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ABSTRACT 

 

With the recent advances in micro-electronics and exponential rise in demand for 

electronic devices and their miniaturization, it is of utmost importance that self-diffusion 

phenomena in silicon be well understood. However, self-diffusion of silicon clusters with 

fraction vacancies is still not well understood as is evident from the fact that the reported 

values of activation enthalpy of self-diffusion via vacancies range from 3.6 to 4.9 eV, for 

various experiments carried out in the same temperature range of 650 0C to 1388 0C which 

indicates how imprecise the existing measured values are for the same temperature range. 

This work overcomes the experimental limitation using molecular dynamics to calculate 

the self-diffusion coefficients both at room temperature and temperature above the melting 

point.  Silicon clusters of the same spherical geometry and size with varying fraction 

vacancy have been studied using molecular dynamics and Tersoff potential to estimate 

phase changes and diffusion coefficients. 

 

At 300 K, the self-diffusion coefficient values vary non-monotonically, i.e. at 7.5 % 

fraction vacancy the value of self-diffusion coefficient falls to half of its value at 0 % 

fraction vacancy while it increases by two orders of magnitude at 20 % fraction vacancy. 

At 2000 K, however, there is only a marginal monotonic increase with gradually varying 

fraction vacancy. It is found that as fraction vacancy increases, the diffusion coefficient 

value of lithium in silicon shows non-monotonic behavior for the same number of Li atoms 

in silicon nanosphere which is an important result in a sense that the behavior of the 

variation of dopant diffusion with respect to vacancies is directly found in this work. This 

work thus furthers the understanding on vacancy mediated self-diffusion which can lead 

to better diffusion control essential to device miniaturization. It also provides information 

on the dependence of the temperature, energy, pressure and phase changes of the silicon 

clusters with varying fraction vacancy which can be critical as a guideline for material 

design and selection for thermoelectric, optoelectronic devices and thermal transducers.   
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It was also found that charge equilibration, applied to small nanocluster system, gave more 

precise value of the diffusion coefficient.  
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CHAPTER I 

INTRODUCTION 

1.1 Brief overview of molecular dynamics 

With faster and more sophisticated computational tools available in the modern world, 

computer based simulations have become a powerful tool to study complex systems. 

Molecular dynamics (MD) is one such tool.1 In molecular dynamics, motions of individual 

atoms are tracked and followed with time by numerically integrating Newton’s equation 

of motion. The dynamics of the system is defined by classical mechanics where atoms 

correspond to soft balls and bonds are treated as elastic sticks. On the other hand, the 

quantum or first principles molecular dynamics considers the quantum nature of chemical 

bond.2 Even though quantum MD is better in accuracy than classical MD, it requires way 

too much computational resources on comparison.3  

 Force is classical MD is given as,  

2

2 )(

dt

td
m i

ii

r
F                                                           (1.1) 

For i-th particle having mass mi, the position vector is given as ))(),(),(()( tztytxt iiii r  

where the force at time t is Fi. It is needed to specify the initial positions and corresponding 

velocities of particles along with instantaneous forces on the particles before solving the 

above differential equations. Numerical methods are employed to solve the discretized 

form of the equations to find new positions )( tti r  , in terms of known positions at t, 

after a time Δt from the initial time t. In molecular dynamics, Verlet algorithm is very 

common due to its simplicity. It is also relatively more stable. It employs the formula 

derived from Taylor series expansion of positions )(tir   and can be written as 

2)(
)()(2)( t

m

t
ttttt

i

i

iii 
F

rrr                                       (1.2) 

Accurate up to forth power in t , the above expression is used to calculate the velocities 

using leap-frog or Verlet technique and velocities are given as  
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𝑣𝑖(𝑡) = [𝑟𝑖(𝑡 + 𝛿𝑡) − 𝑟𝑖(𝑡 − 𝛿𝑡)]/2𝛿𝑡                                       (1.3) 

Depending upon the step size used in integration, the trajectories evolve. It is convenient 

to use reasonably larger time steps for very long trajectories. Forces on atoms are 

computed at each step of the integration to find the new position and velocity each time.  

The typical form of potential energy, U can be given as  

𝑈 =  ∑ 𝑈(𝑟𝑖) + ∑ ∑ 𝑈(𝑟𝑖𝑟𝑗
𝑁
𝑗=1
𝑗≠𝑖

)𝑁
𝑖=1

𝑁
𝑖=1 +  ∑ ∑ ∑ 𝑈(𝑟𝑖, 𝑟𝑗 , 𝑟𝑘

𝑁
𝑘=1

𝑘≠𝑖,𝑗

) + ⋯        𝑁
𝑗=1
𝑗≠𝑖

𝑁
𝑖=1 (1.4) 

For accurate modeling of a physical system, the suitability of the potential or the 

potential energy function used is of very high importance.  

One such example of many body potential is the MEAM potential4-5 which is given as  

𝐸 =  ∑ [𝐹𝑖(𝜌𝑖) +  
1

2𝑖 ∑ 𝜑𝑖𝑗𝐽(≠𝑖) (𝑅𝑖𝑗)]                                                    (1.5)  

Where, Fi(ρi) is the embedding function, ρi is the background electron density at the site 

where atom i occupies, and ψij (Rij) is the pair interaction between atoms i and j at a 

distance Rij. The background electron density ρ is composed of several partial electron 

density terms. Each partial electron density is a function of atomic configuration and 

atomic electron density. 

 

 

Table 1.1 Force field parameters 

MEAM 

Library file 

inputs 

MEAM 

Library 

file values 

(Si) 

MEAM 

Library 

file values 

(Li) 

MEAM 

Parameter file 

inputs 

MEAM 

Parameter 

file values 

Tersoff 

parameters 

Tersoff 

parameter 

values 

elt Si Li lattce(1,2) 112 R 3.0 Å 

lat dia bcc Ec(1,2) 56.4992 D 0.2 Å 

z 4 8 alpha(1,2) 4.1 m 3 

ielement 14 3 re(1,2) 2.75 γ 1 

atwt 28.086 6.94 rho0(2) 3 λ1 3.239 

alpha 4.87 2.97 rc 10 λ2 1.326 

b0 4.8 1.43 delr 0.1 λ3 1.326 

b1 4.8 1 Cmax(1,1,2) 2.81 c 4.838 
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Table 1.1 Continued 

MEAM 

Library file 

inputs 

MEAM 

Library 

file values 

(Si) 

MEAM 

Library 

file values 

(Li) 

MEAM 

Parameter file 

inputs 

MEAM 

Parameter 

file values 

Tersoff 

parameters 

Tersoff 

parameter 

values 

b2 4.8 1.002 Cmin(1,1,2) 0.55 d 2.042 

b3 4.8 1 Cmax(1,2,2) 2.4 cos θ  0 

alat 5.431 3.51 Cmin(1,2,2) 0.45 θ 𝜋/2 

esub 4.63 1.65 Cmax(1,2,1) 2.4 n 22.956 

asub 1 0.87 Cmin(1,2,1) 0.45 β 0.33675 

t0 1 1 Cmax(2,2,1) 2.2 B 95.373 

t1 3.3 0.264 Cmin(2,2,1) 0.35 A 3264.7 

t2 5.105 0.444 nn2(1,2) 1     

t3 -0.8 -0.2         

rozero 1 1         

ibar 1 0         

 

 

Tersoff potential6-9 used in this work is a very useful multibody potential and is composed 

of a repulsive part U repulsive and an attractive part U attractive. For any three atoms i, j, k the 

potential is given as  

U =  Urepulsive(𝑟𝑖𝑗) +  𝑏𝑖𝑗Uattractive(𝑟𝑖𝑗)                          (1.6) 

Where, rij is the distance between atoms i and j and bij is the environmental dependent 

parameter which weakens the attraction when the coordination number increases. In 

another form, the Tersoff potential is written as  

𝑈𝑖𝑗 = 𝑓𝑐(𝑟𝑖𝑗)[𝑎𝑖𝑗𝑓𝑅(𝑟𝑖𝑗) +  𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)]                             (1.7) 

Where, the repulsive part of the potential is given as  

𝑓𝑟(𝑟) = 𝐴𝑒𝑥𝑝(−𝜆1𝑟)                                                (1.8) 

and the attractive part is given as 

                                                     𝑓𝐴(𝑟) = −𝐵𝑒𝑥𝑝(−𝜆2𝑟)                                             (1.9) 

The potential cutoff function is  
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𝑓𝑐(𝑟) =  {

1, 𝑟 ≤ 𝑅 − 𝐷
1

2
−  

1

2
 sin

𝜋

2

(𝑟−𝑅)

𝐷
, 𝑅 − 𝐷 < 𝑟 < 𝑅 + 𝐷

0, 𝑟 ≥ 𝑅 + 𝐷

                           (1.10) 

𝑏𝑖𝑗 = (1 + 𝛽𝑛𝜁𝑖𝑗
𝑛 )

−1

2𝑛                                                         (1.11) 

 

                                   𝜁𝑖𝑗 =  ∑ 𝑓𝑐(𝑟𝑖𝑘)𝑔(𝜃𝑗𝑖𝑘)𝑘≠𝑖,𝑗 exp [𝜆3
3(𝑟𝑖𝑗 − 𝑟𝑖𝑘)3]                    (1.12) 

𝑔(𝜃) = 1 +  
𝑐2

𝑑2 −  
𝑐2

𝑑2+(ℎ−cos 𝜃)2                                             (1.13) 

𝑎𝑖𝑗 = (1 + 𝛼𝑛𝜂𝑖𝑗
𝑛 )

−1

2𝑛                                               (1.14) 

𝜂𝑖𝑗 =  ∑ 𝑓𝑐(𝑟𝑖𝑘)𝑘≠𝑖,𝑗 exp[𝜆3
3(𝑟𝑖𝑗 − 𝑟𝑖𝑘)

3
]                                  (1.15) 

To calculate temperature, equipartition theorem of energy is used where we have,  

⟨Ek⟩ =
1

2
⟨∑

|pi|
2

mi
⁄N

i=1 ⟩ =
3

2
NkBT                                                      (1.16)    

An average energy of 
kBT

2⁄  per degree of freedom, the temperature function may be 

given as  

𝑇 =
2

3𝑁𝑘𝐵
⟨𝐸𝑘⟩                                                            (1.17) 

In cartesian co-ordinates, the general form of equipartition theorem is   

⟨∑ 𝒓𝑖 ∙ 𝑭𝑖
𝑇𝑜𝑡𝑁

𝑖=1 ⟩ = −3𝑁𝑘𝐵𝑇                                                          (1.18)  

where,                                         𝑭𝑖
𝑇𝑜𝑡 = 𝑭𝑖

𝐼𝑛𝑡 + 𝑭𝑖
𝐸𝑥𝑡 

The external force can be represented as,  

⟨∑ 𝒓𝑖 ∙ 𝑭𝑖
𝐸𝑥𝑡𝑁

𝑖=1 ⟩ = −3𝑃𝑉                                                          (1.19) 

⟨∑ 𝒓𝒊 ∙ 𝑭𝒊
𝐼𝑛𝑡𝑁

𝑖=1 ⟩ = 3⟨𝑤⟩                                                        (1.20) 

Using,                                    𝑃𝑉 = 𝑁𝑘𝐵𝑇 + ⟨𝑤⟩                                                      (1.21) 

we have, pressure          
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                                 𝑃 =
𝑁𝑘𝐵𝑇

𝑉
+

1

3𝑉
⟨∑ 𝒓𝒊 ∙ 𝑭𝒊

𝐼𝑛𝑡𝑁
𝑖=1 ⟩                                                  (1.22) 

 

1.2 LAMMPS 

LAMMPS is the abbreviated form of Large-scale Atomic/Massively Parallel Simulator, a 

classical molecular dynamics program that models an ensemble of particles in a solid, 

liquid or gaseous state.10-13 It uses a variety of force fields and boundary conditions to 

model atomic, polymeric, biological, metallic, granular and coarse-grained systems. 

Designed to run on parallel computers, it can also run on a single-processor or desktop. 

LAMMPS was developed by the US Department of Energy Lab and three companies and 

is distributed by Sandia National Lab. Molecular dynamics in this work is carried out using 

LAMMPS.  

 

1.3 VMD 

This work makes use of visual molecular dynamics (VMD) software which is a molecular 

visualization software for displaying and analyzing many molecular systems.14 Dump files 

from LAMMPS output have been used to analyze the resulting trajectories of systems and 

molecules in this work. 
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CHAPTER II 

SILICON NANOCLUSTERS 

2.1 Introduction 

There have been numerous studies of semiconductor clusters not only because of the 

interest in their chemical structure but also because of their immense importance in micro 

and nanoelectronics.15,16  There have been different approaches to study clusters in the 

nano range.17 Silicon clusters with vacancies have been studied because of potential 

applications ranging from optoelectronics to high energy MEMS devices.18 Porous silicon 

structures are potential candidates for anode materials of lithium-ion based batteries. The 

silicon anode in lithium ion batteries is not a continuous cylindrical structure but exist in 

spherical lumps. Also, the silicon structure has inherent vacancies which can vary to a 

certain degree. If silicon based anode systems are to be successfully implemented, then it 

is extremely important that both the self-diffusion and dopant (Li in this case) diffusion 

coefficients be known with varying fraction vacancy in the silicon cluster.19,20 Moreover, 

with the recent advances in micro-electronics and exponential rise in demand for 

electronic devices and their miniaturization, it is of utmost importance that self-diffusion 

phenomena in silicon be well-understood to accurately model dopant diffusion.21-23 

However, self-diffusion of silicon clusters with vacancies is still not well-understood as is 

evident from the fact that the reported values of activation enthalpy of self-diffusion via 

vacancies range from 3.6 to 4.9 eV,24 for various experiments carried out in the same 

temperature range of 650 0C to 1388 0C which indicates how imprecise the existing 

measured values are for the same temperature range. Also, the experimental limitation 

imposed by the standard techniques like secondary ion mass spectroscopy (SIMS), where 

the diffusion length even after reasonable annealing duration of close to 180 days is very 

small for the depth resolution of SIMS, establishes the further need to calculate self-

diffusion coefficient below 850 0C. Also, there is lack of information on vacancy 

contribution to self-diffusion in silicon.  
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In recent studies, Fang et al.25 investigated the effect of porosity on thermal conductivity 

of silicon crystals using non-equilibrium molecular dynamics simulations and found that 

for nanoporous silica at room temperature, the thermal conductivity was independent of 

the pore size and depended only on porosity. Huang and Lu26 explored the relationships 

between vacancy defects and electrical and thermodynamic properties of silicon and found 

that both the band gap and heat capacity decreased in silicon crystals with increasing 

vacancy cluster size. Ural et al.27 carried out the self-diffusion measurements in the range 

800-900 0C and compared the similarities of native point defects and found that in the 

temperature range 800-1100 0C, the interstitial mediated self-diffusion accounted for a 

fraction of 0.5 to 0.62. It is not well understood as to how the diffusion coefficients vary 

at temperatures close to room temperature and above the melting point in presence of such 

fraction vacancies. Presence of vacancies can render the bulk melting point of the silicon 

nanocluster to change considerably by ~ 100 K and it is intriguing to note the phase 

changes temperatures in such cases.  

Many experiments done have found the diffusion coefficient to be the following Arrhenius 

behavior,                                              

D(T) = D0 exp (-A/KB T)                                                     (2.1)  

where A is the activation enthalpy, KB is the Boltzmann’s constant, D0 is the pre-factor 

and is dependent on temperature (T) range of the experiment. Another way of calculating 

the diffusion coefficient is by using the Einstein’s formula according to which  

𝐷 =  
1

6𝑁𝑡
∑ < |𝑟𝑖(𝑡) − 𝑟𝑖(0)|2𝑁

1                                                   (2.2)  

Where N is the number of atoms in the system and ri(t) is the position of i-th atom at time 

t. ri(t) are generated using molecular dynamics simulations.  

 

2.2 Problem statement and proposed work 

One of the aims is to obtain the self-diffusion coefficient, D of silicon with varying fraction 

vacancy at room temperature and at a temperature above the melting point. On 

comparison, the obtained results of self-diffusion coefficients would provide better 

understanding of the dependence of self-diffusion on the varying fraction vacancy at 
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different temperatures. This result can be utilized to study the diffusion of dopant atoms 

like lithium in silicon. 

  

The other goal is to obtain the effects of these fraction vacancies on the heating profile, 

energy gain rate, pressure and phase changes of the silicon nanospheres. These results 

would provide useful information about heat capacity, thermal conductivity and phase 

transition which are crucial in selecting a silicon cluster with certain fraction vacancy for 

applications in thermoelectrics, thermal transducers and optoelectronic devices.  

 

2.3 Methodology 

All of the molecular dynamics (MD) simulations were performed using the Large-Scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) program. A silicon sphere 

of radius 5 nm is created. This contains a total of 26,133 atoms.  For this, first of all a 

silicon box is formed of appropriate size in LAMMPS. Then the center of this box is 

located and all atoms which falls within a range of radius 5 nm from this center are selected 

to create a data file. When a xyz file is created from this data file, a sphere of radius 5 nm 

can be seen. This data file containing the coordinates of all the atoms in the nanospheres 

formed the basic structure for deriving the nanospheres with corresponding vacancies of 

2.5%, 5%, 7.5%, 10% and 20%. To create a sphere of vacancy 2.5% from the coordinates 

of the atoms of the nanospheres with 0% vacancy, a total of 654 atoms (which is 2.5% of 

the total atoms 26,133) are randomly deleted. The new coordinates thus retained are used 

to create a new data file of a nanosphere with 2.5% vacancy. The same procedure is used 

to obtain silicon nanospheres of vacancy fraction different to the 0% vacancy fraction to 

compare and evaluate the effect of such vacancy fractions.  
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(a)  (b) (c) (d) (e) (f) 

 

Figure 2.1. Initial silicon spheres of radius 5 nm with fraction vacancies. Images of  a) 0%, 

26,133 atoms, b) 2.5%, c) 5%, d) 7.5%, e) 10% and f) 20% vacancy.  Si-Si bond length = 

1.357 Å 

 

 

Figure 2.1 shows the snapshots of nanospheres of radius 5 nm with varying vacancy 

fractions ranging from 0% to 20%. Since the atoms have been randomly deleted, there is 

no apparent change in appearance of the overall geometry of the sphere for cases with 

varying vacancy fractions as can be seen from these snapshots. 

 

For the molecular dynamics calculations, the Tersoff potential which is regarded an apt 

force field for silicon, is used. All calculations are done in metal units, using periodic 

boundary condition. A time step of 1 fs is used and the ensemble is NVT. The simulation 

box size is 300 × 300 × 300 Å3 and cutoff distance is 5.2 Å. Now, for a sphere with 

vacancy, an initial energy minimization is done. This is followed by an equilibration at 5 

K for 50,000 timesteps followed by heating to up to 300 K in another 50,000 timesteps. 

Then again, an equilibration is done at 300 K for 50,000 timesteps. After this, the system 

is heated to up to about the boiling point temperature of silicon which is about 3538 K in 

another 50,000 timesteps. This is followed by an equilibration at this temperature for 

another 50,000 timesteps.  

 

For these different vacancy fraction cases, the plots of temperature vs time, energy vs time 

and pressure vs time are obtained. Also, radial distribution function plots are obtained for 

the resulting visualization stages using VMD. The self-diffusion coefficients are 

calculated at 300 K and at 2000 K respectively using the Einstein’s formula.  
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This is done by calculating one –sixth of the slope of the plot of MSD vs time after 

equilibration for two nanoseconds.  

 

2.4 Results and discussion 

 

         

 300 1817 2101 2894 3543 

   (a) 

                        

   301 1795 2044        2825         3542  

(b) 

   

   302 1804 2025 2857 3503 

(c) 

Figure 2.2 Snapshots of the heating of Si nanospheres with fraction vacancies. Images of 

(a) 0% (b) 2.5% (c) 5% (d) 7.5% (e) 10% (f) 20%. The time (ps) of the snapshot (white 

top) and temperature (K) (black bottom). Stages of heating: minimization for a-f at 0.03, 

0.04, 0.05, 0.05, 0.06, 0.06 ps, respectively; equilibration at 5 K at 50 ps; equilibration at 

300 K at 150 ps; intermediate heating stages 300K-3538K at 175, 180, and 190 ps; heating 

at 3538 K at 200 ps for cases a-f. Radius of the clusters is 5 nm. 

 

0.03 

0.04 

0.05 
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   299 1758 2054 2915 3545 

(d) 

  

   298 1740 2065 2913 3523 

    (e) 

 

 5 5 299 1745 2266 2848 3541 

 (f) 

Figure 2.2 Continued 

 

2.4.1 Phase changes 

Figure 2.2 shows visualization stages of silicon sphere of different fraction vacancy at 

different simulation times with the simulation box clearly depicted in red square boundary. 

The relative sizes of the silicon spheres can be seen and compared at different times. For 

any fraction vacancy case, it can be observed from Figure 2.2 that as the simulation time 

increases from left to right, the silicon sphere gets more diffused in space with rise in 

temperature. The nanosphere roughly maintains its structure at around 300 K. On being 

heated from 300 K to 3538 K, the nanosphere gradually loses its shape. Atoms begin to 

emerge out of the nanosphere above 1600 K, indicating the onset of melting, as the 

nanosphere reaches the melting point of silicon which is about 1683.15 K. With further 

0.05 

0.06  

0.06 50 150 175 180 190 200 
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rise in temperature, the nanosphere loses its shape progressively as more and more atoms 

emerge out of the nanosphere which depicts the progression of melting. However, this 

progression of structural disorder varies both in time and magnitude for cases with varying 

fraction vacancy. Here a trend can be observed i.e. nanosphere with higher fraction 

vacancy apparently has a comparatively more diffused state at the same simulation time. 

For instance, at 180 ps, the corresponding image of the nanosphere in case e shows more 

dispersion than that of the nanosphere in case d. However, this is not true when we 

compare the images of case e and case f for the same 180 ps indicating that the trend does 

not hold true for all the cases. This indicates at a non-linear and not straightforward 

relationship between the fraction vacancy and the phase change behavior, as could be 

inferred from the structural integrity, of nanosphere.   Finally, at around 3538 K, which is 

close to the boiling point temperature of silicon, the nanosphere reaches a state of 

completely dispersed atoms in space indicative of the boiling point phase behavior. The 

time for minimization is the least for 0% vacancy case (0.03 ps) and greatest for 20% 

vacancy case (0.06 ps) indicating that more is the vacancy more is the departure from the 

most stable energy state.  

 

Only one configuration for each % vacancy is reported here. Theoretically, for a total of n 

silicon atoms and v number of vacancies there can be Cv
n number of configurations which 

can be tested. That would require a formidably large amount of time and computational 

resources. So, this work makes use of a more realistic approach of having a reasonable 

number of samples (6 nanospheres here) and testing one configuration for each sample to 

compare the results. So, there is a limitation on the statistics of this work.  

 

 



 

13 

 

  

                         (a)    

     

                                                                 (b) 

Figure 2.3. Temperature-time plots for silicon sphere of radius 5 nm with fraction 

vacancies. Plots for a) Heating and equilibration stages for the entire duration of simulation 

b) exploded view of heating stage from 5 K-300 K  

 

2.4.2 Temperature changes  

Figure 2.3a shows the temperature (T) vs time (t) plot for the silicon nanosphere of radius 

5 nm with varying fraction vacancy. For each sample having a fraction vacancy, the 

simulation proceeds in the order of energy minimization, equilibration at 5 K, heating from 

5 K - 300 K, equilibration at 300 K, heating from 300 K- 3538 K and finally equilibration 

at 3538 K. The rate of heating for these samples, as indicated by the slope of the T-t plot, 

vary distinctly both between 5 K -300 K and between 300 K – 3538 K. This indicates that 
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fraction vacancy has a role to play in regulating the heat capacity of nanosphere which 

affects the way a nanosphere gains temperature.  

 

All the nanospheres have been given the same heating conditions. The idea is to 

understand the variations in heat gain rate for each nanosphere, in spite of there being the 

same input heating condition. The fact that in the heating zones particularly (first between 

50-100 ps and second between 150-200 ps) there appears to be different heat gain 

tendencies by each nanosphere which vary in fraction vacancy, indicates that fraction 

vacancy plays a role in regulating the heat gain rate of the material. The point of interest 

here is the slope of the T-t curves and their comparison. Of course, if the input heating 

conditions were different, the slopes would have been different. But the comparison of 

slopes of T-t for the same input heating conditions is of importance here.  

 

During equilibration at 5 K, the temperature vs time plot shows initial peaks for the cases 

with certain fraction vacancy and no peak for the case with 0 % vacancy which suggests 

that there is a sharp rise and fall of temperature on account of atomic rearrangements 

taking place in the nanosphere due to the presence of vacancy.  

 

Figure 2.3b shows the exploded view for the 5 K – 300 K heating phase of the nanospheres. 

In this figure we observe that below 200 K there are different heating rates for different 

nanospheres having varying fraction vacancy whereas above 200 K, the heating rates of 

various nanospheres are almost the same. The curves have a downwardly concave nature 

for the 0%, 2.5%, 5%, 7.5 % vacancy cases and have a tendency to linearize for 10% and 

20% vacancy cases just below 200 K. This indicates at a non-uniform heating profile for 

vacancies below 10 % and a tendency toward uniform heating as the vacancy fraction 

increase. It is not due to the lack in equilibration. All the samples have been equilibrated 

at 5 K (till 50 ps). As can be seen from the E-t (Figure 2.4) plots for all the samples there 

is no sharp change or any peaks in the E-t plots for any of vacancies till 50 ps and the plots 

are smooth horizonal lines indicating the attainment of equilibration. It is only in the 
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heating zone of 50 – 100 ps that we see in the E-t plots a slight dip or non-linear trajectory 

of the curve. This is another proof that the nanospheres are showing the above T-t behavior 

not due to lack of equilibration but due to the presence of fraction vacancies which play a 

part in regulating the heat gain rate.  

 

A closer observation reveals that for the 0%, 2.5%, 5% and 7.5 % vacancy cases, the 

temperature rise proceeds with a higher rate, as indicated by a greater slope, starting from 

around 70 ps reaching a maximum around 75 ps. The temperature rise rate falls after this 

as indicated by a flatter slope. This effect seems to vanish for the cases with higher vacancy 

fraction. Thus, while we observe that higher vacancies slow down the rate of heating in 

general, here we observe a certain temperature below which the role of fraction vacancies 

become more pronounced (here it appears to be 200 K) and above which it is almost 

insignificant as to what the system vacancy is in relation to the heating profile of the 

system. Also, the heating rate of nanospheres do no bear a linear relationship with the 

fraction vacancy as is substantiated with the fact that below 200 K, the heating rate follows 

the order 5 %, 2.5 %, 0 %, 7.5 %, 10 % and 20 % from greatest to least. This result could 

be useful in selecting material with certain fraction vacancy in applications like thermal 

transducers for temperature below a threshold limit of 200 K.  

 

For the equilibration at 300 K phase, the temperature plots follow a flat trajectory parallel 

to the time axis. For the 300 K – 3538 K heating phase, the curve for any vacancy fraction 

case has wave like rise and fall trajectory which indicates at non-uniform heating rate. 

From 600 K to about 1600 K corresponding to 160 – 172 ps, the slope of the heating curve 

follows the order 20 %, 10 %, 7.5 %, 5 %, 2.5 % and 0 % from the greatest to the least. 

Then as the nanospheres approach their melting point temperature i.e. close to 1683 K, the 

order reverses and the new order becomes 0 %, 2.5 %, 5 %, 7.5 %, 10 % and 20 % from 

greatest to the least. Thus, the rate of heating reverses the order after the nanospheres attain 

the melting point temperature. This is a crucial piece of information for applications in 

thermal transducers right before the melting point of silicon.  
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To summarize, below the melting point of the silicon clusters, the rate of heating increases 

as the vacancy fraction increase; however, after the melting point, this order reverses. 

Also, as the boiling point is approached there is again a shift in order of magnitude of the 

slopes of each fraction vacancy case. There is clear distinction in heating rates of the 

nanospheres below and above the melting point and close to the boiling point temperatures 

which can be attributed to fraction vacancy. This information is useful from the point of 

view of system selection for a particular heating range based on fraction vacancy 

consideration. 

 

 For the equilibration at 3538 K phase, comparison of temperature-time plot reveals an 

almost flat trajectory for all the cases.  

 

 

 

     Figure 2.4. Energy-time plots for silicon sphere of radius 5 nm with fraction vacancies  

2.4.3 Energy changes  

Figure 2.4 shows the energy (E) vs time (t) plots for the silicon nanosphere of radius 5 nm 

with varying fraction vacancy. It can be seen from the plot that the energy of the 0 % 
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vacancy case is the least whereas the energy of other fraction vacancy case follows the 

order 2.5 %, 5 %, 7.5 %, 10 % and 20 % from least to greatest substantiating the fact that 

more is the fraction vacancy in a nanosphere, more is its energy.  

 

For the equilibration at 5 K, there appears a flat curve for the 0% vacancy case and an 

initial dip in the curves of cases with certain fraction vacancy. The dip is the largest for 

the 20% vacancy case. The largest dip in the 20% vacancy case indicates that there is 

greater degree of rearrangement in this system on account of greater fraction vacancy. 

However, the total energy of any fraction vacancy case is still larger than that of the 0% 

vacancy case.  

 

For the 5 K – 300 K heating phase, we observe a dip in the curve at around 70 picoseconds 

for the 0%, 2.5% and 5% vacancy cases but not for 7.5%, 10% or 20% vacancy cases. 

This indicates that in this intermediate heating range, the system has a tendency to go to 

lower energy state at vacancy percent below 7.5% and no tendency to go into lower energy 

state for a vacancy percent above this value. The total energy of any percent vacancy case 

is larger than that of 0% vacancy case and follows the order as expected.  

 

For the equilibration at 300 K phase, final energy of the vacancy fraction cases follows 

the order 0%, 2.5%, 5%, 7.5%, 10% and 20% from the least to the greatest.  

 

For the 300 K-3538 K heating phase, the plot shows that the overall energy is higher for 

a system with higher fraction vacancy. There could be seen at least two zones where the 

energy rise rates vary significantly. Considering the 0% vacancy case in particular, 

starting from about 160 ps the energy rise rate is high and then the rate goes down and 

follows a lower slope from roughly around 180 ps to up to 200 ps. The transition from 

first zone to the second happens at around the melting point temperature and the second 

zone sets in after the melting point is reached. These two zones exist in all the cases of 

fraction vacancy, but the first zone ends progressively earlier as the fraction vacancy 
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increase suggesting an earlier phase change for nanosphere with higher fraction vacancy 

and corresponding lesser rate of energy rise from then on. The energy rise rate falls as the 

fraction vacancy increase.  

 

For the equilibration at 3538 K phase, the overall energy of the systems follow the order 

20%, 10%,7.5%, 5%, 2.5% and 0% from the greatest to the least as expected. 

 

 

Table 2.1 Energy per atom values for silicon nanospheres with fraction vacancy 

% Vacancy Atoms (no.) E(KeV) E/atom 

20 20906 -91.458 -0.00437 

10 23520 -104.21 -0.00443 

7.5 24173 -107.3 -0.00444 

5 24826 -110.65 -0.00446 

2.5 25480 -113.86 -0.00447 

0 26133 -117.4 -0.00449 

 

 

As per Table 2.1 , it can be seen that the energy per atom (E/atom) value for the least 

fraction vacancy case i.e 0% vacancy is the least while that of the highest fraction vacancy 

case i.e 20 % vacancy is the highest. E/atom follows the trend 20 %, 10 %, 7.5 %, 5 %, 

2.5 % and 0 % from the greatest to the least.  
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Figure 2.5. Pressure-time plots for silicon sphere of radius 5 nm with fraction vacancies 

 

 

2.4.4 Pressure changes 

Figure 2.5 shows the pressure (P) vs time (t) plots for the silicon nanosphere of radius 5 

nm with varying fraction vacancy. For the 5 K – 300 K heating phase, the plot shows that 

higher the fraction vacancy lesser the fluctuation in pressure of the system and a lesser 

mean pressure. A left-tapered tail shows that for any fraction vacancy case, as temperature 

increases, pressure increases and so do the pressure fluctuations. For the 300 K–3538 K 

heating phase, the plot shows that for any particular case there is steep rise in pressure 

after the phase change temperature and as the system fraction vacancy increases, this slope 

rise happens at an earlier time suggesting at earlier achievement of phase temperature. For 

equilibration at 3538 K, pressure-time plots indicate negative slope of pressure vs time 

with largest magnitude of slope in the 0% vacancy case which indicates that the pressure 

of the nanosphere reduces with progressive energy minimization during equilibration and 

the reduction is maximum for the least fraction vacancy case. 
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Table 2.2 Temperature, energy and pressure of silicon nanosphere with fraction vacancy 

at different stages of simulation 

Stages after: t(ps) T(K) P(b) E(KeV) 

0% Vacancy         

min 0.03 5 -19.32 -117.76 

equil at 5K 50 5.01 1.16 -117.75 

heat 5K-300 K 100 299.15 -11.79 -117.33 

equil at 300 K 150 300.53 10.4 -117.39 

heat300-3538 K 200 3543.75 120.44 -93.76 

equil at 3538 K 250 3560.22 64.16 -91.89 

2.5 % Vacancy     

min 0.04 5 -45.37 -112.88 

equil at 5K 50 5.04 2.65 -113.47 

heat 5K-300 K 100 300.61 4.58 -113.79 

equil at 300 K 150 301.22 7.2 -113.87 

heat300-3538 K 200 3548.99 111.37 -91.9 

equil at 3538 K 250 3518.55 71.39 -89.81 

5 % Vacancy     

min 0.05 5 -43.66 -103.24 

equil at 5K 50 5.13 0.85 -108.23 

heat 5K-300 K 100 301.54 -2.22 -107.15 

equil at 300 K 150 300.42 1.13 -107.31 

heat300-3538 K 200 3540.68 126.01 -87.39 

equil at 3538 K 250 3501.79 39.61 -85.28 

7.5 % Vacancy     
min 0.05 5 -43.6 -108.14 

equil at 5K 50 5.02 -1.59 -110.18 

heat 5K-300 K 100 299.21 -2.69 -110.56 

equil at 300 K 150 302.3 4.97 -110.65 

heat300-3538 K 200 3510.18 100.54 -89.75 

equil at 3538 K 250 3555.55 98.72 -87.43 

10 % Vacancy     
min 0.06 5 -29.84 -98.67 

equil at 5 K 50 4.68 0.011 -105.36 

heat 5K-300 K 100 299.71 9.1 -104.04 

equil at 300 K 150 298.98 -1.36 -104.21 

heat300-3538 K 200 3528.52 105.83 -85.13 

equil at 3538 K 250 3555.69 70.84 -82.87 
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Table 2.2 Continued     

Stages after: t(ps) T(K) P(b) E(KeV) 

20 % Vacancy     
min 0.06 5 -14.06 -79.78 

min 0.06 5 -14.06 -79.78 

heat 5K-300 K 100 298.71 -3.09 -91.14 

equil at 300 K 150 296.52 4.28 -91.46 

heat300-3538 K 200 3534.7 84.3 -75.99 

equil at 3538 K 250 3538.1 80.33 -73.85 

equil at 3538 K 250 3555.69 70.84 -82.87 

 

 

 

 

 

 

The values for temperature, pressure and energy for the silicon sphere of radius 5 nm and 

vacancy fraction 0%, 2.5%, 5%, 7.5%, 10% and 20% have been tabulated in Table 2.2. A 

comparison of the final temperature achieved after the heating stage 5K- 300 K as seen in 

Table 2.2 for the cases with varying fraction vacancies shows a deviation lying within 2 

degrees. However, it is interesting to note the temperature rise rate, as can be seen in Figure 

2.3 b,  which vary widely across the cases with varying fraction vacancies. This indicates 

that the vacancy level in a silicon cluster system in this temperature range leads to varying 

degree of randomness to atomic motions which determines the temperature rise rate. The 

final temperature reached after the heating stage 300K-3538 K vary within 40 degress, 

however, as can be seen from Figure 2.3 a, there is apparent considerable variation in 

temperature rise rate in this heating range which again indicates at the role of vacancy 

fractions in imparting varying degree of randomness to atomic motions. The final values 

of energy as seen from Table 2.2 indicates that with increase in vacancy fraction, the 

energy of the silicon cluster system increases monotonically which is expected due to the 

greater departure from the crystal structre and hence the resulting rise in instability. The 
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pressure values in the table for the varying fraction vacancies are non-monotonic in nature 

and represent the instantaneous values.  

 

 

  

Figure 2.6. RDF plots for silicon sphere of radius 5 nm with varying fraction vacancy at 

minimization. Step = 0.001 ps, points taken = 1. 

 

 

2.4.5 Radial distribution function 

Figure 2.6 shows the radial distribution function plots obtained after the minimization 

stage for silicon sphere of radius 5 nm with varying fraction vacancy. It shows several 

peaks throughout indicating crystal like order in the system. There is no apparent 

difference in peak positions among the cases with different fraction vacancies.  
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Figure 2.7. RDF plots for silicon sphere of radius 5 nm with varying fraction vacancy after 

equilibration at 5 K. Step = 0.001 ps, points taken = 1. 

 

 

Figure 2.7 shows the radial distribution function plots obtained after the equilibration at 5 

K for silicon sphere of radius 5 nm with varying fraction vacancy. Comparison of radial 

distribution function plot shows that as the vacancy fraction increases from 0% to 20%, 

the peaks shorten in height and the curve has a tendency to flatten out. This indicates that 

at higher vacancy level the nanosphere is in more diffused state at the same temperature. 

 

  

Figure 2.8. RDF plots for silicon sphere of radius 5 nm with varying fraction vacancy after 

equilibration at 300 K. Step = 0.001 ps, points taken = 1. 
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Figure 2.8 shows the radial distribution function plots obtained after the equilibration at 

300 K for silicon sphere of radius 5 nm with varying fraction vacancy. The radial 

distribution function plot suggests clearly the relative shortening of peaks for a particular 

fraction vacancy as we move from 5 K to 300 K which is indicative of vanishing of crystal 

order in the system. As the vacancy fraction increases from 0% to 20%, the curve tends to 

flatten suggesting more dispersed phase at 300 K. 

 

 

Figure 2.9. RDF plots for silicon sphere of radius 5 nm with varying fraction vacancy after 

equilibration at 3538 K. Step = 0.001 ps, points taken = 1. 

 

 

Figure 2.9 shows the radial distribution function plots obtained after the equilibration at 

3538 K for silicon sphere of radius 5 nm with varying fraction vacancy. The radial 

distribution function plot suggests almost similar peak positioning and height for the cases 

with varying fraction vacancy indicating that at this temperature the nanospheres are more 

or less at the same dispersed state. 
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Figure 2.10. MSD-time plot for silicon sphere of radius 5 nm at 300 K and fraction 

vacancy 

 

 

2.4.6 Mean square displacement 

Figure 2.10 shows the MSD-time plot for silicon sphere of radius 5 nm at 300 K and 

varying fraction vacancy. It can be seen from the plot that the slope of the various cases 

with fraction vacancy follow the order 20 %, 5 %, 10 %, 2.5 %, 0 % and 7.5 % from 

greatest to least. The slope of these individual plots after the samples have been 

equilibrated for 2 ns are used to calculate the self-diffusion coefficients using Einstein’s 

formula.  
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Figure 2.11. MSD-time plot for silicon sphere of radius 5 nm at 2000 K and fraction 

vacancy 

 

 

Figure 2.11 shows the MSD-time plot for silicon sphere of radius 5 nm at 2000 K and 

varying fraction vacancy. It can be seen from the plot that the slope of the various cases 

with fraction vacancy follow the order 20 %, 10 %, 7.5 %, 5 %, 2.5 % and 0 % from 

greatest to least. The slope of these individual plots after the samples have been 

equilibrated for 2 ns are used to calculate the self-diffusion coefficients using Einstein’s 

formula.  
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(a) (b) 

Figure 2.12. Plots of self-diffusion coefficient (D) at various vacancies for silicon sphere 

of radius 5 nm (a) at 300 K and time, t = 2 ns (b) at 2000 K and time, t = 2 ns 

 

 

2.4.7 Self-diffusion coefficient 

The self-diffusion coefficient, D values obtained for the systems with varying fraction 

vacancies are calculated and shown in Figure 2.12 a for 300 K and in Figure 2.12 b for 

2000 K. At 300 K, the dependence of D on fraction vacancy is non-linear and non-

monotonic. The D value increases as we go to 2.5 % vacancy from 0 % vacancy, then 

decreases at 5 % and is the least at 7.5 % before increasing steeply at 10 % and 20 % 

fraction vacancy. The self-diffusion coefficient calculated at 300 K shows that at 5% and 

7.5% vacancies, the self-diffusion coefficient is 0.92 times and 0.55 times of the value at 

0% vacancy while at 2.5%, 10% and 20% vacancies the value of self-diffusion coefficient 

of silicon cluster are 1.45 times, 2.44 times, and 86.52 times larger. This result indicates 

that the value of D is not only dependent on the temperature but also on the fraction 

vacancy of nanospheres. Also, there is a certain fraction vacancy (7.5 % fraction vacancy 

in this case) at which the D value is the least and at the same temperature, there can be at 

least an order of magnitude difference in D values for certain fraction vacancy (20 % 

fraction vacancy in this case). 
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 At 2000 K, the dependence of D on fraction vacancy is more or less linear and monotonic. 

D increases with increase in fraction vacancy. D values at 2.5%, 5%, 7.5%, 10% and 20% 

vacancy increase only marginally and are 1.04 times, 1.07 times, 1.11 times, 1.12 times 

and 1.28 times respectively at 2000 K. On comparison of D values at 300 K which is close 

to the room temperature and at 2000 K which is beyond the melting point of silicon, it can 

be said that in consideration of D calculation, not only the temperature but the fraction 

vacancy also has a substantial effect. This work thus gives a good understanding of the 

importance of fraction vacancy in silicon clusters from the point of view of self-diffusion 

and also useful information about the temperature, energy, pressure and phase changes of 

the system with varying fraction vacancy. This could be critical for material design and 

selection of thermoelectrics, optoelectronic devices and thermal transducers to be 

designed for use in different heating temperature ranges. 

 

The nature of plot 2.12 a is not such due to the lack of equilibration. This is so because 

when in another trial the same sample was equilibrated for more than 15 ns, using MEAM 

potential, the self-diffusion calculated was almost the same i.e. 8.7 × 10-13 m2/s. It may be 

argued that the statistics is limited here. Theoretically, for a total of n silicon atoms and v 

number of vacancies there can be Cv
n number of configurations which can be tested for a 

particular % vacancy.  So, there is this limitation in the set of sample size due to time and 

computational limitation. Also, the number of samples (6 nanospheres here) have been 

used with due regard to time and computation constraints. Having said so, there is good 

amount of possibility that the result here is due to the changes in the initial vacancies. This 

is so because each nanosphere undergoes a change in density even though the density 

change is marginal. So, the number of vacancies in the final structure is not necessarily 

the same as in the initial structure. Since, the number of vacancies may have changed in 

the final structure, so it can be argued that the rate of vacancies formation during the 

simulation process does not remain the same throughout which affects the mean squared 

displacement of silicon atoms and hence the self-diffusion coefficient. This rate of 
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vacancy formation may be somehow related to the extent of fraction vacancy rather than 

configuration of a nanosphere with certain fraction vacancy.  
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CHAPTER III 

DIFFUSION OF LITHIUM IN SILICON NANOCLUSTERS 

3.1 Introduction 

In Li-ion batteries, the diffusion of Li determines the reaction velocity of electrode and 

thus affects the rate performance of the electrode. Thus, Li diffusion kinetics has attracted 

attentions of many researchers.28 Reported value of Li diffusion in amorphous silicon are 

between 10-14 to 10-18 m2/s.29 Many theoretical studies have been done to study the 

mechanism of Li insertion, to study the diffusion barrier of Li in various silicon structures 

and geometrical changes30-31 during lithium insertion and extraction using first principles 

based density-functional theory.32-35 Many of the studies focus on energy changes and 

other static properties of the lithium-ion battery. The dynamics property, such as that of 

lithium diffusion coefficient in silicon is not very clear at the moment. In this work, we 

have calculated the diffusion coefficient of lithium in silicon at varying fraction vacancy 

at room temperature using MEAM potential which can simulate the transition from 

disordered to ordered Li-Si alloys and predict the material properties of both amorphous 

and crystalline Li-Si alloys.36-39  

 

3.2 Problem statement and proposed work  

To obtain diffusion coefficient of lithium in silicon nanosphere with varying fraction 

vacancy at 300 K is one of the aims of this work. By obtaining the self-diffusion coefficient 

of silicon and diffusion coefficient of lithium diffusion in silicon at 300 K, we seek to 

understand better the impact of fraction vacancy on diffusion to address partly the problem 

of lithium diffusion in silicon for applications like that in the lithium-ion batteries. 

Understanding of self-diffusion of silicon is the first step as diffusion of any dopant atoms 

like lithium affects the formation of point defects in silicon and the self-diffusion 

contribution of those point defects in turn affect the dopant atom diffusion.  
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3.3 Methodology 

Molecular dynamics is carried out using LAMMPS in an NPT ensemble using MEAM  

potential with cutoff of 5.2 Å and metal units. Periodic boundary condition is used with 

timestep of 1 fs and 300 × 300 × 300 Å3 simulation box size. To begin with, a silicon 

nanosphere is created of radius 5 nm which contains a total of 26,133 silicon atoms. 

Vacancies are induced into this system by randomly deleting atoms from this structure 

such that resulting nanospheres with fraction vacancies 0%, 5%, and 20% are obtained. 

To study lithium diffusion in silicon nanoclusters, at first silicon nanosphere with certain 

fraction vacancy is selected. Then a certain number of lithium atoms is placed at the 

interstitial sites of the selected silicon nanosphere. This is done by selecting interstitial 

points randomly in the nanosphere and then placing Li atoms at those points by choosing 

the coordinates of those selected points for lithium atoms in the data file. Then following 

steps are carried out in order: minimization at 5 K, equilibration at 5 K, heating 5 K – 300 

K, equilibration at 300 K. Temperature vs time, energy vs time and volume versus time 

plots are then obtained and compared. The self-diffusion coefficients of Li in Si, D is 

calculated after complete equilibration at 300 K using the Einstein’s formula given as                                                                                                     

                                                 𝐷 =  
1

6𝑁𝑡
∑ < |𝑟𝑖(𝑡) − 𝑟𝑖(0)|2𝑁

1     
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3.4 Results and discussion 

 

   

(a) (b) 

 

 

(c) 

Figure 3.1. Plots of (a) Temperature (T) vs Time (t) (b) Energy (E) vs Time (t) (c) Volume 

(V) vs Time (t) for the nanosphere with 0 % vacancy and 0 lithium atom equilibrated at 5 

K (blue), then heated from 5 K – 300 K (orange) then equilibrated at 300 K (red). 

 

3.4.1 0 % Vacancy and 0 Li atom  

Figure 3.1 a shows the Temperature (T) vs time (t) plot of the silicon nanosphere with 0 

% vacancy and 0 lithium atom. Molecular dynamics simulation is carried out using 

MEAM potential. The length of time it takes the sample to reach equilibration at 5 K is 

around 1 ns. After this, it reaches the final temperature of 300 K after about 2.5 ns. The 

equilibration at 300 K is carried out for a long time and it is only after close to 15 ns that 

the sample reaches a final equilibrated state suitable for diffusion coefficient calculation. 

The final equilibrated temperature is about 300 K. 
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Figure 3.1 b shows the Energy (E) vs time (t) plot for the silicon nanosphere with 0 % 

vacancy and 0 lithium atom. As can be seen from the plot, the initial equilibrated energy 

is close to 117 Kev. With gradual heating, as expected, there is rise in energy and the 

energy after the sample is heated to 300 K is close to 115 KeV. Then the sample is 

equilibrated till 15 ns to achieve complete equilibration of the sample. Figure 3.1 c shows 

the Volume (V) vs time (t) plot for the silicon nanosphere with 0 % vacancy and 0 lithium 

atom. Since the simulation is carried out in an NPT ensemble, hence volume fluctuations 

are important to note here. The final volume lies between 1- 1.5 million cubic angstrom.  

For better clarity and analysis, equilibration at 5 K and at 300 K for this nanosphere have 

been shown below in Figure 3.2 and Figure 3.3 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 

 

 

      

(a) (b) 

     

(c) (d) 

     

(e)                                            (f)        

Figure 3.2. Plots of (a) Temperature (T) vs Time (t)  (b) exploded view of T vs t  (c) Energy 

(E) vs Time (t) (d) exploded view of E vs t  (e) Volume (V) vs time (t) (f) exploded view     

(V) vs time (t) for the nanosphere with 0 % vacancy and 0 lithium atom at 5 K. 

 

Before the sample is heated to 300 K, it is important that a complete equilibration at 5 K 

is achieved so that the nanosphere reaches the state of minimum energy corresponding to 

its actual physical state at 5 K. As can be seen from Figure 3.2 b, there appears an initial 

peak in T-t plot at around 0.1 ns and the nanosphere’s temperature is still fluctuating till 
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0.4 ns. After this the temperature is more or less constant at 5 K till 1 ns. From Figure 3.2 

c it can be seen that there is an initial dip in the E-t plot at around 0.2 ns and after this the 

energy is more or less constant till 1 ns and lies between -117.6 to -117.7 KeV. From 3.2 

d, which is a more zoomed plot of E-t, it can be seen that the energy fluctuations are almost 

absent after 0.4 ns and the final energy is -11763.5 electron volts. This suggests that a 

complete equilibration is achieved at 5 K. From Figure 3.2 e it can be seen that the initial 

volume drops from 2.5 million cubic angstroms to 1 million cubic angstroms in 0.2 ns. 

From Figure 3.2 f it can be seen that the volume fluctuations are close to nil beyond 0.4 

ns and the final volume is around 1.11 million cubic angstroms as the sample reaches 

complete equilibration at 5 K.  
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(a) (b) 

     

(c)                             (d) 

   

(e) (f) 

Figure 3.3. Plots of (a) Temperature (T) vs Time (t)  (b) exploded view of T vs t   

(c) Energy (E) vs Time (t) (d) exploded view of E vs t  (e) Volume (V) vs time (t)  

(f)  exploded view (V) vs time (t) for the nanosphere with 0 % vacancy and 0 lithium  

atom at 300 K.  

 

After the sample is heated to 300 K, it is then equilibrated at 300 K. The time of 

equilibration is such that there is minimal to no change in the energy. As can be seen from 

Figure 3.3 c, the energy drops from its initial value of -115.64 KeV to -115.656 KeV after 

about 12 ns. From Figure 3.3 d, it is clear that the final energy stays at around -115656 
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electron volts which confirms that a complete equilibration is achieved at 300 K. Figure 

3.3 a and Figure 3.3 b, show that the temperature of the nanosphere fluctuates around 300 

K with the mean value lying at 300 K during the entire course of equilibration step. Figure 

3.3 e shows that the volume of the sample lies between 1 to 1.25 million cubic angstroms. 

Figure 3.3 f shows that the volume fluctuations are around the mean volume of about 

1.123 million cubic angstroms. 

Having achieved complete equilibration after about 15 ns at 300 K, the diffusion 

coefficient is now calculated for this sample using the Einstein’s formula. The calculated 

value of the diffusion coefficient is 8.77 × 10-13 m2/s. Thus, the diffusion coefficient for 

the case of 0 Li is very much the same as that obtained using the Tersoff potential which 

was equal to 89 × 10-14 m2/s. Thus, the values of diffusion coefficients obtained from these 

two force fields correlates very well. 
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3.4.2 5 % Vacancy and 100 Li atoms  

 

    

(a) (b) 

 

(c)  

Figure 3.4. Plots of (a) Temperature (T) vs Time (t) (b) Energy (E) vs Time (t) (c) Volume 

(V) vs time (t) for the nanosphere with 5 % vacancy and 100 lithium atoms. Sample is 

equilibrated at 5 K (blue), then heated from 5 K – 300 K (orange) then equilibrated at 300 

K (red).  

 

 

Figure 3.4 a shows the Temperature (T) vs time (t) plot of the silicon nanosphere with 5 

% vacancy and 100 lithium atoms. Molecular dynamics simulation is carried out using 

MEAM potential. The length of time it takes the sample to reach equilibration is around 

1.5 ns. After this, it reaches the final temperature of 300 K after about 2.5 ns. The 

equilibration at 300 K is carried out for a long time and it is only after close to 25 ns that 

the sample reaches a final equilibrated state suitable for diffusion coefficient calculation. 

The final equilibrated temperature is about 300 K. 
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Figure 3.4 b shows the Energy (E) vs time (t) plot for the silicon nanosphere with 5 % 

vacancy and 100 lithium atoms. As can be seen from the plot, the initial equilibrated 

energy is close to 135 KeV. With gradual heating, as expected, there is rise in energy and 

the energy after the sample is heated to 300 K is close to 133 KeV. Then the sample is 

equilibrated till 25 ns to achieve complete equilibration of the sample.  

 

Figure 3.4 c shows the Volume (V) vs time (t) plot for the silicon nanosphere with 5 % 

vacancy and 100 lithium atoms. Since the simulation is carried out in an NPT ensemble, 

hence volume fluctuations are important to note here. The final volume close to 1 million 

cubic angstrom.  

 

For better clarity and analysis, equilibration at 5 K and at 300 K for this nanosphere have 

been shown below in Figure 3.5 and Figure 3.6 respectively.  
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(a) (b) 

    

(c) (d) 

    

(e) (f) 

Figure 3.5. Plots of (a) Temperature (T) vs Time (t)  (b) exploded view of T vs t  (c) Energy 

(E) vs Time (t) (d) exploded view of E vs t  (e) Volume (V) vs time (t) (f) exploded view 

(V) vs time (t) for the nanosphere with 5 % vacancy and 100 lithium atoms at 5 K.  

 

Before the sample is heated to 300 K, it is important that a complete equilibration at 5 K is 

achieved so that the nanosphere reaches the state of minimum energy corresponding to its 

actual physical state at 5 K. As can be seen from Figure 3.5 b, there appears an initial peak 
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in T-t plot at around 0.25 ns. After this the temperature is more or less constant at 5 K till 

1 ns.  

From Figure 3.5 c it can be seen that there is an initial dip in the E-t plot at around 0.25 ns 

and after this the energy is more or less constant till 1 ns and lies close to 135 KeV. From 

3.5 d, which is a more zoomed plot of E-t, it can be seen that the energy fluctuations are 

almost absent after 0.25 ns and the final energy is -135123 electron volts. This suggests 

that a complete equilibration is achieved at 5 K. 

 

From Figure 3.5 e it can be seen that the initial volume drops from 2 million cubic 

angstroms to 1 million cubic angstroms in 0.25 ns. From Figure 3.5 f it can be seen that the  

volume fluctuations beyond 0.25 ns is around 1.09 million cubic angstroms as the sample 

reaches complete equilibration at 5 K.  
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(a) (b) 

    

(c) (d) 

   

(e) (f) 

Figure 3.6. Plots of (a) Temperature (T) vs Time (t) (b) exploded view of T vs t  (c) Energy 

(E) vs Time (t) (d) exploded view of E vs t  (e) Volume (V) vs time (t) (f) exploded view 

(V) vs time (t) for the nanosphere with 5 % vacancy and 100 lithium atoms at 300 K. 

 

After the sample is heated to 300 K, it is then equilibrated at 300 K. The time of 

equilibration is such that there is minimal to no change in the energy. As can be seen from 
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Figure 3.6 c, the energy drops from its initial value of -133.60 KeV to -133.90 KeV after 

about 23 ns. From Figure 3.6 d, it is clear that the mean value of the final energy stays at 

around -133,915 electron volts between 24 to 26 ns which confirms that a complete 

equilibration is achieved at 300 K. Figure 3.6 a and Figure 3.6 b, show that the temperature 

of the nanosphere fluctuates around 300 K with the mean value lying at 300 K during the 

entire course of equilibration step. Figure 3.6 e shows that the volume of the sample lies 

between 1.02 to 1.04 million cubic angstroms. Figure 3.6 f shows that the volume 

fluctuations are around the mean volume of about 1.0267 million cubic angstroms after 

23 ns when the sample is completely equilibrated at 300 K. Having achieved complete 

equilibration after about 26 ns at 300 K, the diffusion coefficient is now calculated for this 

sample using the Einstein’s formula. The calculated value of the diffusion coefficient is 

0.83 × 10-14 m2/s.  
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3.4.3 20 % Vacancy and 100 Li atoms 

  

     

(a) (b) 

 

(c) 

Figure 3.7. Plots of (a) Temperature (T) vs Time (t) (b) Energy (E) vs Time (t) (c) Volume 

(V) vs time (t) for the nanosphere with 20 % vacancy and 100 lithium atoms equilibrated 

at 5 K (blue), then heated from 5 K – 300 K (orange) then equilibrated at 300 K (red). 

 

 

 

Figure 3.7 a shows the Temperature (T) vs time (t) plot of the silicon nanosphere with 20 

% vacancy and 100 lithium atoms. Molecular dynamics simulation is carried out using 

MEAM potential. The length of time it takes the sample to reach equilibration at 5 K is 

around 1 ns. After this, it reaches the final temperature of 300 K after about 5 ns. The 

equilibration at 300 K is carried out for a long time and it is only after close to 23 ns that 

the sample reaches a final equilibrated state suitable for diffusion coefficient calculation. 

The final equilibrated temperature is about 300 K. Figure 3.7 b shows the Energy (E) vs 

time (t) plot for the silicon nanosphere with 20 % vacancy and 100 lithium atoms. As can 

be seen from the plot, the initial equilibrated energy is close to 114 KeV. With gradual 
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heating, as expected, there is rise in energy and the energy after the sample is heated to 

300 K is close to 113.5 KeV. Then the sample is equilibrated till about 23 ns to achieve 

complete equilibration of the sample. Figure 3.7 c shows the Volume (V) vs time (t) plot 

for the silicon nanosphere with 20 % vacancy and 100 lithium atoms. Since the simulation 

is carried out in an NPT ensemble, hence volume fluctuations are important to note here. 

The final volume close to 0.9 million cubic angstroms.  

 

For better clarity and analysis, equilibration at 5 K and at 300 K for this nanosphere have 

been shown below in Figure 3.8 and Figure 3.9 respectively.  
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(a) (b) 

  

(c) (d) 

     

(e) (f) 

Figure 3.8. Plots of (a) Temperature (T) vs Time (t)  (b) exploded view of T vs t  (c) Energy 

(E) vs Time (t) (d) exploded view of E vs t  (e) Volume (V) vs time (t) (f) exploded view 

(V) vs time (t) for the nanosphere with 20 % vacancy and 100 lithium atoms at 5 K. 

 

Before the sample is heated to 300 K, it is important that a complete equilibration at 5 K is 

achieved so that the nanosphere reaches the state of minimum energy corresponding to its 

actual physical state at 5 K. As can be seen from Figure 3.8 b, there appears an initial peak 
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in T-t plot at around 0.125 ns. After this the temperature is more or less constant at 5 K till 

1 ns. From Figure 3.8 c it can be seen that there is an initial dip in the E-t plot at around 

0.125 ns and after this the energy is more or less constant till 1 ns and lies close to 114 

KeV. From 3.8 d, which is a more zoomed plot of E-t, it can be seen that the energy 

fluctuations are almost absent after 0.125 ns and the final energy is -113,881 electron volts. 

This suggests that a complete equilibration is achieved at 5 K. From Figure 3.8 e it can be 

seen that the initial volume drops from 2 million cubic angstroms to close to 0.9 million 

cubic angstroms in 0.125 ns. From Figure 3.8 f it can be seen that the volume fluctuations 

beyond 0.125 ns is around 0.88 million cubic angstroms as the sample reaches complete 

equilibration at 5 K.  
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(a) (b) 

      

(c) (d) 

          

(e) (f) 

Figure 3.9. Plots of (a) Temperature (T) vs Time (t)  (b) exploded view of T vs t  (c) Energy 

(E) vs Time (t) (d) exploded view of E vs t  (e) Volume (V) vs time (t) (f) exploded view 

(V) vs time (t) for the nanosphere with 20 % vacancy and 100 lithium atoms at 300 K. 

 

After the sample is heated to 300 K, it is then equilibrated at 300 K. The time of 

equilibration is such that there is minimal to no change in the energy. As can be seen from 

Figure 3.9 c, the energy drops from its initial value of -133.60 KeV to -114.26 KeV after 
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about 22.5 ns. From Figure 3.9 d, it is clear that the mean value of the final energy stays 

at around -114,268 electron volts between 22.5 to 23.5 ns which confirms that a complete 

equilibration is achieved at 300 K.  

Figure 3.9 a and Figure 3.9 b, show that the temperature of the nanosphere fluctuates 

around 300 K with the mean value lying at 300 K during the entire course of equilibration 

step. Figure 3.9 e shows that the volume of the sample lies between 0.6 to 0.8 million 

cubic angstroms. Figure 3.9 f shows that the volume fluctuations are around the mean 

volume of about 0.73 million cubic angstroms after 22.5 ns when the sample is completely 

equilibrated at 300 K. 

Having achieved complete equilibration after about 23 ns at 300 K, the diffusion 

coefficient is now calculated for this sample using the Einstein’s formula. The calculated 

value of the diffusion coefficient is 1.17 × 10-14 m2/s. 
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3.4.4 0 % Vacancy and 100 Li atoms  

 

 

    

(a) (b) 

 

(c) 

Figure 3.10 Plots of a) Temperature (T) vs time (t) b) Energy (E) vs time (t) c) Volume 

(V) vs time (t) for the nanosphere with 0 % vacancy and 100 lithium atoms equilibrated 

at 5 K (blue), then heated from 5 K – 300 K (orange) then equilibrated at 300 K (red). 

 

 

Figure 3.10 a shows the Temperature (T) vs time (t) plot of the silicon nanosphere with 0 

% vacancy and 100 lithium atoms. Molecular dynamics simulation is carried out using 

MEAM potential. The length of time it takes the sample to reach equilibration at 5 K is 

around 0.6 ns. After this, it reaches the final temperature of 300 K after about 5 ns. The 

equilibration at 300 K is carried out for a long time and it is only after close to 20 ns that 

the sample reaches a final equilibrated state suitable for diffusion coefficient calculation. 

The final equilibrated temperature is about 300 K. Figure 3.10 b shows the Energy (E) vs 

time (t) plot for the silicon nanosphere with 0 % vacancy and 100 lithium atoms. As can 
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be seen from the plot, the initial equilibrated energy at 5 K is close to 127.5 KeV. With 

gradual heating, there is decrease in energy and the energy after the sample is heated to 

300 K is close to 130 KeV. Then the sample is equilibrated till about 20 ns to achieve 

complete equilibration of the sample. Figure 3.10 c shows the Volume (V) vs time (t) plot 

for the silicon nanosphere with 0 % vacancy and 100 lithium atoms. Since the simulation 

is carried out in an NPT ensemble, hence volume fluctuations are important to note here. 

The final volume is close to 1 million cubic angstroms.  

 

For better clarity and analysis, equilibration at 5 K and at 300 K for this nanosphere have 

been shown below in Figure 3.11 and Figure 3.12 respectively.  
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(a) (b) 

    

(c) (d) 

   

(e) (f) 

Figure 3.11 Plots of a) Temperature (T) vs Time (t) b) exploded view of T vs t  c) Energy 

(E) vs Time (t) d) exploded view of E vs t  e) Volume (V) vs time (t) f) exploded view (V) 

vs time (t) for the nanosphere with 0 % vacancy and 100 lithium atoms at 5 K. 

 

Before the sample is heated to 300 K, it is important that a complete equilibration at 5 K is 

achieved so that the nanosphere reaches the state of minimum energy corresponding to its 

actual physical state at 5 K. As can be seen from Figure 3.11 b, there appears an initial peak 

in T-t plot at around 0.05 ns. After this the temperature is more or less constant at 5 K till 

0.6 ns.  
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From Figure 3.11 c it can be seen that there is an initial peak in the E-t plot at around 0.05 

ns and after this the energy is more or less constant till 0.6 ns and lies close to 127.5 KeV. 

From 3.11 d, which is a more zoomed plot of E-t, it can be seen that the energy fluctuations 

are almost absent after 0.05 ns and the final energy is -127,500 electron volts. This suggests 

that a complete equilibration is achieved at 5 K. 

 

From Figure 3.11 e it can be seen that the initial volume drops from 2.5 million cubic 

angstroms to close to 1.5 million cubic angstroms in 0.15 ns. From Figure 3.11  f it can be 

seen that the volume fluctuations beyond 0.2 ns is around 1.5 million cubic angstroms as 

the sample reaches complete equilibration at 5 K.  
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(a) (b) 

    

(c) (d) 

   

(e) (f) 

Figure 3.12. Plots of a) Temperature (T) vs Time (t) b) exploded view of T vs t  c) Energy 

(E) vs Time (t) d) exploded view of E vs t  e) Volume (V) vs time (t) f) exploded view (V) 

vs time (t) for the nanosphere with 0 % vacancy and 100 lithium atoms at 300 K. 

 

After the sample is heated to 300 K, it is then equilibrated at 300 K. The time of 

equilibration is such that there is minimal to no change in the energy. Figure 3.12 a and 

Figure 3.12 b, show that the temperature of the nanosphere fluctuates around 300 K with 

the mean value lying at 300 K during the entire course of equilibration step. As can be 
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seen from Figure 3.12 c, the energy drops from its initial value of -130 KeV to -130.56 

KeV after about 19.2 ns. From Figure 3.12 d, it is clear that the mean value of the final 

energy stays at around -130,560 electron volts between 19.2 to 19.7 ns which confirms 

that a complete equilibration is achieved at 300 K. Figure 3.12 a and Figure 3.12 b, show 

that the temperature of the nanosphere fluctuates around 300 K with the mean value lying 

at 300 K during the entire course of equilibration step. Figure 3.12 e shows that the volume 

of the sample lies between 1 to 1.5 million cubic angstroms. Figure 3.12 f shows that the 

volume fluctuations are around the mean volume of about 1.025 million cubic angstroms 

after 15.5 ns when the sample is completely equilibrated at 300 K. 

Having achieved complete equilibration after about 19 ns at 300 K, the diffusion 

coefficient is now calculated for this sample using the Einstein’s formula. The calculated 

value of the diffusion coefficient is 1.5 × 10-14 m2/s. 

 

 

Table 3.1 Diffusion coefficient values obtained with respect to varying vacancy and 100 

Li atoms  
% fraction 

vacancy 

No. of Li 

atoms 

Diffusion Coefficient, 

D(m2/s) × 10-14 

0 0 87.7 

0 100 1.5 

5 100 0.83 

20 100 1.17 

 

 

3.4.5 Diffusion coefficient 

Table 3.1 has the values of diffusion coefficient calculated for silicon nanosphere of 

varying fraction vacancy for 0 Li atom and then a constant number of 100 Li atoms. 

Notably, these values have been obtained using the MEAM potential. As can be seen from 

the table that the value of the diffusion coefficient for the case of 0 Li is very much the 

same as that obtained using the Tersoff potential in Figure 2.12 which was equal to      
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89 × 10-14 m2/s. Thus, the values of diffusion coefficients obtained from these two force 

fields correlates very well. Also, the table shows the values of D obtained for 100 Li atoms 

for varying fraction vacancy cases.  

 

 

 

Figure 3.13. Plot of diffusion coefficient, D values vs % fraction vacancy of the 

nanosphere of radius 5 nm for 100 lithium atoms placed at interstitial sites  

 

 

As can be seen from Figure 3.13, the behavior of the curve of Li diffusion in silicon 

nanosphere is non-monotonic in nature. It first decreases to almost half of its value at 0 % 

fraction vacancy and then increases at 20 % fraction vacancy. The value of D at 20 % 

fraction vacancy is close to four-fifth of its value at 0 % fraction vacancy. Thus, we can 

say that the diffusion of dopant atoms is impacted by the presence of fraction vacancy and 

the extent of this impact is not linear with fraction vacancy. Also, the value of self-

diffusion coefficient obtained for silicon is higher than the diffusion coefficient of Li in 

silicon.  
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Table 3.2 Diffusion coefficient values obtained with respect to varying vacancy and 0 

and100 Li atoms 

% fraction 

vacancy 

D0 (m2/s) 

× 10-14 

D100 (m2/s) 

× 10-14 
D0/D100 

0 87.7 1.5 58.46 

5 82.3 0.83 99.16 

20 4530 1.17 3871.8 

    

 

 

Table 3.2 shows the value of self-diffusion coefficient of silicon obtained for the 

nanosphere containing 0 Li atom, D0; the value of diffusion coefficient for Li diffusion in 

silicon nanosphere containing 100 Li atoms, D100 and their ratio D0/D100. As can be seen 

from the table the D0 increases with increasing fraction vacancy while D100 first decreases 

and then increases with increasing fraction vacancy.  

 

 

 

Figure 3.14. Plot of D0/D100 values vs % vacancy of the nanosphere of radius 5 nm for 100 

lithium atoms placed at interstitial sites.  

 

 

From Figure 3.14, it can be seen that the ratio D0/D100 increases by two times of its value 

at 0 % fraction vacancy while it rises steeply by three orders of magnitude at 20 % fraction 
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vacancy over its value at 0 % vacancy. It shows that the self-diffusion of silicon is 

predominantly high at higher fraction vacancy, in this case 20 % fraction vacancy while 

at lower fraction vacancy, in this case 5 % or below, it is moderately higher than the dopant 

diffusion.  
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CHAPTER IV 

APPLICATION OF CHARGE EQUILIBRATION TO SMALL NANOCLUSTER 

4.1 Charge equilibration 

Charge equilibration (QEq), based on the electronegativity equalization principle, a useful 

method developed for predicting charge distribution in a given system has been 

successfully applied to polymers, semiconductors, ceramics etc.40-41 In molecular 

dynamics studies, charge equilibration yields directly electrostatic energies. In these 

calculations, charges change as time evolves and so does the electrostatic energy of the 

material being studied. The input for QEq technique are only the atomic ionization 

potential (IP), electron affinity (EA) and atomic radius RA. These quantities and the 

shielded electrostatic interaction are used to create shielded atomic potential. At 

equilibrium condition, all atomic potentials must be equal which results in equilibrium 

distribution of charges which are dependent on the geometry.  

 

This technique thus helps overcome the problem of using fixed charges which can respond 

to changes in local polarization. In the absence of the charge equilibration technique, 

usually a dielectric constant is included in the force field which can give rise to additional 

uncertainties in calculations since it is not allowed that the charges change according to 

local conditions. Charge equilibration method also helps to extend molecular dynamics 

study to a wide variety of materials such as metals, superconductors, non-standard amino 

acids and unusual bases and for very useful applications like prediction of infrared 

intensities and dielectric constants.42 Under charge equilibration, when the potential 

energy of the silicon nanocluster changes due to varying electrostatic energy in a 

molecular dynamics simulation, it is a special point of interest to calculate the self-

diffusion coefficient in silicon clusters. This is so because it presents a more realistic 

environment for prediction of the self-diffusion coefficient in a lithium-ion battery and 

more accuracy in result. More realistic and accurate prediction of diffusion coefficient 
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under such conditions is an important mass transport result from the design and operation 

point of view for the lithium-ion battery.  

 

Energy of an isolated atom, ignoring the higher terms, as a function of charge is  

given as 

EA(Q) = EA0 + QA (
∂E

∂Q
)

A0
+

1

2
QA

2  (
∂2E

∂Q2
)A0                           (4.1) 

EA(+1) = EA0 + (
∂E

∂Q
)

A0
+

1

2
(

∂2E

∂Q2
)A0                                (4.2)  

EA(0) = EA0                                                         (4.3) 

EA(−1) = EA0 − (
∂E

∂Q
)

A0
+

1

2
(

∂2E

∂Q2)A0                                        (4.4)                                                                

(
∂E

∂Q
)

A0
=  

1

2
 (IP + EA) = ᵡ𝐴

0                               (4.5) 

 (
∂2E

∂Q2)A0 = IP − EA                                            (4.6) 

Here IP is the ionization potential and EA is the electron affinity. ᵡA is referred as 

electronegativity, 

IP − EA =  JAA
0                                                    (4.7) 

Where JAA
0  is Coulombic repulsion for two electrons existing in an orbital and is referred 

to as the idempotential (self-Coulomb).  

Using (4.1), (4.2), (4.3) and (4.4) gives us  

EA(Q) = EA0 + ᵡ𝐴
0QA +

1

2
JAA

0 QA
2                                      (4.8) 

In the above equation ᵡ𝐴
0 and JAA

0  can be derived from atomic data directly and reported in 

a table in a paper by Rappe and Goddard [J. Phys. Chem. 1991]. The above equation is 

valid in a restricted sense and is invalid out of the range which may correspond to filling 

or emptying the valence electronic shells. Proportional to reverse of the size of atom, the 

Idempotential is given as   
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JAA
0 =  

14.4

𝑅𝐴0
                                                             (4.9) 

Electrostatic energy ∑ QAQBJABA<B  needs to be evaluated now where JAB is the coulombic 

interaction between charge centers on A and B. 

E(Q1 … . QN) =  ∑ (EA0  + ᵡA
0 QA +  

1

2
 QA

2 JAA
0  ) +  ∑ QAQBJABA<BA                (4.10) 

Which can be re-written as  

E(Q1 … . QN) =  ∑ (EA0  + ᵡA
0 QA ) +  

1

2
∑ QAQBJABA,BA                           (4.11) 

JAA(R) → JAA
0  as R → 0 

Now we differentiate E with respect to QA. This results in an atomic scale potential which 

is given as 

ᵡA(Q1 … . QN) =  (
∂E

∂Q
)

A
= ᵡA

0 +  ∑ JABB QB                          (4.12) 

Or,   

            ᵡA(Q1 … . QN) = ᵡA
0 + JAA

0 QA +  ∑ JABB≠A QB                                                 (4.13) 

where,  ᵡA is a function of charge on all atoms 

For equilibrium, atomic chemical potentials must be all equal which results into N-1 

conditions 

ᵡ1 =  ᵡ2 = ⋯ ᵡ𝑁                                                              (4.14) 

On providing the condition of total charge, 𝑄𝑡𝑜𝑡 =  ∑ 𝑄𝑖
𝑁
1  , gives N simultaneous 

equations. These equations are then solved once for equilibrium self-consistent charges 

for a structure.  

 

4.2 Proposed work 

We apply charge equilibration (QEQ) technique to the MD simulation of a small silicon-

lithium nanocluster to obtain the effects of QEQ on the thermodynamics of the silicon-

lithium nanocluster and obtain plots of Energy versus time, Temperature versus time, 
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Coulombic energy versus time and MSD versus time. We also obtain diffusion coefficient, 

D under conditions of QEQ and compare with case when no QEQ is used at timestep of 1 

fs and 10 fs. 

 

4.3 Methodology 

Small silicon cluster of sixteen atoms is used such that the total sum of charges is zero and 

charge on any given atom lie between -0.2 to +0.2 times of an electron charge (e). 

Molecular dynamics was carried out in metal units with tersoff potential for Si-Si and LJ 

for Li-Si, Li-Li. Periodic boundary condition, NVT ensemble and a timestep of 1fs was 

used with was used with 50⨯50⨯50 Å3 simulation box at 300 K. Charge equilibration 

method applicable for point charges as available in LAMMPS package is used. Alternating 

steps of the use of charge equilibration fix and molecular dynamics fix in an NVT 

ensemble is carried out. The resulting charge versus time plots for all the sixteen atoms of 

the silicon cluster is obtained and compared. Energy versus time, Temperature versus 

time, Coulombic energy versus time and MSD versus time plots are obtained and 

compared. 
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 (a) 

      

 

 

 

 

      

(b) 

Figure 4.1. Visualization stages of silicon cluster of 16 atoms containing 13 silicon atoms 

(red) and 3 lithium atoms (blue) at different times during the simulation with charge 

equilibration for  (a) timestep, dt = 0.001 ps. Number on panels denote time in pico seconds 

(b) timestep, dt = 0.01 ps. Number on panels denote time in nano seconds.  

 

 

4.4 Results and discussion 

4.4.1 Visualization stages  

Figure 4.1 shows the visualization stages of silicon nanocluster of 16 atoms including 3 

Lithium atoms at different time of simulation with charge equilibration. As can be seen 

from Figure 4.1 a, at 300 K, the silicon and lithium atoms are no longer in their respective 
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lattice positions and move under the combined effects of the force field and charge 

equilibration. Comparing Figure 4.1 a with Figure 4.1 b, it can be seen that when time step 

is increased there is greater disorder in this system and the small sub fragmented clusters 

which are seen in Figure 4.1 a are no longer seen in Figure 4.1 b. Partial charges on silicon 

and lithium atoms occur as a result of this interaction among the atoms in which both the 

relative position of each atom charge with respect to time resulting in change of partial 

charge on it. 

 

4.4.2 Charge versus time plots at timestep of 1 fs 

 

 

    

   (a) (b) 

   

    (c) (d) 

Figure 4.2. Charge, q in terms of an electron charge e, versus time (t) plots for all 16 atoms 

containing 13 silicon atoms (blue) and 3 lithium atoms (red) for the simulation with charge 

equilibration for timestep, dt = 0.001 ps. 
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    (e) (f) 

   

   (g) (h) 

   

(i) (j) 

   

(k) (l) 

Figure 4.2 Continued 
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(m) (n) 

   

(o) (p) 

Figure 4.2 Continued 

 

 

 

The variation of charge of each atom with time of simulation has been plotted in Figure 

4.2 for time step, t = 0.001 ps. It can be seen that the final charge on silicon atoms are 

negative and lie between -0.05 to -0.035 while that on the lithium atoms are positive and 

lie between 0.15 to 0.2. It is to be noted that the final charges appear because of charge 

equilibration and electronegativity equalization principle. The sum of initial charges is 

zero and so is the sum of final charges. Silicon is a more electronegative element compared 

to lithium and hence the partial charges are negative on silicon and positive on lithium.  
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4.4.3 Charge versus time plots at timestep of 10 fs 

 

 

   

(a) (b) 

   

(c) (d) 

   

(e) (f) 

Figure 4.3. Charge, q in terms of an electron charge e, versus time (t) plots for all 16 atoms 

containing 13 silicon atoms (blue) and 3 lithium atoms (red) for the simulation with charge 

equilibration for timestep, dt = 0.01 ps. 
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Figure 4.3 Continued  
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(o) (p) 

Figure 4.3 Continued  

 

 

The variation of charge of each atom with time of simulation has been plotted in Figure 

4.3 for time step, t = 0.01 ps. The final charge on silicon atoms are negative and lie between 

-0.05 to -0.04 while that on the lithium atoms are positive and lie between 0.175 to 0.2. It 

is to be noted that the final charges appear because of charge equilibration and 

electronegativity equalization principle. The sum of initial charges is zero and so is the 

sum of final charges. Silicon is a more electronegative element compared to lithium and 

hence the partial charges are negative on silicon and positive on lithium.  

 

Table 4.1 Charge on silicon and lithium after first step of charge equilibration 

Id Atom  Initial q(e) 

1 Si -0.049 

2 Si -0.056 

3 Si -0.054 

4 Si -0.050 

5 Li 0.192 

6 Li 0.188 

7 Li 0.192 

8 Si -0.050 

9 Si -0.044 

10 Si -0.037 

11 Si -0.041 

13 Si -0.038 

14 Si -0.040 

15 Si -0.038 
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Table 4.1 Continued  

Id Atom  Initial q(e) 

12 Si -0.039 

16 Si -0.039 

 

 

 

(a) 

 

(b) 

Figure 4.4. Charge, q in terms of an electron charge e, versus time (t) plots for all 16 atoms 

containing 13 silicon atoms (blue) and 3 lithium atoms (red) for the simulation with charge 

equilibration for a) timestep, dt = 0.001 ps b) timestep, dt = 0.01 ps 
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 As can be seen from Figure 4.4 a and b, all the silicon atoms have negative charges and 

all the lithium atoms have positive charges. On comparing the q versus t plots of Figure 

4.4 and Figure 4.4, we see that the range of variation of partial charges in with time step 

0.001 ps is more than it is with time step 0.01 ps. This is so because when time step is 0.01 

ps for the simulation, there is reduction in time for relative positioning of atoms with 

respect to each other as compared to when it is 0.001 ps and hence the charges equilibrate 

accordingly as per the electronegativity equalization.  

 

 

   

         (a) (b) 

    

(c)                              (d) 

Figure 4.5. Plots of a) Temperature (T) vs time (t) b) Energy (E) vs time (t) c) Coulombic 

energy (E_Coul) vs time (t) d) mean square displacement, MSD vs time (t) for time step, 

dt = 0.001 ps and charge equilibration (blue), 0.01 ps and charge equilibration (brown), 

0.001 ps and no charge equilibration (red), 0.01 ps and no charge equilibration (purple).  
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4.4.4 Thermodynamic and transport properties  

From Figure 4.5 a  it can be seen that the temperature is equilibrated for all the cases and 

fluctuates around the mean value of 300 K. There is however, a big peak, in T-t plot for 

the case t = 0.01 ps at around 700 ps. This is indicative that a time step of 0.01 ps may not 

be optimal and should not be preferred over a time step of 0.001 ps for this simulation as 

it may take a relatively longer time for the nanocluster to attain equilibration.  

 

From Figure 4.5 b for t = 0.001 ps with charge equilibration and without charge 

equilibration, there is an initial dip in the E-t plots and the final equilibrated value of 

energy is around -60 electron volts. However, for t = 0.01 ps with and without charge 

equilibration, there is an initial rise in the energy and the final equilibrated value is around 

0.2 electron volts. This is so because with a smaller value of time step, 0.001 ps in this 

case, the nanocluster molecular dynamics is more stabilized in terms of energy. Also, for 

any time step the corresponding plot of energy without charge equilibration is below that 

of the case with same time step but with charge equilibration. This clearly suggests that 

when the system is subjected to charge equilibration there is rise in its energy to some 

extent compared to when it is not. This is so because with charges varying with time during 

the molecular dynamics, the electrostatic energy is also a significant contributor to the 

overall energy of the nanocluster.  

 

From Figure 4.5 c it can be seen that for time step, t= 0.001 ps the blue curve which is the 

case with charge equilibration lies above the red curve which is the case with no charge 

equilibration. Similarly, for time step, t= 0.01 ps, the brown curve which is the case with 

charge equilibration lies above the purple curve which is the case with no charge 

equilibration. Thus, for any time step the corresponding curve of the case with no charge 

equilibration lies below to that of the case with charge equilibration. This is so because 

during charge equilibration, the partial charges develop on interacting atoms according to 

the electronegativity equalization principle. 
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From Figure 4.5 d it can be seen that for any time step the slope of the MSD vs t curve is 

lesser for the case with charge equilibration. Also, on comparing the case with time step 

of 0.001 ps with that of 0.01 ps we find that the slope of the MSD vs t plot is higher for 

the 0.001 ps case.  

 

 

Table 4.2 Diffusion coefficient values obtained with respect to varying timesteps and 

charge equilibration 

Simulation type 

D(Li) 

(m2/s) × 

10 -11 

D(Si) 

(m2/s) × 

10 -10 

Ratio of D (Li) 

(without 

QEq/with QEq) 

t=0.001 ps without QEq 2.98 0.162 

2.64 

t=0.001 ps with QEq 1.97 0.86 

t=0.01 ps without QEq 0.66 105 

4.17 

t=0.01 ps with QEq 0.15 86 

 

 

Table 4.2 shows the calculated values of diffusion coefficient for the various cases as 

shown under simulation type. The diffusion coefficient is calculated using the Einstein’s 

formula. As can be seen from the table, clearly the value of diffusion coefficient calculated 

in conditions of charge equilibration is at least two times smaller for the time step of 0.001 

ps and four times smaller for time step 0.01 ps. This suggests at an approach to arriving at 

a more precise value of diffusion coefficient under practical conditions which may exist 

in cases where any given nanocluster is subjected to varying charge dynamics as is the 

case in a lithium-ion battery.  

 

Since charge equilibration takes into account that the charges are distributed as per the 

electronegativity equalization principle, this effects the way the charges are distributed on 

each atom unlike when no such condition is placed. Then, the electrostatic interaction 

between atoms changes which in turn changes the way atoms move during the simulation 
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and hence their mean square displacement is affected. The strength of the electrostatic 

interaction decides the impact on the atomic displacement which impacts the mean square 

displacement. The electronegativity and idempotential values of the atoms are the 

determining factors for the development of partial charges on atoms which decide the 

strength of electrostatic interaction.  
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CHAPTER V 

SILICON CAGE ENERGETICS 

5.1 Silicon cages  

Due to the very high specific capacity (4200 mA h g-1) of silicon compared to graphite 

(372 mA h g-1), silicon is considered a strong candidate anode material for lithium-ion 

batteries.43 However, the major problem in using silicon is the large volume change of the 

silicon anode during lithiation and delithiation (charge and discharge), resulting in 

mechanical failure of the anode material. Use of large open surface area silicon 

nanostructures is a useful prospect. Recently, silicon clathrates have been shown to be a 

useful material for this purpose.44,45 A silicon cage is a structure  formed with a lithium 

atom at the center. However, the application of caged structures is currently limited due 

to knowledge gaps in understanding the lithium transport energetics across the cage.46  

 

5.2 Problem statement  

Here we want to perform energy calculation and obtain the energy for a complex formed 

by lithium at the center of a silicon cage. We also propose to study the energetics of a 

lithium in silicon cage structure using energy minimization which would aid in better 

understanding of lithiation and delithiation mechanism which is useful in consideration of 

silicon as anode in lithium ion batteries. 

 

5.3 Methodology 

To study the energetics of lithium in silicon cage structure, initially a silicon cage structure 

will be made using z-matrix such that all silicon atoms in this cage are sp3 hybridized and 

the dangling bonds are be satisfied by hydrogen. This cage is then be optimized using the 

Gaussian optimization software using the RB3PW91 method and 6-31G(d) as the basis 

set. Once the optimized cage structure is obtained, a lithium atom is introduced at the 

center of mass of the cage to form the lithium in silicon cage structure. This structure is 

then further subjected to Gaussian optimization in two different cases, first using a single 

charge and singlet spin and later using no charge and doublet spin conditions. The energy 
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difference between these two cases, as calculated from the optimization result is obtained 

and reported. The resulting optimized structure and the CPU wall times are also  observed.  

 

 

                               

(a) (b) 

Figure 5.1. Silicon cage structure geometry optimization using Gaussian.  

Calculation Type = FOPT; Calculation Method = RB3PW91, basis set = 6-31G(d) 

Images of a) Optimized cage structure from Gaussian output (top view)  

b) Optimized cage structure from Gaussian output (side view)   
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Table 5.1 Z-matrix for the final cage structure  
Si1             

Si2 1 2.353608 
    

Si3 2 2.353604 1 109.7265 
  

Si4 3 2.353581 2 109.3224 1 59.76269 

Si5 4 2.353489 3 109.7672 2 -59.9103 

Si6 5 2.353587 4 109.2106 3 59.97636 

Si7 1 2.353363 2 109.3596 3 59.8648 

Si8 5 2.353487 4 109.3639 3 -59.7463 

Si9 3 2.353559 2 109.2926 1 -59.9049 

Si10 9 2.353549 3 109.7936 2 59.86282 

H11 7 1.493991 1 109.8416 2 179.3886 

H12 7 1.494033 1 109.8863 2 61.21511 

H13 10 1.496751 9 109.6289 3 -179.992 

H14 9 1.493979 3 109.8895 2 -179.205 

H15 9 1.493957 3 109.843 2 -61.0228 

H16 3 1.496777 2 109.6242 1 179.9605 

H17 2 1.493988 1 109.8564 7 -179.195 

H18 2 1.493916 1 109.8554 7 -61.0252 

H19 1 1.496767 7 109.5926 10 -179.925 

H20 6 1.493964 5 109.9073 4 179.1333 

H21 6 1.493974 5 109.8514 4 60.92768 

H22 5 1.496824 4 109.5847 3 -179.93 

H23 4 1.493874 3 109.8649 2 179.1102 

H24 4 1.493977 3 109.8257 2 60.94127 

H25 8 1.494008 5 109.8239 4 -61.0776 

H26 8 1.493924 5 109.8525 4 -179.234 

 

 

 

 

 

 

 



 

78 

 

                     

(a)       (b) 

Figure 5.2. Before optimization complex structure with Li in center. Calculation Type = 

FOPT; Calculation Method = RB3PW91, basis set = 6-31G(d). Images of a) Optimized 

cage structure from Gaussian output (top view) b) Optimized cage structure from 

Gaussian output (side view)   
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Table 5.2 Z-matrix of the final structure with Li in center and singlet spin 
Si1             

Si2 1 2.394604 
    

Si3 2 2.394361 1 111.9107 
  

Si4 3 2.394615 2 108.2268 1 58.5539 

Si5 4 2.394707 3 111.8567 2 -58.5987 

Si6 1 2.394426 2 108.2278 3 -58.5176 

Si7 1 2.394359 6 108.2413 5 -58.5318 

Si8 5 2.394388 4 108.2678 3 -58.5162 

Si9 3 2.394621 2 108.2235 1 -58.5562 

Si10 8 2.394451 5 111.8688 4 58.60182 

H11 7 1.486721 1 108.4928 6 -61.0798 

H12 7 1.486955 1 108.4769 6 178.1241 

H13 10 1.486014 8 110.7026 5 179.9722 

H14 9 1.4867 3 108.5112 2 178.1489 

H15 9 1.486921 3 108.4697 2 -61.0753 

H16 3 1.485916 2 110.6269 1 -179.978 

H17 2 1.486775 1 108.4666 7 178.2018 

H18 2 1.486714 1 108.4486 7 -61.0229 

H19 1 1.48593 7 110.7245 10 179.9978 

H20 6 1.486747 1 108.5143 7 61.09552 

H21 6 1.486814 1 108.4565 7 -178.102 

H22 5 1.486091 4 110.666 3 -179.994 

H23 4 1.486792 3 108.4761 2 -178.203 

H24 4 1.486937 3 108.4946 2 60.97936 

H25 8 1.486738 5 108.4848 4 -60.9712 

H26 8 1.486757 5 108.4742 4 178.2726 

Li27 5 2.429273 4 69.35365 3 0.054338 
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                   (a)                                                              (b) 

Figure 5.3. Gaussian optimized complex structure with Li in center and singlet spin. 

Calculation Type = FOPT; Calculation Method = RB3PW91, basis set = 6-31G(d). 

Images of a) Optimized cage structure from Gaussian output (top view) b) Optimized 

cage structure from Gaussian output (side view)   
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Table 5.3 Z-matrix of the final structure with Li in center and doublet spin 
Si1             

Si2 1 2.398133 
    

Si3 2 2.392857 1 116.2685 
  

Si4 3 2.384641 2 107.064 1 59.22422 

Si5 4 2.384452 3 111.2232 2 -59.4782 

Si6 5 2.391947 4 107.2322 3 59.46238 

Si7 1 2.472395 6 101.6858 5 -51.3278 

Si8 5 2.392155 4 107.2738 3 -59.3853 

Si9 3 2.393113 2 110.8378 1 -57.2129 

Si10 8 2.397461 5 116.2713 4 58.99111 

H11 7 1.493088 1 105.7674 6 -67.8908 

H12 7 1.493017 1 106.038 6 176.9839 

H13 10 1.523046 8 101.2987 5 -159.157 

H14 9 1.493556 3 105.8073 2 -179.529 

H15 9 1.49344 3 106.1707 2 -64.9461 

H16 3 1.492002 2 110.9229 1 179.1143 

H17 2 1.493567 1 110.6595 6 66.05114 

H18 2 1.493445 1 109.5188 6 -175.017 

H19 1 1.522859 6 101.3498 5 159.2781 

H20 6 1.49343 5 106.1073 4 179.0482 

H21 6 1.493615 5 105.8826 4 64.40878 

H22 5 1.492138 4 109.7134 3 -179.965 

H23 4 1.491977 3 109.1754 2 179.8561 

H24 4 1.492001 3 109.1796 2 61.16872 

H25 8 1.493606 5 105.8553 4 -64.4747 

H26 8 1.493464 5 106.071 4 -179.075 

Li27 3 2.452609 2 68.57595 1 -1.97828 
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(a)                                                                          (b) 

Figure 5.4. Gaussian optimized complex structure with Li in center and doublet spin. 

Calculation Type = FOPT; Calculation Method = RB3PW91, basis set = 6-31G(d). 

Images of a) Optimized cage structure from Gaussian output (top view) b) Optimized 

cage structure from Gaussian output (side view)   

 

 

Following is the result of the optimization 

 

 

Table 5.4 Comparison of optimization results 
Parameter Initial Si 

cage 

Si Cage 

with Li 

Si Cage 

with Li 

Charge 0 1 0 

Spin Singlet Singlet Doublet 

Energy (eV) 79025.53 79224.36 79228.63 

Dipole Moment 

(Debye) 
0.002 0 2.3 

CPU Time (min) 70.135 32.518 419.61 

 

 

Therefore, we find that the difference in the energy of the two-cage structure to be as  

= E (cage Li+) – E (Cage Li) = 4.273 eV 
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Table 5.5 Charges for the optimized silicon cage structures 
ID Atom Initial Cage 

Charge =0, 

Spin = Singlet 

Cage with Li 

Charge =1, 

Spin = Singlet 

Cage with Li 

Charge =0, 

Spin = doublet 

1 Si -0.058737 0.0035130 -0.048703 

2 Si 0.130645 0.2261910 0.198052 

3 Si -0.058007 0.0036170 -0.018521 

4 Si 0.130257 0.2260370 0.175924 

5 Si -0.058551 0.0033240 -0.018922 

6 Si 0.130759 0.2266930 0.195647 

7 Si 0.130514 0.2261280 0.230678 

8 Si 0.130564 0.2262580 0.196137 

9 Si 0.130188 0.2260830 0.19847 

10 Si -0.058052 0.0036700 -0.048957 

11 H -0.037861 0.0043720 -0.035033 

12 H -0.03783 0.0043740 -0.03535 

13 H -0.023926 0.0320870 -0.029326 

14 H -0.037835 0.0043690 -0.034583 

15 H -0.037814 0.0043220 -0.031669 

16 H -0.023953 0.0320830 -0.007923 

17 H -0.037809 0.0043860 -0.034607 

18 H -0.037835 0.0043790 -0.031644 

19 H -0.023917 0.0321100 -0.029274 

20 H -0.037794 0.0043300 -0.031406 

21 H -0.037807 0.0043290 -0.034828 

22 H -0.023929 0.0320650 -0.008121 

23 H -0.037789 0.0043570 -0.030817 

24 H -0.037831 0.0043570 -0.030826 

25 H -0.037846 0.0043700 -0.034815 

26 H -0.037803 0.0043680 -0.03142 

27 Li  -0.5521710 -0.588165 
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CHAPTER VI 

CONCLUSIONS 

It is found that varying fraction vacancy impacts the thermodynamic and transport 

properties in silicon nanospheres. Fraction vacancy has a role to play in regulating the heat 

capacity of nanospheres with fraction vacancy because it is found that for the same input 

heating conditions different nanospheres having different fraction vacancy heat up with 

different rates as is indicated by the temperature-time plot. While we find that higher 

vacancies slow down the rate of heating in general, we also find a certain temperature 

below which the role of fraction vacancies become more important (200 K here) and above 

which it is almost insignificant as to what the nanosphere vacancy is in relation to the 

heating profile of the system. Heating rate of nanospheres do not bear a linear relationship 

with fraction vacancy. This result could be useful in selecting material with certain fraction 

vacancy in applications like thermal transducers for temperature below a threshold limit 

of 200 K. Below the melting point of the silicon clusters and above room temperature, the 

rate of heating increases as the fraction vacancy increase, but after the melting point, this 

order reverses. Also, as the boiling point is approached there is again a shift in order of 

magnitude of the slopes of each fraction vacancy case. This information is useful from the 

point of view of material selection for a certain heating range based on fraction vacancy 

consideration. The overall energy of the silicon cluster system with varying vacancies 

show predictable trend that the nanosphere with the least vacancy has the least overall 

energy. However, the slopes of energy-time plot indicate that the rate of change of overall 

energy is impacted by fraction vacancy. With increase in fraction vacancy the nanosphere 

is in more diffused state at a given temperature and has a relatively higher tendency to 

reach phase change early compared to the case with lesser fraction vacancy. Thus, fraction 

vacancy of a nanosphere impacts its structural integrity since a nanosphere with higher 

fraction vacancy tends to disintegrate faster compared to the nanosphere having lesser 

fraction vacancy.  
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At 300 K, the self-diffusion coefficient, D values vary non-monotonically i.e. the D value 

increases as we go to 2.5 % vacancy from 0 % vacancy, then decreases at 5 % and is the 

least at 7.5 % before increasing steeply at 10 % and 20 % fraction vacancy.  The striking 

result is that beyond a certain threshold fraction vacancy, there is close to two order 

magnitude of increase in the self-diffusion coefficient. However, the D value 

monotonically increases, even though marginally, for these fraction vacancies at 2000 K 

suggesting that at temperatures beyond melting point of silicon, the effect of fraction 

vacancy on regulating self-diffusion is contrasting and less compared to that at room 

temperature.  

 

The value of the diffusion coefficient obtained using MEAM potential for the case of 0 Li 

and 0 % fraction vacancy is very much the same as that obtained using the Tersoff 

potential for silicon nanospheres. Thus, the values of diffusion coefficients of Si in Si 

obtained from these two force fields correlates very well. It is found that as fraction 

vacancy increases, the diffusion coefficient value of Li displays non-monotonic behavior 

for the same number of Li atoms. It first decreases to almost half of its value at 0 % fraction 

vacancy and then increases at 20 % fraction vacancy. The value of D at 20 % fraction 

vacancy is close to four-fifth of its value at 0 % fraction vacancy. Thus, we can say that 

the diffusion of dopant atoms too is impacted by the presence of fraction vacancy and the 

extent of this impact is not necessarily linear with fraction vacancy. .  

 

When charge equilibration technique was applied to a small silicon nanocluster containing 

13 silicon atoms and 3 lithium atoms having initial some initial charges, it was found that 

the final partial developed differently on different atoms as per the electronegativity 

equalization principle such that the final sum of charges was zero. Irrespective of the sign 

of initial charges on lithium and silicon, the final charges had all positive sign for lithium 

and negative sign for silicon atoms. Charge dynamics was relatively more stable at 1 fs as 

compared to that at 10 fs timestep of simulation. Charge equilibration impacted the 

thermodynamic and transport property of the silicon-lithium nanocluster as could be 
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concluded from temperature versus time, energy versus time, MSD versus time plots and 

the diffusion coefficient values. Charge equilibration elevated the energy and coulombic 

energy of the silicon-lithium nanocluster as compared to when no charge equilibration was 

employed. However, charge equilibration reduced the value of diffusion coefficient as 

compared to when no charge equilibration was employed. The reduction effect was more 

pronounced for the 10 fs timestep than 1 fs timestep. Thus, charge equilibration suggests 

at an approach for arriving at a more precise value of diffusion coefficient under practical 

conditions which may exist in cases where any given nanocluster is subjected to varying 

charge dynamics as is the case in a lithium-ion battery. 

 

We found that the difference in the energy of the silicon cage structure with positively 

charged lithium atom at its center of mass and the silicon cage structure with neutral 

lithium at the center of the mass of the cage to be 4.273 eV. This value points at the 

ionization energy of the structure. 
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