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ABSTRACT 

 

 Carbon nanotubes have been actively investigated in a wide range of applications 

since carbon nanotubes have excellent electrical, thermal, and mechanical properties. In 

particular, a great deal of research is being carried out to improve and control their 

properties by different functionalization methods. Among them, I have developed two 

functionalization methods for the controlling of properties, which are doping carbon 

nanotubes with heteroatoms and fabricating polymer composite based on carbon 

nanotubes.  

I studied a facile one-step synthesis method of nitrogen-iron coordinated carbon 

nanotube catalysts without precious metals. Our catalyst shows excellent onset ORR 

potential comparable to those of other precious metal free catalysts, and the maximum 

limiting current density from our catalysts is larger than that of the Pt-based catalysts. 

In addition to the development of carbon nanotubes-based aerogel composite, I 

studied the facile and quick process for the scalable production of super resilient CNT-

PDMS composite by microwave heating with ultra-low thermal conductivity and high 

electrical properties. This report describes that the microwave heating process can lead 

to a quick reaction and allow for the uniform polymer layer on CNT, which enhance the 

mechanical properties of carbon nanotube composite. Furthermore, CNT-PDMS 

composite aerogel shows high mechanical strength (0.18 MPa), compressibility, thermal 

insulation (26 mW m-1 K-1) and elasticity-dependent electric conduction. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

 

Carbon nanotubes have been actively investigated in a wide range of applications 

since carbon nanotubes have excellent electrical, thermal, and mechanical properties[1-

3]. The recent literature shows that the investigation of properties and applications of 

pristine carbon nanotubes has extremely developed. In particular, a great deal of research 

is being carried out to improve and control their properties by different functionalization 

methods[3, 4]. Among them, I have developed two functionalization methods for the 

controlling of properties, which are doping carbon nanotubes with heteroatoms and 

fabricating polymer composite based on carbon nanotubes. This chapter describes the 

introduction of the carbon nanotubes, the doping of carbon nanotubes, and the polymer 

composites, which can be utilized to control the properties of carbon nanotubes for 

several applications. 

 

1.1.1 Historical introduction of carbon materials 

In the 1970’s and 1980’s, small diameter (< 10 nm) carbon filaments were made 

by the synthesis of vapor grown carbon fibers using the decomposition of hydrocarbons 

at high temperatures in the presence of transition metal catalyst particles[5-7].  However, 
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they didn’t report the detailed systematic studies of thin carbon filaments in these early 

years, and it was not called carbon nanotubes before the observation of carbon nanotubes 

by Iijima using high-resolution transmission electron microscopy(HRTEM) in 1991, as 

shown in figure 1[8].    

 

 

 

 

Figure 1. The observation of multi-wall carbon nanotubes by HRTEM with various inner 

and outer diameter, di and do, and number of cylindrical wall, N. (a) N = 5, do = 67 Å  (b) 

N = 2, do = 55 Å  (c) N = 7, do = 67 Å , and di = 23 Å  (reprinted with permission from [9]) 
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The systematic study of carbon filaments resulted from the discovery of fullerene 

by Kroto, Smalley, Curl, and coworkers at Rice university[10]. Actually, Smalley and 

others speculated that a single wall carbon nanotube might be a case of a fullerene 

molecule[9]. The connection between carbon nanotubes and fullerenes was further 

studied by the investigation that the end of carbon nanotubes was fullerene-like caps. It 

is interested that the smallest diameter of carbon nanotube is same as the diameter of the 

C60 molecule, indicating the smallest fullerene to follow the isolated pentagon rule. This 

rule needs that no two pentagons are next to one another, for this reason, lowering the 

strain energy of the fullerene cage. Based on these studies and the Iijima’s observation, 

carbon nanotubes research has been done. The initial investigation was for multi-wall 

nanotubes, it was experimentally discovered by Iijima group and Bethune[11, 12]. These 

results were particularly important since the single wall carbon nanotubes are 

fundamental structure and had been the origin for the theoretical studies. The most 

important of theoretical research was the prediction that carbon nanotubes could be 

either semiconducting or metallic properties in accordance with geometrical 

characteristics, such as the diameter of carbon nanotubes and the orientation of their 

hexagons with regard to the carbon nanotubes axis[13-15].  Although they reported these 

results in 1992, it was not clear before 1998 that these theoretical studies were verified 

experimentally[16, 17]. 

Smalley and coworkers at Rice university successfully synthesized the aligned 

single wall carbon nanotube with a small diameter, therefore, utilizing it to conduct 
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many experiment with regard to 1D quantum physics which was not previously 

conducted[18]. Absolutely, actual carbon nanotubes have finite length, defects, and 

interact with other nanotubes or the substrate, causing complicated their behavior.  

 

1.1.2 Basic background of carbon nanotubes 

The structure of carbon nanotubes has been investigated by high resolution 

transmission electron microscopy (HRTEM) and scanning tunneling microscopy 

(STM)[19], resulting in straight confirmation that the carbon nanotubes are seamless 

cylinders originated from the honeycomb lattice on behalf of a single atomic layer of 

graphite, called a graphene sheet, as shown in figure 2a. The structure of a single wall 

carbon nanotubes is clearly described in respect of 1D unit cell, describing the vectors Ch 

and T, as shown in figure 2a.  

The circumference of carbon nanotube is demonstrated in respect of the chiral 

vector Ch = nâ1+mâ2 which links two crystallographically equivalent sites on a graphene 

sheet (figure 2a)[13]. The structure (figure 2a) depends on the pair of integers (n, m) 

which indicate the chiral vector. Figure 2a displays the chiral angle (θ) between the 

chiral vector, the “zigzag” direction (θ = 0), and the unit vectors â1 and â2 of the 

graphene sheet.  
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Figure 2. (a) The chiral vector OA or Ch = nâ1+mâ2 is demonstrated on the honeycomb 

lattice of carbon atoms by unit vectors â1 and â2 and the chiral angle θ in terms of the 

zigzag axis. (b) Possible vectors indicated by the pairs of integers (n, m) for general 

carbon nanotubes, including zigzag, armchair, and chiral nanotubes (reprinted with 

permission from [9]) 
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Three distinct types of carbon nanotube structures can be produced by rolling up 

the graphene sheet into a cylinder as shown in figure 3. The zigzag and armchair 

nanotubes match to chiral angles of θ = 0,30 °, and 0 < θ < 30 °. 

 

 

 

 

Figure 3. Schematic of single wall carbon nanotubes with the nanotubes axis normal to 

the chiral vector: (a) the θ = 30 ° direction (b) the θ=0° direction (c) a general θ direction 

with 0<θ<30° (reprinted with permission from [9]) 
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The cylinder connecting the two hemispherical caps of carbon nanotubes, as 

shown in figure 3, is created by superimposing the two ends of the vectors and the 

cylinder connection is made along the two lines, 𝑂𝐵⃗⃗ ⃗⃗  ⃗ and 𝐴𝐵′⃗⃗ ⃗⃗ ⃗⃗  ⃗, in figure 2a. In the (n, m)

notation for Ch = nâ1+mâ2, the vectors (n, 0) or (0, m) mean zigzag nanotubes and the 

vectors (n, n) indicates armchair nanotubes. All other vectors (n, m) accord with chiral 

nanotubes[9]. The diameter dt of nanotubes is given by 

𝑑𝑡 = √3𝑎𝐶−𝐶(𝑚
2 + 𝑚𝑛 + 𝑛2)

1
2⁄ 𝜋−1 = 𝐶ℎ/𝜋 (1) 

where Ch is the length of Ch and aC-C is the C-C bond length. The chiral angle θ is given 

by 

θ = tan−1[√3𝑛/(2𝑚 + 𝑛)] (2) 

From (2), it follows that the θ = 30° for (n, n) armchair carbon nanotubes and that the (n, 

0) zigzag carbon nanotubes. Armchair and zigzag nanotubes have a mirror plane and

therefore are regarded as achiral. Difference in the carbon nanotube diameter and chiral 

angle can bring about the differences in the properties of the carbon nanotubes. In 

addition, the number of hexagons, N, per unit cell of a chiral nanotubes is given by 

N = 2(𝑚2 + 𝑛2 + 𝑛𝑚)/𝑑𝑅 (3) 

where dR=d (if n-m is not a multiple of 3d) or dR=3d (if n-m is a multiple of 3d). A 

hexagon in the honeycomb lattice has two carbon atoms. The unit cell area of carbon 

nanotubes is N times larger than that for a graphene layer, thereby the unit cell area for 

carbon nanotubes in reciprocal space is correspondingly 1/N times smaller. Table 1 
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shows a summary of relations useful for describing the structure of single wall carbon 

nanotubes[9, 20]. 

Table 1. Structural configurations for carbon nanotubes (reprinted with permission from 

[9]) 
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1.1.3 The doping of carbon nanotubes 

The pristine carbon nanotubes possess excellent electrical properties depending 

on their structure, such as diameter and chirality[21, 22]. However, carbon nanotubes 

can be intentionally tuned their electrical properties by introducing heteroatoms or 

molecules since the electrical properties of carbon nanotubes are strongly connected to 

the delocalized electron system[23]. This phenomenon is called doping. The doping 

carbon nanotubes has been actively studied since it allows to tailor their electronic 

properties. 

There are three different ways of doping carbon nanotubes, intercalation, 

encapsulation, and substitutional doping. In particular, substitutional doping within 

carbon nanotubes has been enormously studied since substitutional doping can introduce 

highly localized electronic properties in the valence or conduction bands[24]. For 

example, nitrogen doping can improve the electrical properties of carbon nanotubes, 

resulting in the enhancement of cross correlation between carbon and guest molecules 

due to nitrogen have one additional electron compared to carbon[25, 26].  

1.1.4 Carbon nanotubes polymer composites 

The excellent mechanical properties of carbon nanotubes are promising the 

enhancement of mechanical properties in polymer composites[27]. The enhancement of 

mechanical properties in carbon nanotubes polymer composites can be described by the 

rule of mixture [28]. 
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𝐸𝑐 = 𝑉𝑓𝐸𝑓 + (1 − 𝑉𝑓)𝐸𝑚  (4) 

where Ec, Em and Ef are Young’s modulus of the composite, carbon nanotubes fiber and 

polymer matrix, respectively. According to the rule of mixture, only small volume of 

carbon nanotubes is needed to enhance polymer composite since Young’s modulus of 

carbon nanotubes is around 1TPa[29]. 

Polymer reinforced carbon nanotubes composite also enhance their flexibility 

and elasticity[30]. Since the elasticity is one of the most important properties of aerogel 

materials, the hybridization with polymer is a useful method for the reinforcement of 

mechanical property of aerogel Polymer provides flexible bridging connected to carbon 

nanotubes and acts as spacers and flexible link in carbon nanotubes network in aerogel, 

which induce polymer composite aerogel to rubber elasticity behavior. 
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1.2 Nitrogen-doped graphitic carbon for non-precious metal catalysts 

 

1.2.1 Fuel cell cathode: main drawback 

Electrochemical cells are promising future renewable energy systems with broad 

ranges of applications.  For example, PEM fuel cells belong to a group of 

electrochemical cell systems that generate electricity without producing greenhouse 

gases. Fuel cells owing to their high-energy efficiency, environmental friendliness and 

minimal noise are perceived to play a key role in the present scenario of a global quest 

towards a clean and sustainable energy future. The hydrogen-air polymer electrolyte fuel 

cell (PEFC) shown in figure 4 is arguably the frontrunner in the hydrogen economy and 

fuel cell race. Notwithstanding the excellent perspectives of hydrogen economy and 

electrochemical energy conversion, the demands on material and process optimization in 

PEFCs in terms of sustained performance under widely varying operating conditions, 

lifespan, and materials costs in view of commercialization are formidable. Despite 

tremendous recent progress, a pivotal performance limitation in PEFCs centers on the 

cathode catalyst layer owing to sluggish kinetics of the oxygen reduction reaction (ORR) 

and several transport losses.  Platinum and Pt-based electrocatalysts, commonly used in 

the PEFC electrodes, not only contribute to high fuel cell cost but also lead to durability 

concerns in terms of Pt cathode oxidation, catalyst migration, loss of electrode active 

surface area, and corrosion of the carbon support. 
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Figure 4. Operation and structure of a polymer electrolyte fuel cell (PEFC). (reprinted 

with permission from [31]) 

 

 

 

Hydrogen Oxidation 
Reaction (HOR)

Oxygen Reduction 
reaction (ORR)
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Although substantial theoretical and experimental research has been conducted in 

recent years for enhancing the overall PEFC performance, the catalyst layer remains 

least understood owing to its inherent complex structure and underlying multi-physical 

transport mechanisms. On the other hand, the three-decade long search for non-precious 

metal catalysts for the PEFC catalyst layer has so far revealed very few materials with 

promising activity in the rate-limiting ORR and performance stability.   

Over the last decade, enormous research effort and resources have been devoted 

to overcoming several challenges in the development of PEM fuel cells for automotive 

propulsion.  The main challenge toward realizing commercially viable hydrogen fuel 

cells hinges on the design and development of cheap and stable catalysts for the oxygen 

reduction reaction and low-cost manufacturing of innovative electrode architectures.  

Oxygen reduction catalysts used in current fuel cells are platinum nanoparticles 

supported on carbon black (Pt/C), but cost and supply constraints for large-scale 

adoption in automotive propulsion require a factor of >4 increase in catalytic activity per 

mass of precious metal.[32]   In this context, the Pt-utilization target for 2015, as defined 

by the U.S. Department of Energy, is 0.2 g of Pt per kW at 55% efficiency for a 

transportation PEFC stack.[33, 34] Based on this target and under the assumption that all 

cars in the future would be powered by PEFCs, a global annual production of 100 

million PEFC cars rated at 50 kW each would require a steady Pt demand of 1000 tons a 

year. In recent years, the global Pt production has only been ca. 200 tons a year, while 

the total world Pt reserves are estimated at 40,000 tons.[33, 34] Based on these 
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estimates, in order to maintain a sustainable PEFC based vehicle fleet, the Pt cost would 

likely rise significantly. One such forecast estimates that the Pt catalyst alone would 

account for 38–56% of the stack cost assuming a low Pt price of $1,100 per troy ounce 

and a relatively low production volume of 500,000 PEFC stacks a year.[33, 34] 

Therefore, replacing platinum-based catalysts with a more abundant material would 

greatly improve the outlook for the widespread development of automotive fuel cells. 

Non–precious metal catalysts using abundant transition metals have long been 

explored.[33] However, their viability relies on how close the electrochemical activity 

can be reached to that of traditional, but more expensive Pt/C catalysts. Most current 

work on non–precious metal oxygen reduction catalysts focus on nitrogen-coordinated 

iron in a carbon matrix. The nature of the active sites remains elusive. However, widely 

different synthesis methods produced virtually identical catalyst activities and PEM fuel 

cell performance continued to remain below that of Pt/C catalyst.[33] The most recent 

advancements in high-performance non-precious metal catalyst and electrode 

development have marked the dawn of a turning point.[35-38]  

In order to accelerate the PEM fuel cell technology development and near-term 

market entry with particular focus on automotive applications, it is imperative to develop 

high performance electrodes with higher power density and lower cost.  In this regard, a 

two-pronged research approach is warranted, which involves: (1) development of low-

cost and less complicated manufacturing routes of novel electrode architectures using 

non-precious metal electrocatalysts with improved performance and durability; and (2) 
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gaining fundamental insight into complex structure-transport-performance interactions in 

the electrodes. 

 

1.2.2 Precious metal catalyst: major cost driver of electrochemical cells 

 Precious metal (typically platinum) catalysts are essential in electrochemical cells 

for oxygen reduction reaction (ORR), but the expensive catalysts become one of the 

major hurdles in wide deployment of electrochemical cells.  For instance, the catalyst 

cost of PEM fuel cells is nearly a half of the total cost (Figure 5), which is mainly 

because of the high price of platinum.[39]  Therefore, there have been great efforts to 

develop non-precious metal catalysts over the past decades.  Recently research outcomes 

suggest the platinum catalysts can be replaced by inexpensive nanomaterials such as 

complexes of nitrogen-doped carbon nanotubes or graphene with transition metals[40-

45] although the exact mechanisms are yet to be revealed.  Nevertheless, time-

consuming multiple manufacturing steps for synthesizing these complexes become cost 

drivers, which will be addressed in this proposed research by employing the one-step 

synthesis process. 
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Figure 5. Manufacturing costs of major components in PEM fuel cells.[39] The high 

electrode cost is mainly due to the high price of platinum catalysts. 
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1.2.3 Transition metal catalysts for oxygen reduction 

The reaction in the cathode is more than 100 times slower than that of the anode, 

where expensive Pt catalysts are necessary to overcome very slow reactions.  Transition 

metals including Fe and Co are excellent candidates, due to their good reactivity and 

multiple valence states.  The transition metals have good catalytic reactions, as 

schematically shown in figure 6.  When oxygen is adsorbed on the transition metals, 

electrons are transferred from oxygen to the empty dz2 orbitals of the transition metals, 

forming a δ bond (figure 6a).  When electrons are transferred to cathodes during the fuel 

cell operation, electrons are donated to the anti-bonding π orbitals of oxygen (figure 6b), 

weakening oxygen-metal bonding and thereby increasing oxygen reactivity with proton 

(i.e., resulting in H2O).[46]    

 

 

 

Figure 6. Schematic explanation of oxygen adsorption on a transition metal (a), and 

oxygen reduction by transferring electrons from the metal electrode to oxygen (b). 

(reprinted with permission from [47]) 
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Despite the good oxygen reduction, the transition metals are easily oxidized in O2 

environment. The metal oxides are electrical insulators, prohibiting further charge 

transfer.   Moreover, oxygen molecules hardly adsorbs on the surface of the oxides.[48] 

 

 

 

 

Figure 7. Fe(II)phthalocyanine, where Fe is surrounded by nitrogen and aromatic 

carbons.(reprinted with permission from [47])  
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The fast degradation of catalytic activities from the transition metals have been 

somewhat suppressed by surrounding the metal with organic molecules.   Jasinski et al. 

reported for macrocyclic structure containing nitrogen-metal coordination as decent 

oxygen reduction reaction catalysts.  Several non-noble transition metals such as Co, Fe, 

and Mn have been studied in the form of iron (III) phthalocyanine (figure 7) and cobalt 

tetramethoxy-phenylporphyrin (CoTMPP) for oxygen reduction reaction.  Good oxygen 

reduction activities from the metal macrocycles are achieved,[49] but macrocycles still 

have poor stability.  Therefore, additional heat treatment processes at high temperatures 

(above 1000 C) were often performed to improve the durability by making stable 

protective graphitic layers.[50, 51]    

 

1.2.4 Nitrogen-doped graphitic carbon structures for substituting precious metal 

catalysts 

It has been demonstrated that nitrogen-doped graphitic structures have high 

catalytic activity for ORR.[40-45]  The high electrical conductivity, exceptional 

mechanical property, and high surface area of the N-doped CNTs are ideal for 

exceptional ORR.  For instance, the high surface area would create more active sites for 

ORR, leading to high current density in terms of per projected area.  In order to improve 

the ORR catalytic activity of CNTs, nitrogen needs to be introduced into the structure, 

which is believed to promote the oxygen adsorption kinetics as well as the electron 

transfer from the electrode to the oxygen.[43-45]  Moreover, it has been reported that 
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with the transition metal incorporation, the catalytic performance of N-doped graphitic 

carbon would significantly improve.[37, 38, 52]  It has been reported that the ratio of 

pyridinic nitrogen to graphitic nitrogen is the most important parameter in improving the 

performance of nitrogen-doped, carbon-based catalysts for ORR.[43, 45]  Nevertheless, 

the exact mechanism underling the performance improvement has not been fully 

understood, the catalytic activity improvement has been clearly demonstrated by 

different groups including the PI.  The catalytic activities with the N-doped with Fe 

nanoparticles will be studies both theoretically and experimentally through the proposed 

research, which will reveal the catalytic activities behind improved ORR performance. 



 

21 

 

 

1.3 Carbon nanotubes polymer composite by microwave heating  

 

1.3.1 Carbon nanotubes polymer composite aerogel 

Carbon materials have used to make aerogel because of their high strength and 

electrical conductivity[53-56]. In particular, carbon nanotubes(CNTs)-based aerogel 

materials have high electrical properties and large surface area, and is promising 

candidate for super-capacitors and battery electrodes[57, 58]. However, the drawback is 

fragility and relatively poor mechanical properties under compressive environment, 

which largely limits the utilization of carbon-based aerogel[30, 59], similar as other 

inorganic aerogels. Thus, strengthening process should be required to improve their 

mechanical properties.   

Generally, hybridization with polymers is a typical method for the improvement 

of mechanical properties of aerogel[30, 60, 61]. Poly(vinyl alcohol) (PVA)[30], 

epoxy[30], and cellulose[62] are commonly used as polymer. Carbon-based polymer 

composite aerogel clearly show the improvement in mechanical properties, but 

flexibility and elasticity are demand properties in many applications, such as inflatable 

decelerators[63].  To make the elastic aerogels, other research groups have developed 

CNTs-PDMS composite aerogel using infiltration method[53, 64], but the infiltration 

method led to decrease pore size in aerogel because polymer fills the aerogel pores. In 

this study, the facile and quick process has been designed to fabricate the CNTs-polymer 

composite aerogel with minimizing pore loss by microwave irradiation. 
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In particular, carbon materials are excellent absorbents of microwave radiation, so 

they are easily generated heat by microwave[65-67], and several studies have reported 

that strong heat release from CNTs under microwave irradiation easily make a high 

temperature within a period of seconds[68-70]. In the matter of as-synthesized CNTs, it 

usually has structural imperfections, which cause the decline of ballistic transport, 

allowing the Joule heating in CNTs. A simple model to describe microwave-induced 

heating of CNTs has been suggested by conversion of electromagnetic energy into 

mechanical vibration[71]. According to this model, CNTs exposed to microwave 

radiation have ultra-heating because of a transverse parametric resonance, resulting in 

the polarization of CNTs in the microwave field. Inspired by this approach, our 

hypothesis is that the PDMS-CNTs nanocomposite aerogel is possibly fabricated by 

microwave irradiation with minimizing pore loss.  

 

1.3.2 The advantages of microwave heating 

Microwave is the electromagnetic radiation with frequencies in the range of 300 

MHz to 300GHz. The microwave is extensively used in a wide range of applications, 

such as industrial, medical, and scientific equipment[65, 72]. In terms of materials 

processing, microwave irradiation is a well-known heating processing that the 

interaction of charged particles in materials with electromagnetic radiation cause the 

materials to heat up, and allows energy dissipation by the emission of heat[65, 72, 73]. 

Microwave heating has several advantages compared with the conventional heating such 
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as non-contact heating, rapid heating process, and selective material heating, as shown in 

figure 8. Because of these advantages, microwave heating process is extensively used in 

many industrial and scientific fields. In particular, carbon materials are excellent 

absorbents of microwave radiation, so they are easily generated heat by microwave[65-

67], and several studies have reported that strong heat release from CNTs under 

microwave irradiation easily make a high temperature within a period of seconds[68-70]. 

In the matter of as-synthesized CNTs, it usually has structural imperfections, which 

cause the decline of ballistic transport, allowing the Joule heating in CNTs. A simple 

model to describe microwave-induced heating of CNTs has been suggested by 

conversion of electromagnetic energy into mechanical vibration[71]. According to this 

model, CNTs exposed to microwave radiation have ultra-heating because of a transverse 

parametric resonance, resulting in the polarization of CNTs in the microwave field[67].  

Microwave heating is produced by converting the electromagnetic energy to 

thermal energy.  It has several advantages typical heating processes, such as rapid 

heating, reduced process time, low-cost, and selective heating in the material[74]. 

Especially, microwaves can transport their energy directly to materials by radiation 

without conduction and convection which are main processes of energy deliver in 

normal heating methods. Therefore, microwave heating is faster than typical heating 

processes, and selective heating is possible. The application of microwave heating is 

general heating processes such as drying[75], sintering[76], and curing of rubber[77]. In 
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general, energy consumption of microwave heating is less than other heating processes 

and the process time is also shorter.  

Materials which react with microwaves to make heat are called microwave 

absorbing materials[65]. Most of all, carbon nanotubes are strong microwave absorbing 

material which can produce intense heating[78]. Carbon nanotubes have outstanding 

electrical properties since sp2 bonding[25, 55, 79]. So, the number of free electrons can 

move over the whole layer is approximately one per each carbon atom[80]. Free 

electrons enable carbon nanotubes to absorb microwave. Thus, carbon nanotubes can be 

used as microwave absorber which can supply heat to other materials by conduction and 

radiation. In addition, it is possible to enhance a heating efficiency by the decoration of 

nano-sizes  metal particle on carbon nanotubes since nano-sizes metal powder react 

properly with microwave[81]. To deposit metal nanoparticles, electroplating, galvanic 

displacement method[82, 83], and physical methods are commonly used[84]. 
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Figure 8. Schematic of heat introduction for conventional heating and microwave 

heating 

 

 

 

 

 

Microwave heating process enable the heating process times to be over 5 times 

faster compared to conventional heating[85, 86] due to extremely high heating rate[87]. 

Microwave heating is basically different from conventional heating. The surface of 

materials is initially heated the surface of materials in conventional heating by the 

convection and radiation, after that, the transfer of thermal energy to the inside of 
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materials is occurred by conduction. On the other hand, in the case of microwave 

heating, the microwave energy is directly converted to thermal energy through the 

volume of the material, known as volumetric heating, which is highly energy efficient 

since microwave is only heated the material, not the air around it. General microwave 

energy efficiency is approximately 50%, which is higher than that of conventional fuel-

fired heating, which is generally 10 to 30%[85, 86]. Therefore, microwave heating can 

be reduced production costs and energy consumptions. 
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CHAPTER Ⅱ 

ONE-STEP SYNTHESIS OF NITROGEN-IRON COORDINATED CARBON 

NANOTUBE CATALYSTS FOR OXYGEN REDUCTION REACTION* 

2.1 Introduction 

Oxygen reduction reaction (ORR) is a key reaction occurred in many 

electrochemical cells such as fuel cells and metal-oxygen batteries.[38, 88-92] Sluggish 

ORR typically necessitates precious metal based catalysts whose high prices have been 

major challenges for commercial applications.[38, 93-95] Over the past several years, 

various non-precious metal based nanomaterials have been suggested to reduce the cost 

of the catalysts, but these catalysts involve complicated synthesis processes, significantly 

increasing the manufacturing cost.[96, 97] 

Among the recently developed catalysts, nanostructured carbon with transition 

metals and nitrogen has been notable due to their high catalytic activity, low cost, and 

good durability.[88, 96, 98-101] Nevertheless, high manufacturing costs due to 

complicated synthesis processes negate the benefit of eliminating the precious metal 

catalysts, as summarized in Table 1. For instance, remarkable ORR activity was 

* Reprinted with permission from W. Choi, G. Yang, S. L. Kim, P. Liu, H.-J. Sue, C. Yu,

One-step synthesis of nitrogen-iron coordinated carbon nanotube catalysts for oxygen 

reduction reaction, J. Power Sources, 313, 128-133, Copyright 2016 by Elsevier. [104]
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observed from nitrogen/iron-doped carbon catalysts with graphene structure[101] and 

polyaniline-derived carbon catalysts,[38] but time-consuming polymerization processes 

and additional leaching steps were necessary to remove inactive materials. Fewer steps 

with less synthesis times were reported for nitrogen-doped graphene[102] and Co3O4-

coated on graphene,[103] but they still required lengthy and complicated manufacturing 

processes compared to those of Pt/C based catalysts.  

Herein, we report a simple one-step process to synthesize iron/nitrogen-coordinated 

CNT catalysts. Our precious metal free catalysts showed high ORR activity and long-

term stability comparable to those of Pt based commercial catalysts. Furthermore, a 

series of experimental analyses have unveiled the reason behind the high ORR 

performance of our catalysts, which is often missing in literature but important to further 

improve and modify the catalysts. 
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2.2 Experimental section  

 

2.2.1 Synthesis and characterization    

A precursor solution to synthesize CNT catalysts (labeled as Fe-A/P-CNT in 

Table 1) were made by dissolving ferrocene powders (Sigma-Aldrich, 98%) in a 1:1-

ratio mixture of aniline (Alfar Aesar, 99+%) and pyridine (Alfa Aesar, 99+%) with a 

concentration of 60 mg ferrocene per mL. Aniline and pyridine were used to obtain a 

nitrogen-doped graphitic structure, and iron from ferrocene was used as a catalyst to 

grow CNTs as well as N-Fe-C coordination for a high catalytic activity.[92] To compare 

the influence of nitrogen doping precursors, we also used aniline only (labeled as Fe-A-

CNT in Table 2) or pyridine only (labeled as Fe-P-CNT in Table 2) instead of mixing 

half and half. Additionally, to investigate the influence of iron coordination, CNTs were 

grown without incorporating iron during the growth of CNTs (labeled as A/P-CNT in 

Table 1), and nitrogen doping effects were studied by growing CNTs using nitrogen-free 

C2H4 instead of aniline or pyridine (labeled as Fe-CNT in Table 2).  

To synthesize the samples except Fe-CNT, a quartz tube whose inner diameter is 

22 mm was initially purged with 900-sccm Ar (Airgas, 99.999%). The quartz tube was 

placed in a three-zone tube furnace (Lindberg Blue M, Thermo Scientific) whose target 

temperatures for the 1st and 3rd zones were set to 250 C and 950 C, respectively. The 

tip of a needle for feeding the precursor solution was located at the middle of the 1st 

zone. After the target temperatures were reached in ~12 min, 250-sccm H2 (Airgas, 
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99.999%) was added to the Ar flow. The mixture solution was continuously injected into 

the furnace tube with a rate of 0.1 mL min-1 using a syringe pump. After finishing the 

reaction, the Ar flow rate was decreased to 100 sccm while the hydrogen flow was 

turned off. The products were gathered after the quartz tube was cooled to room 

temperature. Typically, ~100-mg catalysts were obtained with 20-min reaction time. To 

have A/P-CNT, iron (6 nm) and aluminum (10 nm) films were deposited as catalyst 

layers to grow CNTs[90] using an e-beam evaporator on a Si wafer. A mixture of aniline 

and pyridine (1:1 by volume) without ferrocene was used as a precursor solution. Except 

ferrocene in the precursor solution, other synthesis conditions to obtain A/P-CNT were 

the same as those for other Fe/N-containing CNT catalysts.   

To synthesize Fe-CNT, an alumina crucible filled with 120-mg ferrocene was 

placed in the 1st zone, and 120 and 800 C were set for the 1st and 3rd zone of the tube 

furnace with a ramping rate of 80 C min-1. Initially 200-sccm Ar was flowed until the 

target temperatures were reached, and then 80-sccm C2H4 (Airgas, 99.999%) and 200-

sccm H2 were added to the Ar flow. After 20 min reaction, ~30 mg of Fe-CNT catalysts 

was typically obtained.  

The morphology of the samples was inspected using a scanning electron 

microscope (SEM, FEI Quanta 600) and transmission electron microscope (TEM, JEOL 

JEM 2010). The composition of the samples was analyzed using X-ray photoelectron 

spectroscopy (XPS, Omicron ESCA+) with a charge correction by carbon 1s at 284.8 eV 

as a reference as well as thermogravimetric analysis (TGA, TA Instruments Q500) at 
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40~900 C in air with a heating rate of 5 C min-1. Raman spectroscope analysis was 

conducted by Horiba Jobin-Yvon LabRam Raman Confocal Microscope to study the 

graphitic nature of CNTs.  

 

 

 

Table 2. List of catalysts and corresponding precursors used for synthesis. The samples 

were grown on quartz plates except A/P-CNT, which was grown from Fe (6 nm)/Al (10 

nm) deposited Si wafers. 

Sample name Precursors 

Fe-A/P-CNT Ferrocene, Aniline, Pyridine 

Fe-A-CNT Ferrocene, Aniline 

Fe-P-CNT Ferrocene, Pyridine 

A/P-CNT Aniline, Pyridine  

Fe-CNT Ferrocene, C2H4 

 

 

 

2.2.2 Electrochemical measurements  

The catalyst samples (7 mg) were dispersed in a mixture of DI water (500 μL), 

ethanol (170 μL, 92-94%, EMD Millipore), and 5-wt% Nafion solution (160 μL, Fuel 

cell earth) with a pen type sonicator (FB-120, Fisher Scientific) with 120 W for 10 min. 

The catalyst ink (5 μL) was loaded on a glassy carbon electrode (BASi) whose active 

electrode area was 7.07 mm2 (3 mm in diameter), and then dried in an oven at 40 C for 
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120 min. For comparison, commercial Pt/C (20-wt% Pt, Fuel cell earth) was also made 

into ink with the same method. 

Rotating disk electrode (RDE) and cyclic voltammetry (CV) experiments (604D 

CHI electrochemical station) were performed in 0.1 M KOH electrolyte with an 

Ag/AgCl electrode in saturated KCl (0.197 V vs. SHE) as a reference electrode, a Pt 

wire as a counter electrode, and the samples as a working electrode. Oxygen or nitrogen 

(100 sccm) was continuously purged to the electrolyte, and CV and RDE tests began 

after 30 min gas purging. In the RDE test, the working electrode was rotated with 

variable rotating speeds of 850 ~ 1600 rpm at -1.0 ~ 0.2 V vs. Ag/AgCl with a scan rate 

of 5 mV s-1. In the CV test, the measurement was conducted at -1.2 ~ 0.2 V vs. Ag/AgCl 

with a scan rate of 100 mV s-1. 
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2.3 Results and Discussion 

 

2.3.1 Morphology and material structure 

As-synthesized Fe-A/P-CNT consists of aligned wavy CNTs whose lengths are 

over 100 μm (Figure 9a). The CNTs have iron-containing nanoparticles and graphitic 

layered structures whose outer diameters are 30~70 nm (figure 9b and c). The curved 

graphitic layers may come from nitrogen doping in graphitic carbon, which may create 

curvatures in the graphene sheets due to pentagonal defects.[105] With a single nitrogen-

containing precursor, Fe-A-CNT samples also had wavy CNTs with larger curvatures 

(figure 9d), but those in Fe-P-CNT were rather straight (figure 9e). When iron was not 

delivered during the growth of CNTs for A/P-CNT, the CNT packing density was found 

to be higher than those of other iron/nitrogen-containing samples (figure 9). The 

morphology of Fe-CNT samples is similar to that of Fe-A-P-CNT (figure 9g), but iron 

and nitrogen were not incorporated during the CNT synthesis process.  

According to the intensity ratio (ID/IG) of D-band (~1330 cm-1) to G-band (~1580 

cm-1) in the Raman spectra (Figure 10), the nitrogen-containing aniline and pyridine 

precursors resulted in higher intensity ratios compared to that of Fe-CNT, suggesting 

higher defect densities in the graphitic carbon structure.[92, 106] ID/IG from Fe-A-CNT 

was the highest (1.41), and ID/IG from Fe-A/P-CNT was 1.39, which is in the middle of 

those from Fe-P-CNT (1.21) and Fe-A-CNT. It was noticed that the waviness of CNTs 

shown in SEM images (see figure 9) was intensified as ID/IG gets higher. The CNTs in 
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Fe-A-CNT have large curls in comparison to relatively straight CNTs in Fe-A/P-CNT, 

and the CNTs in Fe-A/P-CNT have those in between. These intensity ratio values were 

much higher than 0.82 from Fe-CNT, indicating nitrogen doping in the graphitic carbon 

structure.[92, 106-108] 

 

 

 

 

Figure 9. The SEM and TEM images of Fe-A/P-CNT (a)~(c), Fe-A-CNT (d), Fe-P-CNT 

(e), P-A-CNT (f), and Fe-CNT (g). 
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Figure 10. Raman spectra of the iron-incorporated CNTs and the intensity ratio of D-

band to G-band (ID/IG). 

 

 

 

2.3.2 Electrochemical analysis  

The RDE test results in figure 11a show Fe-A/P-CNT has lower onset potential 

than that of Pt/C with a slightly lower half-wave potential (~72 mV difference), which is 

similar to the performance of other non-Pt based catalysts.[102, 103, 109-111] 

Nevertheless, the current density of Fe-A/P-CNT at a cell voltage of 0.3 V where 

alkaline fuel cells (e.g., direct methanol fuel cells) typically operate[112] is -6.7 

mA/cm2, which is slightly higher than that of Pt/C (-5.8 mA/cm2). Significantly lower 

onset potentials were observed from A/P-CNT and Fe-CNT, suggesting both nitrogen 
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and iron are necessary to have high catalytic activity. In addition, A/P-CNT appears to 

have the two-step oxygen reduction reaction with onset potential at -0.36 V and -0.64 

V.[113] The larger limiting current density from Fe-A/P-CNT compared to that of Pt/C 

suggests the large specific area of electrochemically active sites on the Fe-A/P-

CNT.[114, 115] It is interesting to see nitrogen doping by both aniline and pyridine 

resulted in better performances than those with a single dopant, aniline or pyridine.  

The high catalytic activity of Fe-A/P-CNT was also confirmed from CV results 

(figure 11b). Fe-A/P-CNT has the ORR peak at -0.32 V in the oxygen environment, and 

this ORR reaction was confirmed by no ORR peaks in the nitrogen-saturated CV result. 

The maximum current density and peak potential for Fe-A/P-CNT were also larger than 

those of the samples with only one precursor (aniline or pyridine). The maximum current 

for Fe-A/P-CNT was even larger than that of Pt/C, and relatively poor performances 

from nitrogen- or iron-deficient samples (no iron for A/P-CNT and no nitrogen for Fe-

CNT) were observed (figure 11c).       
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Figure 11. (a) RDE polarization curves of Fe-CNT, A/P-CNT, Fe-P-CNT, Fe-A-CNT, 

Fe-A/P-CNT, and Pt/C in O2-saturated 0.1 M KOH electrolyte with 1600 rpm and 5 mV 

s-1, respectively. (b) CV results of Fe-A/P-CNT, Fe-P-CNT, and Fe-A-CNT in N2- and 

O2-saturated 0.1 M KOH electrolyte with a scan rate of 100 mV s-1. (c) CV results of Fe-

CNT, A/P-CNT and Pt/C in O2-saturated 0.1 M KOH electrolyte with a scan rate of 100 

mV s-1. 
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The nitrogen and iron doping essential to high ORR activity was further analyzed 

by XPS. According to the XPS survey scan and analysis (figure 12 and Table S1), the 

nitrogen at%’s for Fe-A/P-CNT, Fe-A-CNT, and Fe-P-CNT are similar, but the iron at% 

of Fe-A/P-CNT is 8.6 times higher than that of Fe-A-CNT and 3.8 times higher than that 

of Fe-P-CNT (table 3). The relative ratios of iron in the samples are quite different from 

the TGA result (table 3 and figure 13). For example, according to TGA results, the iron 

wt% of Fe-A/P-CNT is only 1.5 times higher than that of Fe-A-CNT (Table S1). We 

believe this different result is caused by different analysis methods of XPS and TGA. 

For example, XPS is designed to probe sample surfaces, and therefore it is ideal to 

analyze nitrogen-coordinated iron that is often present on the wall (graphitic layer) of 

CNTs. On the other hand, iron-containing particles embedded deep inside the CNTs can 

be detected by TGA rather than XPS. 

 

 

Table 3. TGA and XPS analysis of Fe-P-CNT, Fe-A-CNT, and Fe-A/P-CNT. 

Sample 
TGA XPS 

wt% of Fe at % of Fe at% of N 

Fe-P-CNT 4.4 0.25 1.53 

Fe-A-CNT 4.2 0.11 1.74 

Fe-A/P-CNT 6.4 0.95 1.34 
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Figure 12. (a) Survey XPS scan results of Fe-A/P-CNT, Fe-A-CNT, and Fe-P-CNT. (b) 

The comparison of iron atomic concentration of doped carbon nanotubes. 
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Figure 13. (a) TGA results of Fe-P-CNT, Fe-A-CNT, and Fe-A/P-CNT. (b) XRD result 

of Fe-A/P-CNT. 
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Figure 14. (a) N-1s XPS results of Fe-A/P-CNT, Fe-A-CNT and Fe-P-CNT. The vertical 

broken lines indicate the peak location of pyridinic nitrogen. (b) Fe-2p XPS results of 

Fe-A/P-CNT, Fe-A-CNT and Fe-P-CNT. The vertical broken lines indicate peak 

location of surface Fe3+. 

 

 

 

Figure 14a shows N-1s XPS spectrum, which can be separated into pyridinic N at 

~398.8 eV, graphitic N at ~400.9 eV, and oxidized pyridinic N at ~403.2 eV.[116-119] 

A notable difference in the N-1s spectra is the shift of the peak corresponding to the 

pyridinic nitrogen of Fe-A/P-CNT to a higher binding energy, compared to those of Fe-

A-CNT and Fe-P-CNT, indicating nitrogen coordination with iron.[92, 120, 121] The 

Fe-2p spectrum can be also separated into Fe3C at ~707.1 eV, bulk Fe3+ at ~710.6 eV, 
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and surface Fe3+ at ~714.2 eV (figure 14b).[91, 122, 123] The peak shift of the surface 

Fe3+ in Fe-A/P-CNT toward a lower binding energy also indicate the stronger 

coordination of iron with pyridinic nitrogen.[92, 122, 123]  

RDE tests of Fe-A/P-CNT at different rotational speeds were performed (figure 

15a), indicating the four-electron reaction according to the Koutckey-Levich plot at 

various potentials (figure 15b). The Koutecky-Levich plots[91, 124] were obtained by 

using 𝐽−1 = 𝐽𝐾
−1 + 𝐵−1𝜔−1/2 and 𝐵 = 0.62 𝑛𝐹𝐶𝐷2/3𝜈−1/6, where 𝐽𝐾

−1 is kinetic 

limiting current density, ω is the rotational speed, n is the number of electrons 

transferred, F is the Faraday constant (F = 96,500 C mol-1), C is the bulk concentration 

of O2 (C = 1.2×10-6 mol cm-3 in 0.1 M KOH), D is the diffusion coefficient of O2 (D = 

1.9×10-5 cm2 s-1 in 0.1 M KOH), and  is the kinematic viscosity of the electrolyte ( = 

0.01cm2 s-1  in 0.1 M KOH).[92, 125, 126] The number of electrons transferred (n) is 

3.97.   

The good long-term stability of Fe-A/P-CNT was confirmed in the RDE test. 

30,000 cycles in oxygen-saturated 0.1 M KOH. After 30,000 cycles, the decrease of the 

half-wave potential for Fe-A/P-CNT and Pt/C were 64 mV and 71 mV (figure 15c), 

respectively, and the limiting current density of Fe-A/P-CNT dropped ~10 %, which is 

similar to or better than the recent reports.[88, 127] In addition, the half-wave potential 

for Fe-A/P-CNT is higher than nitrogen doped carbon based nanostructures[119] and 

nitrogen doped graphene.[128] These results demonstrate the good stability of Fe-A/P-

CNT for oxygen reduction reaction. 
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Figure 15. (a) RDE polarization curves of Fe-A/P-CNT in O2-saturated 0.1 M KOH 

electrolyte at 6 different rotational speeds of the electrode, starting from 1600 rpm to 850 

rpm (every 150 rpm). (b) The Koutecky-Levich plots for Fe-A/P-CNT from the RDE 

results. (c) The RDE polarization curves of Fe-A/P-CNT were compared with those of 

commercial Pt/C before and after 10000, 20000, and 30000 CV cycles. The rotating 

speed and the scan rate were 1600 rpm and 5 mV s-1, respectively. 
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2.4 Conclusions 

 

We synthesized nitrogen and iron doped CNTs for oxygen reduction reaction by one-

step synthesis. Fe-A/P-CNT showed significantly high electrocatalytic activity and long-

term stability comparable to those of Pt based commercial catalysts. We identified that 

the coordination of nitrogen and iron in carbon based nanostructures played a key role in 

achieving the high ORR performances by comparing catalytic activities of different CNT 

catalysts synthesized with/without iron and/or nitrogen from aniline and pyridine. We 

anticipate further study in our one-step synthesis process may result in scalable mass 

production of non-precious metal catalysts for a broad range of electrochemical cells. 
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CHAPTER Ⅲ  

ULTRA-RESILIENT CARBON NANOTUBE COMPOSITES AEROGEL WITH 

THERMAL INSULATION AND ELECTRICAL PROPERTIES BY MICROWAVE 

IRRADIATION 

 

3.1 Introduction 

 

An aerogel is highly porous material with low density, low thermal conductivity, a 

three-dimensional structure, and large surface area and has potential applications, such 

as thermally insulation materials, mechanical actuators, and medicine[30, 129]. In 

particular, the outstanding characteristic of aerogel is a low thermal conductivity, for 

example, traditional silica aerogel shows ~ 30 mW m-1K-1 [130]. Recently, many kinds of 

aerogel have been developed, but most of them are made from silica, metal oxide, and 

polymer[53, 131]. Furthermore, many applications require much more functionalities, 

such as electrical properties, compressibility, and robustness under mechanical 

stress[53]. With the development of nanotechnology, silica-based aerogels are 

fabricated, but they are insulator, fragile, and difficult to make in large size[62].     

Nowadays, carbon materials have used to make aerogel due to their high strength 

and electrical conductivity[53-56]. Most of all, carbon nanotube(CNT)-based aerogel 

materials have high electrical properties and large surface area, and is promising 

candidate for super-capacitors and battery electrodes[57, 58]. Graphene and graphene 
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composite aerogels are also useful in various advanced application, such as sensors. 

However, like other inorganic aerogels, the main disadvantage is fragility and relatively 

poor mechanical properties under stress loading environment, which largely restrict the 

utilization of carbon-based aerogel in many applications [30, 59]. Thus, strengthening 

methods should be required to improve their mechanical properties.   

In general, hybridization with polymers is a typical method for the mechanical 

improvement of aerogel[30, 60]. Poly(vinylalcohol) (PVA)[30], epoxy[30], and 

cellulose[62] are frequently used as polymer. Carbon-based aerogels with polymers 

clearly show the improvement in mechanical strength, but flexibility and elasticity are 

demand properties in many applications, such as inflatable decelerators[63].  To 

fabricate the elastic aerogels, other research groups have fabricated CNT-PDMS 

composite aerogel using infiltration method[53, 64], but the infiltration method led to 

decrease pore size in aerogel since polymer fills the aerogel pores. Instead of infiltration 

method, microwave irradiation was used to fabricate CNT-PDMS composite[73]. 

Carbon materials are excellent absorbents of microwave radiation, so they are easily 

generated heat by microwave[65-67], and this heat leads to the localized thermal 

welding of CNT to polymer within a few second[73]. Inspired by this approach, our 

hypothesis is that the PDMS-CNT composite aerogel is possibly fabricated by 

microwave irradiation with minimizing pore loss.  

In this work, we designed the facile and quick process for the scalable production of 

super resilient CNT-PDMS composite aerogel with ultra-low thermal conductivity and 
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high electrical properties by microwave heating. This report describes that the 

microwave heating process can lead to a quick reaction and allow for the uniform 

polymer layer on CNT, which enhance the mechanical properties of carbon nanotube 

composite. Furthermore, the nanometer-thickness PDMS layer coated CNT sponge 

shows high compressibility, thermal insulation and elasticity-dependent electric 

conduction, suggesting its use as promising high mechanical properties with shows ultra-

low thermal conductivity and high electrical conductivity in a wide range of real-world 

applications. 
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3.2 Experimental section  

 

3.2.1 Carbon nanotube sponge synthesis 

Carbon nanotube(CNT) sponge were synthesized by a chemical vapor deposition 

(CVD) method reported by us previously.[79] An alumina crucible boat containing ~ 0.3 

g ferrocene (Sigma-Aldrich, 98%) was located in zone 1 (upstream) of a quartz tube with 

an inner diameter of 22 mm. Before the growth, argon (Airgas, 99.999%) gas was 

flowed for 10 min as a purge gas. During the growth reaction, hydrogen (Airgas, 

99.999%), ethylene (Airgas, 99.999%), and argon gases were flowed into the tube at 

flow rates of 260 sccm, 80 sccm, and 80 sccm, respectively. The argon gas was passed 

through a bubbler filled with deionized (DI) water. The temperatures of zone 1, zone 2, 

and zone 3 (CNT growth zone) were 120 ℃, 120 ℃, and 650 ℃, respectively. The 

typical growth time was 30 min to get approximately 80~90 mm long sponge shown in 

Fig. 1a. After the growth reaction, the furnace (Lindberg Blue M, Thermo Scientific) 

was naturally cooled under 100 sccm argon flow to room temperature.  

 

3.2.2 Carbon nanotube - PDMS composite fabrication 

The schematic fabrication process is described in Fig. 1a. In a typical process for 

the fabrication of CNT- Polydimethylsiloxane (PDMS) composite aerogel, CNT sponge 

was cut into 12.7 mm in diameter and 2~3 mm in length and then soaked in PDMS 

(Sylgard 184, Dow Corning) - hexane (60% n-Hexane, VWR) mixture solution by 
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magnetic stirring for 3 hours at 300 rpm using magnetic stirrer (Isotemp Hotplate Stirrer, 

Fisher Scientific). To compare the influence of PDMS content, we used different weight 

ratio of PDMS - hexane mixture solution. After the immersion of CNT sponge in 

PDMS-hexane solution, the microwave heating process was conducted in a microwave 

oven (EM925AJW-P1, WestBend) with an output power of 900 W. The process was 

carried out 5 times with 3 second using 50% power of microwave to make thin PDMS 

layer on CNT surface. After the microwave heating, composite was sonicated for 1 min 

in hexane for removing unsolidified PDMS residue and then composite was dried in 

convection oven (Series FP, Binder Inc.) for 30 min at 150 ℃. 

 

3.2.3 Characterization 

The scanning electron microscope (SEM) images of the samples were obtained 

using a FEI Quanta 600 and transmission electron microscope (TEM) images were 

collected using a JEOL JEM 2010 and a FEI TECNAI G2 F20 FE-TEM. Fourier 

transform infrared spectra (FT-IR) of the samples were obtained using a Shimadzu IR 

Prestige attenuated total reflectance Fourier transform infrared (ATR-FTIR) 

spectrometer in range 3200 – 650 cm-1. Raman spectroscope analysis was conducted by 

Horiba Jobin-Yvon LabRam Raman confocal microscope with a 10 x objective and 

632.8 nm excitation wavelength at room temperature. Laser power was set to 1.91 mW 

in order to avoid heat-induced damage to the sample. The pore size distribution of 

sample was estimated from analysis of SEM images using ImageJ 1.45s software. 
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3.2.4 Mechanical properties characterization 

The compression tests were conducted using home-made mechanical properties 

measurement system with 50-lb. load cell (AL-101NH, AnyLoad) and two flat surface 

stages (top and bottom). Cylindrical CNT and composite aerogel samples with diameter 

of half inch were used for testing. The stress-strain curves (σ-ε curves) were measured at 

a strain rate of 40 mm min-1 and a 3% prestrain to make a uniform flat contact between 

compression stage and sample. The 10,000-cycle fatigue compressibility test was 

conducted by measuring stress (σ) versus 60% strain (ε) at strain rate of 400 mm min-1 

with a 3% prestrain.   

 

3.2.5 Electrical properties and thermal conductivity measurement 

The compressibility-dependent electrical properties of composite aerogel were 

measured using a two-probe method. We attached aluminum foil as electrical wire leads 

to the flat surfaces of the sample with silver paste, and sample was loaded on the 

instrument with a 3% prestrain. A B&K digital multimeter was used to measure the 

resistance of composite aerogel as a function of strain. The thermal conductivity was 

measured by Thermal diffusivity system (FlashLine-3000, TA Instruments) 
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3.3 Results and Discussion  

 

3.3.1 Fabrication and structural features of nanocomposites 

We synthesized the carbon nanotubes sponge by the chemical vapor deposition 

(CVD) method reported by us previously.[79] Our carbon nanotubes have sponge-like 

porous structures with arbitrarily oriented and entangled CNT. The CNT sponge 

replicated the cylinder shape of a quartz tube as shown in figure 18a. The CNT sponge 

length was controlled by reaction time, and ~30 min reaction produced approximately 

80~90 mm long cylindrical sponge. Scanning electron microscope (SEM) image of 

pristine CNT sponge displays porous CNT structures as shown in a figure 17b. The 

density of the CNT sponge was 25.5 mg cm-3 and porosity is > 98.6%, respectively. 

We fabricated CNT-PDMS composite aerogel using microwave heating. Carbon 

materials are excellent absorbents of microwave radiation, as a result they generate heat 

easily[65-67]. Due to this special characteristic of carbon materials, we expected carbon 

nanotubes to generate enough heat under microwave irradiation for the formation of 

polymer layer on carbon nanotubes. Therefore, we designed the microwave heating 

process for the fabrication of CNT-PDMS composite aerogel. Before the fabrication of 

sponge-type nanocomposite, we conducted the confirmatory experiment of the formation 

of CNT-polymer composite aerogel by microwave irradiation (figure 16). Figure 17c-f 

shows a SEM images of PDMS coated CNT after microwave irradiation for 5 seconds. 

PDMS is coated on CNT wall along the length of the CNT. This phenomenon can be 
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described by a rapid increasing temperature of CNT, which cause the solidification of 

PDMS on CNT. Therefore, figure 17 is clear evidence that CNT generate a lot of heat 

under the microwave radiation in a very short time since CNT are excellent absorbents 

of microwave radiation. 

 

 

 

 

Figure 16. The microwave heating effect for polar and nonpolar materials.  (a) DI water, 

(b) Hexane, and (c) PDMS. The photographs show the temperature different between 

before microwave and after microwave. The images indicate hexane and PDMS didn’t 

absorb microwaves. 
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Figure 17. The curing PDMS polymer on carbon nanotubes sponge. (a) Photograph 

shows the PDMS solution drops onto CNT. (b) SEM image of pristine CNT sponge (c-f) 

SEM images of CNT-PDMS nanocomposite after microwave irradiation. 

 

 

 

Based on the confirmatory experiment, we designed a simple fabrication process of 

composite aerogel. Figure 18a shows the fabrication process of the composite aerogel. 

The CNT sponge was soaked in a PDMS-hexane mixture solution in order to make a 

very thin uniform PDMS layer on CNT wall. We used hexane as solvent since hexane is 

a high-solubility solvent for PDMS[132]. The nanocomposite was exposed to microwave 

radiation for 3 seconds and then repeat 5 times for making a very thin PDMS layer. The 
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nanometer-thickness cured PDMS region is formed around CNT as a result of the 

dissipation of heat from CNT to PDMS. Although thermal conductivity of CNT is higher 

than that of PDMS (the reported values of CNT are 200 ~ 3000 W m-1 K-1 [133-135], which 

is much higher than that of PDMS, 0.13 ~ 0.2 W m-1 K-1 [136, 137]), heat dissipation 

happens by conduction and radiation from CNT to PDMS[138]. In addition, the 

temperature does not increase the decomposition temperature of polymer since the 

thermal resistance between CNT and PDMS makes a lower heating rate, so we can 

obtain a nanometer-sized PDMS layer on CNT wall by microwave radiation. Figure 18b 

and c show SEM images of the CNT-PDMS composite structure and its transmission 

electron microscope (TEM) images (figure 18d and e) show that CNT walls are 

composed of multiple graphitic layers and a ~ 3-nm-thick PDMS layer was formed on 

the surface of CNT. In addition, the formation of junction between neighboring CNT 

might come from PDMS coating, as shown in figure 18c. PDMS coating can make a 

strong bonding between neighboring CNT and the bonding stability between 

neighboring CNT may affects the compression stability of the CNT-PDMS composite 

aerogel. The density of the CNT-PDMS composite aerogel was 29.4 mg cm-3 and 

porosity is > 98.2%, respectively. Since the fabrication process in our methodology is 

very simple and faster process compared to other type of aerogel fabrication 

processes[62, 139], scaling up the fabrication of nanocomposite aerogel will be possible. 
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Figure 18. Fabrication and microstructure of CNT-PDMS composite aerogel. (a) 

Schematic of synthesis steps for making CNT-PDMS composite aerogel (b,c) SEM 

image of a 0.5 vol% PDMS nanocomposite sponge structure (d,e) TEM images of a 0.5 

vol% PDMS composite aerogel structure, showing the structure of nanocomposite which 

has a very thin PDMS layer on the graphitic wall of carbon nanotubes   

 

 

 

 

Figure 19. The SEM images of CNT-PDMS composite aerogel with different PDMS 

contents. (a) 3.2 vol% (b) 8 vol%  
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3.3.2 Characterization of composite aerogel structure 

We further characterized the composite aerogel structure using FT-IR and Raman 

spectroscopy. Figure 20a shows the FTIR spectra of PDMS, CNT and the CNT-PDMS 

composite aerogel. In the FTIR spectrum of PDMS, the asymmetric peak that appears at 

2961 cm−1 is owing to CH3 stretching in CH3. The CH3 deformation vibration peaks are 

observed in the range between 1400 and 1420 cm−1 and between 1200 and 1300 cm−1. The 

Si-O-Si stretching multicomponent peaks appear in the range between 1000 and 1100 cm−1 

and CH3 rocking peaks in Si–CH3 are observed at 750~800 cm−1 and 850~900 cm−1, 

respectively[140, 141]. Compared with PDMS, the peak shape of the CNT-PDMS 

composite aerogel in the range between 850 and 1100 cm−1 is changed due to the formation 

of a Si-C bond formed by interaction between CNT and PDMS[140, 142-144].  

Raman spectroscopy has also been conducted to analyze the composite aerogel 

structure as shown in figure 20b. The intensity ratio (ID/IG) of D-band to G-band in the 

Raman spectra for CNT and the CNT-PDMS composite aerogel show that CNT have an 

intensity ratio of 1.01, respectively, demonstrating a relatively low crystallinity because 

of the defects on the CNT walls. It is possible to consider this structure is good for the 

fabrication of the CNT-PDMS composite aerogel because defects on CNT surface can 

promote the interaction between CNT and polymer[145]. The Raman spectra for the CNT-

PDMS composite aerogel also show the characteristic peaks of carbon nanotubes at 1333 

and 1589 cm-1, respectively. It is possible to see the up-shift of G-band, 1589 cm-1, which 

shows in CNT at 1583 cm-1. This up-shift is associated with exerting a compression force 
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on carbon nanotubes by the polymer layer, changing the tangential motion of carbon 

nanotubes[146-148]. It indicates that there is an interfacial interaction between PDMS and 

CNT. Therefore, according to the Raman and FTIR spectra for composite aerogel, a 

polymer layer was formed on the surface of CNT by microwave radiation. This feature 

can also be observed in TEM images, as shown in figure 18d and e. 

 

 

 

 

 

Figure 20. Characterization of CNT-PDMS composite aerogel structure. (a) Infrared 

spectra of CNT sponge, PDMS, and 0.5 vol% PDMS composite aerogel. (b) Raman 

spectra of CNT sponge and 0.5 vol% PDMS composite aerogel. 
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3.3.3 Mechanical properties of CNT-PDMS composite aerogel 

The pristine CNT sponge has a large compressive stress reduction under the 

compression force as shown in figure 21 and figure 22c. To improve the elasticity, we 

designed the CNT-PDMS composite aerogel structure which has a thin polymer layer on 

CNT surface. Our hypothesis is that the CNT-polymer aerogel structure can show the 

outstanding mechanical properties and allow for a large deformation without fractures 

since hybridization with polymers is a typical method for the mechanical improvement 

of aerogel[30, 60]. The strong connection between neighboring CNT should assure the 

reversible elastic behavior without plastic deformation under compression. The 

composite aerogel can stand a compressive strain (ε) as high as 60% and recover its 

original shape after the release of the strass (σ), as shown in figure 22a and b. 

Figure 21. Compressive mechanical property of CNT-PDMS composite aerogel (a) 

Compressive stress-strain curves of CNT-PDMS composite aerogel at different set strains 

of 30, 60, and 80%, respectively. (b) Maximum compressive stress of CNT-PDMS 

composite aerogel and pristine CNT sponge at 60% strain. The black and grey bars 

represent the first and 200th cycle during compressive test.    
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Figure 22. Mechanical properties of CNT-PDMS composite aerogel. (a) The 

photographs of the CNT-PDMS composite sponge at the different strains in the first 

compression cycle. (b) Compressive stress history of CNT-PDMS composite aerogel for 

8,000 cycles at 60% compressive strain. (c) Maximum compressive stress of CNT-

PDMS composite aerogel and pristine CNT sponge for 8,000 cycles at 60% strain. (d) 

Comparison of the compressive mechanical stability of CNT-PDMS composite aerogel 

and other materials. Note that the relative compressive stress of other materials would be 

different with different densities and we chose the best performance value from 

literatures. 
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Figure 22b shows the compressive stress-strain curve for 0.5 vol% PDMS 

composite aerogel at 60% as the maximum strain. We obtain a compressive strength 

0.184 MPa at 60% compressive strain, which is much larger than other aerogel materials 

[53, 54, 149-151]. The CNT-PDMS composite aerogel can be compressed to more than 

60% volume reduction because of high porosity and structural flexibility. The 

compressibility of nanocomposite can be visually indicated by the images in figure 22a, 

that clearly demonstrates the variations of sample height at different strain. While a 

pristine CNT sponge showed plastic deformation under compressive stress, the CNT-

PDMS composite aerogel showed excellent structural stability (as shown in figure 22c), 

with almost recovery from large compressive strain (60%) because of strong junction 

between neighboring CNT by PDMS coating, as shown in figure 18b ~ e. The CNT-

PDMS composite aerogel recovers to its original height after the release of the stress 

without measurable change in diameter, as shown in figure 22a and b.  It is a similar 

result of the previous report that polymer composite aerogels demonstrate outstanding 

elastomeric behavior[30, 152, 153].  

The CNT-PDMS composite aerogel was subjected to a cyclic fatigue 

compressibility test with 8,000 fatigue cycles at ε of 60%, and it showed no significant 

decrease in maximum stress (1% at 8,000th), which is extremely lower than pristine CNT 

sponge (43% at 200th), as shown in figure 22b and c. In comparison, other carbon based 

aerogels show a degradation in compressive strength of ~ 30% after 1,000 compressive 

cycles[54, 59, 139, 149, 150, 154-157], as shown in figure 3d and table 5. According to 
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the result, our aerogel can show the outstanding mechanical properties by coating PDMS 

layer on CNT. 

 

3.3.4 Thermal insulation and electric properties of CNT-PDMS composite aerogel 

Figure 23b shows thermal conductivity values of composite aerogel with different 

PDMS contents. The 0.5 vol% PDMS composite aerogel with a density of 29.4 mg cm-3 

showed an outstanding thermal conductivity of 26 mW m-1 K-1, which is similar to that 

of pristine CNT sponge with a density of 25.6 mg cm-3 and that of air at ambient 

condition (23 mW m-1 K-1). Typical aerogels are well-known thermal insulation 

materials with extremely low thermal conductivity due to high porosity[129, 158].  

According to the result, thermal conductivity was increased when PDMS content was 

increased due to the decrease of the porosity. In addition, thermal conductivity values of 

CNT-PDMS composite aerogel had changed little after 1,000 cycles, it indicates that a 

nanometer-size polymer layer on CNT enhance the mechanical strength and 

compressibility without affecting the increase in thermal conductivity, as shown in 

figure 23a. According to the result, our composite aerogel shows ultra-low thermal 

conductivity with high mechanical strength and resilience, suggesting its use as 

promising thermal insulation materials with high mechanical properties in a broad range 

of applications.    
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Figure 23. Thermal insulation and electric properties of CNT-PDMS composite aerogel. 

(a) Thermal conductivity values of pristine CNT sponge, CNT-PDMS composite 

aerogel, and after 1,000 cyclic compressive test with 60% strain. (b) Thermal 

conductivity values and porosity of CNT-PDMS composite aerogel with different PDMS 

contents. (c) R/R0 of the CNT-PDMS composite aerogel when repeatedly compressed 

(ε=50%) for 100 cycles. 

 

 

 

 

The thermal conductivity value of the composite aerogel is related to the thermal 

properties of the components and the structure of composite aerogel[159]. The average 

diameter of the composite aerogel pores was estimated from analysis of SEM cross-
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section images using ImageJ 1.45s software (figure 24). The gas contribution to thermal 

conductivity can be estimated according to 

𝜅𝑔 =
𝜅𝑔0Π

1+2𝛽Κ𝑛
                                                                             (5) 

where П is the porosity, kg0 is the thermal conductivity of gas, β ≈ 2 for the parameter of 

energy transfer between gas molecules and solid structure[159]. The Knudsen number, 

Kn, is 

 Κ𝑛 =
𝑙𝑔

𝛿
                                                                               (6) 

where lg is the mean free path of a gas molecule and δ describes the pore diameter. We 

estimated the gas conductivity with composite aerogel that the gas thermal conductivity 

kg remains below the value of kg0.  

The nano-sized solid components also have an interfacial thermal resistance, as 

known as the Kapitza resistance, which leads to decrease the thermal conductivity of 

solid components[62, 160]. The effective solid conductivity, 𝜅𝑠𝑜𝑙
∗ , of individual solid 

components of composite aerogel uses 

𝜅𝑠𝑜𝑙
∗ =

𝜅𝑠𝑜𝑙

1+𝜅𝑠𝑜𝑙
𝑅𝐾
𝑑

                                                                     (7) 

where d is the diameter of CNT and PDMS layer, and ksol is the thermal conductivity of 

individual components. The Rk values of components of composite aerogel were taken 

from literatures[160, 161](see table 4 for a detailed description). We calculated the 

thermal conductivity of solid components using equation (3), suggesting that composite 

structure can reduce 𝜅𝑠𝑜𝑙
∗  from ~ 1,200 mW m-1 K-1 for bulk material with same 
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composition as composite aerogel to below 10 mW m-1K-1 for the composite aerogel 

since phonon scattering[160]. 

 

 

 

 

Figure 24. Pore size distribution of CNT-PDMS composite aerogel. 
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Table 4. Estimation of gas and solid thermal conductivity of nanocomposite aerogel 

Gas component 
Kg 

(W m-1 K-1) 
П β 

Kn Kg 

(W m-1 K-1) lm (nm) δ (μm) 

Ar 0.0178 [162] 0.982 2 [163] 75 1.69 0.0148 

Solid component 
Ksol 

(W m-1 K-1) 

d 

(nm) 

RK 

(x10-8 m2 K W-1) 

ks
* 

(W m-1 K-1) 

CNT 200 [164] 94 12 [161] 0.771 

PDMS 0.25 [165] 3 8.3 [160] 0.032 

 

 

 

The relative electrical resistance (R/R0) of CNT-PDMS composite aerogel was also 

relatively constant over 100 cycles, as shown in figure 23c, representing the promising 

structural stability. In addition, figure 25 shows the electrical resistance of the CNT-

PDMS composite aerogel as a function of compressive strain, which showed the initial 

electrical conductivity of 20 S m-1 without strain. The relative electrical resistance (R/R0) 

decreased by approximately 55% with an increase in strain to 60% and recovered like 

the initial electrical resistance during the unloading. The compressive stress made plenty 

of new electrical contacts, and added to the existing conduction paths through the 

composite aerogel, lastly decreased the electrical resistance. When the compressive 

stress was removed, new electrical contacts disappeared, the composite aerogel 
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recovered to the initial electrical resistance and sprang back to its original shape. 

Therefore, these results support the use of CNT-PDMS composite aerogel as pressure 

sensor and flexible electrodes for various applications. 

 

 

 

 

Figure 25. R/R0 of the CNT-PDMS composite aerogel as a function of compressive 

strain (ε=60%) 
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Table 5. Comparison of the materials properties of CNT-PDMS nanocomposite and 

other materials*  

* Note that the properties of other materials would be different with different densities 

and we chose the best performance as their reported value.   
Materials Compressive 

stress 

(MPa) 

Cyclic 

compression 

stability 

Electrical 

conductivity  

(S m-1) 

Thermal 

conductivity  

(mW m-1 K-1) 

Ref. 

Carbon 

Aerogels 

0.006 at 50% 

strain 

88% of the 

original 

value at 

1000th cycles 

0.6 Not reported [156] 

Carbon 

Nanotube 

Aerogel 

0.004 at 60% 

strain 

84% of the 

original 

value at 

1000th cycles 

3.2 Not reported [151] 

Carbon 

Nanotube 

Sponge 

composite 

0.028 at 60% 

strain 

70% of the 

original 

value at 300th 

cycles 

58 Not reported [54]  

Carbon 

Nanotube 

Sponges 

0.033 at 60% 

strain 

100% of the 

original 

value at 

1000th cycles 

Not reported 150 [55] 

Cellulose 

nanofibers 

based 

composite 

foam 

0.18 at 90% 

strain  

Not reported Not reported 15 [63]  

Nanofibrous 

aerogels 

0.011 at 60% 

strain 

86% of the 

original 

value at 

1000th cycles 

25 26 [140] 

This work 0.26 at 60% 

strain 

92% of the 

original 

value at 

1000th cycles 

20 26 
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3.4 Conclusions  

 

In conclusion, we have shown that the facile and quick process for the scalable 

production of super resilient with multifunctionality CNT-PDMS composite aerogel 

using microwave heating. The microwave heating process leads to a quick reaction and 

allows for the uniform polymer layer on CNT. The nanometer-thickness PDMS layer 

coated CNT sponge shows high mechanical strength (0.184 MPa), compressibility, 

thermal insulation (26 mW m-1 K-1) and elasticity-dependent electric conduction. 

Although further studies are needed to optimize the processing to adjust this process for 

many applications, we believe that super resilient with multifunctionality CNT-PDMS 

composite aerogel will expose the chance for many applications, such as heat insulator, 

pressure sensor, dampers and flexible electrodes. 
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CHAPTER Ⅳ  

SUMMARY AND CONCLUSIONS 

 

4.1 One-step synthesis of nitrogen-iron coordinated carbon nanotube catalysts for 

oxygen reduction reaction 

 

Prohibitively expensive precious metal catalysts for oxygen reduction reaction (ORR) 

have been one of the major hurdles in a wide use of electrochemical cells. Recent 

significant efforts to develop precious metal free catalysts have resulted in excellent 

catalytic activities. The electrochemical performances of nanostructured carbon with 

transition metals and nitrogen catalysts in recently published reports were comparable to 

those of Pt-based catalysts, but the high manufacturing costs due to complicated synthesis 

processes negate the benefit of eliminating the precious metal catalysts, which have time-

consuming polymerization processes and additional leaching steps were necessary to 

remove inactive materials. Moreover, detailed analysis about catalytically active sites and 

the role of each element in these high-performance catalysts containing nanomaterials for 

large surface areas are often lacking. We synthesized nitrogen and iron doped CNTs for 

oxygen reduction reaction by one-step synthesis. Fe-A/P-CNT showed significantly high 

electrocatalytic activity and long-term stability (up to 30,000 cycles)  comparable to those 

of Pt based commercial catalysts. Our nitrogen-iron coordinated carbon nanotube catalysts 

without precious metals were grown a one-step synthesis method for scale-up 
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manufacturing in the future, and showed superior and/or comparable oxygen reduction 

reaction performance with greatly improved long term stability compared to previously 

reported non-precious metal based catalysts. Furthermore, we identified report the 

coordination of nitrogen and iron forming oxygen reduction reaction sites could contribute 

to the significantly high performance. In addition, we identified that the coordination of 

nitrogen and iron in carbon based nanostructures played a key role in achieving the high 

ORR performances by comparing catalytic activities of different CNT catalysts 

synthesized with/without iron and/or nitrogen from aniline and pyridine. We anticipate 

further study in our one-step synthesis process may result in scalable mass production of 

non-precious metal catalysts for a broad range of electrochemical cells. Our catalysts show 

excellent long-term stability and onset ORR potential comparable to those of other 

precious metal free catalysts, and the maximum limiting current density from our catalysts 

is larger than that of the Pt-based catalysts.  

 

4.2 Ultra-resilient carbon nanotube composites aerogel with thermal insulation and 

electrical properties by microwave irradiation 

 

The demand for aerogels with highly compressible and resilient being increased in a 

wide range of applications from bioengineering to aerospace. Carbon nanotubes provide 

a combination of compressibility and resilient, and these excellent mechanical properties 

have been desirable in carbon-based aerogels. Nevertheless, carbon-based aerogels 
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suffer significant plastic deformation and compressive strength reduction during the 

repeated strain. Furthermore, the fabrication of such aerogels has shown severely 

challenging and complicated. Here, we report the facile and quick process for the 

scalable production of super resilient CNT-PDMS sponge nanocomposite with ultra-low 

thermal conductivity and high electrical properties by microwave heating. The 

nanometer-thickness PDMS layer coated CNT sponge shows high mechanical strength 

(0.184 MPa), compressibility, thermal insulation (26 mW m-1 K-1) and elasticity-

dependent electric conduction. The successful fabrication of super resilient CNT-PDMS 

sponge nanocomposite with multifunctionality will expose the chance for many 

applications.  
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