
 

 

 

 

MEASUREMENTS AND ANALYSIS OF FILM COOLING ON GAS TURBINE 

VANE ENDWALL AND SUCTION SURFACE 

 

A Dissertation 

by 

CHAO-CHENG SHIAU 

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Je-Chin Han 

Committee Members, Hamn-Ching Chen 

 Sai Chuen Lau 

 Gerald L. Morrison 

Head of Department, Andreas A. Polycarpou 

 

December 2017 

 

Major Subject: Mechanical Engineering 

 

Copyright 2017 Chao-Cheng Shiau



 

ii 

 

ABSTRACT 

 

Researchers in gas turbine field take great interest in the cooling performance on 

the first-stage vane in a more authentic configuration because of the complicated flow 

characteristics and intensive heat load that comes from the exit of the combustor. With the 

three-dimensional vane geometry and the corresponding wind tunnel design, a more 

realistic flow field can thus be simulated. The annular sector cascades were therefore 

selected and the Pressure-sensitive paint (PSP) technique was used to study the film 

cooling effectiveness on the endwall and vane’s suction surface. On the other hand, PSP 

technique was also applied on a linear cascade to study the effect of upstream leakage 

injection angle on various endwall film cooling designs. 

In the first part of the study, full-scale turbine vanes were used to construct a three-

vane annular sector cascade. Two kinds of film cooling designs are attained through the 

layback fan-shaped and cylindrical holes dispersed on the vanes and endwalls. This study 

targets the film cooling effectiveness comparison on the inner endwall of turbine vane. 

Tests were performed under the mainstream Reynolds number 350,000; the related inlet 

Mach number is 0.09. Coolant-to-mainstream mass flow ratios (2%, 3%, 4%) and density 

ratios (1.0, 1.5) were examined. The results provide the gas turbine engine designer a 

direct performance comparison between two film-hole configurations on a full-scale vane 

endwall under the same amount of coolant usage. 

The second part of the study is focused on the film cooling on the suction surface 

of a turbine vane under transonic flow condition. The experiments were performed in a 
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five-vane annular sector cascade. The exit Mach numbers were varied from 0.7, 0.9, and 

1.1. Density ratios, ranging from 1.0, 1.5 to 2.0; three blowing ratios ranging from 0.7, 

1.0, 1.6 for the suction surface were studied. Three rows of radial-angle cylindrical holes 

around the leading edge and two rows of compound-angle shaped holes on are the suction 

surface of the test vane. The results demonstrate the mix effects of coolant amount, density 

ratio, and exit Mach number on the film cooling as well as its interaction with the potential 

shock wave. 

The third part of the study is to investigate the effects of upstream leakage injection 

angle on film cooling effectiveness of a turbine vane endwall with various film-hole 

designs. To simulate the upstream leakage flow between the combustor and the turbine 

vane, three potential leakage injection angles were studied: 30o, 40o, and 50o. To explore 

the optimum endwall cooling design, five different film-hole patterns were tested: axial 

row, cross row, cluster, mid-chord row, and downstream row. Experiments were 

conducted in a four-passage linear cascade at the exit isentropic Mach number 0.5 

corresponding to the inlet Reynolds number 380,000 based on turbine vane axial chord 

length. For a fair performance comparison, the coolant was fixed at mass flow ratio 1% 

and density ratio 1.5. The results provide the gas turbine designers a valuable information 

on how to select the best endwall cooling pattern with minimum cooling air consumption 

over a range of upstream leakage injection angles. 
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NOMENCLATURE 

 

Symbols 

A Area [m2] 

AOI Area of interest 

C Vane chord length [m]; concentration by volume 

CCD Charge-coupled device 

DR Coolant-to-mainstream density ratio = 𝜌𝑐/𝜌𝑚 

d Cooling hole diameter [m] 

I Intensity 

L True suction side surface length [m]; cooling hole length [m] 

LE Leading edge of vane; three rows of leading edge cooling holes 

LED Light-emitting device 

M Blowing ratio = 𝜌𝑐𝑣𝑐 𝜌𝑚𝑣𝑚⁄  

Ma Mach number 

MFR Coolant-to-mainstream mass flow ratio = 𝑚𝑐̇ /𝑚𝑚̇ 

n Number of the cooling hole in a given row 

P Pressure [Pa] 

Pr Prandtl number 

r Recovery factor = 𝑃𝑟1/3 

s Hole-to-hole spacing of cooling holes [m] 

Sc Schmidt number 
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SS1 1st row of suction side cooling holes 

SS2 2nd row of suction side cooling holes 

TE Trailing edge 

TTL Transistor-transistor logic 

Tu Turbulence intensity [%] 

v Velocity [m/s] 

W Molecular weight [kg] 

X Distance from the leading edge of hardware [m] 

Greek Symbols 

α Surface injection angle [o] 

γ Specific heat ratio 

η Film cooling effectiveness 

ρ Fluid density [kg/m3] 

Subscripts 

air Property with air injection 

aw Adiabatic wall 

ax Axial 

b Black condition 

c Coolant 

fg Property with foreign gas injection 

is Isentropic 

m Mainstream 
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ref Reference condition 

s Static (for pressure and temperature) 

t Total (for pressure) 

w Wall; impermeable wall 
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1. INTRODUCTION  

 

Gas turbine has been proven to be the most important part in the prosperous of 

industries including aviation and power generation applications. Thermodynamic analysis 

of Brayton cycle, which describes all gas turbine concept, indicates that higher turbine 

inlet temperature (T4) is beneficial to the thermal efficiency for engine running under both 

simple and combined cycle. It initiates the studies about proper ways to accommodate the 

turbine component under elevated heat load since a better engine performance when the 

higher firing temperature is achieved. However, in the modern gas turbine engine, the 

elevated turbine inlet temperature has already exceeded the melting point of the material 

for turbine hardware. In addition, the material yield strength drops dramatically under high 

temperature. It is the implementation of the cooling technology that makes the current 

turbine hardware survives. Without such protection, numerous forms of mechanical failure 

associated with the extreme temperature condition like creep, thermal fatigue, oxidation, 

incipient melting as indicated by Brooks [1] will happen on turbine hardware. For the 

perspective to further reach better engine performance as projected to bring the turbine 

inlet temperature above 1700 oC, it is crucial to have better cooling schemes applied on 

the turbine hardware to protect them from thermal failures mentioned above. The 

improved cooling approach implemented can ensure temperature distribution is not 

beyond operation limits of the materials used as well as a satisfactory engine lifespan from 

early breakdown [2]. 
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Among the existing cooling technologies applied on gas turbine, film cooling is an 

effective approach to have the low-temperature secondary flow ejecting through the 

discrete holes on the turbine hardware and forming a barrier layer on the surface to reduce 

the heat load to the hardware [3]. Film cooling has already been implemented on the first 

stage turbine vanes and endwalls, as they are located right at the exit of the combustion 

chamber, particularly face the most intensive heat load among all the turbine parts. 

Especially for turbine endwall, it is a critical portion to cool due its complicated three-

dimensional flow field and considerably exposed area in modern design [4]; in addition, 

the trend of low NOx engine emission also suggests that the temperature profile from the 

combustor needs to be more uniform (flat) that directly increases the heat load on the 

endwall compared to before. Currently, multi rows of cooling holes are often dispersed on 

the vanes’ surface and endwall to attempt a full coolant coverage [4]. Nonetheless, the 

film cooling performance on vane surface and endwall highly depend on geometry. 

Besides, the introduction of coolant for film cooling directly deteriorates the engine 

efficiency due to the decrease of the mainstream’s mass flow rate that goes through the 

combustor to produce work. It is an endless goal for gas turbine designers to have higher 

engine thermal efficiency by effectively handle the heat load on the first stage vane and 

endwall regions under the premise that only limited amount of compressor bleed air is 

utilized. And this goal is mainly feasible through more in-depth studies of film cooling on 

various areas of interests in gas turbine hardware. 
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2. OBJECTIVE 

 

Knowing the importance of better understanding of film cooling, however, most 

of the experiment in gas turbine researches were conducted in linear cascade, which has 

been a favorable choice for most of the researchers in gas turbine field. In fact, the radial 

pressure gradient does not establish in the linear cascade. Luque and Povey [5] indicated 

that the secondary flow from linear cascade is different from the characteristic that exists 

in the real engine. The measurement of the surface heat transfer rate in the linear cascade 

is not representative if without proper correction, which ought to be highly influenced by 

the secondary flow structure. Another drawback for linear cascade is that the three-

dimensional airfoil and endwall design which is prevalent in modern real engines cannot 

be implemented before geometrically simplified to a two-dimensional profile. Annular 

sector cascade is a balanced approach between fully annular cascade and simplified linear 

cascade. Three-dimensional real engine hardware can be adapted to the test section which 

is expected to create a more authentic flow field for the experiment. The manufacturing 

cost is also considerably lower than the fully annular cascade. In terms of these edges 

comparing to simplified linear cascade and costly fully annular cascade, the advantage of 

the annular sector cascade has not been utilized by researchers yet. Therefore, the objective 

of the studies in this proposal is to conduct more thorough measurement and analysis of 

film cooling on gas turbine vane and endwall regions under various conditions in annular 

sector cascade. 
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3. FILM COOLING EFFECTIVENESS COMPARISON ON FULL-SCALE TURBINE 

VANE ENDWALLS 

 

3.1 Literature Review 

Film cooling effectiveness/performance highly relies upon cooling hole itself like 

orientation, geometry, and arrangement. It also depends on the mainstream flow 

characteristics such as Reynolds number, Mach number, and turbulence intensity. Further, 

the thermal and flow interaction between the coolant and mainstream including the 

pressure ratio of coolant plenum to the mainstream, the temperature ratio of coolant to 

mainstream both play critical roles. While the introduction of similitude matches the 

thermal and flow characteristics of laboratory condition to engine’s design point, it is 

unpractical to achieve the high-pressure and high-temperature environment like the real 

engine in the academic setting. Researchers hence proposed the coolant-to-mainstream 

blowing ratio or mass flow ratio to simulate the pressure ratio, the coolant-to-mainstream 

density ratio to simulate the temperature ratio. These two parameters allow the researchers 

to systematically track the film cooling performance of a particular design in the 

laboratory setting. 

 

3.1.1 Geometry Effect 

Cooling hole orientation has a substantial influence on the film cooling 

effectiveness. Ligrani et al. [6] indicated that coolant ejected at an angle to the mainstream 

results in greater film cooling effectiveness due to better lateral diffusion of coolant. 
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Schmidt et al. [7] validated that compound-angle holes provide better lateral coolant 

distribution, especially at high momentum flux ratios. Berhe and Patankar [8] 

demonstrated the effect of curvature on film cooling effectiveness of discrete holes. They 

reported higher effectiveness on the convex surface than the flat plate at low blowing ratio 

and reverse at high blowing ratio. The concave surface showed an opposite trend. For the 

hole geometry, cylindrical holes and fan-shaped holes are found to be feasible in terms of 

machining and are extensively adopted in the modern gas turbine engine. The film cooling 

effectiveness of cylindrical hole is found to be increased with the increasing of blowing 

ratio until an optimal value (around M = 0.5 to 0.65). The higher blowing ratio results in 

jet lift-off and less coolant coverage on the surface (effectiveness decreases). On the other 

hand, with the expanded exit area which reduced the coolant jet momentum, the shaped 

hole has a lower tendency to lift-off and hence exhibit a better coolant coverage and higher 

film cooling effectiveness [7, 9, 10]. That is to say, under a given amount of coolant 

supplied, the cooling hole geometry can deliver a substantially different scenario of the 

coolant coverage from the reduction of coolant momentum [11,12]. 

 

3.1.2 Coolant-to-Mainstream Condition Effect 

 The coolant-to-mainstream temperature ratio varies from 0.5 to 0.85 which the 

corresponding density ratio varies from 2.0 to 1.5 in a typical gas turbine engine. While 

the realization on these density ratios in the experiment can be simulated by heat transfer 

technique through the utilization of cryogenic coolant as reported by Pietrzyk et al. [13] 

and Sinha et al. [14]. Another approach is the adoption of heat and mass transfer analogy, 
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established on the assumption that Lewis number is around 1. This unity of Lewis number 

indicates strong turbulent mixing in the flow field which matches the flow characteristic 

of the hot mainstream from the exit of combustion chamber entering the turbine. In this 

manner, the effect of density ratio can be examined with mass transfer technique by using 

foreign gasses of larger molecular weight as coolant [15]. This method has been 

prevalently embraced to systematically study the density ratio effect on the film cooling 

effectiveness on a simplified geometry like flat plate [16-18] as fundamental studies. 

While the studies on the flat plate film cooling [13,14,16-19] suggest that increasing the 

density ratio leads to higher effectiveness, the conclusion from flat plate may not exactly 

project to the situation in other turbine parts like endwall/platform due to the presence of 

horseshoe vortex, passage vortex, and the nonuniform pressure gradient existed inside 

endwall passage [20,21]. 

 

3.1.3 Endwall Flow Field and Heat Transfer 

In terms of flow and thermal characteristics, the endwall region is the most 

challenging task for gas turbine researchers and engineers, due to complicated three-

dimensional flow field and a large fraction of the surface to be cooled. Blair [22], Langston 

[23], Graziani et al. [24], Goldstein and Spores [25], Chyu [26] presented thorough 

investigations on the flow field of the endwall region and the corresponding influence on 

the heat transfer. They pointed out that the secondary flow from the pressure gradient in 

the vane passage, which makes the small horseshoe vortex from the flow stagnation on 

the vane further developed into larger passage vortex. The passage vortex migrates from 
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the leading edge of one vane’s pressure side toward the suction side of the neighbor vane. 

Those vortices result in three-dimensional cross flow on the pressure side and the suction 

side of the vane. They concluded the secondary flow greatly affects the heat transfer in the 

endwall and suction side of the vane. 

 Regarding the film-cooling studies on the endwall portion, Takeishi et al. [27] 

studied the film cooling effectiveness on the endwall of a fully annular low aspect ratio 

nozzle guide vane. They concluded that the horseshoe vortex decreases the film cooling 

effectiveness near the leading edge on the endwall. And the film cooling distribution on 

the endwall is dependent on the passage vortex, cross flow, and nozzle wake. Harasgama 

and Burton [28] performed heat transfer experiment on outer endwall of nozzle guide vane 

with discrete holes film cooling under engine conditions through similarity. They 

indicated that the secondary flow in the passage convects the coolant toward the suction 

side and results in a high heat load region on the trailing edge of pressure side. Jabbari et 

al. [29] concluded that discrete location measurement up to 60 gas concentration sampling 

taps in the turbine endwall covered by cooling holes is still insufficient to determine the 

film cooling effectiveness distribution in this region due to its strong local variations. They 

further used ammonium-diazo paper to visualize the qualitative information of coolant 

trace under different blowing ratios and density ratios. Friedrichs et al. [30] studied film 

cooling effectiveness of turbine endwall using ammonia diazo. They found that coolant 

ejection modifies the endwall flow field, which makes the liftoff lines move to 

downstream as delay three-dimensional separation of inlet boundary layer. Thus, the 

separation line for the horseshoe vortex moves closer to leading edge and the separation 
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line from pressure leg of horseshoe vortex crosses to the suction side and moves further 

downstream. Meanwhile, the strong cross-flow inside the passage turns toward 

mainstream streamline due to film injection, makes the coolant trajectories different from 

the cooling hole exit angle except for the location very close to the hole exit. Friedrichs et 

al. [31] further investigated the aerodynamic characteristic of endwall film cooling and 

claimed the necessity of considering the three-dimensional endwall flow nature for proper 

endwall film cooling design configuration. They concluded that when the coolant 

stagnation pressure is higher than mainstream stagnation pressure, the ejected coolant can 

re-energize the boundary layer to reduce the passage vortex and the subsequent flow 

mixing. Simon and Piggush [32] documented a comprehensive review regarding endwall 

aerodynamics and heat transfer. Generally speaking, they pointed out that it is difficult to 

have an optimal arrangement of cooling holes/slots on endwall since the performance of 

aerodynamic for the endwall region is sensitive to the passage geometry, pressure 

distribution, and the corresponding secondary flow structure including horseshoe vortex, 

passage vortex, and corner vortex. On the other hand, endwall heat transfer is driven by 

complicated interdependence between endwall and vane geometries, mainstream and 

coolant flow characteristic including cooling hole/flow locations and injection angles. It 

is also challenging to isolate those individual effects as well as to predict the cumulative 

effect. 

Kwak et al. [33] performed the heat transfer and pressure distribution under 

different turbulence intensities on turbine vane endwall in a five-vane linear cascade. The 

pressure data demonstrates as a complementary information to the identification of local 
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hot spot on the endwall. Barigozzi et al. [34] studied endwall film cooling through fan-

shaped hole with different area ratio. They found that the thermodynamics loss coefficient 

of the hole exit on the endwall surface is practically the same level as smooth endwall. 

They concluded that the wider hole exit area allows better lateral spreading of coolant but 

increases the turbulent mixing near the hole exit which the jet decays in downstream 

direction faster. Colban et al. [10] studied the film cooling on a vane endwall with different 

hole geometries at low and high freestream turbulence levels. They concluded that the fan-

shaped holes increase area averaged effectiveness by an average 75% over cylindrical 

counterparts. The fan-shaped hole is also relatively insensitive to the level of turbulence. 

On the other hand, high turbulence level counteracts the coolant liftoff for cylindrical hole 

configuration and reduce the sensitivity of effectiveness to the coolant flow rate. 

Mahmood et al. [35] conducted experiments on flow and temperature field near a three-

dimensional asymmetric contour endwall in a linear cascade with and without film 

cooling. They indicated vortex flow axis changes as the flow yaw angle and pitch-wise 

velocity changes when the film cooling is presented. When higher blowing ratio, the 

coolant flow strengthens the boundary layer when injected under the boundary layer so 

the vortices get pushed even higher above the endwall. Andrei et al. [36] performed 

adiabatic film cooling effectiveness measurement on an annular sector cascade of heavy 

duty gas turbine vane by PSP method. Due to their wind tunnel design, film cooling 

coverage was visualized from the upstream view only, but the capability of measuring 

film cooling effectiveness on annular sector cascade is validated preliminarily. 
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In addition to the turbine endwall itself, researchers tried to see if inherent features 

from the engine hardware near endwall can actually play a vital role to alter the local 

pressure/flow field and be beneficial for local film coverage once the coolant is introduced. 

The slashface or mateface, which is the interface between two turbine hardware are 

brought to researchers’ attention. Cardwell et al. [37] studied the effect of the 

misalignment between the mid-passage gap and endwall on endwall film cooling. Their 

results indicate that the slot ejection from mid-passage gap can almost take care the 

cooling of the suction side passage. However, a later study from Cardwell et al. [38] 

claimed that the mid-passage gap leakage flow (0-0.3%) proved to have little effect on 

endwall adiabatic effectiveness level. Endwall flow measurements from Piggush and 

Simon [39] came up with an interesting argument that with the slashface presents, the 

pressure leg of horseshoe vortex toward the suction side may be reduced by either 

ingestion into the gap (upstream) or by being lifted off the endwall by the ejected flow 

from the gap (downstream). They concluded that the main effect is due to the addition of 

low-streamwise-velocity flow issuing from the gap and the thicker endwall boundary layer 

it creates, especially in the downstream portion of the passage where the passage velocity 

is high and the locally injected mass flux is also high. Significant losses are thus created 

due to the injected leakage flow, especially at higher blowing rate. Roy et al. [40] studied 

heat transfer performance of a transonic turbine blade passage including mateface gap and 

endwall contouring. Their findings agree with Cardwell et al. [38] that with mateface flow 

presents, the leakage from mateface provides coolant coverage near the suction side aft 

portion but cannot extend all the way up to the whole suction side due to mixing between 
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mainstream and mateface jet and the inherent pressure gradient that drives the secondary 

flow. They also mentioned that the relative spreading of the coolant is highly dependent 

on the location of the mateface gap with respect to the passage and also on the airfoil 

design. Recently, vane endwall studies from Shiau et al. [41] on full-scale annular sector 

cascade with realistic slashface seal and Chowdhury et al. [42] on scaled-up linear cascade 

with simulated slashface both proved that the coolant injection from slashface gap can 

form a wedge-shaped coolant coverage to protect the vane passage near suction side. On 

the other hand, a blade endwall (platform) study from Chen et al. [43] demonstrated a 

different shape of coolant coverage from slashface coolant injection due to the dissimilar 

pressure gradient inside the blade passage from vane. Providing that the existing coolant 

coverage contributed by slashface injection, these studies open the possibility of endwall 

cooling hole rearrangements under a fixed amount of coolant consumption. 

 

3.2 Experimental Setup and Method 

3.2.1 Three-Vane Annular Sector Cascade 

 The measurements were conducted in a three-vane annular sector cascade, which 

the whole flow loop is shown in Figure 1. Three full-scale vanes (green parts shown in 

Figure 2), which joined followed the real assembly condition (orientation and gap 

clearance) are adopted as test section to simulate the radial pressure gradient and reflect 

the three-dimensional secondary flow effect in the engine. The test facility is shown in 

Figure 3. The wind tunnel inlet cross-section shape is designed as an annular sector of the 

combustor transition duct in order to match the geometry of real vanes test section, so is 
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the outlet. The mainstream air is supplied by a 450 horsepower, 3-stage centrifugal 

compressor that is capable of delivering a volume flow rate up to 6.14 m3/s at its design 

point. The volume flow rate is regulated by a frequency controller with an operational 

range from 0 to 60 Hz.  

Figure 1. Flow loop for the full-scale endwall test section and facility. 

 

Figure 2. Schematic of the annular sector cascade. 
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Figure 3. Schematic of the test facility. (a)  Upstream view; (b) Downstream view. 
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mainstream Reynolds number is calculated to be 350,000 according to inlet velocity and 

vane chord length (C = 17.5 cm). The overall pressure ratio (Pt/Ps,exit) is about 1.05. To 

simulate the turbulence intensity from combustor exit entering the turbine vane, a 

turbulence grid design that based on the correlation of grid-generated turbulence decay 

[44] was implemented. The designed turbulence grid is shown in Figure 4, with the same 

cross-section as inlet, is a staggered circular mesh with the hole diameter 4.445 cm, hole-

to-hole distance 5.715 cm (equivalent bar width 1.27 cm), 55% porosity and placed 30.48 

cm upstream of the hardware to create a freestream turbulence intensity (Tu) about 12% 

with integral length scale around 1.5 cm. The top and bottom walls of the inlet duct and 

the side walls of outlet duct are geared with 1.27 cm thickness transparent Plexiglas (as 

shown in Figure 3) to ensure a wide optical access to the test section from both upstream 

and downstream. 

Figure 4. Turbulence grid. 

  

Inlet and exit velocity were monitored by Pitot-static probe as both the total and 

static pressure of the cascade were recorded during the experiment. They were stationed 

at 5.08 cm upstream and 2.54 cm downstream of the center vane hardware, respectively. 
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The mainstream temperature was monitored by a T-type thermocouple equipped with the 

inlet Pitot-static probe. A LED excitation light and a monochrome CCD camera were used 

for measuring PSP emission intensity for film cooling effectiveness calculation and 

arranged in upstream and downstream, respectively. The camera and light source were 

adjusted (angle, distance) to a clear view with good visual extension reciprocally 

(upstream-to-downstream, downstream-to-upstream) subjected to the spatial constraint. 

 

3.2.2 Film Cooling System 

The film cooling system consisted of coolant source, flow meter, and plenums. 

The coolant source is either gas cylinders (N2, CO2) or air compressor (dry air). Coolant 

flow rate is adjusted and monitored by an orifice flow meter. Two separate annular sector 

plenums on the hub and the tip portion of the test section were designed accordingly: one 

to supply inner endwalls, the other to supply both vanes and outer endwalls. Single coolant 

inlet of 10.16 cm diameter in each plenum was used. By using the flow deflector caps of 

different pattern (as shown in Figure 5) on the coolant inlet as well as having the perforated 

plates (as shown in Figure 6, 5% and 10% open area for inner and outer plenum, 

respectively), the pressure inside plenums were found to be uniform from the 

measurement of pressure taps at each side of the plenum. 
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Figure 5. Flow deflector caps. (a) For inner plenum; (b) For outer plenum. 

Figure 6. Perforated plates. (a) For inner plenum; (b) For outer plenum. 

 

The impingement plates were installed on the endwalls of test section inside both 

plenums to support the necessary internal cooling. The coolant will travel inside the 

plenum, flow through the impingement plate and then eject through the discrete film 

cooling holes to protect the surface. Two kinds of endwall cooling designs will be studied. 

For design1, there are 95 typical layback fan-shaped holes dispersed within the majority 

of the vane passage, 14 angled cylindrical holes are dispersed within the beginning of the 
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passage. Also, there are 16 and 16 angled cylindrical holes along both sides of the 

slashface gap, respectively. In addition, 31 angled cylindrical holes are uniformly 

dispersed inside the whole slashface gap. For design2, there are 51 typical layback fan-

shaped holes dispersed within first 40% of the vane passage, 14 angled cylindrical holes 

dispersed within the beginning of the passage. Also, there are 9 and 5 angled cylindrical 

holes along both sides of the slashface gap, respectively. There are 5 big angled cylindrical 

holes dispersed within the middle to the aft portion of the passage. In addition, there are 

14 angled cylindrical holes dispersed inside the first half of the slashface gap. In short, the 

discrete film cooling hole pattern in the upstream passage of design1 is identical to design2 

up to 40% of the normalized axial distance. For the rest of the passage (mid to 

downstream), 44 fan-shaped holes and 13 angled cylindrical holes in design1 are 

substituted for 5 big angled cylindrical holes adopted in design2. This makes the total 

cooling hole inlet area for design1 8.1% higher than design2.  
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Figure 7. Planar projected cooling hole distribution on the AOI of vane test section. 

(a) Design1; (b) Design2. 

(a) (b) 
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Figure 7 shows the planar projection of the cooling hole arrangement on the area 

of interest (AOI). Different kinds of the cooling hole are shown in different color in Figure 

7. While most color lines in Figure 7 represent rows of cooling holes, each light blue line 

represents a single big hole. It should also be addressed that the vane boundaries in AOI 

are not the true vane profile but the fillet edge of the vane on the endwall. Figure 8 shows 

the test section in the camera-point-of-view during the experiment from downstream and 

upstream, respectively. Red lines enclosed region in Figure 8 indicate the same AOI of 

Figure 7 from different views. Color lines in both Figure 7 and Figure 8 represent the 

cooling hole rows locations in the vane inner endwall as well as the vane surface. 

Figure 8. Test section in the camera-point-of-view. (a) Design1, downstream view; 

(b) Design1, upstream view; (c) Design2, downstream view; (d) Design2, upstream 

view. 

(a) 
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3.2.3 Experimental Method – Pressure-Sensitive Paint 

Film cooling effectiveness distributions were achieved by using Pressure-sensitive 

paint (PSP) on the target surface that based on mass transfer method under the assumption 

that heat and mass transfer analogy holds. As a reliable and relatively economical method 

with the advantages of non-intrusive and high spatial resolution measurement on various 

geometry, it is popular in aerodynamic testing for capturing full pressure field. PSP 

(Innovative Scientific Solutions Inc., UF-750) is comprised of luminescent molecules and 

an oxygen-permeable polymer binder dissolved in a solvent. With the presence of oxygen 

molecules, the luminescent molecules will interact and transmit energy to oxygen 

molecules in their path to the ground state. This radiationless deactivation results in 

smaller emission intensity is called oxygen quenching, serving as the working mechanism. 

For the UniFIB PSP used in this study, the excitation wavelength is ranging from 380 nm 

to 520 nm, a 400 nm LED-based light source (Innovative Scientific Solutions Inc., LM2X-

DM-400) was therefore used to excite the luminescent molecules in the polymer binder. 

Since the wavelength of PSP emission intensity is ranging from 620 nm to 750 nm, to 

prevent the capturing of excitation light instead of emission light, the emission intensity 

of painted surface is recorded through a long-pass filter (600 nm) using monochrome 

scientific grade CCD camera (Innovative Scientific Solutions Inc., PSP-CCD-M, with 

1608 x 1208 resolution, 35 fps, 14-bit dynamic range). A typical PSP system is shown in 

Figure 9.  
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Figure 9. PSP system/working principle. 

 

To correlate the variation of PSP emission intensity to the oxygen partial pressure 

(since the concentration of oxygen in the ambient air is constant, this is equivalent to the 

partial pressure of air) on the painted surface, a pressure-controlled chamber with a 

transparent Plexiglas top wall was used. A small strip of copper was sprayed with black 

paint to reduce stray reflection from the surface, and then painted with 4-5 layers (30-40 

μm thickness per layer) of PSP. It is served as the calibration coupon. One T-type 

thermocouple was embedded in the coupon and a flexible heater mat was attached to the 

other side of the coupon. The coupon was placed inside the chamber. The relative positions 

of LED and CCD camera to the calibration coupon were adjusted to a similar view angle 

and distance to the test surface close to the same configuration of the real test. The CCD 

camera was set to capture 100 grayscale images at each target pressure to eliminate the 

measurement noise. The calibration setup is shown in Figure 10. The emission intensity 

of PSP under known pressure was recorded as I. The reference intensity Iref was the 
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measured intensity under the reference pressure Pref (ambient pressure) condition. The 

intensity acquired with the excitation light source off is the background noise of camera 

called Ib. The emission intensity was then measured covering the expected experiment 

pressure range. In these particular calibrations, the intensity was recorded at a 2-inHg 

interval from -26 inHg (gauge pressure) to 0 inHg (gauge pressure, which is identical to 1 

atm) and then at a 2-psi interval from 2 psig to 8 psig. The oxygen partial pressure adjacent 

to the painted surface can thus be correlated with the surface emission intensity by a power 

fitting curve as shown in Figure 11(a).  

Figure 10. PSP calibration setup. 

 

However, the emission intensity depends on oxygen partial pressure as well as the 

temperature of the surface. To properly address this uncertainty, the complete calibration 

processes were performed with test strip heated to different temperatures. As shown in 

Figure 11(a), the emission intensity decreases as the surface temperature increases if the 

reference condition is set at room temperature (unheated). It is found that if the reference 

condition is set at corresponding heated surface temperature, all the curves collapse into 

one (Figure 11(b)), promised the viability of deduced calibration curve in different surface 
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temperatures. Besides, Figure 11(c) is the calibration curve from different calibration strip 

for camera view angle effect study. It is found that the emission intensities are insensitive 

to the camera view angle from upright (90 degrees) to 20 degrees.  This fact guarantees 

the accuracy of the emission intensity measurement when perspective distortion exists due 

to view angle disparity and it further eliminates the data uncertainty when different camera 

angle was used during the experiment. 

Figure 11. PSP calibration results. (a) For room temperature as reference 

temperature; (b) For operating temperature as reference temperature; (c) For 

different camera view angles. 

(a) (b) 

  

(c) 
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The inner endwalls from two vane hardware were first sprayed with black paint to 

reduce the surface stray reflection and then painted with 4-5 layers of PSP by using an 

airbrush. Due to cooling hole dimension, to avoid the cooling hole from clogging, special 

care was carried out to plug all the holes during the painting process. The PSP coated 

hardware is shown in Figure 12, the pink and orange color lines in Figure 12 portray the 

cooling hole array locations in the same fashion as Figure 7 and Figure 8. 

Figure 12. Test section painted with PSP. (a) Design1, downstream view; (b) Design1, 

upstream view; (c) Design2, downstream view; (d) Design2, upstream view. 

 

Having the calibration curves, four image sets are needed to determine the film 

cooling effectiveness for each tested flow condition: the black image, the reference image, 

the foreign gas injection image, and the air injection image. Similar to the calibration, the 

black image (Ib) is to correct the background noise of camera sensor from dark current. 

The reference image is the intensity taken with LED light source switched on called Iref. 

(a) (b) (c) (d) 

    

 



 

25 

 

Both Ib and Iref are conducted under the condition with neither mainstream nor coolant 

flow present. The foreign gas injection image (Ifg) is taken with the mainstream flow and 

LED illuminated, an oxygen-free foreign gas is adopted and injected as the coolant in lieu 

of the PSP characteristic and to achieve high density ratio (e.g. CO2, DR = 1.52 ≈ 1.5) 

under room temperature condition. The corresponding oxygen partial pressure is 𝑃𝑂2,𝑓𝑔. 

The air injection image is taken under the same condition as foreign gas, but the foreign 

gas is replaced by air as coolant. The corresponding oxygen partial pressure is 𝑃𝑂2,𝑎𝑖𝑟. 

There were 100 grayscale images recorded in each image set to average out the 

measurement noise. 

Using the heat and mass transfer analogy, the adiabatic film cooling effectiveness 

when using oxygen-free gas as coolant can be expressed as,  

𝜂 =
𝑇𝑤 − 𝑇𝑚
𝑇𝑐 − 𝑇𝑚

≈
𝐶𝑤 − 𝐶𝑚
𝐶𝑐 − 𝐶𝑚

=
𝐶𝑂2,𝑓𝑔 − 𝐶𝑂2,𝑎𝑖𝑟
𝐶𝑂2,𝑐 − 𝐶𝑂2,𝑎𝑖𝑟

= 1 −
𝐶𝑂2,𝑓𝑔
𝐶𝑂2,𝑎𝑖𝑟

(1) 

It is noted that 𝑇𝑚  is considered to be the freestream recovery temperature when the 

mainstream is compressible flow. When the concentration terms are replaced with oxygen 

partial pressure, Eq. (1) can be rearranged and becomes [45], 

𝜂 = 1 −
1

[(
𝑃𝑂2,𝑎𝑖𝑟 𝑃𝑂2,𝑟𝑒𝑓⁄

𝑃𝑂2,𝑓𝑔 𝑃𝑂2,𝑟𝑒𝑓⁄
− 1)

𝑊𝑓𝑔

𝑊𝑎𝑖𝑟
+ 1]

(2)
 

By the merit of using PSP, the adiabatic effectiveness calculated from Eq. (2) is 

conduction-error free. 
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3.3 Test Matrix 

 Six sets of experiments were conducted to study effects of coolant-to-mainstream 

mass flow ratio (MFR) and density ratio (DR) on the film cooling effectiveness of inner 

endwalls of full-scale engine hardware under the fixed mainstream condition for both 

design1 and design2, respectively. Since the mainstream accelerates along the passage, 

the surface pressure of test section varies accordingly and so as the blowing ratio. A wide 

range of local blowing ratios from upstream to downstream along the passage can be 

expected. Summary of the test matrix is shown in Table 1. 

 

Table 1. Summary of the test matrix for the full-scale vane endwall film cooling 

study. 

Experiment no. MFR (%) DR 

1 2 1.0 

2 3 1.0 

3 4 1.0 

4 2 1.5 

5 3 1.5 

6 4 1.5 

  

From the conventional definition, MFR was calculated based on the mass flow rate 

of mainstream and coolant supply per passage. In the present study, three mainstream 

passages and two out of three cooling system on the inner endwalls were actively 
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functioned. A 3/2 ratio was applied to account for this factor when calculating the required 

coolant mass flow rate. 

 

3.4 Experimental Uncertainty 

The uncertainty of the measurement in this experiment comes from the fluctuation 

of mainstream velocity (±1%), the fluctuation of coolant flow rate (±1.8%), and the 

thermocouple reading (±0.5℃). For the film cooling effectiveness calculation, the major 

uncertainty is the variation of PSP emission intensity value captured by the camera. 

Multiple reference and black images were first taken to quantify the intensity fluctuation. 

By the method proposed by Kline and McClintock [46] based on a 95% confidence level, 

the uncertainty of film cooling effectiveness deduced from the calibration curve at η = 0.1, 

0.3, 0.5 and 0.7 are 13.8%, 4.1%, 2.4% and 1.8%, respectively in the present study. 

 

3.5 Results and Discussion 

3.5.1 Image Transformation 

The nature of this vane hardware and wind tunnel design prevent a single data 

taking view angle from capturing the whole AOI. Therefore, both upstream and 

downstream views need to be recorded individually for each test condition. To have a 

better representation of AOI (passage from LE up to nozzle wake region after TE) on the 

inner endwall for easy data comparison, other than the static pressure distribution and 

crossflow visualization part, the upstream and downstream data in the same test condition 

are undergone a perspective transformation by using the in-house MATLAB code. The 
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converted data are then stitched together to form a single image for further data processing 

including the spanwise averaged and area averaged effectiveness. 

 

3.5.2 Design1 

3.5.2.1 Static Pressure Measurements on the Endwall 

The full static pressure distribution on the endwalls was measured by PSP under 

the condition with mainstream only. Therefore, this information is considered also valid 

for design2. Two measurements were performed from both upstream and downstream 

views. The static pressure measurements were converted to isentropic Mach number as 

showed in Figure 13. The presented values are calculated by the inlet total pressure and 

the local static pressure along the endwalls. The black line in Figure 13(a)(b) are the 

location where different views are joined together. 

Low Mach number (high static pressure) zone near the vane’s LE can be located 

clearly. This is due to the flow stagnation near the vane’s LE portion. Mach number 

contour from both upstream and downstream views depict two important information: 1. 

The Mach number is increasing from LE of endwall toward the TE, which interprets that 

the mainstream accelerates along the passage. So as the decreasing trend of static pressure 

along the passage. 2. The Mach number near vane’s pressure side is lower than that near 

the suction side. This Mach number difference represents the pressure difference, which 

is the primary reason for the strong cross flow inside the passage which affects the film 

cooling coverage and effectiveness on the endwall. 
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Figure 13. Isentropic Mach number distribution: (a) downstream view and (b) 

upstream view. 

 

3.5.2.2 Adiabatic Film Cooling Effectiveness 

The film cooling effectiveness distributions can precisely disclose the flow 

behavior which comes from the interaction between the coolant and mainstream flow. 

Moreover, it differentiates the whole endwall into the region that being cooled 

appropriately and the region that might susceptible to the high heat load. 

 First, the strong cross-flow effect is clearly visualized in Figure 14, which is the 

zoom in cropped view of one of the cases studied. It is distinctive that some of the coolant 

ejections demonstrate a huge difference to the hole exit direction (tiny black arrows in 

Figure 14). For example, the coolant deflection in Figure 14(b) is considered to be greatly 
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affected by the horseshoe vortex near the vane’s LE. Detail film-cooling effectiveness of 

all cases examined are shown in Figure 15 and Figure 16. For the upstream region, a low 

effectiveness region can be located between the first row of cylindrical holes and the 

second row of shaped holes in front of the vane’s LE. The hole orientation of the first row 

is nearly perpendicular to the mainstream flow direction, which attributes the resulting 

low coolant coverage. Starting from the second row, a good film cooling effectiveness 

spreads inside the passage along the vane curvature can be observed, representing strong 

coolant protection. However, the passage vortex that developed from the horseshoe vortex 

and the pressure gradient dominates the coolant distribution. A curve uncooled portion 

right near LE suction side of vane passage can be related to inlet boundary layer flow 

which is vigorously rolled up by horseshoe vortex to avoid the coolant remaining near 

endwall. The pressure gradient also prevents the coolant from staying near pressure side 

in the vane passage. This leads to an uncooled pressure side starting from the LE fillet to 

the TE. For the downstream region, the footprint of the strong passage vortex can be 

detected partly from the coolant coverage near the TE of suction side vane passage as well. 

In addition to that, mainstream deflects the coolant in a great manner as shown in all cases. 

It carries the coolant from lower endwall to the middle one, which turns out a better 

effectiveness. It also leaves the tail part of the endwall low film cooling effectiveness. 

After the TE of the vane passage, it is easily discernible that there is an unprotected region 

because of the nozzle wake flow. From Figure 15 and Figure 16, a peak effectiveness 

region that existed near the downstream section is evidently noticed. In consideration of 

31 cooling holes dispersed inside the interface (slashface) gap between the vane hardware 
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(as shown in Figure 12(a)(b)), it is perceived to create intentional ejections from the 

slashface gap. Besides, these gaps can also serve the purpose to trap the film from lower 

endwall and then the film re-attaches on the gap downstream of middle endwall for better 

protection near the TE of vane suction side passage. The disparate cooling traces between 

the bottom of lower endwall and the target region can be an evidence for this argument. 

Unlike the complete passage in the target region, half passage existed in virtue of the flat 

duct wall enclosed the bottom of the lower endwall (refer to Figure 8(a)(b)). The cooling 

holes on the bottom of the lower endwall were blocked and no film was carried over from 

the neighbor vane endwall. This makes the film cooling configuration near the bottom of 

lower endwall inconsistent to the target region endwall. 

Figure 14. Cross-flow visualization (DR = 1.5, MFR = 4%): (a) downstream view and 

(b) upstream view. 
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3.5.2.3 Effect of Mass Flow Ratio 

 Figure 15 and Figure 16 show the film cooling effectiveness under different MFR 

for a given DR. For the cylindrical holes in the first row of the endwall passage, the coolant 

trace indicated its lift-off when higher MFR case was studied. This is consistent with the 

conclusion in the open literature that the cylindrical holes are ineffective design when 

coolant bears higher momentum. Due to the majority holes on the endwalls are shaped-

holes, the expanded hole exit area vastly reduces the coolant jet momentum and hence no 

coolant lift-off is observed in most area in all the experiment cases. As the MFR increases, 

higher film cooling effectiveness is found near the hole exit and longer coolant trace can 

be recognized. While the longer trace improves the protection of all the originally cooled 

area in the vane passage, the benefit of higher MFR can be directly reflected on coolant 

protection of the fillet near the vane’s LE. For MFR = 2%, scarce coolant distribution can 

be found near the fillet of vane’s LE. When MFR = 4%, the coolant jets have relatively 

larger momentum to overcome the pressure to approach the fillet to a certain extent. The 

higher momentum of coolant in larger MFR also demonstrates a lower proclivity to the 

mainstream, extends the film cooling dissemination to a larger extent including the 

coverage to tail part of endwall. 

 

3.5.2.4 Effect of Density Ratio 

 Film cooling effectiveness under different DR for a given MFR can be compared 

with the same index number of subfigures in Figure 15 and Figure 16. For a higher DR, it 
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is noticeable that a remarkable increase of film cooling effectiveness is achieved. As stated 

earlier, the DR is to simulate the temperature ratio of the coolant to mainstream in the real 

engine operation. Since under the same MFR, coolant with higher density actually 

possesses lower momentum, the injected heavier coolant has better tendency to stay 

attached to the surface from lift-off. Further, the higher density coolant exposes a better 

lateral coolant coverage, therefore, a preeminent care of the whole endwall passage 

including the effectiveness increase of nozzle wake flow region. Nonetheless, the 

comparison for different DR reveals that the film cooling effectiveness near the slashface 

gap in the middle endwall and near the TE of suction side vane passage is higher for the 

DR = 1.5 case. It is because if the denser coolant already interacted with mainstream or 

passage vortex, since retaining lower momentum, it is more easily to deflect by the 

mainstream along with the strong secondary flow. 

  



 

34 

 

Figure 15. Film cooling effectiveness distributions of design1 at DR = 1.0. 

  

(a) MFR = 2% (b) MFR = 3% (c) MFR = 4% 
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Figure 16. Film cooling effectiveness distributions of design1 at DR = 1.5. 

 

3.5.2.5 Lateral Averaged Film Cooling Effectiveness 

 Due to the three-dimensional curvature of real hardware and the resulting 

limitation on view angle, the laterally (spanwise) averaged film cooling effectiveness 

calculation along the full endwall is not feasible through a single view. Thus, the presented 

result is the combination of two independent calculations of upstream and downstream 

contour plots, respectively to prevent from biased data because of visual limitation. From 

the data trend as shown in Figure 17, two high effectiveness locations can be specified. 

(a) MFR = 2% (b) MFR = 3% (c) MFR = 4% 
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The first big peak can be attributed to the dense cooling hole arrangement from holes in 

the second row of the passage, near LE of the middle vane, and the pressure side of the 

lower vane. Along the passage, the accumulation of coolant leads to the higher 

effectiveness toward the downstream. The highest peak is where the mix effect of 

amassing coolant from upstream and the intentional ejections from the slashface gap of 

vanes achieves the topmost effectiveness among all locations. To a further downstream, 

the unprotected tail part of vane and the nozzle wake flow region deeply reduce the 

calculated averaged effectiveness. More significantly, from the laterally averaged film 

cooling effectiveness along the endwall for different cases, the argument on the influence 

of MFR and DR to the effectiveness from the contour plots can be easily justified. 

Figure 17. Laterally (spanwise) averaged film cooling effectiveness of design1. 
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3.5.3 Design2 

3.5.3.1 Adiabatic Film Cooling Effectiveness 

The detail film cooling effectiveness of all cases examined is shown in Figure 18 

and Figure 19. Starting from the upstream portion, a low effectiveness region can be 

located between the first row of cylindrical holes and the second row of shaped holes in 

front of LE. The holes in the first row are of extreme injection angle (90o) designed to let 

the mainstream completely deflects the ejection direction. However, very poor coolant 

contribution can be detected from this row especially the middle portion. The reason can 

be attributed to the steep injection angle design that these surface normal jets will mostly 

have intense mixing with mainstream and be diluted readily. Starting from the second row, 

considerable coolant traces are observed inside the passage along the vane curvature, 

indicating better coolant protection. The exposed fillet shape boundary near LE is a clear 

evidence of horseshoe vortex that prevents coolant to approach. The source of the passage 

crossflow, pressure gradient, prevents the coolant from staying near pressure side in the 

vane passage. This leads to an uncooled pressure side starting from near vane’s LE fillet 

to the TE. The 5 big cylindrical holes are designed to take care of the cooling from mid-

passage to TE and aft portion of the hardware. Those 2 big cylindrical holes near pressure 

side are supposed to take care the pressure side passage. However, it turns out mainstream 

deflects the coolant in a great extent as the trace is unable to protect the pressure side 

passage. From Figure 18 and Figure 19, a low effectiveness curve band close to the vane’s 

suction side is identified as the lift-off line of passage vortex described by Friedrichs et al. 

[30]. Mid-passage near suction side and a considerable downstream portion are expected 
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to be protected by the coolant trace from 3 big cylindrical holes as their staggered 

configuration in this particular location could facilitate the coolant from upstream hole to 

contribute to the downstream and later accumulate to form a better downstream coverage. 

Visually, this arrangement seemed to be quite promising as most of the hardware aft 

portion is covered by long and wide coolant trace from 3 big cylindrical holes. From the 

vane’s TE, it is noticeable that the current film-hole pattern is unable to take care of the 

wake region. It is worthwhile to mention that the slashface injection acts as a dominant 

factor in this particular endwall cooling hole design. As the cooling holes inside the 

slashface gap are located in the first half of the gap only, it is expected to control the 

ejection to occur mostly near upstream. A strong coolant injection is thus observed along 

the slashface starting from very upstream. Though affecting the cooling holes near 

pressure passage, the high effectiveness zone created by slashface in upstream is 

somewhat locally confined instead of propagating to downstream. 

 

3.5.3.2 Effect of Mass Flow Ratio 

Figure 18 and Figure 19 show the film cooling effectiveness under different MFR 

for a given DR. The suppression of horseshoe vortex when increasing MFR can also be 

observed near the LE of vane’s pressure side as more coolant is approaching to the vane. 

Since the majority of the cooling holes except 5 big cylindrical ones are shaped holes, the 

coolant momentum is reduced as well as the tendency of coolant lift-off. As long as 

coolant does not detach from the surface, higher streamwise effectiveness is expected 

because more coolant is present with higher momentum when increasing MFR. While this 
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is generally true in this study, it is interesting to see that the effectiveness variation is quite 

different especially in upstream when increasing MFR if we separate the AOI into passage 

near pressure side and the one near suction side from slashface. For the pressure side 

passage, the trend is quite monotonic that the higher MFR directly leads to higher 

effectiveness near hole exit and longer coolant trace which reduces the unprotected area 

near vane’s pressure side. The effusive coolant from upstream of slashface injection not 

only fills up the gap but also floods out toward the pressure side when MFR is high, similar 

to the scenario reported by Ranson et al. [47]. For the suction side passage, the 

effectiveness enhancement of increasing MFR is perceivable inside the passage as the 

longer trace gradually eliminates the unprotected portion like the region very close to the 

suction side. However, the upstream suction side passage actually shows a reduced 

coverage when MFR increases from 3% to 4%. The higher momentum of coolant in larger 

MFR moves the lift-off line of passage vortex to downstream as the low effectiveness 

curve band gradually detaches from the vane’s suction side. High momentum coolant also 

demonstrates a lower tendency to be deflected from the mainstream. A clear example is 

when the MFR is 4%, which the coolant momentum from 3 big cylindrical holes in the 

mid to aft of the passage is so strong that is totally departed from the vane’s suction side. 

In addition, this strong coolant momentum makes the lateral coolant spreading from 3 big 

cylindrical holes drops as the MFR increases, which indicates a typical cylindrical hole’s 

behavior when increasing the coolant flow rate. 
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3.5.3.3 Effect of Density Ratio 

Film cooling effectiveness under different DR for a given MFR can be compared 

with the same index number of subfigures in Figure 18 and Figure 19. For the region using 

shaped holes, wider traces compared to lower DR cases are observed as the heavier coolant 

increases the lateral spreading and stay attached to the surface better due to the lower 

momentum in high DR cases. Thus, for a given MFR, the effectiveness of high DR 

demonstrates the enhancement throughout most of the AOI except for MFR = 2%. The 

effusive coolant from upstream of the slashface are enhanced and seemed to be covering 

more area near pressure side passage, which directly boosted the performance of neighbor 

cooling holes. Since Piggush and Simon [39] mentioned that the low-streamwise-velocity 

flow issuing from the slashface makes a thicker endwall boundary. This boundary layer 

could be even thicker for higher DR case under the same MFR. Increased turbulence 

within the thicker boundary layer may bring the jets closer to endwall as the situation 

described by Anderson et al. [48]. For 3 big cylindrical holes, the reduced coolant 

momentum in higher DR have a better lateral coverage but also directly lead to the higher 

dependency of coolant trace on the mainstream compared to the lower DR cases. This 

results in wider film protection near the suction side passage but at the same time, slightly 

worse protection for the downstream part of hardware can be seen provided that a fixed 

amount of coolant is distributed toward suction side instead of the whole hardware. 



41 

Figure 18. Film cooling effectiveness distributions of design2 at DR = 1.0. 

(a) MFR = 2% (b) MFR = 3% (c) MFR = 4% 
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Figure 19. Film cooling effectiveness distributions of design2 at DR = 1.5. 

3.5.3.4 Laterally Averaged Film Cooling Effectiveness 

The presented spanwise averaged effectiveness is shown in Figure 20. From the 

data trend, we can see the effectiveness is first gradually increasing up to 43% of the 

normalized axial distance, with several peaks indicating the local cooling hole locations. 

And then, a significant effectiveness drops at the location right after the first big cylindrical 

hole near pressure side passage due to insufficient coolant coverage near vane’s pressure 

side. Following is the effectiveness increase contributed by 3 big cylindrical holes at mid 

(a) MFR = 2% (b) MFR = 3% (c) MFR = 4% 
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to downstream of the suction side passage starting from 50% of the normalized axial 

distance. The effectiveness peak of this region moves according to the MFR and DR. The 

case with higher coolant momentum (higher MFR and lower DR) will have a local peak 

value resides in relatively downstream location due to the stronger coolant penetration to 

further downstream and less tendency of being deflected by the mainstream. 

Figure 20. Laterally (spanwise) averaged film cooling effectiveness of design2. 

3.5.4 Design Comparison 

Differences in the converted contours are observed as the data capturing angle for 

current design is slightly different from the previous study. For design1, there are 95 

typical layback fan-shaped holes dispersed within the majority of the vane passage, 14 

angled cylindrical holes are dispersed within the beginning of the passage. Also, there are 
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16 and 16 angled cylindrical holes along both sides of the slashface gap, respectively. In 

addition, 31 angled cylindrical holes are uniformly dispersed inside the whole slashface 

gap. The discrete film cooling hole pattern in the upstream passage of design1 is identical 

to design2 up to 40% of the normalized axial distance. For the rest of the passage (mid to 

downstream), 44 fan-shaped holes and 13 angled cylindrical holes are substituted for 5 big 

angled cylindrical holes adopted in design2. This makes the total cooling hole inlet area 

for design1 8.1% higher than design2. Under the same amount of coolant supplied, we can 

see that the effectiveness of two designs is quite different even in the upstream 40% region 

with identical cooling hole configuration. This is attributed to the different arrangement 

of cooling holes inside the slashface as well as the cooling hole configuration on the 

endwall as the local flow resistance for coolant changes. The local blowing ratio for 

design1 and design2 is expected to be quite different even in the upstream region of the 

same cooling hole configuration. One key difference is the slashface injection, the effusive 

coolant from upstream slashface is only visible in design2. On the other hand, the slashface 

injection for design1 occurs near downstream and creates the signature wedge shape 

coverage. By comparing Figure 7(a) and (b), the reason for this discrepancy is clearly the 

hole configurations inside the slashface. For design2, the cooling holes inside the slashface 

are only dispersed within the first half of the slashface which the coolant can only be 

ejected through the upstream of the slashface. This effusive coolant alters the upstream 

local flow fields by introducing additional velocity component which locally reduces the 

flow resistance near pressure side passage and enhances the effectiveness. The coolant 

driving force near this area increases by having higher local blowing ratio due to higher 
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discharge coefficient. On the other hand, when the cooling holes inside the slashface are 

uniformly arranged along the whole length like design1, the inherent pressure gradient 

inside the passage will allow the coolant be ejected only near downstream. Another factor 

is that design2 has very limited amount of cooling holes compared to design1 from the 

mid to downstream portion of the endwall passage. This downstream blockage in design2 

also leads to the front-oriented passage coolant distribution as shown in Figure 18 and 

Figure 19. By comparing the spanwise averaged effectiveness in Figure 17 and Figure 20, 

we can see that the effectiveness of both designs gradually increases from leading toward 

trailing of the vane endwall passage and start to decay at about 80% of the normalized 

axial distance. Regarding the value, for the first 45% of the normalized axial distance, the 

effectiveness of design2 is generally higher than design1. Opposite trend is observed for 

the rest 55% portion.  Especially near the nozzle wake region, the film-hole pattern in 

design1 can effectively diminish the wake effect when increasing MFR while design2 

offers only limited coverage. Major differences between two designs are the effectiveness 

drop in 43% of the normalized axial distance due to poor coverage near mid vane pressure 

side and the aft passage effectiveness peak shifting due to the coolant momentum change 

on design2. The above-mentioned two phenomena are not seen on design1. In terms of 

overall trend, the streamwise effectiveness variation for design1 is less than design2, 

which is considered beneficial that could lead to more uniform metal temperature and 

reduced thermal stress. Finally, the area averaged effectiveness for both designs are shown 

in Figure 21. Design2 outperforms design1 in terms of area-averaged effectiveness for 

maximum difference of 15% but 6% for most cases at MFR = 2% and 3%, while the 
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design1 has higher area averaged effectiveness compared to design2 for around 10% at 

MFR = 4%. Nonetheless, it is not appropriate to simply judge from the area averaged 

effectiveness to determine which design is better under the same amount of coolant supply 

due to the dissimilarity of coolant distribution in these two particular designs as shown in 

Figure 15, Figure 16, Figure 18, and Figure 19. For design2, the effusive coolant from the 

upstream slashface can be considered over-cooled, as it is not an efficient access to arrange 

the coolant in such a way that strengthens the portion with existing coolant coverage but 

leave some regions totally unprotected due to lack of local cooling hole arrangement like 

the passage near vane’s pressure side. In contrast, the region without coolant protection 

on design1 is relatively limited due to the uniform cooling hole arrangement on the 

hardware and can be considered a better configuration for this particular vane/endwall 

passage.  

Practically speaking, better/optimum endwall design includes the good thermal 

performance as well as the low manufacturing cost if possible. The simple hole design in 

design2 deserves the credit that directly saves lots of manufacturing cost by using simple 

hole geometry and less number of holes. In design2, it is worthy to reemphasize that the 

aft portion of the hardware is successfully taken care by 3 big cylindrical holes near suction 

side of the passage. This is considered a brilliant design to achieve the similar coolant 

coverage as design1 with merely 3 simple holes for this particular region. However, those 

2 big cylindrical holes near pressure side must be shifted since their contribution is pretty 

limited. Another possible way is to replace them by shaped holes. The better lateral 

spreading can effectively reduce the unprotected region. Besides, since the total cooling 



 

47 

 

hole inlet area for design2 is lower than design1, proper modification like placing few 

more holes near the vane’s pressure side and wake region are also recommended on 

design2 to achieve a full endwall coverage. 

Figure 21. Area averaged film cooling effectiveness of design1 and design2. 
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4. TRANSONIC TURBINE VANE SUCTION SIDE FILM COOLING WITH 

SHOWERHEAD EFFECT* 

 

4.1 Literature Review 

As mentioned in Section 3.1, from the numerous studies in the open literature, it 

is found that two major factors affecting the film cooling performance. They are the 

coolant-to-mainstream condition and the cooling hole design. Considering the pressure 

and temperature in a real engine, it is difficult to realize the exact mainstream and coolant-

to-mainstream condition in the laboratory. Proper scaling factors like coolant-to-

mainstream blowing ratio and density ratio were proposed and extensively adopted to 

simulate the coolant-to-mainstream pressure and temperature ratio in film cooling study. 

On the other hand, the cooling hole design demonstrates vivid variations including hole 

geometry and hole spatial arrangement as discussed in Section 3.1 as well.  The situation 

is more complicated than it seems due to the fact that the effects of these parameters are 

often intertwined and highly related to the vane geometry. 

 

4.1.1 Mainstream Condition Effect 

 Amid the parameters describing the mainstream condition in film cooling study, 

Mach number is the one that dictates the flow compressibility but unable to be easily 

scaled by varying geometry dimension like matching Reynolds number. Studies on 

 
*Reprinted with permission from Shiau, C. C., Chowdhury, N., Han, J. C., MirzaMoghadam, A., 

Riahi, A., 2017, Transonic Turbine Vane Suction Side Film Cooling with Showerhead Effect 

Using PSP Measurement Technique, ASME Paper No. GT2017-63143., Copyright 2017 ASME. 
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matching the typical Mach number in the engine provide insights about how film cooling 

situation will be under a more realistic flow condition. Further, the geometry induced 

shock wave in transonic or supersonic flow condition will change the local flow field and 

affect the film cooling. Liess [49] studied the effectiveness on the flat plate with cylindrical 

holes under mainstream Mach number from 0.3-0.9 with the favorable pressure gradient.  

No measurable effect of Mach number on film cooling effectiveness can be seen from his 

results. Gritsch et al. [50] studied the film cooling with expanded exits under external 

Mach number from 0.3-1.2. They found that the transonic crossflow at hole exit will alter 

the flow field in the vicinity of the ejection location. Effectiveness is increased compared 

to subsonic cases but this enhancement is less prominent for the fan-shaped hole. From 

their laser light sheet flow visualization, they also found the pressure ratio will affect the 

coolant distribution in the hole exit plane. And since the higher coolant pressure ratio is 

required to apply the same blowing ratio under the higher Mach number, it will result in 

more coolant being ejected at the hole centerline and the lateral spreading is thus reduced. 

Lutum et al. [51] found that the freestream acceleration generally decreases the adiabatic 

film cooling effectiveness especially in the far-field of coolant ejection, the reduction can 

go up from 10-30%. In contrast, increased effectiveness can be achieved in the near hole 

region due to the reduced tendency of jet separation in the accelerated mainstream. Their 

data shows the effectiveness obtained at higher Mach number (0.8) is generally higher 

than those obtained at lower Mach number (0.4). Ochs et al. [52] investigated the effect 

of shock on film cooling on a simulated suction side with five rows of cylindrical or fan-

shaped holes at different locations upstream of the shock. Their results showed that the 
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effectiveness of cooling hole at the subsonic region is slightly affected by the adverse 

pressure gradient. However, the mainstream oblique shock does not have a significant 

effect on the effectiveness of cooling holes at the supersonic region. They also concluded 

that the increased pressure ratio enhances the flow separation inside the shaped hole which 

decreases the shaped hole performance and makes it sensitive to blowing ratio similar to 

the cylindrical hole. Results from Saumweber and Schulz [53] under mainstream Mach 

number from 0.15-0.45 in 14o shaped hole show that the performance gain with fan-shaped 

holes as compared to cylindrical holes is clearly overestimated when it is based on 

conditions with low turbulence levels and low Mach numbers. At conditions with high 

pressure ratios across the hole (increased Mach number), separation at the diffuser 

sidewall will lead to significant performance degradation. Cascade study from Xue et al. 

[54] demonstrated that the shock causes the effectiveness on blade suction side to drop 

rapidly and then stays at a low level further downstream. Their CFD results show that 

pressure gradient drives the near surface flow toward the center and lead to the formation 

of reversed kidney vortices. Anderson et al. [48] studied the freestream Mach number 

effect on film cooling of 7-7-7 shaped holes. In the 0.02-0.15 Mach number range, 

minimal effects on laterally-averaged effectiveness can be detected. 

 

4.1.2 Film Cooling on Vane/Blade Surface 

Numerous works of film cooling on the simplified geometry like flat plate were 

conducted by different groups as a parametric study [9,14,16-19,55]. However, it is 

expected that the conclusion from flat plate may not necessarily be applicable to the vane 
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surface, e.g. like the insensitivity of coolant lift-off when using the shaped hole, as the 

pressure gradient from the vane curvature changes the boundary layer and the 

characteristics of flow interaction between mainstream and coolant. Also, on the vane 

surface, the coolant carryover from leading edge showerhead cooling affects the film 

cooling performance on both vane’s pressure side and suction side. For the film cooling 

study on the vane surface, Colban et al. [56] tested the heat transfer and film cooling on a 

stator vane with fan-shaped cooling holes. The film cooling effectiveness of four cooling 

hole rows on the suction side from 9-35% of the surface length showed a large amount of 

separation with increasing blowing ratio. They considered this to be due to the severe 

curvature and high acceleration in this region where increasing blowing ratio tends to 

accentuate the jet lift-off. Najafabadi et al. [57,58] studied showerhead effect on the vane 

suction side film cooling.  For the double rows of fan-shaped cooling holes on the suction 

side, an increase in blowing ratio from 0.6-0.9 can result in higher effectiveness but will 

decrease after blowing ratio further increases. They also concluded that showerhead 

cooling makes a major contribution to improving cooling performance when the cooling 

row is located at high convex surface curvature with accelerating flow as it can decrease 

the severity of the jet separation. Based on the above survey and the previous studies on 

transonic vane film cooling [59-61] from The Turbine Heat Transfer Laboratory (THTL) 

at Texas A&M University, it is clear that the film cooling performance on the vane surface 

under different mainstream Mach numbers cannot be simply predicted from the flat plate 

study and the more in-depth investigation is needed especially when dealing with specific 

vane geometry. 
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4.2 Experimental Setup and Method 

4.2.1 Five-Vane Annular Sector Cascade 

 The flow loop for the current test rig is shown in Figure 22. Referring to Figure 

23, the measurements were conducted in a five-vane annular sector cascade. The cascade 

consists of four guide vanes and one removable center vane as test vane to simulate the 

radial pressure gradient and reflect the three-dimensional secondary flow effect in the true 

geometry. The shape of cascade inlet cross-section is designed as an annular sector of the 

combustion chamber exit in order to match the flow entering the geometry of vanes in the 

test section. The metal cascade and the reinforcement cover for the window are made by 

selective laser sintering (SLS) process. The removable scaled test vane is made from a 

sturdy resin material called Somos® NanoTool using stereolithography (SLA) process.  

The test vane is of three-dimensional design with aspect ratio around 0.7 and solidity 

around 0.5. Due to the cascade design and the safety concerns when operating this wind 

tunnel, a limited size transparent Plexiglas window is used to ensure reasonable optical 

access to part of the suction side of test vane (Figure 23(a)). The mainstream air is supplied 

by a blowdown facility including a high-pressure compressor, a dryer, and a storage tank. 

The mainstream is regulated by an electronic flow control valve that regulates the flow 

velocity through the feedback signal from the pressure transducer in the wind tunnel flow 

loop. 

 Both the inlet and exit velocities from the total pressure and static pressure of the 

cascade were continuously monitored by Pitot-static probes, which were stationed at 2.87 
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Cax upstream and 0.75 Cax downstream of the center vane, respectively. Three nominal 

mainstream conditions with exit Mach number from 0.7, 0.9, to 1.1 were tested. The 

corresponding Reynolds number based on axial chord length are 6.6x105, 8.9x105, and 

1.36x106. To simulate the flow turbulence intensity entering the turbine vane, a turbulence 

grid design based on grid-generated turbulence decay correlation [44] was used. The grid 

has an equivalent bar width 1.43 cm and 54% porosity, was set 25.45 cm upstream of 

vanes’ LE plane with an estimated turbulence intensity of 12% and integral length scale 

of 1.5 cm. A strobe light and a monochrome CCD camera were used for surface intensity 

capturing for film cooling effectiveness calculation. The whole cascade and setup of the 

data acquisition facility are shown in Figure 23(b). 

Figure 22. Flow loop for the test section and facility.  
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Figure 23. Schematic view of the vane cascade and instrumentation setup. (a) 

Cascade assembly; (b) Cascade and DAQ facility setup. 

 

4.2.2 Film Cooling System 

 There are five rows of film cooling holes dispersed on the surface of center test 

vane as shown in Figure 24(a). The diameter (d) of the cooling hole is around 0.12 cm. 

Purple shaded area indicates the area of interest (AOI) on the vane’s suction side, which 

represents the optically accessible portion through the window in this study (the red 

dashed line in Figure 24(b)). The LE of the test vane is equipped with three rows of 

(a) 

 

(b) 
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showerhead film cooling holes (LE) in a staggered configuration. The middle row is 

aligned with the stagnation line. Each showerhead row has seven radial-angle (injecting 

towards the vane tip) cylindrical holes with a hole-to-hole spacing of s/d = 6.9. Two rows 

of compound-angle shaped holes (SS1, SS2) are on the suction side of the test vane with 

a wide hole-to-hole spacing of s/d = 7.3. The shaped holes have a typical design of 

metering length and expansion angle in three directions. The injection angles for SS1 and 

SS2 are approximately 45o and 35o, respectively. These two angles are different due to the 

local vane curvature. The bottom of the test vane is extended 5.08 cm and serves as a 

three-passage plenum for the film cooling hole rows to enhance the uniformity of coolant 

delivery (Figure 24(a)). Three white cavities, which are inside the vane cross-section 

shown in Figure 24(b) represent three passages of the plenum. One of the plenum passages 

supplies coolant for three rows of leading edge cooling holes (LE), the other two plenum 

passages supply coolant for SS1 and SS2, respectively. The true data capturing angle and 

the schematic of the coolant loop are shown in where coolant source is either the dry air 

from the compressor loop or the foreign gas cylinders including N2 (DR = 0.97 ≈ 1.0), CO2 

(DR = 1.52 ≈ 1.5), and Argon/SF6 mixture (DR = 1.93 ≈ 2.0). Coolant flow rate for 

different plenum chamber/passage is controlled by individual rotameters. The coolant 

volume flow rates are further adjusted with the specific gravity correction when flowing 

foreign gas and applied density correction from the pressure tap reading at rotameter exits. 
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Figure 24. Test vane. (a) Film cooling hole locations and plenum; (b) Section view of 

coolant supply passages (the red dashed line is the top view of DAQ area). 
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Figure 25. Test section with true data capturing angle and the schematic of coolant 

loop. 

 

4.2.3 Experimental Method – Pressure-Sensitive Paint 

 Mass transfer based pressure-sensitive paint (PSP) is used to capture the film 

effectiveness as mentioned in Section 3.2.3. The major difference between Section 3 and 

the current one is the light source and therefore the PSP (Innovative Scientific Solutions 

Inc., UF-470) with a shifted excitation peak wavelength (470 nm) is used. Strobe light 

(PerkinElmer MVS-7000 Series) fitted with a narrow bandpass interference filter (optical 

wavelength 520 nm) is used to excite the luminescent molecules in the polymer binder. A 

pair of flexible fiber optic guides directs the light onto the vane surface. The emission 

intensity of the painted surface is recorded through a long pass filter (600 nm) using 

monochrome scientific grade CCD camera (Cooke Sensicam QE with CCD temperature 
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maintained at 258 K using 2-stage Peltier cooler, 12-bit dynamic range). The camera and 

strobe light were synchronized by a TTL signal from a function generator to achieve 10Hz 

data acquisition frequency. 

Due to the transonic flow condition, there is a potential concern whether the heat 

and mass transfer analogy is valid in compressible flow, regardless which mass transfer 

method is being used. For the case without film cooling, Häring and Weigand [62], and 

Häring et al. [63] revised the analogy equations and verified the validity of heat and mass 

transfer analogy in compressible flow by using naphthalene sublimation technique and 

compared with the transient liquid crystal technique in compressible flow (Ma = 0.4-0.8) 

for various geometries including a flat plate, cylinder, and the turbine airfoil. For the film 

cooling effectiveness using PSP technique, its validity has been verified with thermal 

techniques as shown by Wright et al. [64] and Wiese et al. [65]. However, the results were 

obtained in the low-speed wind tunnel (incompressible flow), and such direct comparison 

is yet available for compressible flow in the open literature. Therefore, it will be more 

appropriate to reexamine the key basis that enables the foreign gas injection technique to 

be used in film effectiveness measurement. To use the mentioned technique for film 

cooling measurement, the nature of turbulent boundary layer dictates that the diffusivity 

between heat and mass needs to be established for molecular ones as well as for turbulent 

ones. Such relationship is not the case for most of the applications, but for the 

turbulent/mixing nature of film cooling particularly, there is a consensus that the turbulent 

Sc and Pr are approximately equal and the shear layers present in film cooling flows help 

to facilitate this relationship as indicated by Jones [66]. It is reasonable to consider the 



 

59 

 

thermal and mass diffusion happening in the turbulent boundary layer is expected to 

follow the revised analogy indicated by [62]. From the analogy, the effect of Ma is 

eliminated when a unity Lewis number presents. In addition, high-speed flow directly 

relates to high dynamic pressure, but the static pressure varies accordingly and so as the 

local flow density. From the definition of thermal and mass diffusivity, density variation 

from pressure affect these two diffusivities equally and the effect is canceled out. The 

resulting Lewis number is not being affected. It is therefore considered valid to use PSP 

technique for adiabatic film cooling effectiveness measurement in compressible flow. 

 As the AOI in this study, the suction side of the test vane was first sprayed with 

black paint to reduce the surface stray reflection and then painted with 4-5 layers (30-40 

μm thickness per layer) of PSP by using an airbrush. The relationship between this 

particular PSP emission intensity is calibrated separately. The final result is one 

correlation as shown in Figure 26. In addition, since PSP is insensitive to camera angle as 

mentioned in Figure 11(c), the steep data taking angle in this experiment did not cause any 

concern. 

Figure 26. PSP calibration results under different reference temperature. 
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4.3 Test Matrix 

Since the current setup uses the blowdown facility to supply the mainstream, it is 

important to confirm the mainstream is kept on the desired steady condition within the 

data taking duration. Figure 27 is the Mach number history of the current test facility. It is 

confirmed that the claimed flow conditions can be sustained steady for at least 10 seconds 

which is sufficient considering the data acquisition frequency described in Section 4.2.3. 

Figure 27. Exit Mach number history for the current test section. 

 

To systematically study the film cooling performance under different mainstream 

flow conditions, 27 sets of experiments were conducted to study the effects of coolant-to-

mainstream blowing ratio (M) and density ratio (DR) on the film cooling effectiveness 

from high subsonic to transonic flow condition. As the mainstream accelerates from the 

vane’s LE toward TE, the local mainstream mass flux for cooling hole row at different 

locations of the vane suction side is subjected to vary and affects the M calculation. Since 

the individual passage supplies the coolant in a particular cooling hole group (LE, SS1, 

SS2), row-average M is used and calculated by 
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𝑚𝑐̇ = 𝑀 ×∑(𝜌𝑚𝑣𝑚)𝑟 × (𝐴𝑐)𝑟

𝑛

𝑖=1

(3) 

Where r represents the cooling hole group. For row-averaged M calculation in this study, 

the local mainstream mass fluxes for SS1 and SS2 rows were calculated based on the 

isentropic Mach number distribution on the vane surface from the surface static pressure 

measurement by PSP and the inlet total pressure from Pitot-Static probe. On the other 

hand, since the LE rows are not in the optically accessible portion, the surface Mach 

numbers in this region were obtained from the interpolation of in-house CFD simulation. 

 In addition, the vane experienced surface temperature change from aerodynamic 

heating due to the transonic freestream velocity. The recovery temperature on the vane 

surface varies locally according to surface Mach number distribution. It can be calculated 

by 

𝑇𝑟 = 𝑇𝑠 (1 + 𝑟
𝛾 − 1

2
𝑀𝑎2) (4) 

The maximum temperature difference between recovery and freestream is around 6.2 oC 

at exit Ma = 1.1. Since this flow-induced temperature distribution is not reproducible in 

the reference condition (without flow), this will result in a maximum 2.5% discrepancy in 

the measured PSP emission intensity from the temperature sensitivity suggested by PSP 

manufacturer. The corresponding uncertainty in the effectiveness will thus be included in 

the uncertainty analysis. Summary of the test matrix is shown in Table 2. 
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Table 2. Summary of the test matrix of the transonic vane suction surface film 

cooling study. 

Experiment # Exit Ma DR Row-averaged M (LE, SS1, SS2) 

1-3 0.7 1.0 0.7, 1.0, 1.6 

4-6 0.7 1.5 0.7, 1.0, 1.6 

7-9 0.7 2.0 0.7, 1.0, 1.6 

10-12 0.9 1.0 0.7, 1.0, 1.6 

13-15 0.9 1.5 0.7, 1.0, 1.6 

16-18 0.9 2.0 0.7, 1.0, 1.6 

19-21 1.1 1.0 0.7, 1.0, 1.6 

22-24 1.1 1.5 0.7, 1.0, 1.6 

25-27 1.1 2.0 0.7, 1.0, 1.6 

 

4.4 Experimental Uncertainty 

The uncertainty of the measurement in this experiment comes from the fluctuation 

of mainstream velocity (±1.5%), and the fluctuation of coolant flow rate (±3.8%). For the 

film cooling effectiveness calculation, the major uncertainty is the variation of PSP 

emission intensity value captured by the camera. Multiple reference and black images 

were first taken to quantify the intensity fluctuation. Also, the discrepancy in surface 

temperature distribution between the conditions with and without flow will result in 

additional 5.6% uncertainty in the measured pressure ratio (w.r.t. to atmospheric pressure). 

By the method proposed by Kline and McClintock [46] based on a 95% confidence level, 
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the uncertainty of film cooling effectiveness deduced from the calibration curve at η = 0.1, 

0.3, 0.5 and 0.7 are 13%, 4.2%, 2.4% and 1.8%, respectively in the present study. 

 

4.5 Results and Discussion 

4.5.1 Static Pressure Measurement on the Vane Suction Side 

 The static pressure distributions of AOI on the vane suction side were measured 

by PSP under the condition with mainstream only as shown in Figure 28(a). Red dashed 

line in each subfigure represents the same portion mentioned in Figure 24(b). Black dashed 

lines in each subfigure represent SS1 and SS2 hole locations. The static pressure 

distributions were converted to isentropic Mach number distribution by incorporating the 

total pressure value from the inlet Pitot-Static probe under different mainstream conditions 

as shown in Figure 28(b). To better highlight the local variation in both surface static 

pressure and Mach number, each figure has its own color bar range. The static pressure 

and isentropic Mach number at the mid-span of the current vane’s suction side are also 

extracted from Figure 28(a)(b) to demonstrate the loading as well as to label the throat 

location as shown in Figure 29. Although the true LE is not visible in the AOI, there is a 

clear trend that the static pressure is very high in the vicinity portion of the LE and then 

gradually decreased toward the TE. This demonstrates a typical flow behavior at which 

the mainstream accelerates along with the vane surface. The higher Ma after SS2 in the 

near hub portion is due to the flow acceleration from the passage contraction toward TE. 

From Figure 28(a) and Figure 29(a), the static pressure is nearly monotonically decreasing 

toward the throat and then gradually recovering as shown in exit Ma = 0.7 and 0.9 cases. 
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From Figure 29(b), it is clear that for these two subsonic conditions, the maximum Ma 

happened at the throat location. But when the exit Ma = 1.1, static pressure abruptly 

recovers, then further decreases after SS2 as can be seen in Figure 28(a) and Figure 29(a). 

From Figure 29(b), the corresponding abrupt Ma decreasing then increasing starting from 

X/L = 0.55 is also observed for exit Ma = 1.1. Since the flow is still in supersonic condition 

before and after this abrupt velocity change as shown in Figure 28(b) and Figure 29(b), it 

is therefore considered a direct evidence of oblique shock wave that impinges on the vane 

suction side. Under the transonic flow condition, this is identified as the TE oblique shock 

which is generated from the pressure side of the neighbor vane and impinges on the suction 

side of the test vane which alters the surface Mach number/static pressure distribution. 

The interaction between the shock wave and local film cooling will be further discussed. 
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Figure 28. Vane surface. (a) Static pressure distribution; (b) Isentropic Mach 

number distribution. 

(a) 

Exit Ma = 0.7 Ps/Pt Exit Ma = 0.9 Ps/Pt Exit Ma = 1.1 Ps/Pt 

      

Pt = 7.6 psig Pt = 13.9 psig Pt = 28.6 psig 

(b) 

Exit Ma = 0.7 Ma Exit Ma = 0.9 Ma Exit Ma = 1.1 Ma 
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Figure 29. Load distribution at mid-span of vane’s suction side. (a) Static pressure; 

(b) Isentropic Mach number. 

 

4.5.2 Adiabatic Film Cooling Effectiveness 

First, an interesting phenomenon that was brought to the authors’ attention is the 

unsteady behavior of the coolant carryover from LE observed during the experiments. The 

reason can be attributed to the pressure pulsating from the high turbulence. This high 

turbulence is originated from the enhanced equivalent Tu of flow stagnation as mainstream 

approaches the LE and the showerhead injection, as it is already confirmed in the literature 

that the showerhead cooling will locally produce high turbulence due to coolant-

mainstream interaction. Results in Figure 30(a) are the laterally averaged effectiveness 

reduced from 9 different time sub-periods in one representative case during measurement. 

The laterally averaged effectiveness is divided into three regions, R1, R2, and R3 for 

regional discussion. They represent regions before SS1, between SS1 and SS2, and after 

SS2, respectively for easy identification on vane’s suction side. It can be seen that the 

results are actually time-dependent. The deviation% shown in Figure 30(b), is defined as 

(a)  (b)  
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the standard deviation divided by the average of these sub-cases. It clearly shows the 

fluctuation of R1 region is highest as it can go up to 24%. This is considered the outcome 

of both the pressure pulsating and the inherent higher uncertainty from low effectiveness 

value. However, time-averaged Tu effect on the effectiveness is considered included in 

the measurements already. As the film effectiveness in LE region is relatively low and 

therefore with higher uncertainty, it will require further investigation to separate and 

quantify the pulsating behavior observed. 

Figure 30. Laterally averaged effectiveness for a selective case. (a) Time-dependent 

effectiveness; (b) Deviation percentage due to effectiveness fluctuation. 

 

The adiabatic film cooling effectiveness for selective cases are shown from Figure 

31 to Figure 34. Red dashed line in each subfigure represents the same portion mentioned 

in Figure 24(b). Firstly, 7 distinct coolant traces can be observed in the region near LE, 

they are the coolant carryover from the LE holes. The radial angle of the showerhead holes 

on LE explains the situation that the carryover near the vane tip is slightly stronger than 

near the hub. Secondly, the coolant traces from SS1 and SS2 pretty much cover the 

(a) (b) 
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majority of the AOI. Due to the wide spacing between the suction side hole and the in-line 

configuration between rows, the coolant traces from SS1 and SS2 are distinct as expected 

instead of laterally overlapping. The coolant carryover from LE remedies the situation by 

filling up the gap between holes in SS1. The surface static pressure along a given cooling 

hole row is found to be quite uniform along the vane span as shown in Figure 28(a). In 

this case, even the current plenum passage design might lead to more coolant stagnated 

near the vane tip, the difference between discharge coefficients for holes in a given row 

are considered to be small. All the contour plots showed in Figure 31 to Figure 34 prove 

this argument that most coolant traces from SS1 are quite uniform. The same argument is 

expected to be true for SS2. From the uniform traces along the vane span, it is verified that 

the individual M of each hole in a particular row is actually pretty close to the row-average 

M. However, the coolant trace from SS2 is visually affected by the perspective distortion 

from the steep data capturing/view angle. Under this distortion, the spacing between 

coolant trace is visually reduced. While the individual traces from the top 3 holes of SS2 

is still distinguishable in most of the cases, the traces of bottom 4 holes are squeezed 

together. Two potential concerns about data in this region are 1. If the effectiveness value 

captured under steep angle is reliable; 2. If the perspective distortion affects the 

measurement value.  As mentioned in the experimental method section and shown in 

Figure 11(c), it is proven that the camera captured PSP intensity is insensitive to the 

camera angle even if it’s very steep. The authors, therefore, have the confidence that the 

effectiveness of this region is reliable. Also, to the authors’ understanding, the perspective 

distortion deforms the area of interest with respect to the relative distance and the angle of 
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view, but it does not alter the measured value. For the laterally averaged effectiveness 

shown in Figure 35 - Figure 37, the authors have tried to use both the original contours 

(Figure 31-Figure 34) and the unwrapped ones to calculate the averaged effectiveness, and 

both results are in good agreement. Therefore, the averaged effectiveness presented in this 

study are directly calculated from the original contours. 

 

4.5.3 Effect of Blowing Ratio 

The level of coolant momentum is controlled by varying blowing ratio which 

directly affects the film cooling performance. Two extreme DR and exit Ma are selected 

to discuss the effects of M as shown in Figure 31 and Figure 32. The row-averaged 

blowing ratio is increasing from left to right (from 0.7 to 1.6). For low DR with low exit 

Ma cases shown in Figure 31(a) and Figure 32(a), there is a clear trend that while the 

coolant carryover from LE somewhat enhances when increasing blowing ratio, the 

effectiveness of SS1 and SS2 actually reduce when the blowing ratio increases. The 

coolant traces from SS1 and SS2 shrink both in streamwise and spanwise directions, 

indicating a jet separation with elevated blowing ratio. For the blowing ratio range in the 

present study, this trend may seem to be counterintuitive for the shaped hole. However, 

considering that SS1 is located in 32% surface length with convex curvature and high 

acceleration, the jet tends to lift-off even for the shaped hole as reported in the 

aforementioned literature [56-58]. With high DR at low exit Ma, the blowing ratio effect 

demonstrates a different behavior as shown in Figure 31(b) and Figure 32(b). The coolant 

carryover from LE is nearly monotonically enhanced with increasing blowing ratio. This 
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is considered beneficial to the suction side holes in high convex curvature region that jet 

lift-off will be lessened as reported by Najafabadi et al. [57,58]. For the SS1 and SS2, the 

jets tend to be adhered to the vane surface even at higher blowing ratio up to M = 1.0 then 

start to separate from the surface. This delayed jet separation is attributed to both the low 

momentum in heavy coolant as well as the strong contribution by LE carryover from 

showerhead cooling.  At high exit Ma, the effectiveness seems to be even higher when 

blowing ratio reaches 1.6 with high DR especially after SS2, this is considered due to the 

oblique shock wave effect. 

Laterally averaged effectiveness for all DR and two extreme exit Ma are shown in 

Figure 35(a)-(c). The trend in region R1 is quite ambiguous. But the mixing from low-

density coolant with mainstream could be the reason lead to seem insensitive blowing ratio 

effect as reported for DR = 1.0 since the coolant lift-off is happening even in the lowest 

blowing ratio tested. In contrast, the coolant momentum for DR = 2.0 is lower, as long as 

this momentum is sufficient to overcome the surface pressure to form converge, a typical 

blowing ratio characteristic is observed. The effectiveness in this region is the result of the 

combined effect with pressure pulsating including higher uncertainty mentioned earlier. 

For region R2 with low and moderate DR, increasing blowing ratio demonstrates a 

negative impact on effectiveness. With high DR, the optimal blowing ratio shifts to 1.0 

and the effectiveness shows an increasing then decreasing trend as blowing ratio increases, 

but the sensitivity of effectiveness on blowing ratio decreases. For region R3 with low DR 

at low exit Ma, the detrimental effect of increasing blowing ratio is observed. But at high 

exit Ma, the coverage from high momentum coolant is enhanced from the shock wave. On 
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the other hand, coolant coverage from low momentum coolant for high DR can further 

increase as blowing ratio is higher, but for the supersonic condition, the benefit from shock 

wave is not as much as the high momentum coolant (not penetrating mainstream). 

 

4.5.4 Effect of Density Ratio 

Coolant momentum is also varied when density ratio changes under the same M. 

For the same M, the effects of density ratio are also shown when comparing in Figure 

31(a) and (b), as well as Figure 32(a) and (b). It is obvious that the density ratio effect is 

getting prominent when M increases. At low exit Ma, increasing the density ratio leads to 

a comprehensive effectiveness enhancement within nearly all the AOI. Due to the reduced 

momentum in high density ratio, the coolant is less susceptible to lift-off or penetration 

into the mainstream. It will directly lower the tendency of mixing between the coolant and 

mainstream and result in better spreading and higher effectiveness. At high exit Ma with 

high density ratio, LE carryover seems to be weaken compared with low density ratio case 

except for M = 1.6. The reason might be due to the largely increased surface static pressure 

near LE from high inlet total pressure which decreases the discharge coefficients of LE. 

Under low and moderate M, the heavier coolant does not have enough momentum to 

overcome the huge stagnation pressure. For the portion with lower static pressure like SS1, 

the jets demonstrate strong density ratio effect, especially near the hole exit. This is 

considered solely the contribution from reduced jet momentum. The density ratio effect is 

still observed for SS2 near the hole exit. However, downstream region after SS2 shows a 

complicated behavior where the low density ratio case actually outperforms the high 
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density ratio case. Since this is observed only in high exit Ma, the phenomenon can be 

explained by the shock wave as beneficial for the coolant attachment when the coolant is 

lifted-off (high momentum), which will be further discussed in the exit Mach number 

effect. 

Laterally averaged effectiveness for all M and two extreme exit Ma are shown in 

Figure 36(a)-(c).  For region R1 with low and moderate M at both exit Ma, effectiveness 

shows an increasing then decreasing trend when density ratio increases.  Density ratio 1.5, 

therefore, is an optimal value for this high-pressure zone. For region R2 with low M, 

density ratio effect is the same as region R1. When M is elevated, positive density ratio 

effect on effectiveness is observed especially for high M at both exit Ma. For region R3 

with low M, the density ratio effect on effectiveness is the same as region R2. For 

moderate and high M, especially at high exit Ma, random trend is observed considering 

the composite effect of both density ratio and non-uniform pressure from the oblique 

shock wave. From Figure 36, it is clear that the effectiveness when DR = 1.5 is consistently 

better than DR = 1.0, on the other hand, DR = 2.0 only outperforms DR = 1.5 for high M. 

It is because when density ratio increases, coolant momentum as well as the jet separation 

tendency simply get suppressed. This characteristic, however, can be detrimental to the 

effectiveness if the coolant momentum is insufficient. In other words, density ratio effect 

really stands out when the heavier coolant is accompanied with higher M. 

  



 

73 

 

4.5.5 Effect of Exit Mach Number 

The effects of varying exit Ma on film cooling are shown in Figure 33 and Figure 

34. When exit Ma increases from 0.7 to 0.9, all the jets become wider with the increased 

centerline and near hole effectiveness. However, this trend seems to reach a plateau when 

the exit Ma further increases to 1.1. From the vane surface Ma distribution showed in 

Figure 28(b) and Figure 29(b), it is clear that increasing exit Ma leads to increasing surface 

Ma. From subsonic to transonic condition, the effectiveness enhancement could be mainly 

due to the boundary layer (BL) behavior. The BL thickness on the vane surface is 

considered to reduce at higher exit Ma. This thinner BL leads to higher near wall 

mainstream velocity, causing stronger bending of the jets toward the wall and increasing 

effectiveness. It is found that the BL behavior also relieves the coolant lift-off as shown 

in Figure 33(b). This is similar to the finding reported by Saumweber and Schulz [53]. 

Following the same logic, at exit Ma = 1.1, the higher near wall velocity should further 

enhance the effectiveness. Surprisingly, this is not always the case as the jet is additionally 

affected by both showerhead behavior and the influence of oblique shock on the 

downstream portion of SS2. By carefully comparing the contours in Figure 33 and Figure 

34, the centerline effectiveness for SS1 seems to be higher for exit Ma = 1.1 than Ma = 

0.9. This is believed to be due to the elevated near wall velocity mentioned earlier. But at 

exit Ma = 1.1, the weakened coolant carryover from LE case does not have the equivalent 

superposition effect on downstream effectiveness as happened for Ma = 0.9 cases, 

therefore results show similar effectiveness for the region near SS1. For SS2, the higher 

centerline effectiveness for Ma = 1.1 compared to Ma = 0.9 is still noticeable. Conversely, 
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at both exit Ma = 0.9 and 1.1 under low M, film coverage in the region after SS2 seems to 

be indistinguishable as shown in Figure 33(a) or even detrimental as shown in Figure 

34(a). According to the Ma distribution shown in Figure 28(a) and Figure 29(b), the reason 

can be attributed to the oblique shock. This shock wave is believed to have a mixed effect 

on the effectiveness confined in this supersonic flow region. The oblique shock impinges 

after SS2 altering the local pressure field, increasing the static pressure, and thickening 

the BL. In addition to the enhanced mixing, the local flow resistance for coolant increases 

under these circumstances. It is a counter effect to the effectiveness enhancement is the 

higher near wall velocity from thinner BL. On the other hand, from the understanding of 

gas dynamics, the oblique shock forces the flow after the shock to be parallel to the vane 

surface, which is considered beneficial to the film distribution. This effect is especially 

prominent when the coolant momentum is relatively high as the jet penetrates further into 

the mainstream. This can explain the reason that compared to the Ma = 0.9 cases, 

effectiveness enhancement after SS2 in Ma = 1.1 only existed at high M. 

The laterally averaged effectiveness comparison for exit Ma effect can be observed 

in Figure 37 for two extreme DR at low and high M. For region R1 with low DR, 

increasing Ma demonstrates an increasing then decreasing trend on the effectiveness 

regardless of M; at high DR, monotonically decreasing tendency in effectiveness with 

increasing Ma is presented. For the same M, higher stagnation pressure at higher exit Ma 

condition directly restrains the showerhead cooling performance which further reduces the 

effectiveness from LE coolant carryover. For region R2, increasing exit Ma reveals a 

positive effect by the thinner BL. For region R3 with low DR, exit Ma pretty much has 
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the same positive effect on effectiveness as region R2. Especially at high exit Ma, the 

oblique shock wave impingement helps the high momentum coolant to be 

parallel/attached to the surface. For low momentum coolant (high DR), increasing exit Ma 

from 0.7 to 0.9 does not have any significant effect. The thinner BL might have a marginal 

effect on effectiveness due to the fact that the jet is considered not evenly penetrating the 

BL. With high M at high exit Ma, the oblique shock nature benefits the effectiveness by 

the mechanism mentioned earlier. 

 

4.5.6 Engine-like Condition 

Due to the complicated effect from varying blowing ratio, density ratio, and exit 

Mach number on the effectiveness, it is actually not easy to conclude a monotonic trend 

that is applicable for all the cases in this experiment. Therefore, the discussion here is 

attempted to focus on M and exit Ma effect for the engine-like temperature condition (DR 

= 2.0).  

From Figure 31(b) and Figure 35(c) for Ma = 0.7, it is observed that for the R1 

region, the increasing M directly leads to higher effectiveness. This is due to the increasing 

coolant amount of carryover from LE. For the R2 region, the M effect is not prominent. 

Although the width of the coolant trace from SS1 shows an increasing then slightly 

decreasing trend due to the surface curvature, this indicates that the coolant is about to lift-

off. But from the stronger contribution of LE carryover when increasing M, the difference 

of laterally averaged effectiveness in different M is limited. For the R3 region, the trend 

of M effect is essentially the same as the R2 region. Coolant lift-off when M = 1.6 is pretty 
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clear for the R3 region in the laterally averaged effectiveness. This is due to lacking the 

contribution from LE film like the R2 region. 

From Figure 32(b) and Figure 35(c) for Ma = 1.1, the positive M effect for the R1 

region is the same as low Ma; nonetheless, since the surface static pressure near LE is very 

high, the coolant carryover is very weak until the highest M. For the R2 region, the trend 

is still the same as with low Ma. R3 region is the part which exclusively gets affected by 

the oblique shock wave and demonstrates a totally different behavior compared to low 

Ma. As mentioned in the previous discussion, the altered surface pressure from shock 

wave seems to make the effectiveness decrease until the highest M, where the shock wave 

helps the coolant to adhere to the surface. 
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Figure 31. Film cooling effectiveness distribution on AOI for exit Ma = 0.7. (a) DR = 

1.0; (b) DR = 2.0.  
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Figure 32. Film cooling effectiveness distribution on AOI for exit Ma = 1.1. (a) DR = 

1.0; (b) DR = 2.0.  
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Figure 33. Film cooling effectiveness distribution on AOI for DR = 1.0. (a) M = 0.7; 

(b) M = 1.6.  
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Figure 34. Film cooling effectiveness distribution on AOI for DR = 2.0. (a) M = 0.7; 

(b) M = 1.6. 
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Figure 35. Laterally (spanwise) averaged effectiveness for M effect comparison. 

 

(a)DR = 1.0 

 

(b) DR = 1.5 

 

(c) DR = 2.0 
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Figure 36. Laterally (spanwise) averaged effectiveness for DR effect comparison. 

 

(a) M = 0.7 

 

(b) M = 1.0 

 

(c) M = 1.6 
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Figure 37. Laterally (spanwise) averaged effectiveness for exit Ma effect comparison. 

 

(a) M = 0.7 

 

(b) M = 1.0 

 

(c) M = 1.6 
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5. TURBINE VANE ENDWALL FILM COOLING COMPARISON FROM 

DIFFERENT FILM-HOLE PATTERNS AND UPSTREAM LEAKAGE INJECTION 

ANGLES 

 

5.1 Literature Review 

 Literature about the possible parameters that will affect the film cooling 

performance on either turbine endwall or vane/blade surface is selectively documented in 

Section 3.1 and 4.1. The literature survey here will focus more on the endwall film cooling 

accompanied with the introduction of upstream leakage and the injection angle effect that 

plays as an important variation factor in this study. 

 

5.1.1 Endwall Film Cooling with Upstream Leakage 

In real gas turbine engines, there is a gap/interface between the upstream part of 

the vane endwall and the combustor for the sake of assembly at the same time in 

consideration of the different thermal expansion from parts during operation. To prevent 

the hot gas ingestion, this gap is typically filled with pressurized coolant. This pressurized 

coolant, which referred as upstream leakage, not only can protect the frontal part of the 

endwall, but also has the potential to extend its coverage further into the passage depends 

on the particular design and the coolant momentum. Several studies are available in open 

literature describing the upstream leakage behavior on endwall film cooling by coolant 

injection using slots or cooling hole rows. Studies from Blair [22] and Granser and 

Schulenberg [67] reported that with the slot injection, the separation lines across the 
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channel move toward downstream, which means the secondary flow has been reduced due 

to the fact that upstream slot injection reduces the boundary layer thickness. Burd and 

Simon [68] concluded that the inclined-slot combustor bleed cooling flow imposes nearly 

no aerodynamic penalty. Besides, this type of cooling is capable to reduce secondary flow 

effect as the streamwise momentum from bleed flow thins the boundary layer and weakens 

the cross-stream flow. A parallel study by Burd et al. [69] pointed out this kind of bleed 

cooling upstream of the airfoil leading edge plane is able to provide considerable thermal 

protection within the passage. The coolant can spread to the entire endwall surface 

providing that coolant mass flow is increased. Oke et al. [70] studied the upstream include 

slot injection using one or two slots while keeping MFR constant. They conclude that due 

to the higher momentum flux ratio, the single slot has better uniformity of coolant 

distribution across the leading edge. To control the pitchwise coolant distribution from the 

upstream slot, Oke and Simon [71] studied the slots variations that are partially blocked 

to re-distribute the coolant by utilizing secondary flow. In general, they found that when 

momentum flux ratios are low, coolant migrates toward the suction side due to secondary 

flow. For higher ratios, the pressure side endwall region is protected more effectively. 

 In addition to the slot, cooling hole rows are adopted in lab testing in lieu of 

controlling the upstream leakage of the vane/blade endwall. By providing a more uniform 

coolant coverage with the merging of neighbor coolant traces, studies using two rows of 

staggered cooling hole are available in open literature. Oke at al. [72] found that although 

there is higher mixing accompanied with discrete holes than with full-slot injection, nearly 

no suction side coolant migration is seen compared with the slot injection when the coolant 



 

86 

 

flow rate is increased due to elevated momentum. Zhang and Jaiswal [73] compared the 

endwall film cooling from upstream injection from double-row hole injection with a 

single-row discrete slot injection. Their results indicated that uniform effectiveness 

distribution can be achieved using discrete slot injection for higher MFR, while higher 

effectiveness near the trailing edge can be obtained using injection from double- row of 

staggered hole. Liu et al. [74] studied the upstream injection using either one or two rows 

of hole. They found that while double row injection is always better than a single row in 

terms of averaged effectiveness, to improve the coolant coverage near the pressure side is 

not possible by simply increasing the coolant amount if the blowing ratio is low. Knost 

and Thole [75] studied the endwall film cooling combining both coolant from a flush slot 

and film cooling from two distinct hole patterns. They found that with slot and film cooling 

flows present, there was a large region in the center of the inlet to the passage that was 

overcooled. Also, the momentum flux ratios were shown to have a significant impact on 

cooling performance. Zhang et al. [76] investigated the optimal hole diameter for upstream 

injection using two rows of staggered cooling hole and found the optimized 

diameter/blowing ratio based on their particular design. Further, a complete information 

about film cooling effectiveness variation under different coolant-to-mainstream 

conditions on various endwall film-hole patterns when upstream leakage is realized by 

two rows of staggered cooling hole documented by Chowdhury et al. [77-79]. In general, 

higher blowing ratio is the key for better effectiveness. This is because coolant with lower 

momentum could not survive in the endwall secondary flows, resulting in poor film 
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coverage; when the coolant momentum is sufficiently high, the jets could counteract with 

the secondary flow and result in acceptable film effectiveness. 

 

5.1.2 Effect of Injection Angle 

As large injection angle is rarely used on turbine vane/blade except on the leading 

edge portion, compared with other parameters, the studies focus on the different injection 

angle of the cooling hole is relatively scarce in the open literature. The majority of the 

studies is based on 30o or 35o injection angle, moreover, the few large injection angle 

studies were conducted on flat plate test facility. Foster and Lampard [80] studied 

effectiveness variation for three different injection angles (35o, 55o, 90o) of a row of 

cylindrical holes. They concluded that shallow injection angle gives the highest spanwise 

averaged effectiveness at small blowing rates and large injection angle performs better at 

high blowing rates. They also found that large injection angle produces more uniform 

cross-stream (spanwise) distribution of effectiveness. However, an investigation from 

Kohli and Bogard [81] indicated that for 35o and 55o injection angle, large angle holes 

offered similar lateral performance to their small angle counterparts when the momentum 

flux ratio is low. However, as the momentum flux ratio increases, the effectiveness of 

large angle holes decreases more rapidly than small angle holes. In a later study, Kohli 

and Bogard [82] showed that the cooling performance with shaped holes with large 

injection angle was even superior with the cylindrical holes with the typical 35o injection 

angle. Baldauf et al. [83] conducted film cooling measurements on a row of cylindrical 

holes with injection angles ranging from 30o, 60o, and 90o in a flat plate test section. They 



 

88 

 

concluded that the coolant is driven away from the wall because of higher surface normal 

momentum in larger injection angles. The jet trajectory is higher and coolant to hot gas 

interaction is intensified, both having an adverse influence on the effectiveness. Yuen and 

Martinez-Botas [84,85] also conducted film cooling characteristics studies with same 

injection angles (30o, 60o, and 90o) in a flat plate wind tunnel. Their results indicated that 

the effectiveness decrease from shallow to steep injection angle is not monotonic. The 

effectiveness variation actually depends on the streamwise location with respect to the 

hole exit (near-hole, intermediate, or far downstream). 

 

5.2 Experimental Setup and Method 

5.2.1 Four-Passage Linear Cascade 

The measurements were conducted in a four-passage linear cascade as shown in 

Figure 38. From Figure 39, the majority of the cascade is made by aluminum through 

machining. The area of interest, the center endwall is a removable part and made by SLA 

process using a material called Accura® XtremeTM White 200. In addition, the upstream 

leakage plate is also a removable part. A portion of the top cover is equipped with a 

transparent Plexiglas window to ensure the optical access to the AOI. The mainstream air 

of this cascade is supplied by a blowdown facility including a 325 psi high-pressure 

compressor, a dryer, and a storage reservoir. The mainstream is regulated by an electronic 

controller that controls the diaphragm actuator through digital positioner using the 

feedback signal from the pressure transducer in the wind tunnel. 
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The inlet and exit velocities were continuously monitored by recording total and 

static pressure values using Pitot-static probes, which were stationed at 0.5 Cax upstream 

of the vane’s LE and TE planes. The mainstream temperature was also monitored by a T-

type thermocouple. To simulate the turbulence flow approaching the turbine vane, a bar-

type turbulence grid with bar width 1.27 cm and 48% porosity, located at 2.72 Cax 

upstream of vane’s LE plane was used. The corresponding turbulence intensity (Tu) is 

19% with an integral length scale around 1.7 cm at 0.5 Cax upstream of vanes’ LE plane. 

Detailed information about the cascade geometry and turbulence measurement are listed 

and described in [42]. Two LED excitation lights and a monochrome CCD camera was 

used for measuring PSP emission intensity for film cooling effectiveness calculation under 

different test conditions. 

Figure 38. Flow loop for the test section and facility. 
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Figure 39. Schematic view of the vane cascade assembly. 

 

5.2.2 Film Cooling System 

The film cooling system consists of the upstream leakage and the endwall film 

cooling in the passage. The schematic of test section including upstream leakage holes and 

one of the representative endwall film cooling designs is shown in Figure 40. Two rows 

of staggered cylindrical holes covered middle and two half neighbor passages are used to 

simulate the leakage flow from the interface between the combustor and the first stage 

vane. There are total 75 holes (37 holes for 1st row, 38 holes for 2nd row) in these two rows 

with the diameter (d) of the cooling hole around 0.175 cm and the spacing between rows 

and neighbor holes are fixed to be 4d. The 2nd row is located on 0.38 Cax upstream of the 

vane’s LE plane. Three different injection angles of the upstream leakage hole (shown in 

Figure 41) can be achieved by changing the removable upstream plate. It is noted that due 

to the existing plenum design, the 2nd row of 50o injection angle upstream plate is located 

 

Aluminum vane cascade 

SLA endwall 

Plexiglas window 
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on 0.4 Cax upstream of the vane’s LE plane. For the film-hole pattern on the endwall, there 

are five removable endwall plates with different cooling hole design (shown in Figure 42). 

Each design has 18 cylindrical holes distributed on the endwall. The surface angle of all 

cylindrical holes is fixed to be 30o. There are two plenums, one supplied the upstream 

leakage holes (two rows), the other supplied the holes inside the endwall passage (18 

holes). The coolant source is either the dry air from the compressor loop or the compressed 

CO2 (DR = 1.52 ≈ 1.5) cylinder as foreign gas. The coolant volume flow rate from each 

plenum is controlled by individual rotameter, the reading is adjusted with the specific 

gravity correction when flowing foreign gas and applied density correction from the 

pressure tap reading at the rotameter exit. 
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Figure 40. Schematic of the endwall test section. 

Figure 41. Schematic of different injection angle for two-row upstream leakage. 

  

 

Removable upstream leakage plate 

Removable endwall plate 

Turbulence grid 

(a) 30o (b) 40o (c) 50o 

L/d = 7.26 L/d = 5.65 L/d = 4.73 

   

 



 

93 

 

Figure 42. Schematic of film-hole patterns on endwall. 
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5.2.3 Experimental Method – Pressure-Sensitive Paint 

The same experiment method and data acquisition setup are applied to this study.  

Different from the previous two studies, there were two LED lights simultaneously used 

in this study to achieve a better illumination on AOI. Detailed information can refer to 

either Section 3.2.3 or Section 4.2.3. 

 

5.3 Test Matrix 

 Fifteen sets of experiment consist of three upstream leakage angles and five 

endwall film-hole pattern designs were conducted to study the endwall film cooling 

effectiveness under fixed mainstream (inlet Mais = 0.1, exit Mais = 0.5) and coolant 

condition (MFR = 1% for the upstream leakage and endwall plenum, respectively). Figure 

43 is the exit Mach number history to demonstrate that steady flow is maintained for 

around 15 seconds. Since the endwall experienced surface temperature change from 

aerodynamic heating due to the high freestream velocity (compressible flow). The 

recovery temperature on the endwall varies locally according to surface Mach number 

distribution and it can be calculated using Eq. (4) mentioned in Section 4.3. The maximum 

temperature difference between the calculated recovery and freestream is around 1.1 oC at 

exit Ma = 0.5. Although the flow-induced temperature distribution is not reproducible in 

the reference condition (without flow), the corresponding deviation on intensity is found 

to be negligible according to the temperature sensitivity suggested by PSP manufacturer. 

Summary of the test matrix is shown in Table 3. 
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Figure 43. Exit Mach history for the current test section. 

 

Table 3. Summary of the test matrix for the vane endwall film cooling study with 

upstream leakage. 

Experiment no. Film-hole pattern Upstream leakage angle 

1-3 Axial row 30o, 40o, 50o 

4-6 Cross row 30o, 40o, 50o 

7-9 Cluster 30o, 40o, 50o 

10-12 Mid-chord row 30o, 40o, 50o 

13-15 Downstream row 30o, 40o, 50o 

 

5.4 Experimental Uncertainty 

The uncertainty of the measurement in this experiment comes from the fluctuation 

of mainstream velocity (±2%), the fluctuation of coolant flow rate (±2%), and the 

thermocouple reading (±0.5℃). For the film cooling effectiveness calculation, the major 

uncertainty is the variation of PSP emission intensity value captured by the camera. 

Multiple reference and black images were first taken to quantify the intensity fluctuation. 
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By the method proposed by Kline and McClintock [46] based on a 95% confidence level, 

the uncertainty of film cooling effectiveness deduced from the calibration curve at η = 0.1, 

0.3, 0.5 and 0.7 are 15%, 3.9%, 1.7% and 0.7%, respectively in the present study. 

 

5.5 Results and Discussion 

5.5.1 Upstream Injection Angle Effect  

The adiabatic film cooling effectiveness contours for three different injection 

angles on five different endwall film-hole patterns are shown in Figure 44, 45, 47, 49, and 

51. As a fixed coolant flow rate is used for all the tests in this study, the coolant momentum 

from the upstream leakage is considered identical regardless of the injection angle. In 

terms of flow physics, for a hole with an inclined injection angle, the coolant momentum 

can be decomposed into the streamwise and vertical components. When the incline angle 

increases, the streamwise component will be reduced in exchange for the increased 

vertical component. When using large injection angle, the streamwise coolant coverage is 

inherently weak due to the insufficient streamwise coolant momentum. Further, the strong 

vertical coolant momentum is prone to mix with the mainstream and being diffused, which 

essentially makes no contribution to film coverage on the surface. This is the reason that 

under a fixed coolant amount, a shallow injection angle, in general, has a better cooling 

performance. So, when we focus on the region in the proximity of the two-row upstream 

leakage, the film cooling effectiveness systematically decrease as we increase the injection 

angle from 30o to 50o, as shown in Figure 44, 45, 47, 49, and 51. This phenomenon is 
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evident whether referring to the contours or the laterally averaged effectiveness as shown 

in Figure 45, 46, 48, 50, and 52. 

When the focus is inside the endwall passage, the interaction between the upstream 

leakage, secondary flows (horseshoe vortices, passage vortex, and corner vortices), 

inherent pressure gradient, and the film-hole pattern on the passage becomes very 

important. It is already a consensus that the coolant from upstream leakage can reduce the 

strength of the secondary flow (e.g. horseshoe vortices), so the cooling hole performance 

located near the vane’s LE is expected to be enhanced. Second, if the coolant pretty much 

adheres to the surface, this film from the upstream would accumulate and reduce the local 

static pressure near the downstream cooling hole. This will slightly increase the pressure 

difference (driving force) of the cooling hole and lead to larger discharge coefficient. 

Based on the above two reasons, we can conclude that the if the cooling holes inside the 

passage are closer to the upstream, then their performance will be highly affected by the 

upstream leakage.  Further, it is found that when injection angle is 30o for this particular 

upstream design, the leakage film can nearly propagate to the full passage providing that 

there is no coolant injection from the film-hole pattern on the endwall passage [77], so it 

is expected that the cooling performance of holes on endwall will all be affected by either 

first or second factor or even both. 

For the axial row configuration, we can see the coolant traces from 1st row readily 

shrink when the injection angle increases to 40o. Considering the visible pressure leg of 

the horseshoe vortex in Figure 44(b), this performance reduction can be attributed to the 

resultant effect from both less-suppressed horseshoe vortex and less coolant accumulation 
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from leakage. The declined performance of the 2nd row also came from the less 

accumulation from the both the leakage and the 1st row, with the additional effect of the 

presence of pressure side corner vortices. There is low effectiveness gap between 2nd and 

3rd row, we can thus conclude that the cooling performance decrease for the 3rd row is 

mainly due to weak film accumulation from leakage. Without the contribution of upstream 

leakage, the coolant from 2nd row can barely make it to the 3rd row. It is also found that 

the nozzle wake portion becomes less-protected. From Figure 44(c), when the injection 

angle further increases to 50o, the aforementioned phenomena still hold as the performance 

of 1st row drops accordingly. However, the cooling performance decay from the 2nd and 

3rd rows are minor although the unprotected wake region seems to be slightly enlarged. 

As 2nd and 3rd rows are located in X/Cax = 0.65 and 1.0, the film accumulation from 40o 

injection angle upstream is already slim, local coolant coverages thus have only negligible 

change when a further reduction in upstream accumulation. Figure 45 is the spanwise 

averaged effectiveness for the axial row design. The 30o injection angle has the best 

laterally averaged effectiveness all over the AOI, for the 40o angle, the effectiveness 

uniformly decreases compared with 30o up to 2nd row, the effectiveness difference then 

gradually shrinks. For the 50o degree angle case, the averaged effectiveness from upstream 

leakage further reduces and merges with the 40o angle case at 1st row. After that, the 

averaged effectiveness from 40o and 50o cases are nearly indistinguishable. 

  



 

99 

 

 

Figure 44. Film cooling effectiveness of axial row configuration under different 

upstream leakage injection angle. 

 

Figure 45. Laterally (spanwise) averaged film cooling effectiveness of axial row 

configuration under different upstream leakage angle. 

 

(a) 30o (b) 40o (c) 50o 
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For the cross row configuration, the cooling performance of 1st row is highly 

reduced due to the similar reason as axial row including the stronger pressure leg of 

horseshoe vortex and the weaker upstream accumulation when upstream injection angle 

is 40o as shown in Figure 46(b). One thing that worthy to mention is that for this design, 

the spacing between cooling hole rows are smaller, which means the film from upstream 

rows will most likely to accumulate to the downstream row. For the 2nd row, the declined 

coolant can be explained by the weak film from both upstream leakage and the 1st row. 

For the 3rd row, the effectiveness behavior is mainly from the contribution of 2nd row. As 

the case in the axial row, the nozzle wake region becomes non-protected in this injection 

angle. Interestingly, when the injection angle is 50o as shown in Figure 46(c), in addition 

to the 1st row, which is closer to the upstream leakage, the effectiveness from 2nd and 3rd 

further drop simultaneously, which is a different behavior compared with the axial row. It 

is possible that under the same coolant flow rate from the upstream and inside the endwall 

passage, each endwall film-hole pattern has its unique flow/pressure distribution. This 

unique local flow field will influence how far the upstream leakage can affect the entire 

endwall passage, by contributing a better hole performance located closer to the leakage 

and therefore a stronger contribution to film accumulation toward downstream holes. 

Figure 47 is the spanwise averaged effectiveness for the cross row design. The 30o angle 

one has the best laterally averaged effectiveness as expected. But the effectiveness drops 

systematically when the injection angle increases, which is attributable to weaken coolant 

coverage from the feeble upstream leakage and the resulting deficient film accumulation 

from upstream row to downstream row.  
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Figure 46. Film cooling effectiveness of cross row configuration under different 

upstream leakage injection angle. 

Figure 47. Laterally (spanwise) averaged film cooling effectiveness of cross row 

configuration under different upstream leakage injection angle. 

 

(a) 30o (b) 40o (c) 50o 
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For the cluster configuration, in order to have an easy identification of hole groups, 

the terminology can refer from [79]. Due to the fact that the first three groups (G1 to G3) 

of cluster holes are located at the similar location (X/Cax = 0.3) as the 1st row of axial row 

configuration, the coolant behavior when increasing the injection angle to 40o is found to 

be similar to the reason described before. From Figure 48(b), we can see that the film from 

G4 and G5 also decrease, however, it is clear that the performance of these two clusters is 

still being weakly contributed by G1 and G2, respectively. Therefore, their performance 

is still influenced by the reduced accumulation from G1, G2, and the upstream leakage. 

The worse performance of G6 mainly comes from the low upstream leakage film as well 

as G5, as the accumulation contributed by G4 is limited. When the injection angle is 50o 

as shown in Figure 48(c), a significant film coverage drop is observed for G1 to G4, which 

are the clusters located within around X/Cax = 0.55. Nonetheless, the coolant coverage 

decrease seems to be mild for G5 and minor for G6 compared with the 40o angle case. It 

is a direct evidence that for this cluster design when the leakage injection angle is larger 

than 40o, the leakage film is not able to penetrate farther than X/Cax = 0.85. Figure 49 is 

the spanwise averaged effectiveness for the cluster design. Regardless of the best 

performance when upstream injection angle is 30o, the laterally averaged effectiveness of 

injection angle 40o demonstrates a nearly constant effectiveness drop up to X/Cax = 0.8, 

the difference is getting smaller further downstream. The same trend is observed when 

injection angle is 50o, which is apparent that after this particular location, the upstream 

leakage film is unable to affect the local cooling holes’ performance. 
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Figure 48. Film cooling effectiveness of cluster configuration under different 

upstream leakage injection angle. 

 

Figure 49. Laterally (spanwise) averaged film cooling effectiveness of cluster 

configuration under different upstream leakage injection angle. 

 

(a) 30o (b) 40o (c) 50o 
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For the mid-chord and downstream row configurations, different from the previous 

three designs, these two film-hole patterns are mainly to tackle the endwall region which 

has higher heat transfer coefficients due to the higher near-wall velocity (from close to the 

throat to vane’s TE). As the cooling hole rows in these designs are both located at least 

after X/Cax = 0.8, the cooling hole performance for both designs is considered to be less 

affected by the injection angle variation of the upstream leakage in this study. For the mid-

chord design as shown in Figure 50, since there is no cooling hole within the majority of 

the endwall passage, most of the endwall passage coolant is directly from the upstream 

leakage. A monotonical effectiveness drop is observed when increasing the upstream 

injection angle. For the two rows of cooling hole, it is found that the cooling hole 

performance has no visible difference when varying the upstream injection angle. The 

only observable distinction could be the nozzle wake region very near the suction side. 

For the cooling hole arrangement like this mid-chord design, we can thus conclude that 

only if the leakage film could be further intensified, otherwise, the performance of endwall 

cooling hole is independent of the upstream leakage angle. Figure 51 is the spanwise 

averaged effectiveness of the mid-chord row design. The trend is basically consistent with 

our observation in contour plots. The effectiveness is decreasing when the injection angle 

of upstream leakage increases from 30o to 50o. For the endwall cooling hole portion, the 

difference in averaged effectiveness under different upstream injection angle is negligible. 
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Figure 50. Film cooling effectiveness of mid-chord row configuration under different 

upstream leakage injection angle. 

Figure 51. Laterally (spanwise) averaged film cooling effectiveness of mid-chord row 

configuration under different upstream leakage injection angle. 

 

(a) 30o (b) 40o (c) 50o 
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For the downstream row design, as the cooling hole rows are located further 

downstream (after X/Cax = 1.0), the scenario should be similar to the mid-chord row. 

Which represents the monotonically decreasing effectiveness for the majority of the 

endwall passage accompanied by the nearly invariant performance of the two cooling hole 

rows. This is the case showed in Figure 52 as expected. Since the coolant momentum from 

upstream leakage is considered weak when propagated so far, the coolant traces from two 

downstream rows under different upstream injection angle is found to be pretty close. The 

tiny visible dissimilarity in effectiveness value falls into the inherent uncertainty between 

run-to-run. Figure 53 is the spanwise averaged effectiveness of the downstream row 

design. It is found that although the averaged effectiveness when upstream injection angle 

is 30o constantly performs superior till the hole rows, the accumulation does not add up 

afterward. For the steeper upstream angles, the averaged effectiveness difference between 

40o and 50o injection angle is difficult to detect as early as X/Cax = 0.5. The reason could 

be that when injection angle is as steep as at least 40o, the film from leakage is pretty lame 

due to low streamwise momentum, once it penetrates inside the passage, it decays pretty 

fast when it exposes under the strong effect of passage vortex and corner vortices from 

both pressure side and suction side. 
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Figure 52. Film cooling effectiveness of downstream row configuration under 

different upstream leakage injection angle. 

 

Figure 53. Laterally (spanwise) averaged film cooling effectiveness of downstream 

row configuration under different upstream leakage injection angle. 

 

(a) 30o (b) 40o (c) 50o 
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5.5.2 Design Comparison 

 The spanwise average effectiveness data for all the endwall film-hole patterns in 

different upstream injection angles are consolidated in Figure 54-55. For a given upstream 

injection angle, it is obvious that although the coolant amount from both leakage and 

endwall film-hole are kept the same, the different effectiveness distribution of each 

particular design is due to the distinctive hole arrangement on the endwall. For a more 

intuitive design comparison among all 15 cases in this study, the area-averaged 

effectiveness is also presented in Figure 57. When upstream injection angle is 30o, it is 

found that from Figure 44(a) and Figure 46(a) that the axial row and cross row 

configuration are comparable but cross row provides a more uniform coolant coverage in 

the AOI. The cluster configuration also has uniform film coverage but relatively inferior 

protection after TE as shown in Figure 48(a). From Figure 50(a) and Figure 52(a), the 

effectiveness of mid-chord and downstream configurations are concentrated after X/Cax = 

0.8, and these intense local film coverages cannot remedy the deficit of the frontal part of 

the endwall passage. One point that is worthy of mentioning is that the laterally averaged 

effectiveness from the downstream configuration does not drop to between 0.1 and 0.2 as 

other four configurations do. It is due to the fact that the coolant traces do extend out of 

the AOI for downstream row configuration as shown in Figure 52. When the upstream 

injection angle is 40o, it is found that the axial row, cross row and cluster configuration 

are all capable to sustain effectiveness value at least 0.2 within the most of the passage. 

Although the cross row configuration and cluster still achieve a uniform averaged 

effectiveness, the downstream protection of cross row drops to the similar level as the 
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cluster. Since the laterally averaged effectiveness from the configurations with cooling 

hole closer to the upstream leakage is highly reduced, the configurations including mid-

chord and downstream row start to gain the advantage in terms of area-averaged 

effectiveness as shown in Fig. 16. Lastly, when the upstream injection angle is 50o, while 

the axial row remains the benefit due to the strong contribution from the 2nd and 3rd row, 

the performance of cross row and cluster further decreases. Therefore, regarding the area-

averaged effectiveness, the mid-chord and the downstream row configurations outperform 

the cross row and cluster configurations even under the condition that part of the film 

coverage from the downstream row is not taken into consideration (out of AOI). It is 

always important to bear in mind that as the cooling holes on the turbine vane endwall 

experience complicated flow field, it is better to consider both the local coolant 

distribution from contour plots and the averaged effectiveness when evaluating a 

particular cooling design. Therefore, the axial row configuration has the best overall 

performance concerning both local and averaged effectiveness in all the upstream 

injection angles in this study. However, from the results and the above descriptions, we 

can further reach an argument that for endwall with the film holes arranged before the 

throat, the cooling performances of those holes are heavily based on whether the upstream 

leakage (if there is) can sufficiently suppress the vortices (horseshoe, corner) at the same 

time contribute to downstream through film accumulation. 
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Figure 54. Laterally (spanwise) averaged film cooling effectiveness when upstream 

leakage injection angle is 30o. 

 

Figure 55. Laterally (spanwise) averaged film cooling effectiveness when upstream 

leakage injection angle is 40o. 
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Figure 56. Laterally (spanwise) averaged film cooling effectiveness when upstream 

leakage injection angle is 50o. 

Figure 57. Area-averaged film cooling effectiveness for all the design combinations. 
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6. CONCLUSIONS 

 

6.1 Film Cooling Effectiveness Comparison on Full-Scale Turbine Vane Endwalls 

Film cooling effectiveness measurements on the inner endwall were conducted on 

a three-vane annular sector cascade with full-scale vane geometry. The influences of 

different MFR (MFR = 2%, 3%, 4%), DR (DR = 1.0, 1.5) on the film cooling effectiveness 

were performed on two different endwall cooling designs, respectively. A one-to-one 

cooling performance comparison of these two designs was also carried out. The key 

highlights of the presented study are as below: 

a) The endwall film-hole arrangement, as well as the cooling hole arrangement inside 

the slashface, affect the corresponding local flow field which further influences the 

film cooling effectiveness distribution. 

b) The higher the MFR, the longer the coolant trace, which implies the better film 

cooling distribution especially in the streamwise direction. 

c) The larger the DR, the higher the film cooling effectiveness is obtained. The denser 

coolant, the better lateral spreading can be achieved. The lower momentum from 

denser coolant also leads to easy coolant deflection by the mainstream flow. 

d) One-to-one cooling performance comparison is realized on the same full-scale 

endwall geometry with two different film-hole configurations. The results indicate 

a more uniform coolant coverage as design1 can be considered a better endwall 

cooling hole configuration on this particular vane/endwall geometry. However, 
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based on the current results, design2 can be further improved as suggested in the 

study. 

 

6.2 Transonic Turbine Vane Suction Side Film Cooling with Showerhead Effect 

Static pressure and film cooling effectiveness measurements on the vane suction 

side were conducted on a five-vane annular sector cascade. The influences of different M 

(M = 0.7, 1.0, 1.6), DR (DR = 1.0, 1.5, 2.0), and exit Ma (Ma = 0.7, 0.9, 1.1) on the film 

cooling effectiveness were performed. The key highlights of the presented study are as 

below: 

a) A clear view capturing the film cooling distribution on the suction side of the vane 

in an annular sector cascade under the transonic condition is achieved by using 

PSP technique. 

b) Due to the hole located in high curvature and acceleration zone, coolant jets tend 

to lift-off. Blowing ratio shows a negative effect on effectiveness for low density 

coolant. By adopting heavier density, the reduced coolant momentum results in 

higher optimal blowing ratio. 

c) Heavy density coolant delays the cooling jet separation from vane surface. Density 

ratio effect is more prominent for higher blowing ratio as the jets need to have at 

least sufficient momentum. 

d) Exit Mach number shows a positive effect by having thinner boundary layer and 

facilitates the jet to bend toward the surface. At supersonic flow, the effectiveness 

is enhanced by providing coolant with higher momentum such that the jets 
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penetrating to the mainstream are forced to stay parallel to surface due to the 

oblique shock wave. 

e) For the engine-like temperature condition (DR = 2.0), increasing blowing ratio 

increases the LE coolant carryover. However, increasing blowing ratio leads to 

increasing then decreasing effectiveness on the majority of the vane’s suction side. 

The supersonic flow with the shock wave is found to increase the film coverage 

only at the highest blowing ratio. 

 

6.3 Turbine Vane Endwall Film Cooling Comparison from Different Film-Hole 

Patterns and Upstream Leakage Injection Angles 

Film cooling effectiveness measurements on five different film-hole design 

patterns with three different upstream injection angles were performed on a four-passage 

linear cascade under a fixed coolant condition (MFR = 1%, DR = 1.5). The film cooling 

performance under different design combination is compared and discussed with regard 

to detailed film cooling effectiveness contours, spanwise averaged, as well as the area-

averaged effectiveness. 

 

The key highlights of the presented study are as below: 

a) Increasing the upstream leakage injection angle has a negative effect on the 

downstream film cooling effectiveness due to the weaken streamwise momentum 

in exchange for the nearly useless vertical momentum. 
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b) Each endwall film-hole pattern has its unique flow/pressure distribution. This 

unique local flow distribution will influence how far the upstream leakage can 

penetrate/affect the entire endwall passage. 

c) For film holes arranged before the throat of the endwall, the cooling performances 

of those holes are heavily based on whether the upstream leakage can sufficiently 

suppress the secondary flows (horseshoe and corner vortices) at the same time 

contribute to downstream through film accumulation. 

d) Among the upstream injection angle range in this study, the axial row 

configuration has the best overall performance concerning both local and averaged 

effectiveness. Besides, the mid-chord and downstream row configurations 

outperform cross row and cluster in terms of area-averaged effectiveness when the 

upstream injection angle is 50o. 
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