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ABSTRACT

This dissertation consists of three studies in different fields. (1) The first study aims to

evaluate the effect of wind turbine upgrades by devising a covariate matching method. The

proposed method performs straightforward comparison between treated and non-treated

outputs by re-organizing data records as if they were designed by randomized experiment.

Also, it considers multi-dependencies of dynamic atmosphere conditions by taking into ac-

count the priority order and interaction effect of factors. (2) The second study proposes the

functional data model to estimate a collection of monotone curves observed on an irregu-

lar and sparse grid. By integrating functional principal component analysis, not only does

the model describe the variation of curves by few important functions but also it jointly

estimates numerous monotone curves having a mean trend as well as individual-specific

features. Simulation study validates its superiority to other classical approaches. (3) The

last study investigates spatio-temporal binary data with a goal of describing infectious dis-

ease spreading pattern. An autologistic regressive model is proposed to illustrate spatial

dependence and predict the progression over space and time. The accuracy of model es-

timation is verified by simulation study. Additionally, a hidden Markov network model is

established from a slightly different standpoint on given data.
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1. INTRODUCTION

This dissertation consists of three independent studies. The first and second studies are

both motivated by wind power data while they have different perspectives and objectives.

The third study is motivated by amyotrophic lateral sclerosis (ALS) disease. Each of the

following chapters will describe each of these three studies, respectively, and we here

briefly address what specific question arises, how challenging research is, which statistical

field is applied, and so forth. The last chapter will provide summary and discussion of this

dissertation.

Chapter 2: Covariate Matching Methods for Testing and Quantifying Wind Tur-

bine Upgrades

In the wind industry, engineers perform retrofitting upgrades on in-service wind tur-

bines for the purpose of improving power production capability. People often wonder

about the upgrade effect: whether it indeed improves a turbine’s performance, and if so,

how much. Since atmosphere dynamics vary over time, specifically before and after up-

grade, it is critical to have environmental effects controlled for while comparing power

output difference. In this study, we devise a matching method to ensure the environmental

covariates to have comparable distribution profiles before and after the upgrade.

Chapter 3: Joint Estimation of Monotone Curves via Functional Principal Com-

ponent Analysis

The second study has a standpoint of functional data analysis in that wind power data

formulate so-called wind power curves, which explain functional relationship between

wind power output and wind speed input. A study on the estimation of power curves

is important to describe turbine performance in wind farm management, however, it is

1



challenging due to not only the monotonicity of power curves but also the large variance

and irregularity of data observations. We develop a functional principal component model

that can perform a joint estimation of a collection of monotone curves; also it can describe

important modes of curve variation at the same time.

Chaper 4: Statistical Modeling on Spatio-temporal Binary Data for Describing

Infectious Disease Spreading Pattern

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a neuro-

logical disease in which motor nerve cells in the brain and the spinal cord that undergo

degeneration. The onset of ALS tends to be focal, typically affecting first a particular

group of muscles in one body region and then spreading to other regions as the disease

progresses. Motivated by such ALS disease, the main interest in this study is to investi-

gate the progression and spreading patterns of any infectious disease over space and time,

provided that data are binary responses assessing whether infected or not. To that end, two

modeling approaches are proposed, based on different perspectives.
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2. COVARIATE MATCHING METHODS FOR TESTING AND QUANTIFYING

WIND TURBINE UPGRADES

2.1 Introduction

Wind power is one of the fastest growing renewable energy resources (DOE, 2015).

As large wind farms are built, cost considerations are essential for effective wind farm

management (Byon et al., 2013). One of the costly management actions for in-service

turbine fleet is to perform retrofitting upgrades, so that the outdated or malfunctioning

wind turbines can restore or even improve their power generation capability (Khalfallah

and Koliub, 2007). It is, therefore, not a surprise that operators want to know whether the

benefits from an upgrade outweigh the expenses of doing it, including material and labor

cost. This inquiry motivates researchers to scrutinize the turbine performances before and

after the action of upgrade. It becomes the research question we aim to answer in this

paper, and if an upgrade does indeed improve the turbine performances, we also want to

quantify the improvement.

When it comes to comparing turbine performances between the periods before and

after an upgrade, it is unreasonable to merely compare power output of the two periods

because wind power generation is affected by an array of environmental covariates, such

as wind speed, wind direction, temperature, air pressure and other atmosphere dynamics.

Each of the environmental covariates observed before the upgrade may probabilistically

distribute differently from the period after the upgrade. These incomparable input condi-

tions cause different wind power outputs and could mislead the conclusion: for example,

if too many windy days are there after the upgrade, high power generation might happen

due to not only the upgrade effect but more so due to the high wind speed. For a fair com-

parison, therefore, these environmental effects need to be controlled for while comparing

3
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Figure 2.1: Wind power curve. Wind turbine produces higher power as wind speed in-
creases. A turbine starts power production at the cut-in speed, reaches its full operation
at the rated speed, and stops producing power at and beyond the cut-out speed. Power
outputs are normalized by the rated power.
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power outputs.

To handle the problem explained above, the dominating school of thought is to estab-

lish a model estimating wind power outputs conditioned on the observations of environ-

mental covariates, so that the model can be used to compare the estimated power outputs

between two periods by setting the same input conditions. Such a model, if taking wind

speed as the single input, is known as the power curve, explaining the functional rela-

tionship between wind power output and wind speed input (Ackermann and Söder, 2005);

Figure 2.1 presents an example.

To estimate the power curve using the actual wind speed and power observations, the

International Electrotechnical Commission (IEC, 2005) recommended the use of a binning

method, which discretizes wind speed into intervals of, say, 0.5 meters per second (m/s)

width and then uses the wind powers and wind speeds, averaged in respective intervals,

to fit a smooth curve. Other curve fitting methods are also developed for estimating the

power curve based on wind speed (Yan et al., 2009; Kusiak et al., 2009; Uluyol et al., 2011;

Osadciw et al., 2010; Albers, 2004), but they may be different from the binning method in

specifics.

A common drawback of the IEC like approaches is that they all count the wind speed

too heavily as the factor driving the power production. While it is true that wind speed is

the most significant effect in wind power generation, other environmental effects cannot be

ignored. In an effort to include other environmental factors into an extended power curve

model, the effect of wind direction was incorporated, in addition to wind speed (Nielsen

et al., 2002; Sanchez, 2006; Pinson et al., 2008; Jeon and Taylor, 2012; Wan et al., 2010).

Most recently, Lee et al. (2015a) and Lee et al. (2015b) developed one of the first truly

multivariate-dependency wind power models that allows all aforementioned environmen-

tal covariates to be included. Understandably, such a model, if fitted separately before and

after an upgrade, could be used to compare a turbine’s performance by setting the input

5



conditions to the same values.

We in this paper advocate a different approach, and its basic idea is as follows. Sup-

pose that one can select a large enough subset of wind turbine data before and after an

upgrade, such that they have comparable distribution profiles of the environmental covari-

ates. Then one can simply compare the wind power outputs of the two periods within

that selected subset. The appeal of such a direct comparison approach is its simplicity.

Unlike the model-based approaches (fitting a power curve is to estimate a model), it relies

on fewer assumptions. Additionally, the direct comparison approach is quick to be carried

out in practice, and its working mechanism is easy to be understood by engineers. The last

point is important because a method is less likely to have real impact in practice until it is

understood and thus accepted by practitioners.

Covariate matching methods are rooted in the statistical literature. In stabilizing the

non-experimental discrepancy between the non-treated and treated subjects of observa-

tional data, Rubin (1973) adjusted the covariate distributions by selecting non-treated

subjects that have a similar covariate condition as that of the treated ones. Through the

process of matching, the non-treated and treated groups become only randomly different

on all background covariates, as if these covariates were designed by experiments. As a

result, the outcomes of the matched non-treated and treated groups, which keep the origi-

nally observed values, are comparable under the matched covariate conditions. For more

discussion on covariate matching methods, please refer to Stuart (2010).

In this paper, we propose a covariate matching method tailored towards the wind ap-

plication, in which, a turbine before the upgrade and the same turbine after the upgrade

correspond to the non-treated and treated subjects, respectively. We follow the four key

steps for a matching method, introduced in Stuart (2010), of which the first three repre-

sent the ‘design’ of a matching method, whereas the fourth represents the ‘analysis’ of the

matched outcomes:

6



1. Define the measure of closeness;

2. Implement a matching method;

3. Diagnose the quality of the resulting matched samples;

4. Analyze the outcome and estimate the treatment effect.

Specifically in our approach, we use a Mahalanobis distance (Mahalanobis, 1936) in Step

1 to determine whether an individual is a good match to another. In Step 2, we adopt an

idea of the k : 1 nearest neighbor matching method (Rubin, 1973). In Step 3, we rely pri-

marily on the density plots as our diagnostic tool. As the last step, we analyze the matched

outcomes through paired t-tests and compute the improvement an upgrade makes.

We want to note that in the field of wind power analysis, there exists ‘analog’ tech-

nique, which has a similar idea with matching methods in that it searches and utilizes a

set of observations that have the most similar weather condition to the specific time point.

Since the analog approach aims at forecasting, it then estimates the probability distribution

of the future state of the atmosphere (Delle Monache et al., 2013). The covariate matching

methods discussed above, including our proposed one differ from the analog forecasting

approach in that the covariate matching aims at investigating treatment effect, or specif-

ically, the upgrade effect in our context. They do so without any estimation procedure.

Another difference is that the analog method follows a timeline to find the most similar

weather path to the time of interest, whereas the covariate matching methods break the

time order of non-treated records to construct a counterpart of the treated ones.

The remainder of the paper is written in the following order. Section 2.2 first intro-

duces the data structure. In Section 2.3, we describe the proposed matching method for

handling the wind turbine data. Section 2.4 presents the outcome analysis, including the

quantification of the upgrade effect. Section 2.5 performs a sensitivity analysis to ver-
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ify our approach’s capability in estimating the upgrade effect and to compare it with a

power curve modeling approach. We make a few further remarks concerning the proposed

matching method in Section 2.6.

2.2 Data Structure

In this study, we use the data obtained from the authors of Lee et al. (2015b). For this

reason, we study the same two upgrade cases as in Lee et al. (2015b). We would like to

explain briefly the setting under which the data are obtained.

This study involves two pairs of turbines, which are distant apart enough, so that one

pair of turbines does not affect the other pair. Within a pair, one turbine is called a test

turbine on which an upgrade is applied, while the other one is called a control turbine of

which no change is made. We deem the two turbines in a pair are identical for practical

considerations, as they are of the same type from the same manufacturer and started their

service at the same time. Both turbines in each pair are also associated with a meteorolog-

ical mast, which houses sensors to measure several environmental conditions. Figure 2.2,

similar to Figure 5 in Lee et al. (2015b), illustrates the layout of the two turbine pairs and

their associated mast.

As in Lee et al. (2015b), we consider two types of upgrade: one is known as the

vortex generator installation (Øye, 1995) and the other one is a pitch angle adjustment

(Wang et al., 2012); both actions are believed to make the upgraded turbine produce more

wind power under the same environmental conditions. The vortex generator installation is

physically carried out on the test turbine in the experimental pair, whereas the pitch angle

adjustment is not physically carried out on a test turbine but simulated. We call the turbine

pair with the simulated upgrade the mimicry pair.

The data modification is done to the test turbine data in the mimicry pair as follows: the

actual wind turbine data, including both power production data and environmental mea-
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mimicry set

experimental set

mast test turbine                 control turbine

N

S
W E

Figure 2.2: Wind farm layout. This layout shows the relative locations of the turbines and
masts on the wind farm. Wind power production is measured at the respective turbine, and
environmental conditions are measured by the sensors at the nearby meteorological mast.
The experimental pair includes an actually-upgraded test turbine (a vortex generator in-
stallation) and its control turbine, while the mimicry pair includes an artificially-upgraded
test turbine (a pitch angle adjustment) and its control turbine.

surements, are taken from the actual turbine pair operation. Then, for the designated test

turbine, the power from that turbine on the range of wind speed over 9 m/s is increased by

5%, namely multiplied by a factor of 1.05; see Figure 2.3 for an illustration. This simula-

tion of pitch angle adjustment is motivated by Wang et al. (2012). Including the simulated

data set in our study helps us get a sense of how well a proposed method can detect a power

production change due to an upgrade and how accurately it can quantify the change.

We denote the power produced by a turbine (in kilowatts) by P , so that P ctrl and P test

are associated with a control turbine and a test turbine, respectively. In our reporting of the

analysis, including in the power curve plots, the power values are normalized by the rated

power, to protect the identity of the turbine manufacturer and the wind farm operator.

The environmental conditions directly measured at a meteorological mast are: wind
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Figure 2.3: Modification in the mimicry test turbine data as if a pitch angle adjustment
were applied. The power on the range of wind speed over 9 m/s is increased by 5%.

speed, V , wind direction, D, ambient temperature, T , and air pressure, Q. Using these

measurements, values of additional environmental covariates can be computed, including

air density, A, wind shear, W , and turbulence intensity, I , using the following formulas:

• air density, A = Q
R·T (kg/m3), where R = 287 (Joule/(kg·K)) is a gas constant;

• wind shear, W = ln(V2/V1)
ln(g2/g1)

, which represents the vertical variation of wind, where V1 and

V2 are the wind speeds measured at heights g1 = 80 m and g2 = 50 m respectively;

• turbulence intensity, I = σ̂
V , where σ̂ is the standard deviation of wind speed in a 10-minute

duration.

The covariates W and I measure certain aspects of the atmospheric dynamics that wind

speed itself does not fully represent. Air density represents the combined effect of temper-

ature and pressure; once air density is included to explain wind power output, temperature

10



and pressure are no longer needed.

As such, each data set has five explanatory covariates, (V,D,A,W, I), and two power

outcomes, (P ctrl, P test). Note that wind turbine data are arranged into 10-min blocks, so

that the values of (V,D,A,W ) are the averages of the 10-minute intervals and I is the

ratio of the standard deviation of wind speed in a 10-min block over the average wind

speed of the same block. This 10-min block data arrangement is commonly used in the

wind industry.

For the experimental pair, we have 14 months worth of data in the non-treated period

(i.e., before the upgrade) and 5 weeks worth of data in the treated period (i.e., after the

upgrade), whereas for the mimicry pair, we have 8 months worth of data in the non-treated

period and 7 weeks in the treated period. Note that it is preferable to have a much larger

set in the non-treated period than the treated. It is because the sufficiently large candidate

pool to match can avoid too many of repeatedly selected individuals, and therefore the

matched subset of non-treated period reflects reality such as varying weather conditions.

2.3 Matching Methods

Our investigation starts off with exploring the discrepancy of the covariate distribu-

tions. Figure 2.4 demonstrates for each covariate the difference in empirically fitted den-

sity functions between the non-treated and treated periods. The last subplot in both the

upper and lower panel is the density function of the power output of the respective control

turbine. For a control turbine, as it is not modified, the distribution of its power output is

supposed to be comparable, should the environmental conditions be maintained the same.

But the data show otherwise, suggesting the existence of environmental influence, which

confounds the upgrade effect in power output.

Let us introduce a few notations and terminologies. The environmental covariate

vector is denoted by X, and X = (V,D,A,W, I)T in this study but it can include more
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(b) Mimicry data

Figure 2.4: Overlapped density functions of unmatched covariates and power output of
control turbine; solid line = before upgrade (non-treated), dashed line = after upgrade
(treated).
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variables, should their measurements be available. The data pair (X, P ) forms a data

record, containing the value of the environmental covariates and its corresponding power

output. The data record collected before the upgrade forms the non-treated data group,

whereas those collected after the upgrade forms the treated group. Let Sbef and Saft be

the index set of the data records in the non-treated and treated group, respectively. Let YS

denote the values of covariate Y for data indices in S. For example, VSbef is the vector of

all wind speed values that are observed before the upgrade.

This section presents the matching method to create a comparable distribution profiles

of covariates. Before going through the four-step procedure of developing a matching

method, as mentioned in Section 2.1, we first describe the preprocessing steps in Sec-

tion 2.3.1 and 2.3.2. Then, Section 2.3.3 - 2.3.5 describes Step 1, 2 and 3, respectively.

Step 4 is discussed in Section 2.4.

2.3.1 Hierarchical Subgrouping

The first action of preprocessing is to narrow down the set from which we will perform

the data record matching subsequently. The reason for this preprocessing is to alleviate

the computational demand arising from exhausting the pairwise combinations when com-

paring data records in two large size data sets.

This objective is fulfilled via a procedure we label as the hierarchical subgrouping. The

idea goes as follows.

1. Locate a data record in the treated group, Saft, and label it by the index j.

2. Select one of the covariates, for instance, wind speed, V , and designate it as the

variable on which we measure similarity between two data records.

3. Go through the data records in the non-treated group, Sbef, by selecting the subset of

data records such that the difference in terms of the designated covariate between the
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data record j in Saft and any one of the records in Sbef is smaller than a pre-specified

threshold. When V is in fact the one designated in Step 2, the resulting subset is

then labeled by placing V as the subscript to S, namely SV .

4. Next, designate another covariate and use it to prune SV in the same way as one

prunes Sbef into SV in Step 3. This produces a smaller subset nested within SV .

Then continue with another covariate until all covariates are used.

The order we apply the covariates in the above hierarchical subgrouping procedure is based

on the importance of them in affecting wind power output, which, according to Lee et al.

(2015a), is V , D, A, W , and I , from the most important to the least important. We will

discuss more about the matching order of covariates in Section 2.6.1. Also note that wind

direction D is a circular variable and the absolute difference between two angular degrees

is between 0 and π; we then adopt a circular variable formula from Jammalamadaka and

Sengupta (2001) to calculate the difference between two D values.

The above process can also be written in set representation. For data record j in Saft,

we define the subsets of data records in Sbef, hierarchically chosen, as

SV := {i ∈ Sbef : |Vi − Vj| < αV σ(VSbef)};

SD := {i ∈ SV : π − |π − |Di −Dj|| < αDσ(DSV )};

SA := {i ∈ SD : |Ai − Aj| < αAσ(ASD)};

SW := {i ∈ SA : |Wi −Wj| < αWσ(WSA)};

SI := {i ∈ SW : |Ii − Ij| < αIσ(ISW )},

where σ(Y ) is the standard deviation of Y and αY is the thresholding coefficient. We

discuss how to determine α’s in Section 2.3.5. This hierarchical subgrouping establishes

the subsets nested as such, SI ⊂ SW ⊂ SA ⊂ SD ⊂ SV ⊂ Sbef. Consequently, data
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records in the last hierarchical set SI have the closest environmental conditions compared

with data record j in Saft.

This hierarchical subgrouping procedure shares certain similarity with the coarsened

exact matching (CEM) approach (Iacus et al., 2012) in that it performs the data record

matching on broader ranges of covariates and builds factor-sized strata. Unlike CEM,

however, the strata from our procedure have a hierarchical, nested structure that CEM

does not have.

2.3.2 Unmeasured Factors

There could be other environmental conditions, in addition to V,D,A,W and I , that

affect wind power production, but they are not measured. For instance, humidity is one

variable that was shown to have appreciable impact on wind power production for offshore

wind turbines (Lee et al., 2015a) but for the wind farm data we worked with, the humidity

was not measured.

The possible existence of unmeasured environmental factors presents the risk of caus-

ing distortion in power output comparison, even when the aforementioned measured en-

vironmental factors are matched between the treated and non-treated groups. In order to

alleviate this risk, we make use of the power output of the control turbine in each turbine

pair, P ctrl. What we propose to do is to further narrow down from the most nested sub-

set produced in Section 2.3.1, SI , by selecting those which have a comparable P ctrl value

to that of data record j in Saft. Specifically, this amounts to continuing the hierarchical

subgrouping action in Section 2.3.1, producing a SP , subset of SI , based on P ctrl, such

that

SP := {i ∈ SI : |P ctrl
i − P ctrl

j | < αPσ(P ctrl
SI

)}.
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We perform this procedure for all data records in the treated group so that each j in

Saft has its matched set SP,j . In the case that SP,j is an empty set, we then discard the

respective index j from Saft. Because of this, Saft may shrink after the subgrouping steps.

What we do in this subsection is essentially to use the control turbine to calibrate the

conditions affecting the test turbine. A similar idea was tried by Albers (2004) but his

approach is different from ours. Albers used a power curve based approach, in which the

author fitted a relative power curve between the control and test turbines and hoped using

that can calibrate the conditions for the test turbine. The rationale behind Albers’s relative

power curve is not as transparent as our subgrouping procedure and that approach is still

model based rather than direct comparison; in fact, it involved more modeling steps in its

analysis.

2.3.3 Mahalanobis Distance

SP,j is the set of candidate matches of data records in the non-treated group to data

record j in the treated group. Our next goal is to choose the data record in SP,j that is

the closest to data record j. For this purpose, we need to define a dissimilarity measure to

quantify the closeness between two data records.

We decide to use the Mahalanobis distance (Mahalanobis, 1936) as our dissimilarity

measure, which is popularly used in the context of multivariate analysis. It re-weighs

the Euclidean distance between two covariate vectors with the reciprocal of a variance-

covariance matrix. Before presenting the definition of the Mahalanobis distance between

two wind turbine data records, we first introduce a transformed covariate vector, denoted

by X∗, such that

X∗ = (V cosD, V sinD,A,W, I)T .

Using X∗ makes it easier to deal with the circular wind direction variable D. The Maha-

lanobis distance (MDij) between data record j in Saft and data record i in SP,j is defined
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as

MDij :=
√

(X∗i −X∗j)
TΣ−1(X∗i −X∗j),

where Σ = Cov(X∗Sbef
). Obviously, the larger an MD value, the more dissimilar two data

records.

Alternatively, propensity scores can be used as a dissimilarity measure (Rosenbaum

and Rubin, 1983). Propensity scores have an advantage for a large number of covariates,

whereas the Mahalanobis distance works quite well when there are fewer than eight con-

tinuous covariates (Zhao, 2004). Moreover, since the Mahalanobis distance can reflect an

interaction among covariates, which indeed exists in our data as described in Section 2.6.1,

we choose the Mahalanobis distance rather than the propensity scores.

2.3.4 One-to-one Matching

As the simplest form of k : 1 nearest neighbor matching, introduced by Rubin (1973),

we perform 1 : 1 matching; it selects for each treated subject j the non-treated subject

with the smallest distance from j. There is a difference in our matching in that the size of

matching candidates for each treated subject is primarily reduced by the previous steps, so

there is no need to search within the entire non-treated group but within its subgroup.

In set representation, given SP,j and MDij from Section 2.3.2 and 2.3.3, respectively, we

select data record ij in SP,j that has the smallest Mahalanobis distance as the best match

to data record j in Saft. The data record ij is found through

ij = arg min
i∈SP,j

MDij,

for each j in Saft. In case that two or more are tied for the smallest value, we choose one of

them randomly. After this step, each data record j in the treated group has one non-treated

counterpart ij , with the exception of those already discarded during the subgrouping step.

17



We define an index set of the matched data records from the non-treated group as S∗bef :=

{ij ∈ Sbef | j ∈ Saft}. As such, Saft is now individually paired to S∗bef.

It should be noted that we allow replacement to achieve a fair matching because there

is no presumed order to be paired in advance among data records in Saft. In other words, ij

is not eliminated from the candidate set SP , even though it has matched to j once. When

the next data record j+ 1 is selected from Saft, the same non-treated data i is thus possible

to be matched again. We will discuss further issues related to matching with replacement

in Section 2.6.2.

2.3.5 Diagnostic

After performing the matching procedure, it is crucial to diagnose how much discrep-

ancy of the covariate distributions has been removed, as compared to the unmatched data

set. Only after the diagnostics signifies a sufficient improvement, an outcome analysis is

then ready to perform in the next step.

We measure the discrepancy of distribution in two ways, numerically and graphically.

For numerical diagnostics, the standardized difference of means (SDM) is used as a mea-

sure of the dissimilarity of a covariate between the treated and non-treated groups (Rosen-

baum and Rubin, 1985):
Y Saft − Y Sbef

σ(YSaft)
,

where Y is one of the covariates, and Y S represents the average of Y in the set S. The

SDM decreases if the matching procedure indeed reduces the discrepancy between the two

groups. As shown in Table 2.1, SDM decreases significantly for all covariates. A previous

study (Rubin, 2001) found that SDM should be less than 0.25 to be trustworthy adjustment.

Otherwise, the differences between the distributions of covariates in the two groups are

regarded as substantial.

For graphical diagnostics, we overlap the empirical density function of each covari-
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Table 2.1: Numerical diagnostics; see the decrease of SDM after matching; the matching
procedure indeed reduces the discrepancy between the two periods.

V D A W I P ctrl

Unmatched 0.6685 0.0803 3.2715 0.2312 0.1382 0.8132
Matched 0.0142 0.0026 0.0589 0.0721 0.0003 0.0083

(a) Experimental data

V D A W I P ctrl

Unmatched 0.0605 0.1647 1.6060 0.2759 0.4141 0.0798
Matched 0.0077 0.0029 0.0263 0.0158 0.0111 0.0036

(b) Mimicry data

ate as well as that of the control turbine power, associated with the treated group and the

matched subset of non-treated group. We can visually inspect the discrepancy between

the two density functions and see if they are similar enough. An example is shown in Fig-

ure 2.5, in which we observe well-matched distributions of covariates after the matching

process. These improvements in term of distribution similarity are clear when compared

to Figure 2.4, which demonstrates the dissimilarity in covariate distributions of the un-

matched original set.

If the diagnostic procedure does not provide credible evidence to perform an outcome

analysis, for instance, SDM increases or exceeds 0.25, or any non-overlapped bumps is

notable in matched density plots, we then return to Section 2.3.1 and 2.3.2 and adjust the

degree of truncation α’s until well-matched set is obtained. It should also be noted that, if

the size of Saft after matching loses too many data records, and this can happen when too

small α’s are applied, we suggest to enlarge the size of Saft prior to the matching process.

It is because weather conditions of matched Saft are desired to be representative of general

atmosphere spectrum, not of specific state of the weather.
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(b) Mimicry data

Figure 2.5: Overlapped density functions of matched covariates as well as that of power
output of control turbine; solid line = before upgrade (non-treated), dashed line = after
upgrade (treated). Compare to Figure 2.4, notice the improvement in agreement between
the pairs of density plots.
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2.4 Outcome Analysis

This section describes the outcome analysis, Step 4 of a matching method as outlined

in Section 2.1. It fulfills the research goal of testing the significance of the upgrade effect

and quantifying the improvement in terms of extra power production under comparable

environmental conditions.

2.4.1 Paired t-tests

From the matching procedure, we have the paired indices of data records of the two

groups, (ij, j) where ij ∈ S∗bef and j ∈ Saft. Using these paired indices, we can retrieve

the paired test power outcomes, (P test
ij
, P test

j ). The power output pair can be interpreted

as repeated measurements under comparable environmental conditions, which makes the

power output also comparable.

As such, we apply a paired t-test to analyze the difference of the two paired test out-

comes, Dj = P test
j − P test

ij
, since the assumption of independence is met – this will be re-

viewed in Section 2.6.2. It tests the null hypothesis that the expected mean of differences

is zero, H0 : E(D) = 0 where D is the sample mean of {Dj; j ∈ Saft}. Accordingly, the

test statistic is

t =
D

s/
√
n

where s and n is the sample standard deviation and the sample size of {Dj; j ∈ Saft},

respectively. If the test concludes a significant positive mean difference, the upgrade on

the test turbine is then concluded as effective.

In Table 2.2, the first and second cells show the results from the paired t-test. In both

datasets, the tests show a significant effect due to upgrade with 0.05 level of significance.

We know that the simulated pitch angle adjustment upgrade has an effect less than 5% and

the VG effect on this particular pair of turbines could be even smaller. So the analysis sug-
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Table 2.2: Outcome analysis; paired t-tests and upgrade quantification

t-stat p-value UPG
3.015 0.003 1.13%

(a) Experimental data

t-stat p-value UPG
7.447 < 0.0001 3.16%

(b) Mimicry data

gests that the proposed method is sensitive enough to a moderate change of that magnitude

in power production.

2.4.2 Quantification

Reporting a percentage value representing the relative increase in power production

is a typical way to quantify the improvement of the test turbine’s performance after the

upgrade. As such, we quantify the upgrade effect (UPG) by computing

UPG :=

∑
j∈Saft

(P test
j − P test

ij
)∑

j∈Saft
P test
ij

× 100,

where ij ∈ S∗bef is the counterpart of j ∈ Saft.

The quantification results are shown in the third cell of Table 2.2. Recall we have in-

creased the test turbine power in the mimicry pair, by 5% for wind speed 9 m/s and above,

which translates to a 3.11% increase for the whole wind spectrum. Our quantification

shows an improvement of 3.16% overall, which appears to present a fair agreement with

the simulated amount. If the quantification amount is to be trusted, the upgrade of vortex

generator installation enables a turbine to produce 1.13% more wind power than without

the upgrade.

2.4.3 Mean Comparison

In Figure 2.6a, we present the boxplot of P test data for both datasets under the un-

matched conditions (i.e., original data) and the matched conditions (i.e., a subset of the
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original data). We noticed that unmatched data of experimental set show a higher mean

power before the upgrade than after. This mean power pattern is, however, reversed on

the matched data, as expected. The interpretation of the mean power pattern of the un-

matched data is obvious: the difference in environmental covariates causes the wind tur-

bine to produce, on average, more wind power in the before-upgrade period, so much so

that the upgrade effect is overwhelmed and not detectable. Even though the unmatched

data seemingly shows improvement in power production like mimicry data in Figure 2.6b,

the imbalanced profile of weather conditions should be noticed and so the matching is

required to stabilize their discrepancy. This analysis demonstrates the benefit of execut-

ing this matching procedure before comparing test power outputs and quantifying its net

effect.

2.5 Sensitivity Analysis

Recall the mimicry pair is analyzed for the purpose of getting a sense of how well

a proposed method can estimate a power production change, owing to turbine upgrade.

While only 5% mimicked improvement is addressed when illustrating the methodology

in Section 2.3 and 2.4, this section re-performs the matching on various mimic degrees.

There are two reasons for this practice: (a) to see how sensitive the proposed method is

in estimating a power production change at various magnitudes of the change (in Sec-

tion 2.5.1), and (b) to compare the proposed matching method to the kernel plus method

in Lee et al. (2015b) (in Section 2.5.2).

2.5.1 Sensitivity of Estimating Changes

In the mimicry case, the nominal power increase rate, denoted by r, is applied only

to a partial range of wind power outputs corresponding to wind speed higher than 9 m/s.

But when quantification is implemented, it is done to the power outputs under the entire

spectrum of wind speed. Therefore, when it comes to verifying the estimation quality, we
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Figure 2.6: Boxplots of normalized test power values; x points, referred to by the label
written at the right above in percentage, are the mean of each normalized P test; the upgrade
effect is revealed in the matched test powers while confounded in the unmatched.
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Table 2.3: r = nominal power improvement rate; r′ = effective power improvement rate;
UPG and DIFF* estimates r′ through the matching method and the kernel plus method,
respectively.

r 2% 3% 4% 5% 6% 7% 8% 9%
r′ 1.25% 1.87% 2.49% 3.11% 3.74% 4.36% 4.98% 5.60%
UPG 1.74% 2.21% 2.68% 3.16% 3.63% 4.11% 4.58% 5.05%
UPG/r′ 1.4 1.2 1.1 1.0 1.0 0.9 0.9 0.9
DIFF* 1.97% 2.56% 3.15% 3.73% 4.30% 4.86% 5.42% 5.97%
DIFF*/r′ 1.6 1.4 1.3 1.2 1.1 1.1 1.1 1.1

should compute the effective power increase rate, denoted by r′, such that

r′ :=

∑
j∈Saft

P test
j {1 + r · I(V test

j > 9)} −
∑

j∈Saft
P test
j∑

j∈Saft
P test
j

.

As shown in Table 2.3, as r changes from 2% to 9%, r′ changes from 1.25% to 5.6%.

This range of power improvement is considered practical for detection purpose. If the

improvement is smaller than 1%, it is going to be really hard for detection, and given the

amount of noise in wind and power measurements, no known method can do an adequate

job. On the other hand, when the improvement is greater than 6%, the level of improvement

becomes a bit unrealistic due to technology limitation, and the detection job also becomes

easier. It is possible that even the standard IEC binning method can detect this level of

change. That is why we choose this specific range to test the sensitivity of our method.

The middle two rows in Table 2.3 compare UPG to r′. We notice that UPG considerably

overestimates r′ when it is small (smaller than 2%) with the overestimation as much as

40% for the smallest change at 1.25%. But the estimation quality of UPG gets stabilized

as r′ increases. In fact, for the last six cases, the difference between UPG and r′ is within

10%. This result reflects the reality that the smaller degree of turbine upgrade is indeed

difficult to estimate and demonstrates the merit of the proposed matching method.
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2.5.2 Comparison between Matching and Kernel Plus Method

The best benchmark method for upgrade quantification is the kernel plus method pre-

sented in Lee et al. (2015b). In this subsection, we compare the covariate matching method

with the kernel plus method.

The metric of turbine improvement used in Lee et al. (2015b) is labeled as DIFF, a per-

centage measuring the power production difference before and after the turbine upgrade

and similar to UPG in spirit. But there is a subtle difference that needs to be addressed.

The kernel plus method is applied to each turbine and get their respective DIFF value,

namely DIFFtest and DIFFctrl, whereas obtaining UPG already involves the use of control

turbine as a baseline reference through the matching process. We believe that for a fair

comparison, the metric from the kernel plus method, to be compared with UPG, should be

DIFF* := DIFFtest - DIFFctrl that also adjusts the test turbine outcome using the control

turbine as a baseline.

This adjusted metric DIFF* is then estimated for each r, or r′, and compared to r′ in

the last two rows of Table 2.3. As we notice here, the kernel plus also considerably over-

estimates the small r′ values but does a better job when r′ gets bigger. But the degree of

overestimation by the kernel plus method is severer, and the range of its estimation error

greater than 10% is broader, than the covariate matching method. For this practical range

of improvement rate, the covariate matching method outperforms the kernel plus method.

If applied to the experimental turbine pair, our analysis in Section 2.4.2 shows a 1.13%

improvement. The DIFF* obtained by applying the kernel plus method to the same set

of data is 1.48%. The results are expected as we know that the kernel plus tends to over-

estimate more, and it is less accurate for either method to estimate a small improvement,

which in this case could be smaller than 1%.

Please note that the DIFF* values reported here are different from those reported in
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Lee et al. (2015b). This discrepancy is due to data use difference: whereas Lee et al.

(2015b) use 2-week-after-upgrade worth of data in their analysis, we used in this study 7-

week-after-upgrade worth of data for the mimicry turbine pair and 5-week-after-upgrade

worth of data for the experimental pair, as our covariate matching requires a longer dura-

tion to ensure a sufficient amount of data.

2.6 Remarks

This section discusses further a few issues arising in our research undertaking. Sec-

tion 2.6.1 reviews in more details the priority order and interaction effects of environmen-

tal covariates as well as how the right order can benefit analyses. Section 2.6.2 discusses

the issue of replacement while matching data records and affirms how the independence

assumption of t-test is satisfied.

2.6.1 Priority Order and Interaction of Covariates

The priority order of environmental covariates used in the hierarchical subgrouping

procedure in Section 2.3.1 is in the order of wind speed, wind direction, air density, wind

shear and turbulence intensity.

The importance of wind speed V is obvious and it is universally agreed to be the most

important factor affecting wind power production. Wind direction D also matters a great

deal even though wind turbines have a yaw control mechanism that is supposedly to track

the wind direction and point the turbine towards the direction from which the wind blows.

Nonetheless, a score of studies showed that this tracking is not perfect, and consequently,

including wind direction as one covariate can significantly reduce the prediction error of

wind power (Lee et al., 2015a; Jeon and Taylor, 2012; Wan et al., 2010). Wind speed and

wind direction are two most important factors affecting wind power output.

The effect of next tier of factors, namely air density A, wind shear W and turbulence

intensity I , come more in the form of interacting with the two main effects, wind speed
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and wind direction. Lee et al. (2015a) illustrated, in Figure 4 of their paper, the existence

of interaction effects between these second-tier factors and wind speed/direction.

We believe the nested structure of our hierarchical subgrouping helps handle the prior-

ity of main and interacting covariates. The variance-covariance matrix in the Mahalanobis

distance (Section 2.3.3) also captures the interaction effects through the covariance terms

and incorporates them in the calculation of the dissimilarity measure.

If a priority order is poorly pre-defined, the quality of matching may not be satisfac-

tory compared to a well-defined order. To show numerical evidence of this argument, we

conducted the matching on the mimicry set with a reversed order, P ctrl, I,W,A,D, V , and

their numerical diagnostics are shown in Table 2.4. Comparing this result to Table 2.1 (b),

SDMs of D, A, W and P ctrl with the reversed order are greater than those with the proper

order. It should be noted that degrees of truncation in Table 2.4 are same as those in Ta-

ble 2.1 for a fair comparison. However, as long as those SDMs are acceptable to perform

an outcome analysis, the significance and quantification of turbine improvement does not

change dramatically. The analysis using the reversed order leads to a UPG = 3.33% with

p-value < .0001, which is similar to that with the right order (UPG = 3.16%, while true

value = 3.11%).

Still, although the outcome analysis appears to show certain degree of robust under

acceptable SDMs, one might as well make use of the priority information, if known, since

it helps find the acceptable matched set much more efficiently. If a priority order of co-

variates is unknown, it is recommended to perform some statistical analysis using, for

example, random forests (Breiman, 2001), which can measure variable importance, before

applying the matching.
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Table 2.4: Numerical diagnostics when matching with a reversed priority order; P ctrl, I ,
W , A, D, V ; notice less decreased SDMs of D,A,W and P ctrl than those of Table 2.1 (b),
which implies poorly defined order may lead unsatisfactory quality of matching.

V D A W I P ctrl

Unmatched 0.0605 0.1647 1.6060 0.2759 0.4141 0.0798
Matched 0.0022 0.0036 0.0377 0.0208 0.0055 0.0085

2.6.2 Matching with Replacement and Independence

Recall in Section 2.3.4 that we allow replacement when carrying out the matching pro-

cedure. Because of this, a data record in the non-treated dataset Sbef could possibly be

paired with two or more data records in the treated dataset Saft.

A potential problem of allowing replacement is that the replication of the same data

records may cause a violation of independence of outcome variables. In order to settle this

issue, information about frequency weights, such as the relative number of replications,

may need to be taken into account (Stuart, 2010).

In our application, however, replacement does not seem to cause too much of a prob-

lem, for the following reasons: (a) such replication happens rather rarely by starting with

the much larger set of non-treated period than the treated; (b) we analyze the differences

between the paired power outputs. The dependency caused by replications, if any, is con-

siderably weakened as the differences are taken out of the treated and non-treated out-

comes, because the treated outcomes do not have replications and are thus independent.

Consequently, t-test in Section 2.4.1 is applicable since differences {Dj; j ∈ Saft} are

independently distributed.
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3. JOINT ESTIMATION OF MONOTONE CURVES VIA FUNCTIONAL

PRINCIPAL COMPONENT ANALYSIS

3.1 Introduction

3.1.1 Research Problem and Motivating Example

There are many curve fitting techniques for function estimation; however, they are

not always easily applied to real data for some practical restrictions, such as curve shape

constraints, incomplete or noisy observations of each curve, and so on. Moreover, research

on principal component analysis for functional data is usually studied when the changes of

many curves are of interest; it is rarely done for monotone curves, though. For example,

we introduce the ‘wind power curve’, coming from the industrial engineering fields, which

originally motivates our study. The wind power curve explains the functional relationship

between wind power output and wind speed input (Ackermann and Söder, 2005); see

Figure 2.1. For effective wind farm management, operators are interested in estimating

power curves to examine turbine performances.

There are several practical challenges in estimating wind power curves. Wind power

curves are theoretically smooth and monotone increasing under the same conditions; a

wind turbine produces higher power as wind speed increases. However, because of mea-

surement errors or other environmental factors, which possibly affect the power produc-

tion, wind power outputs have certain amounts of errors towards smooth power curve.

Moreover, the input variable, wind speed, may have different ranges over curves and its

observed values are sparse and irregular; wind blows disorderly. Figure 3.1 shows two

examples of observed power curve trajectories to promote better understanding of these

challenges. In this study, a question arises to estimate numerous monotone curves while

their observed points are irregular and sparse on different ranges over curves.
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(a) (b)

Figure 3.1: Challenges in estimating wind power curves. (a) Irregular observations with
noise. (b) Deficient observations to display a curve on an entire range during the certain
period.

Likewise, not only monotone assumption but also some practical circumstances can

matter in estimating curves. For the purpose of stable estimation and rich interpretation,

we propose in this study functional principal components models to estimate monotone

curves. By virtue of principal component analysis, we estimate numerous curves at once,

rather than single curves separately. Moreover, the curve variations can be represented in

a few key functions, a mean function and principal component functions, and individual

characteristics of each curve can also be preserved through principal component scores.

In brief, our problem basically consists of two parts, smooth monotone function esti-

mation and principal component analysis for functional data. Although many researchers

have developed models for monotone function estimation with typical regularization tech-

niques, and independently of monotonicity, principal component models for functional

data, never before have principal component model for monotone curves been developed.
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We propose the model that can do both simultaneously. In the following sections, we

review the literature about monotonicity and functional principal component models.

3.1.2 Smooth Strictly Monotone Function Estimation

The monotonicity is often assumed on curves in various fields. First, the cumulative

distribution function (CDF) is monotone increasing since the probability density function

(PDF), the derivative of CDF, is always non-negative. As another example, the survival

function, the probability function that a patient will survive beyond a specific time, is

assumed to be monotone decreasing since function values are cumulative failures up to a

specific time. The growth curves can also be a good example for monotone curves. In

like manner, if any objects of interest have accumulative features over a continuum, the

assumption of monotonicity is natural.

Many researchers have developed methods for estimating smooth monotone curves.

Under the spline-based techniques, most of studies dealt with constrained coefficients esti-

mation or constrained optimization techniques; see Ramsay (1988), Kelly and Rice (1990),

Pya and Wood (2015). There are other schools of thought that analyze monotonicity with

kernel-based viewpoint; Hall and Huang (2001), Hall and Müller (2003), and Mammen

and Yu (2007) studied monotonicity in the nonlinear monotone regression framework.

We develop the basis spline-based model that does not require the constraint on basis

coefficients, but preliminarily restricts the class of curves to liberate coefficient estimation

from constraints. Specifically, we adopt the class of monotone functions, sayM, suggested

by Ramsay (1998), that consists of functions m for which

1. logDm is differentiable;

2. D logDm = D2m/Dm is Lebesgue square integrable,

where Dr refers to a differential operator of order r. These conditions ensure that m is
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strictly monotone increasing and its first derivative is smooth and bounded almost every-

where. Ramsay (1998) also proves the theorem that represents the functions in this class,

m ∈M, with a simple linear differential equation as

m = β0 + β1D
−1 expD−1w, (3.1)

where β0 and β1 are arbitrary constants and the function w is a Lebesgue square integrable

function such thatD2m/Dm. The coefficient function w measures the ‘relative curvature’

of m, in that it assesses the size of the curvature D2m relative to the slope Dm. This can

also be written in the general form of integrals rather than differential equation as,

m(t) = β0 + β1

∫ t

t0

exp

∫ s

t0

w(u) du ds, (3.1′)

where t0 is a lower limit of integration. See Ramsay (1998) and Ramsay (2006) for details

about this monotone function representation.

Importantly, the relative curvature w in (3.1) can capture the particular shape of mono-

tone curve m. Figure 3.2 illustrates four example curves of w and their corresponding m

to show how monotone curves look like according to their relative curvatures. In the case

of constant w as in (a) and (b), an explicit form of m can be obtained by simple calculus;

zero w(t) = 0 leads a straight line m(t) = t, while non-zero constant w(t) = c corre-

sponds to an exponentially increasing curve, m(t) = 1/c exp ct. The more sophisticated

form of monotone curves can also be represented by a certain form of relative curvature

curves as shown in (c) and (d); even though there are no explicit forms of m. Note that we

set β0 = 1 and β1 = 1 in these figures to describe curves in a clear way.

Since a monotone curvem is now represented by an arbitrary functionw in the class (3.1),

Ramsay (1998) expands w to a set of smooth basis functions without any constraints. The
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(a) w(t) = 0; m(t) = t (b) w(t) = 2; m(t) = .5 exp 2t

(c) w(t) = 10 sin 2πt (d) w(t) = 5 cos 2πt - 5

Figure 3.2: The relative curvature w according to the monotone curve m; See how mono-
tone curves look like according to their corresponding relative curvatures.

basis coefficients are estimated by solving non-linear least square problems, and β’s are

obtained by linear regression.

Although the approach of Ramsay (1998) has an advantage of converting the problem

of estimating a constrained function into that of estimating an unconstrained function, it

has a limit in that it can only estimate a single monotone curve while we aim to estimate

a collection of monotone curves. It could be a way to apply Ramsay (1998) to each curve

separately, however, this may cause poor estimation; for example, when a curve has only

few data points as in Figure 3.1 (b), the unique representation for every curves would be

hardly estimated if it is estimated alone.

3.1.3 Functional Principal Component Analysis

Suppose an insufficiently-observed curve can borrow the information from entire data,

the estimated curve would have a reasonable shape as other curves while preserving its

own feature. For that end, we not only adopt Ramsay’s monotone function class but also
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make use of functional principal component analysis (fPCA) to develop our model, which

will be introduced in this section.

Principal component analysis (PCA) is broadly used to reduce dimension of data by

a few number of important modes of variation from the mean. The traditional approach

for PCA on functional data, as illustrated in Ramsay (2006), has a similar idea with the

classical multivariate case but merely summation changes into integration. As multivariate

PCA examines variance-covariance matrix and identifies eigenvectors, functional PCA

examines variance-covariance function instead and identifies eigenfunctions as principal

component functions. However, it is limited to the case that all curves are completely

observed at an equally-spaced grid; see also Rao (1958), Besse and Ramsay (1986), Castro

et al. (1986), Jones and Rice (1992). Although equally-spaced functional data can be

augmented by projecting individually fitted curves on a fine grid, it does yet not make

optimal use of the available information because it treats estimated curves as if they were

observed; as James et al. (2000) addressed.

To overcome the drawbacks of traditional functional PCA, Staniswalis and Lee (1998),

Besse et al. (1997) and Yao et al. (2005) proposed kernel-based approach for functional

data on an irregular grid. On the other hand, James et al. (2000), Rice and Wu (2001),

Zhou et al. (2008) and Guo et al. (2015) developed spline-based approaches for sparsely

and unequally sampled curves. Both concern smoothness in estimating curves, kernel

methods perform local smoothing by controlling a bandwidth while spline methods do

smoothing in a global sense.

We adopt in this study spline model-based approaches to present fPCA. The reduce

rank model suggested by James et al. (2000) can be briefly described as the followings; let
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yi(t) be a measurement at time t from ith curve,

yi(t) = µ(t) + f(t)Tαi + εi(t); (3.2)

= µ(t) +
K∑
k=1

fk(t)αik + εi(t)

subject to
∫
fkfl = 0 ∀k 6= l and

∫
f 2
k = 1 for ∀k,

where µ(t) is an overall mean function, f(t) = {f1(t), . . . , fK(t)}T is a vector of prin-

cipal component functions, and εi(t) is a random measurement error. The random vector

αi = (αi1, . . . , αiK)T has mean zero and covariance Σ which is assumed to be diago-

nal for the simplicity. The constraints at the bottom line of (3.2) are necessary for the

orthonormality of f , that is, identifiable principal component functions.

The remainder of the paper is structured in the following order. In Section 3.2, we pro-

pose the functional principal component model for monotone curves. Section 3.3 presents

a simulation study to see how well our model improves the traditional approaches. The

application of proposed method to wind power curve data is demonstrated in Section 3.4.

3.2 Joint Estimation of a Collection of Monotone Curves

We suggest two approaches in this section. The first one simply performs existing

two methods in a row; say ‘two-step’ approach. We briefly explain its procedure in Sec-

tion 3.2.1 since concrete fitting algorithms merely follow their original paper; see Ramsay

(1998) and James et al. (2000). On the other hand, Section 3.2.2 proposes the second

approach which is the primary model performing the integrated inference of functional

principal component analysis for monotone curves; rather than one at a time as two-step

approach does.

The following Section 3.2.3 describe parameter estimation of the proposed model and
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Section 3.2.4 consists of miscellaneous issues related to model selection.

3.2.1 Two-step Approach

One simple approach of fPCA for monotone curves is to fit curves as Ramsay (1998)

suggested and succeedingly fit the reduced rank model followed by the estimated results.

Suppose we observeM monotone curves {yi(t)}i=1,...,M . Let b(t) = {b1(t), . . . , bq(t)}T

be a set of basis spline functions on the observed range of t. We assume each i-th curve

can be represented by the class of monotone M as defined in (3.1). Fit the model as

suggested by Ramsay (1998) for each curve separately to estimate β0i and wi(t) for all

i ∈ {1, . . . ,M}; we here fix β1i = 1 because of identifiability issue as discussed in Sec-

tion 3.2.2. We then discretize the estimated wi(t)’s on the sufficiently dense fine grid in

the range of t, and consider them as if fully observed functional data. Based on these

discretized data, fit the reduced rank model (3.2) as

wi(t) = µ(t) +
K∑
k=1

fk(t)αik + ζi(t)

where
∫
fkfl = 0 ∀k 6= l,

∫
f 2
k = 1 for ∀k and ζi(t) ∼ N(0, ξ2). In addition, we penalize

curves to be flexible in choosing the number of basis functions and orders; as Zhou et al.

(2008) did.

Once all fitted with the significant PC functions, we can represent fitted monotone

curves as

m̂i(t) = β̂0i + β̂1i

∫ t

c0

exp

∫ s

c0

µ̂(u) +
K∑
k=1

f̂k(u)α̂ik du ds

where β̂0i and β̂1i are estimates from Ramsay’s approach and µ̂, f̂k, and α̂ik’s are from the

reduced rank model. In terms of the relative curvature w, monotone curves share certain

features by a mean function µ and PC functions fk’s, and retain individual characteristics

via PC scores αik’s.
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Although this approach is not in fact our primary suggestion, it is worth mentioning

since it could improve single estimation of monotone curves m after all, by strengthening

the estimation of each relative curvature w through functional PCA. The simulation study

is implemented to see this improvement in Section 3.3

3.2.2 Reduced Rank Model in the class of Monontone Functions

While adopting the ideas of two approaches from Ramsay (1998) and James et al.

(2000), we propose the model that integrates these two so estimates monotone curves

jointly through functional principal component analysis approach. The main advantage of

this model is to directly apply observed curve trajectories rather than to regard smoothed

and projected values as if observed.

The model for functional data has originally an explicit function form, say ‘functional

model’. Each function is then expressed as a linear combination of basis splines, shortly

B-spline, with corresponding basis coefficients. Also since we are commonly provided

the curve trajectories as discrete points with noise, the functional model can be written as

conventional multivariate data model by evaluating observed points on a basis space; we

denote this expression as ‘data model’. We in this section define our model in all available

forms; functional model, basis function expansions, and data model.

Functional Model

Suppose M number of monotone increasing curves, {mi(t) ∈ M}i=1,...,M , are ob-

served with noises, εi(t) such that εi(t) ∼ N(0, σ2) at any t for all i = 1, . . . ,M . Denote

observed curves as {yi(t)}i=1,...,M , and hence yi(t) = mi(t) + εi(t). For each ith curve,

we model its relative curvature, which is wi(t) = m′′i (t)/m
′
i(t), in the linear form of a

mean function, µ, and K number of principal component functions, f = {f1, . . . , fK}T
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as follows,

yi(t) = β0i +

∫ t

t0

exp

∫ s

t0

{µ(u) + f(u)Tαi} du ds+ εi(t) (3.3)

that are subject to

∫
f(t)f(t)Tdt = IK ; (3.4)

M∑
i=1

αik = 0 ∀k;
M∑
i=1

α2
i1 > . . . >

M∑
i=1

α2
iK , (3.5)

where β0i’s are intercepts so that represent a starting value of each curve at an initial time

point t0. The orthonormality constraint on f (3.4) is for the sake of identifiability of prin-

cipal component functions. We treat principal component scores αi = (αi1. . . . , αiK)T ,

which represent the relative weights on f , as if fixed effects rather than random effects

because it is difficult to derive a closed form of conditional distribution ofαi; the model is

complicated with two integrals and an exponential between them. We accordingly assume

(3.5) for identifiable individual-level characteristics among αi’s as random effects are pre-

sumed to be mean zero and have ordered variance. See also Guo et al. (2015) who did this

strategy as well.

It should be noted that the slope coefficient β1 prior to integrated term in (3.1) is not

defined in our model. If it were defined, there would be an identifiability issue; unequal

parameters may represent the same curve. Let β′1 = β1 exp(c1) and θ′ = θ−c2 for c1 6= 0

and c2 6= 0, then

β′1

∫
exp

∫
{b(t)Tθ′} = β1 exp(c1)

∫
exp

∫
{b(t)T (θ − c2)}

= β1

∫
exp

∫
{b(t)Tθ}
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when c1 and c2 satisfy exp(c1)
∫

exp
∫
{−b(t)T c2} = 1.

Our model specifies the relative curvature w, introduced in Section 3.1.2, with mean

and principal component functions as

w(t) =
m′′(t)

m′(t)
= µ(t) + f(t)Tα.

Therefore, the model should be carefully interpreted because principal component func-

tions correspond to the relative curvature w not the monotone curves m directly. Since

the monotone curve m is configured through
∫

exp
∫
w, positive w exponentially accu-

mulates the increase of m, while negative w leads almost zero value in m so makes m

increase slowly. Also, it could give an interesting insight about each curve to see a time

point such that w(t) = 0, which is its inflection point; where the curvature vanishes so the

curve changes from concave to convex or vice versa.

For monotone decreasing curves, one can simply change the sign of (3.3) as

yi(t) = β0i −
∫ t

t0

exp

∫ s

t0

{µ(u) + f(u)Tαi} du ds+ εi(t). (3.3′)

Thanks to this duality, we hereafter present the form (3.3) to any monotone curves for

unity of model development.

Basis Function Expansions

A mean function, µ, and principal component functions, f , can be transformed by

some set of basis functions, say q-number of basis as b(t) = {b1(t), . . . , bq(t)}T . At this

process, we select orthonormal basis functions, which satisfy

∫
b(t)b(t)Tdt = Iq,
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in order to easily induce the orthonormality of f(t) as in (3.4). Specifically, we represent

µ(t) and f(t) as

µ(t) = b(t)Tθµ; f(t) = b(t)TΘf ,

where θµ is a q×1 vector and Θf = {θf1 , . . . ,θfK}T is a q×K matrix of basis coefficients.

Under the basis expansion, the orthonormality of principal component functions can be

achieved by orthonormal coefficient matrix Θf as

∫
f(t)f(t)Tdt = ΘT

f

∫
b(t)b(t)TdtΘf = ΘT

f Θf = IK .

Hence, the model (3.3) can also be written as

yi(t) = β0i +

∫ t

t0

exp

∫ s

t0

{b(u)Tθµ + b(u)TΘfαi} du ds+ εi(t); (3.6)

that are subject to

ΘT
f Θf = IK

M∑
i=1

αik = 0 ∀k;
M∑
i=1

α2
i1 > . . . >

M∑
i=1

α2
iK .

The creation of orthonormal basis functions is deferred to Section A.1.

Data Model

Since we allow curves to be observed on an irregular and sparse grid, denote ni as the

number of points for an ith curve, which may vary over curves. LetYi = {yi(t1), . . . , yi(tni)}T

be a vector of observations at the points (t1, . . . , tni). Accordingly, the functional model
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on the basis (3.6) can be represented in the form of data observations as

Yi = β0i1ni +Hi + εi (3.7)

where 1ni is a ni × 1 vector of ones, Hi = {hi(t1), . . . , hi(tni)}T is a vector of evaluated

values by the function hi(·) such that

hi(t) =

∫ t

t0

exp

∫ s

t0

{b(u)Tθµ + b(u)TΘfαi} du ds (3.8)

and εi = {ε(t1), . . . , ε(tni)}T is a vector of noises such that εi ∼ N(0, σ2Ini).

Similary, the following represents the relative curvature as the data model,

Wi = bTi θµ + bTi Θfαi

where bi = {b(t1), . . . , b(tni)} is a q × ni matrix of evaluated values at basis functions.

3.2.3 Fisher Scoring Algorithm for Penalized Likelihood Estimation

Penalized Likelihood

Since we assume the noises have normal distribution, εi ∼ N(0, σ2Ini), the −2log-

likelihood of M curves is given by

−2l = N log σ2 +
M∑
i=1

||Yi − β0i1ni −Hi||2/σ2 (3.9)

where N =
∑M

i=1 ni is the number of total observations, andHi = {hi(t1), . . . , hi(tni)}T

as defined in (3.7).

We penalize the above likelihood (3.9) to control the smoothness of monotone curves.

While it is common to penalize the curvature, which corresponds to the second derivative

42



of curves, m′′, we penalize the relative curvature, w = m′′/m′. This penalization has an

advantage of keeping the fitted function away from the boundary condition m′ = 0, and

therefore it always satisfies m′ > 0 (Ramsay, 1998).

In the structure of wi(t) = µ(t) +
∑K

k=1 fk(t)αik, we make the penalty terms for µ and

f1, . . . , fK separately; therefore, the criterion we minimize is

Fλµ,λf (µ,f ,α) = −2l + λµ

∫
µ(t)2 dt+ λf

K∑
k=1

∫
fk(t)

2 dt, (3.10)

where λµ and λf are smoothing parameters and α denotes {α1, . . . ,αM}T . Under the

basis expression as µ(t) = b(t)Tθµ and fk(t) = b(t)Tθfk , these penalization terms can

be simplified by the following calculus,

∫
µ(t)2 dt = θTµ

∫
b(t)b(t)T dt θµ = θTµθµ ;

K∑
k=1

∫
fk(t)

2 dt =
K∑
k=1

θTfk

∫
b(t)b(t)T dt θfk =

K∑
k=1

θTfkθfk .

It tells that the orthonormal basis functions indeed makes the ridge penalties for coeffi-

cients. Additionally, the penalty term of fk’s can be further simplified to the constant

value of K due to the orthonormality condition of Θf coefficients such that

ΘT
f Θf =



θTf1θf1 θTf1θf2 · · · θTf1θfK

θTf2θf1 θTf2θf2 · · · θTf2θfK
...

... . . . ...

θTfKθf1 θTfKθf2 · · · θTfKθfK


=



1 0 · · · 0

0 1 · · · 0

... . . . ...

0 0 · · · 1


= IK ,
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and so
∑K

k=1 θ
T
fk
θfk = K. Therefore, the criterion (3.10) can be fully written as

Fλµ,λf (θµ,Θf ,α) = N log σ2 +
M∑
i=1

||Yi − β0i1ni −Hi||2/σ2 + λµθ
T
µθµ + λfK.

(3.11)

It should be remarked the penalty term corresponding to f has nothing to do with

smoothing in the end. The presumed constraint θTf θf = 1 leads some relevant amount

of smoothness automatically. Although we originally intend to penalize the relative cur-

vature w, we in fact penalize only the mean part of wi(t)’s for i ∈ {1, . . . ,M}; that is,∫
{µ(t)}2dt, which leads a ridge penalty on basis coefficients as aforementioned.

Fisher Scoring Algorithm

Non-linear maximum likelihood equations for θµ,θf1 , . . . ,θfK and α1, . . . ,αM are

obtained by taking partial differential to the criterion (3.11) for each parameter as follows,

0 =
∂F

∂θµ
= −2

M∑
i=1

∂Hi

∂θµ
ri/σ

2 + 2λµθµ (3.12a)

0 =
∂F

∂θfk
= −2

M∑
i=1

∂Hi

∂θfk
ri/σ

2 ∀k ∈ {1, . . . , K} (3.12b)

0 =
∂F

∂αi
= −2

∂Hi

∂αi
ri/σ

2 ∀i ∈ {1, . . . ,M} (3.12c)

where ri = Yi − β0i1ni −Hi is a ni × 1 vector of residuals, and each partial derivatives

∂Hi/∂θµ
q×ni

, ∂Hi/∂θfk
q×ni

and ∂Hi/∂αi
K×ni

are a matrix of evaluated values at (t1, . . . , tni) by the
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following functions respectively,

∂hi(t)

∂θµ
=

∫ t

t0

exp

∫ s

t0

b(u){b(u)Tθµ + b(u)TΘfαi} du ds;

∂hi(t)

∂θfk
=

∫ t

t0

exp

∫ s

t0

αikb(u){b(u)Tθµ + b(u)TΘfαi} du ds = αik
∂hi(t)

∂θµ
;

∂hi(t)

∂αi
=

∫ t

t0

exp

∫ s

t0

ΘT
f b(u){b(u)Tθµ + b(u)TΘfαi} du ds = ΘT

f

∂hi(t)

∂θµ
.

One can do the complex calculations, caused by integral and exponential functions, only

once because the latter two ∂Hi/∂θfk and ∂Hi/∂αi are expressed by a product of the

certain coefficients and ∂Hi/∂θµ.

We provide the iterative algorithm below to solve these nonlinear equations through

Fisher scoring procedure (Longford, 1987).

1. Initialize θ0µ,Θ
0
f ,α

0
i and β0

0i.

2. Update θlµ as

θlµ ← θl−1µ +
[ M∑
i=1

∂Hi

∂θµ

∂Hi

∂θµ

T

+ λµIq

]−1[ M∑
i=1

∂Hi

∂θµ
ri − λµθµ

]
.

3. Update θlfk for ∀k ∈ {1, . . . , K} as

θlfk ← θl−1fk
+
[ M∑
i=1

∂Hi

∂θfk

∂Hi

∂θfk

T

+ λfIq

]−1[ M∑
i=1

∂Hi

∂θfk
ri

]

and re-update by orthonormalized ones through QR decomposing Θl
f = {θlf1 , . . . ,θ

l
fk
}T .

4. Update αli for ∀i ∈ {1, . . . ,M} as

αli ← αl−1i +
[∂Hi

∂αi

∂Hi

∂αi

T]−1[∂Hi

∂αi
ri

]
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and rearrange such that
∑M

i=1 αik = 0 for ∀k and
∑
α2
i1 > . . . >

∑
α2
iK .

5. Update βl0i for i = 1, . . . ,M as

βl0i = Ȳi − H̄i.

6. Iterate step 2 to 5 until all converges.

Once all converged, an estimate of σ2 is

σ̂2 =
1

N

M∑
i=1

||Yi − β̂0i1ni − Ĥi||2,

where β̂0i and Ĥi are the converged estimates of the above iterative algorithm.

It should be noted that although there are no terms regarding to λf in (3.12b), we add

a term, λfIq, in step 3 to avoid the problem caused by the computational singularity of the

partial differentials of hi(t); see details about the computational singularity in Section A.2.

Not only can this inclusion be regarded as a ridge correction to ensure non-singularity

of matrix but also would it be in fact natural unless the term θTfkθfk were numerically

simplified to 1. What this means, like the way that (3.11) leads a normal equation of θµ as

(3.12a), a normal equation of θfk would be

0 = −2
M∑
i=1

∂Hi

∂θfk
ri/σ

2 + 2λfθf

if (3.11) were

Fλµ,λf (θµ,Θf ,α) = N log σ2 +
M∑
i=1

||Yi − β0i1ni −Hi||2/σ2 + λµθ
T
µθµ + λfθ

T
fk
θfk ,
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and therefore, the Fisher information matrix would be

M∑
i=1

∂Hi

∂θfk

∂Hi

∂θfk

T

+ λfIq,

which is applied to the updated equation of step 3.

3.2.4 Model Selection

Specification of B-splines

For the reasonable smoothness of curves, it could be required to choose the optimal

number and positions of knots of basis functions. However, since we adopt the penalizing

approach for smoothness, specifying knots is no more important issue in our model esti-

mation; see also Eilers and Marx (1996). A relatively large number of equidistant knots

over the data range, typically 10-20 knots, is often sufficient.

Choice of Penalty Parameters, λµ and λf

The cross-validation is most commonly used to optimize the penalty parameters. Since

the proposed model has two penalty parameters, λµ and λf , n-fold cross validation is

preferable to reduce the computation time. Also, it is efficient to do a grid-search on a

log-scale for each penalty parameter. All examples of simulation and application in the

following sections use 5-fold cross-validation.

Choice of the Number of Principal Components, K

In the multivariate case, the number of principal components has the upper limit as the

number of variables. However, since ‘variables’ correspond to t in the case of functional

data analysis, there is no upper limit for the number of principal component functions.

Although the minimum between the number of observations and the number of basis func-

tions algebraically could be the upper limit of PC functions, too many PC functions will
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blur the nature of principal component analysis; to describe the variation with a ‘few’

number of essential components. Moreover, it may as well consider PC functions, which

merely describe little variation, as noise. Therefore, choosing the number of principal

component functions K is important to compromises between complexity and parsimony

in expressing functions and also to avoid overfitting.

One basic procedure of choosing K is to assess a quality of model fit in terms of

prediction with the different number of PC functions. Since the cross-validation error is

already obtained at any fixed K over a grid-space of λµ and λf in the model estimation,

denoted by CVk(λµ, λf ), the CV error at the optimal λµ and λf can be used to compare

across different K’s. In other words, one can choose the optimal K such that

K = arg min
k∈{1,...,nk}

CV∗k

where CV∗k = minλµ,λf CVk(λµ, λf ) for a fixed k number of PC functions and nk is typ-

ically 4 or more. In Section 3.3, we draw an experiment of choosing K to see how well

CV errors tell the significant number of PC functions according to the data noise level.

Alternatively, we also suggest to choose the suitable K by dropping the components

whose scores have the relatively small change in variance from the preceding component;

this idea is similar to the view point of Cattell’s scree test (Cattell, 1966). Specifically, one

can fit the model with a sufficient number of PC functions, typically 4 or more, and plot

the variances of PC scores in a decreasing order. From this plot, K can be chosen where

the variance curve makes an elbow toward less steep decline. We later describe how to

perform this procedure in a practical example in Section 3.4.

3.3 Simulation Study

Our simulation study illustrates the ‘two-step’ approach, described in Section 3.2.1,

and primarily ‘proposed’ approach, in Section 3.2.2. We aim to see how our models im-
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prove monotone curve estimation through fPCA, by comparing to the monotone smooth-

ing estimation of ‘Ramsay’, which is applied to each single curve (Ramsay, 1998).

The Section 3.3.1 presents the set-up details for generating data, and Section 3.3.2 clar-

ifies the measurement, mean integrated square error, which will be used for comparative

purposes. Lastly, we summarize the simulation result in Section 3.3.3.

3.3.1 Simulation Setup

We set up the relative curvature function, w, with a straight line mean function, µ, and

two principal component functions, f1, f2, which are orthonormal, such that

µ(t) = 5− 10t;

f1(t) =
√

2 sin 2πt;

f2(t) =
√

2 cos 2πt.

Assuming β0i = 0 for all curves, we generate M = 50 monotone curves from the model

yi(tj) =

∫ tj

0

exp

∫ s

0

{µ(u) + f1(u)αi1 + f2(u)αi2} du ds+ εi(tj),

where j = 1, . . . , ni and tj’s are randomly selected points in [0, 1]; we sample 50 to 100

number of points for each curve, and these points are uniformly distributed in [0, 1]. The

principal component scores are once generated independently as αi1 ∼ N(0, 0.52) and

αi2 ∼ N(0, 0.12), and fixed in the remaining every data generation. To see how each model

works out at different noises, we add errors in three levels; εi(tj) ∼ N(0, 0.012), N(0, 0.052),

and N(0, 0.12).

Figure 3.3 shows the fundamental curves in our simulation; these provide more in-

sights into the simulated curves. The orthonormal principal component functions, f1 and

f2, are illustrated around the mean function of w, that is µ, in Figure 3.3 (a) and (b). Sim-
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ilarly, they are also illustrated towards the mean of y in Figure 3.3 (c) and (d) for some β0

and α; these constant and scores are arbitrarily set to describe curves neatly. The first PC

function f1 represents the variation at the boundary, and also provides how much the cur-

vature changes before and after an inflection point for each curve. On the other hand, the

second PC function f2 represent the variation at the center of the range, so any curves with

relatively large variation in the middle might have large values of scores corresponding to

f2.

3.3.2 Mean Integrated Squared Errors

We assess the quality of estimators of w and m by comparing mean integrated squared

errors (MISE) in an overall sense, defined as

MISE(ŵ) =
M∑
i=1

∫
{ŵi(t)− wi(t)}2 dt;

MISE(m̂) =
M∑
i=1

∫
{m̂i(t)−mi(t)}2 dt,

where ŵi and m̂i are estimated curves.

For Ramsay’s estimation, there are no terms toward principal component functions but

a single vector represents each relative curvature, that is wi(t) = b(t)Tθµi. On the other

hand, the two-step and proposed approaches have a functional principal component model

for w as wi(t) = b(t)T (θµ + Θfαi). The form of function mi is accordingly determined

by wi for each case.

The process of integration, in computing MISE with regard to w, can be ignored by
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(a) w = µ± f1 (b) w = µ± f2

(c) m = β0 +D−1 expD−1(µ± αf1) (d) m = β0 +D−1 expD−1(µ± αf2)

Figure 3.3: Simulated curves in terms of w (top) and m (bottom) where µ(t) = 5 − 10 t,
f1(t) =

√
2 sin 2πt and f2(t) =

√
2 cos 2πt.
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virtue of orthonormal basis functions; in the case of Ramsay’s estimation,

MISE(ŵ) =
1

M

M∑
i=1

∫
{b(t)T (θ̂µi − θµi)}2 dt

=
1

M

M∑
i=1

(θ̂µi − θµi)T
∫
b(t)Tb(t) dt (θ̂µi − θµi)

=
M∑
i=1

(θ̂µi − θµi)T (θ̂µi − θµi),

where θ̂µi are estimates. Similarly, in the case of two-step or proposed estimation,

MISE(ŵ) =
1

M

M∑
i=1

∫
{b(t)T (θ̂µ + Θ̂f α̂i − θµ −Θfαi)}2 dt

=
1

M

M∑
i=1

(θ̂µ + Θ̂f α̂i − θµ −Θfαi)
T

∫
b(t)Tb(t) dt (θ̂µ + Θ̂f α̂i − θµ −Θfαi)

=
1

M

M∑
i=1

(θ̂µ + Θ̂f α̂i − θµ −Θfαi)
T (θ̂µ + Θ̂f α̂i − θµ −Θfαi),

where θ̂µ, Θ̂f and α̂i are estimates. Therefore, only estimates and true parameters matter

to obtain MISE(ŵ).

However, computing MISE(m̂) has no choice but to perform the integration approx-

imately over the range of basis functions; because of complexity of monotone function

classM as (3.1). It can be shortly represented as,

MISE(m̂) =
M∑
i=1

∫
{β̂0i + ĥi(t)− β0i − hi(t)}2 dt

where ĥi(t) is the function of (3.8) with estimated coefficients.
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Table 3.1: Simulation study on the choice of the number of principal component functions
K; For the data generated by K = 2, the procedure of comparing CV errors mostly
chooses K = 2 correctly; As the noise level σ gets larger, the chance of choosing K = 3
increases.

σ = 0.01 σ = 0.05 σ = 0.1
optimal K 1 2 3 1 2 3 1 2 3
occurrence 0% 100% 0% 0% 99% 1% 0% 94% 6%

3.3.3 Result Summary

We generate the simulation data 100 times and estimate coefficients for each run with

K = 1, 2, 3. We first aim to obtain the optimal number of principal component functions,

and then build MISEs to compare across three approaches.

We perform the procedure of comparing CV errors to choose the optimal K on each

simulation data. As expected, almost all of them are optimal with K = 2, which is true,

at any noise level as Table 3.1 shows. It is however remarkable that the cases of choosing

K = 3 as optimal occur more often as the noise level gets larger. Since the noise on

observed trajectories may confuse the amount of variance, which is in fact caused by

principal component functions, this incidence is natural.

Also, Figure 3.4 shows MISE distributions of ŵ and m̂ in a log-scale for three ap-

proaches at different noise levels; Ramsay’s smooth monotone function estimation, two-

step approach applying reduced rank model followed by Ramsay’s method, and the pro-

posed approach. Overall, the two-step approach improves Ramsay’s single estimation, but

the proposed method does even more; the centers of the proposed method’s boxplots are

always below others. In terms of MISE(ŵ), the amount of improvement is particularly

higher with the proposed than the two-step approach at the low noise level; not only the

center but also the range of MISE distribution is distinctively smaller for the proposed.

Also, while all of MISEs increase as the noise level increases, our approach always out-
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(a) log MISE(ŵ)

(b) log MISE(m̂)

Figure 3.4: Distribution of log-scale MISE for comparing Ramsay’s, two-step, and proposed approaches based on 100 simulation
runs for three levels of noise; σ = 0.01, 0.05, 0.1
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(a) Distribution of PC scores (b) Variance of PC scores

Figure 3.5: Exploring principal component scores; two PC functions K = 2 are sufficient
to explain the overall variation of data.

performs others in every level.

3.4 Application: Wind Power Curve Data

In this section, the proposed model is applied to wind power curve data which moti-

vates our study as introduced in Section 2.1.

In the dataset, wind power productions and wind speeds are recorded every 10-minutes

for about a year and a half. We assume that one curve is created by records during a week;

therefore, the total number of curves is M = 74. We only consider the range of wind

speeds, from 4 to 12 m/s, where most wind curves are strictly increasing; as shown in

Figure 2.1.

To determine the number of significant number of principal component functions, we

first examine the distribution of principal component scores obtained with the sufficiently

many components; we start with K = 4 at this point. As shown in Figure 3.5, the variance

of scores corresponding to the second and succeeding principal functions are apparently
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(a) µ(t) (b) m(t) =
∫
exp

∫
µ(t)

Figure 3.6: (a) The mean of relative curvatures; (b) The monotone curve with regard to the
mean of relative curvatures

in agreement. Therefore, we regard K = 2 principal component functions are sufficient to

describe the variation of wind power curves.

With two PC functions, the mean function of relative curvatures µ(t) and its corre-

sponding monotone curve are obtained as illustrated in Figure 3.6. It is remarkable that

our optimization cares about the smoothness of monotone curves not that of relative cur-

vatures, so the mean of relative curvatures µ(t) are rather rough. However, µ(t) provides

an outline of curvature change; a wind curve increases convexly (m′′ > 0) before 7 ∼ 9

m/s while concavely (m′′ < 0) after then. Note that the tuning parameters λµ and λf are

determined based on 5-fold cross validation, and the basis coefficients converge mostly

within 10 iterations.

Figure 3.7 shows PC functions estimated from the wind power curves. We here in-

terpret the interesting features of them. The first PC function explains how different the

curvature at the boundary is from that in the middle. The second PC function, however,

explains how different the curvatures are between before and after an inflection point.
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(a) 1st PC function (b) 2nd PC function

Figure 3.7: Principal component functions; 1st PC function determines how much a power
curve accelerates at the low and high wind speed range; 2nd PC function determines how
large a curvature changes from concave to convex or vice versa.

For example, the positive greater the first score is, the faster the power curve increase at

the starting point and slows down at the end; as shown in Figure 3.8 (a). It is because, the

first PC function goes far away from the mean of w in a positive direction at the low wind

speed, so
∫

exp
∫

(positives) will be accumulated. Whereas, it goes in a negative direction

at the higher wind speed, so
∫

exp
∫

(negatives) will be accumulated; which are almost

zeros. Figure 3.8 (b) illustrates the case of negative first score, whose curve stays flat at the

beginning but gains momentum in the middle. In that manner, if the second score is a high

positive value, its curve is convex before the inflection point, which commonly locates

around 7 ∼ 9 m/s, while concave after the inflection point; see Figure 3.8 (c). However,

in case of a negative score as Figure 3.8 (d) shows, the curve changes its curvature from

concave to convex.
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(a) α1 = 1.93 > 0; α2 = −1.15 < 0 (b) α1 = −1.59 < 0; α2 = 0.85 > 0

(c) α1 = −1.53 < 0; α2 = 1.16 > 0 (d) α1 = 1.34 > 0; α2 = −1.49 < 0

Figure 3.8: Fitted mean curve (solid) and fitted individual curve (dashed), selected based
on distinctive α-score values; See how each curve retain its individual feature from the
mean curve.
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4. STATISTICAL MODELING ON SPATIO-TEMPORAL BINARY DATA FOR

DESCRIBING INFECTIOUS DISEASE SPREADING PATTERN

4.1 Preamble

In this chapter, we propose two modeling approaches for spatio-temporal binary data

that aim to describe an infectious disease spreading pattern. The first model in Section 4.2

focuses on spatial dependence among spaces at the same time. Additional to a model

estimation, predicting next joint status is another primary goal. On the other hand, the

second model introduced in Section 4.3 considers a binary time sequence of each space

as Markov process. It concerns that observed binary data may have measurement errors,

and therefore, their hidden states are modeled instead. Both models apply to ALS patients

data.

4.2 Autologistic Network Model with Absorbing States

4.2.1 Introduction

In this study, we consider spatio-temporal binary data that assess whether a disease

outbreaks; Y (s, t) = 1 if a location s is infected at time t, and 0 otherwise. We assume

numerous locations are interconnected and impinge on each other; a spreading factor could

be an epidemic on a human body, a pathogen in a farmland, or a virus in a computer

network, for example. We propose an autologistic network model in order to describe how

an infectious disease spreads out over space and time.

There are three motivations for the proposed model. First, no prior information about

spatial neighborhood is given. Unlike common spatial data, closeness between locations

might not provide a clue to spatial dependence, rather some unknown structures may ex-

plain it. For example, human body parts are complicatedly connected by neural network
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and the same is true for a computer system. Secondly, a disease of interest is unrecover-

able. If a location is once infected (= 1), it never returns to a normal status (= 0) but

reaches an absorbing state. Lastly, spatial dependence might be different depending on the

previous status. Specifically, the locations, infected a long time ago, may have different

impacts from the locations which are infected just now.

Many researchers have developed autologistic regressive models that can describe spa-

tial dependence. Hughes et al. (2011), however, assumed closeness of locations determines

a neighborhood structure among locations, and their model took into account spatial but

atemporal correlation. To incorporate the feature of absorbing states, Kaiser et al. (2014)

formulated a model by specifying sufficient support conditions for joint distribution of lo-

cations, however, a certain structure of neighborhood was yet required. Agaskar and Lu

(2013) considered a network association to ease the requirement of pre-specified neigh-

borhood. However, their model neither involved absorbing states nor a spatial association

at the same time.

Predicting a spreading pattern of a disease or a virus over space and time is another

primary goal in addition to description of spatial dependence. Zhu et al. (2005) developed

a model for spatial-temporal binary data by formulating joint distribution to predict a fu-

ture status as well as spatial correlation. However, absorbing states were not the case for

their model and a pre-specified neighbor structure on a lattice was also required to fit the

model. We in this paper formulate a joint distribution of locations, which is appropriate

to a proposed model, according to Hammersley-Clifford theorem. Then, we make use of

transition probabilities of joint responses, involving the case of absorbing states, in order

to forecast a near future.

The remainder of this section is structured in the following order. In Section 4.2.2,

we propose an autologistic network model with absorbing states. Section 4.2.3 discusses a

maximum pseudo likelihood estimator that is based on an iterative expected-maximization
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algorithm. In Section 4.2.4, We provide a joint distribution of locations to make a predic-

tion. Section 4.2.5 presents a simulation study to see how well our model estimation does

inference.

4.2.2 Statistical Model

Suppose we observe a binary random variable that Yi(sj, t) is 1 if a location sj is

infected by a certain disease or virus at time t for a subject i, and 0 if normal. Denote Yit

as a random vector of all locations; that is, {Yi(s1, t), . . . , Yi(sM , t)}T , in which M is the

number of locations. The independent variables including an intercept and time t as well

as other covariates, which potentially have influence on Yi(sj, t), are denoted byXi.

We denote pi(sj, t) as a conditional probability of infection at a location si and time t,

given independent variables and binary responses of other locations at previous and current

times, defined by

pi(sj, t) = P{Yi(sj, t) = 1|Xi, Yi(sk, t− 1), Yi(sk, t) for ∀k 6= j}.

Note that already infected locations, {sj : Yi(sj, t − 1) = 1}, do not need to be modeled

since we assume a disease is unrecoverable so their probabilities of being infected at time

t are always 1; state ‘infected’ is absorbing. For that reason, we model the conditional

probability of infection for responses in the active set, a set of current responses that are

previously not infected, which is denoted as

Aijt = {Yi(sj, t) : Yi(sj, t− 1) = 0}. (4.1)

For a fixed i and t, we propose a model for spatio-temporal binary responses Yi(sj, t)
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in an active set Aijt as

logit{pi(sj, t)} = XT
i β +

∑
sk∈P0

i (sj ,t)

η0jk{Yi(sk, t)− κi}+
∑

sk∈P1
i (sj ,t)

η1jk{Yi(sk, t)− κi} (4.2)

subject to η0jk = η0kj > 0 and η1jk = η1kj > 0 for all j 6= k

where logit(p) = log{p/(1− p)},

κi = exp(XT
i β)/{1 + exp(XT

i β)},

P0
i (sj, t) is a set of other locations that are previously normal and P1

i (sj, t) is a comple-

ment set of P0
i (sj, t) that contains previously infected locations. This partition can also be

written in a set representation as follows,

P0
i (sj, t) = {sk : k 6= j;Yi(sj, t− 1) = 0};

P1
i (sj, t) = {sk : k 6= j;Yi(sj, t− 1) = 1},

for j in {1, . . . ,M}.

The reason for centering the last two terms by κi is to make the binary autocovariates’

effect of 0’s and 1’s unbiased. If uncentered, pi(sj, t) will be biased toward 1-valued

autocovariates and so there will be nothing to do with 0-valued autocovariates as a role

of explanatory variables; therefore, pi(sj, t) will never decreases. We define a centering

constant κi that makes a marginal expectation of pi(sj, t) equal to an expectation under an

independence model, as

logit{pi(sj, t)} = XT
i β. (4.3)
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If β = 0, κi is 0.5, so that 0 and 1 values are equitably distinguished by −0.5 and 0.5,

respectively. See Caragea and Kaiser (2009) for details about centering.

By partitioning the locations into P0 (previously normal) and P1 (previously infected),

our model (4.2) allows normal and infected locations having different impacts via η0jk

and η1jk, respectively. It can also learn a network association among locations from data

by allowing all possible connections between two locations to be estimated. Hence, the

parameter η0jk indicates an impact of the location sk on sj when sk is previously healthy.

Similarly, η1jk is an impact of the location sk on sj when sk is previously infected.

We restrict symmetricity and positivity on the coefficients of autocovariate, which are

η-type estimates. First, it is natural to presume symmetricity for spatial dependence since

η indeed represents a correlation between locations at the same time t. Secondly, we do not

allow negative η estimates which have no meanings. It does not make sense that healthy

locations make another to be infected or infected locations make another to stay healthy.

We illustrate a simple case here to promote better understanding on η coefficients.

Suppose a subject i is observed with two normal and one infected locations at time t − 1

such that Yi(s1, t−1) = 0, Yi(s2, t−1) = 0, Yi(s3, t−1) = 1, and (s2, s3) have a significant

influence on s1. The effect of s2 is represented by a coefficient η012 because a location s2 is

not yet infected but normal at t−1. Accordingly, if s2 is currently infected, i.e. Yi(s2, t) =

1, logit{pi(s1, t)} will increase as much as η012(1 − κi). Otherwise, logit{pi(s1, t)} will

decrease as much as η012(0−κi). This also implies that strongly linked locations are more

likely to be infected or stay healthy simultaneously. On the other hand, s1 will always be

ill-affected by the location s3, which is in absorbing state; logit{pi(s1, t)} will increase as

much as η113 · 1.
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The model (4.2) can also be written in a vector and matrix form as

logit pi(sj, t) = XT
i β + {δ0ijt(Yit − κi1)}Tη0j + {δ1ijt(Yit − κi1)}Tη1j, (4.2′)

with the coefficients η0j and η1j denoted as a vector of length (M − 1) such that

η0j = {η0j1, . . . , η0j(j−1), η0j(j+1), . . . , η0jM}T ;

η1j = {η1j1, . . . , η1j(j−1), η1j(j+1), . . . , η1jM}T ,

and more simply they can also be denoted by a vector of length M(M − 1) such that

η0 = {η01,η02, . . . ,η0M}T and η1 = {η11,η12, . . . ,η1M}T . Also, δ0ijt implies a (M −

1) ×M matrix whose kth row indicates whether sk is in P0
i (sj, t) for all k 6= j, and δ1ijt

similarly indicates whether it is in P1
i (sj, t). For example, suppose M = 4 and Yi(t−1) =

(0, 0, 1, 1)T , then

δ0i1t =


. 1 . .

. . 0 .

. . . 0

 ; δ1i1t =


. 0 . .

. . 1 .

. . . 1

 ;

δ0i2t =


1 . . .

. . 0 .

. . . 0

 ; δ1i2t =


0 . . .

. . 1 .

. . . 1

 ,

where ‘.’ denotes numerically zero as well for void points while ‘0’ meaningfully indicates

its partition whether P0 or P1 based on the previous status. Note that δi3t and δi4t are not

defined since Yi(s3, t− 1) = 1 is absorbing.
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4.2.3 Estimation

To estimate parameters, we approximate a joint likelihood by the product of full con-

ditional likelihoods, that is the pseudo likelihood, for simplicity in computation. We also

apply an l1 regularization for sparsity of estimates to select the best subset of autoco-

variates for better interpretation of the model. Then, a penalized pseudo likelihood is

maximized by an iterative Expected-Maximization (EM) algorithm. Note that a maximum

pseudo likelihood estimator almost surely converges to a maximum likelihood estimator;

see Besag (1975).

LetN be the number of subjects. We assumeM number of locations are fully observed

at every time points t, however, there could be censored observations in terms of time,

which means the number of observing times can vary over subjects, say ni for each subject

i.

The conditional log-likelihood for the binary response is given by

lijt(β,η0,η1) = Yi(sj, t) · logit{pi(sj, t)} − log[1 + exp(logit{pi(sj, t)})] (4.4)

for i, j, and t such that Yi(sj, t) ∈ Aijt, where pi(sj, t) is modeled by (4.2). Accordingly,

we maximize the l1-penalized pseudo log-likelihood,

Fλ(β,η0,η1) =
N∑
i=1

ni∑
t=1

M∑
j=1

lijt(β,η0,η1)IAijt − λ
∑
j<k

(|η0jk|+ |η1jk|), (4.5)

where IAijt is an indicator function whether Yi(sj, t) ∈ Aijt and λ is a tuning parameter

for a regularization. It should be noted we only penalize the parameters which stand for

spatial dependence; η0 and η1, not β. The sparsity on η0 and η1 is necessary, not only

because of large number of parameters, M(M − 1) elements in each η, but also in order

to reflect the reality that a specific location has possibly no association with another.
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The ordinary maximum likelihood estimation of a logistic regression such as Newton’s

method cannot apply straightforwardly because the parameter κ in (4.2) is a nonlinear

function of β. Instead, we first estimate parameters which are linear and then update κ

iteratively until all converges as the following steps,

1. Fit the independent model (4.3); set β̂(0) by an initial;

2. Given κ̂(l−1)i = logit−1{XT
i β̂

(l−1)}, maximize (4.5) to estimate β̂(l), η̂
(l)
0 , η̂(l)

1 ;

3. Update κ̂(l)i = logit−1{XT
i β̂

(l)}, and iterate step 2 until all converges.

The standard logistic regression method, described by Hastie and Pregibon (1992), and the

ordinary way of generalized linear model with regularization, in Friedman et al. (2010),

are used in step 1 and step 2, respectively. Once iteration stops with converged coefficients,

we perform a procedure of bias correction suggested by Tang et al. (2016).

The optimal tuning parameter λ can be chosen through cross-validation at step 2 dur-

ing the first iteration and then fixed for the remaining iterations. Alternatively, one can

manually choose the λ to meet the desired amount of sparsity or setup different sparsity

by λ0 and λ1 on η0 and η1, respectively.

4.2.4 Prediction

Besides describing spatial network association, our study ultimately aims to predict an

infectious disease progression over space and time. Specifically, when responses at t− 1,

Yi(t−1) = {Yi(s1, t − 1), . . . , Yi(sM , t − 1)}, are given, it is of our interest to predict the

next responses, that is, Yit = {Yi(s1, t), . . . , Yi(sM , t)}. To that end, we in this section

formulate the conditional distribution of joint responses, i.e. P{Yit|Yi(t−1)}.

As the probability of infection is modeled only for the previously healthy responses

in Aijt, the joint distribution of Yit conditional on Yi(t−1) should also be obtained on a

relevant support. Suppose that a set S includes all possible outcomes of M locations.
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Since each state is either 0 or 1, there are 2M elements in S. We now define the support of

a random vector Yit conditional on its previous status Yi(t−1) as

Sit = {Yit ∈ S|Yi(sj, t) = 1 for sj s.t. Yi(sj, t− 1) = 1}. (4.6)

Note that the elements, which are against absorbing states, are excluded out of S. That is,

any joint outcomes with Yi(sj, t) = 0 and Yi(sj, t − 1) = 1 are not in Sit. Therefore, if k

locations are infected at t−1, the support set Sit will have 2M−k candidate outcomes which

can be potentially observed at the next time t. For example, if the last location among

M = 4 is infected alone but remaining three are normal at t−1, i.e. Yi(t−1) = (0, 0, 0, 1)T ,

then Sit consists of the following 7(= 23) outcomes such that (0, 0, 0, 1)T , (0, 0, 1, 1)T ,

(0, 1, 0, 1)T , (1, 0, 0, 1)T , (0, 1, 1, 1)T , (1, 0, 1, 1)T , (1, 1, 0, 1)T , and (1, 1, 1, 1)T .

We consequently formulate the joint distribution of Yit ∈ Sit, conditioned on the previ-

ous responses Yi(t−1) and the coefficients from (4.2) as well as subject-specific covariates

Xi, as

P{Yit|Yi(t−1);Xi,β,η0,η1}

∝
M∑
j=1

Yi(sj, t)X
T
i β −

M∑
j=1

{
Yi(sj, t)

∑
sk∈P0

i (sj ,t)

η0jkκi

}
−

M∑
j=1

{
Yi(sj, t)

∑
sk∈P1

i (sj ,t)

η1jkκi

}

+
1

2

M∑
j=1

{
Yi(sj, t)

∑
sk∈P0

i (sj ,t)

η0jkYi(sk, t)
}

+
1

2

M∑
j=1

{
Yi(sj, t)

∑
sk∈P1

i (sj ,t)

η1jkYi(sk, t)
}

(4.7)

with a normalization by the sum of right sides over all i and t in Sit. Since the entries of

XT
i β −

∑
P0 η0jkκi −

∑
P1 η1jkκi do not overlap with Yit = {Yi(s1, t), . . . , Yi(sM , t)},

they contribute to the joint distribution completely. Whereas, the contribution of the terms∑
P0 η0jkYi(sk, t) and

∑
P1 η1jkYi(sk, t) is halved by means of Hammersley-Clifford the-

orem (Hammersley and Clifford, 1971). Note that since we do not consider more than
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Figure 4.1: True parameters on a graph; Nonzero values of ηjk(= ηkj) are labeled on
corresponding edges while zeros are not drawn; The width of edges represents the strength
of conditional dependence between nodes.

pairwise dependencies, the joint distribution is derived by the second order. See also the

appendix of Hughes et al. (2011).

4.2.5 Simulation Study

In simulation study, we have an experiment how well our model make an inference

about true parameters, particularly η0 and η1. Suppose there are four nodes (s1, s2, s3, s4)

that possibly have an association to each other with absorbing states. The length of η0 and

η1 is accordingly 4× (4− 1) = 12 each.

We begin assigning values to η0 and η1 that are moderately sparse and symmetric as

illustrated in Figure 4.1. We assume there are no explanatory variables X for simplicity.

Note that β = 0 leads a fair centering on binary data, which means autocovariates of 0 and

1 are transformed to −0.5 and 0.5, respectively; κ = 0.5.

The pre-specified parameters determine the transition probabilities through (4.7). Since

we have four locations, there are 24(= 16) number of joint outcomes. The first row of each

cell in Table 4.1 displays a true transition probability from t − 1 to t taking into account

the absorbing states. At this point, we can provide interesting insights between η’s and
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their corresponding transition probabilities. For example, because of strong association

between s3 and s4 in η0, transition probabilities from (1, 0, 0, 0) to (1, 0, 0, 0), (1, 0, 1, 1)

or (1, 1, 0, 0), that is the probabilities that s3 and s4 are in the same status, are relatively

higher than others except the completely infected case; their probabilities are 0.136, 0.120,

and 0.198, respectively.

We generate a base status from the Bernoulli distribution with a probability 0.25, which

is intended to make one location among four is infected at t = 0 in an average sense; that

means,

Y (sj, 0) = 1 with probability 0.25

for any j ∈ {1, 2, 3, 4}. Then the next status is generated based on the transition probabil-

ities, and this generation is repeated until all locations are infected.

One simulation data consist of 500 initial status, and coefficients are estimated as de-

scribed in Section 4.2.3. We run this simulation process for 100 times to obtain empirical

confidence interval of each entry in transition probability matrix. The second row of each

cell in Table 4.1 indicates 95% confidence interval. It is remarkable that all of true proba-

bilities fall into their confidence interval, so we see that our estimation makes a reasonable

inference.

4.2.6 Application: ALS Patients Data

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a neuro-

logical disease that typically first affects a particular group of muscles to make them lose

their physical functionality and then spreads to other locations as it progresses. As the

disease progresses, the brain of a patient gradually loses the ability to signal and control

muscle movement that leads to muscle weakness, impaired physical functionality and fi-

nally death. Although such spread mechanism is critical to the development of clinical

therapies, it remains a large unknown problem.
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Table 4.1: Each cell consists of true transition probability and 95% confidence interval from 100 simulations; Non-absorbing
cases are not taken into account so they have zero probabilities, denoted by ‘.’

t− 1\t 0000 0001 0010 0011 0100 0101 0110 0111
0000 0.112 0.047 0.053 0.099 0.06 0.032 0.028 0.068

(0.096,0.125) (0.037,0.056) (0.041,0.063) (0.085,0.113) (0.052,0.075) (0.025,0.039) (0.024,0.037) (0.056,0.079)
0001 . 0.094 . 0.198 . 0.064 . 0.136

. (0.075,0.111) . (0.17,0.226) . (0.05,0.078) . (0.112,0.157)
0010 . . 0.106 0.198 . . 0.057 0.136

. . (0.083,0.126) (0.17,0.226) . . (0.047,0.074) (0.112,0.157)
0011 . . . 0.292 . . . 0.201

. . . (0.255,0.327) . . . (0.166,0.236)
0100 . . . . 0.12 0.064 0.057 0.136

. . . . (0.104,0.149) (0.05,0.078) (0.047,0.074) (0.112,0.157)
0101 . . . . . 0.121 . 0.256

. . . . . (0.095,0.144) . (0.221,0.294)
0110 . . . . . . 0.111 0.266

. . . . . . (0.09,0.145) (0.22,0.302)
0111 . . . . . . . 0.378

. . . . . . . (0.326,0.43)
1000 . . . . . . . .

. . . . . . . .
1001 . . . . . . . .

. . . . . . . .
1010 . . . . . . . .

. . . . . . . .
1011 . . . . . . . .

. . . . . . . .
1100 . . . . . . . .

. . . . . . . .
1101 . . . . . . . .

. . . . . . . .
1110 . . . . . . . .

. . . . . . . .
1111 . . . . . . . .

. . . . . . . .
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Table 4.1 continued

t− 1\t 1000 1001 1010 1011 1100 1101 1110 1111
0000 0.068 0.028 0.032 0.06 0.099 0.053 0.047 0.112

(0.056,0.079) (0.024,0.037) (0.025,0.039) (0.052,0.075) (0.085,0.113) (0.041,0.063) (0.037,0.056) (0.096,0.125)
0001 . 0.057 . 0.12 . 0.106 . 0.225

. (0.047,0.074) . (0.104,0.149) . (0.083,0.126) . (0.192,0.25)
0010 . . 0.064 0.12 . . 0.094 0.225

. . (0.05,0.078) (0.104,0.149) . . (0.075,0.111) (0.192,0.25)
0011 . . . 0.177 . . . 0.331

. . . (0.154,0.217) . . . (0.294,0.365)
0100 . . . . 0.198 0.106 0.094 0.225

. . . . (0.17,0.226) (0.083,0.126) (0.075,0.111) (0.192,0.25)
0101 . . . . . 0.2 . 0.423

. . . . . (0.164,0.229) . (0.382,0.477)
0110 . . . . . . 0.183 0.439

. . . . . . (0.144,0.219) (0.382,0.48)
0111 . . . . . . . 0.622

. . . . . . . (0.57,0.674)
1000 0.136 0.057 0.064 0.12 0.198 0.106 0.094 0.225

(0.112,0.157) (0.047,0.074) (0.05,0.078) (0.104,0.149) (0.17,0.226) (0.083,0.126) (0.075,0.111) (0.192,0.25)
1001 . 0.112 . 0.237 . 0.209 . 0.442

. (0.092,0.145) . (0.199,0.288) . (0.164,0.24) . (0.382,0.487)
1010 . . 0.128 0.239 . . 0.186 0.447

. . (0.097,0.154) (0.205,0.289) . . (0.147,0.219) (0.384,0.494)
1011 . . . 0.349 . . . 0.651

. . . (0.296,0.413) . . . (0.587,0.704)
1100 . . . . 0.318 0.17 0.15 0.361

. . . . (0.279,0.359) (0.136,0.2) (0.123,0.179) (0.323,0.403)
1101 . . . . . 0.321 . 0.679

. . . . . (0.26,0.356) . (0.644,0.74)
1110 . . . . . . 0.294 0.706

. . . . . . (0.234,0.353) (0.647,0.766)
1111 . . . . . . . 1

. . . . . . . (1,1)
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It is challenging to explore the association among muscles since the ALS disease pat-

tern in reality does not merely depend on the closeness of muscles, however it is compli-

catedly associated with neurological features. For example, when one’s right wrist muscle

loses its function, the left wrist muscle, although far away from the right one, is more

likely to be impaired next, rather than the right elbow, which is physically closer to the

right wrist.

Another challenging is to reflect the feature of absorbing states of ALS disease; mus-

cles can never recover its function once infected. Not only should the data be recorded

reflecting this feature, but a model should also be developed not contradicting this fact.

With a similar motivation, Kaiser et al. (2014) developed a Markov random field model

to involve absorbing states of plant disease, however, we cannot directly apply this model

because it assumes the neighborhood structure of observations based on their adjacency.

Therefore, the proposed model, which is assumption-free about the neighboring struc-

ture of muscles and can take into account absorbing feature, is applied to ALS patients

data in this section.

We includeN = 926 ALS patients who visit a clinic and examine their muscle strength

at M = 16 body locations multiple times with an interval of two months during an year;

that is, t = 0, 2, 4, 6, 8, 10, 12. The measured muscles are the right and left side of wrist ex-

tension, elbow extension, elbow flexors, shoulder flexors, ankle dorsiflexion, knee flexion,

knee extension and hip flexors, as illustrated in Figure 4.2. Each patient’s demographical

characteristics, such as age, sex, and weight, and clinical records, such as clinical visit

number, symptom onset site, and symptom duration, are also recorded. There are cen-

sored observations for some patients because of missed visits or deaths. We include the

independent variables Xi as the visiting times (t), the symptom onset site (a binary vari-

able whether it is on bulbar or others) and the symptom duration when patients entered the

study.
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Figure 4.2: Measured muscles on a human body map; The right and left sides of eight
muscles, totally sixteen number of muscles, are examined.

We utilize muscle strengths to generate a local binary variable independently on whether

each muscle is infected or not. The regression equations, provided by NIMS (1996) and

Bohannon (1997), define the normal strength of healthy people based on their gender, age,

height, and weight. By fitting these equations using our patients’ information, we can

compute the expected muscle strength when assuming that their muscles are yet healthy.

The computed strength is then used as a benchmark to determine whether the observed

strength is infected or not. As such, we assess each muscle status as impaired (= 1) if

its measured strength is 40% less than the computed/expected normal strength, or healthy

(= 0) otherwise. Note that a muscle, which has been marked as infected, is always re-

garded as infected after then. Such binary decisions will be assumed to be the true latent

binary process for simplicity in this application task.

The tuning parameter for regularization, λ, is obtained by 10-fold cross validation. We
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also break the iteration when every updated estimate falls within 1% difference from the

old estimates; they converge in 5 iterations.

Figure 4.3 illustrates a vector of estimated η0 and η1 in a graphical way. Most interest-

ingly, horizontal connections between right and left side of each muscle, both previously

healthy and infected, are mostly stronger than other connections. This implies, no matter

what status a muscle was at the past visit, that muscle is likely to keep its status as same

as its opposite side. Also, the estimates of η1 are sparser than those of η0, under the same

amount of regularization, i.e. at the same value of λ. This means, the network that muscles

affect others in a way of keeping healthiness together or being newly infected at the same

time is more complicated than the network that already infected muscles make others also

infected. This could also be interpreted as newly infected muscles have diversified impacts

on others, even vertically between upper and lower body parts, while the muscles infected

far in the past are mostly associated only with physically neighboring muscles or their

opposite sides.

To predict the ALS disease spreading pattern on a human body, suppose a hypothetical

male patient enter a study when only one muscle has been infected by ALS since 21.6

months ago, and his symptom onset site is off the bulbar muscle. Although the prediction

could be done by sampling from the joint distribution obtained from 4.2.4, we do this by

taking the most probable status as the next status according to that distribution. In this

process, we ignore the cases that a probability of staying as before without progression is

the highest. Also, instead of providing the transition probability matrix which is a huge

matrix as 216 × 216, we keep predicting one time ahead future status until all body parts

are infected to see the full path of disease progression over space and time.

Figure 4.4 illustrates predicted full paths of disease progression for the hypothetical

patient. In case that the first infect muscle is a left wrist extension, the disease spreads

to a right wrist extension first, and the infection on knee muscles follows after. This
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(a) η0 (b) η1

Figure 4.3: Estimates on a graph; The color depth and width of edges represent strength of conditional association.
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(a) Predicted path given a left wrist is infected at t = 0 (b) Predicted path given a left ankle is infected at t = 0

Figure 4.4: Prediction of ALS disease progression over time; Labels at each edge denote time t; Each predicted pathway is the
most probable one based on the joint distribution.
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predicted pattern is in agreement with our estimates as Figure 4.3 implies in that the most

of spreading directions are between left and right side. Also, the knee muscles, which are

highly linked to upper muscles, are predicted to be first infected among the lower body

parts, and so are the elbow muscles among the upper body parts. The overall spreading

path for the case that a left ankle flexor is initially infected is quite similar; it shows right-

left paths and elbow-knee links.

4.3 Binary Hidden Markov Model on Flexible Spatial Network

4.3.1 Introduction

There is another challenging of reflecting the feature of absorbing states of ALS dis-

ease; observed binary states may not be in agreement with absorbing states while their

underlying states are absorbing in an infected state. Figure 4.5 illustrates example se-

quences of elbow extensor and flexor muscle strength measurements in a relative unit to

the normal strength. Although this patient is suffering from ALS disease, his or her muscle

strengths are not measured in a decreasing order over time but it seems to take a favorable

turn at some moments; this is not true but could happen because of measurement errors

or a patient’s overall condition regardless of the disease at that visit. Hence, we propose

to incorporate hidden Markov model with ‘true’ binary states that are absorbing in an in-

fected state while ‘observed’ binary states are not necessarily. An autologistic regressive

model with absorbing will be developed for true hidden binary states in this study.

The remainder of this section is structured in the following order. In Section 4.3.2, we

describe the proposed hidden Markov model to explore the ALS disease spreading pattern

as well as true hidden states with a feature of absorbing. Section 4.3.3 shows the results

obtained by applying the model to the provided ALS patients data.
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Figure 4.5: Two selected sequences of ‘observed’ relative muscle strength; × denotes
‘infected’ Yi(sj, t) = 1 if strength is 40% less than normal; ◦ denotes ‘healthy’ Yi(sj, t) =
0 otherwise; The binary states of elbow extensor are in agreement with absorbing while
those of elbow flexor are against absorbing.
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4.3.2 Statistical Model and Estimation

Suppose Si(sj, t) is a true binary state of a subject i indicating

Si(sj, t) =


1 if a location sj is infected at time t

0 otherwise

for i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, and t ∈ {1, . . . , ni}. True states are hidden and

absorbing in state 1 (infected); once infected, it never goes back to state 0 (healthy). In re-

ality, we however observe Yi(sj, t), which is also binary but may not be absorbing because

of measurement errors, such that

Yi(sj, t) =


1 if a location sj is ‘observed’ as infected at time t

0 otherwise.

We propose a hidden Markov model (HMM) for true state sequences occurring on a

number of locations over time. Like the standard HMM, there are two type of parame-

ters to estimate; emission probabilities and transition probabilities. Emission probabilities

govern the distribution of observed states given hidden states, while transition probabilities

control the progression of hidden states from time t− 1 to t. We assume emission proba-

bilities are always common to all locations, whereas, transition probabilities are different

in location and time. Figure 4.6 briefly introduces the structure of our model.

Accordingly, our model is divided into two stages; Stage I illustrates the estimation

of emission probabilities and Stage II describes the estimation of transition probabilities

through autologistic regression model. We then jointly update hidden states for each lo-

cation by applying the Viterbi algorithm (Viterbi, 1967). Each of these two stages and

updating procedure works when the others are conditional. For example, true states are
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Si(sj, t− 1) Si(sj, t) Si(sj, t+ 1)

Yi(sj, t− 1) Yi(sj, t) Yi(sj, t+ 1)

Aijt

E

Aij(t+1)

E E

Figure 4.6: Structure of hidden Markov model; E = emission probability from hidden to
observed states;Aijt = transition probability of sj from t− 1 to t for a subject i

.

determined by emission and transition probabilities, while emission probabilities and tran-

sition probabilities can be estimated under the condition true states are provided. As such,

we iterate them until all estimates and updates are converged.

Stage I: Emission Probabilities

Emission probabilities describe the conditional distribution of observations when hid-

den states are given. For δ, γ ∈ {0, 1}, denote the probability that a hidden state δ emits a

state γ as

eδ(γ) = P{Yi(sj, t) = γ|Si(sj, t) = δ}, (4.8)

such that
∑1

γ=0 eδ(γ) = 1 for a fixed δ. Since hidden and observed states are both binary

in our study, we can construct the 2× 2 emission matrix E

E =

1− e0(1) e0(1)

e1(0) 1− e1(0)

 ,

where e0(1) and e1(0) are in fact misclassification probabilities; they can also be described

as false positive and false negative, respectively.

The estimation of these two probabilities is done simply because we assume the sta-
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tionary emission probability for all i, j and t. Given true states Si(sj, t) for all i, j and t,

we then compute the empirical frequency of misclassified observations such that

ê0(1) =
N∑
i=1

M∑
j=1

ni∑
t=1

I{Yi(sj, t) = 1|Si(sj, t) = 0}/
N∑
i=1

M∑
j=1

ni∑
t=1

I{Si(sj, t) = 0};

ê1(0) =
N∑
i=1

M∑
j=1

ni∑
t=1

I{Yi(sj, t) = 0|Si(sj, t) = 1}/
N∑
i=1

M∑
j=1

ni∑
t=1

I{Si(sj, t) = 1},

where I(G) is an indicator function of a set G.

Stage II: Transition Probabilities

Transition probabilities control the change of true hidden states from time t − 1 to

t; P{Si(sj, t)|Si(sj, t − 1)}. Since we consider binary data that are absorbing in the

‘infected’ state, our only interest is in the change from ‘healthy’ to ‘infected’; from 0 to

1. In other words, the transition probability from 1 to 0 is zero in any case because once

infected location will not change its state but always stay at 1. Therefore, the transition

probability matrix from t− 1 to t for a location sj of a subject i is given by

Aijt =

1− pi(sj, t) pi(sj, t)

0 1

 ,

where each row and column corresponds to binary states at t− 1 and t, respectively. Also,

pi(sj, t) is defined as

pi(sj, t) = P{Si(sj, t) = 1|S(sj, t− 1) = 0, S(sk, t− 1) ∀k 6= j},

which indicates the conditional probability of sj being newly infected at t given the previ-

ous states of other locations. Note that transition probabilities from 0 to 1 are spatio-time-

varying for each subject, which means they are non-stationary in location and time.
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We propose the autologistic regressive model for pi(sj, t) as below

logit pi(sj, t) = XT
i β +

∑
sk∈N 0

ijt

η0jkS
∗
i (sk, t− 1) +

∑
sk∈N 1

ijt

η1jkS
∗
i (sk, t− 1), (4.9)

whereXi are subject-specific covariates that possibly affect the state transition, and S∗i (sj, t)

denotes a centered state, S∗i (sj, t) = Si(sj, t) − 0.5, so that the autocovariate effects of 0

and 1 are fairly reflected through −0.5 and 0.5, respectively. We also separate the effect

of autocovariates based on their previous states by defining neighborhood such that

N 0
ijt = {sk|Si(sk, t− 1) = 0 and sk ∈ Nj};

N 1
ijt = {sk|Si(sk, t− 1) = 1 and sk ∈ Nj},

where Nj consists of locations that are neighbors of sj; denoted by Nj = {sk|sk ∼ sj}.

It is remarkable that Nj not only could be a complete network among locations such that

Nj = {sk|sk 6= sj} but also could be specified based on any prior knowledge about spatial

dependence structure. Accordingly, the coefficient η0jk implies the effect of previously

healthy neighbor sk on sj , and similarly, η1jk implies the effect of previously infected

neighbor sk on sj . Not only does the suggested autologistic model make any pairwise

locations connectable within the neighborhood, but it also allows the directed impacts,

which means we do not restrict η0jk = η0kj nor η1jk = η1kj for any j 6= k.

For computation efficiency in estimation, we maximize the product of conditional den-

sities fijt, which is defined on the support Aijt = {Si(sj, t)|Si(sj, t− 1) = 0}, as

fijt{Si(sj, t)|Si(sk, t− 1) ∀k 6= j} = pi(sj, t)
Si(sj ,t){1− pi(sj, t)}1−Si(sj ,t),

where pi(sj, t) is modeled as (4.9), also known as the pseudo likelihood. Note that the

82



maximum pseudo likelihood estimator almost surely converges to the maximum likelihood

estimator; see Besag (1975). Additionally, we do this estimation under a sparsity condition

on the coefficients so as to take benefits in model interpretation; specifically, it can choose

the simpler model by selecting the best subset of autocovarates. Hence, we maximize the

l1-penalized pseudo log-likelihood such that

Fλ(β,η0,η1) =
N∑
i=1

M∑
j=1

ni∑
t=1

{
Si(sj, t)·logit pi(sj, t)−log[1+exp{logit pi(sj, t)}]

}
IAijt

− λ
∑
j 6=k

(|η0jk|+ |η1jk|)

where IAijt denotes an indicator function whether Si(sj, t) ∈ Aijt and both of η0 and

η1 are a M(M − 1) vector of {η0jk}j 6=k and {η1jk}j 6=k, respectively. Also, λ is a tuning

parameter determining the amount of penalization, and its optimal value can be chosen by

K-fold cross-validation.

Updating Hidden States

There are many techniques regarding the probability of one or more hidden states; for

example, the forward algorithm, the forward-backward algorithm, and the Viterbi algo-

rithm. See also Rabiner (1989) for details of these techniques. We apply the Viterbi algo-

rithm (Viterbi, 1967), which is commonly used to find the most likely sequence of true hid-

den states given the model parameters and a sequence of observed states, {Yi(sj, 1), . . . , Yi(sj, ni)}.

This algorithm mainly differs from others in that a joint probability of hidden states is of

interest rather than a probability of a single hidden state.

Let us briefly introduce the Viterbi algorithm in this subsection. We apply this algo-

rithm for a fixed subject i and location sj , so hereafter St denotes Si(sj, t) for the simplicity

of notation. Likewise, Yt = Yi(sj, t) andAt = Aijt.

Given transition probability matrix At and emission probability matrix E, the proba-
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bility of most probable path having δ ∈ {0, 1} as a true state at t is defined by

vδ(t) = max
S1,...,St

P{S1, . . . , St−1, St = δ, Y1, . . . , Yt|At,E, π0}, (4.10)

which can be recursively calculated as

vδ(t) = max
γ∈{0,1}

vγ(t− 1) aγδ eδ(Yt),

where aγδ is a transition probability from γ to δ, determined byAt, and eδ(·) is an emission

probability as defined in (4.8). The probability of state 1 being the initial state, π0 =

P (S0 = 1) could be fairly set as 0.5 or estimated through the model without autocovariates

such that

logit π0 = XTβ.

Coming back to the original notation, we jointly update true states {Si(sj, 1), . . . , Si(sj, ni)}

as the most likely sequence generating {Yi(sj, 1), . . . , Yi(sj, ni)} for each i and j, based

on (4.10) computed by the last time point ni.

It is remarkable that the updating procedure we perform here differs from other com-

mon applications of Viterbi algorithm, in that the prior probability π0 and transition prob-

abilities are not consistent over subject and location.

4.3.3 Application: ALS Patients Data

To initiate the iteration, we first make the modified data, which will be considered as

if true binary data, by converting 0’s followed by a state 1 in the observed data into 1’s.

Assuming the true states are known, we estimate the probabilities of misclassification,

e0(1) and e1(0), and the coefficients of the autologistic model, β,η0, and η1, where Xi

consists of the visiting times (t), the symptom onset site (a binary variable whether it is
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on bulbar or others) and the symptom duration when patients entered the study. Then, a

sequence of hidden states is updated through Viterbi algorithm for each muscle location

of each subject.

We do not assume a specific neighborhood structure but allow any muscle can be a

neighbor to another; in other words, it is a complete network Nj = {sk|sk 6= sj for k =

1, . . . , 16}. Note that we therefore have a 16 × 15 = 240 length of η0 and η1 each. The

tuning parameter λ could be fixed to an optimized value in the first iteration of course,

but we select a certain value leading the reasonable amount of sparsity in η coefficients to

improve the interpretability. The iterations are broken when every estimate has only little

change as much as less than 5% relative difference.

The misclassification probabilities are finally estimated as ê0(1) = 0.0447 and ê1(0) =

0.0302. From this, we see the false positive rate is slightly greater than the false negative

rate with the dichotomization by 40% cut-off.

Let us also make interesting interpretations of autocovariate estimates obtained in

stage II: transition probabilities. Figure 4.7 illustrates a vector of estimated η0 and η1

in a graphical way. According to η0 estimates which tell the impacts of healthy muscles, if

shoulder muscles were healthy in the past, elbow and wrist muscles of the same side would

keep healthy as well. Recall a positive η0 indicates the negative impact on the probability

of infection because S = 0 is transformed to the negative term S∗ = −0.5 by centering

in the model (4.9). Similarly, knee muscles tend to stay healthy if hip and ankle muscles

were healthy previously while this type of impact is stronger in the upper body parts than

the lower.

The estimates of η1 also provide interesting features of ALS disease spreading, in that

they represent the impacts of infected muscles to the state of previously healthy muscles.

Most impressively, horizontal impacts between right and left side are strong in every mus-

cle; for example, if the left hip flexor was infected at t − 1, the right hip flexor would be
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(a) η0 (b) η1

Figure 4.7: Estimates of spatial dependence among muscles; the edge width indicates the strength of conditional influence.
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t 1 2 3 4 5 6 7
S 0 → 0 → 0 → 1 → 1 → 1 → 1

↓ ↓ ↓ ↓ ↓ ↓ ↓
Y 1 0 0 1 1 0 1

Figure 4.8: A sequence of observed and hidden states for a selected subject and muscle
.

the most likely infected at t. Also, the fact that the denser connection within the upper

body parts compared to the lower implies the upper body muscles such as shoulder, elbow,

and wrist muscles are more interdependently to be influenced by each other than the lower

body muscles are. Moreover, the impacts from upper to lower, although relatively fainter,

imply the disease spreads vertically through elbow and knee on the whole.

When comparing η0 with η1, it is also remarkable that η0 is nearly a complementary

set of η1 and vice versa. In other words, if sk has a strong influence on sj with a high value

of η0jk, then η1jk is less likely to be large; for example, the impact of shoulder muscles

stands out when they were healthy while little impact is there when they were infected.

This could also be concluded that the shoulder muscles particularly do not likely to spread

the disease to neighbors but help others maintain the healthy state.

At last, we are able to check hidden binary states updated through the Viterbi algo-

rithm. Figure 4.8 illustrates a time sequence of hidden and observed states for a selected

subject and muscle. Understandably, the observed sequence is refined to reveal absorbing

features in the hidden sequence; the observed state at t = 1, i.e. Yi(sj, 1) = 1, turns out to

be false positive with Si(sj, 1) = 0, whereas Yi(sj, 6) = 0, followed by two 1’s, turns out

to be in fact Si(sj, 6) = 1.
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5. SUMMARY AND DISCUSSION

Chapter 2: Covariate Matching Methods for Testing and Quantifying Wind Tur-

bine Upgrades

We are interested in statistical inference about the upgrade effect on wind turbine per-

formance. It is a challenging issue because the upgrade effect on wind power production

could be biased and confounded by unmanageable environmental conditions. Some of

these conditions are measured on a wind farm, while others are unknown or not measured.

We propose a covariate matching method, allowing for a fair and direct comparison of

power outcomes without establishing the power curve model.

Compared to the current studies on wind power analysis, our matching method enter-

tains several advantages: (a) it does not compare the estimated power outputs from the

fitted power curve models but compares the observed power outputs directly; (b) by using

the control turbine power output as benchmark, our method takes into account both mea-

sured and unmeasured environmental conditions; (c) when future technology innovation

allows additional environmental covariates to be measured, their inclusion in our match-

ing method is straightforward and it does not complicate the subsequent analysis steps.

By testing on both experimental data and simulated data, the proposed matching method

appears to be sensitive to detecting small to moderate changes, resulting from upgrades on

a wind turbine.

Chapter 3: Joint Estimation of Monotone Curves via Functional Principal Com-

ponent Analysis

The proposed functional principal component analysis is to illustrate the modes of vari-

ation of monotone curves that are irregularly and sparely observed. The advantages of our

model are: (1) transforming the problem of fitting monotone-constrained functions to the
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problem of fitting unconstrained functions; (2) estimating individual functions by borrow-

ing strength of mean information of all functions; (3) being able to estimate incompletely

observed functional data, such as irregular or sparse data; and (4) recovering the relative

curvature of curves, which can describe the curve dynamics, such as inflection points.

The useful applications of our model would be (1) cumulative distribution function

estimation, (2) survival function estimation, (3) growth curve estimation, as well as (4)

any monotone increasing or decreasing curves that are accumulated over a continuum. For

the sake of interpretable relative curvature, which is even directly estimated in our model,

the dynamic of curvature can also be flexibly studied to any monotone curves. Moreover,

our approach can be applied to functional tests or regressions with purposes of comparing

the characteristics of curves or detecting factors causing different features in a collection

of curves.

Since a quantile rather than a mean could be of interest in the same situation, it would

be an appealing study to describe the mode of variation of quantiles of monotone curves

for the future work.

Chapter 4: Statistical Modeling on Spatio-temporal Binary Data for Describing

Infectious Disease Spreading Pattern

The autologistic network model with absorbing states is first proposed to describe dis-

ease spreading pattern from spatio-temporal binary data. It learns the network association

among numerous locations from data rather than pre-specifying the neighborhood infor-

mation. The absorbing feature of disease is fulfilled by defining the active set of responses

which contribute to the likelihood. Also, we allow previously normal and infected loca-

tions having different impacts, so it can draw the sophisticated association among spaces,

such as how the previous status affect the current dependencies. For the purpose of pre-

dicting the disease progression, we formulate the joint distribution of multiple locations

given initial status.
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The second model is developed with a similar goal; however, it has a different view on

binary data that might have measurement errors so underlying binary processes are mod-

eled instead. The autologistic model regressing the current responses to the previous ones

is incorporated into the stage of estimating transition probability, which is set to reflect

absorbing states of binary process. Unlike the first model, it can estimate the asymmetric

but directional impacts. Moreover, the procedure of updating hidden states can benefit

researchers to understand subjects’ underlying conditions and false positive rate.

Although we apply the both models on a complete network structure of locations, they

are in fact flexible to utilize any prior information about neighborhood, if provided, such

as neural network association affecting disease infection. This could be done quickly by

fitting on a subset of autocovariates who are in a pre-specified neighborhood.

Future research can focus on ordered categorical data or a mixture of continuous and

discrete measure to retain more information, rather than dichotomized data. For that end,

an absorbing feature could be achieved under the presumption of monotone decreasing

responses.
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APPENDIX A

REMARKS ON ORTHONORMAL BASIS

A.1 Creation of Orthonormal Basis Function

We follow the computation of creating orthonormal basis function from Zhou et al.

(2008). They provided details about the transformation from arbitrary basis functions to

orthonormal. Here we explain briefly their techniques.

Let b̃(t) = {b̃1(t), . . . , b̃q(t)}T be an initially chosen general B-spline basis; this is not

necessarily orthonormal at this point. A transformation matrix T such that b(t) = T b̃(t)

can be constructed as follows. Write b̃ = {b̃(t1), . . . , b̃(tg)}T for the equally-spaced and

sufficiently dense grid, (t1, . . . , tg). Let b̃ = QR be the QR decomposition of b̃, whereQ

has orthonormal columns and R is an upper triangular matrix. Then, T = (g/L)1/2R−T

will be a desirable transformation matrix since

L

g
bTb =

L

g
T b̃T b̃T T =

L

g
TRTQTQRT T = I,

where L is a length of range of t.

Figure A.1 illustrates an example of q = 10 basis functions whose order is 5. See how

the orthonormal basis looks like, which is transformed from the ordinal B-spline.

A.2 Computational Singularity coming from Orthonormal Basis

The partial differentials in normal equations (3.12a, 3.12b, 3.12c) form the majority

part of an information matrix in Fisher scoring algorithm. We here address the importance

of penalizing not just for smoothing but also for the computational stability.
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Figure A.1: Illustration of B-spline functions where q = 10 with an order 5; (Left) B-
splines; (Right) Orthonormalized B-splines

Consider the partial differential of hi(t) with respect to θµ, that is

∂Hi(t)

∂θµ
=

∫
B(t) exp{B(t)Tθµ +B(t)Tθfαi} dt;

=

∫
B(t) exp{W (t)} dt, (A.1)

whereB(t) =
∫
b(t) dt is a q-vector of integrated basis functions, andW (t) =

∫
w(t) dt =

B(t)Tθµ+B(t)Tθfαi is an integrated function of relative curvaturew. Then, ∂hi(t)/∂θµ

is a vector of functions coming from integral of exponential (> 0), multiplied by integrated

basis function, B(t). Since the B(t) looks like the left panel of Figure A.2, the function

elements in (A.1) have therefore different shapes to each other; some are increasing fast

and some are always near zero. For this reason, if these functions are evaluated at observed
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Figure A.2: Illustration of (left) the integrated basis function B(t), (center) intermediate
function in calculation, and (right) the partial differential of H(t) with regard to w(t) of
Figure A.3

points to get the form of data model, a cross-product matrix

∂Hi

∂θµ

∂Hi

∂θµ

T

(A.2)

will computationally singular because of possibility of relatively near zero values at the

diagonal.

To help understandings, we illustrate the form of functions derived at each computation

step. Suppose there is a curve of w(t), which is a straight line, as illustrated in Figure A.3.

Accordingly, the form of partial differential of h(t) can be drawn by multiplyingB(t) (the

left panel of Figure A.2) andW (t) (the center panel of Figure A.3); see the center and right

panel of Figure A.2. As aforementioned, functions of ∂hi(t)/∂θµ have different forms,

therefore a cross product matrix of evaluated values (A.2) has values, for this example, as

shown in Table A.1.

Making a long story short, the penalty parameters λµ and λf play a role not only as a

tuner of smoothing amount but also as a controller for computational stability in terms of

a ridge correction. Hence, if there is an issue with non-existence of inverse matrix due to
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Figure A.3: Example curve of w(t), its integrated function, and exponential of integrated
one

Table A.1: Example of a cross product matrix (A.2) according to b of Figure A.1 and w
of Figure A.3; See large values at upper-left block and distinctively gets smaller toward
lower-right block; Relatively too small values at the diagonal may cause the singularity;
Regularization makes this problem overcome in a sense of the ridge correction.

bspl5.1 bspl5.2 bspl5.3 bspl5.4 bspl5.5 bspl5.6 bspl5.7 bspl5.8 bspl5.9 bspl5.10
bspl5.1 123813.68 154995.62 148755.14 117527.56 68236.01 26109.53 3875.89 522.57 -54.09 36.31
bspl5.2 154995.62 194311.94 187005.93 148283.47 86438.78 33183.68 4943.97 663.89 -67.48 45.55
bspl5.3 148755.14 187005.93 181096.78 144939.39 85369.10 33047.57 4969.21 660.28 -63.89 43.82
bspl5.4 117527.56 148283.47 144939.39 118140.88 71347.62 28169.83 4324.97 561.59 -48.24 34.47
bspl5.5 68236.01 86438.78 85369.10 71347.62 45340.78 18968.78 3025.46 397.59 -35.91 25.25
bspl5.6 26109.53 33183.68 33047.57 28169.83 18968.78 9039.44 1698.93 187.24 -2.23 5.50
bspl5.7 3875.89 4943.97 4969.21 4324.97 3025.46 1698.93 558.72 47.87 7.38 -2.06
bspl5.8 522.57 663.89 660.28 561.59 397.59 187.24 47.87 39.03 -9.00 4.30
bspl5.9 -54.09 -67.48 -63.89 -48.24 -35.91 -2.23 7.38 -9.00 6.41 -2.85

bspl5.10 36.31 45.55 43.82 34.47 25.25 5.50 -2.06 4.30 -2.85 1.37

computationally singularity, setting λ’s at suitable values will be a key technique to make

algorithm converge.
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