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ABSTRACT 

 

The population is expected to continue to rise in the future. A greater amount of 

automobile utilization is expected, leading to a rapid increase in the transportation sector, 

a sector heavily dependent on CO2 emission fuels. It would be beneficial to introduce an 

alternative technology of high efficiency and low emission levels to mitigate the currently 

increasing GHG emissions to the environment.  

Among the fossil fuels, hydrogen is the one with the highest energy density per unit 

volume when stored in solid form and has the highest abundance on earth. Hydrogen can 

be stored in solid form within metal hydrides. Due to the fact that hydrogen is initially 

obtained in very low densities, high pressure must be applied to be stored efficiently. 

Hence, a high pressure metal hydride, HPMH, tank is suggested for its storage.  

The next step is the means of converting hydrogen into energy. Proton exchange 

membrane fuel cell, PEMFC, is the suggested technology. The major advantage of this 

technology is that it converts the fuel directly into energy electrochemically, allowing zero 

GHG emissions, making it sustainable and of high efficiency.  

The main disadvantage of hydrogen storage is the long fueling time, which makes it 

challenging for automobile usage. The next issue is the rate of hydrogen supply to the fuel 

cell for energy production. As the fuel is initially in solid form it is hard to establish a 

desired steady flow rate to the engine when required. Finally, the absorption and 

desorption reactions of hydrogen are temperature-dependent, a variable that must be 

better analyzed due to its great impact to the system, making it a key component for the 

improvement of the safety and operability of the system. 

This thesis combines pre-established detailed dynamic models of an HPMH tank 

and of a PEMFC system by utilizing the model building platform named gPROMS. The thesis 

investigates the filling time parameters, discharge rate parameters and the thermal 

management of an HPMH and PEMFC units. A PI controller is added for the automatization 
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of the system that regulates the water flow in the heat exchanger, depending on the 

hydrogen inflow in the HPMH and the energy output requirements from the PEMFC.  

The model results provide a clear visualization of the impact of flow rate, pressure 

and temperature in the operability of the system. It is concluded that one of the most 

significant variables in the system is the temperature that can be controlled by the flow 

rate of the water in the heat exchanger. That variable can lead to a higher fueling rate and 

steadier desorption rate. Furthermore, the PI control is able to efficiently manage the flow 

rate of water in the heat exchanger and enhance the operability of the system, allowing 

higher fidelity and safety. The overall outcome of the thesis supports the claim that the 

future utilization of this system has potential to mitigate the GHG emissions in the 

transportation sector as well as introduce higher energy efficiencies compared to the 

current commercial technology and fuel.  
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1. INTRODUCTION 

 

The growing demand for energy and the seasonal variabilities in energy supply and 

demand has engendered the need for a more efficient energy storage system (EnergyEIA, 

2013). Energy storage as hydrogen has a high potential of being the major energy option 

because of its energy density and energy retention. Hydrogen usage is not a new case, in 

fact various technologies have been used to produce, transport and store it. However, with 

the advent of fuel cell vehicles (FCV) there is a growing need for a safer, denser energy 

system. The purpose of this thesis is the representation and analysis of an integrated 

energy system, from storage to utilization of fuel reaching efficient operating conditions 

that would allow this technology to compete with the commercial internal combustion 

engine one. 

Hydrogen can be stored in different states using different technologies and these 

technologies can be categorized into physical and chemical storage processes. Physical 

processes include all processes that do not change the hydrogen chemically; that means 

that hydrogen can be in the gaseous or liquid state as pressure or temperature fluctuates. 

Specifically, such hydrogen states and processes are: gas as in compressed gas storage, 

subcritical fluid as in cryo compressed (high pressure) or liquefied (low pressure), 

adsorbed in porous high surface area material. Chemical hydrogen storage is defined as the 

hydrogen storage in materials that form a strong covalent bond with hydrogen 

(ENERGY.GOV, 2016).  Complex metal hydrides are a common example of chemical 

hydrogen storage where as in all chemical storage cases there are low binding energies 

among hydrogen atoms (Eberle, Felderhoff, & Ferdi, 2009). We shall further discuss the 

different advantages, disadvantages and alterations present.  

  

 

 



 
 

2 
 

1.1.    Physical storage 

 

Compressed hydrogen storage is the most widely known technique of hydrogen 

storage (Sandi, 2004). Yet, concerns arise related to weight and volume storage efficiency, 

high costs and irregularities on storage tanks and system integration. More specifically, in 

this case, the hydrogen is stored under high pressures in modified hydrogen tanks that can 

withstand pressures that vary from 350-700 bars. This introduces high costs of energy 

needed to pressurize the gas and creates financial concerns when pressure drops during 

operation. Finally, hydrogen’s energy density even in 10,000 psi pressure is of 4.4 MJ/L 

compared to that of gasoline which is 31.6 MJ/L shows the low energy content of hydrogen 

in gas state (Sandi, 2004).  

The process of liquid hydrogen is an operating process that keeps hydrogen in the 

liquid phase. In order to keep the hydrogen in liquid form due to its physical properties the 

process utilizes cryogenic temperatures, specifically hydrogen’s boiling point at 1atm 

is         . In the case of cryo compressed processes the only addition is that the liquid 

hydrogen is stored under pressure. In the liquid form the hydrogen energy density is equal 

to 8.4 MJ/L which is almost double the previous case. Although this method acquires good 

volume and weight storage efficiency, long-term storage leads to  fuel losses associated 

with elevated temperatures (boil-offs) and high costs of energy needed for the liquefaction 

of hydrogen (Sandi, 2004).  

 

1.2. Chemical storage 

 

In the metal hydride storage methodology, hydrogen can be stored within metal 

hydrides through the formation of a chemical bond in nanostructure materials. The 

advantage of metal hydrides is that it can absorb or desorb hydrogen with an appropriate 

change in temperature. In the MH storage system there are two kinds of processes; an 

exothermic process and an endothermic process.   The exothermic reaction causes the 

hydrogen absorption and the endothermic causes the hydrogen desorption. It is assumed 
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that the flow rate of hydrogen in both processes is the same. (Endo, Matsumura, & 

Kawakami, 2016). Studies have shown that the hydrogen compression ratio decreases as 

the flow rate increases (Endo, Matsumura, & Kawakami, 2016). 

Furthermore, carbon based materials with porous structures have considerable 

amounts of hydrogen storage capacities even at room temperature. This characteristic is 

based on the high surface area and sufficient amount of available pores.  Limitation arises 

from the fact that the cycle mechanism of absorption and desorption is yet to be fully 

understood as well as their volume that they require (TZIMAS, PETEVES, & VEYRET, 2003).  

In the cryo adsorption process the hydrogen can be stored on the surface or within 

solids with a process called absorption with operating conditions of              

        . These extreme conditions set limitations associated with heat losses to the 

environment (Energy, 2016). 

 Knowledge of the properties of hydrogen increases ones awareness of the hazards 

involved in handling it. Hydrogen is flammable and has a wide flammability range, with 

temperature reaching as high as 2045OC compared to gasoline at 1247OC. The amount of 

energy required for its ignition is 20 μJ in air and the expansion volume of the gas is 850-

1000 times its original volume depending on the outer pressure. In addition, hydrogen can 

reduce the performance of contaminated materials and piping materials such as carbon 

steel. Due to its small molecular size it can pass through porous or contaminated materials 

making them less elastic and more fragile. Thus material selection is a vital design 

consideration when using hydrogen. These characteristics make it a liability for all 

methodologies and especially if it is to be preferred as a fuel in automobiles that are parked 

in close small areas (Glass & Glass, 2000) (Flamberg & Denny, 2010).  Table 1 lists some of 

the physical and chemical properties of hydrogen. 
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Table 1: Physical and chemical properties and characteristics of hydrogen. (Glass & Glass, 2000) 

 

When storing hydrogen in gas cylinders, they must be protected from corrosion 

and heat (direct sunlight). In most cases there are thermally activated Pressure Reducing 

Desuperheating valves and the only limitation is that there should be enough heat to 

activate them. Elevated temperature can cause the eruption of the tank and lead fragments 

of its cover over 82 meters from the tank, even for tanks as small as the ones of a car 

(Sandi, 2004). In addition, extra care must be taken with regard to the condition of the 

vessels; in cases that there is an onboard vessel, extra care must be placed as phenomenical 

insignificant issues can be fatal. For example, the car battery can weaken the vessel’s wrap, 

leading to a point where the inner pressure becomes higher than the one that the container 

can withstand. Specifically, each storage method requires additional precautions to be 

taken due to the alternation of the storage processes. 

 In compressed hydrogen storage containers, “fast fueling” of hydrogen at elevated 

pressures can lead to extreme temperatures; this may damage the vessel, leading to 

rapture. In order to deal with this issue, the fuel’s temperature is lowered before filling the 

container. Also, the materials used to store hydrogen should be taken under consideration 

Property/Characteristic Values (approximate) 

Color NONE 

Odor NONE 

Toxicity Nontoxic 

Density, liquid (boiling point) 4.4 lb/ft3 (0.07 g/cm3) 

Boiling point (1 atm) -423.2 oF (-252.9oC) 

Critical temperature (188.2 psia) -400.4 oF (-240.2oC) 

Stoichiometric mixture in air 29 vol% 

Flammability limits in air 4-75 vol% 

Detonation limits in air 18-60 vol% 

Minimum ignition energy in air 20μJ 

Auto ignition temperature 1,085oF (585oC) 

Volume Exapansion: 
Liquid (-252.9oC) to gas (-252.9oC) 
Gas (from -252.9oC to 20 oC) 
Liquid (-252.9oC) to gas (-20oC) 

 
1:53 
1:16 
1:848 
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due to their embrittlement from long contact with hydrogen and their deterioration that 

can withstand as stated above (Sandi, 2004). 

Liquid hydrogen is denser than gaseous thus it has a higher energy density. This 

means that a greater amount of hydrogen can be stored in liquid state compared to a 

gaseous one, and as Table 1 shows, the volume expansion would be even greater in case of 

a rapid increase of temperature. This comparison shows that although there are similar 

concerns and actions taken regarding the storage when storing liquid and gaseous 

hydrogen, in the case of an accident the outcome would be much more catastrophic for 

liquid hydrogen storage case. An additional issue regarding liquid hydrogen is that it must 

remain in low temperatures because if it is boiled off it must be vented out. For this reason, 

high volumetric cylinders must be used in order to minimize the heat losses (Flamberg & 

Denny, 2010). In addition, when the fuel tank is filled it must be sufficiently cooled down as 

there are major heat losses to the environment that can lead to increase in the temperature 

of the system and major boil offs, losses, of hydrogen to the environment.  For this reason, 

although liquid hydrogen has a higher energy density than compressed hydrogen gas, 

liquid hydrogen has higher costs associated with the tank size and weight as well as 

hydrogen losses and energy required for the process (Flamberg & Denny, 2010).  

In comparison to cooled liquid and compressed hydrogen gas, solid hydrogen 

storage in hydrides is preferred for stationary storage (Endo, Matsumura, & Kawakami, 

2016).  This is due to the more normal operating temperatures and pressures. It is a 

compact system which minimizes space consumption; in addition, it is safer than the other 

hydrogen storage systems due to its solid state and energy reliability (Endo, Matsumura, & 

Kawakami, 2016). 
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Figure 1: Energy density comparison of several transportation fuels (EIA, 2013). 

 

Energy density is the amount of useful energy per volume of a substance. It is 

comparable to specific energy, which represents the amount of useful energy per mass of a 

substance (Dynamics, 2014). Hydrogen is the lightest fuel per energy unit (see Figure 1) 

and at the same time has a very low energy density due to its physical properties (see 

Table 1). However, in a condensed form, its energy density increases dramatically. 

Hydrogen as a fuel has a higher amount of energy per-weight when compared to gasoline. 

Essentially, various fuels require different kinds of equipment and storage tanks for the 

production of energy.  
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2. REVIEW OF METAL HYDRIDE (MH) SYSTEMS 

 

2.1. Introduction to the properties of MH systems 

 

 
Metal hydrides (MH) allow great amounts of hydrogen storage capacities and they 

are governed by two temperature driven processes: an absorption and a desorption 

reaction.  Hydrogen absorption is an exothermic reaction, a chemical reaction that radiates 

energy in the form of heat. This heat produced inhibits the rate of reaction of the process. 

Hydrogen desorption is an endothermic reaction and heat is required for the process to 

take place; thus, the reaction absorbs heat from the surroundings (Valverdea, Rosaa, del 

Reala, & Arceb, 2013).  In a pressurized metal hydride system, the temperature determines 

if the system absorbs or desorbs hydrogen, making heat transfer the most important 

parameter of the system. Figures 2 and 3 represent these processes of LaNi5 MH (Berube, 

Radtke, & Gang, 2007). 

  

Figure 2: Hydrogen storage capacity with time of absorption (Full symbols) and desorption 

(hollow symbols) (Talagañisa & Meyerb, 2011). 
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Figure 3: Temperature with time of absorption (Full symbols) and desorption (hollow symbols) 

(Talagañisa & Meyerb, 2011). 

The graphs depict how the temperature and hydrogen capacity vary with time in 

the two processes. An extra comparison is made, showing that an increase in the reactor 

size allows higher operating temperatures, causing a decrease in the sorption time 

(Talagañisa & Meyerb, 2011).  

  

Figure 4:  Hysteresis model of a MH system (Payáa, Linderb, Corberána, & Laurienb, 2009). 
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When pressure is plotted against hydrogen stored, it can better represent the 

cycling process that takes place, giving a better visualization of the system. In Figure 4, the 

two sorption processes are represented. AB is for absorption to desorption and CD is for 

desorption to absorption. An initial hydrogen concentration value is assigned for every 

sorption process. In the system, AB and CD include an alternation in the MH temperature, 

concentration, enthalpy of reaction and equilibrium pressure.  

Pressure is well known for its effect on temperature and thus impact on the system. 

Specifically, pressure effects on the systems are studied in terms of hydrogen capacity, 

operability, and efficiency (Talagañisa & Meyerb, 2011). 

 

Figure 5: Pressure impact on the hydrogen absorption (Talagañisa & Meyerb, 2011). 

 

Figure 5 suggests that as the operating pressure increases, the amount of hydrogen 

absorbed increases as well, which means that absorption rate is higher in higher pressures 

of the system.  
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Figure 6: P-T-C equilibrium correlation (Ragheb, 2011). 

 

Figure 6 represents another characteristic of pressure; higher operating 

temperature leads to higher equilibrium pressure and vice versa. The operability at 

different T and P is feasible by the modification of the alloy’s production techniques and 

composition. Higher heat transfer allows higher sorption reaction rates. This allows higher 

flow rates to be processed (Ragheb, 2011). 
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Figure 7: P-C-T equilibrium correlation (Payáa, Linderb, Corberána, & Laurienb, 2009). 

 

In Figure 7, there is a noticeable difference between the absorbed and desorbed 

equilibrium pressures; the sorption processes do not follow the exact same root. 

Desorption takes place during the cooling period of the system, while absorption takes 

place during the heating. In Figure 7 there is a representation of a P-C-T graph for fixed 

temperatures at the pressure equilibrium. The transition between absorption and 

desorption takes place out of the plateau area in the β- phase (Payáa, Linderb, Corberána, & 

Laurienb, 2009). 

 

2.2. Hydrogen absorption and desorption parameters among MH 

 

Metal hydrides form metal atoms between hydrogen atoms and the host. There are 

two different types of metal hydrides that can be formed; the α-α phase where only a 

certain amount of hydrogen is absorbed and a β-β phase were a hydride is fully created, as 

shown in Figure 8 (Lamari-Darkrimb & Sakintunaa, 2007). 
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Figure 8: Phase cases representation followed by hydrogen in MH (Berube, Radtke, & Gang, 

2007). 

 

Hydrogen undertakes first physisorption, where the molecules are making contact 

with the metal surface without the formation of any chemical bonds through electrostatic 

attraction or van der Waals forces.  Physisorption is a reversible process that is closely 

correlated to temperature and pressure.  

 

Figure 9: Potential energy curve for the Lennard Jones potential for hydrogen binding to a 

metal (Berube, Radtke, & Gang, 2007) . 
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Certain values of pressure and temperature allow the adhered hydrogen molecule 

to dissociate at the surface, forming new bonds in a process called chemisorption, Figure 9.  

The chemisorption process is followed by a movement of the hydrogen atoms to sites 

deeper in the metal, also known as the α phase. Increasing the concentration of hydrogen 

in the α phase increases the H-H interactions, which start to play an important role, leading 

to the next phase, named β- phase. This phase is associated with volumetric expansion, 

change of the crystalline structure and the formation of a nucleation energy barrier. This is 

a result of the energy between the two phases and the increase in volume (Berube, Radtke, 

& Gang, 2007).   

Each metal has a different ability to dissociate hydrogen (Sakintunaa & Lamari-

Darkrimb, 2007); the parameters that characterize this ability are: the purity, the surface 

structure and the morphology of the MH.  A MH material is considered as an optimum 

material if it meets the following descriptions: medium dissociation pressure, high 

hydrogen capacity per unit mass as it determines the amount of energy that can be 

released, low heat of formation that minimizes the energy required to release hydrogen, 

low temperature of dissociation, low dissipation heat when an exothermic hydride is 

formed, fast kinetics, reversibility, cyclebility, low energy losses when hydrogen is charged 

and discharged, high stability on impurities (i.e. in oxygen and moisture) to be able to 

withstand a long life cycle, high safety and low cost of recycling (Lamari-Darkrimb & 

Sakintunaa, 2007). 

For weight reasons and reasons regarding the number of hydrogen atoms per atom 

of metal there is a preference for light metals such as Be, B, Al, Na, Li, Mg that can form 

many different alloys. Heavier metals are used only as catalysts and to assist with 

alternating some of the properties of the light metals. Thus, different heavy metals have 

different impacts on MH. Among them magnesium alloys are the ones that are preferred 

due to their increased storage capacity by weight, inexpensiveness, good heat resistance, 

reversibility, vibration absorbing and recyclability. The hydride with the best energy 

density is MgH2 but it requires a high temperature for hydrogen desorption and it is highly 

oxidized by impurities (i.e. oxygen and air) and has slow kinetics in hydrogen release. The 
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main concern has been reducing the desorption temperature which prohibits it for 

onboard usage. Increasing the kinetics of the two process reactions by different means is 

another important issue (Lamari-Darkrimb & Sakintunaa, 2007).  

There are many MH with different characteristics. Complex aluminum hydrides 

acquire great hydrogen storage capacity but have poor kinetics and irreversibility. The only 

way that such a metal can be utilized is by the usage of catalysts and hydrides that will 

change its irreversible character (Lamari-Darkrimb & Sakintunaa, 2007). Lithium Alanates 

although very appealing for their high hydrogen content, they have a very high equilibrium 

pressure even in room temperature when they contain hydrogen. This class of MH is 

classified as unstable hydrides, which cannot be rehydrated again and have a high 

decomposition rate. Mg2NiH4 is the center of attention due to its high storage capacity, low 

weight, low cost, low toxicity, its bonding (chemical) properties and the unusual structure 

that it forms (Lamari-Darkrimb & Sakintunaa, 2007). 

  

 

Figure 10: Graph of Hydrogen density in g/cc with Hydrogen wt fraction in g/g (Heung, 2003). 

 

Figure 10 compares the hydrogen density of different MH in terms of weight that 

hydrogen adds to the material and in terms of density. Increasing the storage of hydrogen 
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depends heavily on the volume and weight parameters. In equivalent terms of weight and 

density, other energy fuels are included to provide information of how much better or 

worse each MH is comparably. From the graph, MgH2 and LaNi5 have the best descriptions 

with high hydrogen density and lower weight. These descriptions allow MgH2 and LaNi5 to 

compete with the commercial energy resources. 

 

 

Figure 11: Rate of hydrogen absorption of polycrystalline with nano-crystalline Mg2Ni at 200 

OC (Olsen & ZaluskiJ, 2001). 

 

The structure affects the diffusion of the hydrogen within the alloy while the 

hydride is formed. Figure 11 suggests that nano-crystalline samples were able to store a 

good amount of hydrogen in a short period of time, where polycrystalline was not able to 

absorb much. Both metals were tested in their first cycle without any prior activation done 

on them (Olsen & ZaluskiJ, 2001) .  

An alternation in the structure of the hydride can take place by a method called ball 

milling. This methodology uses elements that decrease its stability and at the same time 

uses a proper catalyst that improves the kinetics of the sorption processes. Ball-milling 

creates defects and micro structures on the already increased surface area inside the 
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material. The defects on the surface of the metal allow hydrogen to diffuse more easily due 

to the lower activation energies and the increased contact surface of the metal with the 

catalyst (Lamari-Darkrimb & Sakintunaa, 2007). The crystalline alloy that is created 

through ball milling has much better surface properties, in contrast to when it is created by 

a metallurgical method.  

 

 

Figure 12: Hydrogen desorption curves of unmilled MgH2 (solid symbols) and ball-milled 

(hollow symbols) MgH2 under a hydrogen pressure of bar (Lamari-Darkrimb & 

Sakintunaa, 2007). 

 

It has been noticed that milled MgH2 has a faster desorption rate and reduced 

activation energy compared to the unmilled one as shown in Figure 12. Another 

characteristic is that ball milled alloys do not require to be activated in contrast to 

traditional methods. Milling reduces the pressure needed for hydrogen desorption by 
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decreasing the activation energy, allowing lower operating temperature conditions 

(Lamari-Darkrimb & Sakintunaa, 2007). 

  The milling time of the hydride is another parameter that can affect the efficiency of 

the metal. 

 

 

Figure 13: Desorption curves of magnesium catalyzed with 0.1 mol% Nb2O2 and milled for 2, 5, 

10, 20, 50 and 100 hours at 573 K in vacuum (Lamari-Darkrimb & Sakintunaa, 

2007). 

 

  Ball-milling enhances the creation of active sights, allowing hydrogen to penetrate 

the hydride more easily, but these powders are usually in the range of 60 to 100 μm. Figure 

13 shows that the milling time of the MH increases the desorption rate. Enhancing ball-

milling time produces smaller particles that decrease the formation of hydride layers 

greater than 50 μm (Lamari-Darkrimb & Sakintunaa, 2007).  
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Figure 14: Effect of grain size on hydrogen absorption of ball-milled magnesium powder at 300 

C on the first cycle without activation (Olsen & ZaluskiJ, 2001). 

  

The size of the hydride grain after being ball milled plays a vital role in the 

efficiency of the system as Figure 14 shows. A decrease in the grain size increases surface 

contact area where hydrogen can be absorbed, leading to faster filling time and to higher 

uptake rate. The absorption rate is associated with the number of phase boundaries that 

exist as well as the porous surface structure of the alloy. Nano-crystalline alloys increase 

the kinetics of the system (hydrogenation and dehydrogenation), even at lower 

temperatures. The limitation in operating at reduced temperatures is the reduction of the 

hydrogen gaining capacity and the kinetics of the system (Lamari-Darkrimb & Sakintunaa, 

2007).  

In contrast, the advantage of having a sintered mass over loose powder is that there 

is a lower particle migration, higher safety, and more efficient gas distribution. The issue of 

low heat transfer can be solved with the creation of an efficient heat exchanger (Schüth & 

Felderhoff, 2004). Lower operating temperatures decreases the rate of the reaction and 

although it is good to have lower operating conditions, temperature should be high enough 

for the reaction to be carried on efficiently. Other techniques such as sputtering and vapor 
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condensations can be as good if not better than ball-milling for the initiation of nano-

crystalline structures (Olsen & ZaluskiJ, 2001).  

An optimum MH must withstand a long life cycle (Energizer, 2016) (Lamari-

Darkrimb & Sakintunaa, 2007). Within 100 sorption cycles there is not much degradation 

of the MH properties as a result of the temperature alternations  (Schüth & Felderhoff, 

2004).  After a greater number of cycles, the sorption processes can take up and release 

smaller amounts of hydrogen as a result of the agglomeration of the particles during the 

cycling. Mish metals as they are called, or Mm, are: Ce, La, Nd and Pr. They are important 

for these processes as they increase the cycle stability. The drawback is that as the 

concentration of these metals increases within the MH, the hydrogen capacity decreases, 

and the reaction rate decreases (Lamari-Darkrimb & Sakintunaa, 2007). Within the range 

of the first thousand cycles there was an increase in the uptake capacity and a higher 

desorption time as a result of crystallite growth and structural relaxation. To avoid any 

storage capacity loss there must be an increase in the operating temperature of the system. 

However, in the long run, there will be a decrease in the hydrogen capacity and increase of 

the filling time (Lamari-Darkrimb & Sakintunaa, 2007). In the case of magnesium hydride, 

the MH was able to withstand a great number of cycles because the larger grains were 

always taking back their nano-crystalline structure after desorption (Olsen & ZaluskiJ, 

2001). The resistance of the alloys in decreasing capacities due to impurities is a very 

important factor especially for on board applications. These impurities are associated with 

the contact of a metal hydride with the following elements: N2, O2, CO2 and CO.  

Catalysts are used to increase the kinetics of the system by increasing the rate of 

hydrogen dissociation to the metal. Such a catalyst is palladium, but it is associated with 

high costs, making it unfavorable for grand scale applications (Lamari-Darkrimb & 

Sakintunaa, 2007).  Catalysts can be effectively used in a reaction by enhancing the time 

and cost efficiency. Catalysts provide alternative roots with lower energy barriers. 

Different catalysts can be used to boost desorption, and other catalysts can be used to 

enhance the absorption or both processes depending on the nature of the MH and the 

operating conditions. In summary, the impact of the catalyst and structure on the rate of 

hydrogen absorption can increase the efficiency of the system.  The nano catalysis allows 
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hydrides to eliminate any fear of poisoning when it comes in contact with oxygen, even for 

long time periods. There is no further need in operating in high temperatures prior to 

absorption to avoid impurities (Olsen & ZaluskiJ, 2001). 

The creation of alloys with different characteristics than the pure metals can 

increase the plateau pressure values (Olsen & ZaluskiJ, 2001). In some cases, there is an 

increase in the instability of the system leading to higher reaction rates in lower 

temperatures, making it more efficient (Olsen & ZaluskiJ, 2001). In some other cases, the 

thermal conductivity of a MH is enhanced (Corgnale, Hardy, Tamburello, Garrison, & Anton, 

2012). The conclusion is that each catalyst has a different impact on each MH.  

Table 2 summarizes the reasons for performing different alternations to the MH 

before usage. Parameters that make a MH preferable are: a high storage capacity and 

kinetics; a decrease in the energy required to form it (enthalpy of formation); an increase 

of the heat transfer that it can operate, and thus be more energy efficient; the cyclability, 

which represents the ability of MH to withstand more sorption processes and a lower 

releasing temperature so that MH is not a liability, preventing from heating the system too 

much when desorption takes place.  
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Table 2: Summary of the benefits and detriments of Nano engineering on selected metal hydride 

properties. (Berube, Radtke, & Gang, 2007) 

 

 

 

 

 

 

 Storage 
Capacity 

Kinetics Enthalpy 
of 
formation 

Heat 
transfer 

Cyclability Release 
temperatu
re 

Increase 
surface 
area 

Increase 
physisorpti
on 

Increased 
surface 
dissociatio
n 

Decreased 
(nano-
gained 
materials)  

Decreased Potentially 
decreased 

Potentially 
decreased 

Increased 
grain 
boundari
es 

Decreased Increased 
diffusion 
(a phase) 

Potentially 
decreased 

Decreased Potentially 
decreased 

Potentially 
decreased 

Doping 
with 
catalysts 

Decreased 
for 
excessive 
doping 

Increased No 
observed 
effect 

Decreased May help 
reversibilit
y 

Decreased 

Increased 
porosity 

Potentially 
increased 
physisorpti
on 

Faster gas 
diffusion 

No 
observed 
effect 

Decreased No 
observed 
effect 

No 
observed 
effect 

Formatio
n of 
nano-
composit
es 

Mean of 
the 
component
s 

Increased Potentially 
decreased 

Decreased Potentially 
increased 
or 
decreased 

Decreased 

Doping/ 
allying 

Potentially 
increased 
or 
decreased 

Potentially 
increased  

Decreased Potentially 
increased 
or 
decreased 

Potentially 
increased 
or 
decreased 

Decreased 
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2.3. Storage MH comparison 

 

A comparison of different storage methods allows a better determination which 

should be preferred and which ones should not.  

Table 3: Comparison of hydrogen storage technologies (Visaria, Mudawar, & Pourpoint, 2010) 

 

 Compressed 

H2 Gas  

Liquid 

H2 

Chemical 

Hydride 

Complex 

MH 

HPMH Physisorbi

ng 

metarials 

Storage / 

Charging 

pressure 

Up to 700 

bar 

1-2 

bar 

1-2 bar ~150 bar Up to 500 

bar 

20-40 bar 

Storage 

temperature 

Room temp. 20 K Room 

temp. 

~500 K ~350K ~77K 

Material and 

system 

volumetric 

capacity 

(g/L) 

40 Sys (25) 70.8 

Sys 

(30-

35) 

100 

Sys(30) 

100(30-

160) Sys 

(20-30) 

50-150 

Sys (40) 

30-40 

Material and 

system 

gravimetric 

capacity 

(wt%) 

Sys (4.7 at 

700 bar) 

Sys 

(5-6) 

10 Sys(3-

4) 

4-7 Sys 

(1-2) 

2-3 Sys 

(1-2) 

4-8 Sys (2-

4) 

Fill time 

(min) 

5-10 7-9 N/A 8-12 5 10 
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Table 3 Continued: Comparison of hydrogen storage technologies (Visaria, Mudawar, & Pourpoint, 2010) 

 

2.4. Pressurized MH “Hybrid” tanks 

 

The HPMH as a storage technology is preferred due to its high hydrogen gas purity, 

safety, compact system, reliability, and absence of moving parts (Endo, Matsumura, & 

Kawakami, 2016). High pressure systems should be used to improve the capacity in tank 

 Compressed 

H2 Gas  

Liquid 

H2 

Chemical 

Hydride 

Complex 

MH 

HPMH Physisorbi

ng 

metarials 

Onboard 

reversible 

Yes Yes No Yes Yes  Yes 

Desorption 

temperature, 

pressure 

Room 

temp., 3.5 

bar 

N/A >500 K, 3.5 

bar 

400 K, 3.5 

bar 

Room 

temp., 

3.5 bar 

77-100 K, 

3.5 bar 

Durability 

and 

repeatability 

N/A N/A Need to be 

regenerate

d for reuse  

Sensitive to 

impurities 

Sensitiv

e to 

impuriti

es 

Sensitive 

to 

impurities 

Reactivity to 

air and 

moisture 

N/A N/A Stable, no Pyrophoric 

materials, 

Yes 

Pyropho

ric 

material

s 

Yes 

Heat of 

reaction 

N/A N/A ~55 

kJ/mole 

H2 

~40 

kJ/mole H2 

~15-25 

kJ/mole 

~4-6 

kJ/mole 
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materials with low density and high withstanding stress, Figure 15. Low pressure systems 

for tank materials should be utilized with higher density, including MH with high hydrogen 

storage capacity (Hardy & Corgnale, 2012). Increased pressures allow the amount of 

hydrogen stored in the absorption process to increase as well. This makes the HPMH 

system have higher volumetric capacity compared to all other storage systems at 40 g/L. 

When storing hydrogen under high pressure (over 50 bars), the hydrogen is stored 

chemically within the MH and as compressed gas in between the empty space within the 

packed bed material. Such storages are called “Hybrid tank”.  The advantage of such a 

hydride system is that it decreases the filling time (increased absorption rate) and that 

hydrogen can be released very quickly as some of it is stored in the gaseous phase and it 

does not have to be released only through desorption (Hardy & Corgnale, 2012). 

 

Figure 15: Optimum SGC for operating pressures of 50-850bars and alternating material 

properties (density and pressure) keeping the rest of the variables constant. 

(Claudio Corgnale B. J., 2012). 

   

The disadvantage is that this process has low gravimetric capacities and increased 

weight due to the high pressure cylinders and the cooling system (Mudawar, Visaria, & 
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Pourpoint, 2010). They key parameter in a HPMH systems is the heat exchanger. For 

attaining a certain flow rate, the heat exchanger component must be taken under 

consideration (Visaria, Mudawar, & Pourpoint, 2010). One of the characteristics of HPMH is 

that the MH must be activated before it is capable of absorbing hydrogen. The size of the 

MH particles is too big to allow any hydrogen absorption. The activation process consists of 

high pressure repeating cycles and heating in vacuum. The particles break into smaller 

pieces that can now react with hydrogen. When the MH is activated, it can ignite when 

exposed to any oxidizer like air and the temperature of ignition can be as high as 1000 OC. 

The high pressure and the igniting nature of the activated MH causes safety issues related 

to this technique (Visaria, Mudawar, & Pourpoint, 2010). As the particle size decreases the 

hydrating time needed decreases and the reaction rate increases (Visaria, Mudawar, & 

Pourpoint, 2010). It is preferred to have particles as small as possible even in powder form, 

to be able to maximize the contact surface area. That will cause the sorption processes 

rates to increase, minimizing the filling time. 

Heat transfer is one of the most important parameters in a temperature governed 

system. As the thermal conductivity increases, there will be more energy transfer allowing 

a lower filling time because the reactions can operate at higher rates. The lower the 

temperature conditions, the shorter the filling time is. For our system it will be preferred to 

attain high energy transfer and keep the temperature low. This allows to get rid of the heat 

released as fast as possible and keep a high rate of absorption. 

 To conclude, the heat exchanger is the most important component of the system as 

it is responsible for storing and releasing the H in and from the MH within a short period of 

time. The thickness of a MH is an important design parameter of the heat exchanger as it 

determines the filling time needed; the higher the surface area the shorter the filling time 

(Visaria, Mudawar, & Pourpoint, 2010). The cooling rate must be sufficient enough to 

decrease the temperature below the equilibrium point in order for the reaction to continue. 

Finally, the coolant’s temperature and the thermal contact resistance are important 

parameters for the reason explained above (Visaria, Mudawar, & Pourpoint, 2010) . 
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2.5. On board hydrogen production system 

 

Energy can be converted into hydrogen through the electrolysis process. This 

process further allows the storage and the conversion of hydrogen into energy whenever it 

is in need. This process produces highly purified hydrogen, excluding the need for a 

purification system, making it more economical money and space wise.  The hydrogen is 

stored in a metal Hydride (MH), in this case, LaNi5, through the process of absorption and 

released through desorption. Heating and cooling systems are required due to the 

exothermic and endothermic character of these processes accordingly (Rosaa, Valverdea, 

del Reala, & Arceb, 2013). The electrolyzer will operate when there is a surplus of the 

energy demand causing an increase of the stored hydrogen amount, but when there is an 

extra need for energy, the fuel cell will operate utilizing the already stored hydrogen 

(Rosaa, Valverdea, del Reala, & Arceb, 2013).  Theoretically such a system is very appealing, 

yet it is not volumetrically and gravitationally efficient (Visaria, Mudawar, & Pourpoint, 

2010). One of the problems of energy systems is that many times they operate under 

steady state conditions ignoring their dynamic character, leading to an overestimation of 

their energy output (Rosaa, Valverdea, del Reala, & Arceb, 2013).  
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3. REVIEW OF VARIOUS FUEL CELL SYSTEMS 

 

3.1.  Introduction to the properties of fuel cell systems 

 

In 1839 W. Grove set the first fuel cell demonstration.  By the usage of an electric 

current, water was electrolyzed into oxygen and hydrogen. When the power source is 

replaced by an ammeter, a certain amount of current was produced. During this process, 

the electrolysis phenomenon was reversed where oxygen and hydrogen were reuniting 

producing electricity.  The described process can be seen in Figure 16 a and b (Larminie & 

Dicks, 2003). 

 

Figure 16: a) The electrolysis of water. The water is separated into hydrogen and oxygen by the 

passage of an electric current. b) A small current flows. The oxygen and hydrogen 

are recombining (Larminie & Dicks, 2003). 

 

Combining hydrogen and fuel cell technology can be a very important step closer to 

sustainability and addressing the pollution of the environment. These are just a few 
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reasons why fuel cell technology is believed to be part of technologies to meet the energy 

needs of future generations (Mishra, Yang, & Pitchumani, 2005) (Ziogou, 2013) (Hart, 

2016).  

Fuel cells are defined as static energy conversion devices that allow the conversion 

of gaseous fuels mainly H2 directly into electrical energy through a chemical reaction. The 

only by-product of this process is water and heat, where heat is sometimes utilized as well. 

Their process makes fuel cells a clean technology as it does not produce GHGs (Nehrir & 

Hashem, 2007), and in contrast to the rest of the conventional engine technologies, it does 

not require mechanical work to produce energy from a fuel (Pukrushpan, Peng, & 

Stefanopoulou, 2004), a mean that leads to greater energy losses and reduced efficiencies. 

Fuel cell is a combination of the characteristics of a battery and of an engine. They can 

operate as long as fuel and air (oxygen) are being provided, and they have similar behavior 

to that of a battery when load is available but not the “memory effect” yet degradation 

issues arise in the end (Cook, 2002).   

 

Figure 17:  Fuel cell system where the electrolyte membrane is in between two electrodes 

(anode and cathode) (Kirubakaran, Shailendra, & Nema, 2009), (Huang, Zhang, & 

Jian, 2006) . 
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In the fuel cell system, hydrogen is supplied at the anode, and air is fed at the 

cathode. As it can be better depicted in Figure 17 and 18, at the anode electrode the 

hydrogen is separated into electrons and cations. Then, only the positive ions can diffuse 

through the membrane and towards the cathode electrode. In other words, the electrolyte 

prohibits the electrons to pass through. The electrons try to find a way to recombine with 

the ions at the cathode side and become stable. An electrical circuit provides this path for 

the electrons, and as electrons pass through, they produce electricity. At the cathode the 

oxygen from the air, the diffused hydrogen and electrons combine and form pure water.  

 

Figure 18: Fuel cell process (Ziogou, 2013). 

 

3.2.  Fuel cell technology comparison 

 

In Table 4, various energy-generating systems are presented to compare their 

differences between efficiency and cost. The comparative advantage of the fuel cell is its 

high conversion efficiency as the energy is released electrocatalytically (Ziogou, 2013), but 

as the Table suggests it has much higher operating and capital costs compared to the 

commercial systems. Furthermore, full cells have additional advantages due to lack of fuel 

combustion: they produce zero emission rates and they are silent. In addition, they are 

scalable and allow a rapid installation, modularity that allow facile generation of electricity 

jointly (Xu, Kong, & Xuhui, 2004). 
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Table 4: Comparison of different generation systems (Kirubakaran, Shailendra, & Nema, 2009).  

 

The performance of the system is associated with its electrical and 

thermodynamics efficiency. The electrical efficiency is based on the losses of the fuel cell in 

respect to ohmic, concentration and activation losses. The water vapor management, fuel 

process inflow and the control of the temperature of the system determine the 

thermodynamic efficiency. Each fuel cell has different characteristics based on the 

applications that they are used for and the materials that they are made of (EG&G Technical 

Services, 2004). 

The characteristics of the main categories of different fuel cell technologies are 

compared on Table 5 so that to provide the comparative advantages and disadvantages of 

each case scenario.  Although all these technologies operate under the same principal Table 

5 presents that each type of fuel cell has different capabilities and is appropriate for 

distinct applications due to their diverse operating characteristics.  

 

 

 

 

 

 Reciprocation 
engine: 
Diesel 

Turbine 
generator 

Photo 
voltaics 

Wind turbine Fuel cells 

Capacity  
Range 

500 kW to 5 
MW 

500 kW to 25 
MW 

1 kW to 1 
MW 

10 kW to 1 
MW 

200 kW to 2 
MW 

Efficiency 35% 29-42% 6-19% 25% 40-60% 

Capital 
Cost 
($/kW) 

200-350 450-870 6600 1000 1500-3000 

O&M 
Cost 
($/kW) 

0.005-0.015 0.005-0.0065 0.001-0.004 0.01 0.0019-0.0153 
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Fuel cells can be categorized into three main areas: stationary, transportation and 

portable.  

 Stationary fuel cells main usage is as backup power generators for a 

fixed place. The power produced ranges from 0.5- few MW.  

 Transportation fuel cells are used instead of engines from scooters to 

trucks with a power range from 1-100 kW. 

 Portable fuel cells are used for the charge of small devices like 

laptops, phones and other everyday devices with a power range form 

5-20 kW.  

 

 

Figure 19:   Fuels cells and applications (Ziogou, 2013). 

 

Figure 19 allows a better visualization of different main types of fuel cells that in this 

Figure are distinguished based on the type of fuel they utilize and the type of application 

that they are used for.  
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Table 5: Comparison of different categories of fuel cells, (MICHAEL, VON SPAKOVSKY, & Nelson, 2001), (Maru & HANS, 2001), (Mozsgai, Yeom, 

Flachsbart, & Shannon, 2003), (EG&G Technical Services, 2004), (Coors, 2003), (Jamarda, Salomona, Martinent-Beaumonta, & 

Coutanceau, 2009), (Colominas, McLafferty, & Macdonald, 2009), (O'Sullivan, 1999), (Swider-Lyons, Carlin, Rosenfeld, & 

Nowak, 2002), (Yakabe, Sakurai, Sobue, Yamashita, & Hase, 2006), (Brenda, Vijay, & Wei, 2004), (Canha, Popov, & Farret, 

2002), (Cheng, Sutanto, Ho, & Law, 2001), (Soltani & Bathaee, 2008). 

Parameters Fuel Cells 

PEMFC 
AFC PAFC MCFC SOFC DMFC 

Electrolyte Solid polymer 

membrane 

(Nafion) 

Liquid solution of 

KOH 

Phosphoric acid 

(H3PO4) 

Lithium and potassium 

carbonate (LiAlO2) 

Stabilized solid 

oxide 

electrolyte 

(Y2O3, ZrO2) 

Solid 

polymer 

membrane 

Operating 

temperature 

(°C) 

50–100 50–200 ∼200 ∼650 800–1000 60–200 

Anode reaction H2 → 2H+ + 2e− H2 + 2(OH−) → 2H2O + 

2e− 

H2 → 2H+ + 2e− H2O + CO3
2− → H2O + CO2

 + 2e− 

H2 + O2 → H2O +

 2e− 

CH3OH + H2

O → CO2 + 6

H+ + 6H− 

Cathode 

reaction 

1/2O2 + 2H+ + 2

e− → H2O 

1/2O2 + H2O + 2e− → 2

(OH)− 

1/2O2 + 2H+ + 2e− 

→ H2O 

1/2O2 + CO2 + 2e− → CO

3
2− 

1/2O2 + 2e− → 

O2− 

3O2 + 12H+ 

+ 12H− → 6

H2O 

Charge carrier H+ OH− H+ CO3
= O= H+ 
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Table 5 Continued: Comparison of different categories of fuel cells, (MICHAEL, VON SPAKOVSKY, & Nelson, 2001), (Maru & HANS, 2001), (Mozsgai, 

Yeom, Flachsbart, & Shannon, 2003), (EG&G Technical Services, 2004), (Coors, 2003), (Jamarda, Salomona, Martinent-

Beaumonta, & Coutanceau, 2009), (Colominas, McLafferty, & Macdonald, 2009), (O'Sullivan, 1999), (Swider-Lyons, Carlin, 

Rosenfeld, & Nowak, 2002), (Yakabe, Sakurai, Sobue, Yamashita, & Hase, 2006), (Brenda, Vijay, & Wei, 2004), (Canha, Popov, 

& Farret, 2002), (Cheng, Sutanto, Ho, & Law, 2001), (Soltani & Bathaee, 2008). 

Parameters Fuel Cells 

PEMFC AFC PAFC MCFC SOFC DMFC 

Fuel Pure H2 Pure H2 Pure H2 H2, CO, CH4, other 

hydrocarbons 

H2, CO, CH4, 

other 

hydrocarbons 

CH3OH 

Oxidant O2 in air O2 in air O2 in air O2 in air O2 in air O2 in air 

Efficiency 40–50% ∼50% 40% >50% >50% 40% 

Cogeneration – – Yes Yes Yes No 

Reformer is 

required 

Yes Yes Yes – – – 

Cell Voltage 1.1 1.0 1.1 0.7–1.0 0.8–1.0 0.2–0.4 

Power density 

(kW/m3) 

3.8–6.5 ∼1 0.8–1.9 1.5–2.6 0.1–1.5 ∼0.6 
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Table 5 Continued: Comparison of different categories of fuel cells, (MICHAEL, VON SPAKOVSKY, & Nelson, 2001), (Maru & HANS, 2001), (Mozsgai, 

Yeom, Flachsbart, & Shannon, 2003), (EG&G Technical Services, 2004), (Coors, 2003), (Jamarda, Salomona, Martinent-

Beaumonta, & Coutanceau, 2009), (Colominas, McLafferty, & Macdonald, 2009), (O'Sullivan, 1999), (Swider-Lyons, Carlin, 

Rosenfeld, & Nowak, 2002), (Yakabe, Sakurai, Sobue, Yamashita, & Hase, 2006), (Brenda, Vijay, & Wei, 2004), (Canha, Popov, 

& Farret, 2002), (Cheng, Sutanto, Ho, & Law, 2001), (Soltani & Bathaee, 2008). 

Parameters Fuel Cells 

PEMFC AFC PAFC MCFC SOFC DMFC 

Installation 

Cost (US 

$/kW) 

<1500 ∼1800 2100 ∼2000–3000 3000 – 

Capacity 30 W, 1 kW, 

2 kW, 5 kW, 

7 kW, 250 kW 

10–100 kW 100 kW, 200 kW, 

1.3 MW 

155 kW, 200 kW, 

250 kW 1 MW, 2 MW 

1 kW, 25 kW, 

5 kW, 100 kW, 

250 kW, 

1.7 MW 

1 W to 1 kW, 

100 kW to 

1 MW 

(Research) 

Applications Residential; UPS; 

emergency 

services such as 

hospitals and 

banking; 

industry; 

transportation; 

commercial 

Transportation; space 

shuttles; portable 

power 

Transportation; 

commercial 

cogeneration; 

portable power 

Transportations (e.g. 

marine-ships; naval 

vessels; rail); 

industries; utility 

power plants 

Residential; 

utility power 

plants; 

commercial 

cogeneration; 

portable 

power. 

It is used to 

replace 

batteries in 

mobiles; 

computers 

and other 

portable 

devices 
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Table 5 Continued: Comparison of different categories of fuel cells, (MICHAEL, VON SPAKOVSKY, & Nelson, 2001), (Maru & HANS, 2001), (Mozsgai, 

Yeom, Flachsbart, & Shannon, 2003), (EG&G Technical Services, 2004), (Coors, 2003), (Jamarda, Salomona, Martinent-

Beaumonta, & Coutanceau, 2009), (Colominas, McLafferty, & Macdonald, 2009), (O'Sullivan, 1999), (Swider-Lyons, Carlin, 

Rosenfeld, & Nowak, 2002), (Yakabe, Sakurai, Sobue, Yamashita, & Hase, 2006), (Brenda, Vijay, & Wei, 2004), (Canha, Popov, 

& Farret, 2002), (Cheng, Sutanto, Ho, & Law, 2001), (Soltani & Bathaee, 2008). 

 

 

Parameters Fuel Cells 

PEMFC AFC PAFC MCFC SOFC DMFC 

Advantages High power 

density; quick 

start up; solid 

non-corrosive 

electrolyte 

High power density; 

quick start up 

Produce high grade 

waste heat; stable 

electrolyte 

characteristics 

High efficiency; no 

metal catalysts needed 

Solid 

electrolyte; 

high efficiency; 

generate high 

grade waste 

heat 

Reduced 

cost due to 

absence of 

fuel 

reformer 

Drawbacks Expensive 

platinum 

catalyst; 

sensitive to fuel 

impurities (CO, 

H2S) 

Expensive platinum 

catalyst; sensitive to 

fuel impurities (CO, 

CO2, CH4, H2S) 

Corrosive liquid 

electrolyte; 

sensitive to fuel 

impurities (CO, 

H2S) 

High cost; corrosive 

liquid electrolyte; slow 

start up; intolerance to 

sulfur 

High cost; slow 

start up; 

intolerance to 

sulfur 

Lower 

efficiency 

and power 

density 
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For our case, as the fuel cell is intended to be applied in transportation, and 

substitute the commercial diesel engine, higher safety precautions must be taken under 

consideration. It was concluded from Table 5 that PEM fuel cell is the technology that best 

fits our requirements. Its low operating temperature of 50-100O C, high energy density, and 

rapid start up as well as its size and weight make it more applicable for commercial usages 

in vehicles (Ziogou, 2013). The main disadvantages of PEM fuel cell are: the low operating 

efficiency (40-45%), the high costs associated with the required platinum catalyst and its 

high sensitivity to CO.  

So far, PEMFC of 3-7 kW and 50 kW are used, for residential and building usage 

accordingly, to provide heat and electricity. It is interesting to state that Ballard Power 

systems, in Canada, developed a 250 kW PEM system (Maru & HANS, 2001).  A PEMFC 

system is expected to be part of the future automotive industry as the global goal reduction 

of greenhouse gas emissions in the automotive sector is 95% until 2050 (European, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

37 
 

4. REVIEW OF THE PROPORTIONAL INTEGRAL (PI) CONTROLS 

 

Sensors are utilized to measure the different characteristics of a system. These 

values can be used as feedback to improve the performance of the system. An automatic 

control system is a closed loop system that does not require any operational input. The 

controller regulates the system so that it remains within a specified range.  An automatic 

control system has two process variables: a manipulated variable and a controlled variable 

(TPUB). 

 The manipulated variable is the process variable that is alternated by the control 

system to ensure that the controlled variable is at a desired value or within a 

desired range of values. (TPUB, 2017) 

 The control variable is the process variable that is kept at a desired value or within 

a desired range of values(TPUB, 2017) 

In an automatic control system, four functions take place. The control process 

initiates with a measurement of the controlled variable. The current measured values are 

then compared with the desired ones. Then, the control device computes the error created, 

which is the difference between the desired and the actual values. The controller then 

determines the magnitude of action that has to perform on the manipulated variable as to 

“correct” the system by minimizing the error (TPUB, 2017). 

“Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp 

and paper industries, 97% of regulatory controllers utilize PID feedback” (Honeywell, 

2000) . 

PID controller is a very common case among of its kind. A PID controller is described by the 

following formula:  

                         
  

  

 

 

 

In the controller, u is defined as the manipulated variable and e as the error. The 

control signal is composed of three terms. The P-term is proportional to the present error, 
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the I-term is proportional to the integral error, error created from time zero to present 

time, and the D-term is proportional to the error derivative or future expected error. The K 

values stand for the individual gain of each case. Figure 20 represents the error created by 

the system, area between the line and the Time-axis, which the controller tries to penalize. 

An important parameter of the PID controller is that it takes under consideration the future 

prediction, the current and the past errors of the control (Honeywell, 2000). 

 

 

 

 

 

 

Figure 20: The PID controller operates utilizing information from the past, present and future 

prediction errors (Honeywell, 2000). 

 

Each term has a different impact on the system, an impact that can better be 

represented in Figure 21.  Figure 21 describes three different cases: the response to step 

changes for proportional command signal (P), proportional integral (PI), and proportional 

integral derivative action (PID).  

t Time 

Future Past 
Present 
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Figure 21: Response to step changes in the command signal for P, PI and PID controllers for a 

transfer function     
 

      
. (Honeywell, 2000). 

  The Kp values used in the P case are: 1 (dashed), 2 and 5 (dashed-dotted) lines. An 

increase in the gain-value decreases the steady state error, but at the same time it 

introduces more oscillations in the system, Figure 21. In the case of PI, the values used are: 

Kp=1, Ki=0 (dashed), Kp=1, Ki=0.2, 0.5 and 1 (dash-dotted). As the Ki gain value increases 

for the same Kp value, it causes an increase in the wavelength of oscillations that take place 

but they are of lower number compared to the Kp case. The PI control is able to get closer 

to set point value, decreasing the error further. For the PID case, the controller has the 

following values: Kp=2.5, Ki=1.5 and Kd=0 (dashed) and  Kp=2.5, Ki=1.5, Kd=1, 2, 3, 4 

(dash-dotted). The PID case can provide extra stability to the initially oscillatory PI system, 

but it is risky as the Kd values can create issues in the system. The derivative action 

extrapolates the error created by Kd times in a way to predict and avoid the future error 

(Honeywell, 2000). The issue with the D control is that if there is noise in the system, such 

as sudden peaks like in a dynamic system, the controller is confused and it cannot make a 

correct estimation of the future, messing up the control. For that reason D controller is not 

usually used (Control, 2016).   
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5. RESEARCH OBJECTIVES 

 

The objective of this thesis is the operational analysis, the impact and control of the 

different variables of pre-established HPMH and PEMFC dynamic models individually and 

combined. The dynamic models are presented individually and combined through a model 

builder platform named gPROMS. The ultimate goal of the thesis is to regulate the filling 

time variables, discharge rate variables and the thermal management variables of the 

HPMH and PEMFC model to achieve improved combined operating conditions. More 

specifically, these are associated with higher fueling rates of hydrogen in the MH tank and 

steady hydrogen flow of sufficient amount from the MH tank to the fuel cell to meet the 

power demand of the vehicle. Finally, the thesis investigates the impact of a PI controller to 

the overall behavior of the system. This method is used to allow the automatization of the 

system and to investigate the controller’s ability to sustain improved operating conditions 

in a safer manner.  
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6. MODELING 

 

6.1. Outline 

 

In a metal hydride tank and fuel cell modeled system, the materials have a variety 

of properties that must be taken under consideration. The idea of the modeled system is to 

keep it simple and yet detailed. The simplicity is associated with the prevention of any 

fatigue in the system through prolonged modeling time. A simple, fast operating and 

realistic model that simulates closely the behavior of the experiment, is feasible through 

the adoption of different assumptions. The modeled mathematical expressions are based 

on already established formulas provided by the literature.  The values utilized by the 

newly established combined model are taken from literature and from the available 

experimental apparatus.  

The model represents a MH tank connected in series with a fuel cell and a PI 

controller that regulates them both. First, there is the simulation of the absorption phase of 

the MH tank where hydrogen is absorbed. After the termination of the absorption process, 

the second phase that of desorption initiates that uses the data produced from the 

absorption process. Such data are associated with the amount of hydrogen stored and the 

amount of solid mass converted. The desorption process, converts the MH back into solid 

by emancipating the previously stored hydrogen. The MH tank is now connected with a 

fuel cell that is the third part of the modeling series. The desorbed hydrogen flows from the 

tank to the fuel cell and current is produced.  An overview of the system is the following: 

The MH system is cooled down and hydrogen is fed to the MH tank during the absorption 

reaction phase. Then the system is heated up and hydrogen is desorbed to the fuel cell 

during the desorption reaction phase. Finally, the fuel cell utilizes the provided hydrogen to 

produce electric power that can be used to produce work. In the next part of the model a PI 

control is introduced to exclude the need of an operator in the system. The controller 

manipulates the water flow rate in the heat exchanger to control the rate of storage and 

outflow of hydrogen to and from the MH tank and the inflow of hydrogen in the fuel cell to 

meet the demanded amount of power by the automobile.  
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 The software that is utilized to represent this model is gPROMS ModelBuilder 

version 4.2 copyright Process Systems Enterprise Limiter (1997-23013) (PSE, 1997). 

gPROMS is a powerful process modeling platform that can be thought as a mixture of Aspen 

Plus and MAT LAB. The importance of this software is that it allows the modeling and the 

solution programs to be under a single platform. Furthermore, it allows the 

interconnection of different models with one another providing the ability to decide which 

set of values and equations are desired to interact with each other. This allows the 

representation of different conditions and acquisition of more accurate results in a more 

rapid and facile manner (PSE, 1997). 

 

6.2. Modeling 

 

The model is based on the work done mainly by B.A. Talagan et al. (Talagañisa & 

Meyerb, 2011), and C. O. Ziogou (Ziogou, 2013).   The metal hydride tank model 

represents a high pressure aluminum tank loaded with LaNi5 material hydride (MH), where 

the fuel cell is a dynamic PEM model.  
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6.2.1.   Metal hydride model 

 

A) H2Oin Cold

B) H2Oin Hot

A) H2O Out Hot

B) H2O Out Cold

Metal Hydride  Tank
A Phase: Absorption
B Phase: Desorption

A) Solid 
to MH

B) MH 
to solid

A)H2 inflow 

B) Outflow H2 

A) ExcessH2

B) Desorbed H2

 

Figure 22: Structure of the Dynamic Model of MH hydrogen storage during absorption and 

desorption phase. 

 

The MH tank model is utilized to better understand the dynamic character of the 

absorption and desorption processes and to further assist improve the performance of the 

system under various extreme conditions. To test the higher thermodynamic operability of 

the system, the model is tested under isothermal and equilibrium conditions.  

This model utilizes a cylindrical tank filled with LaNi5 metal hydride. Figure 22 can 

be used to better illustrate that system.  In the model, both absorption and desorption 

processes are going to be investigated and the heat exchanger is responsible in regulating 

the temperature of the system. During the exothermic absorption reaction, the 

temperature of the water is set at 298 K and during the endothermic desorption reaction 

the water temperature is set at 340 K.  
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To establish a mathematical model a number of assumptions were taken under 

consideration:  

 The metal hydride is homogeneous and isotropic. 

 The reactor has uniform temperature and pressure distribution. 

 The ideal gas law characterizes the gas phase. 

 Hydrogen introduced to the system is of constant pressure and constant flow. 

 The volumetric parameters of the solid, the reactor and the gas phase are kept 

constant.  

 At the initial time of the absorption reaction the reactor temperature is assumed to 

be equal to the cooling water temperature: Tin=Twa.  

 At the initial time of the desorption reaction the heating water temperature is 

assumed to be equal to the reactor temperature: Tin=Twd.  

 The initial amount of metal hydride in absorption is mMH=0 as there is none 

hydrogen yet reacted with the solid.  

 The initial amount of metal hydride in desorption is almost mMH= mS as the 

hydrogen has fully reacted with the solid.  

 The amount of hydrogen being introduced to the system during absorption at the 

initial time is equal to the constant flow rate amount that is mH2=0.1 g/s. 

 The amount of hydrogen being desorbed out of the system at the initial time is 

equal to the constant flow rate amount that is set equal to mH2=0.05 g/s.  

 

The assumption that uniform pressure and temperature distribution were present 

in the tank, allowed the exclusion of equations that describe the distribution of these 

parameters. A simpler model is promoted allowing the description of energy and mass 

balances through ordinary instead of partial differential equations. Also, the average values 

of composition and temperature are used instead in the energy and mass balances 

equations.  In reality, the pressure, the composition and the temperature distributions are 

not uniform across the system. In this project, it is more important to model an accurate 

and of facile comprehension system rather than an in depth representation that can lead to 

wrong results. Additionally, forming a simple model that serves as a baseline pointing 
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towards a generally accepted direction, before constructing a more complex one, can be 

beneficial. 

 

Hydrogen mass balance 

 

In the absorption case, gaseous hydrogen is pumped in the metal hydride tank. 

Hydrogen is absorbed by the metal hydride. At some point, the amount of hydrogen that 

can be stored within the MH in solid form is reached and the extra hydrogen pumped in the 

system after this point is stored the tank in gaseous phase. In the desorption case, gaseous 

hydrogen flows/ pumped out of the tank. Hydrogen is desorbed from the MH and the MH is 

converted back to solid. At a certain point, no more hydrogen can be released from the MH 

to the tank and no more hydrogen is available in the tank in gaseous phase (See Appendix 

1). 

The hydrogen mass balance equation is used to describe the amount of hydrogen in 

gas phase within the metal hydride tank per unit time. That provides us with an insight of 

how the rate of absorption/ desorption changes as time passes. The absorption reaction 

refers to the conversion of solid into metal hydride as hydrogen is being absorbed and the 

reverse stands for the desorption case. The higher the rate of absorption the lower the 

amount of gaseous hydrogen within the system and the higher the rate of desorption the 

higher the amount of gaseous hydrogen within the system. Because each MH reacts in a 

different way with hydrogen and the according stoichiometric coefficient of the reaction 

must be taken under consideration.       
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Metal Hydride mass balance 

 

From the previous equation, relevance between the rate of reaction and metal 

hydride formation is represented. The metal hydride (MH) mass balance allows the 

determination of the amount of MH produced or reduced per unit time. As the rate of 

absorption increases, the rate of solid converted to metal hydride increases as well, leading 

to a positive proportionality between these two parameters. In the desorption case the 

contrary is taking place. It important to state that the rate of reaction depends on the 

amount of solid available in the absorption case and on the amount of MH in the desorption 

case. As the mass of the solid/MH increases, the amount of substance available to be 

converted increases leading to higher conversion rates (See Appendix 1). 

 

Hydrogen energy balance  

 

The absorption reaction is exothermic and desorption endothermic. For this 

reason, the temperature variation is an important variable of the sorption reactions. To 

describe the rate of change of temperature per unit time, a hydrogen energy balance is 

composed; the introduction of hydrogen to the system is the reason why the reactions are 

temperature dependent. The temperature change is proportional to the mass of gaseous 

hydrogen in the system and the mass of solid available. In the absorption case, the 

temperature change per unit time depends also on the amount of gaseous hydrogen 

introduced to the system per unit time due to its lower initial temperature. In both cases, 

the temperature depends on the overall heat transfer between the refrigerating/heating 

water and the metal hydride, and the reaction rate that takes place. It is important to 

investigate the various heat transfer phenomena in more depth so that to be able to 

identify and have a better visualization of the impact of each component on the system (See 

Appendix 1). 
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The absorption process is an exothermic reaction, and the reaction rate describes 

the rate that heat is introduced per unit time. To enhance the absorption process heat must 

be removed from the system. The heat exchanger is in contact with the system, it removes 

heat by circulating water of lower temperatures than the ones that dominate in the system.  

In addition, the inflow of H2 to the system introduces lower temperatures, compared to the 

ones pre-existing in the MH tank, lowering in this manner the temperature of the system.   

The desorption process, is an endothermic reaction, and the rate of the reaction 

describes the rate that heat is removed from the system per unit time. To enhance the 

desorption process heat must be introduced to the system. The heat exchanger provides 

the necessary heat to the system by circulating water of higher temperatures than the ones 

that dominate the system.  

 

Reaction Kinetics 

 

The rate law depends on the concentration of chemicals that take place in the 

reaction. The driving force is the difference between the pressures of 

absorption/desorption to the equilibrium pressure. That difference shows the rate at 

which hydrogen is actually able to react and be absorbed/desorbed by the solid/MH that 

results to an incline in the pressure of the system along with a change in temperature. In 

the absorption process, MH is formed from solid and ratio proportionality must be utilized 

to denote the impact of that variable. In the desorption case solid is formed from MH and 

the same ratio proportionality must be utilized. The reason why the ratio must be closer to 

unit value and not to zero in contrast to the high amount of solid/MH present in the initial 

step is that during absorption/desorption MH/solid is formed (See Appendix 1). 

 

 



 
 

48 
 

Equilibrium Pressure 

 

This system pressure’s depends on the temperature and hydrogen metal hydride to 

solid ratio. For this reason an equation that describes pressure composition isotherms or 

PCIs should be used for the approximation of the equilibrium pressure.  The equilibrium or 

plateau pressure will be optimally represented using van’t Hoff relation. This theorem 

states that the equilibrium pressure of an ideal hydride depends solely on the temperature 

variable. To take under consideration the material behavior of each case the constant slope 

term is taken under consideration (See Appendix 1). 

 

Heat transfer equation 

 

The rate of heat removed from or provided to the system by the heat exchanger 

must be further explained and the variables associated with the procedure must be more 

thoroughly depicted. For this system, it is assumed that the metallic water tube walls are 

too thin to have an impact on the heat transfer and for that reason heat losses associated 

with them are ignored.  The heat transfer characterization is broken down to two parts. 

The first part describes the heat transfer between the metal hydride tank and the water of 

the heat exchanger. The second one describes the variation of the temperature of the 

outflow water.  The heat transfer is defined by the difference of the heat gained or lost by 

the system. More specifically, heat is lost or gained by the metal hydride system to the inlet 

and outlet cooling or heating water. There is a continuous loss or gain of heat depending on 

the sorption process until the water exits the system due to the comparatively elevated or 

lower temperatures of the MH system.  The variation of temperature of the water outlet 

profile is a very important parameter of the system that affects the reaction rate of the 

model because of the amount of heat transfer variations from or towards the system per 

unit time. The advantage of this equation is that we can actually set the input temperature 
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of the circulated water, providing the ability to manipulate the rate of heat transfer 

required in each case and consequently the rate of hydrogen produced or stored (See 

Appendix 1). 

 

Additional Equations 

 

The ideas gas state equation is used to represent the relation between the different 

critical variables in the system that are described.  

The hydrogenation capacity equation is used as a reference point that allows a 

visualization of the amount of hydrogen present in the MH with respect to time (See 

Appendix 1). 

 

6.2.2.    Fuel cell PEM model 

 

Anode equations 

 

Hydrogen balance equation   

 

In the anode part of the fuel cell, there is the variable inflow of hydrogen. From that 

hydrogen, a certain amount is diffused through the membrane to react and the rest flows 

out of the system.  For simplification reasons it is assumed that at the anode there is only 

hydrogen as we assume that there is always just enough amount of humidity on the 

membrane to allow an efficient diffusion of ions. Thus, the excess amount of hydrogen 

present in the anode defines the pressure created at the anode for our system. The outflow 
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of hydrogen depends on the difference between the atmospheric and anode’s pressure 

present. The higher the pressure in the system is, the higher the amount of hydrogen being 

present and flowing out (Appendix 1). 

 

Cathode equations 

 

Mass balance  

 

                In the cathode part of the fuel cell, there is a variable inflow of air in the system 

where in this case we are going to assume that no nitrogen is present and that there is 

interaction only with the amount of oxygen introduced. From the amount of oxygen 

introduced, a part of it reacts with hydrogen ions and electrons and the rest flows out. As in 

the anode case, the humidity level on the membrane is assumed to be just enough to allow 

an efficient flow of ions through and thus saturation pressure is considered negligible and 

ignored. 

                 The rate of the reaction that determines the consumption rate of hydrogen and 

oxygen depends on the current variable which is set to increase with time to produce 

results for the whole spectrum of the system’s operability (Appendix 1). 

 

Partial pressure of species 

 

                  It is assumed that there will always be just enough water vapor on the membrane, 

so for one more time it is assumed that negligible vapor pressure is created. As a result, the 

pressure at the cathode depends only on the amount of the oxygen present, thus any 

pressure increase in the cathode depends on the excess inflow of oxygen in the system that 
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does not react. To be realistic the value of the partial pressure of oxygen is multiplied with 

4.72 whose product is assumed to represent the total pressure created in the system. The 

reasoning behind 4.72 is that oxygen takes up 20% of the air and nitrogen almost 80%, so 

that value is used to represent the total pressure created by the theoretical amount of air 

that would be present to provide that amount of oxygen and be able to keep the system 

simple and accurate. The flow rate of oxygen out of the system follows the same law as the 

hydrogen in the anode case. 

 

Stack Voltage 

 

              Due to the low cell voltage (1.2 V) it is a requirement to stack many cells to 

produce the required energy but in our model only one cell is used. The main 

characteristics of a fuel cell are found in a polarized curve. Figure 23 represents a fuel cell 

polarization characteristic where voltage is plotted against current density.  The stack 

voltage is determined by the difference between the ideal Nernst voltage, that decreases as 

the current provided increases, and the voltage losses such as the activation, ohmic loss 

and concentration or mass transfer losses that can be better depicted in Figure 23 

(Appendix 1). 
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Figure 23: Theoretical/Nernst voltage Vs operational voltage (Ziogou, 2013)  (Kirubakaran, 

Shailendra, & Nema, 2009).   

 

                   The graph provides a very good prediction of the available voltage for each 

current case and it is an essential part of the PEMFC profile. That initial period when the 

system is warmed up is called activation polarization, the voltage losses are associated 

with the slowness of the chemical reaction that takes place on the surface of the electrode 

(Fuel Cell).   Activation losses are shown on the left side of the operational voltage-current 

density graph. In our case, the formulas included in Appendix 1 take into consideration the 

concentration amount of oxygen accumulated on the surface of the catalyst’s layer at the 

cathode and other experimentally defined parametric coefficients (Appendix 1).  

      As the current density increases, the ohmic losses become more dominant. The 

linear part of the line represents the ohmic polarization, a characteristic of the ohmic 

nature of the system is that takes place when the current density increases, causing the 

voltage to drop (Kirubakaran, Shailendra, & Nema, 2009). The fuel cell’s operability is at its 

highest within the linear region when alternating the internal resistance of the cell stack 

for various loading and hydrogen pressures conditions (Kirubakaran, Shailendra, & Nema, 
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2009).  Internal resistance of various components causes the ohmic polarization. More 

specifically, ohmic losses are associated with the resistance of the membrane to flow of 

ions through the material of the electrode, the resistance of the electrolyte to flow protons 

through and the resistance of the cell hardware and of various other interconnections to 

flow electrons. The voltage drop at the main part of the curve is proportional to the current 

density (Ziogou, 2013) (Fuel Cell) . When the current density is low, the losses associated 

with the ohmic nature do not have a great impact on the system. 

    At very high current densities, the voltage decreases significantly due to lower gas 

diffusion efficiency. This characteristic is associated with the over flooding of water in the 

catalyst (water is concentrated on the catalyst) that causes mass transport losses, that lead 

to a decrease in the reactant concentration at the surface of the electrode as the fuel is 

used. This part of the graph is called concentration polarization (Kirubakaran, Shailendra, 

& Nema, 2009). The mathematical formulas (Appendix 1) relate the conductivity of the 

electrolyte to the porosity of the gas diffusion layer. At the point of maximum current 

density, the concentration of the fuel on the surface of the catalyst is very close to zero, due 

to the fact that the reactants are utilized immediately when they become available on the 

surface (Ziogou, 2013), (Fuel Cell).  

 

Thermodynamic balances  

 

              In a thermodynamic model, energy balance equations are used to portray the 

comportment of the temperature of the fuel cell. Not all the energy produced is converted 

to useful electricity. Energy is provided to the system depending on the amount of fuel at 

the anode and oxygen at the cathode that are taking place in the reaction. These energy 

profiles as well as the heat produced by the resistance of the system are excluded from our 

model due to simplification reasons. The components that are taken under consideration 

are; the energy and heat produced by the exothermic chemical reaction and the amount of 

energy that is actually converted to electrical power. Heat losses are associated with the 
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amount of heat radiated to the surrounding environment and the heat lost to the 

environment through convection.  The described equations can be found at Appendix 1.  

 Due to the excess amount of heat produced during the fuel cell operation, only part 

of the energy can be converted into useful power and the rest energy is produced in the 

form of heat, as a result the temperature of the system increases. This comparatively 

increased temperature of the system to the surrounding environment causes heat losses to 

it. The heat losses are caused by radiation and convection. Convection energy losses are 

categorized into heat losses due to natural convection and heat losses by the cooling 

system (heat exchanger) that is used to preserve the temperature of the fuel cell (FC) 

within a desired temperature range (Ziogou, 2013).   

The baseline model is produced using the model builder platform gPROMS that 

introduces all the relationships required as described. The model takes under 

consideration all the physical equations explained. The hydrogen can only flow in and out 

of the metal hydride tank and fuel cell from the one end as it is in the commercial cases.   
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6.2.3.    Proportional integral (PI) control model 

 

A) H2Oin Cold

B) H2Oin Hot

A) H2O Out Hot

B) H2O Out Cold

Metal Hydride  Tank
A Phase: Absorption
B Phase: Desorption

A) Solid 
to MH

B) MH 
to solid

A)H2 inflow 

B) Outflow H2 

A) ExcessH2

B) Desorbed H2

T

W
Out

e-

PI
1A

 

PI
2

 

Figure 24: PI control over the MH tank and fuel cell model. 
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In the model, the different characteristics are measured such as: temperature, 

pressure, heat and mass transfer with respect to time, to determine the impact to the 

system.   That allows a better understanding of the behavior of the system. The PI control is 

used to maximize the absorption rate or in other words to minimize the filling time of 

hydrogen in the metal hydride tank. The next goal of the PI controllers is to meet the 

demand in hydrogen of the fuel cell. The PI control is responsible to make sure that enough 

hydrogen is supplied (desorbed) to produce the necessary amount of current desired at a 

constant rate.  Two PI controllers are necessary to accomplish this task, and the whole 

system along with them is presented on Figure 24.  

PI 1 operates during the fueling process where absorption takes place, the engine is 

turned off and there is no energy demand. The PI 1 controller tries to regulate the 

temperature of the metal hydride tank making it its control variable. In the MH tank the 

temperature is the variable that has the highest impact on the process due the fact that both 

reactions (absorption and desorption) are temperature dependent and for that reason, for 

the reaction rate to be over a certain level the temperature of the system must be monitored 

and regulated. The mean to control the temperature of the system is through the flow rate 

of water in the heat exchanger that in other words is defined as the manipulated variable. 

One reason why the PI 1 controller is added is that there are instants when more hydrogen 

can actually be absorbed if the reaction rate was higher leading to faster fueling/filling of 

the MH tank. For that reason, PI 1 monitors the temperature of the MH tank, and it 

decreases the flow of water in the heat exchanger when the temperature is getting close to 

the set point temperature, and increases the flow of water in the heat exchanger when that 

error increases. The second reason why PI 1 controller is used is to accommodate with a 

safety precaution against operating in extreme conditions. When hydrogen is supplied to 

the system the temperature can increase rapidly. If the temperature of the MH tank is not 

well monitored and regulated accordingly, the system can have safety issues associated 

with the incapability of the heat exchanger to bring the temperature of the unit within safe 

values.      

The PI 2 controller operates during the operation of the engine where there is need 

for power. The need in power is translated in a need for hydrogen by the fuel cell and the PI 

2 tries to regulate the rate of flow of hydrogen form the MH tank to the fuel cell. PI 2 

controller depends on the amount of voltage that is demanded by the fuel cell. The voltage is 
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the controlled variable and must be met as close as possible for its various, non-constant 

values. The manipulated variable is the amount of water that flows in the heat exchanger to 

allow an efficient rate of desorption to take place. The error created is associated with the 

theoretical amount of voltage required by the fuel cell and the actual amount that is 

produced by the fuel cell. PI 2 is vital to the system, as the initial model does not guarantees 

that the MH tank releases the correct amount of hydrogen to the fuel cell when needed. 

There are two scenarios: too much or not enough hydrogen can be released to the fuel cell. 

A high amount of hydrogen release causes a safety issue as the accumulation of hydrogen in 

gaseous form leads to elevated pressures in the system. If not enough hydrogen is released 

then not enough voltage is produced and thus the vehicle cannot operate properly. The 

control operates as following; when the voltage output is higher than the amount 

demanded, the rate of water flow in the heat exchanger decreases, decreasing the rate of 

desorption, decreasing the flow of hydrogen out of the MH tank. In the case where the need 

for voltage is higher than the one provided, the rate of flow of water in the heat exchanger 

increases, leading to higher reaction rates, allowing more hydrogen to flow out of the MH 

tank system towards the fuel cell. Another important impact of the PI 2 controller is that it 

provides a constant flow of hydrogen from the one system to the other. The importance 

arises from the fact that the fuel cell just like any kind of engine requires a constant amount 

of fuel to produce a certain amount of work over a period.  
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7. CASE STUDY  

 

In the model, each sorption reaction operates for 120 seconds. In the combined case 

scenario, there are three pairs of sorption reactions taking place, starting and finishing with 

a desorption reaction representing a total of 840 seconds period. The model starts and 

finishes with the desorption reaction as it is assumed that the tank is initially full and it 

must be left empty in the end.  The 120 seconds period is an outcome of this study. This 

period is enough for both absorption and desorption reactions to reach almost zero reaction 

rate having almost the entire solid and MH utilized accordingly. During the absorption 

reaction if the process was to continue for more than 120 seconds, from the pumped in 

hydrogen almost none would be further absorbed by the solid, forming a MH, as there 

would be only a very small amount of solid present. As a result, the hydrogen would be 

stored in gaseous phase within the tank leading to an increase in the pressure of the system.  

In the desorption reaction, within this period almost all of the MH has emancipated its 

hydrogen and the MH is converted back to solid. In addition to the depletion of MH, is the 

depletion of hydrogen in the MH tank. These characteristics signify the end of the process. 

In the case that desorption was to  operate for more than 120 seconds no more hydrogen 

would flow out of the system or if so that would be of insignificant amounts. It is important 

to state that limitations in the chemical reaction are taken under consideration in both 

cases. This is depicted by the existence of a remnant of unreacted MH and solid present, 

thus the theoretically capable amount of absorbed and desorbed hydrogen is never reached.  
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8. RESULTS 

 

8.1.  Absorption of MH tank modeling results 

 

 In the model, the initial high rate of reaction in Figure 25 is because initially there is 

a high amount of solid available and no MH. As more H2 is stored, more solid is converted to 

MH and the rate of reaction decreases.  The rate of the reaction is negative as hydrogen is 

absorbed and MH is produced.  

 

Figure 25: Mass of MH with reaction rate Vs time.  
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The model takes into account the none ideality of the chemical reaction as there is 

always some mass of solid that does not react. For that reason, some of the hydrogen is not 

absorbed by the solid and kept as gas in the tank. As the reaction proceeds, the rate of the 

reaction declines and thus the rate of absorption, but the amount of hydrogen that flows in 

the system is kept the same. Gradually, the amount of hydrogen stored in gaseous phase in 

the tank increases. That causes a greater increase in the pressure of the tank than when it 

was stored in the MH as can be shown at Figure 26. At some point, almost no solid is 

converted to MH, shown at Figure 25, and now the hydrogen pumped in is stored only in 

gaseous form leading to build up pressures, Figure 26, and at that point it is decided for the 

reaction to be terminated.  

  

Figure 26: Pressure and hydrogen gaseous mass Vs time. 
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2007). Increasing the concentration of hydrogen in the α-phase increases the H-H 

interactions, which start to play an important role, leading to the next phase, named beta 

phase. This phase is associated with volumetric expansion, change of the crystalline 

structure and the formation of a nucleation energy barrier (Berube, Radtke, & Gang, 2007).  

The production of heat during absorption causes an increase in the system’s 

equilibrium temperature. An increase in the temperature though inhibits the reaction rate 

and for this reason, cooling water from the heat exchanger flows around the tank. The 

temperature of the water is 298 K and is sufficiently low to prevent a great increase of the 

temperature of the system by absorbing the excess heat as can be depicted in Figure 27. The 

heat transfer from the tank to the water plays a vital role on deciding the set temperature. 

In the beginning of the process, more hydrogen is absorbed and slowly the absorption rate 

decreases as explained before. As Figure 27 shows, the high initial rates create a rapid 

increase in the temperature and high heat exchange rates with the cooling water. The heat 

exchange follows closely the temperature pattern of the system but there is some time lag 

associated with the time required for heat to convect to the water.  As the water flow rate in 

the heat exchanger stays the same and the rate of reaction decreases, the system gradually 

cools down until the reaction eventually stops as the full capacity is reached by the metal 

hydride for the current conditions. 
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 Figure 27: Temperature and heat absorbed by the heat exchanger’s water Vs time. 

 

8.2.  Desorption of LaNi5 tank modeling results 
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the MH present, Figure 28. The model takes some time to provide the necessary heat to the 

system and then reaction rate suddenly spikes. That peak is associated with the fact that the 
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reaction rate decreases very fast as the MH amount is now decreased and the easiness of 
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As the process continues, more hydrogen is desorbed and more MH is converted into solid 

leading to an even lower rate of reaction as can be seen in Figure 28.  
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Figure 28: Mass of MH with reaction rate Vs time. 

 

The chemical reaction is not ideal and some of the hydrogen is not desorbed and as 

a result there is always going to be some MH left behind. As the reaction proceeds more and 

more hydrogen is desorbed but the rate of outflow of hydrogen is regulated and set to be at 

a constant value, which is lower than the rate of desorption. For that reason, an increase in 

the tank pressure is witnessed as can be seen at Figure 29. As the reaction rate decreases 

and the hydrogen is kept pumped out at a constant flow, such that the outflow rate is 

greater than the amount desorbed within the tank, the available gaseous hydrogen in the 

tank decreases leading to lower pressures, Figure 29.  At some point there is almost no mass 

of MH, no reaction, low pressure and small amount of hydrogen in gaseous form. These 

conditions signify the end of the desorption process. See Figure 28 and 29.    
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Figure 29: Pressure and hydrogen gaseous mass Vs time. 

 

The pressure variable is positively correlated to the temperature variable. An 

increase in the pressure from excess hydrogen desorbed causes an increase in the 

temperature of the system. Desorption is an endothermic reaction which means that a heat 
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the reaction rate is seen between 5-25 s in Figure 28.  
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Due to the endothermic character of the desorption reaction causing a decrease in 

the temperature, the reaction rate is inhibited. For this reason, the heating water of the heat 

exchanger that flows around the tank has a temperature of 340 K: high enough to prevent 

reaction rate inhibition by providing the necessary heat as can be seen in Figure 30. The 

heat transfer from the tank to the water plays a vital role on deciding the set temperature. 

In the beginning of the process, more hydrogen is desorbed and slowly the rate decreases as 

explained before. The high initial rates create a rapid decrease in the temperature, but the 

high heat exchange rates between the heating water and the MH tank penalizing the 

phenomenon as can be seen at Figure 30. In the first 50 s, most of the heat transfer between 

the heat exchanger and the MH tank takes place and is directly associated with the reaction 

rate.  

 

Figure 30: Temperature and heat absorbed by the heat exchanger’s water Vs time. 
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absorption case, in the desorption case there is some time lag associated with the time 

required for heat to convect from the heat exchanger water to the system.  As the water 

flow rate in the heat exchanger stays constant and the rate of reaction decreases, the heat 

absorbed by the system decreases as well. Thus the heat exchanged deceases as shown in 

Figure 30.  Due to the lower rate of reaction, the system gradually reaches a higher but 

constant temperature of 340 K as the heat exchanger keeps providing heat to the system 

until it reaches the set temperature. The reaction eventually stops as the hydrogen amounts 

stored in the MH tank is depleted for the current conditions. More but non-significant 

amounts of hydrogen can be further desorbed for higher temperature and pressure 

conditions, but that makes the system unsafe and thus these conditions are not investigated.  

 

8.3.   Absorption, desorption & PEM fuel cell connection results 

 

8.3.1.  Absorption and desorption connection results 

 

In this model the absorption, desorption and the Fuel Cell models were connected. 

The first part describes the absorption connection. The two processes are switched to one 

another three times and the resulted data are provided.  For that reason a binary variable is 

introduced that allows each process to alternatively operate every 120 s. The 120 s period 

was based on the results of the previous produced models. Within this time period there is 

more than enough time for the processes to reach completion, zero reaction rate and 

constant mass of solid and MH etc.   
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Figure 31: Mass of MH with reaction rate Vs time.  
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close correlation between these variables proving for one more time the trustworthiness of 

the system. 

 

Figure 32: Pressure and hydrogen gaseous mass Vs time. 
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the system increases proportionately to the gaseous H2, resulting in major peaks that signify 

the end of the absorption reaction, Figure 32.   

As the reactions are exothermic and endothermic, the temperature profile of the 

system is a vital parameter that should be analyzed. When the reaction of absorption or 

desorption proceeds heat is produced or absorbed by the system accordingly, inhibiting the 

rate of the reaction. For that reason, a heat exchanger is employed to regulate the 

temperature and allow greater reaction rates. Figure 33 represents that heat transfer 

between the system and the heat exchanger in accordance to the temperature of the system. 

The desorption phase requires heat to desorb hydrogen; the heat exchanger provides that 

heat through a constant water flow of 20 g/s at temperature of 340 K. In the beginning, due 

to the high reaction rate the temperature of the system falls below the system’s initial 

temperature of 298. This leads to higher heat transfer values with the heat exchanger, 

Figure 33. As the reaction proceeds and the reaction rate decreases, the heat exchanger is 

capable of increasing the temperature of the system. This results to a decreased amount of 

heat-transfer. In the absorption phase, the water of the heat exchanger absorbs heat. A high 

amount of heat transfer occurs at the start of the reaction and decreases as the reaction 

proceeds. In the same manner as in desorption phase, the temperature of the system is 

affected more at lower reaction rates.  
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Figure 33: Temperature and heat absorbed by the heat exchanger’s water Vs time. 

 

The absorption case is when the system is being fueled with hydrogen and thus 

there is no desorption taking place and no hydrogen is emitted out of the MH tank to the 

fuel cell for the production of energy, see Figure 34. In the desorption phase though, 

hydrogen flows out towards the fuel cell to produce the desired power.  The peaks in Figure 
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Figure 34: Hydrogen flow out from MH tank during absorption and desorption Vs time.  
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power production phase to meet the reaction needs and allow the production of liquid 

water. In a real time scenario, air is introduced to the system that is mainly composed of 

nitrogen and only partially by oxygen, but for simplicity, it is assumed that only oxygen is 

present.   

  

Figure 35: Accumulation of hydrogen and oxygen Vs time.  
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important to sustain higher pressures in the anode part of the fuel cell so that a higher 

amount of hydrogen ions can pass through the membrane and react leading to higher 

currencies. In the model, it is assumed that in the anode there is only hydrogen vapor and in 

the cathode only oxygen as it is assumed that there is just enough vapor water on the 

electrode to allow an efficient diffusion rate through. For that reason no pressure is 

associated with the water accumulation in the system. In result, the anode pressure is 

identical with the hydrogen pressure and the cathode pressure similar to the oxygen 

pressure. As hydrogen is pumped in the system there is a high initial pressure created, as 

shown in Figure 36. The high pressure in the MH system during the absorption phase leads 

to a high initial inflow of hydrogen to the fuel cell and elevated initial accumulation during 

desorption. As the reaction proceeds and H2 is consumed that pressure decreases, see 

Figure 36. During the absorption phase, when there is no inflow of hydrogen or oxygen, the 

pressures are constant and much decreased. The slightly higher value of anode pressure is 

associated with the higher accumulation of H2.  

 

Figure 36:  Pressure of anode and cathode Vs time.  
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Figure 37 is a better representation of the amount of the periodically produced power 

which has been discussed above.  

 

Figure 37: Power produced from the fuel cell Vs time.  
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Figure 38: Power produced from the fuel cell Vs time.  

 

It is interesting to further investigate the impact of the flow of the water in the heat 

exchanger to the overall system. More precisely have a comparison of how a change in the 

water flow can affect the temperature of the system during desorption and absorption as 

well as the filling and empting of the system with respect to time. The results are presented 

in Figures 39 and 40. Three different flows of water 20, 60, 100 g/s were tested for proof of 

concept. Figure 39 shows the impact of that change to the temperature of the system. As the 

flow increases the temperature of the system stays closer to the set point temperatures 

(340 for desorption and 298 for absorption). In addition, it is noted that the temperatures 

reach these set point values within a smaller period of time when the flow increases.  
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Figure 39: Impact of the flow rate of water within the heat exchanger in the temperature of the 

MH system in the absorption, desorption & PEM fuel cell Connected model case Vs 

time. 

 

The rate of change of temperature of the system is improved with increasing flows, 

Figure 39. Thus, there should be higher rate of reaction of converting MH to solid and of 

solid to MH that implies higher filling and outflow rates. Figure 40 represents that concept. 

Indeed, as the flow of water in the heat exchanger increases the hydrogen storage capacity 

wt% in the solid is increased faster as shown in Figure 40. The same stands for the 

desorption case where hydrogen storage capacity decreases at a higher rates than the 

previous cases of lower flow rates.   
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Figure 40: Impact of the flow rate of water within the heat exchanger in the hydrogen storage 

capacity (wt%) of the MH system in the absorption, desorption & PEM fuel cell 

Connected model case Vs time. 
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The impact of these results can also be depicted on the fuel cell technology. As the 

MH tank is better in responding to changes between the two phases, a certain improvement 

on the voltage and power produced in the fuel cell is expected as well. In Figure 41, it is 

shown that as the flow rate of water increases the fuel cell system gets a higher amount of 

voltage response within a smaller period of time showing in this way an increase in the 

fidelity of the system.  

 

Figure 41: Impact of the flow rate of water within the heat exchanger in the stack voltage of the 

fuel cell in the absorption, desorption & PEM fuel cell connected model case Vs time. 
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8.4.  PI control results 

 

This part of the thesis describes the impact of the PI control to the system. In the PI 

control model the absorption and desorption temperatures of 289 K and 340 K of the water 

in the heat exchanger temperatures are the set points of the manipulated variables of the 

metal hydride system. As far as the voltage manipulated variable is concerned the set point 

is set to fluctuate between 0 V and 0.8 V depending on the phase of the system. During the 

absorption reaction (Times: 120-240, 360-480 etc.) there is no power production; thus, the 

voltage is set at 0 V and during desorption reaction (Times: 0-120,240-360 etc.)  it is set at 

0.8 V. The Kp and Ki values in the model were alternated in a process of trial and error until 

optimum values are reached that describe a model of higher efficiency, operability as well 

as safety compared to the previous case.  

 

Figure 42: Flow rate of water within the heat exchanger of the MH system in the PI closed loop 

model case Vs time. 
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high flow is not required due to the elevated temperature of the water, which has a great 

impact on the system. In the case of absorption the flow rate is higher as the temperature of 

the water does not have such a great difference to the operating temperature. In contrast, 

the desorption case requires lower flow rates to lead to the desired results. In the PI model 

there are higher rates of heat transfer per unit time in contrast to the simple case. Such 

results would preclude the PI model from operating if the flow rates were of the same 

magnitude due to liability issues associated with elevated temperatures and pressures in 

the system. The PI model allows an alternation of the flow rate of the water in the heat 

exchanger, which unlike the simple method, is safer and more efficient. The safety character 

arises from the fact that this flow rate alternation has an impact on the amount of heat 

transferred per unit of water through the pipe. In the case of absorption for example, as the 

flow rate increases the amount of heat exchanged is greater than the simple case due to the 

greater quantities of water flow through per unit time. This can be seen in the PI control 

case results in Appendix 2. In that way the control can impact the temperature of the system 

by meeting the set points not only in a safer manner but within a shorter period of time as 

well, see Figure 43.  
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Figure 43: MH tank temperature and set point temperature in the PI closed loop model case Vs 

time.  

 

The fact that the temperature of the system reaches the desired temperature faster 

than the simple case provides a major advantage in the process. It allows the fueling 

reaction to take place at a higher rate, see Figure 44, and can allow this technology to 

compete with the commercial cases. Desorption PI case has another great advantage in 

contrast to the simple case. The PI control through the higher heat transfer allows the 

system to react rapidly in any demand in energy. At any instance the model can be operated 

with higher fidelity as the reaction rate allows for production of the demanded energy 

within a smaller period of time as is shown in Figure 45.  
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Figure 44: Hydrogen storage capacity (wt %) in the PI closed loop model case Vs time. 

 

Figure 44 represents the rate of emancipation of hydrogen during desorption and 

the rate storage of hydrogen during absorption. The impact of the higher amount of heat 

provided during the desorption and taken away during the absorption phases allows higher 

rates of reaction that lead to a greater amount of released and stored hydrogen per unit 

time accordingly. 

 The voltage produced by the fuel cell is in accordance to the operation of the PI 

control, see Figure 45. The reason why the system does not lead to zero voltage production 

during the absorption phase is associated with the accumulation of hydrogen in the anode 

of the fuel cell. The peaks are associated with the fast initial flow of hydrogen from the MH 

tank to the fuel cell as a result of the stored gaseous hydrogen in the tank.   
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Figure 45: Voltage produced and set point voltage in the PI closed loop model case Vs time. 

 

8.5.  Results evaluation 

 

The described operated tested PI model sufficiently met its target set points within a 

smaller operating time than the simple case. The temperature points are met without any 

fluctuations and the curves are steep adding trustworthiness to the response of the system 

to a change in the phase.   Regarding the power needed, in the PI control case the voltage 

produced is sufficient and at a more constant rate than the simple case. However, the 

voltage may not reach zero power output during the absorption phase due to accumulation 

of hydrogen in the anode of the fuel cell, causing energy loss. Yet that can be because the 

scale of the system modeled is so small that such quantities cannot be properly utilized by 

the fuel cell. The system responds immediately to a change in energy demand, but the 

magnitude of the response is very small. 
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9. CONCLUSIONS  

 

 
This section is an overview of the path taken as well as the important results 

derived from this thesis. The results are presented in parallel to the main contributions that 

allowed the formulation, representation and solution of the model.  

 

9.1.  Concluding remarks 

 

 
This thesis is motivated by the need to derive a solution in mitigating the 

greenhouse gases emissions to the environment by human action and more specifically by 

their transportation. It is expected that the transportation sector will realize an exponential 

increase in demand of non-renewable energy resources in the future. In a mean to provide a 

solution that can mitigate the impact to the environment and the human quality of life 

without restricting the transportation factor, essential technologies must be utilized. This 

thesis was motivated from this exact need. More specifically, this thesis is combining and 

attempts to optimize already established models to produce a fully integrated dynamic 

energy model that describes the storage of a chosen fuel until its utilization for the 

production of power. More specifically the storage system describes a high pressure metal 

hydride (HPMH) tank where the fuel, hydrogen, is stored mainly in solid phase. The energy 

conversion technology chosen is a PEM fuel cell (PEMFC) system that converts the chemical 

energy into useful energy that can be further utilized by an automobile. The most important 

part of this thesis is the control in the operation of the system. The main issue associated 

with this hydrogen storage and utilization is the time taken to store the hydrogen in the 

tank and the rate of hydrogen provided to the engine. The role of the PI controls is to 

manipulate different variables that allow maximization of fuel storage and, depending on 

the power required by the engine, allow a steady rate of the desired amount of hydrogen 

outflow. The controllers form a higher fidelity system with greater safety precautions as the 

automatization operates in case scenarios that have been taken under consideration. 

Further, the controllers do not allow the system to operate out of certain pre-described 

threshold values. This thesis characterizes the operability of HPMH tank technology 
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combined with a PEMFC and how the utilization of PI controls can lead to supreme 

operating conditions and higher efficiencies.   

Hydrogen, although a non-renewable fuel, can become a fuel with no GHG emissions 

when operated with the suggested technologies. Hydrogen can reach higher energy 

densities than the commercial fuels i.e. gasoline if stored accordingly. For that reason, in 

chapter 1 various hydrogen storage technologies were introduced and compared with one 

another. It was concluded that chemical storage of hydrogen in a high pressure metal 

hydride tank allows a higher energy density, lower weight, and lower volume take-up 

compared to other hydrogen storage technologies as well as the commercial cases. HPMH 

storage overcomes the pre-described issues by allowing a greater concentration of the fuel 

through solid form. Furthermore, the safety parameters associated with the properties of 

hydrogen in combination to the operation of the system are analyzed for each storage case. 

The findings present that HPMH is the safest one, making it preferable for a moving storage 

tank. These characteristics are associated with lack of moving parts, high hydrogen gas 

purity, compactness of the system and the fact that hydrogen when stored within MH 

cannot be extracted if sufficient heat is not provided. To determine the most effective for 

our non-stationary case MH an investigation of various parameters and procedures that 

affect their operability and lifetime took place. Through the research and comparison the 

optimal metal hydride LiNa5 was chosen based on its competitive characteristics. LaNi5 has 

high hydrogen density at lower weight, providing better chances to the energy system to 

complete with the commercial energy cases.  

The next part of the thesis described the engine part of the model, the fuel cell. In 

this chapter of the thesis, the technology was compared to other energy producing 

technologies  such as diesel engine, photovoltaics etc. and it was determined that fuel cells 

have the highest attainable efficiencies (Energy output per Chemical energy input) as the 

energy is released electrocatalytically compared to the commercial case where combustion 

has to take place. The main disadvantage is that it has comparative higher cost per unit of 

energy production. Yet, the fuel cell technology has advantages that can significantly impact 

our hesitance in using this technology stemming from its higher costs. More specifically, it 

has zero emission rates attaining sustainability and is silent—an  important parameter 

when traveling in the cities where noise can be a negative externality to the lives of people. 

Also, it is scalable so it can be applied to different kinds of engines and it is rapid in its 
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installation making it preferable when time is an issue.  Though different kinds of fuels 

could be used, the fact that hydrogen is used as our fuel and transportation is the field that 

the model will be implemented in, PEMFC or AFC must be used. An overall analysis was 

composed and determined that PEMFC allows the maximum power density and the lowest 

operating temperature that gives safety credits to the system. In addition, PEMFC has a 

rapid startup which is vital when operating an automobile and it is size and weight 

applicable assisting in the overall space and weight saving character of the system.  These 

characteristics allow higher energy supply when required, better fidelity and better safety 

operating conditions. The disadvantages that are associated with the PEMFC is the 

comparative lower efficiency (40-45%) and its sensitivity to impurities of CO and H2S.       

After the utilized technologies are determined there is the need for the 

automatization of the system. That need is associated with higher efficiency and safer 

operating conditions. For that reason in chapter 4 the proportional-integral (PI) control is 

introduced. This controller is chosen based on its simplicity. More complicated controls can 

be based on this mindset, such as a model predictive control (MPC), and further improve the 

operability of the system. The impact of the control in the system by alternating the flow 

rate of water in the heat exchanger leads to higher absorbing and desorbing rates. That 

allows faster fueling rates of the MH tank and more rapid response to a voltage requirement 

by the PEMFC. The PI decreases the time required to fill the tank and at the same time 

increases the fidelity of the operating system as at any instant enough energy is supplied.  

Chapter 5 contains the background of modeling of these systems. More specifically it 

described the conditions and the nature of assumptions that were taken under 

consideration that led to the next chapter’s results. The mathematical relationships that 

have been illustrated in the section have been solved using a powerful modeling language 

specifically for the process industries named gPROMS. The uniqueness of this software 

arises from its duality on the language and graphical representations consistency.  For these 

models, most of our numerical values were taken from the literature and the rest from the 

actual experimental apparatus that were available. The operating conditions were assumed 

identical as in the experimental and arithmetical work of Laurencelle and al (Talagañisa & 

Meyerb, 2011) and Ziogou (Ziogou, 2013) see Appendix 1. The different key variables were 

plotted in comparison to one another to represent the impact and result in a better 

understanding of the dynamic character of the system under various conditions.  
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The PI results indicated that the implementation of a closed loop model in the 

system leads to better results. It was concluded that  indeed a fully integrated system of 

pairing a MH tank, fuel cell and with the assistance of a control is a viable solution that can 

be utilized in the future as a promising combination technology that is more friendly to the 

environment and of higher sustainability than the commercial cases.  

 

9.2. Evaluation 

 

The use of assumptions in the system allowed a higher level of simplicity as in some 

instances, the implemented models were just having an overcomplicating manner without a 

critical effect in the outcome.  Although the existence of some parameters is known their 

true impact on the dynamic system is not always predictable as that depends on the system. 

For example, it is assumed that there is zero heat and time loses when heat is convected 

from the MH tank to the pipe of the heat exchanger and finally to the water of the heat 

exchanger. In some cases, this assumption can have significant impact on the case study of 

the system and thus it must be taken under consideration so that to better represent the 

actual system. Furthermore, different geometries of the actual system that is represented 

alternate the results of the model. A cylindrical MH tank is described by different equations 

compared to a rectangular one. Furthermore, it would be good in the model to have a valve 

between the HPMH tank and the PEMFC to allow a better regulation of the amount of 

hydrogen flowing from one system to the other. For simplification reasons, the 

accumulation of hydrogen in the tube before the valve was not taken into account in the 

model and no hydrogen accumulation equations were considered. A more realistic 

representation of the experimental model must include the rate of flow of ions from the 

anode to the cathode depending on the pressure and moisture level present due to their 

great impact on the PEMFC model. In the fuel cell it is assumed that there is just enough 

amount of water vapor available causing no increase of pressure nor flooding of the 

electrode which is a factor that inhibits the reaction rate. That moisture level variable must 

be taken into consideration in a more realistic model case scenario. In addition, the HPMH 

tank model representation would be great to have a temperature distribution analysis 

within the MH as to show at which radius there is higher change in temperature so that to 

have a better understanding of the MH system’s operability. Furthermore, a thorough 
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analysis of the temperature of water in the heat exchanger must take place. It is important 

to state that there is no linear relationship between the temperature of the water and the 

temperature of the system for the amount of heat exchanged. For that reason different 

temperatures must be tested to find the optimum for each sorption process that maximizes 

heat transfer within the system and minimizes heat losses to the environment.   

The optimal set point temperatures affect the PI control as well. Determining 

optimal SP temperatures for the water that flows in the heat exchanger system will allow 

improved flow rates of water from the heat exchanger. In our model, the flow rates take 

extreme values to meet the specified set points. Operating in such a high temperature 

during desorption does not guarantee that the outcome can be that great in the real system 

as there are associated heat losses to the environment that take place. For the desorption 

case, it would be optimal to have a higher fluctuation of flow rate of lower temperature 

water rather than a higher temperature that requires a minimum flow of water. The high 

temperature is associated with liability and efficiency issues as it is associated with higher 

risks of overheating and energy consumption. In the absorption case, the temperature of the 

water must be set at a lower point so that a higher fluctuation of flow rate would be 

allowed. In both cases such changes would allow the system to fluctuate the flow rate of 

water more, regulating better the process and improving the safety character of the 

operating system. This is due to the fact that the control through the heat exchanger can 

correct and protect better the system from extreme temperature values and sustain higher 

reaction rates when it operates below the extreme flow rate values and maximum heat 

exchange capacities.  

In the real system more energy must be introduced as the different flow rate, 

temperature and pressure conditions in the system are not as ideal as modeled and thus the 

system must be studied for imperfections and limitation. Such issues arise from heat losses 

to the environment, as the surrounding temperature will have an impact on the operating 

conditions and the material resistance depending on their convection rates which will place 

limitations on the heat transfer phenomenon of the system. Further precautions in the 

system’s model are associated with the rate of poisoning and degradation of the MH, the 

electrodes and the catalyst in the model. These conditions may depict differences on some 

of the modeled characteristics such as activation energy, enthalpy entropy etc.  
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For that reason, it is suggested to run the actual experiment that the model 

describes and then utilize the system’s actual values such as enthalpy change, heat of 

reaction, mass and heat transfer coefficients.  These values can be later implemented in the 

model and allow a more facile manner of counteracting the actual problems of the system as 

the model is a better representation of the actual operating system, with smaller error along 

the actual and modeled data.  

This model represents a system that can highly change the image of the 

transportation sector as we know it today. This is possible as the system combines different 

characteristics that are not yet found in the market. More specifically, its installation is 

easier and more rapid, it is lighter in weight, it takes up lower volume, it has higher safety 

properties than the commercial case and it utilizes a fuel of higher energy density when 

stored in solid phase. That model can be utilized in the automobile industry for all kinds of 

automobile power requirements as it is easily scalable. In addition, the system can act as a 

new form of battery within the car. The car can produce and store hydrogen in the MH tank 

through electrolysis when less amount of energy is required than available allowing higher 

sustainability and operating time. The possibilities and applications are limitless and if it 

can be sufficiently modeled and efficiently operated and controlled, it can lead to solve one 

of the greatest energy sustainability problems associated with GHG emissions from non-

renewable fossil fuels within the transportation sector.  
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APPENDIX 1 

Nomenclature 

t Time, s MW Molecular weight, gmol-1 

m Mass, g R Universal gas constant, 

 J mol-1 K-1 

f Hydrogen flow, gs-1 Subscripts  

r Reaction rate, gMH gs
-1 s-1 sl Plateau slope coefficient 

T Temperature, K a Absorption 

P Pressure, kPa eq Equilibrium 

A Heat interchange area, m2 H2 Hydrogen 

V Volume, m3 MH Metal hydride 

U Overall heat transfer coefficient, W 

m-2 K-1 

s Solid 

∆H Enthalpy,  J mol-1 g Gas 

∆S Entropy, J mol-1 K-1 w Refrigerating water 

C Kinetic constant, s-1 in Inlet 

E Activation energy, J mol-1 SC Stoichiometric coefficient 

Cp Specific heat, J g-1 K -1   

wt% Hydrogen capacity in weight percent   
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A 1.1. Mathematical formulas of the MH model 

 

  A 1.1.1 Hydrogen mass balance    

 

For the absorption reaction the equation that describes the gaseous hydrogen 

conversion is: 

 

     

  
      

    

    
   

    
 

For desorption: 

     

  
        

    

    
   

    
 

 

A 1.1.2. Metal Hydride mass balance 

 

For the absorption and desorption reaction the equation that describes the solid 

mass conversion is: 

    

  
     

 

A 1.1.3. Hydrogen energy balance  

 

For the energy balance equation, it is assumed that the temperature of the solid and 

the gas phases are of the same temperature. Consequently, the energy balance in the reactor 

for the absorption case can be illustrated by a lone equation: 
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For desorption: 

          
         

  

  
                   

  

    
  

 

A 1.1.4. Rate of Reaction  

 

In the literature, numerous expressions take under consideration various 

parameters of the system to represent the rate of the reaction such as pressure, 

temperature and concentration per unit time. An issue is introduced when a general and yet 

accurate correlation of the reaction rate per unit time is required. This is due to the non-

constant value of the reaction rate value over the reaction period. The root of this variation 

is that the rate of the reaction depends on many distinct reactions of the metal with the 

hydrogen within or on the surface of the metallic material. The equation that satisfy these 

criteria for the absorption reaction is: 

 

                  
  

   
     

   

  
  

For desorption: 

                
      

   
   

   

  
  

 

A 1.1.5. Equilibrium Pressure 

 

Based on the theory a PCI or pressure composition isotherm, the equilibrium 

pressure depends on temperature and on hydrogen to metal ration value.  A good way of 
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modeling the equilibrium pressure is through the Van’t Hoff’s relation. Van’t Hoff’s theory 

suggests that the plateau pressure must only depend on the temperature. Attempting to 

make the relation more realistic, the slope constant of the material applied is taken under 

consideration.  The equilibrium pressure is then being characterized by a function of 

hydrogen concentration and temperature.   For the absorption, the equation is expressed as:    

 

     
 
   
  

 
   
 

     
   
  

      
    

 

For desorption:  

     
 
   
  

 
   
 

     
   
  

      
    

 

A 1.1.6. Complementary Equations 

 

The ideal gas state equation is:  

 

     
    
   

     
 

 

The Hydrogen capacity in weight percent is describes as:  
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 A Table 1: Parameters used in computations. 

Parameter Absorption Desorption Units  

Material                         LaNi5 LaNi5  

A                 m2 

Vg                         m3
H2 

U           W m-2 K-1 

ms               gs 

Po                 Pa 

Tin         K 

∆H                J mol-1
 H2 

∆S          J mol-1
H2 K-1 

E               J mol-1
 H2 

C          s-1 

CpH2           J g-1
 H2 K -1 

CpS             J g-1
 S K -1 

R             m3J mol-1
 H2

 K-1 

MWH2             g H2 mol-1
 H2 

MWMH         g MH mol-1
 MH 
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 A Table 1 Continued: Parameters used in computations. 

Parameter 

 

Absorption Desorption Units  

SC           molH2 mol-1MH 

mH2O                        0.41024         g 

sl            

FinH2                          0.1  gH2 s-1 

FoutH2       gH2 s-1 

CpH2O                                            J g-1
 H2O K -1 

phi                          0.2      

TH2Oin                         298     K 

FH2O                           2   gH2O s-1 

Initial conditions     

mMH                           0          g 

mH2g                     0.02805          g 

T                         298     K 

TH2Oout                         298     K 
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A 1.2.  Mathematical formulas of the Fuel cell model 

 

A Table 2:  Parameters used in computations. 

Parameter Fuel cell (PEM) Units  

No of cells                       1    

Area act        m2 

Vol Cath          m3
 

Vol Anod          m3 

Gas const       m3J mol-1
 H2

 K-1
 

Orifice const           Pa 

Molar ms Oxy    g  mol-1
  

Molar ms Hydro       g  mol-1
 

faraday       Col s-1 

E1         

E2           

E3           

E4            

E5         

E6              

E7           

E8           

 



 
 

102 
 

A Table 2 continued:  Parameters used in computations. 

Parameter Fuel cell (PEM) Units  

E9       

Ht cap stk     J g-1 K -1 

Ht cap Oxy       J g-1 K -1 

Ht cap water        J g-1 K -1 

Ht cap Hydro        J g-1 K -1 

e       

Stack mass      g 

sig             

Area rad             m2 

Assign   

Current  0.1 + 0.00375 Time amps 

Atm press          Pa 

In ms Hydro      g  s-1 

In ms Oxy      g  s-1 

Initial conditions    

stack_temp     K 

acc_ms_Hydro      g  s-1 

acc_ms_Oxy      g  s-1 
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A 1.2.1.  Anode Equations 

 

A 1.2.1.1. Hydrogen balance equations 

 

            

  
                                            

 

                  

                             
            

                         
 

 

                               

 

                                                           

 

                           
               

           
           

       

 

 

 

 

 



 
 

104 
 

A 1.2.2.  Cathode Equations 

A 1.2.2.1. Mass continuity or state equations 

 

   
          

  
                                       

 

                                     

 

A 1.2.2.2. Partial pressure of species in in cathode 

              

                           

 
          

                       
   

    

                                                     

 

                            
             

         
         

A  1.2.3. Other mass flow  
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A 1.2.4  Stack Voltage 

 

                                                                      

 

                                                  

             
          

         
                                       

 

                                                             

                              

 

               
             

          
    

          

 

 

                                                        

 

                           

 

 

 



 
 

106 
 

A 1.2.5.  Thermodynamic 
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APPENDIX 2 

 

A 2.1. Absorption 

 

 

A Figure 1: Water temperature out from heat exchanger Vs Time 

 

  

A Figure 2: Equilibrium Pressure Vs Time 
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A Figure 3: Hydrogen storage capacity Vs time 

 

A 2.2. Desorption  

 

 

A Figure 4: Water temperature out from heat exchanger Vs Time 
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A Figure 5: Equilibrium Pressure Vs Time 

 

A Figure 6: Hydrogen storage capacity Vs time 
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A 2.3. Absorption Desorption Connection 

 

 

A Figure 7: Water temperature out from heat exchanger Vs Time 

 

 

A Figure 8: Equilibrium Pressure Vs Time 
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A Figure 9: Hydrogen storage capacity Vs Time 

 

A 2.4. Desorption Fuel Cell Connection 

 

 

A Figure 10: Stuck voltage Vs Time 
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A 2.5. Closed loop PI control case results  

 

 

A Figure 11: Water temperature out from heat exchanger Vs Time 
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