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ABSTRACT 

 

The increasing demand of wheat and the incidence of extreme weather events 

demand the development of high yielding wheat cultivars with resilience to extreme heat 

events. Photoprotective traits, as cuticular waxes, support the plant to maintain the 

photosynthetic activity, decrease stomatal water loss and regulate the plant’s internal 

temperature under extreme abiotic stress. The work described in this dissertation aims to 

develop new tools for phenotyping epicuticular wax and grain yields that can potentially 

contribute to accelerate the genetic gain of wheat to fulfill the demand of this 

economically important cereal by 2050. The objectives of this study were; i) to 

understand the role of leaf EW as a photoprotective mechanism for adaptation, ii) 

develop reliable and efficient indirect selection methodologies for the accurate 

estimation of EW content, and iii) define selection indices for indirect estimation of GG 

of GY under heat stress environments incorporating the spectral response of the plant. 

For the first objective, a set of RIL’s was evaluated under controlled conditions. 

The light reflectance of wavelength at the visible region were highly associated with 

EW. For the estimation of EW with a leaf clip spectroradiometer, three empirical 

spectral indices were developed: EWI-1 Blue/Red, EWI-2 Blue/NIR, EWI-15 625 (1/736 – 1/832) and 

EWI-16 (625-736) / 832. Two additional linear models are also proposed, the Model-10 and 

Model-11. For the second objective, a set of spring wheat landraces and product of 

interspecific hybridization was evaluated under severe heat stress conditions. The 

canopy reflectance of the NIR and SWIR was highly associated with the EW load of the 
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flag leaves. For field phenotyping, the spectral indices DIB-2, DIB-3, and the linear 

model MB-DI-2 provided a reliable indirect estimation of the EW content in leaves. And 

for the last objective, the canopy reflectance obtained in the second study was evaluated 

for indirect selection of the GG of the wheat genotypes. Indirect selection with the 

Smith/Hazel index did not provide any additional GG when the components of GY were 

incorporated. The best parameters for indirect selection based on indices were BIO; the 

broadband vegetation indices ARI, ReCl, NDII, SAVI, GRVI and TDVI; and the narrow 

band vegetation index NDVI.  
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NOMENCLATURE 

 

EW Epicuticular wax 

SRI Spectral reflectance indices 

VI Vegetation index 

NIR Near infrared region  

VIS Visible region  

SWIR Short wave infrared region  

PLSR Partial leas square regression 

SPLSR Sparse partial least square regression  

PAR Photosynthetic active radiation  

RMSE Root mean square error 

RMSEP Root mean square error of the predictor 

DER Derivative response  

GY Grain yield 

BIO Biomass 

SNO Spikes number m-2 

GNO Grain number m-2 

TKW Thousand kernel weight 

SR Simple ratio 

NDI Normalized difference index 

DI Difference index  
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LOOCV Leaving one out cross validation 

SR’s Spectral regions 

VI’s Vegetation indices 

S/H Smith-Hazel selection index 

RIL’s Recombinant inbreed lines 

GG Genetic gain 

CIMMYT International Maize and Wheat Improvement Center 

 

 

 

 

 

 

 

 

 



 

viii 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT .......................................................................................................................ii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

CONTRIBUTORS AND FUNDING SOURCES .............................................................. v 

NOMENCLATURE .......................................................................................................... vi 

TABLE OF CONTENTS ............................................................................................... viii 

LIST OF FIGURES ........................................................................................................... xi 

LIST OF TABLES .......................................................................................................... xiv 

CHAPTER I  INTRODUCTION AND LITERATURE REVIEW ................................... 1 

1.1 High temperature stress on crop development and grain yield ...................... 2 
1.2 Physiological and morphological traits associated to heat stress ................... 3 

1.3 The influence of epicuticular wax on plant-light interactions ........................ 4 
1.4 High-throughput phenotyping for crop improvement .................................... 5 

1.5 Rationale and objectives of the project .......................................................... 7 

CHAPTER II NONDESTRUCTIVE METHOD TO ESTIMATE EPICUTICULAR 

WAX CONTENT IN LEAVES USING HIGH-RESOLUTION SPECTRAL 

INFORMATION ................................................................................................................ 9 

2.1 Introduction .......................................................................................................... 9 

2.2 Materials and methods ........................................................................................ 11 
2.2.1 Plant material and culture ............................................................................ 11 
2.2.2 Quantification of EW .................................................................................. 11 
2.2.3 Leaf radiometric measurements .................................................................. 12 
2.2.4 Identification of spectral features associated to EW ................................... 12 

2.2.5 Partial Least Square (PLSR) ....................................................................... 14 

2.2.6 Stepwise Regression (SWR) ....................................................................... 15 

2.2.7 Narrow and broad empirical spectral indices to estimate EW .................... 15 
2.3 Results ................................................................................................................ 16 

2.3.1 The effect of EW on the plant-light interactions ......................................... 16 
2.3.2 Associated response of the light reflectance and EW content..................... 23 
2.3.3 Derivative analysis and partial least square regression (PLSR) .................. 24 

2.3.4 Stepwise regression (SWR) for prediction of EW ...................................... 27 



 

ix 

 

2.3.5 Empirical spectral indices for phenotyping EW.......................................... 29 
2.4 Discussion .......................................................................................................... 33 

2.5 Conclusions ........................................................................................................ 35 

CHAPTER III FIELD-BASED PHENOTYPING OF EPICUTICULAR WAX 

USING HYPERSPECTRAL INFORMATION ............................................................... 36 

3.1 Introduction ........................................................................................................ 36 
3.2 Introduction ........................................................................................................ 39 

3.2.1 Plant material and experimental sites .......................................................... 39 
3.2.2 Leaf wax quantification ............................................................................... 40 
3.2.3 Ground base radiometric measurements ..................................................... 40 

3.2.4 Airborne hyperspectral information ............................................................ 41 
3.2.5 Spectral features associated to EW content ................................................. 41 
3.2.6 Narrow and broad empirical spectral indices to estimate EW .................... 43 
3.2.7 Stepwise Regression (SWR) ....................................................................... 44 

3.2.8 Vegetation indices ....................................................................................... 44 
3.2.9 Efficiency of indirect selection of EW with spectral based methods .......... 45 

3.2.10 Phenotyping of EW using airborne hyperspectral information ................. 46 
3.3 Results ................................................................................................................ 52 

3.3.1 Descriptive statistics .................................................................................... 52 

3.3.2 Associated response of the canopy reflectance with EW ............................ 55 
3.3.3 Broad and narrow band empirical indices for phenotyping EW ................. 58 

3.3.4 Multiple linear regression for prediction of EW ......................................... 65 
3.3.5 Association of EW content with common vegetation indices for plant 

characterization .................................................................................................... 68 
3.3.6 Selection of EW with indirect phenotyping methods .................................. 68 

3.3.7 Efficiency of indirect phenotyping of EW with aerial hyperspectral 

imagery ................................................................................................................. 71 
3.4 Discussion .......................................................................................................... 72 

3.4.1 Associated response of the canopy reflectance with EW ............................ 72 
3.4.2 Empirical indices and linear models for phenotyping EW ......................... 73 

3.5 Conclusions ........................................................................................................ 74 

CHAPTER IV SELECTION INDICES FOR HEAT STRESS IMPROVEMENT IN 

WHEAT ........................................................................................................................... 75 

4.1 Introduction ........................................................................................................ 75 

4.2 Materials and methods ........................................................................................ 77 
4.2.1 Plant material and experimental sites .......................................................... 77 
4.2.2 Grain yield and yield component ................................................................ 78 
4.2.3 Radiometric measurements ......................................................................... 78 

4.2.4 Analysis of variance (ANOVA) and correlation ......................................... 79 
4.2.5 Two samples t-test ....................................................................................... 80 



 

x 

 

4.2.6 First derivative of the spectrum ................................................................... 81 
4.2.7 Sparse partial least square regression (SPLSR) .......................................... 82 

4.2.8 Spectral vegetation indices .......................................................................... 82 
4.2.9 Selection indices .......................................................................................... 83 

4.3 Results ................................................................................................................ 90 
4.3.1 Analysis of variance and correlation of GY and components of GY .......... 90 
4.3.2 Spectral features associated to GY .............................................................. 94 

4.3.3 Vegetation indices for indirect selection of GY ........................................ 100 
4.3.4 Selection indices with GY components, associated spectral features and 

vegetation indices for indirect selection of GY .................................................. 105 
4.4 Discussion ........................................................................................................ 111 
4.5 Conclusions ...................................................................................................... 112 

CHAPTER V CONCLUSIONS ..................................................................................... 113 

REFERENCES ............................................................................................................... 115 

 

 

 

 



 

xi 

 

LIST OF FIGURES 

  Page 

 

Fig. 1 Associated response of the light reflected, absorbed and transmitted with EW 

for the abaxial surface of the leaf. The change was estimated by subtracting 

the spectral response of the leaf with EW in place minus the spectral 

response after EW was extracted with HPTS chloroform. ............................... 18 

Fig. 2 Associated response of the light reflected, absorbed and transmitted with EW 

for the adaxial surface of the leaf. The change was estimated by subtracting 

the spectral response of the leaf with EW in place minus the spectral 

response after EW was extracted with HPTS chloroform. ............................... 19 

Fig. 3 Leaf surfaces observed with scanner electronic microscopy (SEM) (A) with 

wax in place, (B) after EW was removed with an adhesive tack, and (C) 

after EW was extracted with HPLC grade chloroform. .................................... 21 

Fig. 4 Percentage of light reflectance for the adaxial (AD) and abaxial (AB) surfaces 

of the flag leaf and the EW content of the leaf (mg/dm2). ................................ 23 

Fig. 5 Slope of the linear regression models for the light reflectance at 1nm resolution 

and EW content (mg dm-2). .............................................................................. 24 

Fig. 6 Pearson correlation coefficients of the first derivative of the reflectance with 

the content of EW (mg/dm2). ............................................................................ 25 

Fig. 7 PLSR coefficients for the three main components that explain 97.34 % of the 

variability of the EW (A), and estimated values of EW in the training data 

set incorporating the three main components (B). ............................................ 26 

Fig. 8 Relationship between EW and EWI-16 (A), EWI-15 (B), EWI-8 (C) and EWI-

4 (D). The solid line indicates the best fitted line in the validation data set. .... 32 

Fig. 9 Boxplot of EW content (mg/dm2) for the four trials evaluated in 2013 and 2014 

under severe heat stress (HS) at the CENEB, in Ciudad Obregon, Sonora, 

Mexico. ............................................................................................................. 53 

Fig. 10 Average spectral response of genotypes with the highest and lowest EW 

content evaluated under heat stress (HS) in Ciudad Obregon, Sonora, 

Mexico. For HI-I, the range of the lowest to highest EW (mg/dm2) content 

were 4.05 to 4.86 and 1.16 to 2.01; for HI-II were 4.0 to 4.62 and 1.36 to 

2.01; the HI-III were 12.01 to 14.79 and 2.4 to 4.9 5; and the HI-IV from 

10.03 to 13.14 and 1.93 to 3.95. ....................................................................... 54 



 

xii 

 

Fig. 11 Pearson correlation coefficients of the EW content (mg dm-2) and the average 

response of canopy reflectance of the main regions of the electromagnetic 

spectrum. ........................................................................................................... 55 

Fig. 12  Pearson correlation coefficients of the first derivative response and EW 

content (mg dm-2) for the trial HS-I and HS-II in 2013, and HS-III and HS-

IV in 2014. All genotypes were evaluated under severe heat stress during 

grain filling and anthesis. .................................................................................. 56 

Fig. 13 Coefficients of the sparse partial least square regression (SPLSR) of the light 

reflectance and the EW content for the trials 1) HS-I, 2) HS-II, 3) HS-III, 

and 4) HS-IV. .................................................................................................... 57 

Fig. 14 Coefficients of determination from the LOOCV analysis between the simple 

ratio (SR) index incorporating the spectral bands from the 0.4 to 1.8 µm and 

EW content (mg dm-2). (A) corresponds to the trial HS-I, (B) to the HS-II, 

(C) to the HS-III and (D) to the HS-IV............................................................. 60 

Fig. 15 Coefficients of determination from the LOOCV analysis between the different 

index (DI) incorporating the spectral bands from the 0.4 to 1.8 µm and EW 

content (mg dm-2). (A) corresponds to the trial HS-I, (B) to the HS-II, (C) to 

the HS-III and (D) to the HS-IV. ...................................................................... 61 

Fig. 16 Coefficients of determination from the LOOCV analysis between the 

normalized different index (NDI) incorporating the spectral bands from the 

0.4 to 1.8 µm and EW content (mg dm-2). (A) corresponds to the trial HS-I, 

(B) to the HS-II, (C) to the HS-III and (D) to the HS-IV. ................................ 62 

Fig. 17 Coefficients of determination (R2) obtained with the LOOCV analysis 

between the EW content (mg/dm2) and the estimated broad band indices. 

The spectral indices incorporated the main spectral bands from the 0.4 to 

1.8 µm as the simple ratio (SR), the difference index (DI) and the 

normalized different index (NDI). The results obtained in every trait were 

very consistent and the presented R2 are the average response for all four 

evaluated trials. ................................................................................................. 63 

Fig. 18 Observed and estimated EW with the models A) MB-DI-2, B) MN-SR-1, and 

C) MN-NDI-3. .................................................................................................. 67 

Fig. 19 Pearson correlation coefficients of the EW load and the narrow and broad 

vegetation indices (VI). .................................................................................... 69 

Fig. 20 Pearson correlation coefficients of the EW content in leaves and the 

hyperspectral information acquired with the aerial sensor. .............................. 71 



 

xiii 

 

Fig. 21 Boxplot for GY (grain yield in g/m2), GNO (grain number/m2), TGW 

(thousand grain weight in g), SNO (spike number/m2), BIO (biomass in 

g/m2) and HI (harvest index) of the genotypes evaluated in 2013 (trial I) and 

2014 (trial II and III). ........................................................................................ 93 

Fig. 22 Pearson correlation coefficients of the first derivative of the reflectance and 

GY for the trials I) HS-II, II) HS-II and III) HS-III. ......................................... 95 

Fig. 23 Coefficient estimated in the SPLSR analysis for prediction of GY 

incorporating the canopy reflectance from the 0.4 to 1.8µm. ........................... 97 

Fig. 24 Correlation coefficients of narrow band vegetation indices and GY. ................ 101 

Fig. 25 Correlation coefficients of broad band indices and GY. .................................... 102 

 



 

xiv 

 

LIST OF TABLES 

 Page 

 

Table 1 Average response of the light reflected, absorbed and transmitted (%) for the 

visible (0.4 to 0.7 µm), red-edge (0.7-0.73µm) and the NIR (0.7 to 1.0 µm) 

regions of the spectrum and two samples t-test values comparing the mean 

of the spectral response before and after extraction of EW for the abaxial 

and adaxial surface of the leaf. ......................................................................... 22 

Table 2 Summary of the estimators of the prediction models developed with the 

stepwise multiple regression (SWR) analysis for the estimation of EW load 

in leaves. ........................................................................................................... 28 

Table 3 Spectral indices from the cluster analysis. For the cluster with the higher R2 

for the narrow band indices 2sd + mean was used to select the top 

performance indices. Results from the cross-validation k=10.......................... 30 

Table 4 Narrow and broad band indices selected based on their higher R2 values from 

the validations data set in the LOOCV and lowest RMSE in the validation 

set for the bootstrapping analysis. .................................................................... 31 

Table 5 Narrow band spectral indices for leaf pigments and light use efficiency. .......... 47 

Table 6 Narrow band vegetation indices for leaf area, red-edge, and plant water 

content. .............................................................................................................. 48 

Table 7 Narrow band vegetation indices for plant greenest. ............................................ 49 

Table 8 Broad spectral indices to characterize pigments, leaf area, and plant water 

content. .............................................................................................................. 50 

Table 9 Broad band vegetation indices for plant greenest. .............................................. 51 

Table 10 Wheat trials evaluated under heat stress (HS) in 2013 and 2014 at the 

CENEB experimental station in Ciudad Obregon (OB), Sonora, Mexico. 

The h2 corresponds to the broad sense heritability estimate, Vg is the 

genotypic variance, and CV the coefficient of determination of the 

epicuticular wax (EW). ..................................................................................... 52 

Table 11 Spectral bands selected according to the results of the Pearson correlation 

analysis, the derivative response, and the sparse partial least square 

regression analysis. ........................................................................................... 58 



 

xv 

 

Table 12 Coefficients of determination (R2) from the LOOCV analysis, and best fitted 

parameters estimated for the training data set and testes in the validation set 

by bootstrapping the estimator of the RMSE in (mg/dm2) for the narrow and 

broad spectral indices. The h2 is the estimate of the broad sense heritability. . 64 

Table 13 Linear regression models incorporating the broad and narrow bands for the 

estimation of EW load. ..................................................................................... 66 

Table 14 Average response of the phenotypic and genotypic correlation of EW with 

the developed indirect selection methodologies (ISM), the response to 

selection (RS), correlated response (CR) and relative efficiency of selection 

(RE) of the trait for selection of EW, as well as the genetic advance respect 

to the mean (GAM). All parameters were estimated in the validation data 

sets of the four trials evaluated in 2013 and 2014. ........................................... 70 

Table 15 Narrow band spectral indices for leaf pigments and light use efficiency. ........ 85 

Table 16 Narrow band vegetation indices for leaf area and plant water content. ............ 86 

Table 17 Narrow band vegetation indices for plant greenest. .......................................... 87 

Table 18 Broad spectral indices for leaf pigments, leaf area and plant water content. .... 88 

Table 19 Broad band vegetation indices for plant greenest. ............................................ 89 

Table 20 Analysis of variance, and broad sense heritability estimates for the GY 

(grain yield in g/m2), SNO (spike number/m2), GNO (grain number/m2), 

TGW (thousand grain weight in g), HI (harvest index), and BIO (biomass in 

g/m2). ................................................................................................................ 91 

Table 21 Phenotypic (𝑟𝑝) and genotypic (𝑟𝑔) correlation of components of GY with 

GY, response to selection (RS), correlated response (CR) and selection 

efficiency (SE) of indirect selection for GY, harvest index (HI), biomass in 

g/m2 (BM) and spike number/m2 (SNO). ......................................................... 92 

Table 22 Two samples t-test of the average light reflectance (LR) for the spectral 

signatures within 1 +/- SD from the mean of GY. ............................................ 94 

Table 23 Correlation coefficients of the first derivative of the spectrum and GY. .......... 96 

Table 24  Spectral band identified with the SPLSR analysis. .......................................... 98 

Table 25  Broad sense heritability estimates, correlated response (CR), response to 

selection (R), and phenotypic and genotypic correlations of the selected 

spectral regions and GY. ................................................................................... 99 



 

xvi 

 

Table 26 Phenotypic (𝒓𝒑) and genotypic (𝒓𝒈) correlations of narrow and broad 

spectral indices, and estimates of the broad sense heritability (h2), response 

to selection (R), correlated response to selection (CR) and efficiency of 

indirect selection. ............................................................................................ 103 

Table 27 Expected genetic gain (EGG) for the selected 5% of the genotypes, and 

relative efficiency of indirect selection (RE) compared with selection of GY 

per se incorporating the components of GY and BIO as selection indices. 

Biomass (BIO), and the correlation coefficient (r) of the coefficient of the 

index and the breeding value. ......................................................................... 106 

Table 28 Expected genetic gain (EGG) for the selected 5% of the genotypes, and 

relative efficiency of indirect selection (RE) compared with selection of GY 

per se incorporating the selected spectral regions with the derivative 

analysis and the SPLSR in selection indices for GY, and the correlation 

coefficient (r) of the coefficient of the index and the breeding value. ........... 107 

Table 29 Expected genetic gain (EGG) for the selected 5% of the genotypes, and 

relative efficiency of indirect selection (RE) compared with selection of GY 

per se incorporating broad band spectral indices in selection indices for GY, 

and the correlation coefficient (r) of the coefficient of the index and the 

breeding value. ................................................................................................ 108 

Table 30 Expected genetic gain (EGG) for the selected 5% of the genotypes, and 

relative efficiency of indirect selection (RE) compared with selection of GY 

per se incorporating narrow band spectral indices in selection indices for 

GY, and the correlation coefficient (r) of the coefficient of the index and the 

breeding value. ................................................................................................ 110 

 

 



 

1 

 

CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Wheat (Triticumm aestivum L.) is one of the most wide spread cereals in terms of area 

planted, with a global production of 753 million metric tons (FAO 2016). By 2050, the 

global wheat production will have to increase by 60-110% to fulfill the demand of the 

increasing population (Tilman et al. 2011). The actual increment of grain yield (GY) per 

year is not superior to 0.9%, but to ensure the necessary wheat production by 2050, GY 

must reach an annual gain of 2.4% (Ray et al. 2013). The scientific community agree 

that any advance of the current GY will secure a sustainable supply of wheat in the next 

few decades (Foley et al. 2011).  

According to the Intergovernmental Panel on Climate Change (IPCC, 2013), the 

atmospheric CO2 levels will double by the end of the century, rising the global 

temperature and significantly reducing precipitation. Climate change has a direct impact 

on crop production systems. These extreme events are already causing large reductions 

in the yield of cereals (Fontana et al. 2015). Temperatures superior to 34 ºC during the 

reproductive stage can decrease the production of wheat by 50% (Asseng, Foster, and 

Turner 2011). To cope these effects, it’s necessary to develop wheat cultivars with 

resilience to climate change. 

The increase of the productivity of wheat has been the result of the development 

of varieties with dwarf stature, increased yield and resistance to biotic and abiotic stress. 

Selection based on plant physiological and morphological traits associated to heat and 
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drought stress can increase the actual the genetic gain (Reynolds et al. 2011). Selection 

and strategic crossing of wheat genotypes with complementary physiological traits can 

enhance radiation use efficiency (RUE) and harvest index (HI), which are major drivers 

of GY  (Reynolds and Langridge 2016). However, improvement base on these traits 

heavily depends on direct phenotyping. The new generation of plant phenotyping and 

molecular technologies promises to increase the genetic gain of grain yield, but the most 

recent advances in phenomics remain empirical rather than analytical compared to 

genomics. Proximal remote sensing provides a rapid and non-destructive estimations of 

plant characteristics (Araus and Cairns 2014) facilitating the screening of a large number 

of progeny from breeding populations and germplasm (Reynolds et al. 2015). 

1.1  High temperature stress on crop development and grain yield  

Extreme high temperatures limit the growth and productivity of major crops, including 

wheat. A typical increase of 10-15 °C above the optimum growth conditions is 

considered as heat stress (Porter and Gawith 1999). Extended periods of exposure to 

high temperatures during the reproductive stage directly affect the number of grains and 

dry weight (Wollenweber, Porter, and Schellberg 2003). It has been estimated that 

temperatures higher that 34 °C during grain filling can reduce ~0.2 ton of grain yield per 

every day of exposure to these conditions (Asseng, Foster, and Turner 2011). 

Photosynthesis is the most sensitive physiological process to heat stress (Wardlaw 

1994). The decrease in the photosynthetic rate is strongly associated with the increase in 

plant photorespiration (Ogren 1984) and the reduction of grain yield (Blum et al. 1994). 

At molecular level, heat stress affects the activity of Rubisco (Salvucci and Crafts-
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Brandner 2004), decreases the efficiency of the photosystem II (Nash, Miyaio, and 

Murata 1985), and inhibits the biosynthesis of chlorophyll (Tewari and Tripathy 1998). 

During anthesis, heat stress induces pollen sterility leading to floral abortion and 

decreasing seeds number per plant (Wardlaw 1994).  

1.2  Physiological and morphological traits associated to heat stress 

Wheat is particularly sensitive to heat and drought stress. Plants respond to this genotype 

by environment interactions by modifying stress-adaptive traits for light interception, 

water uptake and use efficiency, and harvest index (Reynolds et al. 2007). This 

physiological response can be exploited to improve the tolerance of wheat cultivars, but 

these morphological and physiological traits must be highly heritable and strongly 

associated to grain yield (Edmeades et al. 2001). Some potential traits for screening are 

photosynthesis rate, membrane stability, leaf chlorophyll content, flag-leaf stomatal 

conductance (Reynolds et al. 1994), canopy temperature depression (Shanahan et al. 

1990), (Blum, Klueva, and Nguyen 2001), early heading, stay-green, and cuticular 

waxes (Reynolds et al. 2015). Integrative traits that increase albedo or that reflects 

excess photosynthetic and infrared radiation directly contribute to an increased heat load 

and unnecessary evaporative cooling (i.e. water loss).  

Leaf cuticular waxes coat the leaves and stems limiting water lost and reflecting 

excess photosynthetic and non-photosynthetic light. Epicuticular wax (EW) is the outer 

lipophilic structure deposited onto the side of epidermal cell (Shepherd and Wynne 

2006), composed by long chain aliphatic molecules (hydrocarbons as esters, alcohols, 

fatty acids, and aldehydes) fixed to a layer of polymer cutin (Buschhaus and Jetter 
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2011). This cuticle is an adaptive response to water stress that prevents plants from 

desiccation. Stress-resilient plants, adapted to arid conditions, tend to have a ticker layer 

of wax compared to plants from more temperate locations. Through the optimization of 

this cuticle, plants prevent water loss by the cuticular route. Reflective leaf hairs and 

waxes maintain a temperate canopy and cellular environment, reducing unnecessary 

water loss, enzymatic denaturation and membrane oxidation (Shepherd and Wynne 

2006). EW is critical to dissipate albedo/heat during high light intensity, regulating the 

plant temperature (Mondal et al. 2014) and evaporative cooling based water loss. It is 

estimated that the optimization of this cuticle can potentially reduce water loss as much 

as 31,000 liters/acre, or 1/3 inch of rain/irrigation water per day (Richards, Rawson, and 

Johnson 1986). At physiological level, the regulation in the excess of light by the 

epicuticular wax might reduce the risk of over-excitation of PSII and prevent photo 

oxidative damage (Robinson 1993).  

1.3 The influence of epicuticular wax on plant-light interactions  

As a photoprotective layer, EW is associated with an increase in light reflectance at the 

photosynthetic active radiation region (PAR) (Johnson, Richards, and Turner 1983), a 

decrease in the light transmitted through the mesophyll cells (Johnson, Richards, and 

Turner 1983) reduction in the absorbed light at the near-infrared region (NIR) (Cameron, 

1970; Eller, 1979). Short wavelength energy is also highly affected by the presence of 

waxes, mutagenic UV light (~ 330 nm) and the PAR (680 nm) reflectance significantly 

increase in waxy leaves (Holmes and Keiller 2002). A reduction in reflectance by 

cuticular waxes for E. cinerea at the 270-500 nm, and for E. gunni at the PAR suggest 
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that light reflectance interactions are very specific to plant species (Johnson, Richards, 

and Turner 1983). EW has also a marked effect on total reflectance, strongly influencing 

reflectivity and dissipates albedo/heat during high light intensity. Significant increases in 

the percentage of light reflectance have been attributed to the only presence of EW 

(Johnson, Richards, and Turner 1983). Waxy leaves are normally very reflective of UV 

(330 nm) and photosynthetic (680 nm) light (Holmes and Keiller 2002), which protects 

against the damage by UV radiation. However, the key reflectance event by EW is at the 

near-infrared (NIR) wavelengths (Caldwell et al., 1983; Ellen, 1979; Cameron, 1970). 

The reduction in energy abortion at this NIR decreases plant temperature (Richards, 

Rawson, and Johnson 1986), transpiration (Shepherd and Wynne 2006) and prevents 

nonphotochemical quenching by blocking the heat that would otherwise reach the tissue. 

Overall, waxy leaves reflect more energy that protects the photosynthetic machinery, and 

represent a selective advantage in environment where the solar radiation is intense or of 

long duration. 

1.4  High-throughput phenotyping for crop improvement 

The application of remote sensing approaches has enabled advances in plant 

phenotyping, facilitating plant characterization and indirect selection of complex traits. 

Spectral information enables the characterization of chlorophyll, carotenoids and water 

content in plants by detecting the light reflected across the whole electromagnetic 

spectrum. Structural, physiological and biochemical characteristics are phenotyped by 

transforming this spectral response into simple mathematical combination or vegetation 

indices. Through the integration of the plant spectral response under different water 
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regimens, it has been possible to predict 40% of the genetic variation of corn grain yield 

(Weber et al. 2012). 

Although major advances in molecular breeding and statistical techniques have 

enabled selection base on genotypic data, there still a need for phenotypic information. 

The ultimate goal of phenotyping platforms is the rapid, accurate and simultaneous 

characterization of large numbers of genotypes at low cost. The acquisition of 

hyperspectral information enables the assessment of complex traits by obtain hundreds 

of spectral bands from the near-infrared (NIR), the visible (VIS), and the short-wave 

infrared region (SWIR) of the electromagnetic spectrum. Under natural sunlight 

conditions, hyperspectral sensors capture the light reflected by vegetation, a direct 

response of the plant physiology. The variation in the light reflected at the VIS region 

(400-700 nm) directly depends of the light absorbed by chlorophylls and carotenoids, 

and the NIR (700-1300 nm) is highly influenced by the scattering of the light in leaf 

tissue (Knippling 1970). Spectral vegetation indices combine reflectance information 

from the whole spectrum by using simple mathematical formulas to obtain a quantitative 

estimation of plant characteristics. The Normalized Difference Vegetation Index 

[NDVI=(NIR-VIS)/(NDVI+VIS)] (Rouse et al. 1974) is a common and widely used 

index to monitor the greenest of plants. Several other indices have also been developed 

to phenotype chlorophyll content (Maccioni, Agati, and Mazzinghi 2001, Yu et al. 

2012), xanthophyll cycle and chlorophyll fluorescence (Gamon et al. 1990), pigments 

concentration (Panuelas, Baret, and Fillela 1995)(Blackburn 1998, Merzlyak et al. 1999), 

anthocyanins (Gitelson, Merzlyak, and Chivkunova 2001, Van den Berg and Perkins 
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2005, Gitelson, Keydan, and Merzlyak 2006), carotenoids content (Gitelson, Zur, et al. 

2002), plant water status (Hunt and Rock 1989), lignin and cellulose (Daughtry 2001), 

nitrogen (Serrano, Penuelas, and Ustin 2002) and light use efficiency (Gamon, Serrano, 

and Surfus 1997). 

The development of novel remote sensing methodologies for proximal sensing 

phenotyping promises to transform plant characterization, facilitating the dissection of 

the genetics of quantitative traits, particularly those related to yield and stress tolerance. 

Grain yield is a complex trait to be predicted using a single spectroradiometrical index. 

During the growth and development, the plant will intercept and reflect solar energy, 

which will provide an indicator of physiological traits that are directly related to grain 

yield. Integrating the spectral response at the NIR region, (Babar, van Ginkel, et al. 

2006) was able to predict up to 75% of the variation of grain yield in wheat. Similarly, 

applying linear empirical models to predict grain yield using reflectance data collected 

during anthesis and grain filling, (Hernandez et al. 2015) also estimated grain yield with 

a prediction accuracy of 77% and 91%. Physiological traits as canopy temperature, water 

and pigment content, and biomass can be easily estimated using airborne imaging, but 

still necessary the development of phenotyping approaches for complex traits to screen 

genetic resources and breeding progeny at large scale. 

1.5 Rationale and objectives of the project 

High temperature stress causes changes in various physiological and biochemical 

processes and development of morphological and physiological adaptations. The 

cuticular waxes are a protective mechanism for heat stress avoidance. In water scarcity 
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and high temperature environments, this cuticle can provide resilience to maintain high 

GY. Advances in phenotyping methodologies of this cuticles will facilitate its 

introgression into elite background, and facilitate the understanding of the molecular and 

physiological basis of improved adaptation conferred by the presence of this cuticle.  

 Plants use a small proportion of the light intercepted in the photosynthetic 

process, and the cuticular waxes have an important role dissipating the excess of light. 

The central hypothesis of this project is that cuticular waxes on the leaf surface 

contribute to change the light reflected by the plant and these changes can be statistically 

associated with quantitative measurements of this cuticle. Additionally, we hypothesize 

that the spectral response of the plant is linked to major physiological process in the 

plant, which can be used as a proxy estimator of GY under heat stress environments. The 

main objective of this study is to advance technologies in precision phenotyping by 

developing indirect selection methodologies for stress adaptive traits and GY. To 

accomplish this objective, we have established the following specific objectives: 1) 

Understand the role of leaf EW as a photoprotective mechanism for adaptation, 2) 

Develop reliable and efficient indirect selection methodologies for the accurate 

estimation of EW content, and 3) Define selection indices for indirect estimation of the 

genetic gain of GY under heat stress environments.  
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CHAPTER II 

NONDESTRUCTIVE METHOD TO ESTIMATE EPICUTICULAR WAX 

CONTENT IN LEAVES USING HIGH-RESOLUTION SPECTRAL 

INFORMATION 

 

2.1 Introduction  

Cuticular waxes are protective mechanisms that cover plant surfaces to avoid and 

overcome climatic extremes. This specialized structure plays a key role for adaptation to 

diverse and extreme environments. Waxes are an exterior lipid coating deposited onto 

the surface of the epidermal cells, composed of two main lipophilic structures, the 

cuticular wax and the cutin (Buschhaus and Jetter 2011). Cuticular waxes are a complex 

mixture of different hydrocarbon chains or ring structures (Walton 1990) embedded 

(intracuticular wax) and dispersed (epicuticular wax) on top of the polymer cutin. The 

total load of these two wax structures ranges from the 8 to 40 µg cm-2, of which 20 to 

90% corresponds to epicuticular wax (EW) (Buschhaus and Jetter 2011).  As the main 

interface of the plant with the environment, EW prevents non-stomatal and stomatal 

water loss (Bengtson 1978) and avoids photo oxidative damage by reducing the risk of 

over-excitation of the PSII (Robinson 1993).  

The presence of waxes and leaf hairs directly affects the reflectivity of leaves, 

modifying the optical characteristics of plant surfaces. In Eucalyptus and Kalanchoe 

waxy leaves reflect more light at the 0.33µm and 0.68µm, compared to non-waxy leaves 

(Holmes and Keiller 2002). However, these plant-light interactions are specific for every 
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species. For E. cinereal and E.gunni, the main changes in light reflectance were 

identified at the 0.27-0.5µm, and at the 0.4-0.5µm in leaves of K.pumila. (Shepherd and 

Wynne 2006). The light dispersed on the surface of the leaves is also affected by the 

presence of glaucousness, the greyish waxy visible coat of leaves. Glaucous lines of 

wheat tend to be more reflective at the PAR (photosynthetically active region), 

compared to non-glaucous lines, and simultaneously decrease ~12% of the light 

transmitted through the leaf (Johnson, Richards, and Turner 1983). EW dissipates light 

at the NIR (near infrared region) reducing plant temperatures(Mondal et al. 2014) and 

reducing unnecessary evaporative cooling (i.e. water loss) (Shepherd and Wynne 2006). 

If optimized, cuticular waxes can provide adaptability to water limited and high 

temperature environments and potentially decrease 1/3 inch of rain/irrigation water per 

day (Richards, Rawson, and Johnson 1986). EW is conventionally extracted by dipping 

the plant tissue into organic solvents for a short period of time, and quantify using 

colorimetric methodologies  (Ebercon, Blum, and Jordan. 1977). This approach is 

impractical and costly for screening a large number of wheat genotypes and is limited in 

allowing multiple stage monitoring of EW during development. In this study, we 

evaluated the application of high-resolution spectral information as a proxy estimate of 

the EW load in leaves. Under the assumption that EW modifies the light reflected by the 

leaf, we aim to identify these specific changes and statistically incorporate them to 

develop predictors for indirect selection of EW. The results of this study will support 

ongoing research to understand the physiological and genetical mechanisms of these 

waxes as an adaptive response to heat and drought stress environments. For wheat 
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breeding programs, an indirect selection method will facilitate the selection and 

introgression to accelerate the development of high yielding resilient wheat cultivars to 

climate change.  

2.2 Materials and methods 

2.2.1 Plant material and culture  

Twenty-four spring wheat recombinant inbred lines (RIL) derived from the cross of the 

heat tolerant cultivar ‘Halberd’ and the heat susceptible ‘Len’ were established under 

controlled conditions in a plant growth chamber as a completely randomized design with 

four replications. These genotypes were sown in nursery pots, 18.5 cm in height and 

16.2 cm in diameter, filled with the substrate peat moss and fertilized twice during the 

plant growing period with the standard fertilized 20-20-20. The plants were established 

in a plant growth chamber programmed with intervals of twelve hours of light and 

twelve hours of dark. At flowering, plants were separated in two groups. Each group 

consisted of twenty-four genotypes including two replications, from now on referred as 

the EW-change and the EW-content group.  

2.2.2 Quantification of EW  

Samples from flag leaves were collected at 10 to 15 days after pollination (DAP) to 

quantify EW content. For the genotypes included in the EW-content group, the leaf 

samples were obtained right after the light reflectance from the adaxial and abaxial side 

of the leaf was captured. Two samples were obtained from the genotypes included in the 

EW-change group, one sample from half of the flag leaf before EW was extracted and an 

additional sample from the remaining half of the leaf after EW was extracted with 
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chloroform. Every sample consisted of six punches of 1 cm diameter and were collected 

in 2.0 milliliters (mlL) glass vials. The EW was extracted by emerging the leaf sample 

for 20 seconds in 1.5 ml of chloroform (CHCl3) at room temperature, and quantified via 

the colorimetric technique described by (Ebercon, Blum, and Jordan. 1977). A standard 

curve was developed to transform the absorbance readings at the 590 nanometer (nm) to 

milligrams (mg) per square decimeter (dm2) of EW.   

2.2.3 Leaf radiometric measurements  

All radiometric measurements were obtained with a CI-710 Miniature Leaf Spectrometer 

from CID Bio-Science. This spectroradiometer captures the spectral information from 

the 350 to 1050 micrometer (nm). The equipment was calibrated every ten minutes with 

an integrated BaSO4 reference disk. For the genotypes included in the EW-change 

group, ten reading of the light reflected, absorbed and transmitted through the leaf were 

captured from the abaxial and adaxial side before and after EW was removed with HPL 

chloroform. Light reflectance was the only light interaction recorded from the plants in 

the EW-content group. The range of all spectral measurements was restricted to 400 -

900 nm to eliminate the noise captured at the ends of the signals, and the spectral 

resolution was adjusted to 1 nm.   

2.2.4 Identification of spectral features associated to EW 

The spectral signatures collected after EW was removed were subtracted from the initial 

readings captured with EW in place. These differences are presented as percentage of 

change (Fig. 1 and 2). A two samples t-test was conducted to statistically assess the 

spectral response of the visible (400 to 748 nm), the red-edge (691 to 730) and the near 
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infrared (NIR 751 to 900) regions before and after extraction of EW. The analysis was 

conducted under the null hypothesis that the difference of the mean spectral response 

captured with EW in place and the mean spectral response after removal of EW is equal 

to zero (𝐻0: 𝜇1 − 𝜇2 = 0). The null hypothesis was tested with the assumption of similar 

standard deviations: 𝑡 =
𝑥1− 𝑥2

𝑠𝑝√
1

𝑛1
+

1

𝑛2

. In this equation, 𝑥1 and 𝑥2  represent the average 

spectral response with EW in place and after EW wax removed, respectively; 𝑠𝑝 

corresponds the pooled standard deviation; 𝑛1 and 𝑛2 are the number of observations 

included per sample. The pooled standard deviation was calculated with the follow 

equation: 𝑠𝑝 = √
(𝑛1−1)𝑠1

2+(𝑛1−1)𝑠2
2

𝑛1+𝑛2−2
, where 𝑠1

2 and 𝑠2
2 are the standard deviation of the 

sample 1 and 2, 𝑛1 and 𝑛2 are the number of observations included in the mean of every 

sample. All results were confirmed with the t.test function, and the confidence interval 

estimated with conf.int in the statistical software R (R Development Core Team, 2012). 

The first derivative of the spectrum was computed to enhanced important spectral 

feature of the reflectance signatures collected in the EW-content group. This derivative 

approach estimates the rate of change of the reflectance, absorbance or transmittance 

with respect to the wavelength and projects the changes in the curvature of the spectrum 

for a specific interval of the signal. All the spectral derivatives were calculated within a 

window size of 11 nm using the savitszkyGolay function. This function is included in the 

package prospect (Stevens 2014) and applies the Savitzy-Golay filter (Bromba and 

Ziegler 1981) before the derivative is estimated:  
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𝒙𝒋 ∗=
𝟏

𝑵
∑ 𝒄𝒉𝒙𝒋 + 𝒉

𝒌

𝒉=−𝒌

 

 

In this equation, the xj* represents the new value obtained after the first 

derivative was estimated, N is a normalizing coefficient, k is the number of neighbor 

values at each side of j, and ch are pre-computed coefficients that depend of the 

polynomial order and degree. Pearson correlation coefficients were calculated with the 

corr function for the first derivative of the reflectance and EW content. 

2.2.5 Partial Least Square (PLSR)  

A supervised multivariate model for a training data set was built to predict the variation 

of EW (Y) with the Partial Least Square Regression (PLSR) approach. PLSR is an 

statistical method that combines the theoritical principles of multiple linear regression 

and principal component analysis (PCA) to confront situations where there exist several 

highly correlated predictor variables and relative few samples. This approach 

decomposes the response variables (X) into orthogonal scores (T) and loadings (P) 

(Geladi and Kowalski 1986), simultaneously incorporating the information from both 

variables. 

𝑿 = 𝑻𝑷′ + 𝑬 

  

In this study, two hundred spectral bands with 3 nm resolution were incorporated in the 

analysis to find the set of components that best estimates EW. The RMSE (Root Mean 

Square Error) was calculated with a leave-one-out cross validation analysis (LOOCV) in 

a subset of the data that included 66.7% of the observations collected from the EW-
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content group. This analysis was performed with the plsr function in the package pls. 

EW was  estimated for the remaining 33% of the observations (validation set) using the 

optimum number of factors detected included the PLSR model that were selected based 

on minimum RMSE values. 

2.2.6 Stepwise Regression (SWR) 

The spectral bands selected with the derivative analysis and the PLSR were incorporated 

to build a multivariate model with a semiautomatic proces in which the spectral bands 

were included and/or removed based on the significance of the partial F-values. The 

final models were defined when the inclusion of more predictors was not justifiable. All 

the models were built with the PROC REG statement in the statistical analysis software 

SAS (Inc. 2011)in a random  training data set (60% of the observations). The best 

models were selected based on their lowest values of the Mallows’ Cp estimator and 

higher coefficient of determination (R2). In the validation data set (the remaining 40% of 

the observations), the selection was base on their lowest RMSE.  

2.2.7 Narrow and broad empirical spectral indices to estimate EW  

All pairwise combinations incorporating the two hundred spectral bands at 3 nm 

resolution collected in the EW-content data set were estimated for spectral indices as 

simple ratio (𝑆𝑅 =
𝑅𝑖

𝑅𝑗
), difference (𝐷𝐼 = 𝑅𝑖 − 𝑅𝑗) and normalized difference 

(𝑁𝐷𝐼 =
𝑅𝑖−𝑅𝑗

𝑅𝑗+𝑅𝑗
). In these indices, 𝑅𝑖 and 𝑅𝑗 represent the reflectance values at i and j nm, 

respectively. A leaving one out cross validation (LOOCV) analysis was conducted to 

define the significance of the linear model and estimate the coefficients of determination 
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(R2) for EW as independent variable and the spectral indices as dependent variable (X): 

𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑗). In this equation, 𝑦𝑖 corresponds to EW, 𝑥𝑖 to the estimated spectral 

indices, and  𝛽0 and 𝛽1 are the intercept and the slope of the model, respectively. The 

spectral indices with the highest R2 values were selected to fit an additional set of linear 

models for a defined training data set (66% of the observations) to predict every 

individual spectral index based on EW. These models followed the same linear function, 

𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑖), but in this case 𝑦𝑖 represents the spectral index and 𝑥𝑖  corresponds to 

the EW content. In order to estimate the ability of the index predicting EW when 

selection is based on the index per se, the EW variable was solved for the linear models 

defined in the training data set as follow: 𝑋𝑖 =
𝑦𝑖−𝛽0

𝛽𝑖
. An estimator for the Root Mean 

Square Error (RMSE) was bootstrapped in the validation data set (34% of the 

individuals) 1000 times with the function boot. The same statistical approach was 

applied to define narrow band indices associated to EW with the red, green and blue 

(RGB), near infrared (NIR) and short-wave infrared (SWIR) spectral bands.  

2.3 Results 

2.3.1 The effect of EW on the plant-light interactions  

The variations of the light reflected, transmitted and absorbed by EW are presented in 

Fig. 1 and 2. These changes are represented as the difference in the spectral response 

with EW in place minus the spectral response collected after EW was removed with 

HPTS chloroform (CHCl3). Overall, differences observed for all three light interactions 

were similar for the abaxial and the adaxial side of the leaf. An increase on the light 
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reflectance with EW in place was detected, along with a decline of the light transmitted 

and absorbed through the leaf. 

The decrease in the percentage of light reflectance at the photosynthetic active 

radiation (PAR) when EW is in place enhances the importance of these waxes as a photo 

protective mechanism under high light intensity conditions. A minimum change in the 

reflectance at the 710 nm was detected, with an evident increase on the light absorbed 

and reflected through the leaf. Unlike the rest of the spectrum, the absorbance at the NIR 

had a similar response to the reflectance. As the EW load increases, the light absorbed at 

the NIR increases, with a dramatic decline in the transmittance.   

The extraction method with HPLC chloroform was validated with electron 

microscope scanners. In these scanners (Fig. 3) we can observe that a large proportion of 

the EW deposited on the leaf surface was removed with the chemical method using 

HPLC chloroform. In general, the chemical removal method resulted to be more 

efficient that the mechanical removal technique using the adhesive tack.  
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Fig. 1 Associated response of the light reflected, absorbed and transmitted with EW for the abaxial surface of the leaf. The 

change was estimated by subtracting the spectral response of the leaf with EW in place minus the spectral response after EW 

was extracted with HPTS chloroform.  

 



 

19 

 

 

Fig. 2 Associated response of the light reflected, absorbed and transmitted with EW for the adaxial surface of the leaf. The 

change was estimated by subtracting the spectral response of the leaf with EW in place minus the spectral response after EW 

was extracted with HPTS chloroform. 
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Significant differences were detected between the means of the transmittance, 

reflectance and absorbance of the spectral signatures registered before and after the 

extraction of EW (Table 1). The response from the adaxial and the abaxial surface of the 

leaf were similar for all three light interactions. Statistically, the light transmitted 

through the leaf was affected by the presence of EW at all three main regions of the 

spectrum: the visible, the Red-edge and the NIR. However, the reflectance at the red-

edge was completely insensitive to variations in EW change, while the visible and NIR 

reflectance decreased after EW was removed. The absorbance at the visible region of the 

spectrum was not sensitive to variations in EW, but the red-edge and the NIR were 

highly affected. As the EW is removed, a decrease of the absorbance at the red-edge and 

an increase at the NIR were detected.  
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Fig. 3 Leaf surfaces observed with scanner electronic microscopy (SEM) (A) with wax 

in place, (B) after EW was removed with an adhesive tack, and (C) after EW was 

extracted with HPLC grade chloroform. 

 

 

(A)  (B)  

(C)  
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Table 1 Average response of the light reflected, absorbed and transmitted (%) for the visible (0.4 to 0.7 µm), red-edge (0.7-

0.73µm) and the NIR (0.7 to 1.0 µm) regions of the spectrum and two samples t-test values comparing the mean of the spectral 

response before and after extraction of EW for the abaxial and adaxial surface of the leaf. 

 

   Average response (%)   

 Surface of 

the leaf 

Region of the 

spectrum 

SRWEW SRAEEW 95% CI p-value 

Transmittance AB Visible 0.085 0.116 0.006/0.054 0.014 

Red-edge 0.194 0.285 0.037/0.145 <0.001 

NIR 0.482 0.536 0.011/0.095 0.016 

BE Visible 0.094 0.169 -0.11/0.159 0.085 

Red-edge 0.187 0.325 0.059/0.218 0.002 

NIR 0.467 0.553 0.035/0.139 0.002 

Reflectance AB Visible 0.103 0.07 -0.043/-0.024 <0.001 

Red-edge 0.187 0.171 -0.033/0.005 0.142 

NIR 0.446 0.347 -0.131/-0.063 <0.001 

BE Visible 0.093 0.064 -0.039/-0.021 <0.001 

Red-edge 0.173                                                                                                                                0.162 -0.033/0.011 0.2908 

NIR 0.429 0.323 -0.151/-0.061 <0.001 

Absorbance AB Visible 0.812 0.814 -0.023/0.27 0.8655 

Red-edge 0.621 0.551 -0.129/-0.009 0.025 

NIR 0.072 0.114 0.001/0.081 0.045 

BE Visible 0.811 0.767 -0.129/0.041 0.281 

Red-edge 0.637 0.513 -0.202/-0.047 0.003 

NIR 0.104 0.124 -0.259/0.066 0.378 

SRWEW- Spectral response with EW in place                   SRAEEW- Spectral response after the extraction of EW 
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2.3.2 Associated response of the light reflectance and EW content   

Some of the spectral signatures of light reflectance collected from the EW-content group 

are presented in Fig. 4. As can be observed, the light reflectance from the adaxial surface 

of the leaves tends to be higher that the reflectance from the abaxial side. According to 

their EW content, there are differences between the light reflectance from leaves with 

high (3.18 and 3.11 mg dm-2) and low (0.94 and 1.28 mg dm-2) content of EW, and these 

differences are consistent across the entire electromagnetic spectrum.  

 

 

 

Fig. 4 Percentage of light reflectance for the adaxial (AD) and abaxial (AB) surfaces of 

the flag leaf and the EW content of the leaf (mg/dm2). 

 

 The Fig. 4 presents the slope of the linear regressions models for the reflectance 

and EW content (mg dm-2). The estimated rate of change of the light reflected for every 

unit of EW accumulated in the surface of the leaf varied across the spectrum. For the 
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visible and NIR, a positive slope is observed with an increase in the light reflectance of 

1% and 1.5%, respectively. A large decrease in reflectance of almost 1% by every unit 

of increase in the EW load occurs at the red-edge.  

 

 

Fig. 5 Slope of the linear regression models for the light reflectance at 1nm resolution 

and EW content (mg dm-2). 

 

2.3.3 Derivative analysis and partial least square regression (PLSR) 

The first derivative of the reflectance effectively enhanced specific changes in the 

spectral signature, separating the peaks from the overlapping bands. Four main peaks 

were identified to be highly associated with EW content. The first peak is located at the 

480 nm; a second peak at the 560 nm, where the reflectance reached the maximum 

absorption for the green color; a third peak at the 640 nm, directly associated with the 

absorption of chlorophyll; and at the NIR region the peak was centered at the 750 nm, 
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which corresponds to the spectral change where the reflectance starts to increase from 

the visible to the NIR.  

 

 

Fig. 6 Pearson correlation coefficients of the first derivative of the reflectance with the 

content of EW (mg/dm2).  

 

According to the results obtained from the PLSR analysis, the three main 

components explain 97.34% of the variability of EW. These components were also 

selected based on their lowest value of the root mean square error of the prediction 

(RMSEP). The coefficients included in the model are shown in Fig. 7-A. These 

coefficients can be directly applied to select relevant predictors according to the 

magnitude of the absolute value. The EW values for the training data set were predicted 

by integrating the selected components and the value of the coefficients. A linear 

relationship between the estimated and predicted values of EW was found (Fig. 7-B).   
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Fig. 7 PLSR coefficients for the three main components that explain 97.34 % of the variability of the EW (A), and estimated 

values of EW in the training data set incorporating the three main components (B).  

 

 

(A) (B) 
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2.3.4 Stepwise regression (SWR) for prediction of EW  

The spectral bands selected from the derivative and the PLSR analysis were used as 

explanatory variables to select a set of spectral bands the best predict EW. The spectral 

bands included are the follow (nm): 520 to 550, 619 to 640, 652 to 670 and 760 to 751. 

Twelve linear models were statistically associated with EW variation at 1% of 

probability. According to the R2 values estimated in the training data set, the developed 

linear models can predict up to 73% of the EW variation including six spectral bands. 

The root means square errors (RMSE) estimated in the validation data set were similar, 

which limited the selection of the models based on this estimator. Overall, the Model-10 

and Model-11 seems to accurately estimate of the EW load in leaves.  
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Table 2 Summary of the estimators of the prediction models developed with the stepwise multiple regression (SWR) analysis 

for the estimation of EW load in leaves.  

 
Model-1 Intercept 670       RMSE R2 C(p) 

 -0.632 95.37       0.79 0.48 14.62 

Model-2 Intercept 670 715         

 1.37 99.49 -9.88      0.75 0.53 10.06 

Model-3 Intercept 658 670 715        

 1.69 48.18 48.43 -11.78     0.71 0.56 8.39 

Model-4 Intercept 658 670 715 751       

 0.61 56.18 24.13 -16.11 6.09    0.69 0.57 7.54 

Model-5 Intercept 658 715 751        

 0.59 72.73 -17.39 7.26     0.79 0.57 6.08 

Model-6 Intercept 658 715 721 751       

 1.23 33.54 178.36 -211.93 42.73    0.74 0.67 -2.43 

Model-7 Intercept 652 658 715 721 751      

 1.12 -76.29 100.53 220.21 -256.6 50.98   0.72 0.69 -4.68 

Model-8 Intercept 652 658 715 721 742 751     

 0.91 -110.95 119.26 276.39 -345.22 140.64 -53.26  0.69 0.71 -5.48 

Model-9 Intercept 652 658 715 721 742      

 1.001 -95.84 109.77 258.46 -312.18 71.38   0.78 0.71 -6.77 

Model-10 Intercept 652 658 715 721 742 745     

 0.91 -111.64 123.444 259.35 -324.86 178.09 -96.12  0.74 0.73 -6.48 

Model-11 Intercept 523 652 658 715 721 742 745    

 0.58 -28.63 -85.62 131.39 295.23 -356.80 190.83 -103.51 0.71 0.73 -5.55 

 



 

29 

 

2.3.5 Empirical spectral indices for phenotyping EW 

Approximately 65% of the EW variation can be estimated with empirical spectral 

indices. All sixteen narrow band indices reported in Table 3 were selected as candidate 

indices to estimate EW content based on their RMSE and R2 values. These indices 

involved combinations of spectral bands located at the 650, 700 and 830 nm. Most of 

these bands were previously associated to EW in the derivative analysis and the PLSR. 

Thus, the first derivative and the PLSR analysis can be an effective approach to 

eliminate unassociated spectral information to a response variable. Two indices 

combining the spectral bands at the 625, 736 and 832 nm were identified as best 

predictors for EW. Incorporating the blue and red bands of the spectrum, broad indices 

estimate as much as 44% of the EW variation. The NIR region was also associated to 

EW, but an index that involves this spectral band will be highly sensitive to differences 

in leaf area when applied for canopy reflectance.  

The Figure 8 shows the relationship of three narrow and one broad band index 

with EW. These indices were selected when light reflectance was captured with an 

active sensor, and non-additional factors as canopy architecture or light scattering are 

considered. When the indices were calculated in the validation data set, the values of the 

indices simultaneously increase with the increase of EW. 
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Table 3 Spectral indices from the cluster analysis. For the cluster with the higher R2 for 

the narrow band indices 2sd + mean was used to select the top performance indices. 

Results from the cross-validation k=10. 

 

Index Number of 

clusters 

Number of indices in 

the selected cluster 

Values of the R2 

N B N B N B 
𝐑𝐢 5 3 44 1 0.34-0.47 0.39 

𝐑𝐢

𝐑𝐣

 5 4 121 2 0.50-0.56 0.34-0.36 

𝐑𝐫 − 𝐑𝐣 6 3 58 4 0.38-0.45 0.14-0.16 

𝐑𝐢 − 𝐑𝐣

𝐑𝐢 + 𝐑𝐣

 6 5 112 1 0.51-0.54 0.38 

𝐑𝐢 − 𝐑𝐣

(𝐑𝐢 + 𝐑𝐣)
𝟐
 5 3 144 3 0.48-0.54 0.24-0.4 

(
𝟏

𝐑𝐣

) − (
𝟏

𝐑𝐣

) 5 3 195 6 0.48-0.53 0.35-0.39 

𝐑𝐤 [(
𝟏

𝐑𝐢

) − (
𝟏

𝐑𝐣

)] 6 4 5683 24 0.41-0.65 0.24-0.37 

𝐑𝐢 − 𝐑𝐣

𝐑𝐤

 6 3 3624 18 0.41-0.62 0.33-0.36 

𝐑𝐢

𝐑𝐣
𝟐 5 4 142 3 0.47-0.52 0.38-0.4 

(
𝐑𝐢

𝐑𝐣

) − 𝟏 5 3 80 2 0.51-0.56 0.14-0.16 

𝐑𝐢
𝟐 − 𝐑𝐣

𝐑𝐢 + 𝐑𝐣
𝟐 

6 5 44 2 0.50-0.54 0.20-0.23 

All the indices were highly significant with p-values <0.0001 

N-narrow band indices 

B-broadband indices 
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Table 4 Narrow and broad band indices selected based on their higher R2 values from the validations data set in the LOOCV 

and lowest RMSE in the validation set for the bootstrapping analysis.  

 

 Bests fitted model parameters     

Index a B R2 RMSE 

(mg/dm2) 

95% CI p-value 

 Broad indices with two RGB and NIR spectral bands 

EWI-1 Blue/Red 0.213 0.04 0.44 1.19 1.037-2.17 <0.0001 

EWI-2 Blue/NIR 0.07 0.13 0.39 1.18 0.98-1.98 <0.0001 

EWI-3 (NIR-Red)/Blue -0.93 0.01 0.31 1.19 1.04-1.97 <0.0001 

EWI-4 (Red
2

-Blue)/(Red-Blue
2

) -0.09 -0.03 0.32 1.19 1.09-2.55 <0.0001 

 Narrow indices involving one and two spectral bands 

EWI-5 676 0.019 0.005 0.45 0.97 0.75-1.21 <0.0001 

EWI-6 658/712 0.12 0.03 0.52 1.02 0.70-1.36 <0.0001 

EWI-7 625/706 0.22 0.05 0.50 0.96 0.67-1.28 <0.0001 

EWI-8 694/625 -0.006 -0.002 0.42 1.08 0.96-1.55 <0.0001 

EWI-9 (670-718) / (670+718) -0.85 0.03 0.51 1.04 0.61-1.54 <0.0001 

EWI-10 (691-661) / (691+661)
2 4.92 -1.03 0.51 0.99 0.74-1.27 <0.0001 

EWI-11 (1/661) - (1/694) 29.13 -5.73 0.48 1.01 0.71-1.35 <0.0001 

EWI-13 (622/718)-1
 0.62 0.12 0.51 0.99 0.74-1.28 <0.0001 

 Narrow indices involving three spectral bands 

EWI-15 625 (1/736 – 1/832) 0.008 0.004 0.65 1.01 0.622-1.426 <0.0001 

EWI-16 (625-736) / 832 0.02 0.007 0.62 0.98 0.65-1.35 <0.0001 



32 

Fig. 8 Relationship between EW and EWI-16 (A), EWI-15 (B), EWI-8 (C) and EWI-4 
(D). The solid line indicates the best fitted line in the validation data set.
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2.4 Discussion 

An increase of the light reflected along with a decrease on the absorbance and 

transmittance at the PAR was detected with EW in place. The decrease of the absorbance 

at the PAR is the main impact of this adaptive photoprotective mechanism in the plant. 

The reduction of the absorbance wavelength longer than 700 nm prevents overheating of 

the leaf and the possible damage of the tissue. This decline of the light absorbed at the 

NIR is also linked to a decrease of the vapor pressure differences between the tissue and 

the air, which can potentially reduce transpiration water lost. The insensitivity of the 

reflectance at the red edge when EW was extracted was different to the associated 

response detected with the slopes of the linear models derived from the spectral bands 

and the EW content. Thus, for every unit of EW (mg/dm2) accumulated, there was a 

decrease of ~1% on the light reflected at the red edge region. Light reflectance at the 

visible and NIR both increase 1% and 2% by every unit of EW (mg/dm2) accumulated, 

respectively. A similar decrease on the absorbance at the PAR was also linked to the 

effect of waxes in Scots Pine (Pinus sylvestris L.) needles (Olascoaga et al. 2014).  

The main peaks detected by the derivative analysis were highly associated with 

physiological processes and characteristics of plants; carotenoids absorption at the 470 

nm, reflectance of the green light at the 550 nm, chlorophyll absorption at the 640 nm 

and internal heat dissipation at the 780 nm. The linear models developed with the PLSR 

approach were able to accurately predict EW. However, the large number of spectral 

bands included as predictors in these models made it difficult for interpretation. The 

predicted and observed values of EW had a very strong linear relationship, which 
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demonstrate the power of the PLSR analysis for prediction of morpho-physiological 

traits integrating the spectral response of the plant. The SWR was implemented to 

facilitate the interpretation and application for further prediction of EW. With the 

application of both statistical approaches, the PLSR and SWR, the risk of overfitting the 

prediction models was minimized. According to the accuracy of the linear models, two 

linear combinations of spectral bands are proposed, the Model-10 and the Model-11. 

These models independently estimate ~74 % of the variability of EW with the spectral 

bands at the 523, 652, 658, 715, 721, 742 and 745 nm. 

For the development of the spectral indices, the two hundred spectral bands were 

incorporated in the analysis. With this approach, approximately 65% of the EW 

variability can be explained.  The best indices incorporate the majority of the spectral 

band that were already identified by the derivative analysis and the PLSR. The narrow 

band indices had a higher coefficient of determination, compared to the broadband 

indices. The broad band spectral index 𝐸𝑊𝐼 =
𝜌𝐵𝑙𝑢𝑒

𝜌𝑅𝑒𝑑
, was the best predictor with a 

coefficient of determination of 0.44. If the cost of hyperspectral sensors is considered, 

the EWI-1 index offers a reliable estimation of EW for applications with multiband 

sensors. The 𝐸𝑊𝐼 − 5 = 676 with only one spectral band offer an estimation of 45% of 

the EW variability, this spectral band is mainly associated with chlorophyll absorption. 

Two narrow indices that integrate three spectral bands had the highest coefficient of 

determination. All four proposed indices; EWI-1, EWI-2, EWI-15 and EWI-16 are 

linearly associated with EW. As the value of these index increases, the EW load 

simultaneously increases.  
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2.5 Conclusions 

EW is the outermost cuticle of leaves and is strongly associated to major physiological 

process and characteristics of the plant. The presence of these waxes on leaf surfaces 

provides photoprotective protection, support the regulations of water loss through the 

stomatal route, and dissipate excess heat wavelengths. The selection of genotypes with 

high EW can provide adaptation to high temperatures and water scarcity environments.  

The spectral bands in the visible region of the spectrum are highly associated to 

EW content, and variations in these specific bands provide a reliable estimation of EW. 

Considering the results of this study, four novel empirical based indices are proposed for 

phenotyping EW with a leaf clip spectroradiometer: EWI-1 Blue/Red, EWI-2 Blue/NIR, EWI-15 

625 (1/736 – 1/832) and EWI-16 (625-736) / 832. Two linear models are also proposed, the Model-

10 and Model-11. Further this study, it is necessary to gain more insights into the 

prediction of the proposed indices under field conditions and with canopy reflectance.  
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CHAPTER III 

FIELD-BASED PHENOTYPING OF EPICUTICULAR WAX USING 

HYPERSPECTRAL INFORMATION   

 

3.1 Introduction  

Wheat is the second most important source of calories in the diets of developing 

countries (FAO 2013), and the first source of protein for 2.5 billion consumers who live 

on less than 2 USD per day. To overcome the demand of wheat by 2050, the global 

wheat production (GWP) will have to increase by 110 percent at a rate of 2.4% per year 

(Ray et al. 2013). Nonetheless, any substantial increase in grain yield (GY) will be 

limited by an estimated reduction of 6% by every °C of increase in the global mean 

temperature (Asseng et al. 2014). Along with heat stress, drought prone environments 

also contribute to the reduction of harvestable yield of wheat. Climate change has 

already impacted the productivity of wheat and other cereals (Fontana et al. 2015). There 

are approximately 64 million ha of wheat around the world directly affected by drought 

and heat stress (FAO 2013), which has raised the concern for food security for the next 

decades (Easterling 2005).  

Wheat is particularly sensitive to high temperatures. Temperatures above the 

34ºC triggers the senescence of leaves, accelerating the rate of grain filling (Tewari and 

Tripathy 1998) and reducing the transport of assimilates from leaves to the grain 

(Wardlaw 1994). Heat shock during grain filling can potentially lead to a reduction of 

~0.02 t/ha of the grain yield (Asseng, Foster, and Turner 2011). Under limited soil 
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moisture and high temperature conditions, plants regulate water loss through 

transpiration by closing stomata. The stomatal closure not only restrict 

evapotranspiration, it also decreases CO2 uptake, drastically reducing the plant 

photosynthetic rate (Mittler 2002, Blum et al. 1994). In order to cope the negative 

impacts of heat and drought stress, plants modify morphophysiological and metabolic 

mechanisms (Semenov and Halford 2009). These mechanisms, or traits, work 

synergically to adapt the genotype to the environment and increase its resilience to 

extreme weather conditions. Screening and selection based on these stress-related 

characteristics can not only facilitate the dissection of the physiology and genetics of 

heat and drought stress in wheat, but can directly contribute to expedite the development 

of resilient superior wheat lines to climate change. 

Integrative traits that increase the reflectance of excess photosynthetic and 

infrared radiation directly contribute to decrease heat load and unnecessary evaporative 

cooling of the plants (Reynolds 2005). As a photo-protective trait, cuticular waxes and 

trichomes enhance the dissipation of albedo/heat during high light intensity 

environments. Cuticular waxes are lipophilic structures composed by long chain 

aliphatic molecules (Buschhaus and Jetter 2011) fixed to a layer of polymer cutin on the 

epidermal cells. Through the optimization of this cuticle, plants prevent water loss via 

the cuticular route. The presence of these cuticular waxes also affect the plant-light 

interactions. Absorbance of ultraviolet (0.33µm) wavelengths are most affected by 

epicuticular waxes (Holmes and Keiller 2002), but an increase in reflectance along with 

a decrease in the transmitted light trough the mesophyll cells at the photosynthetic active 
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radiation region (0.68µm) has been reported in wheat (Johnson, Richards, and Turner 

1983)and Sorghum bicolor (Grant 2003). The effect of EW regulating the plant 

temperature (Mondal et al. 2014) concurs with the decrease of the energy absorbed at the 

near-infrared region (NIR) (Cameron, 1970; Eller, 1979). Overall, cuticular waxes 

represents an adaptive mechanism that protects the photosynthetic machinery and are a 

selective advantage for environments with high temperatures and light intensity. The 

introgression of this trait will contribute insight into ways to improve the environmental 

stability of wheat cultivars.  

The breeding of new wheat cultivars has heavily relied on the direct selection of 

phenotypes, and although major advances in molecular breeding and statistics have 

enable selection based on genotypic data, there is still a need for phenotypic information. 

The application of high-throughput technologies has provided a new opportunity to 

breach the current yield barrier through the application of cost-efficient phenotyping 

systems that facilitate the simultaneous characterization of a large number of genotypes. 

Hyperspectral information enables the assessment of complex traits by capturing 

hundreds of spectral bands from the near-infrared (NIR), the visible (VIS), and the short-

wave infrared region (SWIR) of the electromagnetic spectrum. Under natural sunlight 

conditions, these sensors accurately capture the canopy reflectance. Variations of the 

light reflected by vegetation at the VIS range directly depends of the light absorbed by 

chlorophylls and carotenoids, while the NIR is highly influenced by the scattering of the 

light on leaf tissue (Knippling 1970), and at the SWIR most of the water absorption 
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bands are located. The use of spectral information for plant characterization can enable 

the simultaneous screening of complex traits in real time and at low cost.  

Phenotyping of EW with current methods is slow and inefficient. The 

development of an indirect method for phenotyping EW will provide clarity and 

direction to combine this adaptive trait into new drought and heat tolerant wheat 

cultivars that work synergistically to enhance grain yield by facilitating the screening of 

large breeding populations and its introgression into wheat elite background. The focus 

of this study is to estimate the prediction accuracy of spectral radiometric information to 

phenotype EW, and to evaluate its indirect selection under agronomic field conditions.  

To test this hypothesis, we evaluate a diverse panel of spring wheat lines and combine 

powerful spectroscopy methods to quantitatively estimate the variation of EW with the 

support of advance statistical tools.  

3.2 Introduction  

3.2.1 Plant material and experimental sites 

Four panels of spring wheat landraces and products of interspecific hybridization with 

wild ancestors were evaluated during the years 2013, 2014 and 2015 at the Norman E. 

Borlaug Experimental Station (CENEB), Ciudad Obregon, Sonora in Northwest Mexico 

(27.20°N, 109.54°W, 38 masl). The genotypes were established approximately 80 days 

late from the normal planting date in the Yaqui Valley, Mexico to expose the plants to 

average daily temperatures of 28°C and maximum temperatures of 39°C during heading 

and anthesis. The experimental design was an alpha-lattice with two replications, 

established under the raised bed system with two rows per bed, an inter-row spacing 
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within each bed of 10 centimeters (cm), and a space between beds of 80 cm. In 2016, an 

additional panel of synthetic derived wheat lines (SDLs) was evaluated in College 

Station, Texas under non-irrigated conditions as an alpha-lattice design. The plot size 

was 3.0 x 1.5 meter (m) seeded at 100 grams (g).  

3.2.2 Leaf wax quantification  

Samples of flag leaves were obtained at 10 to 15 days after pollination (DAP) to quantify 

EW. Each sample consisted of twelve leaf disks of 1 cm diameter obtained from four 

randomly chosen flag leaves per plot collected in 2.0 ml glass vials. EW was extracted 

by emerging the samples in HPLC chloroform (CHCl3) at room temperature for 20 sec. 

After extraction, EW was dried and quantified via the colorimetric technique described 

by (Ebercon, Blum, and Jordan. 1977).  

3.2.3 Ground base radiometric measurements  

Canopy reflectance per plot was collected from 11AM to 1PM by placing the optic fiber 

of the spectroradiometer 40 centimeters (cm) above the canopy. The spectral information 

was captured with a FieldSpec 4 Hi-Res spectroradiometer. This spectroradiometer 

captures the light reflected in 2151 continuous bands with a spectral resolution of 3 

nanometers (nm) from the 0.35 to 0.7 µm, and 8 nm from the 1.4 to 2.1 µm. The sensor 

was radiometrically calibrated with a white BaSO4 reference card for 100% of 

reflectance, and by blocking the light intercepted by the optic fiber for 0% of reflectance. 

Ten readings were captured along the plot, but only the average response of these 

signatures was used for further analysis. 
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3.2.4 Airborne hyperspectral information  

Aerial hyperspectral images from the SDL’s evaluated in College Station, Texas were 

captured with an Aisa KESTREL-10 hyperspectral camera by SPECIM® mounted in a 

Cessna 355 II aircraft. A flight height of 5000 feet (ft) altitude and speed of 192 

kilometers per hour (Km/h) were maintained through the flight. The camera captured 

120 spectral bands with a spectral and spatial resolution of 5 nm and 0.25 meter (m), 

respectively. Four 8 m by 8 m ground tarps with nominal reflectance values of 8%, 16%, 

32% and 48% were laid out in the field to calibrate the hyperspectral images. The 

reflectance from the tarps was captured using a Hand-held 2 spectroradiometer with a 

spectral range from the 0.325 to 1.075 µm, and 3 nm spectral resolution. The 

hyperspectral images were georeferenced and ensembled using the image analysis 

software ERDAS®. Digital counts (DCs) were extracted individually for the tarps and 

plots using the software ENVI®. Linear regression models were derived incorporating 

the ground base reflectance captured with the spectroradiometer and the DCs from the 

calibration tarps obtained with the aerial sensor. The derived linear equations were used 

to estimate the total canopy reflectance of the two hundred spectral bands for every plot.  

3.2.5 Spectral features associated to EW content  

Pearson correlation (PC), derivative analysis (DA) and sparse partial least square 

regression (SPLSR) were conducted to define the association of the canopy reflectance 

with the EW content. The average spectral range of the visible (0.4 to 0.7µm), the NIR 

(0.7 to 0.9µm), the SWIR (0.9 to 1.8µm) and the red-edge region (0.691 to 0.73µm) 

were incorporated in the PC analysis with the EW content. The correlation coefficients 
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and significance of the correlation were estimated with the corr function in the statistical 

analysis software R (R Development Core Team, 2012).  

The first derivative of the spectrum was calculated to enhance important spectral 

features, estimating the rate of change of the reflectance respect to the wavelength by 

projecting the changes in the curvature of the spectrum in the specific interval of the 

signal. All the spectral derivatives were calculated within a window size of 11 nm using 

the savitszkyGolay function. This function is included in the package prospect (Stevens 

2014), which applies the Savitzy-Golay filter (Bromba and Ziegler 1981) before the 

derivatives are estimated using the follow equation:  

𝒙𝒋 ∗=
𝟏

𝑵
∑ 𝒄𝒉𝒙𝒋 + 𝒉

𝒌

𝒉=−𝒌

 

 

In this equation, the xj* represents the new value obtained after the first or second 

derivative was estimated, N is a normalizing coefficient, k is the number of neighbor 

values at each side of j, and ch are pre-computed coefficients that depend of the 

polynomial order and degree. Correlation coefficients were estimated for the first 

derivative of the spectrum with the EW content to identify the spectral features 

associated to EW.  

The SPLSR is a supervised multivariate technique based on the principle of 

partial least square regression (PLSR) and relies on dimentionally reduction and multiple 

regression to confront situations where there exist highly correlated predictor variables 

and relative few samples. Although the PLSR is able to achieve good predictive 

performance, the linear combinations are complex and dificult to be interpreted. In this 



 

43 

 

study we conduct the SPLSR incorporating two hundred spectral bands with a resolution 

of 3 nm as dependent variables (𝑋′) for prediction of EW. The analysis was conducted 

with the spls function, the sparcity tuning parameter ‘eta’ and ‘K’ were assigned 

according the specifications in the spls package version 1.0 (Chung 2012). 

3.2.6 Narrow and broad empirical spectral indices to estimate EW  

All pairwise combinations incorporating one hundred and sixty-three spectral bands at 6 

nm resolution were estimated for spectral indices as simple ratio (𝑆𝑅 =
𝑅𝑖

𝑅𝑗
), difference 

(𝐷𝐼 = 𝑅𝑖 − 𝑅𝑗) and normalized difference (𝑁𝐷𝐼 =
𝑅𝑖−𝑅𝑗

𝑅𝑗+𝑅𝑗
). In these indices, 𝑅𝑖 and 𝑅𝑗 

represent the reflectance values at i and j nm, respectively. A leaving one out cross 

validation (LOOCV) analysis was conducted to define the significance of the linear 

model and estimate the coefficients of determination (R2) for EW as independent 

variable and the spectral indices as dependent variable (X): 𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑗). In this 

equation, 𝑦𝑖  corresponds to EW, 𝑥𝑖 is the estimated spectral index, and 𝛽0 and 𝛽1 are the 

intercept and the slope of the model, respectively. The spectral indices with the highest 

R2 values were selected to fit an additional set of linear models for a defined training 

data set (66% of the observations) to predict every individual spectral index based on the 

variation of EW. These models followed the same linear function, 𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑖), but 

in this case 𝑦𝑖 represents the spectral index and 𝑥𝑖 corresponds to the EW content. In 

order to estimate the ability of the index predicting EW when selection is based on the 

index per se, the EW variable was solved in the second set of linear models as follow: 

𝑋𝑖 =
𝑦𝑖−𝛽0

𝛽𝑖
. An estimator for the Root Mean Square Error (RMSE) was bootstrapping in 
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the validation data set (34% of the individuals) 1000 times with the function boot in the 

software R. The same statistical approach was applied to define narrow band indices 

associated to EW with the red, green, blue (RGB), near infrared (NIR) and short-wave 

infrared (SWIR) spectral bands.  

3.2.7 Stepwise Regression (SWR) 

The selected cobinations of spectral bands for the SR, DI and NDI were incorporated in 

a stepwise regression analyis (SWR). SWR built a multivariate models with a 

semiautomatic proces in which the band combinations were included and/or removed 

based on the significance of the partial F-values. The final models were defined when 

the inclusion of more predictors was not justifiable. All the models were built with the 

PROC REG statement in the statistical analysis software SAS (Inc. 2011)for a defined 

training data set (60% of the observations). The best models were selected based on the 

lowest values for the Mallows’ Cp estimator. For the validation data set (the remaining 

40% of the observations), the selection was base on their lowest RMSE and higher 

coefficient of determination (R2).  

3.2.8 Vegetation indices  

Narrow and broad vegetation indices associated to leaf pigments, light use efficiency, 

leaf area, plant greenest and water content, as well as spectral indices that include the 

red-region of the spectrum (Table 6 throught) were estimated. The association of these 

common vegetation indices with the EW content was tested with the Pearson correlation 

analysis.  
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3.2.9 Efficiency of indirect selection of EW with spectral based methods  

The spectral indices and linear models were subject to an analysis of variance (ANOVA) 

for an alpha-lattice design to test the variation among the genotypes for every indirect 

selection approach and the conventional colorimetric method.  The ANOVA was 

calculated with the PROC GLM procedure using the Statistical Analysis System (SAS) 

software version 9.2 (SAS, 2008). The phenotypic (𝜎𝑝
2) and genotypic 𝜎𝑔

2 variance were 

estimated as follow: 𝜎𝑔
2 =

[(𝑚𝑠𝑔)−(𝑚𝑠𝑒)]

𝑟
 and 𝜎𝑝

2 = 𝜎𝑔
2 +

𝜎𝑒
2

𝑟
 where msg and mse 

corresponds to the mean square of the genotypes and the error, respectively, 𝜎𝑔
2 is the 

genetic variance, 𝜎𝑝
2 the phenotypic variance, 𝜎𝑒

2 the error variance, and r is the number 

of replications. The reported estimates of the heritability in broad sense (ℎ2) were 

calculated according to the formula describes by (Allard 1960): ℎ2 =
𝜎𝑔

2

𝜎𝑝
2  𝑥 100. 

Phenotypic correlations and the covariance matrix of the selected spectral indices and 

prediction models for EW were calculated using the PROC CORR procedure including 

the COV option in the statement in SAS. The genotypic correlations (𝜎𝑔), the expected 

response to selection (R), the correlated response to selection (CR) and the relative 

efficiency of indirect selection (RE) were all estimated according to (Falconer 1989), and 

the estimated genetic advance by selection (GA) as described by (Johnson, Robinson, 

and Comstock 1955).   

𝜎𝑔 =
𝐶𝑂𝑉𝑋𝑌

√𝑉𝑎𝑟𝑥𝑉𝑎𝑟𝑦
 where COVXY corresponds to the covariance estimate of the vegetation 

index and EW, Varx corresponds to the variance of the spectral index, and Vary is the 

variance of the EW.  
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𝑅 = ℎ𝑥𝜎𝑥 where hx is the square root of the heritability and 𝜎𝑥 the genotypic standard 

deviation. 

𝐶𝑅 = ℎ𝑥𝑟𝑔𝑥𝜎𝑔𝑦 where the hx is the square root of the heritability for the trait X (spectral 

index), 𝑟𝑔𝑥 is the genetic correlation of the spectral index and EW, and 𝜎𝑔𝑦 is the 

genotypic standard deviation of the trait Y (EW).  

𝑅𝐸 =
𝐶𝑅

𝑅
 where CR is the correlated response to selection and R is the expected response 

to selection of the trait.  

𝐺𝐴 = 𝐾(𝜎𝑝)ℎ2 where K is the selection differential, 𝜎𝑝is the phenotypic standard 

deviation of every spectral index or prediction model, and ℎ2 corresponds to the broad 

sense heritability. The k was estimated for 10% selection intensity as 𝑘 = 𝑥𝑝 − 𝑥𝑠, 

where 𝑥𝑝 and 𝑥𝑠, are the population mean and the mean of the selected individuals, 

respectively.  

𝐺𝐴𝑀 (%) =
𝐺𝐴

𝑥
 𝑥 100 where GAM is the genetic advance as percentage of the mean, 

and 𝑥 is the grand mean of the specific character.  

3.2.10 Phenotyping of EW using airborne hyperspectral information 

The selected epicuticular wax indices (EWI) and the linear models that best estimate EW 

load were calculated using the spectral information collected with the aerial sensor. 

Pearson correlation analysis was conducted to estimate the association of the proposed 

indices and models to estimate EW with aerial hyperspectral imagery.  
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Table 5 Narrow band spectral indices for leaf pigments and light use efficiency. 

 
NAME  FORMULA REFERENCE 

 LEAF PIGMENTS 

Carotenoid Reflectance Index-1 CRI-1 1

𝜌510

−
1

𝜌550

 
(Gitelson, Zur, et al. 2002) 

Carotenoid Reflectance Index-2 CRI-2 1

𝜌510

−
1

𝜌700

 
(Gitelson, Zur, et al. 2002) 

Anthocyanin Reflectance Index ARI 1

𝜌550

−
1

𝜌700

 
(Gitelson, Merzlyak, and 

Chivkunova 2001) 

Blue Green Pigment Index BGPI 𝜌450

𝜌550

 (Zarco-Tejada et al. 2005) 

Blue Red Pigment Index BRPI 𝜌450

𝜌690

 (Zarco-Tejada et al. 2005) 

Normalized Phaeophytinization Index NPI 𝜌415 − 𝜌435

𝜌415 + 𝜌435

 (Barnes et al. 1992) 

 LIGHT USE EFFICIENCY 

Photochemical Reflectance Index PRI 𝜌531 − 𝜌570

𝜌531 + 𝜌570

 (Gamon, Serrano, and Surfus 

1997) 

Structure Insensitive Pigment Index SIPI 𝜌800 − 𝜌450

𝜌800 + 𝜌650

 (Panuelas et al. 1995) 

Red Green Ratio Index RGRI ∑ 𝑅𝑖
699
𝑖=600

∑ 𝑅𝑗
599
𝑖=500

 
(Gamon and Surfus 1999) 
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Table 6 Narrow band vegetation indices for leaf area, red-edge, and plant water content. 

 
NAME  FORMULA REFERENCE 

 LEAF AREA 

Modified Triangular Vegetation Index MTVI 1.2[1.2(𝜌800 − 𝜌550) − 2.5(𝜌670 − 𝜌550)] (Haboudane et al. 2004) 

 RED-EDGE INDICES 

Red-edge position ReP 
700 + 40 [

ρ670 + ρ780

2
− ρ700] (ρ740 − ρ700)⁄  

(Gayout, Baret, and Major 

1988) 

Vogelmann Index-1 VGI-1 740
720⁄   (Vogelmann, Rock, and Moss 

1993) 

Vogelmann Index-2 VGI-2 ρ734 − ρ747

ρ715 − ρ726

 (Zarco-Tejada et al. 2003) 

Vegetation Stress Ratio VSR 725
702⁄  (White, Williams, and Barr 

2008) 

Modified Red-edge Normalized 

Difference Vegetation Index 

MRENDVI ρ750 − ρ705

ρ750 + ρ705 − 2 ∗ ρ455

 (Datt 1999) 

 PLANT WATER CONTENT 

Water Index WI 970
900⁄   (Penuelas et al. 1993) 

Moisture Stress Index MSI ρ1599

ρ819

 (Hunt and Rock 1989) 

Simple Ratio Water Index SRWI ρ860

ρ1240

 (Zarco-Tejada, Rueda, and 

Ustin 2003) 

 



 

49 

 

Table 7 Narrow band vegetation indices for plant greenest.  

 
NAME  FORMULA REFERENCE 

 PLANT GREENEST 

Normalized Difference Vegetation Index NDVI ρ800 − ρ640

ρ800 + ρ640

 (Rouse et al. 1974) 

Plant Scenecense Reflectance Index  PSRI ρ680 − ρ500

ρ750

 (Merzlyak et al. 1999) 

Reg-green Ratio Index  RGI ρ690

ρ550

 (Gamon and Surfus 1999) 

Greenest Index GI ρ554

ρ677

 (Zarco-Tejada et al. 2005) 

Normalize Difference Nitrogen Index NDNI log (
1

ρ1510
) − log (

1
ρ1680

)

log (
1

ρ1510
) + log (

1
ρ1680

)
 

(Serrano, Penuelas, and Ustin 

2002)  

Normalized Pigment Chlorophyll Index NPCI ρ680 − ρ430

ρ680 + ρ430

 (Penuelas et al. 1994) 

Pigment Specific Simple Ratio for 

Chlorophyll a 

PSI-a ρ800

ρ675

 (Blackburn 1998) 

Pigment Specific Simple Ratio for 

Chlorophyll b 

PSI-b ρ800

ρ650

 (Blackburn 1998) 

Transformed Chlorophyll Absorption 

Ratio Index 

TCARI 3[(ρ700 − ρ670) − 0.2(ρ700 − ρ550)(ρ700 ρ670)⁄ ] (Haboudane et al. 2002) 
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Table 8 Broad spectral indices to characterize pigments, leaf area, and plant water content.  

 
NAME  FORMULA REFERENCE 

 LEAF PIGMENTS 

Modified Anthocyanin Reflectance Index mARI 
[(

1

ρGreen

) − (
1

ρRed edge

)] ∗ ρNIR 
(Gitelson, Keydan, and 

Merzlyak 2006) 

Anthocyanin Reflectance Index ARI ρGREEN

ρNIR

 (Berg and Perkins 2005) 

 LEAF AREA 

Enhanced Vegetation Index EVI 
2.5 ∗

(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅 + 6𝜌𝑅𝑒𝑑 − 7.5𝜌𝐵𝑙𝑢𝑒 + 1)
 

(Huete et al. 1997) 

Leaf Area Index LAI 3.618 ∗ 𝐸𝑉𝐼 − 0.118 (Boegh and Soe 2002) 

 PLANT WATER CONTENT 

Normalized Difference Infrared Index NDII (ρNIR − ρSWIR)

(ρNIR + ρSWIR)
 

(Kim et al. 2015) 

Moisture Stress Index MSI ρSWIR

ρNIR

 (Kim et al. 2015) 
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Table 9 Broad band vegetation indices for plant greenest.  

 
NAME  FORMULA REFERENCE 

 PLANT GREENEST 

Soil Adjusted Vegetation Index SAVI (ρNIR − ρRed )

(ρNIR + ρRed + L)
∗ (1 + L) 

(Huete 1988) 

Normalized Difference Vegetation index NDVI (ρNIR − ρRed)

(ρNIR + ρRed)
 

(White, Williams, and Barr 

2008) 

Simple Ratio SR ρNIR

ρRed

 (Birth and McVey 1968) 

Green Normalized Difference Vegetation 

Index 

GNDVI (ρNIR − ρGreen)

(ρNIR + ρGreen)
 

(Gitelson, Kaufman, and 

Merzlyak 1996) 

Green Difference Vegetation Index GDVI ρNIR − ρGreen (Sripada et al. 2006) 

Difference Vegetation Index DVI ρNIR − ρRed (Tucker 1979) 

Red Green Ratio Index RGRI ρRed − ρGreen (Gamon and Surfus 1999) 

Green Ratio Vegetation Index GRVI ρNIR

ρGreen

 (Sripada et al. 2006) 

Transformed Difference Vegetation Index  TDVI 

√0.5 +
(ρNIR − ρReed)

(ρNIR + ρReed)
 

(Bannari, Asalhi, and Teillet 

2002) 

Visible Atmospherically Resistant Index  VARI ρGreen − ρReed

ρGreen + ρReed − ρBlue

 (Gitelson, Stark, et al. 2002) 
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3.3 Results 

3.3.1 Descriptive statistics 

The mean values of EW for the genotypes evaluated in 2013 and 2014 are presented in 

Table 8. The average of the EW load of the genotypes included in 2013 were 3.02 

mg/dm2 for the HS-I and 2.96 mg/dm2 for the HS-II. In 2014, the mean values of the EW 

were 7.61 mg/dm2 for the HS-III, and 6.74 mg/dm2 for the HS-IV. The estimates of the 

h2 were highly affected by the environment. The largest estimate of h2was obtained for 

the trial HS-II, which also had a low CV. The other three estimated of the h2 were low, 

but acceptable for a physiological trait greatly affected by the genotype by environment 

interaction. For all the four trials, EW was statistically different among the genotypes 

evaluated at 1% and 5% probability. 

Table 10 Wheat trials evaluated under heat stress (HS) in 2013 and 2014 at the CENEB 

experimental station in Ciudad Obregon (OB), Sonora, Mexico. The h2 corresponds to 

the broad sense heritability estimate, Vg is the genotypic variance, and CV the 

coefficient of determination of the epicuticular wax (EW).  

 
ID Year Environment  No. of 

genotypes 

Mean EW 

(mg/dm2)  

Vg h2 CV  

HS-I 2013 OB-HS 114 3.02 0.011* 0.13 23.22 

HS-II 2013 OB-HS 216 2.96 0.014** 0.66 6.97 

HS-III 2014 OB-HS 266 7.61 0.21* 0.13 21.18 

HS-IV 2014 OB-HS/D 266 6.74 0.02* 0.26 13.29 

 

The boxplot of the EW content for all four trials evaluated in 2013 and 2014 is 

presented in Fig. 9. Overall, the distribution of the EW content of the genotypes included 

in the trial HS-III and HS-IV was larger than the distribution of the genotypes evaluated 

in 2013.  
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Fig. 9 Boxplot of EW content (mg/dm2) for the four trials evaluated in 2013 and 2014 

under severe heat stress (HS) at the CENEB, in Ciudad Obregon, Sonora, Mexico. 

 

The canopy reflectance of the two groups that included the genotypes with the 

highest and the lowest content of EW, respectively, are shown in Fig.10. Overall, the 

percentage of light reflected by the canopy of the genotypes with the highest EW content 

was considerable lower that the canopy reflectance from the genotypes included in the 

group with genotypes with the lowest EW load. As can be observed, this difference is 

mainly detected at the NIR and SWIR. Minimum variations were observed in the visible 

region of the spectrum, except for the trial HS-III, where a slight change on the 

reflectance was observed.  
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Fig. 10 Average spectral response of genotypes with the highest and lowest EW content evaluated under heat stress (HS) in 

Ciudad Obregon, Sonora, Mexico. For HI-I, the range of the lowest to highest EW (mg/dm2) content were 4.05 to 4.86 and 

1.16 to 2.01; for HI-II were 4.0 to 4.62 and 1.36 to 2.01; the HI-III were 12.01 to 14.79 and 2.4 to 4.9 5; and the HI-IV from 

10.03 to 13.14 and 1.93 to 3.95.  
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3.3.2 Associated response of the canopy reflectance with EW 

The Pearson correlation coefficients of the canopy reflectance for the main regions of the 

spectrum and EW content are presented in Fig. 11. The wavelengths of the spectrum 

were negatively associated with EW load, except for the violet wavelengths of the 

visible region. A positive association was detected at the violet region, with a correlation 

coefficient (r) of ~0.2. The results from the environments HS-I, HS-II and HS-IV were 

all consistent, with similar correlation coefficients, but the association of reflectance and 

EW was significantly higher for the trial HS-III.  

 

Fig. 11 Pearson correlation coefficients of the EW content (mg dm-2) and the average 

response of canopy reflectance of the main regions of the electromagnetic spectrum. 
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The derivative analysis effectively enhanced the spectral changes, eliminating the 

small variations in the baseline of the spectrum. Correlation coefficients obtained with 

the derivative analysis are higher that the coefficients obtained by simply evaluating the 

canopy reflectance and EW. The peaks in the graphs represent where the highest 

association of EW with a specific change on the canopy reflectance occurs. Most of the 

peaks were located at the NIR and the SWIR. The results obtained in all four trials were 

compared to select the spectral regions consistently associated. 

 

 

Fig. 12  Pearson correlation coefficients of the first derivative response and EW content 

(mg dm-2) for the trial HS-I and HS-II in 2013, and HS-III and HS-IV in 2014. All 

genotypes were evaluated under severe heat stress during grain filling and anthesis.  
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In the Fig. 13 the sparse linear combinations of the original predictors are 

presented. The analysis simultaneously achieve good predictive performance and 

variable selection. A limited number of predictors were included in the trial HS-I, but 

most of these predictor were consistently associated in the other three enviroments. The 

spectral bands that were consistently associated in all three analysis and across the 

enviroments were automatically selected as predictos (Table 8). 

 

Fig. 13 Coefficients of the sparse partial least square regression (SPLSR) of the light 

reflectance and the EW content for the trials 1) HS-I, 2) HS-II, 3) HS-III, and 4) HS-IV.  
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Table 11 Spectral bands selected according to the results of the Pearson correlation 

analysis, the derivative response, and the sparse partial least square regression analysis. 

  

Selection method VIS (0.4-0.7 µm) NIR (0.7-1.4 µm) SWIR (1.4-1.7 µm) 

Pearson correlation 

analysis of the light 

reflectance and EW 

403-457 691-730 1321-1472 

520-574 706-928 1502-1733 

 931-1000  

 1093-1183  

 1225-1339  

 1327-1415  

Pearson correlation of 

the first derivative of 

the reflectance and 

EW 

430-466 787-802  1424-1451 

676-679 826-844 1766-1784 

 889-913  

 961-1009  

 1099-1108  

 1150-1216  

Sparse Partial Least 

Square Regression 

(SPLS) 

430-436 787-796 1424-1430 

676-679 961-970  

 1003-1009  

 

3.3.3 Broad and narrow band empirical indices for phenotyping EW  

The wavelengths of the spectral reflectance were incorporated into simple combinations 

of spectral bands as indices. The simple ratio (SR =
Ri

Rj
), the difference index (DI = Ri −

Rj) and the normalized difference index (NDI =
Ri−Rj

Ri−Rj
) were estimated and evaluated to 

define their association with EW. The coefficients of determination for every spectral 

combination are shown in Fig.14 for the SR, Fig.15 for the DI, and Fig. 16 for the NDI.  

For all indices, the maximum percentage of the EW variation that can be estimated with 

the canopy reflectance under field conditions is approximately 25%.  
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The prediction accuracy of the spectral indices varied across the environments. 

However, the highest R2 values for the SR, DI and NDI were all obtained with similar 

spectral bands. The spectral combinations of the visible region were all consistently high 

in the HS-I, HS-II and HS-IV, but no association was detected in the HS-III 

environment. The indices that integrate the 1.4 to 1.8 µm spectral range with the visible 

wavelengths were also closely related to the EW load, but this association was only 

observed for the trial HS-IV. The combinations that were strongly associated with EW 

content across all four trials were estimated with the spectral bands around the 0.9 µm, 

1.0 µm, 1.3 µm, from where163 indices were chosen for further analysis. 

When the RGB, NIR and SWIR spectral bands were incorporated as indices, 

similar prediction accuracy to the narrow band indices were obtained, ~0.25 (Fig. 17). 

These higher R2 values were reached when the DI was estimated with the Red and Blue, 

and the Red and Green wavelengths. Integrating the R-edge, the Blue and the Green 

band, good prediction estimates were obtained. However, an index that included the 

Red-edge not be useful for RGB multispectral sensors. The second set of indices 

selected was the NDI with the Red, Blue and Green bands.   
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Fig. 14 Coefficients of determination from the LOOCV analysis between the simple ratio (SR) index incorporating the spectral 

bands from the 0.4 to 1.8 µm and EW content (mg dm-2). (A) corresponds to the trial HS-I, (B) to the HS-II, (C) to the HS-III 

and (D) to the HS-IV.  
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Fig. 15 Coefficients of determination from the LOOCV analysis between the different index (DI) incorporating the spectral 

bands from the 0.4 to 1.8 µm and EW content (mg dm-2). (A) corresponds to the trial HS-I, (B) to the HS-II, (C) to the HS-III 

and (D) to the HS-IV. 
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Fig. 16 Coefficients of determination from the LOOCV analysis between the normalized different index (NDI) incorporating 

the spectral bands from the 0.4 to 1.8 µm and EW content (mg dm-2). (A) corresponds to the trial HS-I, (B) to the HS-II, (C) to 

the HS-III and (D) to the HS-IV. 
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Fig. 17 Coefficients of determination (R2) obtained with the LOOCV analysis between the EW content (mg/dm2) and the 

estimated broad band indices. The spectral indices incorporated the main spectral bands from the 0.4 to 1.8 µm as the simple 

ratio (SR), the difference index (DI) and the normalized different index (NDI). The results obtained in every trait were very 

consistent and the presented R2 are the average response for all four evaluated trials. 
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Table 12 Coefficients of determination (R2) from the LOOCV analysis, and best fitted 

parameters estimated for the training data set and testes in the validation set by 

bootstrapping the estimator of the RMSE in (mg/dm2) for the narrow and broad spectral 

indices. The h2 is the estimate of the broad sense heritability.  

 
 Bests fitted model 

parameters 

    

Index a B R2 RMSE  h2 p-value 

 Broad band indices   

SRB-1 
𝐑𝐞𝐝

𝐆𝐫𝐞𝐞𝐧
   2.051 -0.088 0.14 0.47 0.42 <0.0001 

DIB -2 Red-Blue 0.131 -0.062 0.22 0.36 0.42 <0.0001 

DIB -3 Red-Green 0.095 -0.046 0.24 0.36 0.43 <0.0001 

NDIN-1 
𝐑𝐞𝐝−𝐁𝐥𝐮𝐞

𝐑𝐞𝐝+𝐁𝐥𝐮𝐞
 -0.021 0.015 0.14 0.48 0.51 <0.0001 

 Narrow band indices    

SRN-1  
𝟗𝟏𝟑

𝟗𝟎𝟏
 1.033 -0.02 0.23 0.16 0 <0.0001 

SRN-2  
𝟏𝟎𝟗𝟑

 𝟗𝟔𝟕 𝐭𝐨 𝟗𝟕𝟗
 0.916 0.194 0.24 0.16 0 <0.0001 

SRN-3  
𝟏𝟏𝟕𝟕

𝟏𝟐𝟕𝟑
 1.019 -0.046 0.22 0.15 0.14 <0.0001 

DIN-1 𝟗𝟑𝟏 − 𝟕𝟔𝟗 𝐭𝐨 𝟕𝟗𝟑 0.127 -0.082 0.25 0.19 0 <0.0001 

DIN-2 𝟗𝟑𝟏 − 𝟖𝟏𝟏 𝐭𝐨 𝟖𝟏𝟕 0.086 -0.064 0.24 0.19 0 <0.0001 

DIN-3 𝟗𝟏𝟑 − 𝟗𝟎𝟏 0.011 -0.009 0.27 0.18 0 <0.0001 

NDIN-1  
𝟗𝟎𝟕−𝟗𝟎𝟏

 𝟗𝟎𝟕+𝟗𝟎𝟏
 0.009 -0.007 0.25 0.19 0 <0.0001 

NDIN-2  
𝟗𝟏𝟑−𝟗𝟎𝟏

 𝟗𝟏𝟑+𝟗𝟎𝟏

 0.012 -0.009 0.23 0.17 0 <0.0001 

NDIN-3  
𝟏𝟐𝟕𝟗−𝟏𝟏𝟕𝟕

 𝟏𝟐𝟕𝟗+𝟏𝟏𝟕𝟕
 -0.008 0.019 0.24 0.17 0 <0.0001 

 

The results of the bootstrapping analysis for the narrow and broad spectral 

indices that were detected with the highest R2 in the LOOCV are included in Table 9. 

The estimates of the RMSE were all calculated in the validation data set. According to 

their R2, four broad band indices had the highest prediction accuracy, along with nine 

narrow band indices. For the broad indices, the DIB -2 Red-Blue and the DIB -3 Red-

Green were both statistically associated with EW and had the lowest difference between 
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the predicted and actual EW values. The nine narrow indices had all similar R2 and 

RMSE. However, extremely low heritability estimates were detected for these narrow 

indices, except for the SRN-3  
1177

1273
 index. The h2 estimates for the broad band indices were 

all similar and superior to the h2 estimated for EW using the conventional chemical 

method.  

3.3.4 Multiple linear regression for prediction of EW 

The developed linear regression models incorporated the spectral combinations that were 

selected in the LOOCV analysis. The linear models were calculated in a randomly 

chosen training data set (66%) and the estimates of the prediction accuracy were 

calculated in the validation data set (44%). The proportion of the EW variance that was 

predictable with the linear models MN-SR-1 and MN-NDI-3 was 45%, and the RMSE 

values of ~0.08. The majority of the bands in these models are directly associated to 

water absorption. The indices calculated with the broad band combinations predict a 

smaller proportion of the EW variation, compared to the narrow band models. The MB-

DI-2 index had the higher R2 value, and lower RMSE. Heritability estimates for the 

broad band models were consistent and adequate to estimate the proportion of the 

variation of the phenotype EW that is due to genetic effect. The models proposed for 

indirect selection of EW are the follow: MB-DI-2, MN-SR-1, MN-NDI-3 (Fig. 18).  
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Table 13 Linear regression models incorporating the broad and narrow bands for the estimation of EW load.  

 
       RMSE R2 h2 C(p) 

 Broad band combinations   

MB-SR-1  Intercept Blue

Red
 

Blue

NIR
 

Green

Red
 

Redge

NIR
 

NIR

Green
     

 -3.69 48.41 -89.48 -28.45 67.65 0.51 0.26 0.23 0.62 19.86 

MB-DI-2 Intercept Blue − SWIR Red − Green SWIR − NIR       

 1.12 -2.55 -10.74 -0.19   0.27 0.29 0.49 2.51 

MB-NDI-3 Intercept Blue − Red

Blue + Red
 

Blue − NIR

Blue + NIR
 

Red − Redge

Red + Redge
 

SWIR − Green

SWIR + Green
      

 3.68 6.96 -4.22 10. 66 -0.51  0.33 0.21 0.53 10.86 

 Narrow band combinations   

MN-SR-1 Intercept 895

899
 

913

901
 

1093

961
 

1093

967
 

997

961
     

 -22.11 46.22 -44.88 74.26 -74.82 -58.91 0.08 0.46 0 14.54 

 997

967
 

979

973
 

1165

1273
 

1165

1279
 

1165

1285
 

1171

1273
     

 62.89 18.19 104.21 -120.79 41.41 -24.76     

MN-NDI-3 Intercept 895 − 899

895 + 899
 

907 − 901

907 + 901
 

913 − 901

913 + 901
 

1093 − 955

1093 + 955
 

997 − 961

997 + 961
      

 1.04 104.22 -68.41 -64.96 -6.44 25.03 0.07 0.45 0 38.44 

 1267 − 1165

1276 + 1165
 

1285 − 1165

1285 + 1165
 

1279 − 1171

1279 + 1171
 

1285 − 1171

1285 + 1171
       

 -165.53 155.61 319.95 -307.81       
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Fig. 18 Observed and estimated EW with the models A) MB-DI-2, B) MN-SR-1, and C) 

MN-NDI-3. 
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3.3.5 Association of EW content with common vegetation indices for plant 

characterization  

The linear dependence of common vegetation indices (VI) with EW load is presented in 

Fig. 19. The narrow VI’s that were most associated with EW load included spectral 

wavelengths at the VIS and SWIR spectral region. The correlation coefficients (r) ranged 

from 0.24 to 0.37 for the blue green pigment index (𝐵𝐺𝑃𝐼 =
𝜌450

𝜌550
), the blue-red pigment 

index (BRPI=
𝜌450

𝜌690
), and the normalized phaeophytinization index (𝑁𝑃𝐼 =

𝜌415−𝜌435

𝜌415+𝜌435
). A 

negative association was found for the normalized difference nitrogen index (𝑁𝐷𝑁𝐼 =

𝑙𝑜𝑔(
1

𝜌1510
)−𝑙𝑜𝑔 (

1

𝜌1680
)

𝑙𝑜𝑔(
1

𝜌1510
)+𝑙𝑜𝑔 (

1

𝜌1680
)
) and the normalized pigment chlorophyll index (𝑁𝑃𝐶𝐼 =

ρ680−ρ430

ρ680+ρ430
). 

The red-green index (𝑅𝐺𝑅𝐼 = 𝜌𝑅𝑒𝑑 − 𝜌𝐺𝑟𝑒𝑒𝑛) and the transformed difference 

vegetation index 𝑇𝐷𝑉𝐼 = √0.5 +
(ρNIR−ρReed)

(ρNIR+ρReed)
) were both negatively associated with EW, 

with correlation coefficients of -0.23 and -0.25, respectively. The visible atmospherically 

resistant index (𝑉𝐴𝑅𝐼 =
ρGreen−ρReed

ρGreen+ρReed−ρBlue

) was also strongly associated, but the correlated 

response was positive. The developed narrow and broad indices, and linear modeld for 

EW were superior in prediction, compared to the common VI’s.  

3.3.6 Selection of EW with indirect phenotyping methods 

The efficiency of indirect selection of the developed spectral methodologies (ISM) is 

presented in Table 11. Compared to the EW quantified with the conventional 

colorimetric approach, the spectral indices and models had a significant lower CV. 

Heritability estimates of the ISM were superior in all cases to the heritability estimate for 
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EW. Phenotypic correlations were all within the same range, but the genotypic 

correlation of the SRN-3, the MB-SR-1 and the MD-NDI-3 were considerably higher, 

compared to the rest of the ISM. The RE of the indirect selection with the ISM using the 

DIB-2, DIB-3, the SRN-3, and MB-NDI-3 was higher that selection of EW per se.  

 

 

 

Fig. 19 Pearson correlation coefficients of the EW load and the narrow and broad 

vegetation indices (VI).  
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Table 14 Average response of the phenotypic and genotypic correlation of EW with the developed indirect selection 

methodologies (ISM), the response to selection (RS), correlated response (CR) and relative efficiency of selection (RE) of the 

trait for selection of EW, as well as the genetic advance respect to the mean (GAM). All parameters were estimated in the 

validation data sets of the four trials evaluated in 2013 and 2014.  

 

Trait CV (%)  h2  𝒓𝒑 𝒓𝒈 R CR RE GAM R2 RMSE 

EW 21.33 0.29 - - 1.31 - - 23.29 -  

SRB-1 
𝐑𝐞𝐝

𝐆𝐫𝐞𝐞𝐧
   3.5 0.42 -0.43 -0.51 0.026 -0.037 -1.3 -5.01 0.14 0.47 

DIB -2 Red-Blue 16.25 0.42 -0.43 -0.48 0.005 -0.15 -31.31 9.68 0.22 0.36 

DIB -3 Red-Green 15.81 0.43 -0.45 -0.45 0.004 -0.14 -35.0 10.42 0.24 0.36 

NDIN-1 
𝐑𝐞𝐝−𝐁𝐥𝐮𝐞

𝐑𝐞𝐝+𝐁𝐥𝐮𝐞
 4.83 0.51 -0.43 -0.55 0.012 -0.04 -3.33 5.56 0.14 0.48 

SRN-3  
𝟏𝟏𝟕𝟕

𝟏𝟐𝟕𝟑
 0.84 0.14 -0.44 -0.69 0.003 -0.13 -43.33 2.8 0.22 0.15 

MB-SR-1 4.77 0.62 0.51 0.83 0.087 0.08 0.92 8.53 0.23 0.26 

MB-DI-2 4.87 0.49 0.48 0.55 0.021 0.19 9.05 11.89 0.29 0.27 

MB-NDI-3 4.35 0.53 0.51 0.75 0.062 0.07 1.13 6.37 0.21 0.33 
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3.3.7 Efficiency of indirect phenotyping of EW with aerial hyperspectral imagery 

The spectral bands captured with the aerial sensor and EW load had a similar association 

to the ground base spectral information and EW. With the aerial sensor, a negative 

response of the reflectance was found as the EW content increases. However, this 

spectral response was stronger at the visible range, and minimum change was detected at 

the NIR. The indices DIB -2 Red-Blue, DIB -3 Red-Green, and MB-DI-2 were calculated using the 

airborne spectral information, and the correlation coefficients were 0.18, -0.18, -0.18 and 

-0.05, respectively.  

f 

 

Fig. 20 Pearson correlation coefficients of the EW content in leaves and the 

hyperspectral information acquired with the aerial sensor.  



 

72 

 

3.4 Discussion  

Epicuticular wax is a product of not only the genetic effect, but is also influenced by the 

environment. In the present study, the mean values of the genotypes evaluated ranged 

from the 3.02 to 7.61 mg/dm2. One of the main goals in selection is to capture a large 

proportion of the genetic variability through phenotyping. In the case of EW, the average 

estimate of the h2 across the four trials was 0.29, relatively low compared to other 

agronomic traits such are height and grain yield. However, the h2 of the trial HS-II was 

0.66, with a coefficient of variation (CV) of 6.97. The development of a high-throughput 

method for EW will provide a more accurate estimation of the genetic variation by 

increasing the number of replications for evaluation and the decreasing the experimental 

error. 

3.4.1 Associated response of the canopy reflectance with EW 

The wavelength at the NIR and SWIR were strongly associated to the EW load. As the 

EW content increased, the light reflectance decreased. The response of the visible region 

differed to the rest of the spectrum, where the violet region was positively associated to 

EW. The spectral bands selected with the derivative analysis and the SPLSR overlap 

with absorption bands for carotenoids, chlorophyll and water, and with spectral bands 

that are highly influenced by the light scattering of the mesophyll cells. Thus, it is 

reasonable to think that the EW load has a direct impact of main physiological process of 

the plant.  
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3.4.2 Empirical indices and linear models for phenotyping EW 

The narrow band indices that best estimate EW combined water absorption bands at the 

0.9 µm, 1.1 µm and 1.2 µm, and the broad band indices integrated the red, green and 

blue wavelengths of the visible range. The broad bands are directly associated with 

absorption and reflectance of the photosynthetic light. Heritability of the broad band 

indices was superior, compared to the estimated with the colorimetric method. Although 

nine of the narrow band indices were statistically associated to EW, these indices were 

not able to capture any additive genetic variation, except for the SRN-3 index. The 

integration of the significant associated band ratios, as a function of the EW, increased 

the accuracy of the prediction up to 46%. The linear models that had the highest h2 

estimates are the MN-SR-1, MB-DI-2, and MN-NDI-3 with 0.62, 0.49 and 0.53, 

respectively.  

The moderate to strong genetic correlation of the indices/model and EW 

indicates the potential use of these indirect selection approaches to identify wheat 

genotypes with high EW load. Compared to the direct selection with the colorimetric 

method, the indirect selection with the DIB-2, DIB-3 and the SRN-3 is 31, 35 and 43 

more efficient. The percentage of genetic advance was not superior to the genetic gains 

with the conventional methods. Through indirect selection, the DIB-2, DIB-3, and MB-

DI-2 had the highest genetic gain.  
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3.5 Conclusions  

Consistent results suggest the possibility of using these spectral indices/models as proxy 

measurements to understand the genetic and physiological basis of EW. The relative 

higher heritability and the moderated to strong genetic correlation of the DIB-2, DIB-3, 

and MB-DI-2 provides a reliable estimation of EW for selection under field conditions.  

The application of these indirect selection methods will facilitate the acquisition of 

multiple measurements throughout the growing season and accurately capture the 

variation of EW. In this study, we state that spectral reflectance can be used in plant 

breeding platforms not only for indirect selection, but as a component in an integrative 

selection in the breeding pipeline.  

 

 

 

 

 

 

 

 

 



 

75 

 

CHAPTER IV 

SELECTION INDICES FOR HEAT STRESS IMPROVEMENT IN WHEAT 

 

4.1 Introduction  

Wheat is the most important source of calories in developing countries, and contributes 

to approximately 19% of the global dietary energy (Ray et al. 2013). The projected 

increase of the population to 9.1 billion by 2050 will require an increase in the wheat 

production by 60% worldwide (Rosegrant and Agcaoili 2010). In order to fulfill this 

demand, grain yield has to increase 2.4% annually (Ray et al. 2013). Nonetheless, the 

rise of the global mean temperature and changes on the frequency and intensity of 

rainfall will directly impact the productivity of wheat (Wheeler and von Braun 2013), 

undermining the future of global food security. To ensure the stability of the whole food 

system, it is necessary to develop superior wheat lines with resilience to climate change.  

Advances in the genetic gain of GY have been mainly achieved using classical 

empirical approaches. The development of high-throughput genomic and phenomic 

methods may transform conventional breeding methodologies and facilitate the 

dissection of polygenic and complex traits. Methods such as genomic selection (GS) 

have enabled the identification of superior genotypes based on the merit of genetic 

markers, but phenotypic information is still required for the calibration of training sets. 

Compare to genomics, advances on phenomics is still limited. The development of novel 

methodologies for proximal sensing phenotyping promises to transform plant 
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characterization and facilitate the improvement of quantitative traits, particularly those 

related to yield and stress tolerance.  

Proximal remote sensing provides a rapid and non-destructive characterization of 

plants (Araus and Cairns 2014), facilitating the screening of large breeding populations 

and germplasm (Reynolds et al. 2015). The most recent and intensify efforts in 

phenotyping have adapted machinery and electronic sensors for field-based plant 

characterization. These integrate systems collect information of the normalized 

difference index (NDVI), the leaf area (LAI) and hyper and multispectral imagery (Lan 

et al. 2009); as well as canopy height, and plant temperature (Andrade-Sanchez et al. 

2014). Additional traits such as chlorophyll, carotenoids and water content can also be 

estimated by detecting variations of the canopy reflectance at specific wavelengths of the 

electromagnetic spectrum. This spectral response indicates the plant physiological status, 

and can potentially be used as a proxy estimator of grain yield (GY).  

GY is a complex polygenic trait that is driven by the intercept of the solar 

radiation, the efficiency converting the solar energy into chemical energy, and the 

harvest index (Hay and Walker 1989). (Reynolds, Dreccer, and Trethowan 2007) 

defined specific conceptual models for GY according to main drivers that 

simultaneously group physiological and morphological adaptive traits for high 

temperature and water-limited environments. Under heat stress, the main drivers of GY 

are light interception (LI), radiation use efficiency (RUE) and harvest index (HI) 

(Cossani and Reynolds 2012). In terms of phenotyping, physiological and morphological 

from LI and RUE can be remotely estimated with radiometric approaches. In 2006, 
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(Babar, Reynolds, et al. 2006) reported one of the first efforts to associate GY and plant 

canopy reflectance. A clear response of the spectral bands related to water content and 

GY was found during heading and grain filling under irrigated and reduced irrigation 

conditions (Babar, van Ginkel, et al. 2006). 

Genetic gains of GY in wheat have been achieved with selection based on 

multiple highly correlated morphological traits. However, little attention has had the 

selection based on multiple physiological traits for the LI and RUE. The goal of this 

study is to define the link of canopy reflectance with GY and components of GY, and 

evaluate the potential of multiple-trait selection with canopy reflectance. Through the 

development of selection indices, we aim to better understand the physiological response 

of wheat under heat stress and break through the application of high-throughput 

phenotyping technologies for indirect selection of GY. The results of this study will 

facilitate the selection of superior genotypes in early generations, and reduce the 

confounding effect of environmental drift.  

4.2 Materials and methods 

4.2.1 Plant material and experimental sites 

Three panels of spring wheat landraces and products of interspecific hybridization with 

wild ancestors were grown during the 2012-2013 and 2013-2014 crop season at the 

Norman E. Borlaug Experimental Station (CENEB), Ciudad Obregon, Sonora in 

Northwest Mexico (27.20°N, 109.54°W, 38 masl). A total of 216 genotypes were 

grouped in 2013 (trial I), and 266 in 2014 (trial II and III). The trials were arranged as an 

alpha-lattice design with two replications under the raised bed system with two rows per 
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bed, an inter-row spacing within each bed of 10 centimeters (cm), and a space between 

beds of 80 cm. All traits were established the last week of February, approximately 90 

days after the optimal planting date in the Yaqui Valley, Mexico. This delay on the 

planting date exposed the plants to average daily temperatures of 28°C and maximum 

temperatures of 39°C during heading and anthesis. Reduced irrigation was also provided 

for the trial II,   

4.2.2 Grain yield and yield component   

Samples of 1 m2, using a quadrant as reference, were collected soon after physiological 

maturity (GS87). Fresh weight was recorded and the samples were dried in an oven 75ºC 

for 48 hours. A sub-sample of 50 fertile culms was separated and the number of spikes 

m-2 (SNO), grain number m-2 (GNO), thousand grain weight (TGW), biomass (BIO) and 

harvest index (HI) were estimated as described by (Pietragalla and Pasl 2012).  

4.2.3 Radiometric measurements  

Canopy reflectance was collected from 11AM to 1PM by placing the optic fiber of a 

spectroradiometer 40 centimeters (cm) above the canopy. The spectral information was 

captured with a FieldSpec 4 Hi-Res spectroradiometer in 2151 continuous bands with a 

spectral resolution of 3 nanometers (nm) from 0.35 to 0.7 µm, and 8 nm from 1.4 to 2.1 

µm. The equipment was radiometrically calibrated with a white BaSO4 reference card 

for the 100% of reflectance, and by blocking the light intercepted by the optic fiber for 

0% of reflectance. Ten readings were obtained along the plots. The mean of the spectral 

signatures captured per plot was calculated, and only the average response was 

considered for further analysis.  
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4.2.4 Analysis of variance (ANOVA) and correlation 

The GY, SNO, GNO, TGW, HI and BIO were subject to an analysis of variance 

(ANOVA). The ANOVA was calculated with the PROC GLM procedure using the 

Statistical Analysis System (SAS) software version 9.2 (SAS, Cary, NC).  The statistical 

model was established for an alpha-lattice experimental design: 

𝒀𝒊𝒋𝒌 = 𝝁 + 𝑮𝒊 + 𝑹𝒋+𝜷𝒌(𝑹𝒋) + 𝜺𝒊𝒋𝒌 (
𝒊 = 𝟏. . . 𝟐𝟔𝟔

𝒋 = 𝟏 … 𝟐
𝒌 = 𝟏 … 𝟏𝟐

) 

 

In this model, 𝑌𝑖𝑗𝑘 is the response variable that represents the genotype i, observed in the 

replication j, and in the kl block; 𝜇 is the general overall mean; 𝐺𝑖 is the additive effect 

of the ith genotype; 𝑅𝑗 is the effect of the jth replication; 𝛽𝑘(𝑅𝑗) is the effect of the kth 

block within the jth replication; and 𝜀𝑖𝑗𝑘 is the random error effect for the ith genotype, in 

the jth replication and the kth block within the jth replication. The phenotypic (𝜎𝑝
2) and 

genotypic 𝜎𝑔
2 variance were estimated as follow: 𝜎𝑔

2 =
[(𝑚𝑠𝑔)−(𝑚𝑠𝑒)]

𝑟
 and 𝜎𝑝

2 = 𝜎𝑔
2 +

𝜎𝑒
2

𝑟
, 

where msg and mse correspond to the mean square of the genotypes and the error, 

respectively, 𝜎𝑔
2 is the genetic variance, 𝜎𝑝

2 the phenotypic variance, 𝜎𝑒
2 the error 

variance, and r is the number of replications. The reported estimates of the heritability in 

broad sense (ℎ2) were calculated according to the formula describes by (Allard 1960): 

ℎ2 =
𝜎𝑔

2

𝜎𝑝
2. Phenotypic correlations and the covariance matrix of all parameters were 

calculated using the PROC CORR procedure including the COV option in the statement 

in SAS. The genotypic correlations (𝜎𝑔) were estimated as follow: 𝜎𝑔 =
𝐶𝑂𝑉𝑋𝑌

√𝑉𝑎𝑟𝑥𝑉𝑎𝑟𝑦
, 
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where COVXY corresponds to the covariance estimate of the GY components, BIO and 

HI with GY, Varx is the variance of GY component, BIO or HI, and Vary is the variance 

of the GY. The genotypic correlations (𝜎𝑔), the expected response to selection (R), the 

correlated response to selection (CR) the relative efficiency of indirect selection (RE) 

were all estimated according to (Falconer 1989). 

𝜎𝑔 =
𝐶𝑂𝑉𝑋𝑌

√𝑉𝑎𝑟𝑥𝑉𝑎𝑟𝑦
, where COVXY corresponds to the covariance estimate of the vegetation 

index and GY, Varx corresponds to the variance of the spectral index, and Vary is the 

variance of the GY.  

𝑅 = ℎ𝑥𝜎𝑥, where hx is the square root of the heritability and 𝜎𝑥 the genotypic standard 

deviation. 

𝐶𝑅 = ℎ𝑥𝑟𝑔𝑥𝜎𝑔𝑦, where the hx is the square root of the heritability for the trait X (spectral 

index), 𝑟𝑔𝑥 is the genetic correlation of the spectral index and GY, and 𝜎𝑔𝑦 is the 

genotypic standard deviation of the trait Y (GY).  

𝑅𝐸 =
𝐶𝑅

𝑅
, where CR is the correlated response to selection and R is the expected 

response to selection of the trait.  

4.2.5 Two samples t-test 

The narrow bands of the spectral signatures were averaged into three main spectral 

regions: the visible (0.4 to 0.748 µm), the red-edge (0.691 to 0.730 µm), the near 

infrared (NIR 0.751 to 1.399 µm) and the short-wave infrared (1.4 to 2.398 µm). These 

signatures were grouped into two sets. These sets contained the spectral signatures 

within 1+/- the standard deviation (SD) from the mean of GY, respectively. A two 
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samples t-test was conducted under the null hypothesis that the difference of the spectral 

response of these two sets is equal to cero (𝐻0: 𝜇1 − 𝜇2 = 0). This null hypothesis was 

tested under the assumption of similar standard deviations: 𝑡 =
𝑥1− 𝑥2

𝑠𝑝√
1

𝑛1
+

1

𝑛2

 . In this 

equation, 𝑥1 and 𝑥2 correspond to the average reflectance of the high and low GY 

genotypes, respectively, 𝑠𝑝 is the pooled SD, and 𝑛1 and 𝑛2 are the number of 

observations included in every sample. The pooled SD was calculated with the follow 

equation: 𝑠𝑝 = √
(𝑛1−1)𝑠1

2+(𝑛1−1)𝑠2
2

𝑛1+𝑛2−2
, where 𝑠1

2 and 𝑠2
2 are the SD of the group 1 and 2. All 

results were confirmed with the t.test function, and the confidence interval to the specific 

alternative hypothesis estimated with the conf.int in the software R. 

4.2.6 First derivative of the spectrum 

The first derivative of the spectral response was calculated to enhance important spectral 

features. The analysis estimates the rate of change of the reflectance respect to the 

wavelength by calculating the changes in the curvature of the spectrum at the specific 

interval of the signal. The derivatives were computed within a window size of 11 nm 

using the savitszkyGolay function included in the package prospect (Stevens 2014). This 

function applies the Savitzy-Golay filter (Bromba and Ziegler 1981)before the derivative 

is estimated.  

𝑥𝑗 ∗=
1

𝑁
∑ 𝑐ℎ𝑥𝑗 + ℎ

𝑘

ℎ=−𝑘
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In this equation, the xj* represents the new value obtained after the first or second 

derivative was estimated, N is a normalizing coefficient, k is the number of neighbor 

values at each side of j, and ch are pre-computed coefficients that depend of the 

polynomial order and degree. Pearson correlation coefficients were estimated with the 

corr function to identify the associated derivate regions of the spectrum with GY.  

4.2.7 Sparse partial least square regression (SPLSR)  

SPLSR is a supervised multivariate technique that is based on the principle of partial 

least square regression (PLSR) and lies in the dimentionally reduction and multiple 

regression to confront situations where there exist highly correlated predictor variables 

and relative few samples. Although the PLSR is able to achieve good predictive 

performance, the linear combinations are complex and dificult to be interpreted. In this 

study the SPLSR was conducted for three hundred and twenty six spectral bands with a 

resolution of 3 nm were integrated as the matrix with the dependent variables (𝑋′) for 

prediction of EW. The analysis was conducted with the spls function in the software R, 

the sparcity tuning parameter ‘eta’ and ‘K’ were assigned according the specifications in 

the spls package version 1.0 (Chung 2012). 

4.2.8 Spectral vegetation indices 

Broad and narrow spectral vegetation indices (SVI) associated to leaf pigments, light use 

efficiency, leaf area, red-edge, plant water content and plant greeness were estimated to 

evaluate the physiological response of the plant (Table 12 and Table13). SVI’s combine 

the spectral information at specific wavelength using simple mathematical formulas to 
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obtain an estimator of the plant characteristic. All SVI’s were calculated in the R 

statistical package version 2.15.2 (Team 2008).  

4.2.9 Selection indices  

Selection indices are linear combinations of variables to simultaneously select multiple 

traits while achieving maximum advance on genetic gain (GG). In this study, the first set 

of indices was developed with the components of GY, BIO and the HI. The second set of 

indices incorporated regions of the electromagnetic spectrum selected with the derivative 

and the PLSR analysis. The selection indices integrating the narrow and broad 

vegetation indices were analyzed separated for every index and by combining them. The 

selection theory based on indices was first proposed by (Smith 1936)considering the 

phenotypic information, the heritability estimates and the genetic correlation of the traits. 

The selection indices are derived as simple linear combinations: 𝑌 = 𝛽′𝑝 and 𝑍 = 𝜃′𝑔 

where Y corresponds to the selection index, 𝛽′ = [𝑏1, … . . , 𝑏𝑛] is the vector with the 

coefficients of the index,  𝑝′ = [𝑝1, … . . , 𝑝2] is the vector with the phenotypic values of 

y; Z represents the breeding values, and 𝜃′ = [𝑤1, … . . , 𝑤𝑛] is the vector of economic 

weights. The Smith method is defined as 𝑆−1, which is the inverse of the variance-

covariance matrix, used to define the coefficients assigned to every genotype, 𝛽𝑠 =

𝑆−1 ∑ 𝜃. To define the specific relationship between the phenotypic values, and the 

estimated genotypic values, (Smith 1936) establish a model for phenotypic information: 

𝑃𝑗 = 𝑔𝑗 + 𝜖𝑗. In this model 𝑃𝑗 is the phenotypic information, 𝑔𝑗 is the genotypic value at 

the jth observation with additive effects, and 𝜖𝑗 the random error and it was assumed that 

interaction of both factors was random. The selection coefficients with the Smith’s 
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method were estimated in the SI-R Coded for Computing Selection Indices in R 

(Alvarado, Perez-Elizalde, and Ceron 2015) The genetic gain (∆𝐺) per cycle of selection 

for the 5% of the selected genotypes was estimated as follow: ∆𝐺 = ℎ2 𝑆𝐸𝐷. In this 

formula, the SED is the selection differential of the population mean and the mean of the 

selected individuals, 𝑆𝐸𝐷 = 𝑥𝑝 − 𝑥𝑠, where 𝑥𝑝 is the mean of the population before 

selection, and the 𝑥𝑠 is the mean of the selected genotypes. The accuracy of prediction of 

the indices was estimated with the correlation (r) of the selection coefficients and the 

breeding values.  
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Table 15 Narrow band spectral indices for leaf pigments and light use efficiency. 

 
NAME  FORMULA REFERENCE 

 LEAF PIGMENTS 

Carotenoid Reflectance Index-1 CRI-1 1

𝜌510

−
1

𝜌550

 
(Gitelson, Zur, et al. 2002) 

Carotenoid Reflectance Index-2 CRI-2 1

𝜌510

−
1

𝜌700

 
(Gitelson, Zur, et al. 2002) 

Anthocyanin Reflectance Index ARI 1

𝜌550

−
1

𝜌700

 
(Gitelson, Merzlyak, and 

Chivkunova 2001) 

Blue Green Pigment Index BGPI 𝜌450

𝜌550

 (Zarco-Tejada et al. 2005) 

Blue Red Pigment Index BRPI 𝜌450

𝜌690

 (Zarco-Tejada et al. 2005) 

Normalized Phaeophytinization Index NPI 𝜌415 − 𝜌435

𝜌415 + 𝜌435

 (Barnes et al. 1992) 

 LIGHT USE EFFICIENCY 

Photochemical Reflectance Index PRI 𝜌531 − 𝜌570

𝜌531 + 𝜌570

 (Gamon, Serrano, and Surfus 

1997) 

Structure Insensitive Pigment Index SIPI 𝜌800 − 𝜌450

𝜌800 + 𝜌650

 (Panuelas et al. 1995) 

Red Green Ratio Index RGRI ∑ 𝑅𝑖
699
𝑖=600

∑ 𝑅𝑗
599
𝑖=500

 
(Gamon and Surfus 1999) 
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Table 16 Narrow band vegetation indices for leaf area and plant water content. 

 
NAME  FORMULA REFERENCE 

 LEAF AREA 

Modified Triangular Vegetation Index MTVI 1.2[1.2(𝜌800 − 𝜌550) − 2.5(𝜌670 − 𝜌550)] (Haboudane et al. 2004) 

 RED-EDGE INDICES 

Red-edge position ReP 
700 + 40 [

ρ670 + ρ780

2
− ρ700] (ρ740 − ρ700)⁄  

(Gayout, Baret, and Major 

1988) 

Vogelmann Index-1 VGI-1 740
720⁄   (Vogelmann, Rock, and Moss 

1993) 

Vogelmann Index-2 VGI-2 ρ734 − ρ747

ρ715 − ρ726

 (Zarco-Tejada et al. 2003) 

Vegetation Stress Ratio VSR 725
702⁄  (White, Williams, and Barr 

2008) 

Modified Red-edge Normalized 

Difference Vegetation Index 

MRENDVI ρ750 − ρ705

ρ750 + ρ705 − 2 ∗ ρ455

 (Datt 1999) 

 PLANT WATER CONTENT 

Water Index WI 970
900⁄   (Penuelas et al. 1993) 

Moisture Stress Index MSI ρ1599

ρ819

 (Hunt and Rock 1989) 

Simple Ratio Water Index SRWI ρ860

ρ1240

 (Zarco-Tejada, Rueda, and 

Ustin 2003) 
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Table 17 Narrow band vegetation indices for plant greenest.  

 
NAME  FORMULA REFERENCE 

 PLANT GREENEST 

Normalized Difference Vegetation Index NDVI ρ800 − ρ640

ρ800 + ρ640

 (Rouse et al. 1974) 

Plant Scenecense Reflectance Index  PSRI ρ680 − ρ500

ρ750

 (Merzlyak et al. 1999) 

Reg-green Ratio Index  RGI ρ690

ρ550

 (Gamon and Surfus 1999) 

Greenest Index GI ρ554

ρ677

 (Zarco-Tejada et al. 2005) 

Normalize Difference Nitrogen Index NDNI log (
1

ρ1510
) − log (

1
ρ1680

)

log (
1

ρ1510
) + log (

1
ρ1680

)
 

(Serrano, Penuelas, and Ustin 

2002)  

Normalized Pigment Chlorophyll Index NPCI ρ680 − ρ430

ρ680 + ρ430

 (Penuelas et al. 1994) 

Pigment Specific Simple Ratio for 

Chlorophyll a 

PSI-a ρ800

ρ675

 (Blackburn 1998) 

Pigment Specific Simple Ratio for 

Chlorophyll b 

PSI-b ρ800

ρ650

 (Blackburn 1998) 

Transformed Chlorophyll Absorption 

Ratio Index 

TCARI 3[(ρ700 − ρ670) − 0.2(ρ700 − ρ550)(ρ700 ρ670)⁄ ] (Haboudane et al. 2002) 
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Table 18 Broad spectral indices for leaf pigments, leaf area and plant water content.  

 
NAME  FORMULA REFERENCE 

 LEAF PIGMENTS 

Modified Anthocyanin Reflectance Index mARI 
[(

1

ρGreen

) − (
1

ρRed edge

)] ∗ ρNIR 
(Gitelson, Keydan, and 

Merzlyak 2006) 

Anthocyanin Reflectance Index ARI ρGREEN

ρNIR

 (Berg and Perkins 2005) 

 LEAF AREA 

Enhanced Vegetation Index EVI 
2.5 ∗

(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅 + 6𝜌𝑅𝑒𝑑 − 7.5𝜌𝐵𝑙𝑢𝑒 + 1)
 

(Huete et al. 1997) 

Leaf Area Index LAI 3.618 ∗ 𝐸𝑉𝐼 − 0.118 (Boegh and Soe 2002) 

 PLANT WATER CONTENT 

Normalized Difference Infrared Index NDII (ρNIR − ρSWIR)

(ρNIR + ρSWIR)
 

(Kim et al. 2015) 

Moisture Stress Index MSI ρSWIR

ρNIR

 (Kim et al. 2015) 
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Table 19 Broad band vegetation indices for plant greenest. 

 
NAME  FORMULA REFERENCE 

 PLANT GREENEST 

Soil Adjusted Vegetation Index SAVI (ρNIR − ρRed )

(ρNIR + ρRed + L)
∗ (1 + L) 

(Huete 1988) 

Normalized Difference Vegetation index NDVI (ρNIR − ρRed)

(ρNIR + ρRed)
 

(White, Williams, and Barr 

2008) 

Simple Ratio SR ρNIR

ρRed

 (Birth and McVey 1968) 

Green Normalized Difference Vegetation 

Index 

GNDVI (ρNIR − ρGreen)

(ρNIR + ρGreen)
 

(Gitelson, Kaufman, and 

Merzlyak 1996) 

Green Difference Vegetation Index GDVI ρNIR − ρGreen (Sripada et al. 2006) 

Difference Vegetation Index DVI ρNIR − ρRed (Tucker 1979) 

Red Green Ratio Index RGRI ρRed − ρGreen (Gamon and Surfus 1999) 

Green Ratio Vegetation Index GRVI ρNIR

ρGreen

 (Sripada et al. 2006) 

Transformed Difference Vegetation Index  TDVI 

√0.5 +
(ρNIR − ρReed)

(ρNIR + ρReed)
 

(Bannari, Asalhi, and Teillet 

2002) 

Visible Atmospherically Resistant Index  VARI ρGreen − ρReed

ρGreen + ρReed − ρBlue

 (Gitelson, Stark, et al. 2002) 
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4.3 Results 

4.3.1 Analysis of variance and correlation of GY and components of GY  

Significant differences were detected for GY (Table 14). Relative high heritability 

estimates were constant across environments, with close to 90% efficiency detecting the 

variation of the additive genetic effect of the genotypes. The SNO, GNO and TGW also 

had significant differences at 1% of probability, but their estimates of heritability were 

lower than GY per se.  

All phenotypic and genotypic correlations of the components of GY with GY 

were statistically associated at 1% of probability (Table 14). As expected, genotypic 

correlations were considerably high for all three components of GY, except for TGW in 

the trial I, where a low correlation coefficient of 0.25 was detected. A correlated 

response to selection larger than 1.0 was determined for SNO and GNO with GY, but 

not for TGW. SNO was the only component with which indirect selection is as efficient 

as direct selection of GY. The strong correlation between BIO and GY suggests the 

potential application of BIO for indirect selection. However, h2 estimates of BIO are 

significantly lower that GY, leading to a low selection efficiency of indirect selection.  
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Table 20 Analysis of variance, and broad sense heritability estimates for the GY (grain 

yield in g/m2), SNO (spike number/m2), GNO (grain number/m2), TGW (thousand grain 

weight in g), HI (harvest index), and BIO (biomass in g/m2).  

 

  HS-I HS-II HS-III 

GY Genotype 5.36** 6.74** 14.46** 

 Mean 97.06 44.18 94.75 

 CV (%) 9.62 14.13 12.92 

 h2 (%) 87 88 89 

SNO Genotype 0.021** 5.89** - 

 Mean 175.94 103.19 - 

 CV (%) 4.26 15.26 - 

 h2 (%) 63 61 - 

GNO Genotype 165.76** 1511025.9 ** 497.78** 

 Mean 3400 1854 3846 

 CV (%) 9.19 25.40 13.58 

 h2 (%) 86 83 86 

TGW Genotype 18.17** 21.99** 0.0078** 

 Mean 28.58 23.35 24.29 

 CV (%) 6.15 7.41 3.38 

 h2 (%) 85 86 73 

HI Genotype 0.002** 0.0058** 0.006** 

 Mean 0.22 0.32 0.32 

 CV (%) 12.88 24.7 16.58 

 h2 (%) 72 65 79 

BIO Genotype 11178.4** 2453.25** 8327.47** 

 Mean 444.48 137.53 290.84 

 CV (%) 18.24 31.87 43.0 

 h2 (%) 77 72 52 

CV: general coefficient of determination; h2: broad sense heritability;                        
ns Not significant by F-test, and * and ** Significant at 5% and 1% probability         

by F-test respectively. 

 

 

 

 



 

92 

 

Table 21 Phenotypic (𝒓𝒑) and genotypic (𝒓𝒈) correlation of components of GY with GY, 

response to selection (RS), correlated response (CR) and selection efficiency (SE) of 

indirect selection for GY, harvest index (HI), biomass in g/m2 (BM) and spike 

number/m2 (SNO).  

 

Trait  𝒓𝒑 𝒓𝒈 R CR SE 

GY I - - 2.11 - - 

 II - - 2.81 - - 

 III - - 5.99 - - 

SNO I 0.71** 0.77** 0.87 1.02 1.17 

 II 0.73** 0.83** 1.41 1.12 0.79 

 III - - - - - 

GNO I 0.96** 0.96** 77.2 1.48 0.019 

 II 0.96** 0.97** 745.13 1.55 0.003 

 III 0.97** 0.98** 200.56 2.31 0.011 

TGW I 0.25** 0.27** 2.76 0.42 0.15 

 II 0.53** 0.57** 2.84 0.92 0.32 

 III 0.48** 0.60** 1.21 1.31 1.09 

HI I  0.66** 0.74** 0.03 1.04 37.80 

 II 0.54** 0.74** 0.06 1.03 16.64 

 III 0.77** 0.85** 0.07 1.93 29.05 

BM I  0.88** 0.94** 92.78 1.37 0.015 

 II 0.87** 0.95** 42.03 1.39 0.034 

 III 0.73** 0.96** 65.81 1.77 0.027 
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Fig. 21 Boxplot for GY (grain yield in g/m2), GNO (grain number/m2), TGW (thousand grain weight in g), SNO (spike 

number/m2), BIO (biomass in g/m2) and HI (harvest index) of the genotypes evaluated in 2013 (trial I) and 2014 (trial II and 

III). 
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4.3.2 Spectral features associated to GY 

The light reflectance of genotypes with high GY was statistically different to the average 

reflectance of genotypes with low GY (Table 16). These differences were detected at the 

NIR and SWIR of the spectrum. The NIR region directly interacts with the spongy 

mesophylls cells, healthy vegetation tends to have a higher reflectance, and the SWIR is 

associated with absorption of water. For the visible and red-edge, no statistical 

differences were detected.  

Table 22 Two samples t-test of the average light reflectance (LR) for the spectral 

signatures within 1 +/- SD from the mean of GY.  

 

  Average LR (%)    

 Wavelengths +1SD -1SD T-value 95% CI p-value 

HI-I Visible 0.112 0.118 -0.067 -0.023/0.022 0.94 

SD=37.93 Red-edge 0.217 0.214 0.101 -0.056/0.062 0.91 

 NIR 0.568 0.511 13.06 0.049/0.066 <0.01 

 SWIR 0.242 0.250 -1.5132 -0.018/0.002 0.13 

HI-II Visible 0.073 0.087 -1.82 -0.029/0.0011 0.07 

SD=24.07 Red-edge 0.129 0.154 -1.28 -0.064/0.014 0.21 

 NIR 0.344 0.358 -4.37 -0.020/-0.008 <0.01 

 SWIR -0.039 -0.025 -9.287 -0.039/-0.025 <0.01 

HI-III Visible 0.081 0.087 -1.012 -0.018/0.006 0.31 

SD=52.67 Red-edge 0.138 0.148 -0.831 -0.035/0.015 0.41 

 NIR 0.287 0.276 0.643 -0.002/0.005 0.05 

 SWIR 0.151 0.178 -9.69 -0.03/-0.021 <0.01 
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Fig. 22 Pearson correlation coefficients of the first derivative of the reflectance and GY 

for the trials I) HS-II, II) HS-II and III) HS-III.  

 

The results of the derivative analysis were consistent across the environments, 

narrow areas of the spectrum were associated with the variation of GY (Fig. 23). 

Although, no differences were detected in the reflectance of the VIS region for 

genotypes with high and low GY, the derivative reflectance associated five VIS regions 

(Table 17).  
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Table 23 Correlation coefficients of the first derivative of the spectrum and GY. 

 

 ID Spectral range (nm) Number of 

bands* 

I II III 

Visible SR-D1 460-487 27 -0.12 -0.21 -0.24 

 SR-D2 547-556 9 -0.20 -0.22 -0.29 

 SR-D3 592-631 38 -0.21 -0.12 -0.28 

 SR-D4 670-673 3 -0.15 -0.19 -0.28 

 SR-D5 736-748 18 0.28 0.18 0.28 

NIR SR-D6 910-913 3 -0.15 -0.32 -0.26 

 SR-D7 937-943 6 -0.24 -0.24 -0.30 

SWIR SR-D8 1015-1057 42 0.27 0.21 0.17 

 SR-D9 1126-1135 9 -0.24 -0.21 -0.26 

 SR-D10 1228-1252 24 0.18 0.26 0.31 

 SR-D11 1267-1318 51 -0.20 -0.15 -0.29 

 

The sparse linear combinations of the predictors are presented in Fig. 24. 

Coefficients equal to cero are statistically not associated with the variability of GY. The 

canopy reflectance of fourteen spectral regions across the spectrum were associated with 

GY. Overall, spectral regions detected with the derivative analysis were very similar to 

the detected with the PLSR, except for the spectral regions detected after the 1.3 µm. 
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Fig. 23 Coefficient estimated in the SPLSR analysis for prediction of GY incorporating 

the canopy reflectance from the 0.4 to 1.8µm.  
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Table 24  Spectral band identified with the SPLSR analysis. 

 

 ID Spectral range (nm) Number of bands* 

Visible SR-P1 406-433 27 

 SR-P2 478-499 21 

 SR-P3 532-550 18 

 SR-P4 619-676 57 

NIR SR-P6 748-811 63 

 SR-P7 832-877 45 

SWIR SR-P8 994-997 3 

 SR-P9 1003-1024 21 

 SR-P10 1111 1 

 SR-P11 1333-1339 6 

 SR-P12 1400-1403 3 

 SR-P13 1544-1568 24 

 SR-P14 1736-1775 39 

 

The phenotypic correlations (𝑟𝑝) of the spectral regions (SR’s) and the GY were 

significant with 1% and 5% of probability (Table 19). The genotypic correlations (𝑟𝑔), 

were high, but the heritability estimates were considerable lower that GY. In all cases, 

indirect selection of GY with the SR’s is more efficient that direct selection. The 

negative response of the selection efficiency (SE) suggest selection towards decrease of 

the light reflectance of these SR’s to increase GY.  

 

 

 



 

99 

 

Table 25  Broad sense heritability estimates, correlated response (CR), response to selection (R), and phenotypic and 

genotypic correlations of the selected spectral regions and GY.  

 

Data Set I II IIII I II III I II III 

Vegetation index SR-1 406-433 SR-2 460-499 SR-4 592-676 

𝒓𝒑 -0.14 -0.19 -0.22 -0.14 -0.22 -0.21 -0.17 -0.24 -0.24 

𝒓𝒈 -0.43 -0.21 -0.57 -0.41 -0.24 -0.52 -0.52 -0.26 -0.44 

𝐡𝟐  0.37  0.51  0.31  0.39  0.57  0.36  0.23  0.72  0.55 

R 0.0019 0.004 0.001 0.003 0.005 0.003 0.009 0.016 0.009 

CR -0.43 -0.26 -0.81 -0.43 -0.32 -0.80 -0.41 -00.38 -0.83 

SE -227.01 -75.31 -548.71 -143.3 -58.92 -331.53 -105.45 -25.31 -89.52 

 SR-17 1544-1568 SR-18 1736-1775  

𝒓𝒑 -0.15 -0.31 -0.15 -0.13 -0.31 -0.13    

𝒓𝒈 -0.39 -0.46 -0.98 -0.36 -0.53 -    

𝐡𝟐  0.28  0.39  0.08  0.27  0.30 -    

R 0.008 0.011 0.002 0.008 0.008 -    

CR -0.34 -0.49 -0.71 -0.31 -0.51 -    

SE -42.03 -44.41 -364.75 -36.94 -60.65 -    

All 𝒓𝒑 and 𝒓𝒈 are significant at 5% of probability or less.   

 

   



 

100 

 

4.3.3 Vegetation indices for indirect selection of GY  

Vegetation indices (VI’s) were strongly associated with GY. The solid bars represent the 

correlation coefficients of the GY with the narrow (Fig. 25) and broad (Fig. 26) indices.  

Narrow band indices related to light use efficiency (PRI and SIPI), red-edge indices 

(VGI-2 and MRENDVI), water content (WI), and plant greenest (NDVI, PSI-a, and PSI-

b) were selected to build the selection indices. Only six broad indices relevant to the leaf 

pigments (ARI), the red-edge indices (ReCl), plant water content (NDII) and plant 

greenest (SAVI, GRVI and TDVI) were chosen. 

The heritability estimates of the selected VI’s varied across the environments 

(Table 20). The lowest estimates of heritability were obtained in the trial HS-I. 

Genotypic correlations were all statistically significant and the response to indirect 

selection (RIS) was superior for all the VI’s, particularly for the anthocyanin reflectance 

index (ARI) and the water index (WI).  
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Fig. 24 Correlation coefficients of narrow band vegetation indices and GY.   
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Fig. 25 Correlation coefficients of broad band indices and GY.  
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Table 26 Phenotypic (𝒓𝒑) and genotypic (𝒓𝒈) correlations of narrow and broad spectral indices, and estimates of the broad sense 

heritability (h2), response to selection (R), correlated response to selection (CR) and efficiency of indirect selection.  

 
Data Set HS-I HS-II HS-III HS-I HS-II HS-III HS-I HS-II HS-III 

Vegetation index PRI SIPI VGI-2 

𝒓𝒑 0.24 0.20 0.21 0.25 0.20 0.21 0.33 0.41 0.28 

𝒓𝒈 0.35 0.24 0.22 0.31 0.28 0.34 0.41 0.58 0.51 

𝐡𝟐 0.13 0.87 0.79 0.17 0.82 0.79 0.13 0.81 0.35 

R 0.002 0.025 0.017 0.006 0.061 0.055 - 0.09 0.02 

CR 0.21 0.39 0.50 0.22 0.44 0.77 - 0.91 0.77 

RIS 97.18 15.86 29.48 34.54 7.11 14.09 - 10.15 36.28 

Vegetation index MRENDVI WI NDVI 

𝒓𝒑 0.25 0.27 0.25 -0.35 -0.32 -0.29 0.24 0.21 0.22 

𝒓𝒈 0.32 0.36 0.31 -0.87 -0.41 -0.48 0.28 0.28 0.32 

𝐡𝟐 0.17 0.86 0.82 0.16 0.82 0.73 0.17 0.84 0.82 

R 0.01 0.09 0.09 0.003 0.023 0.017 0.01 0.09 0.09 

CR 0.22 0.58 0.72 -0.58 -0.65 -1.05 0.19 0.44 0.73 

RIS 22.77 6.31 8.37 -201.38 -27.2 -62.3 19.76 4.82 8.61 

Vegetation index PSI-a PSI-b  

𝒓𝒑 0.31 0.19 0.13 0.29 0.21 0.15    

𝒓𝒈 0.70 0.25 0.22 0.68 0.26 0.24    

𝐡𝟐 0.11 0.84 0.72 0.11 0.84 0.73    

R 0.16 2.49 0.81 0.14 2.15 0.75    

CR 0.38 0.39 0.48 0.38 0.42 0.52    

RIS 2.34 0.16 0.59 2.61 0.19 0.69    

All 𝒓𝒑 and 𝒓𝒈 were significant at 1% of probability  
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Table 26 Continued. 

 
Data Set HS-I HS-II HS-III HS-I HS-II HS-III HS-I HS-II HS-III 

Vegetation index ARI ReCl NDII       

𝒓𝒑 -0.18 -0.22 -0.15 0.25 0.27 0.15 0.27 0.25 0.23 

𝒓𝒈 -0.92 -0.26 -0.40 0.47 0.36 0.30 0.43 0.37 0.31 

𝐡𝟐 0.12 0.81 0.79 0.11 0.84 0.77 0.13 0.77 0.71 

R 0.002 0.03 0.03 0.03 0.34 0.22 0.006 0.069 0.055 

CR -0.53 -0.41 -0.92 0.26 0.58 0.68 0.25 0.57 0.66 

RIS -265.03 -12.81 -28.59 12.25 1.72 3.18 41.98 8.12 12.18 

Vegetation index SAVI GRVI TDVI 

𝒓𝒑 0.22 0.22 0.17 0.24 0.25 0.15 0.22 0.22 0.17 

𝒓𝒈 0.21 0.29 0.31 0.60 0.33 0.32 0.18 0.29 0.31 

𝐡𝟐 0.16 0.84 0.82 0.10 0.82 0.73 0.17 0.84 0.83 

R 0.006 0.06 0.053 0.07 0.85 0.49 0.003 0.029 0.029 

CR 0.14 0.46 0.72 0.32 0.52 0.69 0.12 0.46 0.72 

RIS 26.91 8.10 13.27 5.23 0.61 1.39 45.37 15.81 24.71 

All 𝒓𝒑 and 𝒓𝒈 were significant at 1% of probability       
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4.3.4 Selection indices with GY components, associated spectral features and vegetation 

indices for indirect selection of GY 

The weights of the Smith-Hazel (S/H) selection index were assigned for every 

combination of predictors. The expected genetic gain (EGG) of GY was calculated for 

the top 5% of the genotypes selected with the S/H index. The relative efficiency (RE) of 

selection was computed considering direct selection of GY as 100% efficient. According 

to the results, the indirect selection with SNO and TKW is not as efficient as the direct 

selection with GY. The BIO and GNO both had a similar RE of close to 98%. When all 

these criteria were combined into the selection indices, the RE was close to ~98%, 

except the YCI11 that combines the SNO and TKW. A superior increase of 100.39 was 

detected when selecting with the YCI9, that includes the GY and BIO.  

 The selection indices that integrate the SR’s were able to predict ~40% of the RE 

with the direct selection. The SRI2, SRI5, and SRI6 obtained the highest RE. When the 

SR’s were combined into the selection indices, the SRI16, SRI19, SRI21, and SRI24 had the 

highest EGG. The SRI5, and SRI6 correspond to water absorption band at the SWIR. The 

selection indices that incorporated the broad band indices all achieved a similar 

percentage of EGG. With these indices, not more that 37.71% EGG was obtained, except 

for the BVII48 with 73.59%. The BVII48 combines all six narrow band indices. Narrow 

band indices for carotenoids and water content in the plants did not reach the EGG 

obtained with the direct selection. However, in the case of the NVII6 , the index estimates 

51% of the EGG. This index integrates the NDVI.  
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Table 27 Expected genetic gain (EGG) for the selected 5% of the genotypes, and 

relative efficiency of indirect selection (RE) compared with selection of GY per se 

incorporating the components of GY and BIO as selection indices. Biomass (BIO), and 

the correlation coefficient (r) of the coefficient of the index and the breeding value. 

 

Index No. Yield traits EGG  *RE (%) r 

YCI1 X1 GY (g/m2) 52.28 100 0.94 

YCI2 X2 SNO/m2 44.81 86.27 0.85 

YCI 3 X3 GNO/m2 50.61 96.71 0.93 

YCI 4 X4 TKW(g) 21.31 44.43 0.93 

YCI 5 X5 BIO(g) 50.67 97.17 0.91 

YCI 6 X1 + X2 50.42 96.51 0.91 

YCI 7 X1 + X3 51.06 97.75 0.93 

YCI 8 X1 + X4 52.27 99.93 0.94 

YCI 9 X1 + X5 52.51 100.39 0.93 

YCI 10 X2 + X3 50.97 97.59 0.92 

YCI 11 X2 + X4 45.97 88.65 0.86 

YCI 12 X2 + X5 49.71 95.41 0.89 

YCI 13 X3 + X4 51.00 97.65 0.92 

YCI 14 X3 + X5 51.16 97.94 0.93 

YCI 15 X4 + X5 50.71 97.23 0.91 

YCI 16 X1 + X2 + X3 51.05 97.74 0.93 

YCI 17 X1 + X2 + X4 50.73 97.15 0.90 

YCI 18 X1 + X2 + X5 50.72 97.24 0.91 

YCI 19 X1 + X3 + X4 51.09 97.81 0.93 

YCI 20 X1 + X3 + X5 51.23 98.08 0.93 

YCI 21 X1 + X4 + X5 51.51 98.66 0.92 

YCI 22 X2 + X3 + X4 51.01 97.65 0.93 

YCI 23 X2 + X3 + X5 51.14 97.91 0.92 

YCI 24 X2 + X4 + X5 49.85 95.70 0.89 

YCI 25 X3 + X4+ X5 51.19 98.05 0.93 

YCI 26 X1 + X2+ X3 + X4 51.08 97.81 0.92 

YCI 27 X1 + X2+ X3 + X5 51.05 97.75 0.93 

YCI 28 X2+ X3 + X4 + X5 51.17 97.96 0.93 

YCI 29 X1 + X2+ X3 + X4 + X5 51.24 98.09 0.92 

*Considering the direct selection of GY as 100% efficient  
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Table 28 Expected genetic gain (EGG) for the selected 5% of the genotypes, and 

relative efficiency of indirect selection (RE) compared with selection of GY per se 

incorporating the selected spectral regions with the derivative analysis and the SPLSR in 

selection indices for GY, and the correlation coefficient (r) of the coefficient of the index 

and the breeding value. 

 

Index No. Yield traits EGG  *RE (%) r 

SRI1 GY (g/m2) 60.20 100 0.86 

SRI 2 SR1 17.64 30.38 0.73 

SRI 3 SR2 14.74 26.81 0.59 

SRI 4 SR4 13.67 22.43 0.52 

SRI 5 SR17 18.76 34.01 0.58 

SRI 6 SR18 15.48 31.11 0.59 

SRI 7 SR1+ SR2 -60.87 -101.41 0.89 

SRI 8 SR1+ SR4 -60.81 -101.28 0.88 

SRI 9 SR1+ SR17 -60.81 -101.27 0.88 

SRI 10 SR1+ SR18 -60.79 -101.26 0.88 

SRI 11 SR2+ SR4 13.66 23.32 0.54 

SRI 12 SR2+ SR17 17.08 31.22 0.58 

SRI 13 SR2+ SR18 21.7 37.22 0.59 

SRI 14 SR4+ SR17 16.99 29.76 0.55 

SRI 15 SR4+ SR18 24.40 38.87 0.56 

SRI 16 SR17+ SR18 26.42 43.37 0.55 

SRI 17 SR1+ SR2+SR4 14.84 25.51 0.56 

SRI 18 SR1+ SR2+SR17 17.35 31.48 0.58 

SRI 19 SR1+ SR2+SR18 25.8 41.81 0.60 

SRI 20 SR1+ SR4+SR17 17.35 30.39 0.55 

SRI 21 SR1+ SR4+SR18 25.51 40.29 0.56 

SRI 22 SR2+ SR4+SR17 16.22 28.71 0.55 

SRI 23 SR2+ SR4+SR18 24.19 38.35 0.58 

SRI 24 SR4+ SR17+SR18 24.94 40.28 0.56 

SRI 25 SR1+ SR2+SR4+SR17 16.58 29.29 0.56 

SRI 26 SR1+ SR2+SR4+SR18 23.91 38.16 0.57 

SRI 27 SR-2+ SR4+SR17+SR18 22.68 37.28 0.56 

SRI 28 SR1+SR-2+ SR4+SR17+SR18 -60.16 -99.91 0.88 

*Considering the direct selection of GY as 100% efficient  
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Table 29 Expected genetic gain (EGG) for the selected 5% of the genotypes, and 

relative efficiency of indirect selection (RE) compared with selection of GY per se 

incorporating broad band spectral indices in selection indices for GY, and the correlation 

coefficient (r) of the coefficient of the index and the breeding value. 

 

Index No. Yield traits EGG  *RE (%) r 

BVII 1 GY (g/m2) 185.23 100 0.92 

BVII 2 X1 ARI 74.42 34.05 0.99 

BVII 3 X2 ReCl 66.16 35.51 0.99 

BVII 4 X3 NDII 68.11 36.31 0.84 

BVII 5 X4 SAVI 78.37 37.67 0.82 

BVII 6 X5 GRVI 54.39 32.22 0.99 

BVII 7 X6 TDVI 76.57 37.73 0.87 

BVII 8 X1 + X2 67.36 35.58 0.99 

BVII 9 X1 + X3 71.28 36.26 0.95 

BVII 10 X1 + X4 77.75 36.66 0.96 

BVII 11 X1 + X5 55.04 32.28 0.99 

BVII 12 X1 + X6 76.04 36.04 0.99 

BVII 13 X2 + X3 66.82 35.83 0.97 

BVII 14 X2 + X4 68.06 35.89 0.98 

BVII 15 X2 + X5 57.25 33.07 0.99 

BVII 16 X2 + X6 67.11 35.74 0.99 

BVII 17 X3 + X4 72.87 37.09 0.83 

BVII 18 X3 + X5 55.37 32.59 0.99 

BVII 19 X3 + X6 70.73 36.86 0.85 

BVII 20 X4 + X5 55.72 32.64 0.99 

BVII 21 X4 + X6 77.83 37.71 0.83 

BVII 22 X5 + X6 54.98 32.38 0.99 

BVII 23 X1 + X2 + X3 67.76 35.87 0.99 

BVII 24 X1 + X2 + X4 68.92 35.91 0.99 

BVII 25 X1 + X2 + X5 57.71 33.11 0.99 

BVII 26 X1 + X2 + X6 68.11 35.78 0.99 

BVII 27 X1 + X3 + X4 73.91 36.81 0.89 

BVII 28 X1 + X3 + X5 55.96 32.64 0.99 

BVII 29 X1 + X3 + X6 72.47 36.61 0.93 

BVII 30 X1 + X4 + X5 56.13 32.54 0.99 

BVII 31 X1 + X4 + X6 77.52 36.95 0.93 

BVII 32 X1 + X5 + X6 55.59 32.44 0.99 

BVII 33 X2 + X3 + X4 68.31 36.11 0.95 

*Considering the direct selection of GY as 100% efficient  
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Table 29 Continued. 

 

Index No. Yield traits EGG  *RE (%) r 

BVII 34 X2 + X3 + X5 57.87 33.31 0.99 

BVII 35 X2 + X3 + X6 67.54 36.11 0.96 

BVII 36 X3 + X4 + X5 56.41 32.82 0.99 

BVII 37 X3 + X4 + X6 73.61 37.24 0.83 

BVII 38 X4 + X5 + X6 56.08 32.63 0.99 

BVII 39 X1 + X2 + X3 + X4 69.03 36.10 0.97 

BVII 40 X1 + X2 + X3 + X5 58.29 33.33 0.99 

BVII 41 X1 + X2 + X3 + X6 68.35 36.01 0.98 

BVII 42 X2 + X3 + X4 + X5 58.62 33.45 0.99 

BVII 43 X2 + X3 + X4 + X6 68.85 36.22 0.94 

BVII 44 X3 + X4 + X5 + X6 56.89 32.94 0.99 

BVII 45 X1 + X2 + X3 + X4 + X5 59.01 33.48 0.99 

BVII 46 X1 + X2 + X3 + X4 + X6 69.49 36.21 0.96 

BVII 47 X2 + X3 + X4 + X5 +X6 58.96 33.54 0.99 

BVII 48 X1 + X2 + X3 + X4 + X5 + X6 152.76 73.59 0.99 

*Considering the direct selection of GY as 100% efficient  
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Table 30 Expected genetic gain (EGG) for the selected 5% of the genotypes, and 

relative efficiency of indirect selection (RE) compared with selection of GY per se 

incorporating narrow band spectral indices in selection indices for GY, and the 

correlation coefficient (r) of the coefficient of the index and the breeding value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index No. Yield traits EGG  *RE (%) r 

NVII 1 GY (g/m2) 71.96 100 0.99 

NVII 2 X1 PRI 24.43 32.74 0.81 

NVII 3 X2 SIPI 19.95 27.58 0.77 

NVII 4 X3 MRENDVI 24.95 39.57 0.99 

NVII 5 X4 WI 21.11 30.01 0.67 

NVII 6 X5 NDVI 36.62 50.48 0.99 

NVII 7 X6 PSI-a 18.34 25.58 0.64 

NVII 8 X7 PSI-b 22.84 30.57 0.99 

NVII 9 X3 + X5 30.88 45.57 0.99 

NVII 10 X1 + X5 33.28 44.71 0.95 

NVII 11 X1 + X3 + X5 29.29 43.08 0.99 

NVII 12 X2 + X3 + X5 27.88 40.62 0.99 

NVII 13 X1 + X2 + X3 + X5 27.41 39.67 0.99 

NVII 14 X3 + X4 + X5 26.53 39.03 0.99 

NVII 15 X3 + X5 + X6 26.03 37.94 0.99 

NVII 16 X2 + X3 25.43 37.84 0.99 

NVII 17 X4 + X5 27.15 37.69 0.77 

NVII 18 X1 + X3 24.29 37.51 0.99 

NVII 19 X1 + X4 + X5 27.09 37.33 0.76 

NVII 20 X2 + X3 + X4 +X5 25.36 36.89 0.99 

NVII 21 X1 + X2 + X3 24.98 36.86 0.99 

NVII 22 X1 + X2 + X5 27.27 36.84 0.85 

NVII 23 X1 +X2 + X3 + X4 + X5 25.36 36.66 0.99 

NVII 24 X3 + X4 23.67 35.75 0.99 

NVII 25 X2 + X5 25.94 35.49 0.89 

NVII 26 X3 + X4 +X5 + X6 24.38 35.44 0.99 

NVII 27 X1 + X3 + X4 23.64 35.34 0.99 

*Considering the direct selection of GY as 100% efficient  
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4.4 Discussion   

The heritability estimates of the components of GY impacted the efficiency of indirect 

selection. Selection efficiency with the yield components was not superior to the direct 

selection with GY. The concept of genetic gain is based on the change in the mean 

performance of a population with each cycle of selection. In this study, the selection 

index YCI9 that involves the GY and BIO was the only index that provided ~1% superior 

gains in the mean of the selected genotypes for advance to the next generation. This 

index also resulted to be 37 times more efficient for selection than direct selection.  

Under heat stress, the canopy reflectance at the NIR and SWIR was statistically 

associated to GY. Similar results have already been reported for spring wheat under 

reduced irrigations conditions (Babar, van Ginkel, et al. 2006). The derivative response 

of the spectrum facilitated the separation of the reflectance peaks of overlapping bands, 

and narrow regions of the spectral bands related to carotenoids, chlorophyll, and water 

bands at the NIR and SWIR were identified.  

Incorporating the specific spectral regions into selection indices, a genetic gain of 

approximately 50% can be achieved. These indices integrate the water absorption band 

SR17, SR18 in combination with the SR1 and SR4 wavelength. Combining the broad 

indices ARI, ReCl, NDII, SAVI, GRVI and TDVI in the S/H selection index estimated 

74% of the genetic gain obtained with direct selection. The NDVI from the narrow band 

indices estimate more than 50% of the genetic gain.  
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4.5 Conclusions 

This study demonstrated that the use of spectral reflectance as indirect selection criteria 

can be as efficient as selection of GY per se under sever heat stress conditions. Indirect 

selection based on GY component did not provide any superior improvement of the 

EGG. The BIO is strongly associated with GY, and selection derived from this 

morphological trait is 97.2% as efficient as GY per se. The best results of selection were 

obtained with the broad band indices ARI, ReCl, NDII, SAVI, GRVI, and TDVI, with 

~74% of efficiency. Closely related with BIO, the narrow band NDVI achieved 50% of 

the EGG obtained with direct selection.  
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CHAPTER V 

CONCLUSIONS 

 

Epicuticular wax is the outermost cuticle of leaves, strongly associated to major 

physiological process and characteristics of the plant. The presence of these waxes on 

leaf surfaces provides photoprotective protection, support the regulations of water loos 

through the stomatal route, and dissipate excess of heat. The selection of genotypes with 

high EW can provide adaptation to high temperatures and water scarcity environments. 

The spectral bands in the visible region of the spectrum are highly associated to EW 

content, and variations on these specific bands provide a reliable estimation of EW. 

Considering the results of this study, four novel empirical based indices are proposed for 

phenotyping EW with a leaf clip spectroradiometer: EWI-1 Blue/Red, EWI-2 Blue/NIR, EWI-15 

625 (1/736 – 1/832) and EWI-16 (625-736) / 832. Two linear models are also proposed, the Model-

10 and Model-11. Further this study, it is necessary to gain more insights into the 

prediction of the proposed indices/models under field conditions and with canopy 

reflectance.  

Consistent results of the spectral response of the plant under field conditions 

suggest the possibility of using spectral indices/models as proxy measurements to 

understand the genetic and physiological basis of EW. The relative high heritability and 

the moderated to strong genetic correlation of the DIB-2, DIB-3, and MB-DI-2 provides 

a reliable estimation of EW for selection under field conditions. The application of these 

indirect selection methods will facilitate the acquisition of multiple measurements 
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throughout the growing season and accurately capture the variation of EW. In this study, 

we state that spectral reflectance can be used in plant breeding platforms not only for 

indirect selection, but as a component in an integrative selection in the breeding pipeline.  

In our third study, we demonstrated that the use of spectral reflectance as indirect 

selection criteria can be as efficient as selection of GY per se under sever heat stress 

conditions. Indirect selection based on GY component did not provide any superior 

improvement of the GY. The BIO is strongly associated with GY, and selection derived 

from this morphological trait is 97.2% as efficient as GY per se. The best results of 

selection were obtained with the broad band indices ARI, ReCl, NDII, SAVI, GRVI, and 

TDVI, with ~74% of efficiency. Closely related with BIO, the narrow band NDVI 

achieved 50% of the EGG obtained with direct selection.  
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