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ABSTRACT 

 

The models used currently in industry have shown a considerable discrepancy 

between theoretical data and actual data observed in the field. The birth of torque and drag 

(T&D) modeling was in 1984 in Exxon Production Research Company, and was published 

by C.A Johancsik. It provided the first mechanical model as well as an illustration of the 

origin of torque and drag forces. Johancsik’s paper stated that these resisting forces 

originate from the friction of the drill string against the wellbore and depend on the drill 

string weight supported by the borehole. Many subsequent models adopted the same 

concept including some improvements. 

In this work, a new approach of torque and drag calculation is proposed. It consists 

of taking the forces acting on the drill string and converting them into resulting stresses 

on the pipe body, and transferring the stress tensor from one segment to the next using 

continuum mechanics geometrical transformations. The stress tensors are accumulated to 

yield the resulting stress acting on an element of the drill string in a given depth of the 

well. The back calculation from stress to forces allows deriving the cumulative traction 

and compression forces, and thus drag and torque. This approach has two main advantages 

over the discrete method proposed by Johancsik. First, when a force is applied on a body 

it propagates through the body, therefore, even if the force is axial, a portion of it is going 

to act normally and vice versa. Consequently, the axial force Johancsik is calculating does 

not fully act in the same axis, and the same can be said about the forces in the other 

directions. In this case, it is more physically representative to base the analysis on stress 
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and not forces. Second, continuum mechanics provides a sound tool in handling 

geometries through stress tensor transformation matrices used in our model, instead of the 

angular approximations for inclination and azimuth used in Johancsik's equations. 

 A comparison between the two models for a real field case is included to show the 

relative under-prediction of the old model compared to the proposed model and actual 

data. 
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CHAPTER I    

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

The number of the unknowns in the drilling business is as big as the effort that has 

been spent to invent and create new models to narrow down these unknowns. Torque and 

drag prediction was one of these unknowns until the first modeling approach was created 

by (Johancsik, et al.  1984) in 1984. This model set the stage for companies around the 

world to create their own models and software for torque and drag.  As with any initial 

model, it had imperfections that were addressed by each company according to their 

operational processes. One of the major imperfections with the model used to calculate 

torque and drag currently is the “Friction Factor” (FF). Since the FF in Johancsik model 

should be estimated and back calculated using trial and error methods, it has been 

calibrated to include more than the physical quantity it represents. In its pure physics-

based definition, “Friction Factor” is a quantity that characterizes the resistance to relative 

movements of two surfaces in contact depending on their respective roughness.  In torque 

and drag modeling parlance, the friction factor has become a fudge factor or correction 

factor representing among others: well tortuosity, viscous drag, formation type, string 

stiffness and anything else that makes it more difficult to move the pipe within the 

wellbore. 

Industry professionals have always been aware that the “Friction Factor” used in 

these models is just a factor that intends to correct for all the forces acting on the drill 
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string without being included in the equations of the models. Therefore, many researchers 

have attempted to purify the friction factor from all the other forces it represented. Exxon 

Mobil, which was home of the first model in 1984, later included a new force to add to 

pipe weight that accounts for the shear of drilling fluids on drillpipes. K&M included 

“Hydraulic lift” to account for buoyancy created by drilling fluids that affects the 

proportion of the pipe weight supported by the wellbore, and many other companies made 

similar efforts to obtain a more accurate model for torque and drag.  

As the oil industry began to drill more horizontal wells, and especially after the 

shale boom, an ever-increasing number of companies started to plan for extended reach 

horizontals.   They had to overcome many hurdles along the way and one of these hurdles 

was excessive torque and drag. The need for accurate modeling and prediction of the 

parameters driving toque and drag is a key to success in every drilling program. Being 

able to accurately account for compressive forces acting on a drill string will reflect on the 

ability to predict buckling zones in directional wells and adopt the appropriate remedies 

in order to transfer more weight to the bit and continue drilling efficiently.  

Although published mechanical works have extensively studied the buckling 

phenomena, and set the onset criterion for both helical and sinusoidal buckling, many 

models adopted in the drilling industry still introduce correction factors to the buckling 

criterion. The goal from doing so is to meet the compressive forces they use in their 

convention of torque and drag model, (Mitchell, et al. 1999), (Dunayevski, et al. 1983), 

(Lubinski, et al. 1962).  
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The present work proposes a new modeling approach to calculate torque and drag 

through stress and strain generated by all forces acting on the drill string, taking advantage 

at the same time of the geometrical ease provided by stress transformations in order to 

overcome corrections due to inclination and azimuth changes. 

The First Model for Torque and Drag in Directional Wells: Soft String Model 

Many studies suggest that the theory behind the present torque and drag model 

originated in the 1984 paper by C.A. Johancsik (Johancsik et. al. 1984). In this model, the 

pipe is viewed as analogous to a heavy cable or a chain lying along the wellbore.  The 

model ignores any tubular stiffness effect, therefore, the axial tension and torque forces 

are supported by the drill string, and the contact forces are supported by the wellbore. 

According to Johancsik model, torque and drag contributing forces are: normal 

force perpendicular to the contact surface, buoyed weight of the pipe element, and friction 

force. Depending on the hole section where the pipe segment is located, the normal force 

and friction force are affected by the tension in the pipe section (straight pipe vs bending 

portion of pipe). The main assumption in Johancsik model is that torque and drag are 

entirely due to Sliding friction forces, based on that he uses Coulomb’s friction model to 

link sliding friction force to the normal contact force via the coefficient of friction. Later 

on in 1987, Johancsik integrated mud pressure in the model in order to account for its 

effect on pipe tension, and differentiate between upward and downward pipe motion in 

the calculations. The model later was used to back calculate apparent friction factors and 

interpret hole geometry, hole cleaning problems, and to improve hydraulics. The works 

that followed and that adopted the same model, (Sheppard et al. 1987), (Mitchell, and 
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Samuel, 2009), (Adnoy, et al.,2010), (Gaynor, et al. 2002), (Mailda, and Wojtanowicz, 

1987), and (Manson, et al. 2007), were focused on improving the estimation of the friction 

factor. (Lesage, et al. 1988) developed a computational model that averaged axial and 

rotational friction factors separately and other studies focused on different features of the 

model such as hole cleaning, mud, hydraulics, etc. Having in common the fact of adding 

correction factors to correlate with field data. 

The soft-string modeling methodology relies on compartmentalizing the drill 

string into short elements joined by connections that transmit tension, compression and 

torsion. The equations are applied to each segment. Setting the initial conditions at the 

drill bit (bit torque and weight on bit) the calculations start from the bottom of the drill 

string and upwards to the surface. The resulting surface torque, axial drag and weight is 

the summation of these values from the bottom, across each pipe element and to the 

surface. The torque force is the moment of all forces acting tangentially on each tool joint.   

It is worth mentioning that some of the major assumptions of this model is that the 

string is permanently in contact with the wellbore, which means that the radial clearance 

effects and bending moments are both ignored. 

 

 



 

5 
 

 

 

Figure 1: An Inclined Pipe Segment 

Johancsik used basic Newtonian physics laws to develop the equations he 

presented in his paper (Johancsik, et al. 1984). It involved considering a drill pipe in static 

mode at first, and making the inventory of the forces acting on a portion of pipe Figure 1, 

then choosing a system of axis to project all the forces. This system of axis will be chosen 

in a way to make most of calculations easy.  Figure 2 and Figure 3 present graphically 

the phenomena occurring at each segment in a static mode. 

According to Johancsik’s model, the normal force is: 

FN = [(Ft ∗ ∆α sin θ)2 + (Ft ∗ ∆θ + W ∗ sin θ)2]1/2  Eq.1 

With:  

Fi: downward compression force, Fi+1: Upward tension force, W: Weight or gravity force, 

FN: Normal force, Ffriction: surface friction force, α: angle between vertical W force and X1 

local axis (well inclination),  
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Figure 2: Loading of a Single Segment of the Drillstring  

Using the friction coefficient μ, the friction resistance to pipe movement in the 

direction of X1 axis is equal to: 

Ffriction = μ ∗ FN = μ ∗ [(Ft ∗ ∆α sin θ)2 + (Ft ∗ ∆θ + W ∗ sin θ)2]1/2  Eq.2 

                                                                             

From Fig. 2, Newton’s law projected on X1 yields:  

Fi+1 − Fi − W ∗ cos α + −⁄  μ ∗ W ∗ sin α = 0  Eq.3 

Hence:  

∆Fi = Fi+1 − Fi =  W ∗ cos α + −⁄  μ ∗ W ∗ sin α  Eq.4 
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Figure 3: Force Balance Acting on a Portion of Drillstring 

The +/- sign in the equation is due the change of the friction force direction. Since it is a 

force that opposes pipe movement it will be in the opposite direction of the two forces 

summation Fi+1 + Fi, which means that if the pipe is moving upwards i.e. Fi+1≥ Fi, then +/- 

in the equation is replaced by +, and vice versa. 

As previously mentioned, the drag calculation is carried out in a stepwise upward 

process. For a drill string with n number of tool joints, the total drag force will be:  

 Fdrag = ∑ ∆Fi
= ∑ (Fi+1 − Fi)

n
0 = Fn − F0  Eq.5 

Where Fn is the drag force at the last tool joint at the top of the string. 

Torque being the moment of the axial force, its value is given by Eq.6 

Torque = Ffriction ∗ R = μ ∗ FN ∗ R =  μ ∗ [(Ft ∗ ∆α sin θ)2 + (Ft ∗ ∆θ + W ∗

sin θ)2]1/2 ∗ R Eq.6 
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The whole concept is based on the geometrical representation of the vector forces 

acting on an element of pipe, and their projection in a local system of axis. In the plane 

(X1, Z1) the picture is shown in Figure 3: 

Friction Factor in Johancsik Model and Continuum Mechanics  

Friction factor is a key element in any T&D model, it is a dimensionless parameter 

that represents the roughness between the pipe body and the wellbore. Because of the 

complicated nature of drilling and the solid/solid contact versus the solid/fluid/solid 

contact between the drill pipe, the mud, and the formation or the casing, the friction factor 

used in T&D modeling is rather a fudge factor and in many cases, it represents one or 

many of the following effects.  

 Pipe stiffness effect 

 Viscous drag 

 cuttings bed height 

 Stabilizers/centralizers  

 Formation type 

 Pore pressure 

 Circulation losses 

 Wellbore breakout 

 Micro-tortuosity  

 Wellbore spiraling and other patterns 

 Drilling fluid properties 
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The ranges of friction factors in T&D modeling are between 0 and 1.0 in theory but in 

practice generally fall between 0.05 and 0.5. 

In continuum mechanics, the friction forces are defined as the forces that prevent 

any relative movement of two surfaces in contact to some limit before motion occurs. In 

this area, there are two types of friction: static friction and dynamic friction. Static friction 

is the frictional force that keeps an object at rest and must be overcome in order to begin 

movement of the object.  Dynamic friction, which is more relevant for T&D modeling, is 

the frictional force that must be overcome to maintain the motion once it is started.   

Stiff String Model  

Because the two major assumptions in the soft string model are unrealistic, work 

followed the inception of torque and drag modeling to correct this.  The following 

publications are representative of this effort: (Adnoy, et al, 2008), (Fazaelizadeh, et al, 

2010), and (Tikhonov, et al. 2014). The stiff-string model was developed to provide a 

more realistic representation of both the drill string and the wellbore 

This model allows initially unknown sections of the pipe not to be in contact with 

the wellbore. Higher contact surface between the string and the wellbore is present in 

curved sections of the well as opposed to straight vertical or horizontal sections of the 

well. The variation of contact area between drill pipe body, tool joints and stabilizers is 

another aspect of this consideration. These last elements of the drill string are also 

characterized by a higher bending moments. 
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It is widely accepted that the stiff-string model is more relevant in the following 

cases 

 Highly tortuous well trajectories 

 Well path with high doglegs severity 

 Stiff casing jobs 

 Well design with narrow radial clearances 

However, this model relies on accurate values for parameters such as hole size and 

well trajectory that are not available in many situations.  In addition, to solve for T&D 

using stiff string model is mathematically complicated (finite differences, finite elements 

and semi-analytical techniques) when attempting to properly account for the effect of hole 

size and radial clearances. 

Finite Element Model 

The key reason for the use of the finite element method is that it is able to withstand 

any amount of segments, which are drill string sections in our case. Therefore it is 

unbounded by the degree of complexity of the wellbore curvature and drill string 

variations (when a parameter is different isolate the hole portion and calculate again). This 

approach has provided a powerful tool to take into consideration the string stiffness as 

well as borehole/string clearance, and integrate them accurately in the torque and drag 

calculation model. 

Starting in 1995, (Bueno, Morooka, 1995) generated a model based on the 

following assumption: the only contact points between the borehole and the drill string 
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occur at the tool joints, the wellbore was divided accordingly into contact points with 

specific stiffness. Later on, (Newman,, 2004) introduced the bending pipe case and 

improved the model with more contact points which opened the door to buckling 

prediction during drilling operations, then he transformed the static calculations into a 

dynamic time dependent model. 

Pipe Buckling 

Buckling is an important topic in T&D modeling. The increase of the weight 

supported by the wellbore when buckling occurs prevents from transmitting the weight to 

the bit (WOB). This is mainly due to the transformation of axial load, originally intended 

to be conveyed to the bit, into normal load of the drill string dissipated in the borehole 

walls.  Buckling starts as sinusoidal deformation in the drill string. As compression builds 

up in the buckled portion of the string, helical buckling occurs. Ultimately, “lock-up” 

occurs when the buckled wellbore portion supports the entire weight rather than the bit.  

There is a huge work dedicated to buckling only for its importance. Different 

formulas were established for the onset of both sinusoidal and helical buckling: (Dawson, 

Paslay, 1984), (Wu, Juvkam-Wold, 1995), (Wu, 1997), (Mitchell, 1999), (Kyllingstad, 

1995). Each study from the above mentioned papers and many more have established 

buckling initiation criterion, for both buckling modes, sinusoidal and helical. 



 

12 
 

 

 

Figure 4: Sinusoidal and Helical Buckling Illustration 

Figure 4 illustrates pipe buckling both sinusoidal and helical. Buckling is assessed 

according to the following conditions: 

F<Fs       No buckling 

Fs<F<√2𝐹𝑠    sinusoidal buckling initiated 

√2𝐹𝑠 <F<2√2𝐹𝑠    Helical buckling initiated 

2√2𝐹𝑠 < F                Helical buckling 

Where: Fs    represents the sinusoidal buckling initiating force, FH   represents the helical 

buckling initiating force 

Vertical Section 

The first buckling model was derived by (Lubinski, et al., 1962). It evokes only 

sinusoidal buckling and simply states that the compressive force needed to generate this 

mode of deformation is:  
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Fsin = 1.94(EIw2)1/3  Eq.8 

I =
π

64
(OD4 − ID4) Eq.9 

(Wu et al., 1995) introduced a sinusoidal buckling force corrected based on the previous 

model with the following formula: 

Fsin = 2.55(EIw2)1/3 Eq.10 

In addition, Wu, et al. derived the compressive force needed to generate helical buckling 

in the following: 

Fhel = 5.55(EIw2)1/3 Eq.11 

Inclined Section 

Dawson and Paslay in 1984 came up with a criterion to onset of sinusoidal 

buckling in these sections, which requires a compressive force equal to: 

Fsin = 2 (
EIw sin α

r
)

0.5

 Eq.12 

With α being the section inclination and r the radial clearance. 

Curved Section 

In 1999, (Mitchel, 1999) derived the following formula for the onset of sinusoidal 

buckling in curved sections of the well: 

Fsin =
2Elk

r
[1 + √

wsinαr

elk2
+] Eq.13 

Where: 
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E is Young’s modulus, I is the second moment of area, w is the pipe weight, and 𝑘 = 1/𝑅  

is build or drop, and R being the radial clearance 

And 

 r =
1

2
(ID well

casing

− ODtubing) Eq.14 

For the helical buckling onset, the compressive force required as determined by Mitchell 

model is: 

Fhel = 2.83𝐹𝑠𝑖𝑛 Eq.15 
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CHAPTER II   

FORCES ACTING ON THE DRILLSTRING 

Viscous Drag or Forces due to Fluid Flow 

Viscous drag is a resistive force caused mainly by viscosity and mudflow inside 

and outside the drill string. As the drill pipe moves inside the wellbore full of mud, the 

mud viscous drag will decelerate the pipe movement depending on the relative movement 

of both the drill string and the direction of mudflow. It should be noted that the mud flows 

inside and outside the drill string in opposite directions. Which means that they have 

opposite contribution to the forces acting on a given segment in the drill string. The fact 

the contact area between the mud and the drill string is different on the inside than the 

outside, and given that the mud velocity is also different between the inside and the 

outside, all make this force important in T&D modeling. 

The viscous drag force for an infinite cylinder of diameter d acting on the inside 

body surface is given by the following formula: 

fD =
1

2
∗ CD ∗ ρ ∗ μ0

2 ∗ d Eq.16 

The drag coefficient depends on the flow regime and hence on Reynold’s number as 

follows: 

if    Re<100 , 𝐶𝐷~𝑅𝑒
−1 

if 100 < Re < 105  , 𝐶𝐷~~1 
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If Re> 3x105 ,  CD   drops and rises, the transition corresponds to the onset of turbulent 

flow. 

In general, CD is related to Reynolds number according the plot in Figure 5:  

 

Figure 5: Viscous Drag Coefficient as a Function of Reynolds Number, (Wolfram 

Research, Cylinder Drag) 

Similarly, the viscous drag force for an infinite cylinder of diameter d is acting on the 

inside body surface is: 

fD =
1

2
∗ CD ∗ ρ ∗ μ1

2 ∗ de Eq.17 

de being the equivalent diameter of pipe clearance  de = S/π, S being the clearance around 

the pipe inside the wellbore.    

Circumference Distributed Forces 
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For an analysis restricted to a limited portion of pipe which is the methodology 

adopted to account for a cumulative T&D forces, the pipe diameter is substituted by the 

surface of the pipe in contact with the mud. 

This surface is subject not only to the frictional viscous drag forces but also to any flow 

pressure outside and inside the pipe  

 

Figure 6: Pressure Acting on the Inside and Outside of the Pipe Body 

The resulting force of both pressures illustrated in Figure 6 acting on the pipe is: 

 Fp = (P0 ∗ S0 − P1 ∗ S1) Eq.18 

Where: 

 S0 is the circumferential area of the pipe outside, and S1 the circumferential area of the 

pipe outside. 

This force would not develop unless the pressures outside and inside the pipe are 

different or if the outer contact surface of the pipe is different from the inner area (a bent 

portion of drillstring).  
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In the case of high dogleg severity, the radius of curvature is high which drives 

this force higher. The curvature is an important factor in this force as it brings the far side 

of the pipe from the center of curvature into stretching and puts the near side under 

compression. This, combined with the effect of the mud weight force inside the pipe 

amplifies the effects of pipe bending.  Study shows that these forces can be neglected and 

it has an accumulated effect of 4% in high depth. 

Effect of Buoyancy on Gravitational Forces 

The total weight of the pipe submerged in the mud should be corrected to a buoyed 

weight when accounting for gravitational forces:  

Assuming that 95% of the string component’s length is the pipe body and 5% is the tool 

joint, (McCormick, et al., 2011) we have:  

Wb = Wa ∗ (1 − MW ∗ 7.481/490) Eq.18 

With: 

WBuoy = Wair − Wfluid Eq.19 

Wfluid = (MW ∗ AE) − (MW ∗ AI) E1.20 

AE =
π

4
∗ (0.95 ∗ (ODPB)2 + 0.005 ∗ (ODTJ)

2
) Eq.21 

AI =
π

4
∗ (0.95 ∗ (IDPB)2 + 0.005 ∗ (IDTJ)

2
) Eq.22 

Centrifugal Body Forces due to Pipe Rotation 

In general, for any axisymmetric body rotating around its axis of revolution there 

is a centrifugal body force created by the effect of angular velocity, Figure 7. In the case 
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of steady angular velocity, the body force is in the radial direction (i.e. normal to the pipe) 

and has a magnitude: 

Fc = ρ ∗ r ∗ ω2 Eq.23 

This occurs since the centrifugal body force is normal to the pipe. The resulting friction 

component is therefore: 

Ft =  μ ∗ ρ ∗ r ∗ ω2 Eq.24 

 

 

Figure 7: Axisymmetric Centrifugal Force 
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CHAPTER III     

STRESS AND STRAIN TENSOR THEORY AND APPLICATION FOR DRILL 

PIPES 

The Stress Strain Tensor Relationship 

The representation of the stresses at the portion of pipe subject to study helps 

identify the normal forces and tangential forces (shear forces) acting on the pipe.  This 

allows identification of the forces that contribute to torque and drag and the strains 

resulting from these stresses. 

For a rigid material the stress and strain are related through the stiffness matrix, the general 

equation is: 

σ∗ = C∗. ϵ∗ Eq.25 

Applying Stress Tensors over a Pipe Portion 

The stress tensor at a certain point in the surface of the pipe is expressed in the 

following matrix form: 

S = (

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

) Eq.26 

Normal Stress 

Stress is by the definition the force divided by area on which the force is applied. 

Considering a force applied at a face of the element represented in Figure 8, the normal 

component of this force give rise to a normal stress, which is numerically obtained by 

dividing the normal component of the force by the area of the face on which it acts. 
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Figure 8: Illustration of Normal Stresses Directions and Notations 

Shear Stress 

Shear stress is the component of stress coplanar with the material cross-section, 

the force vector component parallel to the surface subject to the force gives rise to shear 

stress.  

 

Figure 9: Shear Stress Orientation with regard to the Surface Subject to Force 
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Shear stress is obtained numerically in the same way normal stress is obtained, i.e. - by 

dividing the coplanar element of the force by the surface area, Figure 9. 

The stress notation follows the standard conventions.  For example 𝜎𝑥𝑦  is the 

stress applied at the plane normal on the X-axis and in the direction of Y-axis. The force 

generating that stress has the same orientation in the plane (x, y, z) and is applied to the 

surface of the body normal to the axis X. 

Stiffness Tensor  

The stiffness tensor for a thick walled cylinder in the cylindrical coordinate system 

is shown in Eq.27: 

C∗ =
E

(1+v)(1−2v)
[

1 − v v 0 0
v 1 − v 0 0
0 0 1 − v 0
0 0 0 0.5 − v

] Eq.27 

E being Young’s modulus, and v Poisson’s ratio. 

Principal Stresses and Cylindrical Coordinates 

At every point in a stressed body there are at least three planes, called principal 

planes, with normal vectors n called principal directions, the stresses applied to the surface 

along the principal directions  are perpendicular to the plane along the normal vector n 

and where there is no shear stresses 𝜏𝑛. Consequently, the three stresses normal to these 

principal planes are called principal stresses. 

The stress tensor being a physical quantity, it is independent of the coordinate 

system chosen to represent it, although the components 𝜎𝑖𝑗 of the stress tensor depends on 
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the orientation of the coordinate system. Just like a vector for example which is a tensor 

of rank 1 in a three dimensional space, that tensor has three components that depend on 

the coordinate system in which it is chosen to represent the vector. The magnitude of the 

vector however is a physical quantity (a scalar) and it is independent of the Cartesian 

coordinate system or any other coordinate system for that matter. Similarly the stress or 

strain tensors components depend on the coordinate system they are represented in, they 

have three independent invariant quantities associated with it. One set of such invariants 

are the principal stresses of the stress tensor, which are just eigenvalues of the stress tensor. 

Their direction vectors are the principal directions or eigenvectors. 

The principal stress tensor has therefore the following form:  

σ∗ = [
σ1 0 0
0 σ2 0
0 0 σ3

] Eq.28 

In the case of a cylindrical shaped pipe the principal stresses direction coincides with the 

cylindrical local coordinate systems (r, 𝜃, z) 

Proposed Model: Stress-Based for Thick-Walled Cylinders 

Coordinates Convention and Stress Expression 

Typically for a thick walled cylinder the conventional (r, 𝜃, z) cylindrical system 

of axis with regard to (x, y, z) Cartesian system of axis have configuration shown in Figure 

10. 

In order to be consistent with equations established in the drilling industry for 

torque and drag contributing forces. The convention shown in Figure 10 was changed by 
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permuting the x-axis with the z-axis in the Cartesian convention. This new convention will 

be adopted in the following calculations when establishing the formulas for forces and 

stresses in cylindrical coordinates system of axis. Moreover, the choice of the cylindrical 

system of axis is preferable because of the simplicity it provides for expressing the 

stiffness matrix.  

 

Figure 10: Cylindrical and Cartesian System of Axis Representation on a Cylinder 

The stresses on the x-axis and z-axis in Cartesian coordinates will be identical to 

the stresses in the radial direction and z-axis in the cylindrical convention. Figure 11 

emphasizes these relative orientations. 
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Figure 11: Direction of Stresses in the Cylindrical Coordinates relatively to the 

Cartesian Coordinates 

Example Application to an Inclined Drillpipe Section 

Let (x,y,z) be the coordinate system illustrated in the Figure 12. The diagonal 

components of the stress tensor being the normal stress applied on the portion of pipe 

subject of study and the off diagonal components are the shear stress components. 

 

Figure 12: Force Balance Acting on a Portion of Drillstring 
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Based on this convention the stress is attributed to the weight of the portion of pipe studied 

as follows:  

The pipe weight: 

 Wxx = W ∗ cos α  Eq.29 

Therefore,    

 σxx = Wxx/Sx Eq.30 

With Sx the Cross-sectional area of the pipe:       

 Sx =
π

4
(OD2 − ID2)  Eq.31 

Similarly: 

Wzz = W ∗ sin α Eq.32 

And                                                     

σzz = Wzz/Sz  Eq.33 

σyy = Wyy/Sy Eq.34 

With Sz, Sy , are the circumferential area of the drillpipe portion of length L: 

Sz =  Sy =  π ∗ OD ∗ L Eq.35 

Using the same concept, we can obtain the shear stresses acting on the body subject of 

study in the (x, y, z) Cartesian coordinate system  



 

27 
 

 

The term accounting for well azimuth was dropped from the following equations 

because the forces balance was applied in the local system of axis, nonetheless this term 

will reappear in the stress transformation matrix.  

Summarizing forces resulting in stresses we obtain: 

Forces resulting in stressσzz: 

Fz = Wb ∗ sin α Eq.36 

Forces resulting in stressσxx: 

Fx =  Wb ∗ cos α Eq.37 

Forces resulting in stressσzx: 

Fzx = Fxz =
1

2
∗ CD ∗ (ρ ∗ μ0

2 ∗ d − ρ ∗ μ1
2 ∗ de) − μ ∗ (Wb ∗ sin α ∗ sin φ) Eq.38 

Given the cylindrical shape of the pipe and the orientation of the forces established 

above, the rest of the stresses in the stress tensor are eliminated and therefore: 

Fy = Fyz = Fxy = 0  Eq.39 
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The stress tensor therefore is: 

 

[

Fx Fxy Fxz

Fxy Fy Fyz

Fxz Fyz Fz

] = 

[

Wb ∗ cos α/Sx  0 (
1

2
∗ CD ∗ ρ ∗ μ0

2 ∗ d −
1

2
∗ CD ∗ ρ ∗ μ1

2 ∗ de − μ ∗ Wb ∗ sin α ∗ sin φ)/Sz

0 0 0

(
1

2
∗ CD ∗ ρ ∗ μ0

2 ∗ d −
1

2
∗ CD ∗ ρ ∗ μ1

2 ∗ de − μ ∗ Wb ∗ sin α ∗ sin φ)/Sz 0 Wb ∗ sin α /Sz

] Eq.40 
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Methodology of Calculations 

Similar to the stiff string or soft string T&D models, the method of T&D 

calculation using stress-strain tensors starts from the bottom of the drill string and works 

its way upward until reaching the surface or until it reaches the depth of interest. The zone 

of interest is the depth where potential buckling can be anticipated, and where better design 

in regards to T&D is needed. Calculations can be also carried to the surface to determine 

the surface readings of torque and hookload. 

If the bottom of the drill string is subject to the stress tensor𝜎𝑖𝑗0, the strain inflicted by that 

stress tensor on the drill string segment 0 is obtained as follows 

ϵ0
∗ = C∗−1. σ0

∗ Eq.41 

It is important to stress that at each segment, when calculating the stress tensor, 

only the forces applied to that particular segment should be accounted for. Therefore, 

when calculating the forces applied to that segment, it should be considered as an isolated 

body, not subject to any tension or compression. Because the effect of the tension or 

compression is already accounted for in the stress tensor of the previous segments and will 

be added to the stress inflicted by the local forces on the current segment. 

The same calculation is performed over the next segments. Starting from the local stress 

and working our way upwards. At segment u, the cumulative stress is the sum of the 

stresses from the preceding segments taking into account tortuosity effect on axis systems 

on this operation, as it will be shown in the next section. 

The equivalent strain is therefore: 
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σeq
∗ = ∑ σk

∗u
k=0  Eq.42 

By reversing the same method of calculating stress tensor from forces, we can calculate 

the cumulative forces applied at an element of drillstring. 

An important feature during the design is to compartmentalize the drill string into 

a finite number of segments. Many parameters should be taken into consideration while 

doing so, including, the length of each segment, the change in inclination and azimuth 

from one segment to the next, the change in pipe diameter and thickness from one segment 

to the next. For example, a drill pipe and a drill collar should not be in the same segment 

because they have different diameters and stiffness and that will cause the stress to be 

unequally partitioned along the segment. The segment has to be fairly straight, This feature 

is especially important at angle build up regions in directional wells or in high tortuosity 

horizontals, as the angular deviation amplifies the strain transmission from underneath to 

top segment with high concentration on the inside arc. 

Inclination, Azimuth and Tortuosity Angular Effect 

Changes in well trajectory will occur whether planned for or not. These changes 

affect the amount of stress transmitted from one segment to the next. Whether it is a change 

in well inclination or well azimuth the relation between the new stress tensor in terms of 

the old stress tensor in 2-D is given by the following formula:  

σnew = T∗. σold
∗ Eq.43 

In 3-D case the relation becomes 

σnew = T∗. σold
∗. 𝑇∗𝑡 Eq.44 
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2-D Transformations 

In the case of a change in well inclination without change in well azimuth, and 

letting θ be the angle between segment i and segment i+1. Since the change is only in well 

inclination, the transformation is only a 2-D transformation as it is shown in the next 

figure. 

 

Figure 13: 2-D Angle Transformation of Local Coordinate’s Axis 

A change in well inclination or well azimuth exclusively will result in a 2-D 

transformation of the local coordinates system of axis. In the case illustrated in Figure 13, 

only axis-x and z are rotated with an angleθ, axis-y remains unaffected by the change of 

angle. 

The transformation matrix relates the stress expressed in the old coordinates axis and the 

new coordinates axis. When stress is expressed in the local Cartesian coordinates system, 
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the transformation matrix for the new stress in terms of the old is a function of the angle 

θ as follows:  

T∗ = [
cos θ2 𝑠𝑖𝑛 𝜃2 2 sin θ cos θ
sin θ2 cos θ2 −2 sin θ cos θ

−sin θ cos θ sin θ cos θ cos θ2 − sin θ2

] Eq.45 

For all practical reasons it is recommended to take θ as the angle determined by 

well trajectory survey (Inclination or azimuth). Therefore, it is a real time value that can 

be integrated in the equations in real time to adjust for new and corrected torque and drag 

values. 

General Approach for 3-D Transformation 

In the general case, a different approach to strain or stress transformation equations 

can give the expression of the transformation matrix. This approach is more complex but 

capable of generating an easy extension of the previous formula to 3-D. 

For any random axis transformation in three dimension, the use of “Euler Rotation 

Theorem” can lead to the expression of the matrix of transformation with the simple use 

of transformation trigonometric. 

This method sums the process of obtaining the new axis from the old axis in three steps 

as it is shown in Figure 14. 
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Figure 14: Transformation in terms of Euler Angles 

The first step consists of rotating the original (x, y, z) axes by an angle ψ around 

the z-axis to obtain a new frame we may call (x’, y’, z). The second step is to rotate this 

new frame by an angle θ about the x’ axis to obtain another frame we can call (x’, y’’, z’). 

Finally, by rotating this frame by an angle φ around the z’ axis to obtain the final frame 

(x’’-y’’’-z’). These three transformations correspond to the transformation matrix 

T∗ = [
cos ψ sin ψ 0

−sin ψ cos ψ 0
0 0 1

] [
1 0 0
0 cos θ sin θ
0 −sin θ cos θ

] [
cos φ sin φ 0

−sin φ cos φ 0
0 0 1

] Eq.46 

 

Pipe Buckling 

The behavior of the string under compressive stress depends on the magnitude of 

the latter. As long as the compression is below the critical value, the string will sustain the 

compression without buckling. Above the critical value of compression, the string will 

buckle in a sinusoidal form. Above the helical buckling critical load, the pipe will no 

longer conserve its snaky configuration and will coil up against the wellbore and helically 
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buckle. Due to the immediate dramatic increase in wall force in the case of helical 

buckling, string lock up will follow immediately after helical buckling 

Typical buckling behavior in an ERD-type well profile is shown in Figure 15. 

Only the upper portion of the 80° tangent section is shown where compression exceeds 

the critical buckling load. Buckling extends from the 80° tangent, where compression is a 

maximum up into the near-vertical section. In the 80° section, stabilization forces due to 

high inclination provide adequate support to restrain the buckling to the sinusoidal mode. 

In the build section, wellbore curvature provides additional support restraining the 

buckling in that section to the sinusoidal mode and of less severity than the 80° tangent 

section. Full helical buckling develops in the near-vertical section where the string 

receives little support from the wellbore. This helical buckling gradually disappears as the 

neutral point is approached where compression in the string is less than the critical 

buckling load. 
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Figure 15: Zones of Potential Buckling in Directional Wells (Payne, M. L. et al, 

1996) 

Under increasing compressive stress the pipe might buckle if the normal compressive 

stress exceeds a yield criterion 

 

Figure 16: Buckling Onset Stress 

In Figure 16, Euler’s buckling analysis sets the critical load that onsets sinusoidal 

buckling of a pipe: 

W =
π2EI

L2
 Eq.47 
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It is very important to understand that accurate buckling prediction relies on 

accurate drag estimation first and for most. The analysis that will yield the buckling onset 

compressive force would account for tubulars radius and stiffness, hole size, and drill 

string clearance. Therefore, it is very important to properly model torque and drag in order 

to predict buckling zones accurately. 
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CHAPTER IV     

FIELD CASE AND MODEL SIMULATION  

Introduction to the Example Well 

The well that has been selected for the new model simulation and comparison with 

real T&D data, is a horizontal well drilled in Texas from a land rig to a TD of 10926 ft. 

The directional section with angle build-up starts at MD of 6118 ft and reaches the 

horizontal section at MD of 7340 ft. Figure 17 and Figure 18 shows the inclination and 

azimuth profile vs MD.  

 

Figure 17: Example Well Inclination Profile vs MD 
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Figure 18: Example Well Azimuth Profile vs MD 

Figure 19 shows the hookload plotted vs MD of both cases P/U and S/O for the following 

cases: 

 Theoretical string weight 

 Actual string weight 

 P/U theoretical case with FF from 0.1 to 0.5 

 Actual P/U weight 

 S/O theoretical case with FF from 0.1 to 0.5 

 Actual S/O weight 

Figure 19 also lists the well characteristics, hole profile, string composition, mud weight, 

and casing depth, as well as the location of the zones studied.  
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Figure 19: Example Well P/U and S/O Hookload vs MD, and Theoretical and 

Actual String Weight 
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Figure 19 presents the plots of hookload vs measured depth, the light red curves are pull-

up hookload prediction for friction factors ranging from 0.1 to 0.5 and the maroon curve 

is the actual pull-up hookload vs MD. The light blue curves are slack-off hookload vs MD 

predicted for friction factors from 0.1 to 0.5, and the dark blue is the actual slack-off 

hookload vs MD. The light green curve is the theoretical rotating string weight and the 

dark green curve is the actual rotating string weight 

Simulation Shows S&S Method Predicts Higher Drag Forces 

Three zones of the directional section of the well were selected to run a simulation 

of drag forces using the proposed model. The upper zone is located in the directional 

section of the well near the vertical. The inclination in this zone is small, which makes the 

pipe weight contribute less to the normal force applied to the string, and therefore results 

in less friction and thus drag. In this zone Johancsik model provided relatively accurate 

predictions. S&S model provided also accurate predictions for this zone, which proves 

that when Johancsik model was accurate in this zone S&S was also accurate in predicting 

drag. The middle zone is where the gap between Johancsik prediction and actual drag is 

at a minimum. In this zone, it was critical to run our model in order to assess its ability to 

part away from Johancsik predictions and provide more accurate drag even when the gap 

was small. From the middle zone to the bottom zone, the gap between Johancsik prediction 

and actual drag gains in magnitude. S&S prediction for this section was increasingly far 

from Johancsik and close to actual data.  The results from the three zones were compared 
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to drag forces calculated using Johancsik’s model. The zones are listed in Table 1, and 

the results comparing the methods are illustrated in Figure 20, Figure 21 and Figure 22 

Zone location MD 

Top zone 6309 ft-6404 ft 

Middle zone 6787 ft- 6881 ft 

Bottom zone 7116 ft- 7251 ft 

Table 1: Zones Simulated in the Directional Section of the Example Well 

The simulation and comparison were run for the case of P/U with FF=0.1 for each 

zone, the simulation assumed the string in that zone was divided into four segments which 

are drill pipes, and the transition from one segment to the next is the tool joint. This 

segment breakout allows to account for the tool joint circumference and cross-section 

when evaluating the stress tensors and driving drag for each segment. Drag forces for the 

zones in Table 1 were generated for both Johancsik model and S&S proposed model. 

Figure 20, Figure 21, and Figure 22 show the results of the simulation and the 

comparison of the two models. As it can be seen from Figure 20, the predicted drag forces 

in the top zone from Johancsik model and the proposed model are almost identical in this 

section. As the inclination increases, the drag forces predicted by the new model show 

higher values than the forces predicted by Johancsik model as shown in Figure 21 
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Figure 20: Drag Forces Simulated for the Top Zone Using Johancsik Model and the 

Proposed Model Show Minimal Differences between the two Methods. 

 

Figure 21: Drag Forces Simulated for the Middle Zone Using Johancsik Model and 

the Proposed Model Show Increasingly Higher Drag Using S&S Model Compared 

to Johancsik Model 

Higher drag is predicted by S&S model 

and the gap between the two models 

keeps increasing with more segments  
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The gap between the two models continues to build up with MD and well inclination as 

can be seen with it further increasing in bottom zone (Figure 20). 

 

Figure 22: Drag Forces Simulated for the Bottom Zone Using Johancsik Model and 

the Proposed Model Showing Consistent Higher Prediction by S&S Model 

Comparison of Models to Actual Drag Data 

In order to quantify the discrepancy between theoretical and actual data and 

compare it to the gap between Johancsik model and the new model, an evaluation of the 

difference ratio was conducted for each case using the simulation results and the well data. 

First, we define the difference ratio as the gap between two readings at the same 

depth divided by actual reading.  Hence, the difference ratio between Johancsik drag and 

actual data is: 

RDifference =
Actual drag−Johancsik drag

Actual drag
 Eq.48 

Consistent higher drag prediction by S&S 

model compared to Johancsik with 

increasing difference as more segments 

are included in the analysis 
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Similarly the difference ratio between S&S model and actual readings is defined as: 

RDifference =
Actual drag−S&S drag

Actual drag
 Eq.49 

The results of difference ratio for each one of the zones studied are provided in Table 2. 

 
Between actual drag and 

Difference 
ratio 

 
S&S model Johancsik model 

Top zone 1.64% 2.47% 

Middle zone 2.54% 3.82% 

Bottom zone 3.16% 5.38% 

Table 2: Drag Difference Ratio Comparison between Johancsik/Actual and 

Johancsik/S&S Results 

Discussion of Simulation Results 

 

Figure 23: S&S Model Drag Prediction in the Middle and Bottom Zones, S&S 

Provided Higher Drag Prediction than Johancsik Model and Closer to Actual Data 

Figure 23 shows that in the top zone the actual hookload and the Johancsik-based 

model, using a FF of 0.1, are almost identical. The difference ratio (Actual/Johancsik) was 

2.5%, while the difference ratio (Actual/S&S) models was 1.6%. Therefore, the new S&S 
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model eliminated 64% of the error between Johancsik model and actual drag in the case 

of FF=0.1, better predicting the drag. 

In the middle zone, a more considerable gap is seen between the Johancsik-based 

model hookload and the actual. The difference ratio (Actual/Johancsik) for this case was 

3.8%, and the difference ratio (Actual/S&S) was 2.5%.  The S&S model was able to 

predict higher drag and eliminate more than 60% of the original error (Actual/Johancsik).  

Finally, in the bottom zone, a bigger gap can be seen between theoretical and actual 

hookloads. The difference ratio (Actual/Johancsik) for this case was 5.4%, while the 

difference ratio (Actual/S&S) was 3.16%. The actual hookload in the bottom zone is closer 

to the theoretical P/U case that uses a FF of 0.2 than the case with FF of 0.1. This represents 

one of the major drawbacks of Johancsik model, because the FF needs to be constantly 

adjusted and increased in curved sections and horizontals in order for Johancsik predicted 

data to match the field observed data. In middle zone as an example, the S&S model has 

been able to close this gap to less than 44% of its original magnitude between Johancsik 

and actual data, without the need to alter the FF used in the simulation. 

Friction 
Factor 

 
S&S model Johancsik model 

Top zone 0.1 0.1 

Middle zone 0.112 0.145 

Bottom zone 0.128 0.182 

Table 3: FF Used to Provide a Better Match of S&S Model and Johancsik Model to 

Actual Drag 

In order to relate the simulation results to the common practices in T&D modeling, 

we assessed the FF needed to input in both models to provide better match to actual drag, 
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the results are shown in Table 3. Better match to actual drag of Johancsik prediction was 

achieved in the middle zone by increasing the FF to 1.145, and to 1.182 in the bottom 

zone, whereas better match of S&S model was obtained by increasing the FF to 1.112 only 

in the middle zone and to 1.128 only in the bottom zone. 

S&S Model Advantages and Value 

From figures 20, 21, and 23, S&S model was able to predict higher drag compared 

to Johancsik model and bring the prediction closer to actual drag. S&S model was able to 

narrow Johancsik prediction errors to less than 40% of its original magnitude. As it is 

shown in Table 3, the remaining error in S&S model prediction was overcome by slightly 

altering the FF by 0.012 in the middle zone, and 0.028 in the bottom zone. Thus reducing 

drag prediction dependency on FF compared to the changes this parameter was subject to 

when using Johancsik model.  

The availability of survey data makes a big difference in Johancsik model 

prediction. In the top and middle zone, the simulation was run using one survey point 

every 30 ft, whereas in the bottom zone, only one survey point was available every 57 ft 

to 60 ft. This has driven Johancsik model to build more error in its prediction for the 

bottom zone compared to the top zones, and shows that Johancsik model is sensitive to 

survey point. S&S model consistently and evenly narrowed the error between the 

prediction and the actual data for both cases: one survey point every 30 ft and as well for 

the case of one survey point every 60 ft. Most of current models for T&D require a 

relatively short segment to accurately account for tortuosity, yet S&S model seem to 

perform evenly in short segments and what would be considered long segments for most 
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current T&D models. In Johancsik model, the hole size establishes limits with regard to 

segments length because of the beam bending equations used in it. A good survey 

interpolation between the available data points and the segment length would allow to 

carry the prediction with an estimated set of survey point, but such an interpolation would 

be very hard to establish and mimic realistically the inclination and azimuth in the zone of 

interest. S&S model was able to predict more accurate drag without the need of survey 

data interpolation, and therefore is not as sensitive as Johancsik model for this feature.  

Although the last feature is an advantage for S&S model over Johancsik model, it 

would be a disadvantage in the presence of high dogleg severity. S&S model might omit 

the effect of high dogleg severity if the segments length is long enough to hide this feature. 

Future Work 

The present work laid the concept and basics of calculation for the new model to 

calculate torque and drag, and provided a simulation for a field case in order to assess 

different data to johancsik model. Nonetheless, in order to run a more accurate comparison 

between any software used in industry and the model derived in this work, the stress tensor 

for each segment has to be populated with the same forces accounted for in the software, 

especially with regard to pipe tension forces and axial loads. The forces have to be 

carefully attributed to their resulting stresses, forces resulting in normal stresses and forces 

resulting in shear stresses. Once the stress tensor of a course length segment is properly 

populated, a full-scale simulation for the integrity of the well can be run using a coded 

version of the S&S model. Since there will be a considerable number of segments and 

iterative matrices operations, it is recommended to code the present model in Matlab.  
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With a stress tensor populated with the same forces used in a software, and having 

the necessary data of well inclination and azimuth from surveys, a full-scale simulation 

from bottom to top of the well can be run, and then compared to actual T&D profiles and 

predictions using Johancsik model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 
 

 

CHAPTER V     

CONCLUSIONS AND RECOMMENDATIONS 

The primary disadvantage of Johancsik model for T&D modeling is that it requires 

large changes of FF, which are in many cases difficult to predict, especially in curved 

sections of the well and laterals. The fact that companies alter this parameter in a purely 

empirical manner to match the observed field data without a precise physical explanation 

can be dangerous. Moreover, even if this process of FF calibration can improve T&D 

predictions in the Johancsik model using trial and error and field data matching, it remains 

very difficult to predict in new fields without offset well data, where such correlations 

cannot be conducted at least for the few first wells. 

In stiff tubulars such as drill pipes and BHAs it is more physically representative 

to consider stress instead of discrete forces when studying T&D. The use of stress 

transformations matrices is also a better representation of geometry in the equations 

compared to the angular approximations in Johancsik equations. The major advantage of 

S&S model proposed in this work is the reduction of FF correction dependency, a better 

match to actual data was obtained by slightly altering the FF in the S&S model compared 

to the magnitude of change needed for the FF in Johancsik model. In the case study 

presented, the S&S still under-predicted the drag values but with 60% lesser gap compared 

to Johancsik model for a FF of 0.1.  
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NOMENCLATURE 

 

T&D Torque and Drag 

S&S Stress and Strain 

WOB Weight On Bit 

ERD Extended Reach Directional 

BHA Bottom Hole Assembly 

TJ Tool Joint 

lb pound 

ft feet 

Wb buoyed weight in lb/ft 

Wa adjusted weight of the pipe in air in lb/ft 

ppg Pound per gallon 

MW mud weight in ppg 

Wfluid weight per foot of displaced fluid 

AE external area of the pipe 

AI internal area of the pipe 

𝜌 density of the material 

R radius of the pipe 

𝜔 angular velocity of the pipe 

W Weight 

FF Friction Factor 
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MD Measured Depth 

TD Total Depth 

DC Drill collar 

P/U Pull up 

S/O Slack off 

DP Drill pipe 

SPE   Society of Petroleum Engineers 
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