with the empirical frameworks, MHD and PLED are 

presented in the Appendix B. 

Table 7.3 Expected values coupled with the standard deviation of MHD 

parameter 𝑏 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑰𝑫𝑾 1.61E-01 1.20E-02 1.76E-01 1.35E-02 2.89E-01 2.48E-02 3.39E-02 2.79E-03 

𝑶𝑲𝑺𝒑 1.58E-01 1.08E-02 1.41E-01 1.24E-02 2.56E-01 2.48E-02 2.89E-02 2.71E-03 

𝑶𝑲𝒆𝒙 1.56E-01 1.08E-02 1.42E-01 1.22E-02 2.63E-01 2.48E-02 2.94E-02 2.69E-03 

𝑶𝑲𝑮𝒂 3.36E-01 1.39E-02 1.42E-01 1.51E-02 5.30E+00 9.81E-02 4.78E-01 9.02E-03 

𝑶𝑲𝑺𝒕 1.58E-01 1.08E-02 1.40E-01 1.24E-02 2.78E-01 2.45E-02 3.04E-02 2.69E-03 

 

Obtaining all case studies associated with Task 2 it becomes possible to draw several 

conclusions regarding the efficiency of spatial analysis techniques or the influence of 

empirical models’ selection on the analysis performance. Subsequent, we address two 

inquiries; firstly, among two scenarios, Cluster and All coordinates together, which one 
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provides a more precise approximation. Secondly, to investigate which one of spatial 

techniques suggests minimum standard error (ES) in general. 

7.7.5.1. MHD  

Exerting the cross-validation method and using the Appendix B, allow comparing the 

impact of various spatial techniques on the course of model parameters. 

Clusters or All coordinates 

The minimum SE charts respected with the MHD model parameters utilizing IDW 

and OK models altogether are depicted in Fig. 7.20. The plots admit the advantage of 

clustering over all coordinates scenario, which in this case the clustering scenario 

accidently indicates 93.3% regarding both expected value and standard deviation of MHD 

model parameters.  

  

Fig. 7.20. Minimum SE of MHD model parameters, left expected value and right, 

standard deviation applying all spatial analysis methods 

 

The impact of clustering in comparison to the all coordinate scenarios for MHD case 

studies are outlined in Table 7.4. In order to deal with the production either daily basis or 

cumulatively, the minimum standard error of entire time intervals integrated and 

illustrated in Table 7.4.  

93.3

6.7
𝜇

Clusters All Coordiantes

93.3

6.7
𝜎

Clusters All Coordiantes
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Table 7.4 Efficiency of clustering versus All coordinates in different scenarios  
Experimental case Model parameters Daily basis Production Cumulative Production 

Scenario 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

Clusters 93.3 93.3 100 98.6 100 97.1 

All Coordinates 6.7 6.7 0 1.4 0 2.9 

 

The provided results admit the substantial impact of clustering on the performance 

enhancement in MHD model by decreasing the standard error over both model parameters 

and productions. 

Spatial analysis technique 

Fig. 7.21 depicts comparison charts amid different spatial analysis techniques 

regarding the aggregation of MHD model parameters expected values and standard 

deviations. The results suggest that the OK-Exponential develops a better approximation 

of MHD model variables.  

  

Fig. 7.21. The minimum SE of spatial analysis methods considering all MHD 

model parameters 

 

In accordance to above charts, the contributing percentage of each technique in 

producing minimum standard errors is computed and illustrated in Table 7.5. 

 

8.33

33.33

41.67

0 16.67

𝜇

IDW Kriging-spherical

Kriging-Exponential Kriging-Gaussian

Kriging-Stable

0 8.33

83.33

0

8.33

𝜎

IDW Kriging-spherical

Kriging-Exponential Kriging-Gaussian
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Table 7.5 Evaluation of spatial analysis techniques performance associated 

with the MHD model 
Experimental case Model parameters Daily basis Production Cumulative Production 

Technique 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑰𝑫𝑾 8.33 0 0 3.57 3.57 7.14 

𝑶𝑲𝑺𝒑 33.33 8.33 0 0 0 10.71 

𝑶𝑲𝒆𝒙 41.67 83.33 82.14 96.43 92.86 82.14 

𝑶𝑲𝑮𝒂 0 0 14.29 0 0 0 

𝑶𝑲𝑺𝒕 16.67 8.33 3.57 0 3.57 0 

 

The obtained results, undeniably indicates the advantage of OK-Exponential method 

versus other spatial analysis techniques. 

7.7.5.2. PLED  

The same conclusions can also be drawn for PLED model parameters. 

Clusters or All coordinates 

The efficiency percentage presented in Table 7.6, again proves the positive influence 

of clustering against all coordinates associated with PLED model parameters, daily and 

cumulative productions.  

Table 7.6 Evaluation of effectiveness of clustering and all coordinates 

corresponding with PLED   
Experimental case Model parameters Daily basis Production Cumulative Production 

Scenario 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

Clusters 100 95 85.7 91.4 85.7 97.1 

All Coordinates 0 5 14.3 8.6 14.3 2.9 

 

Spatial analysis technique 

Despite the fact that in some cases the efficiency of OK-Spherical model becomes 

close to the OK-Exponential in Table 7.7, the definite advantage belongs to OK-

Exponential model. 
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Table 7.7 Impact of spatial analysis models regarding PLED model parameters and 

productions 
Experimental case Model parameters Daily basis Production Cumulative Production 

Technique 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑰𝑫𝑾 12.5 6.25 0 25 3.57 28.57 
𝑶𝑲𝑺𝒑 6.25 0 28.57 28.57 21.43 3.57 
𝑶𝑲𝒆𝒙 81.25 81.25 67.86 46.43 71.43 67.86 
𝑶𝑲𝑮𝒂 0 12.5 0 0 0 0 
𝑶𝑲𝑺𝒕 0 0 3.57 0 3.57 0 

 

7.7.5.3. Comparison of PLED and MHD 

Another conclusion derived from Task 1 and Task 2 together is the assessment of 

performance of PLED versus MHD productions in the course of progressing time, daily 

basis or cumulatively, considering the produced standard errors (SE). In order to compute 

the respected SE, the minimum error retrieved from entire time intervals added together. 

The associated results in Table 7.8 indicates the irrefutable privilege of MHD method 

versus PLED in both experimental cases by generating less SE. 

Table 7.8 Comparison between the MHD and PLED daily and cumulative 

production 

Experimental cases Daily basis production Cumulative production 

Forward model 𝜇 𝜎 𝜇 𝜎 

MHD 1.19E+01 6.34E-01 7.71E+04 5.20E+03 

PLED 1.51E+01 1.55E+00 8.18E+04 8.42E+03 

 

This section’s conclusion is shortly recapitulated in section 8.1.6. 

 



 

178 

 

8. CONCLUSIONS AND FUTURE RESEARCH 

 

The significant vertices of each section are separately and concisely recapitulated 

here. In addition, several alternative future researches are proposed proceed by 

conclusions.  

8.1. Conclusions 

8.1.1. Section 2 

• Parallel Scaled Adaptive Metropolis-Hastings (PSAMH) is a practical method 

that aims to liberally explore the posterior space by incorporating the adaptive 

MCMC technique in a more efficient approach.  

• In addition to the core algorithm, several features provided mechanisms to readily 

augment PSAMH by automatically tuning the step size of proposal distribution 

and removing the concurrent chains redundancy to achieve the optimum 

acceptance rate.  

• Additionally, a synthetic case study is utilized to delineate the implementation 

sequence of PSAMH coupled with its application in the Bayesian inference via 

model realizations.  

• Regardless of the type MCMC sampling method, considering either relative 

frequency histograms, cumulative density function plots, or model realizations’ 

inferences, it is evident that by adding more observations the precision of analysis 

significantly improved (P10R1 to P10R5).  
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• Nevertheless, after a certain point, the rate of improvement in the model 

computation and uncertainty reduction are diminished, when means and standard 

deviations of model realizations for P10R5 and P10R10 produced approximately 

similar results.  

• Moreover, plots of acceptance rate together with the scale factor provided extra 

tools to assess the state of stationary in addition to the online mean and standard 

deviation of random fields.  

8.1.2. Section 23 

• The use of a synthetic case study aimed to provide a mean to evaluate the 

performance of different well-known samplers in compare to PSAMH framework 

when the standard deviation and correlation coefficient values are varied.  

• It is generally implied that PSAMH method not only accurately explores the 

random filed but also reduces the computation running time, and hence, increases 

the efficiency of sampler specially in the case of substantially sophisticated target 

distribution.  

• Also, PSAMH and PT in all cases delivered close results, however, PSAMH 

outweighed when the computational running time appears as an important issue.  

• Moreover, bear in mind that, the aforementioned experiment by no mean has not 

disqualified other samplers, whereas it is known that, characteristics and 

complexity of introduced problem, initiate the justifiability of one sampler over 

the other.  
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• Furthermore, it should be noted that by a slight modification on each one of 

exerted samplers, it is possible to improve the performance of them which is 

thoroughly out of the scope of this study. 

8.1.3. Section 4 

• Researches employed PSAMH which is an Adaptive MCMC framework to 

calibrate two well-known empirical decline curve models (MHD and PLED). 

Applying PSAMH, the posterior space of model parameters as well as the event 

space are retrieved.  

• To validate the persistency of results, eight experimental cases comprising four 

wells of the Eagle Ford Shale are examined. Exploiting the model realizations for 

the current and 30 years of production, several comparison plots of MHD and 

PLED are derived.  

• In general, model parameters of MHD approximates the posterior space similar 

to the Normal distribution, while in contrary PLED random variables produced 

arbitrary distributions with irregular configurations.  

• MHD manifested a consistent behavior regarding the current and 30 years’ 

production and level of confidence in all experiments.  

• MHD progressively developed more production with less confidence in compare 

to PLED.  

• Eventually, it is implied that MHD overestimates or PLED underestimates the 

production. Also, the comparison plots are depicted the quick decline pattern in 

PLED which justifies the level of confidence in the production. 
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8.1.4. Section 5 

• Employing various assimilation of forward model’s parameters, alludes different 

statistics inferences. 

• Increasing the size of random variables most often induces more uncertainty in 

the analysis. 

• Although the order of confidence is varied from case to case, the overall 

magnitude of uncertainty is substantially small in compare to the production rate. 

Therefore, it justifies applying the Bayesian analysis in the case of calibration and 

model uncertainty reduction. 

• The analogous of mean of realization amid various experimental designs and 

expert model, implies the underestimation of expert model in both the current and 

20 years’ production. 

• The case of 𝐶𝑠 connotes more confidence in compare to other experiments for 

short and long-term depletions. 

• The correlation structure among the variables is irrefutably influenced by the 

variation of incorporated parameters (e.g. considering the same pair of parameters 

(𝐾𝐷
∗ − 𝑠), from the positive quantity in one case (𝐶𝐾𝐷

∗ −𝑠) to negative value in the 

other case (𝐶𝐾0−𝐾𝐷
∗ −𝑠)). 
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8.1.5. Section 6 

• The evolution plots of the posterior distribution coupled with the MCMC 

experiment of random variable 𝑏 elucidate the unreliability of early time 

production.  

• The expected value of parameter 𝑏 is inevitably correlated to the depletion time 

and can be dramatically altered by progressing in time. 

• Although, the plots of sequential time intervals exhibit an extreme variation in the 

level of confidence in analysis by progressing in time, it is evident that the 

successful updating is highly correlated to the quality of observed data and the 

correlation structure between model random variables. 

• The independent development in the location and size of updating posterior 

distribution, authenticates the functionality of hybrid prior mechanism. It should 

be taken into consideration that, if instead of the hybrid prior, merely the vector 

of former step posterior was employed, the current step posterior, under influence 

of constraint prior, would adhere to one region of random field. Hence, the 

concluded posterior could not appear as a true representative of the posterior 

space. 

• Augmentation of observed data continuously improves the state of inference, 

which can be interpreted from the mean of realization plots. That is for, by 

increasing the time intervals, for example after 500 days, the layout of realization 

means curvatures almost undistinguishable. 
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• Also, the plots of mean and standard deviation of entire experimental designs 

associated with the short and long terms of production, irrefutably validate the 

advantage of exploiting the updating over regular method.  

8.1.6. Section 7 

• Providing a set of observed data, a precise forward model and corresponding 

locations would be enough to drive a spatial analysis. 

• MCMC augmented with PSAMH framework allow us to efficiently and 

accurately sample from the random field. 

•  Extrapolation of forward model realizations in the form of daily basis or 

cumulative production can be used to feature dynamic Bayesian-spatial maps 

associated with varied time intervals. 

• Exploiting the Bayesian analysis posterior, it is possible to delineate the forward 

model parameters regional map. 

• The IDW, OK-Spherical, OK-Exponential, OK-Gaussian and OK-Stable spatial 

analysis techniques are employed to assess the efficiency of target location 

estimations. It is eventually implied that the OK-Exponential model developed a 

more precise spatial approximation tool comparing to other methods in both 

PLED and MHD empirical models. 

• Clustering of locations, substantially increases the effectiveness of spatial analysis 

regarding PLED and MHD functions. 



 

184 

 

•  A comparison amidst the aggregation of standard errors respected with the daily 

basis and cumulative productions connoted the undeniable advantage of MHD 

method according to the given production data. 

8.2. Future research 

According to the results obtained in this study, the subsequent future research is 

proposed: 

• The batch size in PSAMH method which aims to identify the iteration number 

regarding the scaling factor, is set deterministically and by the course of several 

trial and errors. A new systematic approach can be generated to automatically 

assign an appropriate batch size corresponding to the convergence feature of 

MCMC. 

• The number of asynchronous chains in PSAMH method becomes crucial when 

selecting the large number of chains makes the sampler inefficient or small 

number of chains decreases the likelihood of capturing the optimum step size. 

Therefore, it is relevant to run a research to optimize the number of chains 

automatically. This mechanism should be able to decrease or increase the number 

of chains before approaching to the stationary condition. 

• The current research only takes the unconventional reservoir data into account. 

Hence, the performance of PSAMH sampler and entire provided results are under 

influence of hydraulic-fractured wells’ behavior. It would be considerably 

beneficial, to evaluate the performance of the PSAMH sampler on the 

conventional reservoir data. 
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• There are varieties of analytical or semi-analytical reservoir modeling, which in 

this study only one of them is exerted. It would be valuable to evaluate the 

performance of other models exploiting PSAMH framework. 

• The Bayesian inferences retrieved from 7.6.1Task 1of section 7, are obtained from 

scattered well locations associated with an unconventional development. It is 

evident that; unconventional reservoirs due to their individual characteristics and 

the employed depletion’s technology are typically independent from the other 

neighbor wells. Thus, often it is uncertain that attaining information from one well 

could be accountable enough to expand it to other neighbor wells.  Therefore, it 

is worthy to utilize the aforementioned spatial mechanism over a conventional 

reservoir.    

• Considering the attribute of spatial analysis techniques, the precision of results is 

highly correlated to the distance amidst coordinates coupled with the regional 

density of known locations. Rerunning the provided algorithm in section 7 with a 

set of large number of wells in a smaller region will undeniably deliver a novel 

insight regarding the capabilities of proposed Bayesian-spatial approach.  

• PSAMH is a well stablished method subordinates of the Bayesian paradigm that 

allows sampling from the complicated random fields. That is for, it becomes 

possible to exert the PSAMH sampling on varieties of other engineering 

applications such as Civil, Electrical or Mechanical Engineering when Bayesian 

analysis appears as a practical solution. 
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APPENDIX A: TASK 1, BAYESIAN ANALYSIS RESULTS  

 

A.1. MHD 

A.1.1. MHD model parameters  

Table A.1 Mean and standard deviation of MHD parameters 
Parameters 𝑏 𝐷𝑖 𝑞𝑖 

Name 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

Well 1 4.42E-04 8.86E-04 2.05E-03 3.56E-05 1.15E+03 7.85E+00 

Well 2 3.15E-04 3.57E-04 2.35E-03 2.07E-05 8.28E+02 3.16E+00 

Well 3 1.88E+00 1.13E-01 1.96E-03 1.55E-04 4.90E+02 6.84E+00 

Well 4 6.48E-04 1.59E-03 6.71E-03 1.43E-04 7.05E+02 1.05E+01 

Well 5 1.67E+00 2.14E-01 4.80E-03 5.73E-04 3.38E+02 8.13E+00 

Well 6 3.94E-04 6.45E-04 3.48E-03 5.11E-05 6.91E+02 5.19E+00 

Well 7 1.00E-02 8.50E-02 5.83E-04 5.91E-05 3.16E+02 3.53E+00 

Well 8 1.89E+00 1.01E-01 1.64E-03 9.57E-05 3.32E+02 3.10E+00 

Well 9 1.26E-03 9.39E-03 8.30E-04 3.94E-05 3.58E+02 2.74E+00 

Well 10 3.89E-04 6.35E-04 5.82E-03 5.98E-05 9.00E+02 5.78E+00 

Well 11 1.66E-01 3.06E-02 5.77E-03 1.36E-04 1.04E+03 6.80E+00 

Well 12 4.36E-04 8.75E-04 4.51E-03 3.79E-05 8.28E+02 4.00E+00 

Well 13 8.24E-01 1.65E-01 2.96E-03 2.13E-04 1.01E+03 1.05E+01 

Well 14 1.40E+00 1.27E-01 4.97E-03 3.47E-04 6.91E+02 7.98E+00 

Well 15 1.98E+00 2.00E-02 5.62E-03 2.19E-04 7.83E+02 8.38E+00 

Well 16 4.85E-04 1.22E-03 2.16E-03 2.30E-05 5.01E+02 2.03E+00 

Well 17 1.12E-03 6.58E-03 9.33E-04 4.22E-05 4.79E+02 3.92E+00 

Well 18 1.94E+00 5.72E-02 3.67E-03 2.30E-04 6.36E+02 9.33E+00 

Well 19 1.76E+00 2.17E-01 3.18E-03 3.06E-04 7.20E+02 1.14E+01 

Well 20 6.44E-04 2.06E-03 2.31E-03 6.38E-05 6.96E+02 7.93E+00 

Well 21 8.94E-01 3.09E-02 1.49E-02 6.56E-04 1.74E+03 2.67E+01 

Well 22 1.97E+00 2.17E-02 4.83E-02 4.43E-03 2.48E+03 9.19E+01 

Well 23 3.53E-01 9.61E-02 4.28E-03 3.03E-04 1.25E+03 2.47E+01 

Well 24 1.00E-03 4.24E-03 1.75E-03 5.43E-05 5.27E+02 5.19E+00 

Well 25 6.66E-04 2.28E-03 2.73E-03 4.70E-05 7.81E+02 6.11E+00 

Well 26 4.21E-01 9.60E-02 6.16E-03 5.14E-04 1.09E+03 2.51E+01 

Well 27 1.65E+00 2.01E-01 7.99E-03 1.14E-03 4.44E+02 1.42E+01 

Well 28 2.19E-03 7.21E-03 1.57E-03 5.50E-05 2.74E+02 2.68E+00 

Well 29 1.90E+00 8.72E-02 2.33E-03 1.21E-04 4.62E+02 4.40E+00 

Well 30 4.67E-04 1.10E-03 2.43E-03 2.40E-05 4.67E+02 2.02E+00 

Well 31 6.57E-04 2.21E-03 2.40E-03 6.00E-05 5.11E+02 5.05E+00 

Well 32 2.08E-03 1.22E-02 4.65E-03 8.72E-05 7.68E+02 7.83E+00 

Well 33 7.17E-04 3.29E-03 2.04E-03 4.17E-05 6.98E+02 5.28E+00 

Well 34 1.51E-03 6.63E-03 1.28E-03 4.80E-05 1.02E+03 9.39E+00 

Well 35 1.90E+00 8.58E-02 6.97E-03 8.54E-04 3.86E+02 1.35E+01 

Well 36 1.98E+00 2.06E-02 3.82E-03 1.36E-04 8.67E+02 7.93E+00 

Well 37 1.98E+00 1.81E-02 6.38E-03 1.88E-04 1.23E+03 1.06E+01 

Well 38 3.64E-01 6.31E-02 4.84E-03 2.05E-04 1.05E+03 1.05E+01 

Well 39 5.36E-04 1.37E-03 4.79E-03 5.00E-05 9.14E+02 6.31E+00 

Well 40 6.87E-04 1.39E-03 5.11E-03 1.22E-04 1.52E+03 2.52E+01 

Well 41 8.18E-04 1.59E-03 4.91E-03 8.25E-05 1.14E+03 1.26E+01 

Well 42 4.73E-04 1.04E-03 3.20E-03 4.34E-05 9.97E+02 6.91E+00 

Well 43 4.06E-04 6.63E-04 2.26E-03 2.98E-05 4.43E+02 3.32E+00 
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A.1.2. Expected values of MHD daily basis production  

Table A.2 Mean of daily production associated with MHD model for several time 

intervals   
Name Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 

Well 1 5.50E+02 2.75E+01 6.68E-01 1.64E-02 4.08E-04 1.03E-05 2.67E-07 

Well 2 3.56E+02 1.14E+01 1.58E-01 2.21E-03 3.11E-05 4.41E-07 6.32E-09 

Well 3 3.13E+02 1.64E+02 9.70E+01 5.73E+01 3.38E+01 2.00E+01 1.18E+01 

Well 4 6.35E+01 3.68E-03 3.97E-08 9.36E-11 1.88E-12 7.63E-14 4.98E-15 

Well 5 1.51E+02 6.55E+01 3.85E+01 2.27E+01 1.34E+01 7.92E+00 4.68E+00 

Well 6 1.98E+02 1.21E+00 2.18E-03 4.04E-06 7.78E-09 1.62E-11 4.29E-14 

Well 7 2.57E+02 1.10E+02 3.91E+01 1.41E+01 5.22E+00 1.98E+00 7.75E-01 

Well 8 2.24E+02 1.21E+02 7.14E+01 4.22E+01 2.49E+01 1.47E+01 8.69E+00 

Well 9 2.66E+02 7.91E+01 1.76E+01 3.95E+00 8.98E-01 2.08E-01 4.98E-02 

Well 10 1.11E+02 2.24E-02 5.98E-07 1.88E-11 1.85E-15 2.20E-18 7.61E-21 

Well 11 1.75E+02 2.45E+00 1.46E-01 2.39E-02 6.42E-03 2.29E-03 9.88E-04 

Well 12 1.66E+02 2.24E-01 6.30E-05 1.93E-08 1.16E-11 8.25E-14 1.91E-15 

Well 13 4.70E+02 1.28E+02 6.24E+01 3.64E+01 2.15E+01 1.27E+01 7.50E+00 

Well 14 2.83E+02 1.06E+02 6.15E+01 3.63E+01 2.14E+01 1.27E+01 7.48E+00 

Well 15 3.48E+02 1.67E+02 9.84E+01 5.81E+01 3.43E+01 2.03E+01 1.20E+01 

Well 16 2.31E+02 9.76E+00 1.92E-01 3.81E-03 7.65E-05 1.57E-06 3.35E-08 

Well 17 3.42E+02 8.74E+01 1.61E+01 3.00E+00 5.65E-01 1.08E-01 2.13E-02 

Well 18 3.31E+02 1.63E+02 9.60E+01 5.67E+01 3.35E+01 1.98E+01 1.17E+01 

Well 19 3.85E+02 1.81E+02 1.07E+02 6.31E+01 3.72E+01 2.20E+01 1.30E+01 

Well 20 3.03E+02 1.03E+01 1.58E-01 2.49E-03 4.39E-05 1.26E-06 1.18E-07 

Well 21 2.45E+02 4.69E+01 2.21E+01 1.30E+01 7.69E+00 4.54E+00 2.68E+00 

Well 22 4.09E+02 1.81E+02 1.07E+02 6.33E+01 3.74E+01 2.21E+01 1.30E+01 

Well 23 3.66E+02 2.99E+01 6.82E+00 2.77E+00 1.44E+00 8.26E-01 4.85E-01 

Well 24 2.82E+02 2.19E+01 9.31E-01 4.07E-02 1.88E-03 1.01E-04 8.59E-06 

Well 25 2.93E+02 5.40E+00 3.84E-02 2.92E-04 3.22E-06 1.54E-07 2.39E-08 

Well 26 2.29E+02 1.78E+01 4.60E+00 2.05E+00 1.13E+00 6.61E-01 3.90E-01 

Well 27 1.55E+02 6.30E+01 3.70E+01 2.18E+01 1.29E+01 7.61E+00 4.49E+00 

Well 28 1.56E+02 1.59E+01 9.54E-01 5.93E-02 3.95E-03 3.12E-04 3.77E-05 

Well 29 2.80E+02 1.44E+02 8.52E+01 5.03E+01 2.97E+01 1.75E+01 1.04E+01 

Well 30 1.95E+02 5.57E+00 6.72E-02 8.22E-04 1.03E-05 1.35E-07 2.08E-09 

Well 31 2.17E+02 6.50E+00 8.48E-02 1.15E-03 1.76E-05 5.11E-07 5.71E-08 

Well 32 1.45E+02 1.83E-01 9.49E-04 1.68E-04 5.41E-05 2.30E-05 1.16E-05 

Well 33 3.35E+02 1.69E+01 4.15E-01 1.07E-02 3.89E-04 5.68E-05 2.40E-05 

Well 34 6.42E+02 9.89E+01 9.78E+00 9.86E-01 1.03E-01 1.16E-02 1.65E-03 

Well 35 1.54E+02 7.12E+01 4.20E+01 2.48E+01 1.46E+01 8.65E+00 5.11E+00 

Well 36 4.47E+02 2.21E+02 1.31E+02 7.72E+01 4.56E+01 2.69E+01 1.59E+01 

Well 37 5.18E+02 2.46E+02 1.45E+02 8.58E+01 5.07E+01 2.99E+01 1.77E+01 

Well 38 2.74E+02 2.03E+01 4.47E+00 1.75E+00 8.89E-01 5.09E-01 2.99E-01 

Well 39 1.65E+02 1.50E-01 2.64E-05 8.30E-09 5.51E-11 1.78E-12 9.53E-14 

Well 40 2.43E+02 1.42E-01 1.52E-05 2.73E-09 9.61E-12 2.22E-13 8.74E-15 

Well 41 1.96E+02 1.52E-01 2.28E-05 5.90E-09 1.95E-11 3.64E-13 1.23E-14 

Well 42 3.16E+02 2.91E00 8.66E-03 2.65E-05 8.48E-08 2.99E-10 1.41E-12 

Well 43 1.97E+02 7.18E+00 1.18E-01 1.94E-03 3.26E-05 5.54E-07 9.59E-09 
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A.1.3. Standard deviation of MHD daily basis production  

Table A.3 Standard deviation of daily production regarding MHD model for 7 years 
Name Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 

Well 1 4.24E+00 1.64E+00 8.45E-02 3.29E-03 1.21E-04 4.92E-06 2.61E-07 

Well 2 1.59E+00 3.87E-01 1.14E-02 2.47E-04 4.83E-06 9.02E-08 1.66E-09 

Well 3 3.33E+00 5.06E+00 3.01E+00 1.78E+00 1.05E+00 6.19E-01 3.66E-01 

Well 4 2.62E+00 1.17E-03 8.96E-07 7.44E-09 1.66E-10 7.08E-12 4.74E-13 

Well 5 3.44E+00 6.51E+00 4.17E+00 2.46E+00 1.45E+00 8.59E-01 5.07E-01 

Well 6 2.72E+00 1.08E-01 4.17E-04 1.32E-06 5.06E-09 3.53E-11 4.25E-13 

Well 7 3.35E+00 1.10E+01 8.71E+00 5.26E+00 2.96E+00 1.66E+00 9.41E-01 

Well 8 1.80E+00 2.92E+00 1.73E+00 1.02E+00 6.02E-01 3.55E-01 2.10E-01 

Well 9 2.33E+00 5.30E+00 2.59E+00 1.03E+00 4.50E-01 2.33E-01 1.32E-01 

Well 10 1.94E+00 2.50E-03 2.16E-07 6.42E-11 6.83E-14 1.58E-16 6.47E-19 

Well 11 3.05E+00 8.05E-01 9.87E-02 2.29E-02 7.71E-03 3.25E-03 1.59E-03 

Well 12 1.74E+00 1.57E-02 1.49E-05 4.70E-08 4.38E-10 7.23E-12 1.83E-13 

Well 13 5.05E+00 2.01E+01 1.63E+01 1.02E+01 6.05E+00 3.58E+00 2.11E+00 

Well 14 3.47E+00 8.08E+00 5.53E+00 3.27E+00 1.93E+00 1.14E+00 6.73E-01 

Well 15 2.44E+00 1.87E+00 1.10E+00 6.51E-01 3.85E-01 2.27E-01 1.34E-01 

Well 16 1.34E+00 3.83E-01 1.65E-02 5.64E-04 2.06E-05 1.00E-06 6.87E-08 

Well 17 3.32E+00 6.22E+00 2.45E+00 7.30E-01 2.12E-01 7.11E-02 3.06E-02 

Well 18 3.63E+00 3.75E+00 2.22E+00 1.31E+00 7.73E-01 4.56E-01 2.70E-01 

Well 19 4.42E+00 1.38E+01 9.07E+00 5.37E+00 3.18E+00 1.88E+00 1.11E+00 

Well 20 4.64E+00 1.12E+00 3.91E-02 1.72E-03 1.81E-04 3.02E-05 6.42E-06 

Well 21 3.04E+00 2.66E+00 1.79E+00 1.07E+00 6.33E-01 3.74E-01 2.21E-01 

Well 22 2.85E+00 2.39E+00 1.41E+00 8.34E-01 4.93E-01 2.91E-01 1.72E-01 

Well 23 5.63E+00 9.56E+00 4.03E+00 2.16E+00 1.30E+00 7.78E-01 4.61E-01 

Well 24 3.63E+00 2.02E+00 1.94E-01 1.74E-02 2.44E-03 5.47E-04 1.57E-04 

Well 25 3.44E+00 4.52E-01 9.84E-03 4.81E-04 5.08E-05 7.97E-06 1.62E-06 

Well 26 6.22E+00 6.18E+00 2.64E+00 1.48E+00 8.96E-01 5.34E-01 3.16E-01 

Well 27 4.85E+00 7.39E+00 4.71E+00 2.78E+00 1.64E+00 9.71E-01 5.73E-01 

Well 28 2.08E+00 1.50E+00 2.07E-01 2.75E-02 5.45E-03 1.65E-03 6.39E-04 

Well 29 2.04E+00 3.47E+00 2.06E+00 1.21E+00 7.17E-01 4.23E-01 2.50E-01 

Well 30 1.05E+00 2.28E-01 6.44E-03 1.61E-04 5.13E-06 2.35E-07 1.44E-08 

Well 31 3.24E+00 6.66E-01 2.03E-02 8.57E-04 9.23E-05 1.54E-05 3.28E-06 

Well 32 3.07E+00 1.96E-01 1.88E-02 4.85E-03 1.86E-03 8.87E-04 4.83E-04 

Well 33 3.23E+00 1.25E+00 1.10E-01 2.52E-02 9.39E-03 4.25E-03 2.18E-03 

Well 34 6.71E+00 8.02E+00 1.78E+00 3.51E-01 9.53E-02 3.75E-02 1.79E-02 

Well 35 3.49E+00 3.10E+00 1.84E+00 1.09E+00 6.43E-01 3.80E-01 2.24E-01 

Well 36 2.33E+00 2.15E+00 1.27E+00 7.51E-01 4.43E-01 2.62E-01 1.55E-01 

Well 37 2.20E+00 2.03E+00 1.20E+00 7.09E-01 4.19E-01 2.47E-01 1.46E-01 

Well 38 4.45E+00 4.93E+00 1.95E+00 9.95E-01 5.90E-01 3.58E-01 2.12E-01 

Well 39 2.13E+00 1.50E-02 2.19E-05 1.83E-07 3.84E-09 1.44E-10 8.22E-12 

Well 40 7.76E+00 3.08E-02 1.27E-05 5.75E-08 8.16E-10 2.12E-11 8.59E-13 

Well 41 4.37E+00 2.36E-02 1.74E-05 7.54E-08 9.48E-10 2.21E-11 8.07E-13 

Well 42 3.41E+00 2.16E-01 1.43E-03 8.25E-06 6.15E-08 7.19E-10 1.24E-11 

Well 43 1.47E+00 3.58E-01 1.25E-02 3.29E-04 8.00E-06 1.98E-07 5.49E-09 
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A.1.4. Expected values of MHD cumulative production  

Table A.4 Mean of cumulative production corresponding to MHD model 

Name Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 

Well 1 2.91E+05 5.47E+05 5.60E+05 5.60E+05 5.60E+05 5.60E+05 5.60E+05 

Well 2 2.01E+05 3.48E+05 3.52E+05 3.52E+05 3.52E+05 3.52E+05 3.52E+05 

Well 3 1.37E+05 4.58E+05 7.11E+05 9.07E+05 1.07E+06 1.22E+06 1.34E+06 

Well 4 9.56E+04 1.05E+05 1.05E+05 1.05E+05 1.05E+05 1.05E+05 1.05E+05 

Well 5 7.63E+04 2.14E+05 3.11E+05 3.82E+05 4.41E+05 4.92E+05 5.35E+05 

Well 6 1.42E+05 1.98E+05 1.98E+05 1.98E+05 1.98E+05 1.98E+05 1.98E+05 

Well 7 1.02E+05 3.58E+05 4.83E+05 5.28E+05 5.44E+05 5.50E+05 5.53E+05 

Well 8 9.61E+04 3.30E+05 5.17E+05 6.63E+05 7.85E+05 8.93E+05 9.87E+05 

Well 9 1.11E+05 3.38E+05 4.12E+05 4.28E+05 4.32E+05 4.33E+05 4.33E+05 

Well 10 1.35E+05 1.55E+05 1.55E+05 1.55E+05 1.55E+05 1.55E+05 1.55E+05 

Well 11 1.67E+05 2.14E+05 2.16E+05 2.16E+05 2.16E+05 2.16E+05 2.16E+05 

Well 12 1.47E+05 1.84E+05 1.84E+05 1.84E+05 1.84E+05 1.84E+05 1.84E+05 

Well 13 2.43E+05 5.89E+05 7.51E+05 8.43E+05 9.06E+05 9.53E+05 9.90E+05 

Well 14 1.50E+05 3.88E+05 5.39E+05 6.43E+05 7.26E+05 7.95E+05 8.53E+05 

Well 15 1.73E+05 5.06E+05 7.61E+05 9.57E+05 1.12E+06 1.27E+06 1.39E+06 

Well 16 1.25E+05 2.28E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 

Well 17 1.46E+05 4.21E+05 4.97E+05 5.10E+05 5.13E+05 5.13E+05 5.14E+05 

Well 18 1.56E+05 4.79E+05 7.28E+05 9.19E+05 1.08E+06 1.22E+06 1.34E+06 

Well 19 1.82E+05 5.50E+05 8.23E+05 1.03E+06 1.20E+06 1.35E+06 1.47E+06 

Well 20 1.70E+05 2.97E+05 3.02E+05 3.02E+05 3.02E+05 3.02E+05 3.02E+05 

Well 21 2.07E+05 3.51E+05 4.09E+05 4.41E+05 4.63E+05 4.80E+05 4.92E+05 

Well 22 2.53E+05 6.25E+05 9.00E+05 1.11E+06 1.29E+06 1.44E+06 1.58E+06 

Well 23 2.47E+05 4.12E+05 4.38E+05 4.46E+05 4.49E+05 4.52E+05 4.53E+05 

Well 24 1.41E+05 2.90E+05 3.02E+05 3.02E+05 3.02E+05 3.02E+05 3.02E+05 

Well 25 1.79E+05 2.84E+05 2.86E+05 2.86E+05 2.86E+05 2.86E+05 2.86E+05 

Well 26 1.82E+05 2.79E+05 2.95E+05 3.01E+05 3.04E+05 3.05E+05 3.06E+05 

Well 27 8.49E+04 2.20E+05 3.13E+05 3.81E+05 4.36E+05 4.83E+05 5.24E+05 

Well 28 7.52E+04 1.65E+05 1.75E+05 1.75E+05 1.75E+05 1.75E+05 1.75E+05 

Well 29 1.25E+05 4.08E+05 6.29E+05 8.00E+05 9.43E+05 1.07E+06 1.18E+06 

Well 30 1.12E+05 1.90E+05 1.92E+05 1.92E+05 1.92E+05 1.92E+05 1.92E+05 

Well 31 1.23E+05 2.11E+05 2.13E+05 2.13E+05 2.13E+05 2.13E+05 2.13E+05 

Well 32 1.34E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 

Well 33 1.78E+05 3.34E+05 3.42E+05 3.42E+05 3.42E+05 3.42E+05 3.42E+05 

Well 34 2.93E+05 7.20E+05 7.90E+05 7.97E+05 7.98E+05 7.98E+05 7.98E+05 

Well 35 7.97E+04 2.24E+05 3.32E+05 4.14E+05 4.83E+05 5.43E+05 5.95E+05 

Well 36 2.12E+05 6.50E+05 9.90E+05 1.25E+06 1.47E+06 1.67E+06 1.84E+06 

Well 37 2.62E+05 7.55E+05 1.13E+06 1.42E+06 1.66E+06 1.88E+06 2.07E+06 

Well 38 1.95E+05 3.12E+05 3.30E+05 3.35E+05 3.37E+05 3.39E+05 3.39E+05 

Well 39 1.56E+05 1.91E+05 1.91E+05 1.91E+05 1.91E+05 1.91E+05 1.91E+05 

Well 40 2.49E+05 2.97E+05 2.97E+05 2.97E+05 2.97E+05 2.97E+05 2.97E+05 

Well 41 1.92E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 

Well 42 2.13E+05 3.11E+05 3.11E+05 3.11E+05 3.11E+05 3.11E+05 3.11E+05 

Well 43 1.09E+05 1.93E+05 1.96E+05 1.96E+05 1.96E+05 1.96E+05 1.96E+05 
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A.1.5. Standard deviation of MHD cumulative production  

Table A.5 Standard deviation of cumulative production respected with MHD 

model 
Name Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 

Well 1 1.01E+03 5.86E+03 6.82E+03 6.86E+03 6.87E+03 6.87E+03 6.87E+03 

Well 2 3.62E+02 1.85E+03 2.05E+03 2.05E+03 2.05E+03 2.05E+03 2.05E+03 

Well 3 7.50E+02 6.94E+03 1.63E+04 2.58E+04 3.52E+04 4.44E+04 5.29E+04 

Well 4 1.02E+03 1.50E+03 1.50E+03 1.50E+03 1.50E+03 1.50E+03 1.50E+03 

Well 5 8.03E+02 8.69E+03 2.06E+04 3.20E+04 4.27E+04 5.27E+04 6.18E+04 

Well 6 7.48E+02 2.02E+03 2.05E+03 2.05E+03 2.05E+03 2.05E+03 2.05E+03 

Well 7 6.31E+02 1.30E+04 3.17E+04 4.44E+04 5.20E+04 5.66E+04 5.96E+04 

Well 8 4.32E+02 4.06E+03 9.95E+03 1.61E+04 2.22E+04 2.81E+04 3.38E+04 

Well 9 4.70E+02 7.33E+03 1.45E+04 1.76E+04 1.87E+04 1.92E+04 1.94E+04 

Well 10 7.13E+02 1.12E+03 1.12E+03 1.12E+03 1.12E+03 1.12E+03 1.12E+03 

Well 11 6.33E+02 3.66E+03 4.20E+03 4.28E+03 4.30E+03 4.31E+03 4.31E+03 

Well 12 5.25E+02 1.10E+03 1.10E+03 1.10E+03 1.10E+03 1.10E+03 1.10E+03 

Well 13 7.79E+02 2.39E+04 5.74E+04 8.50E+04 1.08E+05 1.28E+05 1.44E+05 

Well 14 6.42E+02 1.04E+04 2.47E+04 3.79E+04 5.00E+04 6.12E+04 7.13E+04 

Well 15 7.33E+02 3.64E+03 6.79E+03 9.60E+03 1.22E+04 1.47E+04 1.69E+04 

Well 16 3.17E+02 1.73E+03 1.95E+03 1.96E+03 1.96E+03 1.96E+03 1.96E+03 

Well 17 7.00E+02 9.19E+03 1.66E+04 1.91E+04 1.98E+04 1.99E+04 2.00E+04 

Well 18 1.04E+03 6.35E+03 1.34E+04 2.01E+04 2.65E+04 3.27E+04 3.85E+04 

Well 19 1.10E+03 1.63E+04 4.32E+04 7.00E+04 9.58E+04 1.20E+05 1.43E+05 

Well 20 1.17E+03 5.51E+03 6.11E+03 6.14E+03 6.14E+03 6.14E+03 6.14E+03 

Well 21 7.54E+02 5.19E+03 9.19E+03 1.21E+04 1.43E+04 1.62E+04 1.77E+04 

Well 22 1.19E+03 4.47E+03 8.48E+03 1.22E+04 1.56E+04 1.88E+04 2.17E+04 

Well 23 1.22E+03 1.84E+04 2.98E+04 3.50E+04 3.79E+04 3.98E+04 4.11E+04 

Well 24 8.09E+02 5.66E+03 7.05E+03 7.16E+03 7.17E+03 7.17E+03 7.17E+03 

Well 25 8.00E+02 3.29E+03 3.48E+03 3.48E+03 3.48E+03 3.48E+03 3.48E+03 

Well 26 1.17E+03 1.31E+04 2.04E+04 2.40E+04 2.61E+04 2.75E+04 2.85E+04 

Well 27 1.23E+03 1.06E+04 2.35E+04 3.53E+04 4.62E+04 5.64E+04 6.56E+04 

Well 28 4.72E+02 3.76E+03 5.02E+03 5.19E+03 5.21E+03 5.22E+03 5.23E+03 

Well 29 4.81E+02 4.76E+03 1.18E+04 1.91E+04 2.63E+04 3.34E+04 3.99E+04 

Well 30 2.45E+02 1.20E+03 1.30E+03 1.31E+03 1.31E+03 1.31E+03 1.31E+03 

Well 31 7.62E+02 3.47E+03 3.78E+03 3.79E+03 3.79E+03 3.79E+03 3.79E+03 

Well 32 9.20E+02 1.94E+03 1.96E+03 1.96E+03 1.96E+03 1.96E+03 1.96E+03 

Well 33 7.57E+02 4.56E+03 5.47E+03 5.57E+03 5.59E+03 5.59E+03 5.60E+03 

Well 34 1.35E+03 1.51E+04 2.29E+04 2.44E+04 2.46E+04 2.47E+04 2.47E+04 

Well 35 1.15E+03 5.45E+03 1.05E+04 1.52E+04 1.96E+04 2.37E+04 2.75E+04 

Well 36 6.60E+02 3.60E+03 7.12E+03 1.03E+04 1.33E+04 1.61E+04 1.87E+04 

Well 37 6.91E+02 3.57E+03 7.18E+03 1.06E+04 1.37E+04 1.68E+04 1.96E+04 

Well 38 7.71E+02 1.03E+04 1.59E+04 1.84E+04 1.98E+04 2.06E+04 2.11E+04 

Well 39 6.82E+02 1.23E+03 1.23E+03 1.23E+03 1.23E+03 1.23E+03 1.23E+03 

Well 40 2.55E+03 4.44E+03 4.45E+03 4.45E+03 4.45E+03 4.45E+03 4.45E+03 

Well 41 1.46E+03 2.57E+03 2.57E+03 2.57E+03 2.57E+03 2.57E+03 2.57E+03 

Well 42 8.99E+02 2.62E+03 2.69E+03 2.69E+03 2.69E+03 2.69E+03 2.69E+03 

Well 43 5.67E+02 1.74E+03 1.91E+03 1.92E+03 1.92E+03 1.92E+03 1.92E+03 
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A.2. PLED 

A.2.1. PLED model parameter  

Table A.6 Mean and standard deviation of PLED parameters 
Parameters 𝑛 𝐷𝑖 𝑞𝑖 𝐷∞ 
Name 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
Well 1 1.53E-03 1.45E-02 1.97E-03 2.09E-02 1.14E+03 3.10E+01 2.01E-03 3.48E-05 

Well 2 8.97E-01 2.62E-02 4.45E-03 7.21E-04 8.58E+02 9.31E+00 4.98E-14 9.34E-14 

Well 3 1.40E-01 6.67E-03 6.90E-01 4.32E-02 1.53E+03 7.03E+01 9.00E-14 4.39E-13 

Well 4 1.30E+00 5.81E-02 1.33E-03 4.35E-04 6.24E+02 1.38E+01 3.97E-13 4.81E-12 

Well 5 8.36E-01 8.06E-02 6.79E-03 3.32E-03 3.20E+02 9.72E+00 1.72E-13 2.74E-12 

Well 6 1.57E+00 3.63E-02 1.38E-04 3.16E-05 6.23E+02 5.34E+00 1.42E-12 1.86E-11 

Well 7 7.63E-02 1.39E-02 7.65E-01 1.39E-01 8.60E+02 1.17E+02 1.13E-13 1.29E-12 

Well 8 2.65E-01 6.03E-02 1.57E-01 8.80E-02 4.52E+02 5.76E+01 1.25E-13 1.50E-12 

Well 9 1.26E+00 7.25E-02 1.84E-04 1.39E-04 3.55E+02 2.79E+00 5.14E-14 1.39E-13 

Well 10 9.26E-04 4.63E-03 5.36E-04 1.57E-03 8.98E+02 5.95E+00 5.79E-03 5.99E-05 

Well 11 8.83E-04 8.21E-03 8.18E-04 2.90E-03 1.02E+03 5.78E+00 5.13E-03 4.16E-05 

Well 12 1.43E-03 1.17E-02 8.77E-04 4.81E-03 8.28E+02 5.78E+00 4.51E-03 3.82E-05 

Well 13 7.93E-01 3.51E-02 7.79E-03 1.70E-03 1.04E+03 1.53E+01 1.13E-13 1.23E-12 

Well 14 5.87E-01 3.48E-02 3.04E-02 6.81E-03 7.48E+02 1.93E+01 9.38E-14 6.78E-13 

Well 15 1.96E-01 8.44E-03 5.10E-01 3.61E-02 1.83E+03 8.03E+01 4.99E-14 1.21E-13 

Well 16 6.88E-04 2.58E-03 9.56E-04 4.82E-03 5.02E+02 3.27E+00 2.16E-03 2.39E-05 

Well 17 1.34E+00 3.37E-02 1.27E-04 3.00E-05 4.67E+02 3.22E+00 5.03E-14 2.09E-13 

Well 18 3.01E-01 4.94E-02 1.77E-01 7.23E-02 9.13E+02 1.02E+02 7.69E-14 4.19E-13 

Well 19 4.61E-01 6.74E-02 5.43E-02 2.60E-02 8.30E+02 5.04E+01 1.60E-13 3.07E-12 

Well 20 1.49E+00 4.08E-02 1.39E-04 3.85E-05 6.48E+02 7.82E+00 1.16E-13 9.66E-13 

Well 21 4.22E-01 1.60E-02 2.08E-01 2.29E-02 2.87E+03 1.49E+02 5.26E-14 1.36E-13 

Well 22 3.07E-01 6.26E-03 3.43E-01 1.43E-02 3.16E+03 6.73E+01 1.13E-13 6.53E-13 

Well 23 8.73E-01 5.32E-02 7.88E-03 2.68E-03 1.27E+03 4.69E+01 1.34E-13 1.18E-12 

Well 24 1.41E+00 5.27E-02 1.59E-04 6.03E-05 4.95E+02 4.97E+00 1.05E-13 7.94E-13 

Well 25 1.19E-03 1.09E-02 5.63E-03 4.81E-02 7.93E+02 5.32E+01 2.78E-03 4.69E-05 

Well 26 7.16E-01 4.35E-02 2.57E-02 7.11E-03 1.22E+03 5.49E+01 1.17E-13 9.20E-13 

Well 27 6.07E-01 6.31E-02 3.53E-02 1.38E-02 4.66E+02 2.34E+01 8.90E-14 7.94E-13 

Well 28 1.26E-03 8.99E-03 3.75E-03 4.59E-02 2.73E+02 2.06E+01 1.52E-03 5.44E-05 

Well 29 1.90E-01 2.89E-02 3.90E-01 1.11E-01 9.34E+02 1.29E+02 1.43E-11 2.45E-10 

Well 30 9.88E-02 5.78E-03 8.64E-01 4.99E-02 1.64E+03 8.02E+01 1.49E-03 5.62E-05 

Well 31 7.49E-02 1.89E-02 7.75E-01 1.63E-01 1.37E+03 2.14E+02 1.64E-03 1.23E-04 

Well 32 1.09E-03 6.61E-03 2.42E-03 2.96E-02 7.65E+02 3.43E+01 4.59E-03 7.46E-05 

Well 33 1.34E+00 5.02E-02 2.88E-04 8.73E-05 6.60E+02 5.85E+00 8.78E-14 2.97E-13 

Well 34 1.00E-03 6.94E-03 3.67E-03 3.57E-02 1.03E+03 5.01E+01 1.31E-03 4.35E-05 

Well 35 2.68E-01 6.27E-02 3.04E-01 1.42E-01 6.30E+02 1.24E+02 3.15E-13 1.75E-11 

Well 36 1.91E-01 8.14E-03 4.72E-01 3.37E-02 1.97E+03 8.17E+01 7.63E-14 3.73E-13 

Well 37 2.20E-01 5.60E-03 4.52E-01 2.11E-02 2.74E+03 7.60E+01 8.30E-14 3.58E-13 

Well 38 8.47E-01 2.33E-02 9.68E-03 1.34E-03 1.08E+03 1.45E+01 4.38E-14 1.63E-13 

Well 39 1.01E-03 8.35E-03 1.13E-03 9.32E-03 9.27E+02 1.21E+01 4.82E-03 5.37E-05 

Well 40 1.66E+00 2.26E-02 1.18E-04 1.60E-05 1.24E+03 1.71E+01 6.99E-14 2.62E-13 

Well 41 1.14E-03 8.84E-03 2.56E-03 2.50E-02 1.14E+03 3.86E+01 4.89E-03 8.28E-05 

Well 42 1.36E+00 5.56E-02 4.09E-04 1.36E-04 9.06E+02 1.16E+01 8.83E-14 5.53E-13 

Well 43 1.12E-03 9.34E-03 3.33E-03 3.38E-02 3.98E+02 1.88E+01 1.29E-03 4.69E-05 
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A.2.2. Expected values of PLED daily basis production  

Table A.7 Mean of daily production associated with PLED model for several time 

intervals   
Name Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 

Well 1 5.54E+02 2.93E+01 7.55E-01 1.96E-02 5.10E-04 1.33E-05 3.50E-07 

Well 2 3.62E+02 2.13E+01 9.28E-01 5.11E-02 3.36E-03 2.57E-04 2.24E-05 

Well 3 3.17E+02 2.12E+02 1.73E+02 1.52E+02 1.39E+02 1.28E+02 1.20E+02 

Well 4 4.51E+01 3.11E-06 1.63E-13 3.60E-20 6.73E-27 1.02E-33 1.29E-40 

Well 5 1.39E+02 1.35E+01 1.51E+00 2.66E-01 6.34E-02 1.87E-02 6.50E-03 

Well 6 1.55E+02 2.54E-05 5.47E-16 5.98E-27 3.09E-39 9.19E-53 2.22E-67 

Well 7 2.61E+02 2.24E+02 2.08E+02 1.99E+02 1.93E+02 1.88E+02 1.84E+02 

Well 8 2.32E+02 1.64E+02 1.35E+02 1.18E+02 1.06E+02 9.76E+01 9.07E+01 

Well 9 2.71E+02 4.52E+01 3.39E+00 3.56E-01 7.01E-02 2.16E-02 8.62E-03 

Well 10 1.12E+02 2.35E-02 6.21E-07 1.66E-11 4.51E-16 1.24E-20 3.45E-25 

Well 11 1.61E+02 8.79E-02 7.65E-06 6.70E-10 5.90E-14 5.22E-18 4.65E-22 

Well 12 1.66E+02 2.22E-01 5.98E-05 1.62E-08 4.41E-12 1.21E-15 3.32E-19 

Well 13 4.62E+02 5.53E+01 6.75E+00 1.08E+00 2.08E-01 4.58E-02 1.13E-02 

Well 14 2.93E+02 6.63E+01 2.00E+01 7.79E+00 3.48E+00 1.71E+00 8.98E-01 

Well 15 3.65E+02 1.99E+02 1.45E+02 1.17E+02 1.00E+02 8.79E+01 7.87E+01 

Well 16 2.32E+02 9.74E+00 1.89E-01 3.68E-03 7.19E-05 1.40E-06 2.75E-08 

Well 17 3.35E+02 2.53E+01 3.62E-01 4.32E-03 8.18E-05 2.42E-06 8.72E-08 

Well 18 3.44E+02 1.88E+02 1.32E+02 1.03E+02 8.53E+01 7.28E+01 6.35E+01 

Well 19 3.95E+02 1.75E+02 9.89E+01 6.51E+01 4.65E+01 3.49E+01 2.71E+01 

Well 20 2.73E+02 5.18E-02 1.04E-07 5.47E-13 2.51E-18 7.43E-24 1.28E-29 

Well 21 2.41E+02 2.11E+01 4.02E+00 1.20E+00 4.44E-01 1.90E-01 8.92E-02 

Well 22 3.91E+02 1.01E+02 4.47E+01 2.54E+01 1.63E+01 1.12E+01 8.12E+00 

Well 23 3.58E+02 7.19E+00 1.36E-01 4.85E-03 2.78E-04 2.31E-05 2.60E-06 

Well 24 2.70E+02 1.37E+00 5.10E-04 6.04E-07 1.40E-09 3.86E-12 1.05E-14 

Well 25 2.90E+02 4.96E+00 3.15E-02 2.01E-04 1.30E-06 8.42E-09 5.51E-11 

Well 26 2.28E+02 5.95E+00 2.34E-01 1.75E-02 1.95E-03 2.89E-04 5.37E-05 

Well 27 1.45E+02 2.13E+01 4.75E+00 1.53E+00 6.11E-01 2.80E-01 1.41E-01 

Well 28 1.57E+02 1.70E+01 1.07E+00 6.80E-02 4.37E-03 2.84E-04 1.86E-05 

Well 29 2.92E+02 1.94E+02 1.56E+02 1.35E+02 1.22E+02 1.12E+02 1.04E+02 

Well 30 2.05E+02 1.76E+01 1.02E+00 6.33E-02 4.03E-03 2.63E-04 1.75E-05 

Well 31 2.31E+02 1.82E+01 9.12E-01 4.92E-02 2.83E-03 1.72E-04 1.11E-05 

Well 32 1.47E+02 1.77E-01 4.19E-05 1.01E-08 2.47E-12 6.18E-16 1.57E-19 

Well 33 3.17E+02 1.14E+00 2.26E-04 8.84E-08 8.67E-11 1.08E-13 1.33E-16 

Well 34 6.38E+02 9.39E+01 8.68E+00 8.09E-01 7.57E-02 7.14E-03 6.77E-04 

Well 35 1.65E+02 8.23E+01 5.55E+01 4.27E+01 3.49E+01 2.97E+01 2.58E+01 

Well 36 4.64E+02 2.74E+02 2.07E+02 1.73E+02 1.51E+02 1.35E+02 1.23E+02 

Well 37 5.29E+02 2.61E+02 1.77E+02 1.37E+02 1.13E+02 9.63E+01 8.40E+01 

Well 38 2.68E+02 4.23E+00 5.55E-02 1.15E-03 3.26E-05 1.19E-06 5.35E-08 

Well 39 1.67E+02 1.41E-01 2.17E-05 3.37E-09 5.29E-13 8.37E-17 1.34E-20 

Well 40 1.55E+02 2.32E-10 2.37E-30 2.34E-55 2.55E-85 1.18E-119 6.31E-158 

Well 41 1.96E+02 1.52E-01 2.08E-05 2.90E-09 4.14E-13 6.04E-17 9.01E-21 

Well 42 2.88E+02 4.07E-02 1.46E-07 1.09E-12 8.76E-18 6.02E-23 3.52E-28 

Well 43 2.49E+02 3.75E+01 3.58E+00 3.44E-01 3.32E-02 3.24E-03 3.17E-04 
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A.2.3. Standard deviation values of PLED daily basis production  

Table A.8 Standard deviation of daily production regarding PLED model for 7 

years 
Name Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 

Well 1 4.18E+00 1.71E+00 9.29E-02 3.69E-03 1.30E-04 4.30E-06 1.37E-07 

Well 2 2.17E+00 3.08E+00 3.58E-01 3.45E-02 3.47E-03 3.86E-04 4.80E-05 

Well 3 2.68E+00 4.57E+00 5.16E+00 5.40E+00 5.52E+00 5.59E+00 5.62E+00 

Well 4 4.25E+00 2.24E-05 7.33E-12 1.93E-18 3.78E-25 5.85E-32 7.55E-39 

Well 5 4.71E+00 5.81E+00 1.53E+00 4.55E-01 1.65E-01 6.99E-02 3.34E-02 

Well 6 4.04E+00 5.89E-05 3.41E-14 5.72E-25 3.07E-37 9.18E-51 2.22E-65 

Well 7 2.32E+00 4.62E+00 5.66E+00 6.27E+00 6.70E+00 7.03E+00 7.30E+00 

Well 8 2.18E+00 9.57E+00 1.34E+01 1.55E+01 1.68E+01 1.77E+01 1.83E+01 

Well 9 2.77E+00 1.30E+01 4.40E+00 1.43E+00 6.09E-01 3.08E-01 1.72E-01 

Well 10 1.96E+00 2.51E-03 1.37E-07 5.63E-12 2.09E-16 7.41E-21 2.57E-25 

Well 11 1.88E+00 6.36E-03 1.14E-06 1.52E-10 1.81E-14 2.04E-18 2.22E-22 

Well 12 1.74E+00 1.47E-02 8.16E-06 3.36E-09 1.24E-12 4.28E-16 1.43E-19 

Well 13 4.33E+00 8.80E+00 2.59E+00 6.81E-01 1.88E-01 5.60E-02 1.81E-02 

Well 14 3.56E+00 8.23E+00 5.18E+00 3.00E+00 1.76E+00 1.07E+00 6.68E-01 

Well 15 2.88E+00 5.18E+00 5.56E+00 5.57E+00 5.48E+00 5.35E+00 5.22E+00 

Well 16 1.40E+00 3.88E-01 1.57E-02 4.64E-04 1.22E-05 3.00E-07 7.10E-09 

Well 17 3.70E+00 6.08E+00 3.90E-01 1.66E-02 7.88E-04 3.91E-05 1.92E-06 

Well 18 4.78E+00 1.61E+01 1.94E+01 2.02E+01 2.02E+01 1.98E+01 1.93E+01 

Well 19 5.41E+00 2.28E+01 2.47E+01 2.28E+01 2.03E+01 1.80E+01 1.59E+01 

Well 20 6.44E+00 5.75E-02 1.46E-06 2.31E-11 1.79E-16 6.56E-22 1.22E-27 

Well 21 3.03E+00 2.05E+00 7.33E-01 3.03E-01 1.41E-01 7.09E-02 3.81E-02 

Well 22 4.36E+00 4.21E+00 2.94E+00 2.14E+00 1.62E+00 1.27E+00 1.02E+00 

Well 23 5.55E+00 2.85E+00 1.49E-01 1.07E-02 1.19E-03 1.89E-04 3.79E-05 

Well 24 4.30E+00 9.59E-01 2.87E-03 1.16E-05 4.75E-08 1.74E-10 5.57E-13 

Well 25 3.39E+00 3.99E-01 5.29E-03 5.19E-05 4.54E-07 3.77E-09 3.03E-11 

Well 26 5.22E+00 2.05E+00 1.94E-01 2.52E-02 4.46E-03 1.01E-03 2.78E-04 

Well 27 5.78E+00 6.84E+00 3.06E+00 1.46E+00 7.65E-01 4.36E-01 2.65E-01 

Well 28 2.04E+00 1.56E+00 2.06E-01 2.01E-02 1.77E-03 1.47E-04 1.19E-05 

Well 29 2.51E+00 7.78E+00 1.00E+01 1.11E+01 1.17E+01 1.21E+01 1.24E+01 

Well 30 1.43E+00 1.36E+00 1.79E-01 1.75E-02 1.55E-03 1.31E-04 1.08E-05 

Well 31 3.79E+00 3.21E+00 3.71E-01 3.33E-02 2.86E-03 2.49E-04 2.26E-05 

Well 32 2.99E+00 2.26E-02 1.12E-05 4.17E-09 1.42E-12 4.68E-16 1.52E-19 

Well 33 3.72E+00 6.41E-01 8.55E-04 1.54E-06 2.85E-09 4.54E-12 6.24E-15 

Well 34 6.00E+00 6.74E+00 1.31E+00 1.88E-01 2.39E-02 2.87E-03 3.33E-04 

Well 35 4.63E+00 1.17E+01 1.28E+01 1.27E+01 1.22E+01 1.17E+01 1.11E+01 

Well 36 2.33E+00 4.88E+00 5.60E+00 5.83E+00 5.90E+00 5.90E+00 5.87E+00 

Well 37 2.42E+00 4.31E+00 4.51E+00 4.40E+00 4.23E+00 4.05E+00 3.88E+00 

Well 38 3.73E+00 9.36E-01 3.10E-02 1.12E-03 4.93E-05 2.64E-06 1.68E-07 

Well 39 2.26E+00 1.28E-02 4.12E-06 9.82E-10 2.10E-13 4.26E-17 8.42E-21 

Well 40 8.52E+00 2.11E-09 2.12E-28 2.33E-53 2.55E-83 1.18E-117 6.31E-156 

Well 41 4.36E+00 2.13E-02 6.08E-06 1.32E-09 2.61E-13 5.01E-17 9.51E-21 

Well 42 5.38E+00 4.33E-02 1.06E-06 2.06E-11 3.03E-16 3.26E-21 2.53E-26 

Well 43 2.79E+00 2.96E+00 5.89E-01 8.65E-02 1.14E-02 1.41E-03 1.69E-04 
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A.2.4. Expected values of PLED cumulative production  

Table A.9 Mean of cumulative production corresponding to PLED model 
Name Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 

Well 1 2.91E+05 5.53E+05 5.67E+05 5.67E+05 5.67E+05 5.67E+05 5.67E+05 

Well 2 2.01E+05 3.72E+05 3.83E+05 3.84E+05 3.84E+05 3.84E+05 3.84E+05 

Well 3 1.40E+05 5.09E+05 8.57E+05 1.15E+06 1.42E+06 1.66E+06 1.88E+06 

Well 4 9.38E+04 9.83E+04 9.83E+04 9.83E+04 9.83E+04 9.83E+04 9.83E+04 

Well 5 7.48E+04 1.49E+05 1.59E+05 1.60E+05 1.60E+05 1.61E+05 1.61E+05 

Well 6 1.41E+05 1.63E+05 1.63E+05 1.63E+05 1.63E+05 1.63E+05 1.63E+05 

Well 7 1.01E+05 4.52E+05 8.47E+05 1.22E+06 1.58E+06 1.93E+06 2.26E+06 

Well 8 9.56E+04 3.76E+05 6.47E+05 8.78E+05 1.08E+06 1.27E+06 1.44E+06 

Well 9 1.14E+05 3.09E+05 3.38E+05 3.40E+05 3.40E+05 3.40E+05 3.40E+05 

Well 10 1.36E+05 1.55E+05 1.55E+05 1.55E+05 1.55E+05 1.55E+05 1.55E+05 

Well 11 1.67E+05 1.98E+05 1.98E+05 1.98E+05 1.98E+05 1.98E+05 1.98E+05 

Well 12 1.47E+05 1.84E+05 1.84E+05 1.84E+05 1.84E+05 1.84E+05 1.84E+05 

Well 13 2.43E+05 5.08E+05 5.48E+05 5.53E+05 5.54E+05 5.54E+05 5.55E+05 

Well 14 1.53E+05 3.60E+05 4.29E+05 4.52E+05 4.61E+05 4.66E+05 4.68E+05 

Well 15 1.75E+05 5.54E+05 8.62E+05 1.10E+06 1.30E+06 1.47E+06 1.61E+06 

Well 16 1.25E+05 2.28E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 

Well 17 1.46E+05 3.40E+05 3.50E+05 3.50E+05 3.50E+05 3.50E+05 3.50E+05 

Well 18 1.57E+05 5.17E+05 8.03E+05 1.01E+06 1.19E+06 1.33E+06 1.45E+06 

Well 19 1.81E+05 5.57E+05 7.95E+05 9.41E+05 1.04E+06 1.11E+06 1.17E+06 

Well 20 1.70E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 

Well 21 2.12E+05 3.23E+05 3.41E+05 3.45E+05 3.46E+05 3.47E+05 3.47E+05 

Well 22 2.49E+05 5.28E+05 6.50E+05 7.11E+05 7.48E+05 7.73E+05 7.90E+05 

Well 23 2.47E+05 3.70E+05 3.73E+05 3.73E+05 3.73E+05 3.73E+05 3.73E+05 

Well 24 1.40E+05 2.30E+05 2.30E+05 2.30E+05 2.30E+05 2.30E+05 2.30E+05 

Well 25 1.79E+05 2.82E+05 2.84E+05 2.84E+05 2.84E+05 2.84E+05 2.84E+05 

Well 26 1.83E+05 2.61E+05 2.64E+05 2.64E+05 2.64E+05 2.64E+05 2.64E+05 

Well 27 8.45E+04 1.70E+05 1.89E+05 1.94E+05 1.96E+05 1.97E+05 1.97E+05 

Well 28 7.52E+04 1.68E+05 1.78E+05 1.79E+05 1.79E+05 1.79E+05 1.79E+05 

Well 29 1.27E+05 4.66E+05 7.82E+05 1.05E+06 1.28E+06 1.50E+06 1.69E+06 

Well 30 1.15E+05 2.23E+05 2.34E+05 2.34E+05 2.34E+05 2.34E+05 2.34E+05 

Well 31 1.23E+05 2.43E+05 2.54E+05 2.54E+05 2.54E+05 2.54E+05 2.54E+05 

Well 32 1.34E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 

Well 33 1.77E+05 2.74E+05 2.75E+05 2.75E+05 2.75E+05 2.75E+05 2.75E+05 

Well 34 2.92E+05 7.09E+05 7.73E+05 7.79E+05 7.80E+05 7.80E+05 7.80E+05 

Well 35 7.97E+04 2.44E+05 3.66E+05 4.55E+05 5.26E+05 5.86E+05 6.35E+05 

Well 36 2.14E+05 7.18E+05 1.15E+06 1.50E+06 1.79E+06 2.05E+06 2.28E+06 

Well 37 2.64E+05 7.84E+05 1.17E+06 1.46E+06 1.68E+06 1.87E+06 2.03E+06 

Well 38 1.95E+05 2.82E+05 2.84E+05 2.84E+05 2.84E+05 2.84E+05 2.84E+05 

Well 39 1.58E+05 1.92E+05 1.92E+05 1.92E+05 1.92E+05 1.92E+05 1.92E+05 

Well 40 2.43E+05 2.57E+05 2.57E+05 2.57E+05 2.57E+05 2.57E+05 2.57E+05 

Well 41 1.92E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 2.32E+05 

Well 42 2.12E+05 2.70E+05 2.70E+05 2.70E+05 2.70E+05 2.70E+05 2.70E+05 

Well 43 1.14E+05 2.78E+05 3.04E+05 3.07E+05 3.07E+05 3.07E+05 3.07E+05 
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A.2.5. Standard deviation values of PLED cumulative production  

Table A.10 Standard deviation of cumulative production respected with PLED 

model 
Name Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 

Well 1 9.98E+02 5.68E+03 6.63E+03 6.68E+03 6.68E+03 6.68E+03 6.68E+03 

Well 2 4.00E+02 6.74E+03 9.09E+03 9.33E+03 9.35E+03 9.35E+03 9.35E+03 

Well 3 6.65E+02 6.21E+03 1.53E+04 2.52E+04 3.55E+04 4.59E+04 5.59E+04 

Well 4 1.11E+03 1.74E+03 1.74E+03 1.74E+03 1.74E+03 1.74E+03 1.74E+03 

Well 5 8.29E+02 1.12E+04 1.68E+04 1.81E+04 1.85E+04 1.86E+04 1.87E+04 

Well 6 7.69E+02 1.82E+03 1.82E+03 1.82E+03 1.82E+03 1.82E+03 1.82E+03 

Well 7 5.73E+02 5.88E+03 1.54E+04 2.64E+04 3.84E+04 5.11E+04 6.38E+04 

Well 8 4.04E+02 9.76E+03 3.14E+04 5.83E+04 8.82E+04 1.20E+05 1.52E+05 

Well 9 4.60E+02 1.56E+04 2.95E+04 3.29E+04 3.37E+04 3.39E+04 3.40E+04 

Well 10 6.93E+02 1.14E+03 1.14E+03 1.14E+03 1.14E+03 1.14E+03 1.14E+03 

Well 11 6.16E+02 1.10E+03 1.11E+03 1.11E+03 1.11E+03 1.11E+03 1.11E+03 

Well 12 5.24E+02 1.07E+03 1.07E+03 1.07E+03 1.07E+03 1.07E+03 1.07E+03 

Well 13 7.56E+02 1.42E+04 2.34E+04 2.59E+04 2.65E+04 2.67E+04 2.67E+04 

Well 14 6.54E+02 1.10E+04 2.29E+04 2.99E+04 3.39E+04 3.62E+04 3.76E+04 

Well 15 7.31E+02 6.83E+03 1.67E+04 2.68E+04 3.68E+04 4.67E+04 5.59E+04 

Well 16 3.49E+02 1.68E+03 1.89E+03 1.90E+03 1.90E+03 1.90E+03 1.90E+03 

Well 17 6.63E+02 1.15E+04 1.52E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 

Well 18 1.08E+03 1.79E+04 5.12E+04 8.77E+04 1.25E+05 1.61E+05 1.95E+05 

Well 19 1.02E+03 2.48E+04 6.95E+04 1.13E+05 1.52E+05 1.86E+05 2.15E+05 

Well 20 1.28E+03 4.99E+03 5.00E+03 5.00E+03 5.00E+03 5.00E+03 5.00E+03 

Well 21 9.19E+02 5.12E+03 7.44E+03 8.32E+03 8.70E+03 8.89E+03 8.98E+03 

Well 22 1.20E+03 7.05E+03 1.31E+04 1.74E+04 2.06E+04 2.31E+04 2.50E+04 

Well 23 1.44E+03 1.12E+04 1.27E+04 1.28E+04 1.28E+04 1.28E+04 1.28E+04 

Well 24 7.69E+02 6.87E+03 7.08E+03 7.08E+03 7.08E+03 7.08E+03 7.08E+03 

Well 25 8.28E+02 3.10E+03 3.25E+03 3.25E+03 3.25E+03 3.25E+03 3.25E+03 

Well 26 1.15E+03 7.79E+03 9.14E+03 9.27E+03 9.29E+03 9.30E+03 9.30E+03 

Well 27 1.17E+03 1.27E+04 2.17E+04 2.58E+04 2.78E+04 2.89E+04 2.95E+04 

Well 28 4.42E+02 3.86E+03 5.14E+03 5.28E+03 5.29E+03 5.30E+03 5.30E+03 

Well 29 4.99E+02 8.45E+03 2.48E+04 4.40E+04 6.48E+04 8.64E+04 1.08E+05 

Well 30 3.11E+02 2.93E+03 3.98E+03 4.10E+03 4.11E+03 4.11E+03 4.11E+03 

Well 31 7.44E+02 7.88E+03 1.03E+04 1.06E+04 1.06E+04 1.06E+04 1.06E+04 

Well 32 9.15E+02 1.85E+03 1.85E+03 1.85E+03 1.85E+03 1.85E+03 1.85E+03 

Well 33 6.45E+02 6.97E+03 7.14E+03 7.14E+03 7.14E+03 7.14E+03 7.14E+03 

Well 34 1.29E+03 1.32E+04 1.95E+04 2.05E+04 2.06E+04 2.06E+04 2.06E+04 

Well 35 1.10E+03 1.45E+04 3.81E+04 6.22E+04 8.57E+04 1.08E+05 1.29E+05 

Well 36 6.09E+02 6.04E+03 1.59E+04 2.65E+04 3.75E+04 4.86E+04 5.92E+04 

Well 37 6.47E+02 5.66E+03 1.38E+04 2.19E+04 2.98E+04 3.74E+04 4.43E+04 

Well 38 7.15E+02 4.74E+03 5.20E+03 5.22E+03 5.22E+03 5.22E+03 5.22E+03 

Well 39 7.01E+02 1.23E+03 1.24E+03 1.24E+03 1.24E+03 1.24E+03 1.24E+03 

Well 40 2.54E+03 3.28E+03 3.28E+03 3.28E+03 3.28E+03 3.28E+03 3.28E+03 

Well 41 1.44E+03 2.48E+03 2.48E+03 2.48E+03 2.48E+03 2.48E+03 2.48E+03 

Well 42 9.13E+02 4.89E+03 4.90E+03 4.90E+03 4.90E+03 4.90E+03 4.90E+03 

Well 43 5.51E+02 5.86E+03 8.59E+03 9.05E+03 9.12E+03 9.13E+03 9.13E+03 
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APPENDIX B: TASK 2, CROSS-VALIDATION RESULTS 

B.1. MHD 

B.1.1. Model parameters  

Variable 𝑏 results are presented in the Cross-validation results. 

 

Table B.1 MHD parameter 𝐷𝑖 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑰𝑫𝑾 1.47E-03 1.39E-04 4.04E-04 4.32E-05 3.24E-03 3.66E-04 2.96E-04 3.34E-05 

𝑶𝑲𝑺𝒑 1.35E-03 1.29E-04 3.49E-04 4.23E-05 3.15E-03 3.55E-04 2.87E-04 3.24E-05 

𝑶𝑲𝒆𝒙 1.35E-03 1.27E-04 3.49E-04 4.14E-05 2.96E-03 3.35E-04 2.70E-04 3.06E-05 

𝑶𝑲𝑮𝒂 5.30E-03 3.03E-04 7.94E-04 6.70E-05 3.78E-03 5.78E-04 3.54E-04 5.27E-05 

𝑶𝑲𝑺𝒕 1.37E-03 1.30E-04 3.48E-04 4.22E-05 3.17E-03 3.58E-04 2.89E-04 3.27E-05 

 

Table B.2 MHD parameter 𝑞𝑖 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑰𝑫𝑾 8.04E+01 2.73E+00 6.75E+01 1.20E+00 9.94E+01 6.28E+00 1.22E+01 5.84E-01 

𝑶𝑲𝑺𝒑 7.78E+01 2.52E+00 6.31E+01 1.23E+00 1.03E+02 6.17E+00 1.21E+01 5.76E-01 

𝑶𝑲𝒆𝒙 7.66E+01 2.49E+00 6.32E+01 1.19E+00 1.04E+02 5.83E+00 1.22E+01 5.45E-01 

𝑶𝑲𝑮𝒂 4.55E+02 7.40E+00 2.71E+02 7.40E+00 1.14E+03 1.09E+02 1.08E+02 9.85E+00 

𝑶𝑲𝑺𝒕 8.77E+01 2.68E+00 6.58E+01 1.29E+00 1.03E+02 6.22E+00 1.23E+01 5.82E-01 

 

B.1.2. Daily basis production 

 

Table B.3 Daily basis production MHD 1 year 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑰𝑫𝑾 2.52E+01 2.81E-01 3.36E+01 3.75E-01 3.37E+01 4.62E-01 5.13E+00 6.21E-02 

𝑶𝑲𝑺𝒑 2.42E+01 2.91E-01 2.77E+01 3.57E-01 3.05E+01 4.63E-01 4.38E+00 6.06E-02 

𝑶𝑲𝒆𝒙 2.40E+01 2.84E-01 2.75E+01 3.56E-01 2.98E+01 4.44E-01 4.33E+00 5.93E-02 

𝑶𝑲𝑮𝒂 2.06E+02 4.61E+01 2.97E+01 2.20E+00 2.73E+02 1.34E+03 2.49E+01 1.21E+02 

𝑶𝑲𝑺𝒕 2.43E+01 4.09E-01 2.76E+01 3.74E-01 3.18E+01 4.81E-01 4.44E+00 6.32E-02 
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Table B.4 Daily basis production MHD 5 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.16E+01 8.84E-01 1.48E+01 1.07E+00 2.70E+01 1.44E+00 3.04E+00 1.85E-01 

𝑶𝑲𝑺𝒑 1.13E+01 8.30E-01 1.13E+01 1.01E+00 2.50E+01 1.39E+00 2.65E+00 1.77E-01 

𝑶𝑲𝒆𝒙 1.11E+01 8.24E-01 1.08E+01 9.95E-01 2.45E+01 1.38E+00 2.58E+00 1.74E-01 

𝑶𝑲𝑮𝒂 4.20E+02 1.38E+00 1.10E+01 1.57E+00 2.92E+02 5.13E+00 2.63E+01 5.01E-01 

𝑶𝑲𝑺𝒕 1.68E+01 8.39E-01 1.10E+01 1.02E+00 2.57E+01 1.50E+00 2.68E+00 1.84E-01 

 

Table B.5 Daily basis production MHD 10 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 7.01E+00 6.64E-01 8.27E+00 7.48E-01 1.60E+01 9.70E-01 1.77E+00 1.27E-01 

𝑶𝑲𝑺𝒑 6.98E+00 6.28E-01 6.02E+00 7.25E-01 1.47E+01 9.39E-01 1.52E+00 1.23E-01 

𝑶𝑲𝒆𝒙 6.86E+00 6.22E-01 5.88E+00 7.11E-01 1.44E+01 9.27E-01 1.49E+00 1.21E-01 

𝑶𝑲𝑮𝒂 2.43E+02 9.12E-01 5.77E+00 9.37E-01 1.69E+02 2.68E+00 1.52E+01 2.68E-01 

𝑶𝑲𝑺𝒕 1.06E+01 6.34E-01 5.80E+00 7.22E-01 1.51E+01 1.04E+00 1.54E+00 1.29E-01 

 

Table B.6 Daily basis production MHD 15 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 4.19E+00 4.11E-01 4.82E+00 4.53E-01 9.42E+00 5.66E-01 1.04E+00 7.56E-02 

𝑶𝑲𝑺𝒑 4.18E+00 3.89E-01 3.53E+00 4.41E-01 8.63E+00 5.48E-01 8.90E-01 7.34E-02 

𝑶𝑲𝒆𝒙 4.11E+00 3.86E-01 3.45E+00 4.33E-01 8.49E+00 5.41E-01 8.75E-01 7.22E-02 

𝑶𝑲𝑮𝒂 1.43E+02 5.94E-01 3.38E+00 4.96E-01 1.01E+02 1.57E+00 9.08E+00 1.54E-01 

𝑶𝑲𝑺𝒕 6.28E+00 3.94E-01 3.39E+00 4.37E-01 8.90E+00 6.25E-01 9.04E-01 7.78E-02 

 

Table B.7 Daily basis production MHD 20 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 2.48E+00 2.43E-01 2.84E+00 2.66E-01 5.56E+00 3.32E-01 6.10E-01 4.43E-02 

𝑶𝑲𝑺𝒑 2.48E+00 2.30E-01 2.08E+00 2.59E-01 5.09E+00 3.22E-01 5.26E-01 4.31E-02 

𝑶𝑲𝒆𝒙 2.44E+00 2.28E-01 2.05E+00 2.54E-01 5.01E+00 3.18E-01 5.17E-01 4.24E-02 

𝑶𝑲𝑮𝒂 8.20E+01 3.60E-01 2.01E+00 2.75E-01 5.97E+01 9.23E-01 5.38E+00 8.98E-02 

𝑶𝑲𝑺𝒕 3.69E+00 2.33E-01 2.01E+00 2.55E-01 5.26E+00 3.71E-01 5.34E-01 4.59E-02 

 

Table B.8 Daily basis production MHD 25 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.47E+00 1.43E-01 1.67E+00 1.56E-01 3.28E+00 1.96E-01 3.60E-01 2.60E-02 

𝑶𝑲𝑺𝒑 1.47E+00 1.36E-01 1.23E+00 1.52E-01 3.00E+00 1.90E-01 3.10E-01 2.53E-02 

𝑶𝑲𝒆𝒙 1.44E+00 1.34E-01 1.21E+00 1.49E-01 2.96E+00 1.87E-01 3.05E-01 2.49E-02 

𝑶𝑲𝑮𝒂 4.72E+01 2.16E-01 1.19E+00 1.59E-01 3.53E+01 5.45E-01 3.18E+00 5.28E-02 

𝑶𝑲𝑺𝒕 2.17E+00 1.37E-01 1.19E+00 1.49E-01 3.11E+00 2.20E-01 3.16E-01 2.70E-02 
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Table B.9 Daily basis production MHD 30 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 8.66E-01 8.43E-02 9.87E-01 9.13E-02 1.94E+00 1.16E-01 2.13E-01 1.53E-02 

𝑶𝑲𝑺𝒑 8.66E-01 8.02E-02 7.30E-01 8.93E-02 1.77E+00 1.12E-01 1.83E-01 1.49E-02 

𝑶𝑲𝒆𝒙 8.51E-01 7.91E-02 7.17E-01 8.75E-02 1.75E+00 1.10E-01 1.80E-01 1.47E-02 

𝑶𝑲𝑮𝒂 2.74E+01 1.29E-01 7.06E-01 9.26E-02 2.09E+01 3.22E-01 1.88E+00 3.11E-02 

𝑶𝑲𝑺𝒕 1.28E+00 8.08E-02 7.06E-01 8.77E-02 1.83E+00 1.30E-01 1.87E-01 1.59E-02 

B.1.3. Cumulative production 

 

Table B.10 Cumulative production MHD 1 year 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.20E+04 7.56E+01 1.56E+04 6.91E+01 9.57E+03 1.67E+02 2.10E+03 1.72E+01 

𝑶𝑲𝑺𝒑 1.20E+04 8.34E+01 1.44E+04 6.77E+01 1.05E+04 1.72E+02 2.01E+03 1.76E+01 

𝑶𝑲𝒆𝒙 1.17E+04 7.96E+01 1.38E+04 6.67E+01 1.07E+04 1.67E+02 1.96E+03 1.72E+01 

𝑶𝑲𝑮𝒂 2.84E+04 6.21E+04 3.25E+04 4.63E+02 1.10E+05 2.42E+06 1.07E+04 2.18E+05 

𝑶𝑲𝑺𝒕 1.24E+04 1.40E+02 1.38E+04 7.21E+01 1.28E+04 2.64E+02 2.05E+03 2.54E+01 

 

Table B.11 Cumulative production MHD 5 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 3.09E+04 1.05E+03 4.19E+04 1.41E+03 5.03E+04 1.40E+03 6.87E+03 2.14E+02 

𝑶𝑲𝑺𝒑 2.98E+04 9.94E+02 3.39E+04 1.31E+03 4.91E+04 1.37E+03 6.08E+03 2.02E+02 

𝑶𝑲𝒆𝒙 2.97E+04 9.92E+02 3.26E+04 1.30E+03 4.89E+04 1.34E+03 5.96E+03 2.01E+02 

𝑶𝑲𝑮𝒂 6.38E+05 2.63E+03 3.59E+04 2.06E+03 6.35E+05 1.02E+04 5.73E+04 9.50E+02 

𝑶𝑲𝑺𝒕 3.57E+04 1.00E+03 3.32E+04 1.33E+03 5.00E+04 1.50E+03 6.08E+03 2.12E+02 

 

Table B.12 Cumulative production MHD 10 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑰𝑫𝑾 4.39E+04 2.49E+03 5.84E+04 2.99E+03 8.94E+04 4.14E+03 1.08E+04 5.24E+02 

𝑶𝑲𝑺𝒑 4.28E+04 2.33E+03 4.50E+04 2.80E+03 8.49E+04 4.03E+03 9.44E+03 5.01E+02 

𝑶𝑲𝒆𝒙 4.22E+04 2.32E+03 4.30E+04 2.77E+03 8.39E+04 3.99E+03 9.22E+03 4.95E+02 

𝑶𝑲𝑮𝒂 2.81E+06 4.55E+03 4.79E+04 4.14E+03 4.23E+06 1.98E+04 3.81E+05 1.86E+03 

𝑶𝑲𝑺𝒕 6.09E+04 2.36E+03 4.37E+04 2.83E+03 8.67E+04 4.47E+03 9.48E+03 5.32E+02 

 

Table B.13 Cumulative production MHD 15 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑰𝑫𝑾 5.48E+04 3.75E+03 7.15E+04 4.20E+03 1.20E+05 6.85E+03 1.39E+04 8.05E+02 

𝑶𝑲𝑺𝒑 5.37E+04 3.49E+03 5.27E+04 3.96E+03 1.13E+05 6.66E+03 1.20E+04 7.73E+02 

𝑶𝑲𝒆𝒙 5.29E+04 3.48E+03 5.12E+04 3.91E+03 1.11E+05 6.58E+03 1.18E+04 7.63E+02 

𝑶𝑲𝑮𝒂 3.63E+06 6.33E+03 5.56E+04 5.53E+03 5.62E+06 2.89E+04 5.06E+05 2.69E+03 

𝑶𝑲𝑺𝒕 8.13E+04 3.53E+03 5.26E+04 3.99E+03 1.15E+05 7.50E+03 1.22E+04 8.35E+02 
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Table B.14 Cumulative production MHD 20 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 6.45E+04 4.86E+03 8.32E+04 5.20E+03 1.46E+05 9.43E+03 1.66E+04 1.06E+03 

𝑶𝑲𝑺𝒑 6.36E+04 4.51E+03 6.15E+04 4.94E+03 1.36E+05 9.17E+03 1.44E+04 1.03E+03 

𝑶𝑲𝒆𝒙 6.26E+04 4.53E+03 5.89E+04 4.86E+03 1.34E+05 9.06E+03 1.41E+04 1.01E+03 

𝑶𝑲𝑮𝒂 3.96E+06 8.23E+03 6.31E+04 6.62E+03 6.71E+06 3.77E+04 6.04E+05 3.49E+03 

𝑶𝑲𝑺𝒕 9.88E+04 4.58E+03 5.92E+04 4.96E+03 1.40E+05 1.05E+04 1.46E+04 1.12E+03 

 

Table B.15 Cumulative production MHD 25 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 7.34E+04 5.87E+03 9.39E+04 6.08E+03 1.69E+05 1.19E+04 1.91E+04 1.31E+03 

𝑶𝑲𝑺𝒑 7.27E+04 5.45E+03 6.89E+04 5.81E+03 1.57E+05 1.16E+04 1.65E+04 1.26E+03 

𝑶𝑲𝒆𝒙 7.14E+04 5.49E+03 6.60E+04 5.71E+03 1.55E+05 1.15E+04 1.61E+04 1.25E+03 

𝑶𝑲𝑮𝒂 4.12E+06 1.02E+04 7.01E+04 7.56E+03 7.67E+06 4.67E+04 6.91E+05 4.31E+03 

𝑶𝑲𝑺𝒕 1.14E+05 5.54E+03 6.69E+04 5.82E+03 1.62E+05 1.33E+04 1.67E+04 1.40E+03 

 

Table B.16 Cumulative production MHD 30 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 8.13E+04 6.78E+03 1.04E+05 6.86E+03 1.89E+05 1.42E+04 2.12E+04 1.53E+03 

𝑶𝑲𝑺𝒑 8.07E+04 6.29E+03 7.56E+04 6.57E+03 1.76E+05 1.38E+04 1.84E+04 1.48E+03 

𝑶𝑲𝒆𝒙 7.92E+04 6.37E+03 7.25E+04 6.45E+03 1.73E+05 1.36E+04 1.79E+04 1.46E+03 

𝑶𝑲𝑮𝒂 4.20E+06 1.20E+04 7.64E+04 8.38E+03 8.50E+06 5.46E+04 7.66E+05 5.02E+03 

𝑶𝑲𝑺𝒕 1.28E+05 6.43E+03 7.27E+04 6.58E+03 1.81E+05 1.60E+04 1.86E+04 1.65E+03 

 

B.2. PLED 

B.2.1. Model parameters 

 

Table B.17 PLED parameter 𝑛 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.18E-01 4.25E-03 1.39E-01 5.42E-03 2.25E-01 9.39E-03 2.65E-02 1.08E-03 

𝑶𝑲𝑺𝒑 1.08E-01 4.04E-03 1.34E-01 5.10E-03 2.18E-01 9.31E-03 2.57E-02 1.05E-03 

𝑶𝑲𝒆𝒙 1.07E-01 4.03E-03 1.31E-01 5.02E-03 2.01E-01 9.12E-03 2.43E-02 1.03E-03 

𝑶𝑲𝑮𝒂 1.13E+00 5.02E-02 1.34E-01 5.62E-03 7.93E-01 5.87E-02 7.33E-02 5.33E-03 

𝑶𝑲𝑺𝒕 1.33E-01 4.86E-03 1.34E-01 5.08E-03 2.34E-01 9.47E-03 2.68E-02 1.06E-03 
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Table B.18 PLED parameter 𝐷𝑖 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 4.45E-02 7.54E-03 6.92E-02 1.03E-02 2.24E-02 7.30E-03 8.75E-03 1.43E-03 

𝑶𝑲𝑺𝒑 4.60E-02 7.40E-03 5.97E-02 9.74E-03 1.97E-02 6.70E-03 7.56E-03 1.34E-03 

𝑶𝑲𝒆𝒙 4.48E-02 7.20E-03 5.86E-02 9.63E-03 1.98E-02 6.62E-03 7.43E-03 1.33E-03 

𝑶𝑲𝑮𝒂 7.36E-01 3.63E-02 6.25E-02 8.29E-03 4.06E+00 2.18E+00 3.66E-01 1.96E-01 

𝑶𝑲𝑺𝒕 4.63E-02 7.36E-03 6.09E-02 9.42E-03 2.07E-02 7.98E-03 7.73E-03 1.36E-03 

 

Table B.19 PLED parameter 𝑞𝑖 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.22E+02 8.33E+00 1.13E+02 1.05E+01 7.23E+01 1.27E+01 1.54E+01 1.72E+00 

𝑶𝑲𝑺𝒑 1.19E+02 8.69E+00 1.00E+02 1.08E+01 7.74E+01 1.16E+01 1.42E+01 1.69E+00 

𝑶𝑲𝒆𝒙 1.18E+02 8.55E+00 9.02E+01 9.74E+00 9.04E+01 1.15E+01 1.38E+01 1.58E+00 

𝑶𝑲𝑮𝒂 1.03E+03 1.61E+03 2.31E+02 8.43E+00 3.21E+03 1.55E+03 2.91E+02 1.40E+02 

𝑶𝑲𝑺𝒕 1.44E+02 9.33E+00 9.88E+01 9.74E+00 7.65E+01 1.28E+01 1.40E+01 1.66E+00 

 

Table B.20 PLED parameter 𝐷∞ 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 3.43E-04 5.29E-06 3.33E-04 6.90E-06 8.66E-04 1.11E-05 8.81E-05 1.31E-06 

𝑶𝑲𝑺𝒑 3.20E-04 4.71E-06 3.32E-04 7.00E-06 8.21E-04 1.03E-05 8.45E-05 1.27E-06 

𝑶𝑲𝒆𝒙 3.19E-04 4.70E-06 3.20E-04 6.81E-06 7.95E-04 1.01E-05 8.18E-05 1.24E-06 

𝑶𝑲𝑮𝒂 5.43E-03 1.58E-05 8.77E-03 1.35E-05 6.87E-03 5.60E-05 1.24E-03 5.31E-06 

𝑶𝑲𝑺𝒕 3.68E-04 5.97E-06 5.71E-04 1.01E-05 8.23E-04 1.30E-05 1.02E-04 1.71E-06 

B.2.2. Daily basis production 

Table B.21 Daily basis production PLED 1 year 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 2.52E+01 2.76E-01 3.37E+01 3.23E-01 3.53E+01 5.22E-01 5.23E+00 6.16E-02 

𝑶𝑲𝑺𝒑 2.40E+01 2.87E-01 2.75E+01 3.16E-01 3.20E+01 4.09E-01 4.45E+00 5.35E-02 

𝑶𝑲𝒆𝒙 2.39E+01 2.77E-01 2.73E+01 3.10E-01 3.15E+01 4.17E-01 4.40E+00 5.36E-02 

𝑶𝑲𝑮𝒂 2.23E+02 2.09E+01 2.95E+01 2.39E+00 2.42E+02 6.07E+00 2.21E+01 6.21E-01 

𝑶𝑲𝑺𝒕 2.42E+01 4.20E-01 2.74E+01 3.35E-01 3.28E+01 4.76E-01 4.48E+00 5.95E-02 

 

Table B.22 Daily basis production PLED 5 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.32E+01 6.18E-01 1.97E+01 6.96E-01 2.55E+01 2.93E+00 3.34E+00 2.77E-01 

𝑶𝑲𝑺𝒑 1.36E+01 6.18E-01 1.47E+01 7.34E-01 2.37E+01 2.79E+00 2.80E+00 2.67E-01 

𝑶𝑲𝒆𝒙 1.32E+01 6.25E-01 1.41E+01 6.71E-01 2.32E+01 2.68E+00 2.72E+00 2.55E-01 

𝑶𝑲𝑮𝒂 2.45E+02 1.18E+01 1.62E+01 8.65E-01 3.32E+02 1.93E+01 3.00E+01 1.74E+00 

𝑶𝑲𝑺𝒕 1.93E+01 6.55E-01 1.47E+01 7.49E-01 2.47E+01 3.14E+00 2.86E+00 2.97E-01 
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Table B.23 Daily basis production PLED 10 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.12E+01 7.04E-01 1.73E+01 8.74E-01 1.57E+01 2.98E+00 2.56E+00 2.89E-01 

𝑶𝑲𝑺𝒑 1.10E+01 7.20E-01 1.33E+01 7.91E-01 1.44E+01 2.80E+00 2.09E+00 2.70E-01 

𝑶𝑲𝒆𝒙 1.12E+01 7.11E-01 1.28E+01 7.90E-01 1.44E+01 2.79E+00 2.04E+00 2.69E-01 

𝑶𝑲𝑮𝒂 1.53E+01 1.95E+01 1.75E+01 9.09E-01 4.82E+05 2.44E+01 4.34E+04 2.20E+00 

𝑶𝑲𝑺𝒕 1.14E+01 8.80E-01 1.34E+01 8.03E-01 1.78E+01 3.41E+00 2.30E+00 3.22E-01 

 

Table B.24 Daily basis production PLED 15 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 9.98E+00 7.61E-01 1.55E+01 1.01E+00 1.14E+01 2.84E+00 2.17E+00 2.84E-01 

𝑶𝑲𝑺𝒑 9.43E+00 8.04E-01 1.21E+01 8.86E-01 1.05E+01 2.66E+00 1.76E+00 2.63E-01 

𝑶𝑲𝒆𝒙 9.73E+00 7.84E-01 1.17E+01 8.83E-01 1.04E+01 2.66E+00 1.72E+00 2.63E-01 

𝑶𝑲𝑮𝒂 1.07E+01 9.42E+00 1.75E+01 1.07E+00 4.53E+05 3.00E+01 4.08E+04 2.70E+00 

𝑶𝑲𝑺𝒕 9.67E+00 9.10E-01 1.23E+01 8.96E-01 1.30E+01 3.31E+00 1.91E+00 3.18E-01 

 

Table B.25 Daily basis production PLED 20 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 9.15E+00 7.84E-01 1.42E+01 1.08E+00 9.00E+00 2.65E+00 1.93E+00 2.73E-01 

𝑶𝑲𝑺𝒑 8.45E+00 8.28E-01 1.12E+01 9.37E-01 8.19E+00 2.43E+00 1.56E+00 2.47E-01 

𝑶𝑲𝒆𝒙 8.77E+00 8.13E-01 1.09E+01 9.31E-01 8.21E+00 2.47E+00 1.53E+00 2.50E-01 

𝑶𝑲𝑮𝒂 9.09E+00 6.52E+00 1.73E+01 1.18E+00 4.08E+05 9.54E+04 3.68E+04 8.59E+03 

𝑶𝑲𝑺𝒕 8.71E+00 8.88E-01 1.10E+01 9.48E-01 1.02E+01 3.09E+00 1.64E+00 3.02E-01 

 

Table B.26 Daily basis production PLED 25 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 8.55E+00 7.99E-01 1.33E+01 1.11E+00 7.43E+00 2.47E+00 1.76E+00 2.61E-01 

𝑶𝑲𝑺𝒑 8.11E+00 8.48E-01 1.05E+01 9.66E-01 6.73E+00 2.29E+00 1.42E+00 2.38E-01 

𝑶𝑲𝒆𝒙 8.10E+00 8.27E-01 1.02E+01 9.58E-01 6.75E+00 2.30E+00 1.40E+00 2.38E-01 

𝑶𝑲𝑮𝒂 8.24E+00 4.43E+00 1.69E+01 1.27E+00 3.65E+05 9.62E+04 3.29E+04 8.67E+03 

𝑶𝑲𝑺𝒕 7.96E+00 8.70E-01 1.08E+01 9.78E-01 8.42E+00 2.87E+00 1.53E+00 2.85E-01 

 

Table B.27 Daily basis production PLED 30 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 8.08E+00 8.10E-01 1.25E+01 1.13E+00 6.33E+00 2.31E+00 1.64E+00 2.50E-01 

𝑶𝑲𝑺𝒑 7.36E+00 8.54E-01 9.90E+00 9.83E-01 5.71E+00 2.13E+00 1.32E+00 2.27E-01 

𝑶𝑲𝒆𝒙 7.59E+00 8.31E-01 9.75E+00 9.73E-01 5.73E+00 2.14E+00 1.31E+00 2.27E-01 

𝑶𝑲𝑮𝒂 7.66E+00 3.08E+00 1.65E+01 1.35E+00 3.27E+05 9.29E+04 2.94E+04 8.36E+03 

𝑶𝑲𝑺𝒕 7.39E+00 8.57E-01 1.03E+01 9.97E-01 7.14E+00 2.67E+00 1.42E+00 2.70E-01 

 

 



 

218 

 

B.2.3. Cumulative production 

Table B.28 Cumulative production PLED 1 year 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.20E+04 7.64E+01 1.56E+04 6.73E+01 8.89E+03 1.65E+02 2.08E+03 1.70E+01 

𝑶𝑲𝑺𝒑 1.19E+04 8.47E+01 1.42E+04 6.75E+01 9.97E+03 1.70E+02 1.97E+03 1.74E+01 

𝑶𝑲𝒆𝒙 1.17E+04 8.04E+01 1.38E+04 6.59E+01 1.03E+04 1.69E+02 1.93E+03 1.72E+01 

𝑶𝑲𝑮𝒂 2.83E+04 6.02E+04 3.17E+04 3.86E+02 3.99E+06 3.26E+06 3.59E+05 2.94E+05 

𝑶𝑲𝑺𝒕 1.23E+04 1.39E+02 1.37E+04 7.17E+01 1.24E+04 2.54E+02 2.02E+03 2.45E+01 

 

Table B.29 Cumulative production PLED 5 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 3.09E+04 7.35E+02 4.31E+04 9.64E+02 5.07E+04 2.89E+03 7.00E+03 2.86E+02 

𝑶𝑲𝑺𝒑 3.04E+04 7.35E+02 3.12E+04 9.14E+02 4.89E+04 2.76E+03 5.84E+03 2.73E+02 

𝑶𝑲𝒆𝒙 3.01E+04 7.44E+02 3.15E+04 9.06E+02 4.86E+04 2.67E+03 5.84E+03 2.65E+02 

𝑶𝑲𝑮𝒂 9.04E+05 1.60E+04 3.64E+04 2.34E+03 6.55E+05 1.76E+04 5.92E+04 1.61E+03 

𝑶𝑲𝑺𝒕 4.03E+04 8.12E+02 3.22E+04 9.67E+02 5.11E+04 2.98E+03 6.08E+03 2.94E+02 

 

Table B.30 Cumulative production PLED 10 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 4.74E+04 1.75E+03 7.01E+04 2.07E+03 8.53E+04 8.21E+03 1.15E+04 7.82E+02 

𝑶𝑲𝑺𝒑 4.77E+04 1.75E+03 5.14E+04 2.08E+03 7.60E+04 7.81E+03 9.32E+03 7.49E+02 

𝑶𝑲𝒆𝒙 4.68E+04 1.77E+03 4.86E+04 1.98E+03 8.07E+04 7.68E+03 9.41E+03 7.34E+02 

𝑶𝑲𝑮𝒂 1.41E+06 9.05E+04 5.06E+04 2.36E+03 4.05E+06 6.78E+04 3.65E+05 6.11E+03 

𝑶𝑲𝑺𝒕 7.11E+04 2.13E+03 5.04E+04 2.11E+03 9.31E+04 8.87E+03 1.04E+04 8.40E+02 

 

Table B.31 Cumulative production PLED 15 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 6.38E+04 2.93E+03 9.68E+04 3.59E+03 1.09E+05 1.34E+04 1.54E+04 1.28E+03 

𝑶𝑲𝑺𝒑 6.51E+04 2.99E+03 7.12E+04 3.43E+03 1.03E+05 1.27E+04 1.28E+04 1.22E+03 

𝑶𝑲𝒆𝒙 6.34E+04 2.95E+03 6.74E+04 3.34E+03 1.02E+05 1.25E+04 1.24E+04 1.20E+03 

𝑶𝑲𝑮𝒂 1.24E+06 1.73E+05 7.52E+04 3.84E+03 3.09E+09 1.16E+05 2.79E+08 1.05E+04 

𝑶𝑲𝑺𝒕 9.13E+04 3.80E+03 7.02E+04 3.46E+03 1.22E+05 1.48E+04 1.40E+04 1.40E+03 

 

Table B.32 Cumulative production PLED 20 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 7.96E+04 4.23E+03 1.22E+05 5.39E+03 1.26E+05 1.82E+04 1.89E+04 1.77E+03 

𝑶𝑲𝑺𝒑 8.15E+04 4.36E+03 9.05E+04 5.04E+03 1.16E+05 1.73E+04 1.53E+04 1.68E+03 

𝑶𝑲𝒆𝒙 7.93E+04 4.30E+03 8.61E+04 4.89E+03 1.19E+05 1.71E+04 1.51E+04 1.65E+03 

𝑶𝑲𝑮𝒂 5.37E+05 1.67E+05 1.03E+05 5.76E+03 3.95E+09 1.67E+05 3.56E+08 1.51E+04 

𝑶𝑲𝑺𝒕 1.02E+05 5.46E+03 9.00E+04 5.01E+03 1.45E+05 2.07E+04 1.71E+04 1.96E+03 
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Table B.33 Cumulative production PLED 25 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 9.46E+04 5.60E+03 1.46E+05 7.33E+03 1.41E+05 2.28E+04 2.20E+04 2.24E+03 

𝑶𝑲𝑺𝒑 9.72E+04 5.83E+03 1.10E+05 6.61E+03 1.30E+05 2.16E+04 1.79E+04 2.11E+03 

𝑶𝑲𝒆𝒙 9.42E+04 5.73E+03 1.04E+05 6.55E+03 1.33E+05 2.13E+04 1.75E+04 2.08E+03 

𝑶𝑲𝑮𝒂 2.45E+05 1.46E+05 1.31E+05 7.93E+03 4.18E+09 2.46E+05 3.76E+08 2.22E+04 

𝑶𝑲𝑺𝒕 1.03E+05 7.06E+03 1.09E+05 6.70E+03 1.61E+05 2.61E+04 1.97E+04 2.49E+03 

 

 

Table B.34 Cumulative production PLED 30 years 
Scenario All Coordinates Cluster1 Cluster2 Sum of Clusters 

Method 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
𝑰𝑫𝑾 1.08E+05 6.94E+03 1.68E+05 9.26E+03 1.52E+05 2.69E+04 2.48E+04 2.67E+03 

𝑶𝑲𝑺𝒑 1.10E+05 7.34E+03 1.25E+05 8.28E+03 1.41E+05 2.52E+04 2.00E+04 2.49E+03 

𝑶𝑲𝒆𝒙 1.08E+05 7.15E+03 1.21E+05 8.21E+03 1.43E+05 2.50E+04 1.97E+04 2.47E+03 

𝑶𝑲𝑮𝒂 2.30E+05 1.34E+05 1.58E+05 1.02E+04 4.26E+09 2.63E+05 3.84E+08 2.37E+04 

𝑶𝑲𝑺𝒕 1.10E+05 8.50E+03 1.27E+05 8.39E+03 1.72E+05 3.09E+04 2.20E+04 2.97E+03 

 

 




