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ABSTRACT 

 

An approach for the numerical modelling of Lithium Plating on intercalation 

electrodes with or without phase transition using a thermodynamically consistent (TC) 

solid-state transport is presented for a positive electrode (Nickel-Cobalt-Aluminum oxide) 

and a negative electrode (Lithiated graphite). The proposed method considers the positive 

electrode to be a single-phase regime and the graphite to consist of three phases, each with 

a Nernstian Equilibrium potential. The phase transition and volume fraction of the species 

are directly related through modifications to the Avrami’s equation. A thermodynamically 

consistent approach is used to match experimental results to models at high C-rates 

(greater than 0.25C). The effect of using thermodynamically consistent approach on 

discharge/charge is obtained for varying performance characteristics (C-rate, size of 

particle). The visualization of phase change in graphite is captured through the assumption 

that each phase of graphite (LiC6, LiC12 and LiC32) are each represented by a sphere whose 

diffusivity is equal to the diffusivity of the phase. Lithium plating is considered to occur 

at negative overpotentials that are created locally, through low temperature or high C-rates 

and is formulated as being a Butler-Volmer type current density which is then directly 

correlated to the thickness of the Lithium plated metal layer. The effect of temperature 

and C-rate is observed in this study. C-rate and temperature have equal impact on the 

performance of the electrode and the formation of lithium plating on the surface of the 

electrode.  
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CHAPTER I  

INTRODUCTION TO LITHIUM ION BATTERIES 

 

Introduction 

The world population is on the verge of facing one of the biggest energy crisis in 

the next decade. There is a large imbalance between demand and supply of energy already 

and this gap is only widening with growth of population, high energy consuming devices 

and an over-reliance on Electronics. To feed this demand, fossil fuels are currently being 

excessively used either through direct combustion or through the production of electricity. 

The inefficiency in the production of electricity through combustion is large.  

 

Figure 1: Energy consumption in the United States, reprinted from Lawrence 

Livermore National Lab[1] 
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Figure 1 above quite succinctly depicts the reliance the United States has on 

Petroleum and other fossil fuels.  

One way to combat both the use of fossil fuels and the efficiency is using energy 

from renewable sources with solar, wind and geothermal energy being the most popular 

and efficient. The biggest hurdle in the use of renewable sources of energy was in the 

devices capable of storing such vast amount of energy at a reasonable cost. Secondly, there 

are major fluctuations in the source of renewable energy especially with solar and wind 

energy. A battery is one of the most commonly used devices for energy storage which 

solves both these issues. It is thus extremely important that a battery exists that is capable 

of storing large amount of energy. Its great specific energy and its recyclability[2] has led 

to it becoming a research focus as seen in Figure 2. The predominant use of batteries is in 

storage and release of energy and the battery does so through movement of electrons and 

ions. This is a simultaneous process unlike most other energy producing methods which 

have multiple intermediate steps that lead to generation of entropy and losses. 
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Figure 2: Ragone plot of various energy storage devices, reprinted from Winter 

and Brodd 2004[2]  

 

Working principle of an electrochemical system 

 A battery, or an electrochemical cell usually consists of a positive electrode and a 

negative electrode immersed in an electrolytic solution (newer batteries are being made of 

solid-state electrolytes[3]) with a separator placed between them to only allow charged 

species to diffuse to the other electrode[4] but does not allow for the movement of 

electrons. The battery provides electric current through a reduction-oxidation reaction 

between the electrodes. One electrode gets reduced and the other, oxidized. This involves 

movement of charged species across the separator but also involves movement of electrons 

through an external connection between the electrodes. Electrons are only allowed to 

move through an external connection between the two electrodes leading to a current 

whose direction is opposite to the direction of the movement of the electrons. During 
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discharge, the anode undergoes an oxidation reaction and the cathode, a reduction 

reaction. 

Typical Reactions at the electrode during discharge: 

Cathode: X + e-  X- [Reduction reaction occurs as the cathode accepts the electron] 

Anode: X-   X + e- [Oxidation reaction occurs as the anode releases an electron] 

The positive electrode accepts electrons and the negative electron release the electron. At 

the same time, ions migrate from the anode to the cathode and either intercalate[5] through 

various means or precipitate[6], depending on the type of electrochemical cell involved. 

As mentioned earlier, rechargeable batteries involve the reversal of the cathode and anode 

reactions by the application of current externally in a direction opposite to discharge 

current direction. This is shown quite clearly in Figure 3 for a simple electrochemical 

system. 

 

Figure 3: Schematic of an Zn-Cu electrochemical cell, reprinted from Rahn and 

Wang 2013[7] 
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Classifications of batteries  

The battery, thus is a self-contained chemical storage device which can, on demand 

be converted to electric energy by the application of electric current. They are divided into 

three main categories[7]. Primary batteries are battery systems in which the 

electrochemical reactions which occur are all mostly irreversible. This means that the 

battery is sold in a charged condition can only be discharged once and then are discarded 

(Alkaline, Zinc-air). Secondary batteries are those that involve reversible electrochemical 

reactions i.e. the reactions that happen during discharge can be reversed by inverting the 

direction of the applied current. Although these reactions are not completely reversible 

and do wear out after cycling multiple times[8-11], they are a better option in applications 

that require use of batteries on a regular basis. Examples of secondary battery systems 

include Lead Acid, Lithium Ion and Nickel-Cadmium. Lastly, Speciality batteries are 

primary batteries that are produced in limited quantities and are made specifically for a 

certain purpose.  

 

Background of battery development  

The Renewable energy is mostly in need of rechargeable or secondary batteries 

came into prominence in the 19th century[12]. Until the 1950s, primary batteries such as 

Zinc-Carbon was used mostly for its safety and portability. Lead Acid batteries were the 

first to be implemented in a large scale followed by other chemistries.  

Nickel-Cadmium system was the next to come into commercial prominence but was not 

environmentally friendly and was thus replaced by Nickel-Metal-hydride system which 
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was very similar chemically but was environmentally friendly. At the same time, 

significant research was being done in the Lithium ion battery research. Lithium is the 

lightest electropositive metal and leads to high specific energy. There were multiple 

problems related to Lithium ion battery systems. Primary among them was the inherent 

instabilities due to high reactivity of Lithium and dendrite formation leading to short 

circuiting[13]. A lot of these problems have been solved by using Lithium oxides instead 

of the Lithium metal as electrode. Another issue with Lithium ion batteries is the 

significant volume changes[14] during operation due to intercalation and de-intercalation 

of Lithium ions in the electrodes giving rise to stresses and capacity fade[15]. These issues 

have been resolved to an extent using carbonaceous material intercalation. However, 

despite these problems, Lithium-ion has started to really dominate the market currently 

due to its low weight and high theoretical capacity. They also can retain the charge over 

long durations. The biggest issue is still the safety of batteries. Temperature strongly 

dictates Lithium ion battery performance and thermal runaway is a leading cause of 

catastrophic failure. Other safety issues include short circuiting due to dendrite formation 

and over-charging leading to Lithium plating.  

 

Lithium ion batteries 

Lithium ion batteries work through intercalation and de-intercalation of Lithium 

ions[16]. The most commonly used negative electrode is Carbon or LixC6 but the positive 

electrodes usually vary. There have been many positive electrodes but the ones with the 
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most focus are LiFePO4 and NMC (Nickel-Molybdenum-Cobalt Oxide) electrodes[17-

20].  

The active material(AM) is bonded to current collectors (copper for anode and 

aluminum for cathode) and are separated by a polymer based separator that isolates the 

two electrodes electrically but allows for ion species migration.  

Intercalation is the process through which Lithium ions get inserted into the 

electrode during the discharge/charge process. During discharge, the negative electrode is 

oxidized and Lithium de-intercalates from the anode structure while releasing electrons. 

The cathode accepts the Lithium ion and the cathode intercalates and to ensure charge 

neutrality, it also needs to accept an electron. During charge, the process is reversed. The 

cycling process of intercalation and de-intercalation leads to stresses created due to change 

in the volume of the electrode, lowering the life of these battery systems.  

 

Figure 4: Schematic of 1D Li-ion cell, reprinted from Fang, Kwon et al. 2010[21] 
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Figure 4 shows a schematic of a 1D Lithium ion cell including the direction of the ions 

during charge and discharge. The cell is 3 dimensional but only 1D movement of 

electrolyte and ions is considered for computational simplicity.  

Majority of the Lithium ion research goes into understanding the intercalation 

process that occurs in these electrodes[22-24]. The electrochemistry that is associated with 

intercalation can help in designing a better battery system. The models that are most 

prevalently used does have to have experimental data that is used to fit the experimental 

data to model data. This helps in obtaining electrode parameters which can then be used 

to understand the behavior of the battery. A lot of assumptions are made with respect to 

the material properties of the electrode and electrolyte based on prior data and theoretical 

formulation that can accurately predict the behavior but does not necessarily make sense 

physically.  
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CHAPTER II 

LITERATURE REVIEW 

 

Lithium ion batteries have come a long way from being extremely unsafe to 

becoming one of the most commonly used battery configurations, especially in smaller 

appliances such as cell phones, laptops etc. The greatest advantage of these batteries is the 

fact that they have a high-energy density, low self-discharge and low weight/energy 

delivered. This has led to a large amount of research going into battery chemistry i.e. trying 

to find optimum electrode materials that provide even higher energy density and energy 

storage capabilities and better cycling capability. They are even being considered for 

larger energy storage applications such as Hybrid Electric Vehicles(HEV) and Plug-in 

Hybrid Electric Vehicle(PHEV). This would mean replacing the Lead-acid batteries that 

are ubiquitous in the automotive and power grid applications. Apart from experimental 

research, computational research on understanding the physics of electrochemistry and the 

insertion of Lithium ions in the electrodes are of prime importance since accurate 

computational models can be used with far more robustness than experimental models. 

The ability to tweak parameters and understand the effect they may be having on the 

electrochemistry without creating new battery configurations thus becomes the most 

viable option available.  

One of the hottest research topics has been to understand the solid-state transport 

of the Lithium across the electrode, either positive or negative. There are numerous papers 

that try to model the electrochemical system making assumptions[25-30] (electrode as 
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sphere, electrolyte properties not varying, concentration gradient based solution vs 

chemical potential as a driving force, single particle model vs pseudo 2-D model).  

The earliest attempt to model an electrochemical system was done by Doyle et 

al.[27]. They tried to create a model that would match the Galvanostatic charge and 

discharge curves. They assumed the electrode to consist of spherical particles of a given 

radius (assumed at that point but later verified through a scanning electron microscope) 

and diffusion was the main source of movement of ions. This work was seminal in the 

Lithium ion modelling community as most work that came after adopted their 

methodology for ion transport and charge transport.  

Santhanagopalan et al.[10] were the first to assume a single particle model. In this 

approach, the whole electrode is simplified to be a single sphere of electrode material and 

the porosity of the single particle is representative of the porosity within the electrode. 

Additionally, the surface area used in the finding the electrochemical current density uses 

a specific area (surface area of particle/Volume of the electrode) to represent the complete 

surface area of the electrode. The use of the specific area helped with the computational 

difficulties of using two length scales i.e. the particle length scale which is in the order of 

μm and the electrode length which is in the order of mm.  

Several other works[8, 11, 31-33] then used the concept of single particle model 

and expanded it to understand capacity fade, thermal effects, effect of stress and the 

accuracy of single particle with other models. The consensus was that although the single 

particle model was computationally simple, it did not reflect accurately the physics inside 
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the electrode. Additionally, a single particle model does not consider the effects of 

electrolytes and its breakdown at high temperature and high C-rate applications.  

 With the advent of technology, more physically accurate models were developed. 

These models were computationally extremely demanding but were providing satisfactory 

match with experimental results at low temperature and high C-rates which are 

thermodynamically were the most non-ideal and required the use of non-equilibrium 

thermodynamics and the understanding of nanoscale mechanics that occur within an 

electrode and how it might change with change in environmental and physical parameters.  

One of the biggest assumptions that is made when it comes to solid-state transport 

of Lithium ions is that the diffusivity of the Lithium intercalating is the same[34-37]. If 

you consider the electrode to be an isotropic sphere, then during discharge, Lithium is 

extracted from the anode and inserted into the cathode. The Lithium is assumed to create 

a flux on the surface of the sphere and then diffuse into the electrode for the cathode and 

there is a negative flux created in the anode and Lithium ions are dragged out of the 

electrode from the inside. This is mostly done for computational ease but it has been 

observed in literature that the diffusivity is never a constant value[30, 38, 39]. The 

Srinivasan and Newman model[30], especially has been used as a staple for modelling 

electrochemical behavior for the greater part of 10 years since it was published in 2004 

but there -have been multiple arguments/inconsistencies with the model. The equilibrium 

configuration of Li intercalated in the electrode materials are usually defined by open 

circuit potential profile[40] as a function of intercalated Li. By default, open circuit 
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potential is related to Nernst equation which says that the Open Circuit potential(OCP) E 

is defined as 

0 max
  ln( )
RT Cs Cs

E E
F Cs


   

(1) 

    

where E0 is a reference state, usually a dilute solution. The Srinivasan, Newman 

model instead depend on a fit of the experimental Open Circuit Potential which may not 

necessarily be Nernstian in nature. Especially when it comes to electrodes that experience 

a phase change which are plateaus in Voltage in the OCP vs State of Charge(SoC) profile. 

LiFePO4 and LiC6 are phase changing materials and although there are models that try to 

fit a curve to represent the OCP[39], they are not founded on physics. Most models assume 

only 2 phases to exist, the intercalated Lithium and empty spaces which intercalating 

Lithium ions can fill. This is not entirely true as diffraction patterns have shown the 

presence of various stages of intercalated Lithium[41]. In Carbon, which is of prime 

focus, there can be multiple arrangements of intercalated lithium depending on the extent 

of intercalation. The different phases can be accounted for in two different ways: 

1.  Find the potential that drives the intercalation process as a function of the OCP and 

attribute each phase with a volume fraction. Assumptions about the conductivity of each 

phase, initial diffusion coefficients are made.  

2.  In this method, the phase change boundary[42] is tracked and would involve solving 

a moving boundary problem, which would be computationally  intensive  and would not 

really be helpful for single phase regions[43].  
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The next question is how many phases exist and which phases are important for 

consideration? Additionally, how is ionic and electronic transport in them occurring? 

From Gibbs Phase rule, the degrees of freedom is evaluated as F = C-P-2[44, 45], where 

C is the number of components and P is the number of phases. A two-phase region would 

involve no degrees of freedom and thus voltage would remain constant. These regions can 

be isolated in the OCP of an electrode or at low C-rates. The plateau region can only be 

observed at low C rates as the time constants for these phase transformation is generally 

very slow[46]. From the spectroscopy results, 2 phases i.e. LiC6 and LiC12 are clearly 

evident[41] but beyond that, they are only able to speculate as the intensity isn’t strong 

enough to capture phase change. This occurs due to lack of resolution in the device itself 

or the small quantities of the other phases.  

At least 4 phases have been suggested but experimental evidence have not 

definitely proved these suppositions.  

There are a multitude of factors that are changing with changing SoCs. Component 

diffusion, conductivity of the electrode, OCP of single phase regions would change 

depending on what phase is present, the chemical kinetics would also be affected by the 

intercalation. Most assume it to be constant over the discharge cycle, some assume 

that it  change with  intercalation as expressed by  the thermodynamic factor[38], the 

Bruggeman-type relations[47] or just fit it according to experimental data.  

Ozukhu et al.[48] have observed the method of discharge of LiC6. When the Li 

is extracted out, LiC12 nucleates from the pure LiC6. And be in phase equilibrium with 

LiC6 at one of the voltage plateaus, until the point where all LiC6 is consumed and are 
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transformed to the LiC12 phase. While Ozukhu goes on to describe the other phases such 

as LiC18 and LiC27, only 3 phases have been experimentally found, 2 of which conclusively 

and another from plausible extrapolation of results. So, it would be ideal to only consider 

3 phases, as has been done in other works[46].  

 Current induced Transition from particle-by-particle[49-51] to concurrent 

intercalation in phase separating battery electrodes by Li et al.[52] goes mostly into 

understanding what leads to the transition from a particle-by-particle intercalation to bulk 

transfer. The active population, which is the number of molecules that are actively 

participating in the intercalation process, is important because it can dictate multiple 

electrode properties and can affect capacity fading. If intercalation is only concentrated in 

a small region, it would lead to a hotspot in terms of local current density and will lead to 

fracture and increase the rate of capacity fading. The study in this paper is with respect to 

Lithium Iron Phosphate (LFP) electrodes alone which has 1 phase separating region as 

evidenced by the near constant OCP curve. The assumptions in earlier works regarding 

the uniformity in size of all the active particles leads to a current density which may not 

be accurate. The experimental results showed that the concurrent behavior is usually 

observed at high C-rates but the author does not believe that cycling behavior and C-rate 

are the only effects resulting in this transition. Interestingly, the author removed the 

electrolyte before stabilization so that there is no inter-particle lithium transport occurring. 

They noticed in their experiment that irrespective of the electrode charging current, a small 

minority of the active particles carry most of the current during charge and in contrast, on 

discharge, the number of active particle had a heavy dependence on rate of discharge. It 
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is hard to prove this conclusion through voltage curves as the same cell voltage can be 

obtained from multiple cathode and anode overpotentials. In discharge, a definite 

transition can be seen between the two effects but in charging, there is no observation of 

concurrent transfer of current. This would mean that the local current density in charge is 

higher than the current density on discharge. As for understanding the concepts of the 

transition, they assume LFP to have local transformation barriers, energy levels that need 

to be reached before the Lithium particle becomes active. Although the experiments would 

suggest that this barrier is unequal for charge and discharge, the author takes it to be 

constant and explains the heterogenous nature through the Butler-Volmer equation. The 

driving force for the movement is the difference in chemical potential, the derivate of free 

energy to the transformation barrier. The author defines a Icrit that defines the critical value 

of current at which point 65% of the particles have lithiated. Beyond this point, current 

density increases heavily with rate, something the thermodynamically consistent approach 

also agrees with although it does so through the solid-state diffusivity as compared to the 

current density. On further lithiation, the active population saturates and all the ion transfer 

would be concurrent. This is an alternate method to understanding the intercalation. The 

Icrit would not figure at low C-rates and is implicit in understanding whereas having a fit 

on the diffusivity might work for high C-rates but might not be correct, physically at lower 

C-rates. This also necessarily means that the overpotential doesn’t increase beyond this 

point, it only increases the current density. Another factor for consideration is that 

intercalation might depend on the proximity to the carbon network as these particles are 

more likely to reach the transformation barrier and lithiate as compared to particles that 
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are fair ways away from the carbon network. In conclusion, a good way to improve 

concurrent transfer would be to either decrease the transformative barrier through 

additives or by reducing reaction rate constant and exchange current density.  

Phase transformation dynamics in Porous battery electrodes by T.D Ferguson and 

M.Z.Bazant[53] is a companion paper to [54]. The author goes over understanding the 

phase transition for Iron phosphate (single plateau) and graphite (multiple plateaus). This 

paper goes understanding low C-rate behavior of LFP and graphite but this isn’t of much 

use to us since factors such as electrolyte concentration, overpotential due to diffusion and 

phase change behavior being particle-by-particle but it helps understand the way one could 

model the OCP and the chemical potential profile according to the electrode properties. 

The first thing to note was that particles in the electrodes are assumed to be normally 

distributed and two parameters that are fit are the mean size of the particle and standard 

difference of particles that are offset from the mean.  

The reference voltage(V0) is defined in the middle of the plateau and is an average 

of the voltage of the plateau by consequence and the chemical potential (Veq=V0 – μ/e) is 

defined and the overpotential is given by = V-Veq which then goes into a generalized 

Butler-Volmer equation to give the reaction rate. Multiple parameters such as electrolyte 

diffusivity, active material loading, porosity, thickness, tortuosity) are all estimated which 

might not be accurate as these factors affect the performance curve at high C-rates. The 

earliest way to recognize phase change was to assume the shrinking core model[30, 55], 

which is hard to prove physically and needs multiple parameters to be fit every time a 

solution needs to be obtained.  
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For graphite, a homogenous energy model is created with some minima 

corresponding to each phase change and the height of the barrier corresponding to how 

easy it is for the particle to lithiate in this fashion. By setting the transformation barrier[54, 

56], 2 phase behavior can be modelled effectively, each phase having its own free energy, 

chemical potential and overpotential and the relative energy giving a sense of how many 

of the active particles are in which phase. The sum of the local current densities of each 

particle will help in finding the overall current density of the system. There is however an 

interaction energy between the two phases, which recognizes the interaction that two 

adjacent particles will have with each other and how that will affect the lithiation behavior. 

This interaction energy also applies to particle vacancy dipoles which can account of 

partially filling layers and the affinity for the electrode to choose one phase over another 

due to limited availability. This is an extremely useful piece of information which can be 

used in my research to correctly model phase change behavior and for it to be independent 

of fitted parameters such as the OCP curve, the OCP curve will be a consequence of these 

factors.  

 There have been multiple papers that have touched upon thermodynamically 

consistent approaches[38, 57-59] to finding a model that closely matches experimental 

results.  The thermodynamically consistent approach tries to relate the diffusivity with the 

amount of active population. It is a reasonable assumption that diffusivity of the solid-

state does not remain constant as the cell charges/discharges. It changes with various 

factors such as temperature, state of charge, elastic strain on the electrode and on particle 

size. The thermodynamically consistent approach tries to bridge the gap between 



 

18 

 

 

modelling and physical processes by taking these changes into account. The primary paper 

under consideration has been the thermodynamically consistent analysis of Nickel-Cobalt-

Aluminum oxide(NCA). The paper considers a thermodynamic constant which is related 

to the change of the activity of a species against the change in the state of charge. An 

additional term to relate the bulk movement of Lithium ions at a highly lithiated state 

further adds to the accuracy of the model in stochastic sense.  

As for Lithium plating, there has been significant research done with Lithium 

Plating[60-64], especially on negative electrodes. Lithium Plating usually occurs due to 

deposition of Lithium on the surface of the electrode in a permanent reaction. The 

identification of plating and the amount of plating that occurs has been very difficult. 

Various in-situ means have been used to find the amount of plating, either at room 

temperature and overcharge or at low temperatures[63, 65-69]. Lithium plating is 

detrimental for two reasons, it reduces the total amount of Lithium available to be 

intercalated, thereby reducing the capacity and secondly reduces the interfacial area 

available for Lithium ions that is migrating through the electrolyte to de-intercalate, 

thereby reducing performance.  

The modelling of Lithium Plating in electrodes is quite well established. A Butler-

Volmer negative overpotential is used[70] to describe plating and as the thickness of the 

lithium plated material increase, so does the overpotential associated with Lithium Plating. 

This thus eats away the total current that is being supplied to the cell.  

Lithium plating can occur at low temperature situations where the diffusivity is 

low and that causes a build-up of Lithium ions at the surface of the electrode but with no 
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room for movement and the only option in this situation is the lithium being plated on the 

surface of the electrode. Lithium plating can also happen at high C-rate application where 

the driving force is so large and the diffusion low that it leads to plating. Lastly, Lithium 

plating can occur due to a localized increase in current density which provides so much 

energy at a localized point to a Lithium ion without the option of migration and that leads 

to Lithium getting plated on the surface.  

 There has been some debate over the mechanism or initiation of plating. There 

could be an accumulation of Lithium ions at the interface. This coupled with slow 

diffusion in the solid-state then leads to a large overpotential on the electrode and causes 

Lithium plating to occur[71]. The other concept is of a plating potential criteria[72-75]. 

This says that the plating is controlled by its overpotential which is then attributed to a 

Butler-Volmer type current density relating to plating. This criterion says that if the plating 

overpotential drops below the Li+/Li voltage which is considered to be 0 V, it leads to 

plating or lithium deposition on the surface of the electrode.  
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CHAPTER III 

METHOD DESCRIPTION 

 

Introduction 

The model was created in C++ using the formulation provided by Newman et al.[27] 

to begin with and then expand the formulation to consider thermodynamically consistent 

diffusion as provided by Bernardi et al.[38] that has been provided for NCA but also expands 

the derivation for thermodynamically consistent model for 1 phase into 3 phases ( applied to 

graphite phases). Lastly, the Lithium plating was added by using the framework provided by 

Ge et al.[70]. The basic equations are provided below. The model is a half-cell consisting of 

Nickel-Cobalt-Aluminum oxide and Carbon as cathode respectively and Lithium plate as 

anode. Since the Lithium metal plate electrode is a reference electrode in Lithium ion battery 

chemistries, the behavior observed in the model can be wholly attributed to the electrode 

under consideration. Half cells are primarily used when new electrodes are being tested or 

when the behavior of only one electrode is being tested.  

There are two sections to this Chapter. The first goes over the general formulation 

associated with the code developed. Also mentioned is the boundary conditions at the anode-

separator boundary and the cathode-current collector interface. The second section goes over 

the parameters assumed or given in literature.  
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Model description 

The four main equations (Eq. 2-5) are coupled non-linear differential equations[10, 

76] that are solved to determine the 4 dependent variables ϕs, ϕe, cs and ce which correspond 

to the chemical potential in solid phase, chemical potential in electrolyte phase concentration 

of solid phase and the concentration of electrolyte phase. All other variables are obtained 

from these 4 parameters and/or assumed/given in literature.  

 

Conservation equations 

1. Conservation of Species – Fick’s Law 

A radial isotropic sphere is considered to represent the electrode and the 

surface area of the electrode is the same as the surface area provided by the physical 

electrode. The porosity is quite an important feature because that effectively increases 

the surface area available for intercalation.       

2
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1
( )s sc c

D r r
t r r r

   
  

   
 

 

(2) 

where the D(r) is the solid-state diffusivity that is corrected to obtain a result 

that more closely matches experimental results.  

2. Conservation of Species – Electrolyte 

The Li+ ions are conserved in the electrolyte as well and is given by the form  
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(3) 
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which shows that in an electrolyte, the conservation of species is through diffusion 

of species and through an electrochemical reaction due to a volumetric current source 

term j.  

3. Transport of Electrons in Solid Phase 

This equation is related to Ohm’s law and charge conservation in the solid 

phase.  

2

2

c
eff j

x





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
 

 

(4) 

4. Charge Conservation in electrolyte phase 

This equation is related to Ohm’s law and conservation of charge in the 

electrolyte phase. Unlike the Solid phase which only has a component, there is a 

migration term and a diffusion term due to concentration gradient in the charged 

species present in the electrolyte. There is no temporal term in this equation because 

charge neutrality is assumed.  
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(5) 

  

Butler-Volmer electrochemical reaction 

Here, the volumetric current source term j is representing the electrochemical 

reaction per unit volume of the electrode. Unlike other chemical reactions, electrochemical 

reactions occur at the electrode/electrolyte interface and hence the volumetric source term is 
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related to the surface reaction current density through the Butler-Volmer Reaction and is 

given by  

( ) ( )
1/2 max 1/2 1/2 2 2( )

c e c e

F F
E E

RT RT
c s s s ej ai a k c c c c e e
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     
     

  
 

 

(6) 

 where cs is solved in equation (2) and c and e are solved with equations (4) 

and (5) simultaneously with the Butler Volmer equation.  

 

Boundary conditions 

Appropriate Boundary conditions are necessary to solve these equations. The 

boundary conditions for the equations are provided below.  

1. Species Conservation in Electrode: 

                    At particle center r=0: -Dc,0∇cs =0 (7) 

                    At particle surface r=R: ,0  
3

sc

c

jR
D c


    

(8) 

2. Species Conservation in Electrolyte:  

                    Reference electrode-Separator: 
(1 )
 e e

t
D c J

F


      

(9) 

                    Electrode – Current collector: e eD c  =0 (10) 

3. Charge Conservation in Solid-state 

                    Reference Electrode Separator: 0eff

s     
(11) 
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                    Electrode – Current Collector: 
eff

s J     
(12) 

 

4. Charge Conservation in Electrolyte phase 

                    Reference Electrode – Separator: 0e   
(13) 

                    Electrode – Current Collector: 0eff

e     
(14) 

Since the reference electrode of Lithium metal plate has such a high conductivity, it 

is usually inconsequential in the results obtained apart from a small jump in the overpotential 

which is adjusted in the code. 

 

Thermodynamically consistent approach 

For the Thermodynamically consistent model, the thermodynamic factor[38] is 

derived which corrects the solid-state diffusivity for bulk movement and the change it has 

with SoC. Thermodynamic factor is given by 
ln

1
ln

I

Ix

 
 
 

 and the new Fick’s law with 

thermodynamic factor considered looks like the following 
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(15) 

and the thermodynamic factor is found by fitting the OCP of the phase under 

consideration as a modification of the Nernst equation[38]. 
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The formulation of the data is quite well explained by Bernardi et al.[38]. For the 

sake of brevity, the following result was directly obtained from the paper.  

9
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(16) 

where xI is the SoC of the phase being considered and xS is the number of sites 

available for intercalation divided by the theoretical total number of sites. If only 2 species 

are intercalating, the fraction of empty sites is given by xS=1- xI 

The fitting parameters Ωk can be obtained by fitting the OCP of the phase across 

the SoC that it is active in as an extension of the Nernst equation such that 
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(17) 

           The first half is the ideal chemical potential and the second half, which includes the 

series expansion[77], is the excess chemical potential that is related to excess chemical 

potential. If the OCP curve can be fit to a formulation similar to the equations provided above, 

the thermodynamically consistent solid-state diffusivity can be obtained.  

 

Lithium plating 

For Lithium plating, a Butler Volmer equation very similar to the one that 

describes the surface electrochemical reaction current source term is considered. The total 

electrochemical reaction current density is being split into the intercalation source term 

and the other goes into plating of Lithium on the surface of the electrode[70]. Plating 
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reaction only occurs when the overpotential becomes negative leading to a reversal of 

charge. Therefore, to summarize, j = j1+j2 
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(18) 

for the primary intercalation reaction, where j0,1 represents the exchange current 

density for the electrochemical reaction. 
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(19) 

For the lithium plating reaction and note, again that a min function has been added to 

make sure that plating only occurs when the overpotential is negative. Relations for j0,1 and 

j0.2 are provided by Ge et al.[70] and no modifications were made to them.  

Although c and e are solved normally and don’t change for the two reactions, the 2 

biggest differences between the overpotential of the primary reaction and the secondary 

Lithium plating reaction is that OCP of the primary reaction is given by the Nernst 

equation whereas OCP of the lithium plating reaction is 0 i.e. E1 = OCP of Electrode under 

consideration and E2=0. 

There is a change in the thickness of the lithium on the surface, film


, that is a 

time evolving potential created by the growth of the plated lithium metal film and is given 

by  
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j R 

 

 

(21) 

where 
film

film

film

R



  , 

film being the thickness of the film at any instant and 
film

is the conductivity of the film. 

 

Arrhenius temperature dependence 

The equations were solved for different temperatures and different C-rates. An 

assumption made in this study is that the temperature of the model cell whole charging or 

discharging does not change when kept in the environmental chamber[70, 78]. The factors 

that affect the cell performance are the effects of temperature on the conductivity of the 

solid-state, conductivity of the electrolytic phase, junction potential conductivity, rate 

constant of the electrochemical reaction and diffusion of the solid-state. All these factors 

are either incorporated in their fit functions or can be attributed through the Arrhenius 

temperature relation given by:  
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(22) 

 where X is the parameter under consideration at reference temperature T0. XT is 

the parameter at temperature T and Ea,X is the activation energy of the parameter that 

attributes the sensitivity of the parameter with change in temperature[79].  
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Electrolyte properties 

The electrolyte properties that are obtained through fitting experimental data[80] 

can be seen published below. 

The electrolyte diffusion coefficient of LiPF6 is fit by the equation 
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(23) 

The liquid phase ionic conductivity which also has a dependence on temperature 

and electrolyte concentration is given by the form 
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(24) 

where the parameters 
,i j  is fit based on the values obtained in [80]. 

The liquid phase junction potential[81] which is given by  

2
junc

RT

F
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
  

(25) 

where  1/2 3/20.601 0.24 0.982 1 0.0052( 294)e ec T c       (26) 

The effective values of the diffusivity, conductivity and junction potential of the 

electrolyte are affected by intrinsic properties such as tortuosity.  

effX X



  where ε is the porosity of the liquid phase and τ is the tortuosity. In 

some references, the same formulation can be seen as   ef

b ug

f

rX X   where brug is the 

Bruggeman constant.  
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Graphite phase change model 

Phase change has been incorporated from Gallagher et al.[46, 82]. The equations 

related to phase change are covered in the section below.  

Phase change has been spoken about in earlier sections. Graphite has multiple 

phases[5, 41, 43, 46, 47, 83]. In this study, 3 phases are assumed to exist, namely LiC6, 

LiC12 and LiC32. Each phase is attributed to one plateau in the Open circuit potential curve 

of graphite.  

 

 
Figure 5: Open circuit potential of lithiated graphite, reprinted from Bernardi, 

Chandrasekaran et al. 2013[38] 
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In this study, 3 phases are considered as seen in Figure 5. The starting state 

involves LiC6 exclusively present. As de-lithiation occurs, LiC6 is transformed to LiC12 

and then from LiC12 and LiC32. Reaction rate for phase change between any 2 phases j and 

k is given by 

* *

, , , ,( )s jk s j s s jk jj k cR H c    
(27) 

where *

,s jc  is the supersaturated driving force that causes nucleation and phase 

transformation.  

The rate of change for each phase is given by the following relations: 
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Each phase has an electrochemical reaction current density which only operates in 

regions that occur after the first threshold supersaturation limit is reached.  
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(31) 

s e sU      
(32) 

where Us remains the same for all three phases. Local equilibrium is assumed to 

exist between all the three phases. With the current density given, the flux related to each 

phase is calculated and thus the total de-lithiating flux.  
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Model parameters 

These models based parameters are either assumed, derived from known values or 

fit to experimental results. The parameters are not constant for NCA and graphite as these 

properties are based on experimental results that were used by the initial author to fit 

parameters.  

 Tables 1,2 and 3 will include all the parameters that would be used to run the code 

for NCA and graphite. Phase specific information for graphite is in Table 4 and finally the 

parameters essential for plating such as activation energy and the reference values for 

temperature sensitive parameters can be found in Table 5.  

 

Table 1: Common properties between all the half-cells considered 

 

Properties Unit Value 

Temperature K 298 

Initial LiPF6 concentration molm-3 1150 

Bruggeman co-efficient  1.5 

Lithium metal exchange current density A/m2 8.5 

Faraday’s constant C/mol 96487 

Universal Gas constant J/mol-K 8.314 

Radial shells for solid-state particle  20 

Total number of cells in separator  8 

Total number of cells in electrode  20 
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Table 2: Electrochemical cell properties for NCA 

Electrochemical cell properties Unit NCA 

positive 

half-cell 

Volume Fraction of active material, ε  0.4676 

Volume Fraction of liquid phase, ε2  0.3382 

Electronic conductivity of AM[84] Sm-1 0.05 

Lithium diffusion coefficient in AM, Ds m2s-1 5e-15 

Charge-transfer rate coefficient k Am-2(m3mol-1)3/2 2.3e-3 

Maximum concentration of active material mol of Li/m3 49195 

Initial Concentration of AM, y0  0.5173 

1C cell current density A/m2 10.27 

Particle size μm 7.5 

Separator thickness m 10e-6 

Separator volume fraction  0.46 

Electrode thickness m 25e-6 

Transference number of Li+ in liquid, t+  0.363 

Specific interfacial area m-1 196000 
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Table 3: Electrochemical cell properties for graphite 

Electrochemical cell properties Unit Graphite 

negative 

half-cell 

Volume Fraction of active material, ε  0.495 

Volume Fraction of liquid phase, ε2  0.384 

Electronic conductivity of AM[46] Sm-1 5 

Charge-transfer rate coefficient k Am-2 0.3 

Maximum concentration of active material mol of Li/m3 31200 

1C cell current density A/m2 22 

Particle size μm 10 

Separator thickness m 50e-6 

Separator volume fraction  0.384 

Electrode thickness m 55e-6 

Transference number of Li+ in liquid, t+  0.363 

Specific interfacial area m-1 2401000 
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Table 4: Phase specific properties of graphite 

Properties Unit Phase 1, LiC6 Phase 2, LiC12 Phase 3, LiC32 

Initial lithium fraction  0.99 0.01 0.01 

Solid-state diffusivity m2s-1 1e-14 5e-14 7e-15 

Graphite exchange 

current 

 

A/m2 0.3 0.3 0.3 

Maximum 

concentration 

 

mol/m3 30400 30400 11700 

Reference 

concentration 

 

mol/m3 29640 16600 5850 

Equilibrium potential V 0.085 0.12 0.2 

 

Table 5: Phase transformation parameters 

Phase change properties Unit Value 

Phase j to k rate constant, ks,12 and ks,23 m3/mol-s 8.0e-8;1.5e-6 

Phase j to k min limiting, *min *min

,1 ,2,s sc c  mol/m3 27300;13400 

Phase j to k max limiting, *max *max

,3 ,2,s sc c  mol/m3 7300;17800 
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CHAPTER IV 

THERMODYNAMICALLY CONSISTENT ANALYSIS ON POSITIVE 

ELECTRODES 

 

Introduction 

The first step towards creating a thermodynamically consistent approach in 

positive electrodes is to incorporate solid-state diffusivity change with SoC. Additionally, 

the equilibrium potential is made to be Nernstian in nature. The framework used has 

already been mentioned in Chapter III.  

 

Thermodynamically consistent diffusivity 

Firstly, the thermodynamically consistent solid-state diffusivity was first obtained 

and compared against a constant solid-state diffusivity. The solid-state diffusivity is taken 

to be average value of the varying diffusivity across the SoC.  

 Fitting the experimental OCP with Equation (17) using nlinfit function[85] on 

MATLAB and then using the coefficients mentioned in Table 6 in Equation (16), the 

thermodynamically consistent diffusivity is obtained as seen in Figure 6.  

Table 6: Fitting Parameters for Nernst equilibrium potential 

Phase E0 Ω2/F Ω3/F Ω4/F Ω5/F Ω6/F Ω7/F Ω8/F Ω9/F 

NCA 3.24 4.315 -0.3e2 1.5e2 -4.4e2 8e2 -8.3e2 4.5e2 -0.9e2 
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Figure 6: Thermodynamically consistent solid-state diffusivity  

vs constant diffusivity for NCAO electrode 

 

Validation 

The code was altered to a full cell code because the validation case used an NCA 

cathode and a graphite anode. The Fitted and assumed model parameters were obtained 

directly from Bernardi et al.[47]. The code ran successfully for a 40 second pulse, followed 

by a 160 second rest period for the re-equilibration of the system. The code for run for 5C, 

10C and 20C as done in the paper and the results match closely to the results obtained by 

the author. The only difference is in the response time for the re-equilibration. The code 

that was developed by the Energy and Transport Science Lab (ETSL) at Texas A&M took 
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longer took a little longer as the solid-state diffusivity could not be reduced to the values 

considered by the Bernardi et al. 

 

Figure 7: Plot comparing model results to experimental results 

 of Bernardi et al. at 20C discharge pulse[41] 

 

 The parameters that went into the model came completely from Bernardi et al.[47] 

and there was nothing different except for the solid-state diffusivity value which was 

increased by a magnitude of 10 to prevent numerical instability from giving an accurate 

solution.  
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 Once the solution was validated, it was then run to understand the effect of C-rate, 

electrode thickness and porosity on the performance of the half-cell with constant solid-

state diffusivity and thermodynamically consistent solid-state diffusivity.  

 

Effect of C-rate 

The effect of C-rate on the performance of the electrode was looked at in this 

section by understanding the trends in Figures 8 through 11. C-rate is defined as the rate 

at which the battery is being discharged relative to its total capacity. A discharge of 1C 

implies that the battery takes about 1 hour to discharge. The time for discharge may reduce 

depending on the inherent ohmic losses in the cell. At low C-rates, very little difference 

between the thermodynamically consistent model and the constant diffusivity is seen due 

to low overpotential. As C-rate is increased, the constant diffusivity model starts to deviate 

at the end of the discharge cycle as compared to the TC model.  This is because the 

diffusivity is higher in the TC model leading to better diffusion and a more lithiated 

electrode as compared to the constant diffusivity model which cannot make this 

prediction. As the C-rate is increased further to higher C-rates like 20C, a pronounced 

difference is seen between the two models. From Figure 7, it was evident that the 

thermodynamically consistent model matches experimental data at 20C meaning the 

capacity of the battery system under consideration is closer to experimental data. Thus, 

the importance of having a thermodynamically consistent model is seen at higher C-rates. 
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Figure 8: Discharge of NCA half-cell at 0.1C 

 

Figure 9: Discharge of NCA half-cell at 1C 
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Figure 10: Discharge of NCA half-cell at 2C 

 

Figure 11: Discharge of NCA half-cell at 5C 
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Effect of electrode thickness 

 Increasing electrode thickness[86, 87] while retaining the porosity does two things: 

It increases the total amount of Lithium that can be shuttled and secondly, it increases the 

surface area over which the reaction can occur. The second factor is misleading since the 

increase of surface area also increases the volume. There is a particular value of electrode 

thickness beyond which the effects of the increased volume negate the increased surface 

area. Thus, increasing the surface area increases the amount of lithiation and thus a faster 

discharge time. Additionally, increasing the electrode thickness increases the transport 

losses that occur. This has not been captured in Figure 12 as the degeneration of electrolyte 

is considered minimal.  

 

Figure 12: Effect of electrode thickness on NCA half-cell at 5C 
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Effect of particle size 

 Particle size is a measure of the average size of the conglomerate of particles that 

are present in the electrode. This is usually found using a scanning electron microscope. 

In this model, the particle size was looked at. Again, the particle size affects the surface 

area of the electrode intercalating[88]. Increasing the particle radius decreases the 

effective surface area (surface area/Volume) but the amount of lithium intercalating is the 

same thus not affecting the total capacity of the cell. Particle size of NCA electrode 

agglomerates are usually in the order of 5μm and this can be seen in Figure 13. The half-

cell does not function as intended for particles that are larger than 8 μm. 

 

Figure 13: Effect of particle size on NCA half-cell at 5C discharge 
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Effect of active material  

The effect of active material on the performance of the half-cell is complicated. If 

the active material fraction is increased, the amount of lithium present in the electrode is 

also increased but is being done so by reducing the amount of additives[89, 90] (binder, 

conductive additive). Also, the active material fraction has not increases b such a rate that 

it has affected the total capacity and the overpotential doesn’t change too much by the 

increased lithium content. The increase of active material fraction and decrease of 

conductive additive have opposing effects leading to the performance remaining the same 

as seen in Figure 14.  

 

Figure 14: Effect of active material fraction on NCA half-cell performance at 5C 
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Conclusion 

This concludes this chapter. The thermodynamically consistent solid-state 

diffusivity model has been validated and the effects of C-rate, electrode thickness, particle 

size and active material fraction on the performance of the half-cell has been understood. 

This code will now be extended to graphite to understand the effects on the physical 

parameters on the performance of the graphite half-cell incorporating phase 

transformation.   
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CHAPTER V 

THERMODYNAMICALLY CONSISTENT ANALYSIS ON NEGATIVE 

ELECTRODES 

 

Introduction 

After successfully modelling a thermodynamically consistent model in a positive 

electrode, the concept is extended to electrodes with a plateau in its OCP profile. This, as 

discussed in earlier chapter implies a phase transition. Some positive electrodes have this 

plateau. A popular one is Lithium Iron Phosphate (LiFePO4). In this study, graphite is of 

primary concern. It is widely used as an anode in Lithium-ion batteries. A lot of interest 

has gone into understanding the different phases of lithiated graphite[91-93] 

experimentally and theoretically. After considerable research, it can be said that 2 phases 

exist and have been found using in-situ experimental results[41]. Those phases are LiC6 

which has one Lithium intercalated in every sheet of the graphene structure and LiC12 

which has 1 lithium particle intercalated in every second sheet of graphene. There is 

another plateau in the OCP profile of graphite but there has been quite a lot of debate as 

to the composition of it. In this study, it is taken to be LiC32.   

 

Thermodynamically consistent diffusivity 

 By extending the concepts used in the previous chapter, one can try to understand 

the thermodynamically consistent modelling of each phase of graphite. The first step 

towards doing this is to understand the open circuit potential of each phase of graphite.  



 

46 

 

 

In Bernardi et al.[38], Us1, Us2 and Us3 represent the open circuit of the 3 phases 

i.e. LiC6, LiC12 and LiC32. From this point on, phase I corresponds to LiC6, phase II 

corresponds to LiC12 and phase III corresponds to LiC32. The OCP of each phase was fit 

against Equation (17) described in Chapter III. The fitting coefficients, found in Table 7 

is obtained by fitting the OCP of each phase to the Equation (17). This can be inserted 

into Equation (16) to result in thermodynamically consistent solid-state diffusivity for 

each phase. The solid-state diffusivity vs state of lithiation is presented below for each 

state along with the constant solid-state diffusivity that is assumed in literature (Figures 

15-17).  

 

Table 7: Thermodynamically consistent fitting parameters for the 3 graphite 

phases 

 

Phase E0 Ω2/F Ω3/F Ω4/F Ω5/F Ω6/F Ω7/F Ω8/F Ω9/F 

LiC6 0.085 0.343 -1.31 1.77 2.9594 -13.92 20.046 -13.24 3.39 

LiC12 0.12 -0.796 4.382 -12.95 24.00 -28.74 21.801 -9.626 1.899 

LiC32 0.3 -1.2e3 6.47e3 -1.7e4 2.7e4 -2.7e4 1.63e4 -5.6e3 846.7 
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Figure 15: Constant vs TC solid-state diffusivity for LiC6 

 

Figure 16: Constant vs TC solid-state diffusivity for LiC12 
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Figure 17: Constant vs TC solid-state diffusivity for LiC32 

 

Validation 

 Phase change was incorporated into the half-cell. Since the formulation for the 

phase change was quite complicated and involved the introduction of numerous new 

variables, the code had to be re-validated with data provided by Gallagher et al.[46]. The 

only difference in data as compared to what was published in the paper was the solid-

state diffusivity values, which were constant for validation purposes. The code was 

validated for C/10 and phase transformation was captured. The results in Figure 18 and 

Figure 19 show the good fit between results published and the model created for this 

study.  
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Figure 18: C/20 experimental data vs model for graphite half-cell 

 

 

Figure 19: Gallagher et al. phase change vs current model at C/20 
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Effect of C-rate 

 C-rate is a measure of the rate at which the battery discharges/charges as 

mentioned in the previous chapter. C-rate has the effect of increasing the current density 

at which, in this case the graphite electrode lithiates. It also affects the phase 

transformation behavior. There are two aspects to this study. The first is to understand the 

difference between constant solid-state diffusivity and thermodynamically consistent 

solid-state diffusivity (Figures 20-23. The second aspect to understand how C-rate affects 

phase transformation (Figures 24-27).  

In the validation case, the phase transformation at slow kinetics conditions can be 

seen. Ideally, all the LiC6 transforms to LiC12 which then completely transforms into 

LiC32. As C-rate increases, the rate of transformation from LiC6 to LiC12 to LiC32 reduces. 

This is because the kinetics of phase transition is much lower than the rate at which 

particles are being intercalated.  

As C-rate is increased, the highly intercalated regions have better solid-state 

diffusivity due to bulk movement of the lithium ions in the electrode. This is the premise 

of the thermodynamically consistent model. This can be seen at high C-rates. At low C-

rates, the overpotential created is lower meaning there would be no significant difference 

between the thermodynamically consistent model and the constant diffusivity model. Like 

in the NCA positive electrode, as the C-rate is increased, a difference starts to emerge 

between the two models.  
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Figure 20: C/4 de-intercalation of graphite half-cell 

 

Figure 21: 1.25C de-intercalation of graphite half-cell 
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Figure 22: 2.5C de-intercalation of graphite half-cell 

 

Figure 23: 5C de-intercalation of graphite half-cell 
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The next section goes into how phase transformation is affected by C-rate (Figures 

24-27). As the C-rate is increased, the overpotential created between the electrode and 

electrolyte increases. In the thermodynamically consistent model, this ensures smoother 

movement of lithium ions and a smaller gradient between the surface of the particle and 

the interior, especially at high stages of lithiation. As de-lithiation begins, the 

thermodynamically consistent model, the lithium is being shuttled across the radial shell 

and since the SoC is a function of the surface concentration, it appears to have higher 

volume fraction at any given moment. Also, during the transition from phase I to phase II, 

having lower diffusivity ensures that the phase change occurs at a more de-lithiated state 

because in the current model, the super-saturated zone at which phase transformation 

occurs is a function of concentration of each of the species. Also, a thermodynamically 

consistent approach better predicts the volume fraction of each phase more accurately if 

the voltage profile is fitted to experimental data as it represents accurate physics.  

 The surprising find was that as the C-rate was increased, the difference between 

the phase transformation behavior using the thermodynamically consistent model and the 

constant diffusivity model is lesser. This could be because of the difference in the kinetics 

between phase transformation and intercalation. The intercalation happens so quickly that 

the phase transformation is forced rather than induced due to favorable  

concentration conditions.  
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Figure 24: TC diffusivity vs constant diffusivity for 0.25C 

 
Figure 25: TC diffusivity vs constant diffusivity for 1.25C  
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Figure 26: TC diffusivity vs constant diffusivity for 2.5C 

 

Figure 27: TC diffusivity vs constant diffusivity for 5C  
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Effect of electrode thickness 

 The effect of electrode thickness on the electrode was discussed in the previous 

chapter and the reasoning would be the same for the graphite electrode as well. Increasing 

the electrode thickness without increase of porosity increases the surface area available 

for intercalation. Thus, increase in the electrode thickness would increase the rate of de-

intercalation or intercalation. Increasing the electrode thickness primarily increases the 

ohmic resistance that the lithium ion faces during intercalation or de-intercalation. This 

increases as the thickness is increases as seen in Figure 28.  

 

Figure 28: Effect of electrode thickness at 1.25C 
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Figure 29: Effect of electrode thickness on phase transformation at 1.25C 

 Regarding phase transformation of graphite, as the electrode thickness is 

increased, the surface area increases which increases the rate of removal of the lithium 

ions. Thus, phase I starts reducing at a faster rate with the 55μm electrode which in turn 

increases phase II. The same trend can be observed for the phase II to phase III 

transformation in Figure 29.  

 

Effect of particle size 

 Particle size is the size of the particle agglomerate in the electrode. Positive 

electrodes are usually smaller at around 5μm whereas graphite generally forms more 

agglomerates and is usually 10μm in size. Changing the particle size has the same effect 

as increasing the electrode thickness. It increases surface area but does not change the 
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amount of lithium present. Hence, the total capacity would not change by a large extent 

but it should be noticed that the larger size leads to faster de-intercalation. Increase in the 

radius decreases the specific area as the volume increases with increase in radius faster 

than the surface area does. In Figure 30 below, these features can be noticed. The code is 

sensitive to the specific surface area of the phase which directly affects the current density 

of each phase. It was noticed this especially with the reduction of the radius of the particle 

to a value below 10μm. This seemed to affect the results by a greater manner than expected 

(Figure 31). Hence, the study was careful not to reduce the radius of the particle below 

9μm. 

 

Figure 30: Effect of particle size at 1.25C 
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Figure 31: Effect of particle size on phase transformation at 1.25C 

Effect of active material  

  Unlike in the positive electrode, the negative electrode does not need a conductive 

additive. This is because the electrode is already made of graphite which has a high 

electrical conductivity. Thus, increasing the active material increases the amount of 

Lithium with no counter effect of reducing conductive additives. Thus, increasing the 

active material increases the amount of lithium in the electrode and thus leads to increased 

overpotential and faster de-intercalation. Another way of looking at it is that the 

electrochemical flux is reduced with increase in active material. This is seen in the Voltage 

vs specific capacity profile. Found below are Figures 32 and 33 that help understand 

graphite voltage and phase transformation curves at various active material fractions of 

0.4, 0.45, 0.5, 0.55 and 0.6. 
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Figure 32: Effect of active material at 1.25C 

 

Figure 33: Effect of active material on phase transformation at 1.25C 

With phase transformation, the trigger for nucleation is concentration. Thus, with 

higher active material fraction, phase 2 has the highest peak in the highest active material 
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region because the flux density is the lowest. This would imply that it would take longer 

to phase transform but would also imply that the SoC reduces at a smaller rate. This can 

be seen more clearly in the volume fraction vs specific capacity plot (Figure 34) below. 

 

Figure 34: Phase transformation vs specific capacity at 22 A/m2 

 

Visualization of phase change  

 Phase change was captured but to visualize the phase change occurring, a model 

was created through which phase change through the particle is visualized through a series 

of images. The color bar on the right-hand side of each image gives a representation of the 

average volume fraction in the region.  

In Figure 35 seen below, from left to right and then to the left most column of the 

next row and so on, LiC6 during de-intercalation undergoes constant de-intercalation as it 

nucleates to form LiC12. This is concentration dependent and hence the first slide can be 

noted to be completely LiC6.  
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Visualization of LiC6 

 

 
Figure 35: Visualization of phase change in LiC6 
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Visualization of LiC12 

Unlike LiC6 which constantly de-intercalates, LiC12 first intercalates as LiC6 

nucleates and then starts to nucleate to form LiC32. The nucleation is based on 

concentration of the particles at the surface. This can quite clearly be observed in Figure 

36 as the color changes from blue (lower concentration) to yellow (higher concentration).  

 

 

Figure 36: Visualization of phase change in LiC12 
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Visualization of LiC32 

LiC32 only increases in volume fraction as LiC12 nucleates to create LiC32 in the 

electrode. This is seen increasing from the surface with solid state diffusion dictating the 

speed at which the volume fraction is seen throughout the particle. 

 

 
Figure 37: Visualization of phase change in LiC32 

  

As with thermodynamically consistent modelling, the phase change is seen to 

increase uniformly throughout the particle at the earlier stages and only at later stages do 
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you see significant difference between the surface shell and the inner shells of the 

electrode particle. This trend is quite evident in Figure 37. 

 

Conclusion 

The graphite half-cell model has been verified to a graphite electrode while 

accounting for phase change. The code shows that at low C-rate discharge, multiple 

plateaus in the voltage profile are observed that correspond to the phase change of LiC6 

 LiC12  LiC32. The change of the different phase is also elucidated. The effect of C-

rate, electrode thickness, porosity, active material fraction is shown in this chapter. The 

code in this form is extremely computationally intensive and has only been validated for 

discharging conditions. The same code cannot be easily reversed due to numerical 

difficulties that can only be overcome by making non-physical reasoning. Hence, a 

graphite C++ code was created which does not account for phase change. This code does 

account for thermodynamically consistent behavior. It will be extended to incorporate 

Lithium plating at different environmental temperatures and C-rates to understand how a 

more accurate model can better predict lithium plating in a graphite half-cell.  
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CHAPTER VI 

THERMODYNAMICALLY CONSISTENT ANALYSIS ON NEGATIVE 

ELECTRODES WITH LITHIUM PLATING 

 

Introduction 

Lithium plating has been a major issue for Lithium ion batteries for a long time 

now. It has been extremely hard to experimentally find lithium plating in graphite 

electrodes using non-destructive methods. Only recently have studies been done that have 

captured trends of lithium plating at different temperatures and C-rates. It would be 

extremely beneficial to a model that could first and foremost validate lithium plating and 

then extend the same concept further. A thermodynamically consistent approach would 

suggest that at higher states of lithiation, the diffusivity of the electrode is better which 

would imply that transport within the electrode improves. This would suggest that the 

lithium plating that occurs on the electrodes are not as bad as the models are currently 

predicting. Better transport within the solid state leads to lower overpotential created at 

the surface and hence, lower lithium getting plated on the surface. The following chapter 

tries to understand the behavior of lithium plating at low temperatures and high C-rates.  

The voltage of the half-cell is plotted below at the two extreme temperature 

conditions observed in the study. Lithium ions work best at 298 ± 20 K. Any further 

deviation from these temperatures result in reduced capacity utilization, as seen in Figure 

38. Most of this performance difference should do with low solid-state diffusivity and 

increased transport losses. This can be observed in the plot below.  As temperature drops, 
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the electrode properties[94, 95] and electrolyte properties that are affected by temperature 

also reduce. This in turn manifests itself in the reduction of the solid-state and electrolyte 

potentials which can be seen in the profile below as a drop in voltage vs time/specific 

capacity. 

 

Figure 38: Voltage vs specific capacity for graphite half-cell at 255K and 273K 

 

Effect of temperature on Lithium plating 

In this section, the effect temperature on lithium plating is understood with the 

help of Figures 39-41. Lithium plating occurs when the solid-state potential is lower than 

the electrolyte potential. As the temperature reduces, the electrode and electrolyte 

properties drop according to the Arrhenius relation for temperature. This relation is 
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exponential in nature. Thus, the initial drop in temperature from 293K is the most 

significant in terms of the property change. From 293K to 273K, there is hardly any 

difference in the performance but as the temperature is reduced, the properties such as rate 

constant for intercalation, solid state diffusivity, electrolyte diffusivity and ionic 

conductivity in the electrolyte phase fall off quite significantly causing the solid-state 

potential and electrolyte potential to drop. This is reflected in the lower voltage profile at 

lower temperatures. Thus, as temperature is decreased, lithium plating increases. There is 

no lithium plating observed until 273K because there is no degradation in electrolyte and 

electrode properties until this temperature.  

 As the ambient temperature drops, the SoC at which lithium plating is initiated 

also changes. In other words, the amount of lithium shuttled into the electrode from the 

electrolyte is different. This in turn affects the performance of the half-cell.  
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Figure 39: Lithium plating film thickness in m vs specific capacity at 1C 

 

Figure 40: Lithium plating film thickness in m vs specific capacity at 2C 
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Figure 41: Lithium plating film thickness in m vs specific capacity at 0.5C 

 

 From the three plots above, the higher the C-rate, the more is the lithium plating 

that occurs but more attention is given to that in the next section. As temperature is 

decreased from 270K to 250K, one can notice that the amount of lithium plating for any 

C-rate condition increases. Decreasing the temperature leads to electrode properties 

becoming worse. The solid-state diffusivity and lithium transport are affected greatly. This 

leads to an overpotential being created at the surface of the electrode which starts to build 

up. This overpotential creates a condition where lithium ions can no longer be lithiated 

and is forced to instead precipitate or coat the surface of the electrode. This increases the 

resistance of flow further as lithium metal is now covering the pores through which 

particles would normally diffuse. In most of the cases above, at 270K, plating does not 
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start. This is because the electrode and electrolyte properties are not affected greatly until 

this temperature. Going lower causes lithium plating to occur. The film formation is 

exponential because lithium plating further causes more plating to occur.  

 

Effect of C-rate on Lithium plating 

The effect of C-rate on a graphite half-cell was discussed in the previous chapters. 

Increasing C-rate increases the current density that is being applied. In other words, the 

potential that is created to either pull the lithium ions from the electrode or to insert them 

into the electrode from the electrolyte increases. The effect of C-rate alone is enough to 

cause lithium plating, as can be seen in Figures 42-45. Plating is observed at high C-rates 

even at relatively high temperatures of 273K. This overpotential at low temperature is 

highly negative which leads to lithium metal being pushed into the electrode a rate faster 

than the solid-state diffusion can handle.  
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Figure 42: Film thickness vs specific capacity at 255K 

 
Figure 43: Film thickness vs specific capacity at 260K 
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Figure 44: Film thickness vs specific capacity at 265K 

 

Figure 45: Film thickness vs specific capacity at 270K 

 



 

74 

 

 

When this overpotential causes the electrolyte potential to become higher than 

the solid-state potential, lithium plating occurs. As the C-rate increases, this 

overpotential only increases. C-rate has as big as impact on the lithium plating as 

temperature. This has not been of as much focus as temperature has had in earlier 

works[39, 70, 75]. 

 From the plots above, it can be noted that lithium plating is generally higher for 

higher C-rates. As temperature reduces, the thickness of the lithium plating film only 

increases and does so at an exponential rate. Thus, creating low temperature situations for 

high C-rate applications is generally very dangerous for the performance of the Lithium-

ion system. Another important observation is that with the increase in the lithium plating, 

the specific capacity of the battery system reduces. This is because lithium plating causes 

the lithium ions which would generally lithiate and provide electrons for the generation of 

electricity are now being plated on the surface of the electrode. This is an irreversible 

reaction and leads to a loss in the total lithium that can lithiate. This corresponds to a loss 

in capacity. Also, lithium plating causes the surface area to reduce. This can make lithium 

ions that are present difficult to reach or conversely, during charge, pores hard to access. 

This will further reduce the total capacity of the electrode.   

 

Effect of electrode thickness on Lithium plating 

The effect of electrode thickness on a graphite half-cell at normal temperature 

conditions has already been discussed in the previous chapter. Increasing the electrode 

thickness increases the amount of lithium available for intercalation and thus the total 
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capacity of the electrode. The increase in the electrode thickness also increases the current 

density that is correlated to 1C discharge. 1C current is the current density that is required 

to discharge or charge the electrode in 1 hour. If more lithium is now present as a result 

of the electrode thickness increase, it corresponds to increase in the current density as well. 

From previous sections of this chapter, it was noted that increase in C-rate and lowering 

of temperature affect lithium plating. The increase in electrode thickness increases the 

total amount of lithium that can intercalate but that is also available for lithium plating. A 

larger current density leads to a larger overpotential and results in lithium plating to occur. 

Thus, increasing electrode thickness increases the total capacity but also affects the 

amount of lithium plating that occurs. All of this can be noticed in Figure 46 below. -- 

 

Figure 46: Lithium plating film thickness vs specific capacity at 255K 
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Conclusion 

 This chapter looked at the effect various parameters such as C-rate, temperature 

and electrode thickness has on the lithium plating that occurs. It was clear from the above 

studies that C-rate and temperature are equally influential in providing condition 

conducive to lithium plating. Electrode thickness and active material change affects the 

amount of lithium and current density thereby affecting the extent to which the electrode 

experiences lithium plating.  Lithium plating is irreversible in nature and causes a 

depletion of the specific capacity of the electrode. Once plating begins, the rate of increase 

of the film thickness is exponential and can lead to a very quick reduction in the capacity 

of the battery system. Thus, extreme care must be taken to avoid the initiation of lithium 

plating in high C-rate or low temperature applications.   
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CHAPTER VII 

CONCLUSIONS AND FUTURE SCOPE 

 

 Thermodynamically consistent models have been successfully created for positive 

electrodes with no phase change and for negative electrodes with multiple phase change 

regions. The phase change has been captured. Lithium plating has also been incorporated 

with a thermodynamically consistent model. 

 The thermodynamically consistent solid-state diffusivity was obtained by firstly 

fitting the open circuit potential vs state of charge to obtain the thermodynamically 

consistent fitting parameters. These parameters were then used to obtain a 

thermodynamically consistent solid-state diffusivity function that changed with change in 

the state of charge of the electrode. The solid-state diffusivity is highest at high states of 

lithiation. This is because the diffusion not only occurs on a particle-by-particle basis but 

also through the bulk movement of the intercalated species in the electrode. This is 

visualized as a wave of intercalation that sweeps across the electrode during intercalation.  

 Positive electrodes have no phase change observed with the exception of LiFePO4. 

This can be corroborated through the fact that the open circuit potential for the positive 

electrodes under consideration (Nickel-Cobalt-Aluminum oxide) had no plateau. The 

thermodynamically consistent model was compared to the constant diffusivity model. At 

low C-rates, there isn’t much of a difference between the two approaches due to the low 

intercalation overpotential. As C-rate is increased, the deviation of the constant diffusivity 

model from the thermodynamically consistent model can be seen, especially at high states 
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of lithiation. This is because of the assumption that diffusivity improves in 

thermodynamically consistent model. Under discharge, improved capacity utilization can 

be seen. This would imply a reduced utilization under charge.  

 For negative electrodes, there occurs phase change. The phases that are discussed 

in this study are LiC6, LiC12 and LiC32. Thermodynamically consistent approach was 

applied independently to each phase of the model by fitting the phase specific open circuit 

potential with the Nernst equilibrium potential function with excess chemical potential 

associated with intercalation. The effect of C-rate, electrode thickness, active material 

concentration and particle size were observed and the trends explained. The effect of these 

parameters on phase change were however interesting footnotes. To understand how phase 

change is affected by these parameters will help in modelling an electrode microstructure 

that is appropriate to the type of phase existing in the material.  

 The effect of the thermodynamically consistent model on plating was also 

discussed. The thermodynamically consistent modelling suggests reduced specific 

capacity with charge. It also suggests reduced capacity and phase change at higher C-rates. 

An increase in C-rate increases the overpotential at points where the solid-state potential 

is lesser than the electrolyte potential, plating is observed to occur on the surface of the 

electrode. Increasing C-rate increases the likelihood of plating occurring and decreasing 

temperature has the same effect. This was found to be true even in a thermodynamically 

consistent model but the extent to which plating occurs can be more accurately depicting 

using the phase change model.  
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 The future scope of this project would be to incorporate phase change in the 

charging model and understand how phase change changes when lithium plating occurs. 

Another avenue to probe is the effect of lithium plating with particle size and electrode 

thickness.  
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NOMENCLATURE 

 

a Specific Interfacial area, 1/m  

c Concentration, mol/m3 

D Diffusivity coefficient, m2/s 

E Equilibrium potential, V 

F Faraday’s constant, C/mol 

H(x) Heaviside function 

j Volumetric electrochemical reaction flux, A/m3   

J Surface reaction flux density, A/m2 

k Reaction rate constant, mol0.7m-1.1s-1 

M Molecular weight of Lithium metal, g/mol 

r Radial Co-ordinate, m   

R Universal Gas Constant, J/mol-K 

Rp Radius of isotropic electrode sphere 

t Time, s 

t+ Transference number of Lithium ion  

T Temperature, K 

T0 Reference Temperature, 298 K 

x State of Charge of species 
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Greek Symbols 

γ Activity coefficient, m3 

δ Thickness of Lithium plating, m 

Δ Difference between final and initial states 

ε Volume fraction 

εs,j Phase specific volume fraction 

κjunc Liquid junction electrolytic conductivity, S/m 

κeff Effective electrolytic conductivity, S/m 

μ Chemical potential, J 

ν Liquid thermodynamic co-efficient 

ρ Density of Lithium metal, kg/m3 

ϕ Chemical potential, V 

σeff Effective electrode electronic conductivity, S/m 

Ω Fitting parameter 

 

Subscripts 

* Supersaturation for phase nucleation 

0 Reference state related to dilute limits 

1 Intercalating species  

2 Lithium plating terms 

e Electrolytic phase 

eff Effective 
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film Lithium metal film 

I Intercalating species 

j Phase j 

jk Phase j to phase k transition 

s Solid phase 

S Vacant Site or host species 
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