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ABSTRACT

Upper bound plastic limit analysis (PLA) solutions have been widely used to assess

maximum capacity of laterally loaded piles and caissons. However, for the specific case of

short piles and caissons with aspect ratios generally ranging from one to three, the current

solutions tend to over-estimate capacities. Furthermore, these over predictions seem to

be significantly influenced by eccentricity of loading. This dissertation presents a unified

upper bound plastic limit analysis solution aiming to improve predictions of capacity for

the aforementioned cases. In addition, a simplified upper bound method is proposed for

cases in which computational efficiency is needed. Both solutions are compared to results

from three dimensional finite element studies.

Towards this end, most of the existing simplified predictive methods typically apply

to idealized soil strength profiles that are either constant or linearly increasing with depth.

However, site investigations often reveal complex strength profiles that deviate signifi-

cantly from simple linear profiles. One example is the case in which a superficial stiff layer

overlays a thicker layer of very soft soil. The work herein presented also includes analyses

of pile and caisson performance in stratified soils based on a three dimensional upper bound

PLA with a collapse mechanism comprising a surface failure wedge, a flow-around region

and a spherical base failure surface. An introductory discussion on the influence of soil

stratigraphy and geology for design purposes is included. Selected strength distributions

are representative from field data obtained through cone penetration testing.

Finally, the installation of driven piles and suction caissons in clayey soils generates
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excess pore pressures that temporarily reduce load capacity due to side resistance. Time

dependent dissipation of these excess pore pressures leads to recovery of side resistance, a

process known as ‘setup’. Since many facilities cannot be put into operation until sufficient

pile load capacity has been mobilized, realistic predictions of setup time can be important.

A simplified method of analysis for calculation of the setup time following open ended pile

penetration is also presented.
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1 INTRODUCTION

1.1 The Offshore Environment

The ocean environment is composed by a series of factors that drive not only the

design stage but also the installation and construction of any structural system intended to

be at an offshore location. Some of these environmental factors are Gerwick (2007): (1)

Ocean waves, currents and tides; (2) Wind, wind gusts and storms and (3) earthquakes and

tsunamis.

Environmental events translate into forces that are applied to the structural system.

Environmental loading conditions for an offshore structure can be classified into steady

and oscillating forces Chakrabarti (2005). Examples of steady forces are those generated

by steady winds and ocean currents. On the other hand, oscillating forces often arise from

wind gusts and water wave forces.

1.2 Offshore Structures

Traditionally offshore structures have been related to the exploration and produc-

tion of oil and gas Randall (2010). These structures range from the very common fixed

structures to several more recent systems such as tension leg platforms (TLP’s) and SPAR

platforms, as shown in Figure 1.1. In addition to oil and gas applications, in recent years

interest has been focused on wind energy as an alternative to fossil fuels. Offshore wind

farms offer the benefit of more sustained and stronger winds at lower heights, and also they
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Figure 1.1: Bottom supported and vertically moored structures

avoid the aesthetic issues common for onshore developments of such a type.

Oil and gas structures typically have very large vertical loads and smaller horizontal

loads, which is why horizontal loading is not the controlling factor in the design process.

However, wind turbines, are purportedly subject to large horizontal and moment loads

(compared to the vertical load). These loading characteristics have significant implications

on design, because design criteria for oil and gas structures are not entirely applicable for

wind towers.

The loads applied on the structure are transferred to the soil, thus, configuration of
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those loads and the properties of the soil govern the size and type of foundation required to

support an offshore structure Schneider and Senders (2010). Also, the type of foundation

depends on the conceptual design of the superstructure. Figure 1.2 shows the variation

of the type of foundation depending on the type of superstructure for the case of offshore

wind turbines. In the case of monopile foundations (i.e. foundation consisting on a single

pile) the lateral and moment loads are transmitted directly to the foundation, creating a

relatively high moment demand. On the other hand, for multi-leg systems the moment

loading is largely resisted by push-pull axial loading in the piles, with a relatively small

bending moment loading in the piles themselves.

Figure 1.2: Variation of the type of foundation depending on the conceptual design of
several support structures Maholtra (2009)

3



1.3 Pile Foundations

Pile foundations are the most commonly used type of foundation for several offshore

applications. Offshore piles vary widely in both diameter and length, however typically

they have an aspect ratio (L f /D) on the order of 20 to 70 Schneider and Senders (2010) and

diameter to wall thickness ratios (D/tw) of 25 to 100. Most of the oil and gas structures are

Figure 1.3: Offshore piles with installation hammer (white). (Courtesy of Dr. James D.
Murff)

massive and large, therefore the foundation is designed as an arrangement of piles. On the

other hand, monopiles are the most common foundation type for offshore wind turbines.

Monopile foundations for offshore wind towers require large diameter piles (usually 3 to

6 m) with L f /D ratios of 4 to 20.

In the offshore industry two types of piles are commonly used: driven piles and

grouted piles. Open ended driven piles are the most prevalent choice (Randolph and Gour-
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venec, 2011). The installation process of this piles involves the usage of a submersible

hydraulic hammer that literally pushes the pile into the soil. Typically a barge or jack-up

platform (Figure 1.4) is required in order to make the installation. Very long piles might

need to be spliced during installation. All these facts add cost and lengthen the construction

time.

Figure 1.4: Jack-up platform. (Courtesy of Dr. Aubeny)

Drilled and grouted piles are used as an alternative to driven piles when the soil

conditions comprise rock or calcareous sediments. They are composed of a tubular steel

pipe that is inserted into a previously drilled oversized hole, which finally is grouted. The

procedure is very similar to onshore grouted piles, with the slight difference that instead
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of a reinforcement cage a steel pipe is used. This procedure is quite expensive because it

requires more time than driven piles.

1.4 Suction Caissons

The concept of using vacuum pressure (i.e. suction) in order to install bucket-type

foundations was initially introduced by Goodman et al. (1961). They encountered that

suction penetration is particularly well suited for clayey soils with moisture content close

to the plastic limit were. Poorer results were obtained for sandy soils.

Suction caissons have a cylindrical shape (Fig. 1.5): they are hollow at the bottom

and closed at the top Andersen et al. (2005). The length to diameter ratio (L f /D) normally

oscillates between 3 and 8; therefore they are short structures, unlike conventional inland

piles that are rather slender (L f /D of 30 for example).

The main characteristic of suction caissons is that, as their name implies, the instal-

lation process is performed through a combination of self-weight and suction Clukey et al.

(2004). As presented in Figure 1.6, initial penetration of the structure in the seabed is done

by gravity, dropping the structure from certain height. The top of the caisson is equipped

with a valve to which a remote operated vehicle (ROV) carrying awater pump is connected.

Pumping the water outside the caisson creates an under-pressure (negative pressure) that

allows the caisson to penetrate in the seabed.

Caissons have been used in the last years as a less expensive alternative to conven-

tional piles. They have several advantages over the latter:
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Figure 1.5: Suction caisson ready to be installed. Source: Colliat et al. (2011)

1. The installation time is shorter and less equipment is required

2. Because of caissons are smaller than piles, the manufacturing process normally re-

quires less material and, therefore, it is less expensive

3. Transportation to the installation site is more efficient than conventional piles; sev-

eral caissons can fit in the same transportation vessel. (Fig.1.7).

4. Regarding their functionality, caissons can be used widely as anchor system for float-

ing structures (such as TLP’s and SPAR’s); however they can also work as a foun-

dation system for vertically supported offshore structures as is the case of offshore

wind turbines.
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Figure 1.6: Schematic of installation of a suction caisson. Source: Aubeny et al. (2001b)

1.5 Finite Element Analysis for Offshore Structures

Despite the fact that, until recent years, hand calculations and plasticity methods have

been widely used in the offshore industry, finite element analyses (FEA) are becoming a

very common approach in order to assess with main geotechnical issues that are common

to these structures, such as Andresen et al. (2011):

1. Bearing capacity

2. Stiffness of the structure-foundation system

3. Consolidation

4. Soil-structure interaction

Finite element analyses have several advantages over conventional methods such as

the possibility of including complicated geometries, varying soil properties and material
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Figure 1.7: Transportation of suction caissons to installation site. Source: Colliat et al.
(2011)

laws that account for soil non-linearities and contact behavior between the structure and

the soil surrounding it.

1.6 Problem of Study

1.6.1 Undrained capacity of short piles and caissons in clays

Figure 1.8 intends to aid on the definition of the scope of this investigation. As it has

been mentioned previously, long and flexible piles have been for long time the foundation

system of choice due to their high capacity and reliability. Thus, plenty of solutions exist in

order to characterize their behavior and performance. On the other extreme, there are those
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Figure 1.8: Definition of the problem of study: capacity of short piles
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foundations of short aspect ratio (L f /D less than one), which have been widely studied in

recent years at University of Western Australia. Although more research is needed in order

to refine solutions and come up with formal design criteria, there is plenty of information

on how to handle these types of foundations.

Contrary to this, to date there is limited ways to estimate behavior of intermediate

(or transitional) foundations: piles and caissons with aspect ratios which typically range

from 1 to 4. Methods used for long piles (i.e. Murff and Hamilton (1993)) have been

used to analyze these type of foundations, however, it is known that these techniques do

over-estimate capacities.

This part of research will employ several techniques (included also in Fig.1.8),

namely: finite element method, upper bound plastic limit analysis and empirical upper

bound solutions. Each of the three methods has its advantages and limitations.

Upper bound plastic limit analysis (PLA) provides a strong and sound theoretical

framework for the computation of ultimate capacity. Both complex geometries and ma-

terial properties can be incorporated into such type of solutions. They however rely on

optimization procedures which, depending on the complexity of the problem, could take

significant computing resources. Plastic limit analysis has been widely used to assess max-

imum capacity of laterally loaded piles and caissons. However, for the specific case of

short and squat piles and caissons with aspect ratios generally ranging from one to three,

the current solutions tend to over-estimate capacities. Furthermore, these over predictions

seem to be significantly influenced by eccentricity of loading. This study presents a unified
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upper bound plastic limit analysis solution aiming to improve predictions of capacity for

the aforementioned cases.

Results from 3D upper bound PLA are compared to predictions from three dimen-

sional finite element studies. Finite element studies are going to be developed using the

software ABAQUS. They consist on displacement controlled analyses of piles with dif-

ferent aspect ratios, friction coefficients and velocity fields. The comparisons are to be

performed both terms of the total resistance that is exerted by the soil on the pile and in

terms of the equivalent soil resistance distribution along the length of the pile. FE studies

allow to model capacity for different displacement fields and also to compute interactions

between different loading modes.

Simplified upper bound solutions based on empirically fitted soil resistance functions

(Aubeny et al., 2001a, 2003) provide a more relaxed computational framework for estimat-

ing capacities. Such type of methodologies are relatively easy to implement in traditional

spreadsheets and analyses tend to be performed very fast. However, existing solutions

have been calibrated only for idealized soil strength conditions: constand and linearly in-

creasing shear strength profiles. Furthermore, current empirical functions were calibrated

based on three dimensional upper bound PLA methods, which brings as a consequence

over-estimation of capacities for short piles and caissons. This study aims to provide a

modified soil resistance functions which could be adequate to model the behavior of short

piles.
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1.6.2 Capacity of piles and caissons in soils with crust

Presence of “crust zones” in offshore clay deposits has been documented in the last

10 years (Ehlers et al., 2005; Kuo and Bolton, 2009; Kuo, 2011; Kuo and Bolton, 2013;

Yetniger et al., 2012; Peuchen, 2000; Palix et al., 2013) and Low et al. (2008). This crusts

usually translate into a highly non-linear undrained shear strength profile, as indicated in

figure 1.9, where the case of as stiff layer over a soft clay layer is presented. Although

no definitive agreement seems to exist on a specific reason why these crusts form, many

authors converge to causes such as overconsolidation, presence of bacteria and presence of

invertebrate organisms. A significantly important issue lies in the fact that current method-

Figure 1.9: Illustrative diagram of soils with crust.

ologies for prediction of lateral bearing capacity of piles and caissons are based on ideal-

ized strength profiles. For cases of very long and slender piles, neglecting the crust might
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be a conservative approach, however, things could change drastically if the foundation in

question is a short caisson with aspect ratio less than 3.

The previously mentioned upper bound method (Murff and Hamilton, 1993) will be

modified by incorporating several non-linear strength profiles. Results will be interpreted

from the stand point of total capacity, but primarily as equivalent soil pressures. One ques-

tion to answer is whether free surface effects are affected or not by the existence of the

crust.

Parametric studies will be presented showing the effect of load attachment depth

(i.e. directly associated with moment-horizontal load interaction) and aspect ratio. Finally,

preliminary design recommendations will be made based on obtained results.

1.6.3 Dissipation of excess pore pressures after installation

Piles and suction caissons are widely used as foundations and anchors for offshore

structures (e.g. tension leg platforms, spars, wind turbines). Installation of deep founda-

tions (piles or caissons) in fine grained soils generally occurs under undrained conditions,

generating excess pore pressures (EPPs) that reduce effective stress in the soil near the pile

shaft with a corresponding reduction in load capacity. At the end of installation, these pore

pressures slowly dissipate over time (i.e. radial consolidation), producing an increase in

effective stress. This process is known as 'setup'. The process is illustrated in figure 1.10

Initial excess pore pressures due to installation disturbance will be predicted based on a

strain path analysis based on a ring source moving at constant velocity in an incompress-

ible medium. It is assumed that the setup occurs primarily due to dissipation of excess
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Figure 1.10: Typical stages of a pile foundation: (a) Installation, (b) Setup (or equilibration)
and (c) loading. (After Randolph (2003))

pore pressures generated during the installation process; thixotropic effects are neglected.

The analysis employs an elastic perfectly plastic model of soil behavior and an uncoupled

analysis of consolidation to simulate conditions on the pile shaft outside of the influence

of tip effects.

Parametric studies will be presented in order to asses the effects that wall thickness

and soil rigidity index cold exert on setup times. Strain path solutions will be compared

to both laboratory, centrifuge and field measurements of pore pressure dissipation around

thin-walled piles typical of suction caissons.

15



2 THEORETICAL BACKGROUND

2.1 Fundamentals of Plasticity

Theory of plasticity is a topic that has been addressed in several bibliographic

sources, which include textbooks (Prager, 1959; Hill, 1950; Calladine, 2000; Chen, 2008;

Yu, 2006), doctoral dissertations (Han, 2002; Yang, 2008; Chi, 2010) and numerous journal

articles.

Theory of plasticity has been a central element through the development of several

solutions related to the field of geotechnical engineering (Murff, 2002). Major classes of

solutions include upper bound analyses based on a kinematically admissible failure mech-

anism, lower bound solutions satisfying equilibrium, and limit equilibrium solutions based

on intuitively plausible systems of forces or stresses.

Plasticity theory deals with situations where inelastic (i.e. permanent) deformations

occur, which is termed "yielding". One branch of plasticity theory, plastic limit analysis

(PLA), focuses on ultimate or collapse load of a structure or soil mass, with no informa-

tion sought on behavior prior to the ultimate state. The work presented in Chapters 4 and

5 of this dissertation focuses exclusively on collapse loads, so a PLA framework is exten-

sively used. The focus of the finite element analyses in Chapter 3 is also extensively on

determining collapse loads. Although sub-yield behavior is not of interest in this study, the

FE formulation requires an elastoplastic description of soil behavior. An elastoplastic soil

model is therefore employed to permit implementation of the FE analysis, but the elastic
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parameters have no influence on computed collapse loads.

Normally, elastoplastic behavior is idealized as presented follows: a straight inclined

line indicates the elastic range and extents up to a yielding point after which there is in-

crease of deformation without producing an increase in stress. Recognizing that such an

idealization rarely represents true behavior of real materials, the reason behind it success

is that analyses are significantly simplified while providing a reliable insight of the real

material behavior (Murff, 2002).

Four are the fundamental elements required in order to define any plasticity model:

1. Yield criterion

2. Flow rule

3. Hardening Law, and

4. Elastic behavior beneath yield

Understanding of elements 1 and 2 is fundamental for the subject in study, thus a discussion

on both topics is presented in the following sections.

2.1.1 Yield criterion and yield surface

The yield criterion or yield condition can be defined as the point (stress state) at

which a material stops behaving elastically and starts exhibiting plastic deformations (Yu,

2006). In other words, the stress level at which the elastic limit is attained.

The simplest example of this is the yielding point presented in Figure 2.1, which

represents the yield criterion for an idealized element under one-dimensional loading. For

cases of two-dimensional loading, the yield criterion is defined as a curve (i.e. a series of
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points) in a stress space. Finally, for three-dimensional loading the yield condition becomes

a surface (i.e. a series of curves) also plotted in a stress space (Yu, 2006) .

Figure 2.1: Linear-Elastic Perfectly-Plastic behavior

In soil analyses, yield surfaces typically are presented as function of stress states for

different shearing modes. As Figure 2.2 illustrates, some of the soil under a spread footing

will be under triaxial shearing, however, there is a section that has combined stress states.

In these cases, stress state would fall at some point on or below the yield surface. There

are several yield criteria that can be used to model different situations and yet, the yield

surface of a given model does not necessarily match experimental data. Indeed, the form

of a yield surface is very often driven by mathematical convenience (Aubeny, 2012 - Notes

Adv Num Meth Geotech Engr).

In an isotropic material, the yield criterion is defined mathematically as:

f
(
σi j
)
= f (I1, I2, I3) = 0 (2.1)

Where variables I1, I2 and I3 are the invariants of the stress tensor.

Some of the most common yield criteria are the Tresca and vonMises yield criterion.
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Figure 2.2: Soil analyses typically involve combined shearing modes. Triaxial and Simple
shear diagrams are presented. Interaction diagram of both stress states is shown.

Tresca's criterion is expressed mathematically by as follows:

(σ1 −σ3)

2
= su (2.2)

And thus,

f = σ1 −σ3 −2 · su = 0 (2.3)

Also, for computational efficiency, it becomes useful to express it as function of the

second invariant of deviatoric stress tensor, J2:

f =
√

J2 cosθl − su (2.4)

Where θl is Lode's angle and is defined according to Eq.2.5 below (Yu, 2012):

θl = tan−1
[

1√
3
·
(

2σ3 −σ1 −σ2

σ1 −σ2

)]
(2.5)

And the second invariant of the deviatoric stress tensor is given in term of principal stresses
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as described in Eq.2.6 :

J2 =
1
6

[
(σ1 −σ2)

2 +(σ2 −σ3)
2 +(σ3 −σ1)

2
]

(2.6)

or in terms of x-y-z stress components as presented in Eq.2.7:

J2 =
1
6

[
(σxx −σyy)

2 +(σyy −σzz)
2 +(σzz −σxx)

2
]
+σ2

xy +σ2
yz +σ2

xz (2.7)

VonMises yield criterion is expressed in Eq. 2.8 as a function of the second invariant

of the deviatoric stress tensor as well. The parameter k present in the equation represents

the undrained shear strength in a simple shear mode.

f =
√

J2 − k = 0 (2.8)

Both von Mises and Tresca yield criteria are well suited to model the undrained be-

havior of saturated cohesive soils. Figure 2.3 presents a comparison between both failure

surfaces. Tresca criterion plots like a hexagon whilst von Mises plots like a circle. This

in general means that von Mises assumes slightly higher undrained strength than Tresca,

asumming that the parameter k is equal to the strength in a simple shear mode. However,

one clear disadvantage of Tresca's yield criterion is that it is not differentiable at the corners,

which tends to produce singularities that must be treated with care.

2.1.2 Flow rule

When the state of stress reaches the yield criterion ( f ) the material undergoes plastic

deformations; this is also called plastic flow. The flow rule can be used to determine what

portion of the strain increment is recoverable (elastic) and what portion is permanent. Flow

rule is related to the plastic potential function g(σi j), and it is defined by the equation
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Figure 2.3: Comparison of Tresca and von Mises yield surfaces in a stress space.

presented below (2.9). This is also illustrated in Figure 2.4.

ε̇P
i j = λ

∂g(σi j)

∂σi j
(2.9)

Where λ is a scalar multiplier and ε̇P
i j is the plastic strain rate.

Figure 2.4: Illustration of plastic potential functions.

The direction of plastic strain vectors is defined through a flow rule by assuming

the existence of a plastic potential function to which the incremental strain vectors are

orthogonal. For some materials, the plastic potential function g and the yield function f
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can be assumed to be the same. Such materials are considered to follow the associative

flow rule of plasticity. However, for many geologic materials, the yield function f and the

plastic potential function Q are often different. These materials are considered to follow

non-associative flow rules of plasticity.

Typically, for the purpose of mathematical simplicity, an associated flow rule is as-

sumed: this implies that plastic strains occur perpendicularly to the failure surface. How-

ever this assumption is not necessarily valid.

2.2 Bound Theorems

There are two principal bound theorems in plasticity. The lower bound theorem

involves guessing a stress field that leads to a lower bound estimate of the collapse load.

On the other hand, the upper bound theorem involves guessing a velocity (or displacement)

field that allows computation of upper bound estimate of collapse load. Formal definitions

of both theorems are presented below:

• Lower Bound Theorem: If any stress distribution throughout the structure can be

found which is everywhere in equilibrium internally and balances certain external

loads and at the same time does not violate the yield criterion, those loads will be

carried safely by the structure.

• Upper Bound Theorem: If an estimate of the plastic collapse load of a body is made

by equating internal rate of dissipation of energy to the rate at which external forces

do work in any postulated mechanism of deformation of the body, the estimate will
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be either high or correct.

The upper bond method is in general much easier to implement. It allows for incor-

poration of soil strength non-homogeneity and even anisotropic properties. This theorem

(upper bound) is a major building block of the research contained in this dissertation. For

that reason the following two sections will be devoted to explaining formulation and ap-

plication of upper bound methods to problems of interest.

2.3 Upper Bound Theorem

There is a well defined series of steps needed in order to apply the upper bound

method. They are described below:

1. Establish a yield criterion. An associated flow rule must be assumed.

2. Postulate a kinematically admissible collapse mechanism. Within the mechanism,

the unknown load F should be defined and it is assumed to move at a virtual velocity,

v0

3. Derive strain rate fields. They need to be associated with the virtual velocity (v0)

and ensured to satisfy strain compatibility at any point.

4. Determine of internal energy dissipation rate as a function of the strain rate.

5. Compute rate of external work

6. Solve for the unknown force by equating external virtual work to virtual energy dis-

sipation rates.

7. Optimize collapse mechanism. The solution must be optimized with respect to ge-
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ometrical parameters that define the mechanism in order to obtain the configuration

that produces the minimum force.

In order to use it a collapse mechanism needs to be guessed. This is typically the

most delicate step of the analysis. It requires intuition or usage of known solutions with

slight modifications. The mechanism considered must be continuous (i.e. no gaps can

open up within the body) but can contain slip surfaces where all the motion is tangential to

the surface.

The mechanism must be kinematically admissible. This is: it must satisfy kinematic

constraints. For example: if a boundary is rigid (or fixed) the mechanism cannot violate

this condition. If a footing or pipe is rigid and is pushed into the deforming material, the

deforming material must be compatible, which usually means that the normal velocity of

the footing and the deforming material at the interface are equal (Murff, 2002).

By equating external work to internal energy dissipation one can solve for the un-

known load or load scale factor. The answer is guaranteed to be greater or equal than the

actual collapse load or load scale factor.

Step 4 outlined above is one that requires special attention, since it involves working

out mathematical expressions for virtual energy dissipations of stresses based on strains.

The following section presents a detailed overview of this step.

2.3.1 Calculation of energy dissipations

Two main cases need to be reviewed in order to continue ahead on this work:

1. Energy dissipation rates in continuously deforming regions, and
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2. Energy dissipation rates in slip surfaces

Mathematical expressions needed for these procedures have been widely explained

by Dr. James D. Murff on his Geomechanics course notes (Murff, 2002) and summarized

by several authors (Han, 2002; Shi, 2005; Yang, 2008; Chi, 2010; Sharma, 2004). However,

skipping explanation of these concepts would make this document incomplete. For this

reason the following section is devoted to this topic.

2.3.2 Energy dissipation rates in continuously deforming regions

Consider an element similar to the one presented in Figure 2.5, which is under a plane

strain state. If the material is assumed to be under yielding conditions, then the criterion

presented in Eq.2.10 applies (Murff, 2002).

Figure 2.5: Element under study

f =

[
(σxx −σyy)

2

4
+

1
2

τ2
xy +

1
2

τ2
yx

]1/2

− su = 0 (2.10)
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And, thus, re-arranging the equation, the undrained shear strength (su) is expressed as pre-

sented below (Eq.2.11):

su =

[
(σxx −σyy)

2

4
+

1
2

τ2
xy +

1
2

τ2
yx

]1/2

(2.11)

Where:

• σxx,σyy are the normal stresses and τxy,τyx are shear stresses.

• su is the undrained shear strength

• f is the yield function, equaled to zero when the element reaches plastic flow.

By assuming an associated flow rule, plastic strains in 2 dimensions can be expressed

as indicated in Eq.2.12, 2.13 and 2.14. The variable λ is a scalar parameter (proportionality

constant) which depends on the constraints near the point in study.

ε̇xx = λ
∂ f

∂σxx
=

1
2

λ

[
(σxx −σyy)

2

4
+

1
2

τ2
xy +

1
2

τ2
yx

]−1/2

·
2(σxx −σyy)

4
(2.12)

ε̇yy = λ
∂ f

∂σyy
=

1
2

λ

[
(σxx −σyy)

2

4
+

1
2

τ2
xy +

1
2

τ2
yx

]−1/2

·
2(σyy −σxx)

4
(2.13)

ε̇xy = λ
∂ f

∂τxy
=

1
2

λ

[
(σxx −σyy)

2

4
+

1
2

τ2
xy +

1
2

τ2
yx

]−1/2

τxy (2.14)

Equations 2.12 through 2.14 can be significantly simplified by combining them with

Eq. 2.11, as presented below:

ε̇xx =
λ

4su
· (σxx −σyy) (2.15)

ε̇yy =
λ

4su
· (σyy −σxx) (2.16)

ε̇xy = ε̇yx =
λ

2su
· τxy (2.17)
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At this point, it is useful to recall the expression describing volumetric strain rate of

cohesive undrained media (Eq. 2.18), which has to be equal to zero, basically stating that

the material is incompressible. The failure mechanism also needs to comply with these

constraints.

ε̇v = ε̇xx + ε̇yy =
∂ u̇
∂x

+
∂ v̇
∂y

= 0 (2.18)

Energy dissipation rate can be computed as presented in Eq. 2.19:

Ḋ = σi jε̇P
i j (2.19)

This equation expresses dissipation rate as the inner product of both the stress tensor

σi j and the plastic strains tensor ε̇P
i j, which could have either 4 or 9 components depending

on whether the problem is 2 or 3-dimensional.

The plastic strain rates are given by equation 2.20

ε̇P
i j = λ

∂ f
∂σi j

(2.20)

Therefore, substituting Eq.2.20 back into Eq. 2.19 produces the expression shown

in Eq. 2.21

Ḋ = λσi j
∂ f

∂σi j
(2.21)

The mathematical operation indicated in Eq. 2.21 can be completed by using definitions

previously presented in Eq. 2.10, Eq.2.11 and Eqs.2.15 through 2.17. The procedure is

described below in Eqs.2.22 through 2.25. The dissipation rate is finally given by Eq.

2.25.
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Ḋ = λ
{[

σxx
(σxx −σyy)

4su

]
+

[
σyy

(σyy −σxx)

4su

]
+ τxy

τxy

2su
+ τyx

τyx

2su

}
(2.22)

Ḋ =
λ

4su

{
(σxx −σyy)

2 +2τ2
xy +2τ2

yx

}
(2.23)

Ḋ =
λ
su

{
(σxx −σyy)

2

4
+

τ2
xy

2
τ +

τ2
yx

2

}
(2.24)

Ḋ =
λ
su

s2
u = λ su (2.25)

It becomes now necessary to compute an expression for the scalarmultiplier λ . Equa-

tions 2.15 through 2.17 can be inverted in order to obtain expresions for deviatoric stress

and shear stress as a function of λ .

(σxx −σyy) =
4su

λ
ε̇P

xx (2.26)

(σyy −σxx) =
4su

λ
ε̇P

yy (2.27)

τxy =
2su

λ
ε̇P

xy (2.28)

These three equations (2.26 through 2.28) can be substituted into the yield criterion

in order to obtain an expression for λ . Notice that in Eq.2.29 below, the variable ε̇P
xy has

been temporarily replaced by ε̇xx.

λ =
(
2ε̇2

xx +2ε̇2
yy +2ε̇2

xy +2ε̇2
yx
)1/2 where ε̇2

xx ≡
(
ε̇P

xx
)2 (2.29)
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Using Equations 2.25 and 2.29, and taking into account that ε̇P
xx =−ε̇P

yy and ε̇P
xy = ε̇P

yx,

the dissipation can be re-written as:

Ḋ = 2su
(
ε̇2

xx + ε̇2
xy
)1/2 (2.30)

Which is the energy dissipation rate for the 2-dimensional problem in study. For

general 3-dimensional problems (as is the case of the collapse mechanism to be considered

in this study) the following expressions can be derived for both von Mises and Tresca's

criteria respectively:

Ḋ = su
(
2ε̇P

i jε̇P
i j
)1/2 (2.31)

Ḋ = 2su
∣∣ε̇P∣∣

max (2.32)

2.3.3 Energy dissipation rates in slip surfaces

A somewhat similar relationship can be derived for the case of slip surfaces. The

derivation is based on equations used in the previous section. Figure 2.6 presents a system

of two rigid blocks in which the bottom block is static while the upper block moves hor-

izontally at a velocity v0. In between the rigid blocks there is a region of unit width and

thickness t. Velocities for the deforming region are also given in Fig. 2.6.

In this case, the only strain components that take a value (non-zero) are ε̇P
xy and ε̇P

yx,

thus, the maximum shear strain can be described as presented in Eq.2.33.

ε̇P
max = ε̇P

xy = ε̇P
yx =

1
2

(
∂vx

∂y
+

∂vy

∂x

)
=

1
2

v0

t
(2.33)
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Figure 2.6: System of two rigid blocks with a deforming region in between.

Assuming a von Mises yield criterion, the dissipation rate can be then expressed as

function of the velocity field (Eq. 2.34)using the postulate presented in Eq.2.31. Note that

the dissipation rate becomes a function of the undrained shear strength and the thickness

of the deforming region.

Ḋ = 2su

[(
1
2

v0

t

)2
]1/2

= su
v0

t
(2.34)

Finally, the total energy dissipation rate is obtained by calculation a volumetric inte-

gral, presented in Eq. 2.35. It is observed that as the thickness (t) vanishes, the dissipation

rate is simpli the product of the undrained shear strength and the velocity (v0).

ḊTotal =
∫
V

ḊdV =Ḋ ·V = su
v0

t
(1 · t) = suv0 (2.35)

Both approaches: dissipation on continuously deforming regions and dissipation oc-

30



curring in slip surfaces will be extensively used in the next chapters.

2.4 Capacity of Laterally Loaded Piles and Caissons

Broms (1964) carried out some of the earliest studies dealing with laterally loaded

piles. The ultimate resisting force acting along a vertical distance ∆z was defined as func-

tion of the net horizontal force per projected unit area of the pile (P) and the diameter of

the pile (D):

∆H = PD∆z (2.36)

Assuming a purely cohesive soil, the side resistance P and the undrained shear

strength su can be related by introducing a dimensionless bearing factor Nps, in such a

way that P = Npssu. Subsequent works made by Matlock (1970) and Reese et al. (1975)

used empirical estimates of Nps.

Randolph and Houlsby (1984) introduced a solution for predicting the lateral load

capacity of piles by using classical plasticity theory. The solution considers the idealized

situation of a rigid cylinder translating under plane strain conditions. Although several

adhesions (i.e. friction between the cylinder and surrounding soil) are considered, the two

limiting conditions are the most important ones: (1) full adhesion between the pile and the

surrounding soil and (2) no adhesion between soil and pile (Fig.2.7). The results of these

investigations showed that for those two cases, the bearing factor Nps are equal to 11.94

and 9.14 respectively. In recent years, Martin and Randolph (2006) revised the bearing

factor for no-adhesion and corrected this number to be 9.2 instead of 9.14. It is important
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to remark that, given the aforementioned idealization, this solution can only predict the

lateral resistance at a depth sufficiently large so that the free surface effects can be ignored.

Figure 2.7: Randolph and Houlsby (1984) slip lines analyses: (left) no adhesion and (right)
Full Adhesion.

Later, Murff and Hamilton (1993) proposed a three-dimensional upper bound plastic

limit formulation for the analysis of the ultimate capacity of laterally loaded piles under

undrained conditions. They extended the analysis in order to account for the strength re-

duction effects produced by the free surface condition (at the top of the pile) and for the

tip resistance (at the bottom of the pile).

The behavior of piles and caissons subject to combined loading has been widely

studied by a number of authors Tan (1990); Murff (1994); Houlsby and Martin (1992);

Bransby and Randolph (1998). Plasticity methods have been used to formulate yield loci

for combined loading response. Empirically fitted yield loci based on centrifuge or 1 g

model tests have also been proposed Martin (1994); Murff (1994); Dean et al. (1992).
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Caisson (Aspect ratio, L f /D = 1) and spudcan response in normally consolidated clay was

studied by Cassidy and Byrne (2001) and Cassidy (2012) using the drum centrifuge at the

University of Western Australia. Martin (2001) investigated the vertical bearing capacity

of shallow skirted foundations using lower and upper bounds of plasticity and presented

results of a parametric study in the form of dimensionless charts which compared well with

findings by Villalobos et al. (2009).

Failure envelopes have been studied in detail for caissons with aspect ratios (L f /D)

of one (Gourvenec, 2007, 2008) and five (Zhang et al., 2011; Lau, 2015) based on finite

element results and centrifuge tests. The ultimate capacity under monotonic load for aspect

ratio of 5 was found to be comparable to calculations based on existing design methods,

including theoretical plasticity solutions and empirical methods Zhang et al. (2011).

The complex interaction of vertical, horizontal and moment loads is further influ-

enced by a dependence on soil strength profile. The analysis by Randolph is also relevant

to the vertical insertion or extraction of a T-bar penetrometer (Stewart and Randolph, 1991)

which was used to characterize strength in these experiments.

2.4.1 Upper bound analysis of laterally loaded piles

Murff and Hamilton (1993) presented a three dimensional upper bound plastic limit

analysis method for the computation of the ultimate undrained capacity of laterally loaded

long piles (Grajales et al., 2015). The collapse mechanism comprises three regions (Fig-

ure 2.8): a surface failure wedge, a plane strain flow around zone and a spherical failure

surface. Expressions for internal energy dissipation were derived based on kinematically
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Figure 2.8: Three dimensional collapse mechanism proposed by Murff and Hamilton
(1993)

admissible velocity fields in the surface failure wedge and in the spherical failure surface at

the tip. Meanwhile, the energy dissipation occurring in the flow around zone was computed

using the Randolph and Houlsby (1984) approach.

Since compatibility is not enforced between the three regions of the collapse mecha-

nism and since the flow around zone does not behave purely in a plane strain mode (except

for the case of a fully translated pile or caisson, with no rotation), the Murff and Hamil-

ton (1993) solution is not strictly speaking a rigorous upper bound solution. However the

model has been used extensively in the industry and also several authors (Randolph et al.,

1998; Sukumaran and McCarron, 1999; Aubeny et al., 2001a) have validated the model

using both numerical approximations and experimental results.

Some of the additional features of the Murff and Hamilton (1993) formulation are

(Aubeny and Murff, 2005):
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1. It considers rotation of the pile or caisson about a point located at a depth L0

2. The model can accommodate the development of a plastic hinge in the pile. This is

useful when long piles are the subjects of study, however it is not relevant for short

piles or caissons.

3. It can model various conditions such as soil-pile interface adhesion, suction on the

windward side of the pile and soil stratification.

4. The model considers four optimization parameters: (1) the depth of the center of

rotation, (2) the depth of the wedge, (3) the radial extent of the top of the wedge and

(4) the radial variation of velocity along the wedge.

After performing a parametric study twomain conclusions yielded: (1) the equivalent

soil resistance distribution Nps is independent of the depth of the center of rotation and (2)

Nps is a function of the depth z.

The original analysis was performed by doing optimization of several variable pa-

rameters. Finally, a simplified expression for equivalent lateral bearing factors was pro-

posed as shown in Eq.2.37:

Np =
∆F

suD∆L f
(2.37)

where su is the undrained shear strength at the depth in question, D is the caisson diameter,

∆L f is an increment in length (depth) of the caisson, and ∆F is the increase in lateral capac-

ity for pure translation of the caisson corresponding to the increment in length. Their study

also showed that predicted lateral resistance profiles for translating and rotating caissons

are similar (i.e. the resistance is independent of the location of the center of rotation). This
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is consistent with methods based on equivalent p-y curves or semi empirical models Mat-

lock (1970); Reese et al. (1975). Murff and Hamilton (1993) also compared their bearing

factors to centrifuge data carried out by Hamilton et al. (1991) and found good agreement.

2.4.2 Simplified virtual work analysis

Based onMurff andHamilton (1993) upper bound formulation, Aubeny et al. (2001a)

presented a simplified approach to predict lateral capacity (Figure 2.9). This simplified

model considers the usage of one optimization parameter (the depth to the center of rota-

tion) instead of the four used by the original Murff and Hamilton model.

Figure 2.9: Simplified failure mechanism for analysis by Aubeny et al. (2001a)

A virtual velocity field is assumed (Figure 2.10(a)), in which the velocity varies

linearly with the depth. The internal rate of energy dissipation is computed by integrating

the product of the mobilized pressure multiplied by the velocity and the elemental area
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along the projected side area of the caisson.

The virtual work analysis assumes the pile rotates as a rigid body about a center of

rotation (L0). The energy dissipation rate from side resistance can be calculated in terms of

(1) a linear distribution in velocity about a depth to the center of rotation L0, (2) the Murff-

Hamilton soil resistance function Nps(z), and (3) the undrained shear strength profile su(z).

The depth L0 to the center of rotation is an optimization variable to be determined. The

bearing resistance function is assumed to apply to both forward and reverse motions of

the caisson. Although the analysis can proceed in terms of an arbitrary strength profile

su(z), evaluation of the Nps(z) profile requires an approximate linearization of the profile

to obtain the η factor. The energy dissipation rate due to side resistance is computed using

the following integral (Eq. 2.38):

Ḋs =
∫

β̇ Nps(z) |L0 − z| su(z)Ddz (2.38)

Where β̇ is an angular velocity at the center of rotation and is directly related to the velocity

v0 previously mentioned for Murff and Hamilton (1993).

2.4.3 Inclined loading

Aubeny et al. (2003) extended this lateral load capacity analysis: in order to consider

inclined loading the velocity field used in the previous formulation (Aubeny et al., 2001a)

was modified to incorporate vertical velocities (Figure 2.10(b)). This approach can eval-

uate for load orientations ranging from vertical to horizontal. Also, the load attachment

depth can be at any point along the center or wall of the caisson.
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Figure 2.10: Failure mechanisms for simplified methods: (a)Aubeny et al. (2001a) and
(b)Aubeny et al. (2003). Source: Han (2002)

In order to validate the predicted capacities for axial and lateral capacities three-

dimensional finite element studies were conducted. From interpretation of those stud-

ies an interaction diagram was developed for axial and lateral resistance bearing fac-

tors, with values of around 3 for pure axial loading and 12 for horizontal loading. The

FEM solutions showed reasonable results when relatively slender caissons were consid-

ered (6< L f /D <10). However, for short caissons (L f /D ≈ 2) are considered, the FEM

predictions suggest that the limit formulations become less reliable, since it over predicts

the capacity (Aubeny et al., 2003). This is illustrated in Figure 2.11.

2.4.4 Tip resistance

The tip resistance contribution is also a relatively important aspect to consider, more

significantly when dealing with short stubby caissons. When larger caissons are consid-

ered, the tip resistance becomes less important. As it was previously pointed, Murff and
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Figure 2.11: Plastic limit analyses and FEM solutions for uniform soil strength profiles.
Source: Aubeny et al. (2003)

HamiltonMurff and Hamilton (1993) suggested a spherical failure surface at the tip, which

assumes a rotating spherical mass of soil located at the bottom of the caisson. This solution

considers by default the interaction between the horizontal and the moment resistance.

Aubeny et al. (2001a) introduced a simplified equation in order to account for the

interaction between the vertical load and the moment load. This empirical function was

originally introduced by Bransby and Randolph (1998) and it accounts for the interaction

between horizontal, vertical and moment loads.

In 2002, Randolph and House (2002) published an analysis technique (AGSPANC)

with the purpose of predicting capacity of suction caissons under combined loading condi-

tions (vertical and horizontal). Their program is based on a 3-dimensional collapse mech-

anism somewhat similar to that presented by Murff and Hamilton (1993). This mechanism

is shown in Fig. 2.12 main difference between both is the way in which Randolph and

House (2002) compute end resistance for cases of forward rotation (e.g. load attached at
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the mudline, caisson tilts forward). The collapse mechanism comprised active and pas-

Figure 2.12: Elements of collapse mechanism proposed by Randolph and House (2002)

sive failure wedges (similar to those by Murff-Hamilton) and a failure mechanism in the

form of a scoop. On the other hand, the mechanism for backward rotation is similar to the

one used by Murff and Hamilton (1993). Nevertheless, dissipation equations for the scoop

mechanism and internal deformation of wedges were not provided. Their method has been

througly validated by comparisons to both finite element predictions and geotechnical cen-

trifuge experiments.

2.5 Capacity of Laterally Loaded Piles in Stratified Soils

Layered soil profiles are regularly found in offshore areas. Several researchers have

developed predictive models to simulate the behavior of laterally loaded piles in such soils

including those of Davisson and Gill (1963); Khadilkar et al. (1973); Naik and Peyrot

(1976) and Georgiadis (1983).
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Murff and Hamilton (1993) developed analyses and presented a validation of the

currentNps function for a two-layered soil systemwith different uniform strengths by using

the approach presented byGeorgiadis (1983). A comparison of lateral resistance calculated

by the formal upper bound method and the empirical equation was developed. Caution was

recommended, since relatively large errors seemed to occur to cases with high variations

in strength from one layer to another one.

In recent years, several researchers have proposed methods to approach the problem

by using analytical tools (Yang and Jeremic, 2005; Rani and Prashant, 2015; Zhang et al.,

2015) and upper bound methods (Yu et al., 2015).

2.6 Undrained Shear Strength of Marine Clay Deposits

2.6.1 Common practice: linearly increasing strength profiles

Different types of cohesive soil strength profiles will be used as reference for this

study. It is very common to idealize strength profiles as linearly increasing relationships

which are depth dependent. However, such characterizations need to be based on actual

data measured with either field or laboratory equipment.

Soils representing different regions around the world are considered. Gulf of Mexico

clays have been widely studied by several researchers (Aubeny et al., 2001b; Bogard, 2001;

Jeanjean, 2006; Murali, 2011). A sample profile obtained from Liedtke et al. (2006) is

shown below (Fig.2.13). West Africa marine clays have also been the focus of a significant

amount of research during the last ten years (Colliat et al., 2011).
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Figure 2.13: Undrained shear strength profiles from cone penetration test, seabed vane,
torvane and miniature vane. After Liedtke et al. (2006)

Table 2.1, presents a summary of strength parameters as reported by different re-

searchers. Along the next chapters, strength profiles in accordance with the ones presented

in Table 2.1 will be assumed, in order to make computations based on realistic data.

In Table 2.1, su0 is the undrained shear strength at the mudline level; k is the strength

gradient; γ ′ is the submerged unit weight and the following locations are included: Gulf of

Mexico (GoM), West Africa (WA), North Sea (NS) and Bothkennar, Scotland (BS).
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Table 2.1: Some examples of undrained shear strength profiles based on measured data

Source su0 (kPa) k (kPa/m) γ ′ (kN/m3) Location*
Aubeny et al. (2001b) 0 to 6.97 1.2 to 1.4 GoM
Schroeder et al. (2006) ≈ 3.3 0.8 to 1.7 4 to 7 GoM
Schroeder and Resseguier (2015)
Schroeder and Resseguier (2015) ≈ 2.4 ≈ 1.6 ≈ 3.5 WA
Puech et al. (2005)
Aubeny et al. (2001b) ≈ 4.0 2.1 to 2.4 6.3 to 7 NS
Schroeder and Resseguier (2015)
Boylan et al. (2007) 5 to 15 1 to 2.3 5.2 to 7.2 BS

Density (i.e. unit weight) is another important element for this study. Although it is

recognized that soil density is a property highly influenced by factors such as stress history,

confinement and water content. The ratio of the buoyant unit weight and the strength gra-

dient (γb/k) is a non-dimensional parameter that controls behavior in several upper bound

models.

2.6.2 Stratification in deep-water soil deposits: soils with crust

Existing simplified methods for the prediction of the behavior of laterally loaded

piles typically apply to idealized soil strength profiles that are either constant or linearly

increasing with depth. However, site investigations often reveal complex strength profiles

that deviate significantly from simple linear profiles, for example, a common setup consists

on a superficial stiff layer overlying a thicker layer of very soft soil, setup that is commonly

named 'crust zones'.

Existence of crust zones in offshore deepwater soils around the world has been doc-

umented by numerous authors such as Bohlke and Bennett (1980); Peuchen (2000); Ehlers

et al. (2005); Kuo and Bolton (2009); Kuo (2011); Yetniger et al. (2012); Kuo and Bolton
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(2013); Palix et al. (2013) and Low et al. (2008). Such crusts have been located all around

the world such as theMississippi River Delta, Gulf ofMexico, Gulf of Guinea, South China

Sea and gas fields at Norway. Although it seems to be a relatively common soil setup, to

date there is limited knowledge on how to assess lateral capacity of piles installed in these

soils. The origin of the crust seems to be site specific and strongly dependent on the geo-

logic setting. Thus, no definitive agreement seems to exist on the exact reason why these

crusts form. Many authors point to causes such as differential consolidation, presence of

silt, presence of bacteria and existence of invertebrate organisms.

Figure 2.14: Undrained shear strength profiles showing presence of crusts. Modified after
Kuo and Bolton (2009); Ehlers et al. (2005)

Sedimentation, erosion and downslope movement of sedimentary deposits (such as

mudflows and slumps) have been pointed out as possible reasons for the presence of over-

consolidated soil layers in marine environments (McCave, 1984; Bennett et al., 1999;
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Doyle et al., 1971). Some researchers believe that the formation of crusts could also be

influenced by the presence of silt within the soil (Doyle, 1973; Roberts et al., 1976; Hop-

per, 1980). For some locations, it has been determined that the soil forming the crustal zone

has a somewhat greater percentage of silt particles than the surrounding soft soils (Hopper,

1980). As a matter of fact, the silt seems to be encountered in the zone of peak strength.

Experiments in a wave tank developed by Doyle (1973) demonstrated that marine

clays strengthened with time due to remolding and re-consolidation. It was noted that the

relatively rapid densification of the clay produced small cracks and fractures which allowed

dissipation of excess pore pressures. Furthermore, Doyle (1973) found that such fractures

were mostly filled with silt particles. The presence of silt implies that there are zones with

higher permeability and rapid drainage compared to the surrounding clay. Hopper (1980)

hypothesized that the origin of crusts can be explained on the basis of a consolidation

process, assuming that a drainage surface forms inside a mudflow deposit, allowing for

rapid dewatering.

This hypothesis is largely supported by Bohlke and Bennett (1980). In an extensive

review on the formation of crusts in the Mississippi Delta, they concluded that these are

formed probably by the remolding and shearing that takes place on surficial soils during

mass movements such as mudflows and slumps. They also encountered slightly higher

concentration of silts within the crust.

A different explanation was presented by Ehlers et al. (2005), for the case of crusts

located in Gulf of Guinea and West Africa. They concluded that formation of crust zones
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might be linked to several biochemical processes:

1. Shear strength of the surface is largely a result of biological activities coupled with

biologically mediated chemical changes;

2. High shear strengths within the crust are the result of significant burrowing and tube-

building by invertebrate organisms;

3. The presence of organic carbon (in seabed sediments) creates anaerobic conditions

for nitrate, manganese, iron and sulfate reduction to occur, and the mobilization and

re-precipitation of these and other oxidants may result in chemical bonding with clay

platelets that would lead to higher shear strengths (Ehlers et al., 2005).

Results by Ehlers et al. (2005) have been extensively studied and validated by Kuo

(2011). The presence of a crust has been confirmed through penetrometer testing and Cam-

shear testing (Kuo et al., 2011). In addition, significant evidence abundant mucus-covered

fecal pellets (likely from invertebrate species) was found within crusts, suggesting that

high amounts of bacteria may be present within it. Kuo (2011) postulated a sound hypoth-

esis which aims to explain the origin of crusts. This hypothesis is summarized in Figure

2.15 (Original source: Kuo (2011)). Sediments from water onto the soil includes either

degrading biological components (organics) and clay sediments (inorganics). Once in the

soil, these sediments are ingested by invertebrate organisms which extrude them as feces

in the form of pellets. Most of invertebrates burrow within the top 0.5 (and possibly up to

2) meters of seabed, which corresponds to the typical crust zone.

Finally, for some regions in the Gulf of Mexico, it is believed that the high shear
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Figure 2.15: Kuo's Hypothesis about origin of crusts in Gulf of Guinea Soils. Credit: Kuo
(2011)

strength in the crust zones is produced due to either bioturbation (benthic fauna) and to

the presence of high amounts of silt and sand-size foraminifera or forams, as they are

commonly named (Jeanjean et al., 1998; Young et al., 2003; Jeanjean, 2017). Foraminifera

are single-celled organisms with external shells that cover the cell. These shells can be

made of either organic matter, sand grains and other particles that are cemented together.

It is assumed that the crushing strength of some of these shells could be greater than the

shear strength of the soil close to the surface. Figure 2.16 presents an example of typical

sand-size forams from a coral reef.
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Figure 2.16: Photo with different species of foraminifera. Credit: Dr Pamela Hallock/U-
niversity of South Florida; Smithsonian (2016)

2.7 Deep Penetration Problems

Deep penetration problems (such as pile installation or soil sampling) are regularly

simulated as the expansion of a cylindrical or spherical cavity in an undrained medium.

However, Baligh (1985) points out that cavity expansion methods (CEM) might be too

simplistic in order to describe the two-dimensional nature of the deep penetration problems.

Baligh (1985) presented the Strain Path Method (SPM). The method provides a rational

framework for describing mechanics of quasi-static, steady, undrained deep penetration in

saturated clay (Aubeny, 1992).

2.8 The Strain Path Method

The strain path method (SPM) consists on an analytical technique to predict soil

disturbances produced by the penetration of rigid objects (in general piles, in situ testing

devices, soil samplers or suction caissons), in the soil (Baligh, 1985). The method pro-

vides an integrated and systematic framework for the solution of problems involving deep
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penetration. It has been throughly explained by Baligh (1985) and Aubeny (1992). Thus,

in this work only the basic steps to use the method will be presented. Should the reader

need to understand and learn the method, it is highly recommended to review the men-

tioned references, since much of the content of the current section is a summarized review

of Baligh (1985). Steps to obtain solutions by using the strain path method. These steps

are presented as a diagram in Figure 2.17:

1. Calculate an estimate of the initial stress state and pore water pressure in the soil

prior to installation.

2. Postulate a velocity field that satisfies conservation laws (volume or mass) and

boundary conditions. This velocity field defines the deformation rate of individual

soil particles as they move around the penetrating element.

3. From the velocity field, compute soil deformations by integrating along streamlines.

4. By differentiation of velocities with respect to the spatial coordinates it is possible

to compute the strain rates, ε̇i j

5. Strain rates must be now integrated along streamlines in order to obtain the strain

path εi j for all soil elements

6. Determine effective stresses. Procedure is detailed in Baligh (1985)

7. Having effective stresses, pore pressures can be computed from equilibrium consid-

erations

8. Compute total stress
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Figure 2.17: Flow diagram of steps required to implement the Strain PathMethod. (Baligh,
1985).
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2.9 Prediction of Setup Time for Piles and Caissons

Following installation stage, decay of excess pore pressure occurs over time, produc-

ing an increase in the inter-granular pressure (i.e. effective stress) and, thus, an increase in

capacity (Soderberg, 1962), a process termed ‘setup’ or soil reconsolidation. The process

is visually illustrated in Figure 2.18. Predicting the dissipation time of the EPPs (or ‘setup’

time) is an important consideration in the design of piles and suction caissons, since side

friction can be a major component of total capacity. Even though much analytical and ex-

perimental studies have been conducted on this topic (Randolph and Wroth, 1979; Carter

et al., 1979; Jeanjean, 2006; Cao et al., 2002b; Vasquez et al., 2010; Olson et al., 2003),

this process is a complex phenomenon and is not yet fully understood.

Figure 2.18: Diagram of setup process: (a) Pile installation, (b) immediatelly after instal-
lation and (c) after re-equilibration of pore pressures

Since dissipation times are strongly influenced by the spatial extent of the zone of dis-
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turbance containing excess pore pressures, analysis of setup time first requires prediction

of the stress and pore pressure fields surrounding the pile due to installation disturbance. A

widely adopted approach to predict pile installation disturbance is based on expansion of a

cylindrical cavity (Yu, 2000) . For solid piles the cylindrical cavity is expanded from zero

to the outer radius of the pile. The cavity expansion method (CEM) can also be applied

to open-ended piles, although some ambiguity exists with regard to the relative propor-

tions of soil flowing into and outside of the pile. While the CEM in either case cannot

fully simulate the complex distortions and resultant soil disturbance occurring during pile

penetrations, it does provide useful first order analyses of the setup process.

The strain path method (SPM) is based on the assumption that, due to the severe kine-

matic constraints occurring during deep penetration, soil deformation during undrained

penetration is essentially independent of soil properties. The SPM thus retains the relative

simplicity of the cavity expansion approach, while providing much more realistic analysis

of the effects of penetrator geometry. The SPM has been successfully applied to the anal-

ysis of sampling disturbance (Baligh et al., 1987), in situ testing (Aubeny, 1992) and pile

shaft resistance in clays (Azzouz et al., 1990). In these examples, soil effective stresses

were a prime concern, so a sophisticated soil constitutive model was used in conjunction

with the strain path analysis. The present study, for which setup time (i.e. time of dissi-

pation of excess pore pressures) is the prime focus, utilizes a simple linearly elastic model

with perfect plasticity upon yield.

Once the zone of disturbance and distribution of excess pore pressures have been
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estimated dissipation of excess pore pressures can be analyzed within the framework of

consolidation. Strictly speaking, the process involves two-dimensional axisymmetric con-

solidation in a coupled hydro-mechanical system (Aubeny et al., 2000) . However, where

the prime concern is dissipation of excess pore pressures on the sides of the pile far above

the tip, a one-dimensional radial consolidation analysis may reasonably be employed, as

described by Kavvadas (1982). The analysis may be further simplified by considering a

decoupled consolidation analysis in which the rate of dissipation is driven by a single soil

parameter, the coefficient of consolidation c. A successful application of this approach is

given by Levadeux and Baligh (1986).

In summary, the analytical framework used in this study for estimating setup time

following pile installation comprises:

1. A strain path analysis utilizing a linearly elastic-perfectly plastic model of soil be-

havior to predict the field of excess pore pressures due to installation disturbance.

2. A one-dimensional radial uncoupled consolidation analysis to predict the rate of dis-

sipation of disturbance pore pressures.

The installation analysis will require a single soil material parameter, the soil rigidity index

Ir = G/su, where G is shear modulus and su is undrained shear strength. The consolidation

analysis requires a second parameter, the coefficient of consolidation c.

Vesic (1972) recommends rigidity indices Ir ranging from 10 to 300 for soft to very

stiff clays. Foott and Ladd (1981) presented correlations of normalized secant modulus

(Eu/Su) against the shear stress ratio (τu/su) for a variety of clays. Considering their data
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for marine clays at τu/su = 50% indicates a range of normalized secant moduli E50/su =

300-600. Assuming a Poisson ratio of 0.5 for undrained loading produces an estimated

range rigidity indices Ir = 100-200 for normally consolidated marine clays. This range

turns out to be roughly consistent with the range recommended by Cao et al. (2002b) and

Hjortnaes-Pedersen and Bezuijen (1992) for interpreting pile setup data in kaolin test beds.

In the research herein presented, general parametric studies will be presented in terms of a

rigidity index Ir ranging from 50 to 500, with a range Ir = 100 to 200 tentatively accepted

as appropriate for normally consolidated clays.

The coefficient of consolidation c is a well-known soil parameter in soil mechanics

and needs no further elaboration here. However, this parameter is far from uniform at a

given site and will vary according to whether the soil is intact versus remolded as well as

normal consolidation versus recompression (NAVFAC, 1986) as presented in 2.19. Lev-

adeux and Baligh (1986) argue that, since setup around driven piles is primarily involves re-

compression, the coefficient of consolidation corresponding to an over-consolidated stress

state (coc) is most appropriate.

Arguably, a coefficient of consolidation derived from piezo-cone holding test data

would be ideally suited to estimating setup due to the similarity in the two processes. Rec-

ognizing that more work is needed in this area, this research does not focus on this issue.

54



Figure 2.19: Approximate correlations for consolidation coefficients of soft soils. Adapted
from NAVFAC (1986).
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3 FINITE ELEMENT MODEL

This chapter describes fundamental aspects needed to understand the finite element

(FE) model. A brief tutorial describing how to use the mesh generator is included.

3.1 Model Properties

3.1.1 Mesh geometry

The mesh consists on a cylinder of soil and a pile embedded in the middle, as shown

in Figure 3.1. A Matlab (Mathworks, 2013) based mesh generation code was developed in

order to be able to produce different models in a systematic and straight forward way, its

usage will be addressed later in this chapter. Several geometrical configurations have been

evaluated in order maximize effectiveness of the model. The radial extent (i.e. distance

from the center line to the far end of the cylinder) of the mesh is set to be equal to 5

diameters and the soil depth was set as 3 times the length of the pile (i.e. minimum depth

of 2 Lf below the pile tip). Such an assumption presents the advantage that, when short

piles are simulated, no unnecessary elements are included.

Elements adjacent to the pile were configured in such a way that the ratio of the

circular segment to the radial increment is equal to one, as this has been proven to increase

accuracy of results (Han, 2002) . The shape of elements located inside the caisson has

been modified in order to avoid six-node wedge elements at the center, since these type of

element tend to produce singularities when considering soil resistance inside the caisson.
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A close-up to the central part of the mesh is presented in Figure 3.2.

Figure 3.1: Finite Element Mesh

3.1.2 Material properties

The soil is assumed to be isotropic (i.e. the undrained shear strength is independent of

the type of load or shearing mode applied), the soil is modeled as a continuum. Although a

saturated soil is actually a two-phase material the zero volume change undrained constraint

permits it to be effectively modeled as a single phase material and is assumed to be rate

independent. Elements of the type C3D8 (Continuum 8-node linear elements) were utilized

to model the soil medium. The material model was assumed to be linear-elastic withMohr-
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Figure 3.2: Modified elements inside the caisson

Coulomb plasticity. The Mohr-Coulomb plasticity model assumes a Mohr-Coulomb yield

criterion and an associated flow rule. For this specific case, since the friction angle is set

equal to zero (ϕ= 0), the yield criteria becomes the pressure independent Tresca model.

Undrained shear is assumed to increase with depth. This allows the user to introduce

either a constant undrained shear strength or a linearly increasing one. For this study,

several strength gradients will be considered. These are described in the table presented in

(either chapter 2 or the table presented below).

Young's modulus was defined in terms of the rigidity index (Ir) is defined in this

study as the ratio between the shear modulus (G) and the undrained shear strength (su).
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Vesic (1972) has recommended rigidity indices ranging from 100 to 300 for soft to very

stiff clays respectively. Foott and Ladd (1981) presented correlations of normalized secant

modulus (Eu/su) against shear stress ratio (τu/su) for a variety of clays. Considering their

data for marine clays at τu/su = 50% indicates a range of normalized secant moduli E50/su

values of 300 to 600. Assuming a Poisson’s ratio of 0.5, which is a reasonable number for

undrained conditions, estimate values of rigidity indices Ir ranging from 100 to 200 can

be obtained for normally consolidated marine clays (Aubeny and Grajales, 2015) . The

finite element model herein presented has been configured with a rigidity index of 100.

However, depending on the needs of the user, different values can be easily introduced

to account for soil stiffness effects. Recommended values based on the aforementioned

authors are presented in the table below.

Finally, the model offers capability to account for soil stratification, that is, differ-

ent strength profiles and material properties can be introduced for as many soil layers as

needed. However, a word of caution on this: setting abrupt changes in soil strength might

lead to significant stress concentrations in the interface between soil layers, which at the

same time are likely to produce overestimated results, which must be accounted by the user

during the data processing.

3.1.3 Kinematic constraints and boundary conditions

Simulations are displacement-controlled. A horizontal displacement is applied in

order to produce failure of the pile. For cases in which translational displacement fields

are needed the pile is restricted to move only in the direction on loading (i.e. rotation or
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torsion are not allowed). If rotations need to be included in the analysis, then no kinematic

constraints are applied to the pile itself.

It has been reported that finite element analyses tend to overestimate capacity when

compared to either exact solutions or good field or laboratory data. One of the reasons of

this phenomenon is that FE models create high stress concentrations around the pile tip

(Aubeny et al, 2001), due to the abrupt discontinuity that occurs in that region. In order

to account for this, reduced strength elements have been included exclusively at the tip

of the pile. Some investigators have utilized slip elements on these stress concentration

zones, however this adds up a significant amount of computation time to each run. Thus,

this study employed a simpler approach involving reduction of the strength of soil element

adjacent to the pile tip.

3.1.4 Formation of gaps

Formation of gaps is a phenomenon that has been observed on laterally loaded piles

in cohesive soils (mostly on relatively stiff over-consolidated clays). However, gapping

will not be considered as a default option in the finite element model (i.e. no contact pairs

will be defined using commands and options available in Abaqus library). One of the

reasons is that assuming full contact at the soil-pile interface allows to compare predicted

values against exact solutions, such as the one developed by Randolph and Houlsby (1984).

Secondly it has been observed that for reasons not yet fully determined, many FE models

seem to predict gapping depths that extend all the way to the bottom of the caisson when

a translational displacement field is applied. Meanwhile, if rotation of the pile is modeled,
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gap depths tend to extend to the location of the center of rotation of the pile. In the author’s

opinion this is not the most adequate representation of the real behavior.

3.2 Results Post-processing

In order to obtain load capacity, a horizontal displacement is applied at a reference

node which is attached to the pile. The node can be located at any depth along either the

centerline or the wall of the pile, therefore it is possible to change load application points

according the conditions of the case in study. Once resisted load is obtained results will be

processed using two principal approaches:

1. Total load resisted

2. Equivalent soil resistance profiles

The first approach (i.e. total load) is the most intuitive one and consists on obtaining

the reactions occurring at the load application node. For the present study, the most impor-

tant reactions are the horizontal force in the positive X direction and the moment reaction

in the Y direction. Loads are presnted as bearing capacities. Normalization of lateral and

moment loads is done by dividing over the product of the average undrained shear strength,

pile length and diameter, as described in Equations 3.1 and 3.2 presented below.

Nh =
H

suavgDL f
(3.1)

Nm =
M

suavgDL2
f

(3.2)
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Where:

• Nh is the horizontal bearing capacity

• Nm is the moment bearing capacity

• H is the horizontal load

• M is the moment load

• suavg is the average undrained shear strength along the depth of the pile

• D is the diameter

• L f is the pile length

The second approach consists on computing equivalent soil resistance (or soil pres-

sure) profiles which are dependent on depth z. Figure 3.3 presents an illustrative sketch of

steps needed to compute soil resistance profiles. For finite element studies, computation is

done by selecting nodal stresses at a certain depth z(i). These nodal stresses represent the

effect of all the soil surrounding the region delimited by ∆z. Integration of nodal stresses

gives a horizontal force ∆F that is being resisted by the segment of pile in question. This

horizontal force is then normalized by the product of the undrained shear strength at the

corresponding depth and the projected area of the pile, as presented in Equation 3.3.

Nps =
∆F

suD∆z
(3.3)

Where:

• Nps(z) is the equivalent lateral soil pressure at a depth z.

• su(z) is the undrained shear strength at the depth z
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• D is the diameter

• ∆z is the length of the corresponding pile segment.

Figure 3.3: Illustrative sketch showing the physical interpretation of a soil resistance profile

This procedure can be repeated for different depths, obtaining a curve like the one

presented in Figure 3.3. In general, equivalent soil pressures at the top of the pile should

be significantly less than at the bottom, since the soil surface is unconstrained.

3.3 Model Calibration

The model was calibrated using the solution presented by Randolph and Houlsby

(1984). Randolph-Houlsby's solution applies for the specific case in which a solid cylin-

der translates in a continuum. Thus, for the case of a translating pile, values of soil re-

sistance (Nps(z)) at depths great enough for surface effects to be neglected should at least

approximate the numbers provided by Randolph and Houlsby (1984). Figure 3.4a presents
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a comparison of soil resistance profiles obtained from FE and the empirical function pro-

posed by Murff and Hamilton (1993), which also uses Randolph-Houlsby solution as a

limiting lateral bearing pressure for deep locations. Finite element results are presented

for the case of a translating pile (no rotations allowed) with aspect ratios (L f /D) ranging

from 1 to 5. Complete soil-pile adhesion is assumed (α = 1) and the soil is assumed to

have a constant strength.

It can be observed that (Fig. 3.4a) that Finite Element over-estimate plasticity so-

lutions for the flow-around zone. In order to match the exact value (Nps = 11.94 for an

interface adhesion of 1), a very refined mesh needs to be developed. An example of this

was presented by Shi (2005). While this kind of refinement is an acceptable option for

two-dimensional studies, three dimensional models become difficult to handle if such a

refinement is attempted, mostly because of the run time required. Thus, in this study, a

uniform correction factor of 7% is being applied to results obtained from the FE model.

This reduction can be observed in Figure 3.4b. By reducing results by 7%, equivalent soil

pressures at great depths look much more in agreement with the aforementioned solution.

It can also be observed that FE studies seem to show lower estimates of soil resistance for

shallow depths (normalized depth, z/D less than 2).

3.4 Additional Results

In addition to the aforementioned post-processing methods, the software ABAQUS

(SIMULIA, 2012), also allows extraction of contours and vector diagrams. These are very
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Figure 3.4: Soil Resistance profiles from finite element simulations

helpful in order to develop a insight of what is the code doing when processing results.

Some of the most common contours are stress (or strain) contours and displacement

diagrams. An example of a stress contour is shown in 3.5. It can be observed that regions

under the highest stresses (or strains) are presented in red color. Displacement plots are also

useful in order tomake sure that the pile is moving in a desiredmode and they help visualize

possible failure mechanisms that could be occurring. Figure 3.6 displays an example of a

displacement contour for a caisson with an aspect ratio of 2.5.

3.5 Comparison to Previous Finite Element Studies

Finite element predictions have been compared against results published by several

authors.
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Figure 3.5: Stress Contour plot for X direction. Aspect ratio of 2.5

Figure 3.6: Displacement vector plots from FE analyses. Aspect ratio of 2.5

3.5.1 Finite element model by Han (2003)

Han (2002) developed a three dimensional FE mesh using Abaqus. In that model,

the bottom boundary extended approximately 2 times the length of the caisson whereas

the radial extent of the mesh was about 16 diameters. During translational simulations, an

equivalent soil pressure factor (Nps) of 13.19 was obtained for the flow-around zone. This

result was found to be approximately 10% higher than the benchmark plasticity solution

(Randolph and Houlsby, 1984).
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In comparison, the FEmodel herein developed provides us with a 7% overestimation

of soil resistance (Nps) with respect to Randolph-Houlsby solution for the flow-around

zone.

Since results from our model are being scaled in order to match the aforementioned

exact solution for the flow around zone, it can be expected that, when computing total

capacity, results will be significantly improved. This is shown in Figure 3.7. It can be

observed that for different aspect ratios (L f /D) the model predicts lower estimates of hor-

izontal load capacity.

Finally, the mesh developed in this study presents several advantages over its prede-

cessor. Some of them are:

1. Offers capability to model the caisson as a hollow structure. This means that ef-

fects of structural flexibility can potentially be included into future analyses. It also

opens many possibilities regarding studies on behavior of stresses in the soil plug,

dissipations of pore pressures after installation, etc.

2. Formation of gaps can be accounted for. Although, care is recommended when in-

cluding gaps, specifically for the case of a fully translating pile (e.g. a suction anchor

with padeye located at the optimal point).

3.5.2 Finite element model by Kay and Palix (2012)

Kay and Palix (2011) presented a three dimensional FE model developed using the

software Plaxis. They compared their results to predictions done using a limit analysis

softwares.
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Figure 3.7: Comparison to studies by Han

Figure 3.8 presents comparison between this study and results published by Kay and

Palix (2011) for an aspect ratio of 2. It is important to comment here that Kay and Palix

(2011) model was developed for an adhesion of 0.7. The finite element results herein

presented correspond to full adhesion (i.e. α = 1). Results plot relatively close, with data

points from this study being a little bit higher. This is expected due to the difference in

adhesions.

3.6 Comparison to Centrifuge Tests

Geotechnical centrifuge tests were developed by Murali (2015) and Beemer (2015).

This section presents a brief summary the experiment and how obtained results compare
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Figure 3.8: Comparison between to FE results by Kay and Palix

to finite element predictions. Should the reader need to know more details on the testing

program, please refer to the aforementioned references. In addition, details of the experi-

ment have been presented in several conference papers available in the literature (Murali

et al., 2015; Grajales et al., 2015; Beemer et al., 2016).

3.6.1 Experimental setup

Tests were carried out in the 150 g-ton, 2.7 m nominal radius centrifuge at the Center

for Earthquake Engineering Simulations at Rensselaer Polytechnic Institute (Elgamal et al.,

1991). Additionally, the center’s four degrees of freedom (DOF) in-flight robot (Ubilla

et al., 2006) was utilized for load application and in-situ testing. For application of load a

custom cup adaptor was 3-D printed in a stainless steel-bronze alloy. As shown in Figure
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3.9a, the cup allowed the rotational motion of the model piles when coupled with the stem.

Themodel piles consisted of three components: the caisson, the stem, and the sensors

platform, as presented in Figure 3.9b Caissons were constructed from aluminum tubing

turned down to a diameter of 4.96 cm with a wall thickness of 0.61 mm. All monopiles had

a plug length of 10.16 cm with an additional 1.27 cm cap welded to the tubing. Resulting

in an aspect ratio (L f /D) of approximately two. Caps were tapped with a vent hole to

assist installation and plugged with a small cork while testing. Strain gages were mounted

around the circumference of caissons 1.27 cm from the bottom. Strain gage wires were

restrained with wrapping and the assembly was coated in rubber

Stems are rotational in nature with a ball at their end (Figure 3.9b). They were con-

structed from either 9.53 mm diameter steel or aluminum rod and were instrumented with

strain gauges to measure applied load. Strain gauge wires were restrained with wrapping

thread and paint on rubber. Stems where bolted to the aluminum cap allowing them to be

interchanged. Stems varied in height from allowing for diameter normalized load eccen-

tricities of approximately 1.25, 2.5, and 3.5 from the pile cap.

The sensor platforms were fabricated from plastic. They were designed to hold ac-

celerometers above the model water level and the LVDT target flags. Strain gage wires

were also tied to the platforms in order to distribute weight and minimize pulling on the

gages themselves. LVDT flags were 3D printed in ABS plastic and fastened to the plat-

form. Two single-axis 10g accelerometers were mounted to each platform. These sensors

allow measurement of rotation independent of displacement.
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Figure 3.9: (a) Robot adaptor coupling with rotational stem and (b) example of a pile with
labeled components (Grajales et al., 2015)

Both soil beds were constructed in the RPI Large Rigid Boxes, 88cm by 39 cm.

Kaolinite clay was placed at a water content of 80% to a height of 32 cm. The model was

then consolidated at 100g to an average water content of 62.2%. After consolidation the

models were excavated to a depth of 23 cm. After an expected recompression of 3 cm

the expected in-flight depth was 20 cm. Soil undrained shear strength was determined, by

water content correlation (Tessari, 2012), Stress History and Normalized Soil Engineering

Properties (SHANSEP) (Ladd, C. C., and Foott, R., 1974), and inflight T-Bar penetrom-

eter tests (Dejong, et al. 2011). Penetrometer runs were conducted before and after each

monopile test.

Each experiment had three monopiles spaced 18.5cm on center and in the center of

the large box. An example layout is presented in Figure 3.10. They were installed to an

approximate depth of 10.16 cm (assuming no or minimal plug heave).
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Figure 3.10: Top and side views of a characteristic testbed. Drawing courtesy of Dr. Ryan
Beemer

3.6.2 Translational response

The load-deflection curve for the pile tested in pure translation is presented in Figure

3.11 along with the calculated ultimate lateral capacity using methods proposed by Murff

and Hamilton (1993) and finite element results obtained in this study. The lateral head

load, H, is presented as a lateral bearing factor Nh, which is obtained normalizing load by

the product of the projected vertical area, L f ·D, and the average shear strength su,avg over

the depth of pile embedded in soil. For experimental data, ultimate capacity is defined as
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Figure 3.11: Comparison of experimental results against finite element predictions and
upper bound solutions (Murali et al., 2015; Grajales et al., 2015; Murff and Hamilton,
1993).

the peak value measured.

The pile was displaced horizontally to an amplitude equal to 30% of the pile diam-

eter, to maintain a suitable distance between adjacent piles during testing. This was not a

limitation to compute the ultimate capacity, as 30% of pile diameter is considered to be well

above failure. The pile appears to reach its peak value at approximately 24% displacement

amplitude, with the computed horizontal bearing capacity factor (Nh) being approximately

equal to 10 approximately.
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Ultimate capacity of the pile tested in translation is found to fall within the range

of values predicted by Murff and Hamilton (1993) upper bound solution for no gapping

(horizontal gray shaded band in 3.11). For the case of a smooth pile (α = 0) a bearing

factor of 8.85 was obtained while for the case of a rough pile (α = 1) a bearing factor of

11.3 is reported. Although it has been noticed that Murff and Hamilton (1993) tends to

over-predict capacity for short piles, this result suggest that there was a significantly low

adhesion coefficient (α) between the model pile and the soil.

Finite element results are presented for different adhesion factors α ranging from 0

to 1 obtaining lateral bearing factors Nh of 8.08 and 10.8 respectively. Results are plotted

as continuous black lines. The first noticeable difference in the plots is that the stiffness

exhibited by the experimental data is significantly lower than the one predicted by the finite

element model. One reason for this might be that the finite element models the pile as a

rigid body due to the fact that it will be used calibrate future upper bound solutions which

assume completely rigid structure. In contrast, during the experiment, compliance of the

model pile is likely causing a reduction in stiffness.

As it was previously mentioned, maximum capacity (Nh ≈ 10) seems to occur at a

displacement y/D of approximately 24%. These results seem to fall between finite element

predictions for a smooth pile (α = 0.33) and for an adhesion factor α = 0.67 (Lateral

bearing factors Nh from 9.12 to 10.05 respectively). The most probable cause for this

behavior is the fact that model piles were rubber coated in order to protect strain gages and

wires from water and soil particles.
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The formation of gaps behind laterally loaded piles is a phenomenon that has been

observed by several researchers (Zhang et al., 2011). However, the arrangement using

during testing did not allow a high speed camera to be mounted inside the bucket during

the spin. Therefore, it was not possible to check for evidence of gapping. In addition, after

the application of monotonic load, piles were loaded cyclically in the opposite direction

(Beemer et al., 2016), which would create uncertainty on whether a gap occurred during

the monotonic loading or after the cyclic load was applied.

3.6.3 Rotational response

The monotonic response of the pile subject to rotation was examined for four dif-

ferent eccentricities (e): 1.25D, 1.5D, 2.5D and 3.5D. As it was previously mentioned the

lateral load, H, was normalized by the product of the projected vertical area, L f D, and

the average shear strength profile over the depth of pile embedment, su,avg. The lateral

displacement, y, was computed at the mudline using the tilt and displacement measure-

ments and normalized by the pile diameter, D. All the piles were pushed laterally at the

top of the ball and socket connector to a displacement amplitude equal to 30% of the pile

diameter. Thus the pile displacement amplitude at the mudline varied depending on the

eccentricity. Results for these tests are presented in Figure 3.12 (a) through (d). Force

displacement curves are plotted for both cases of primary loading (red circles) and post-

cyclic loading (blue squares). Finite element predictions for adhesion factors ranging from

0 (smooth interface) to 1 (rough interface) are plotted along experimental results for each

of the eccentricities studied.
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Figure 3.12: Comparison of measured data against finite element predictions: (a) e =
1.25D; (b) e = 1.5D; (c) e = 2.5D; (d) e = 3.5D

76



Asmight be expected, lateral capacity decreases with increasing eccentricity for both

primary and post-cyclicmonotonic loading. Another important observation is what appears

to be a work hardening behavior in all of the rotation tests indicating that the piles mobilize

increasing strength with increasing displacements due to the rotational failure mechanism

of short aspect ratio piles. This type of behavior has been previously reported by several

authors Lau (2015); Zhu et al. (2015).

One of the discrepancies between finite element results and experimental data is the

slope of the load-displacement curves. However, while for the case of translation (Fig.

3.11) finite element results appeared to be much stiffer, in the case of rotational displace-

ment fields the opposite is observed, except for Fig. 3.12 (d), in which the experimental

data seems to fall within the predicted range.

Particular responses are observed for each different eccentricity. For the case of ec-

centricity, e = 1.25 (Fig. 3.12a), experimental data shows that capacity keeps increasing

even after a displacement of 0.1 diameters (at the top of the pile). However, if a serviceabil-

ity limit of 5% is assumed, results for both primary and post-cyclic loading tests seem to

fall into the range predicted by finite element simulations. From experimental data, lateral

bearing factors Nh of approximately 1.6 and 1.46 are obtained for primary and post-cyclic

loading respectively, while finite element predictions for an adhesion factor (α) of 0.67

seem to be around 1.5.

For the cases of eccentricities, e = 1.5D and e = 2.5D, both experimental and nu-

merical results are in reasonable agreement up to a normalized displacement of 10%. From
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Fig. 3.12(b) it is observed that, at 5% displacement, experimental results seem to be within

the range of values encompassed by finite element predictions for adhesions α = 0.33 and

α = 0.67 (i.e. horizontal bearing factors, Nh ranging between 1.1 and 1.35). On the other

hand, for eccentricity, e = 2.5D (Fig.3.12c), it appears to be that primary loading data

matches finite element results for an adhesion of 0.67 while post-cyclic is approximately

equal those of α = 0.33. Experimental results are presented in tabular form at Table 3.1.

Finally, for eccentricity (e) of 3.5 (Fig. 3.12d) it looks like experimental data is

in agreement with low adhesion finite element predictions. Also, work hardening effect

seems to be less of an issue for this specific case.

The slight discrepancies in bearing factors between the experimental and the upper

bound plastic limit analysis results are thought to be due to a combination of reasons. A

major contributing factor is thought to be due to the combined effect of vertical andmoment

loading. There was also uncertainty on whether or not a gap develop at the back of the pile.

Another observation made during the testing was settlement of the piles during load-

ing. The connectors that were fabricated did not vertically constrain the pile, thus as each

pile was horizontally loaded there was a corresponding vertical settlement. The influence

of this vertical settlement on the failure mechanism is explained briefly in Murali (2015).

This paper does not examine the vertical settlement in detail due to a insufficient measured

experimental data.

Another possible source of error is the plastic coating applied on the piles to prevent

corrosion of the strain gages. It was not possible to quantify the adhesion on the sides of
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Table 3.1: Normalized lateral load bearing factors

Pile test e Nh Nh - no gap
experimental Aubeny et al. (2003)

Test 2 1.25 1.6 1.58
Test 3 1.25 1.46 1.58
Test 4 1.5 1.22 1.45
Test 5 1.5 1.235 1.45
Test 6 2.5 0.99 1.09
Test 7 2.5 0.90 1.09
Test 8 3.5 0.65 0.87

the pile.

3.7 Comparison to 1-g Laboratory Experiments

Beemer (2015) developed a series of 1-g laboratory experiments conducted on squat

caissons (aspect ratio, L f /D=2). Results from a total of four experiments were presented.

Loading was applied by using a cartesian robot constructed at Texas A&M University.

The robot (CARMEn - Cartesian Robot for Marine Engineering) permits application of

load in both vertical and horizontal directions. Technical information about this tool was

presented by Beemer (2015). Several transducers were utilized in order to measure incli-

nation, bending, vertical and horizontal load. The soil test bed was constructed from EPK

kaolinite clay. A general sketch with dimensions is presented in Figure 3.13. The piles

utilized were the same as in the previously presented centrifuge testing program. Two

different eccentricities were considered.

A comparison between results from this experiment and FE predictions is presented

in Figure 3.14. Comparison is done in terms of a normalized load-displacement curve for

79



Figure 3.13: Testing soil bed used for 1-g experiments (Beemer, 2015)

the specific case of an eccentricity of 1.2 diameters.

A note of caution here. Beemer (2015) and Murali (2015) define eccentricity as

the distance between the load application point and the pile cap. For the purpose of the FE

model, eccentricity comes defined as the distance between themudline and load application

depth. This needs to be taken into account when setting up a reference node in the FEM.

Measured capacity is bounded by results obtained running FEmodels for cases of adhesion,

α equal to 1 and 0. Indeed, assuming an adhesion coefficient of 0.5 seems to produce

agreement between results. It can be observed that the stiffness exhibited by the FE curve is

significantly steeper than the measured values. This could be due to the fact that the caisson

has been set as a rigid body in the FE model. It has been demonstrated that changing the

pile material produces softer curves (Zhang, 2015) , however the final capacity should be
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Figure 3.14: Comparison of FE predictions and 1-g laboratory results. Eccentricity, e =
1.2

the same independently of the material.

Beemer (2015) presented curves for caissons tested under vented conditions and

sealed conditions. FE predictions seem to match results for sealed conditions. This is

consistent with the fact that, during centrifuge tests, all caissons were sealed.
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4 CAPACITY OF PILES AND CAISSONS IN CLAY

4.1 Plastic Limit Analysis of Laterally Loaded Piles

The model herein proposed combines two different three dimensional failure mech-

anisms. The first one is the PLA developed by Murff and Hamilton (1993) . The second

mechanism is similar to the one proposed by Randolph and House (2002); however math-

ematical expressions for dissipation functions are based on those presented by Murff and

Hamilton (1993). It comprises two failure wedges (passive and active) located in front and

behind the caisson and also a scoop mechanism, in order to account for interactions due to

tip resistance for the case of short caissons.

Formulation of any upper bound solution is characterized by three main steps

(Aubeny and Murff, 2005). First a kinematically admissible failure mechanism has to

be postulated. Second, internal energy dissipation rates associated with that mechanism

need to be computed. This step by itself entails:

1. Calculating strain rates at any point in the deformed soil around the pile by using

spatial derivatives of velocity fields,

2. Computation of stresses by invoking an associated flow rule,

3. Computation of rate of energy dissipation per unit volume (i.e. the product of strain

rates and stresses) and

4. Numerical integration over the whole volume to obtain total rate of internal energy

dissipation.
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Third the rate of internal energy dissipation has to be equated to the external work

in order to obtain an upper bound estimate of capacity. In the analyses presented forces

and moments are considered to be ‘generalized stresses’, while both linear and angular

velocities are considered work conjugate ‘generalized strains’ (Prager, 1959).

4.1.1 Murff-Hamilton failure mechanism

Murff and Hamilton (1993) failure mechanism (from now on referred to as 'flow-

around' mechanism) is presented in Figure 4.1 (a and b). It idealizes the pile as a laterally

loaded rigid cylinder embedded in the soil with a radius R and length L f (Han, 2002).

It is assumed that the pile rotates about a point conveniently located on the centerline.

Horizontal loading can be applied at any depth along the centerline of the pile (above or

below the mudline). The failure mechanism comprises three different regions:

1. Conical failure wedges. Passive and active wedges with conoidal shape are consid-

ered to exist in the front and back of the pile respectively. The two wedges configu-

ration corresponds to the assumption that the soil behind the caisson is able to stick

to the walls (i.e. a gap does not exists). Gaps can be considered in the model. When

doing so, only a passive failure wedge is included into the optimization scheme.

2. A flow-around zone (i.e. plane strain zone). In this zone the soil is assumed to

"flow around" the circumference of the pile. Equations utilized for this region are

the plasticity solutions developed by Randolph and Houlsby (1984) for the case of a

translating cylinder.

3. A hemispherical failure surface at the tip, in order to account for energy dissipation

83



when rotational displacement fields are applied.

Strictly speaking, this solution does not enforce strain compatibility between the

three regions, which is a requirement of upper bound solutions. Nevertheless, the solu-

tion is widely used as a benchmark through the offshore geotechnical engineering industry

and has been compared numerous times with experimental and field data (Clukey et al.,

2004; Randolph et al., 1998; Sukumaran and McCarron, 1999; Aubeny et al., 2001a).

Figure 4.1: Murff-Hamilton failure mechanism for cases of (a) forward rotation and (b)
backward rotation

Four optimization parameters define the geometry of the failure mechanism (Fig.

4.1):

1. The vertical extent of the failure wedge, z0 measured from the mudline;

2. The depth to the center of rotation (L0), which is represented by Murff and Hamilton

(1993) as the variable c, in such a way that L0 = z0/c. However, in this study it is

denoted cR in order to distinguish it from the coefficient of consolidation (c);
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3. The radial extent of the failure wedge, r0 measured from the caisson centerline;

4. The optimization parameter αopt , which is included in an equation characterizing the

radial velocity field inside the wedge.

Internal energy dissipation rate is expressed as the summation of several terms that

describe the virtual velocity fields occurring within the failure mechanism. These terms

are presented in Figure 4.2, and described below:

Term Ḋ1

• TermḊ1 accounts for the energy dissipation rate (power) occurring due to volumetric

deformation of the wedge itself.

Ḋ1 = 2
∫ r=r0

r=R

∫ z=z0[(r0−r)/(r0−R) ]

z=0

∫ θ=(π/2 )

θ=0
Ė1rdθdzdr (4.1)

• Ḋ2 is the dissipation rate due to friction between static soil (i.e. soil outside the

wedge) and moving soil (i.e. soil within the wedge). Thus it occurs along the surface

area in contact.

Ḋ2 = 2v0

√
1+
(

z0

r0 −R

)2
√

1+
(

R− r0

z0

)2

·
∫ z=z0

z=0
su

Rαopt
(

1− cR
z
z0

)
[
r0 − z

z0
(r0 −R)

]αopt−1 dz

(4.2)

• The term Ḋ3 considers dissipation rate occurring in the pile-soil boundary due to

total or partial adherence of the soil to the pile wall.
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Ḋ3 = 2
∫ z=z0

z=0

∫ θ=π/2

θ=0
ηsu

√
v2

z + v2
cRdθdz (4.3)

• Terms Ḋ4 and Ḋ5 compute energy dissipation occurring in the plane strain (flow-

around) zone located right below the wedges, in which the velocity is assumed to

be in a horizontal plane. The term Ḋ5 is only activated for the case of a rotational

displacement field in which the center of rotation (L0) falls within the length of the

caisson.

Ḋ4 =
∫ z′=(z0/cR)−z0

z′=0
2v0z′

(
cR

z0

)
suNpRdz′ f or (z0/cR )≤ L f (4.4)

or

Ḋ4 =
∫ z′=(z0/cR)−z0

z′=(z0/cR)−L f

2v0z′
(

cR

z0

)
suNpRdz′ f or (z0/cR )> L f (4.5)

Where z′ is computed as: z′ = (z0/cR)− z. And, when needed, term Ḋ5 takes the

form presented below:

Ḋ5 =
∫ z′=L f−(z0/cR )

z′=0
2v0z′

(
cR

z0

)
suNpRdz′ (4.6)

Where z′ is computed as: z′ = z− (z0/cR).

• Finally, the term Ḋ6 takes care of energy dissipation occurring at the pile tip, which

is mostly important for piles with a low aspect ratio.
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Ḋ6 =
v0R3

2cR

z0

∫ ϕ=2π

ϕ=0

∫ ω=sin−1
(

R/
√

R2
1+R2

)
ω=0

su sinω
√

cos2ω + sin2ωsin2ϕdωdϕ

(4.7)

Figure 4.2: Region(s) corresponding to each energy dissipation rate. (Murff and Hamilton,
1993)

The failure surface was idealized as a spherical segment attached to the pile tip cen-

tered at the point of rotation (L0) and radius (R2) limited by the end of the caisson wall. This

was achieved by using a spherical coordinate system with its origin located at the center of

rotation of the pile. The dissipation is computed by integration over the spherical surface,

limited by its intersection to the caisson wall. A graphical description of this surface is

provided in Figure 4.3. R1 is calculated as the difference between the pile length (L f ) mi-

nus the depth of the center of rotation (L0); in that way the radius of the spherical segment

can be computed using the Pythagorean theorem: R2
2 = R2

1+R2. Equations for dissipation

rate terms have been previously presented in several sources (Murff and Hamilton, 1993;
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Han, 2002; Sharma, 2005).

Figure 4.3: Hemispherical failure mechanism for computation of energy dissipation rates
at the pile tip. (Murff and Hamilton, 1993)

Plastic hinges forming in long piles can be accommodated. However, for stubby

squat piles and caissons this condition is neglected, since the deformation mode is believed

to be a different one.

External work needs to be computed from both the self-weight of the wedges and the

applied horizontal load. For the case of gapping (i.e. an opening form behind the pile as

it moves in the direction of loading), external work by the passive wedge self-weight does

play an important role in the equation (Eq. 4.8). However, for cases in which no gaps are

considered, both passive and active wedges are assumed to be equal in size thus external

work from both wedges is assumed to be equal and opposite (i.e. zero).
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Ẇ1 = 2
∫ r=r0

r=R

∫ z=z0[(r0−r)/(r0−R) ]

z=0

∫ θ=(π/2 )

θ=0
vzγ ′rdθdzdr (4.8)

Finally, the lateral load (H) is computing by equating external and internal work, as

described by eq. 4.9 presented below:

H · v0 =

(
n

∑
i=1

Ḋi

)
· v0 −Ẇ · v0 (4.9)

Where H is the lateral collapse load, v0 is the virtual velocity (which is canceled), Ḋi

denotes the internal energy dissipation rate terms and represents the external work rate.

The code is implemented numerically by using a Matlab based function entitled fmin-

searchbnd.m. This function utilizes the simplex algorithm in order to perform an opti-

mization and get a bounded minimum for H.

4.1.2 Scoop failure mechanism

Inspired by a failure mechanism published by Randolph and House (2002), a second

failure mechanism has been developed. This mechanism seems to be more suited for the

case of short piles or caissons (aspect ratios less than 3) sustaining large moment loading.

The mechanism is presented on Figure 4.4 and comprises two regions: conical failure

wedges and spherical scoop failure surface. In this case only three optimization parameters

are required: the radial extent of the failure wedge, r0 which is measured from the pile’s

centerline; the vertical extent of the failure wedge, z0 measured from the mudline and the

optimization parameter αopt , which was explained in the previous section. The center of
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rotation (L0) is defined as a function of the wedge depth (z0) and therefore is not anymore

an independent optimization parameter, this is described in Eq. 4.10.

L0 = z0 +
L f − z0

2
(4.10)

Figure 4.4: Failure mechanism based on proposed method by Randolph and House (2002)

First, active and passive wedges are considered at the back and front of the caisson

respectively. In the same way as the flow-around mechanism, if a gap forms behind the

pile, only a passive wedge is considered. Dissipation rates for these wedges are calculated

using the same equations published byMurff and Hamilton (1993). The energy dissipation

rate terms corresponding to both wedges can be expressed mathematically as follows (Eq.

4.11):

90



ḊWedges = 2 ·
(
Ḋ1 + Ḋ2 + Ḋ3

)
(4.11)

Where:

• Ḋ1 is the internal energy dissipation in the wedges,

• Ḋ2 is the energy dissipation due to friction between static soil and moving soil, and

• Ḋ3 is the energy dissipated by contact between soil and pile.

The resistance at the base of the pile is accounted by considering a spherical failure

surface (or scoop) at the bottom of the pile. This equation is similar to the one utilized

by the flow-around mechanism, in which a hemispherical failure surface was defined at

the base of the pile and its angular extent was delimited by the circumference of the pile

walls at the bottom. By changing the integration limits it is possible to extend this surface

to the next point of contact with the pile surface, which forms an almost complete sphere,

herein denominated “scoop”. The energy dissipation rate term at the caisson tip can be

expressed using spherical coordinates by Equation 4.12. A sketch of this failure surface is

also provided in Figure 4.5.

Ḋtip =
v0R3

2cR

z0

∫ ϕ=2π

ϕ=0

∫ ω=sin−1
(

R/
√

R2
1+R2

)
+π/2

ω=0
su sinω

√
cos2ω + sin2ωsin2ϕdωdϕ

(4.12)

Where:

• Ḋtip is the energy dissipation at the tip,

• v0 is the virtual velocity,
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Figure 4.5: Details of integration limits in scoop failure surface

• R2 is the radius of the sphere,

• su is the undrained shear strength at each corresponding integration point,

• ϕ represents the angle around the pile circumference (varied from 0 to 2π),

• ω is the angle measured from the pile centerline to the intersection of the scoop with

the upper wall of the caisson, as presented in Fig. 4.5.

• R and R1 were previously defined.

• The cR parameter included in Eq. 4.12. As it was previously mentioned, the original

Murff-Hamilton PLA expressed the center of rotation as a function of the wedge

depth and the variable cR, which was the optimization parameter. For this scoop

mechanism, the center of rotation has been defined as shown in Eq. 4.10. However,

from a computational standpoint it is convenient to retain cR in the equation, but

92



re-defining it as follow (Eq. 4.13):

cR =
z0

L0
(4.13)

Finally, external energy dissipation rate is computed in the exact same way as in the

flow-around failure mechanism previously explained. Throughout the remainder of this

chapter, this failure mechanism (Randolph and House, 2002) will be denoted as "Scoop"

failure mechanism. The original Murff-Hamilton will be named as the "Flow-Around"

mechanism to describe the nature of the assumed failure mechanism just above the pile tip.

4.2 Comparisons in Terms of Lateral Bearing Capacity

A simple comparative evaluation of the two failure mechanisms is to compute capac-

ities for different aspect ratios (having previously selected a soil strength profile). Figure

4.6 presents a comparison between both approaches. The case corresponds to a laterally

loaded caisson. Full adhesion (α=1) and no gapping allowed at the back of the pile. The

soil strength is uniform and the load is applied at the mudline level. The caisson is allowed

to rotate freely.

A notable observation is that, for this specific case of eccentric loading (i.e. the load

is applied above the center of rotation, producing a forward rotation motion), the scoop

mechanism predicts lower capacities for a limited range of aspect ratios (L f /D) ranging

from 1.5 to 5 approximately. For aspect ratios (L f /D) greater than 5, the flow-around

mechanism becomes the controlling mechanism. This observation is in agreement with

the initial notion that the Flow-Around mechanism (Murff and Hamilton, 1993) applies to
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Figure 4.6: Horizontal bearing capacities predicted with both Flow-Around and Scoop
models. Aspect ratio, L f /D = 2, load attached at the top of the caisson

long and slender piles but is less accurate for short piles and caissons.

If a pure translation motion is considered (as it is presented in Figure 4.7), the flow-

Around mechanism does a significantly better job predicting capacities for both short and

long caissons. The only region at which the scoop mechanism performs better corresponds

to caissons of aspect ratios less than 1.75 approximately. For greater values of aspect ratio,

the scoop mechanism becomes inappropriate as it seems to indicate that capacity keeps

increasing, while the flow-aroundmaintains a bearing capacity of around 12. This suggests

that the main difference between both approaches is related to the horizontal-moment load
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interaction (i.e. eccentric loading).

Figure 4.7: Horizontal bearing capacities predicted with both Flow-Around and Scoop
models. Aspect ratio, L f /D = 2, pile is under translation

Although it might seem that a translational displacement field is highly unlikely, in

many cases suction anchors are designed to as nearly as possible fail in a translational

mode. This is done by attaching the chain around the middle of the caisson, region which

is very close to the optimal center of rotation, producing thus a translational failure.

4.3 Moment-Horizontal Load Interaction

A more sophisticated way to evaluate the two collapse mechanisms is by creating a

moment-horizontal load interaction diagram (Fig. 4.8) in order to capture effect of mo-
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ment loading. In order to do this, an estimate of the location of the center of rotation is

needed. From both these analyses and previous studies (Aubeny et al., 2001a), the opti-

mal center of rotation is located at about 0.5 times the pile length. Several combinations

of moment and horizontal loads (or also rotations and displacements) are applied to the

pile according to the convention presented also in Fig. 4.8. One of the advantages of this

format is that the yield locus becomes symmetric around the Nh −Nm axes, so the effect

of moment loading can be more clearly visualized. Results are presented only for the case

of a constant strength profile with forward rotation (i.e. the load application point varies

from the center of rotation and upwards). Variable strength profiles will be considered in

forthcoming sections. In the interaction diagram, moment load is presented in terms of a

moment bearing capacity, previously defined in Chapter 3.

For the case of forward rotation (i.e. moment bearing factor plots positive), the flow-

around PLA seems to over-predict moment loads by approximately 15% (i.e. flow-around

mechanism predicts Nm = 2.65 while scoop mechanism shows Nm = 2.31). Also, for mo-

ment bearing capacities exceedingNm ≈ 1.4, the scoop mechanism predicts lower numbers

for horizontal bearing capacity (Nh) compared to flow-around PLA method. On the other

hand, for regions where translation dominates (i.e. moment bearing capacity greater than

1.4), the envelope predicted by the flow-around mechanism shows lower estimates and

therefore would control the design. As moment loads increase (with corresponding in-

creases in eccentricity, either positive or negative), the scoop mechanism seems to control

since it provide lower results for both moment and horizontal load capacities. For exam-
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Figure 4.8: Moment-Horizontal loading interaction diagram predicted with both Flow-
Around and Scoop models. Aspect ratio, L f /D = 2, load attached at the top of the caisson

ple, if we assume that Nm is fixed to be equal to 2, the flow-around PLA predicts Nh ≈ 5.2

while the scoop mechanism predicts Nh ≈ = 4.2. This represents roughly a 25% difference

between both methods. This result implies that Murff-Hamilton PLA needs to be updated

in order to accommodate horizontal loads applied at relatively high eccentricities.

Another very common way to illustrate moment-horizontal load interaction consists

in varying the depth of the load application point from -∞ to ∞ with respect to the mud-

line level and plotting capacity as a function of load attachment depth. Figure 4.9 presents

the variation of the horizontal capacity as the load attachment depth (or in this case, ec-
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centricity) is increased from below the pile to 2 lengths above the mudline. Similar plots

have been already presented for depths below the mudline (Aubeny et al, 2001; Aubeny et

al, 2003). Horizontal capacity is given in terms of a lateral bearing factor (Nh) defined in

Chapter 3.

Figure 4.9: Horizontal bearing capacities predicted with both Flow-Around and Scoop
models. Aspect ratio, L f /D = 2, load attached at several points along the length of the
caisson

Results are presented for both the case of a constant strength profile. The flow-

around mechanism (plotted in red line) seems to over-predict results for load attachment

depths above the mudline (i.e. greater than 0) when compared with the scoop mechanism
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(blue). Notice that as the load attachment depth approaches the middle of the caisson, both

failure mechanisms approach their maximum values, however, in this region the flow-

around mechanism preforms significantly better.

Both failure mechanisms have been configured in such a way that a linearly increas-

ing undrained strength profile can be accommodated. The effect of soil strength is ac-

counted by introducing the non-dimensional parameter ρ , which is analog to strength gra-

dient and is defined in eq. 4.14. This same parameter will be used throughout the rest of

this study.

ρ =
su0

su1D
(4.14)

Where su0 is the soil strength at the mudline, su1 is the strength gradient assuming a linear

increase and D is pile diameter.

4.4 Modifications for Short Piles Based on Finite Element Analyses

A first approach is to superimpose FE solution for several aspect ratios over the plot

presented in Figure 4.7. This is presented in Figure 4.10. Notice that Fig.4.10 presents the

vertical axis starting fromNh=8 in order to fully appreciate the behavior. It can be observed

that FE predictions approximate the flow-around PLA solution for cases of relatively long

piles (L f /D > 4). On the other hand, for the case of aspect ratio equal to 1, FE predictions

seem to be in agreement with the value computed with the scoop PLA.

It becomes evident then that lateral capacity is being a bit over-estimated by both

PLA methods for piles and caissons with aspect ratios ranging from approximately 1.5 to
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Figure 4.10: Horizontal bearing capacities predicted with both PLA models and compared
to FE predictions. Aspect ratio, L f /D = 2, caisson under translation, constant shear strength

3. Which corresponds to the range mentioned in previous chapters.

From Figure 4.10 calculations have been performed in order to compute the differ-

ence between both failure mechanisms (i.e. flow-around and scoop), and the predicted

horizontal bearing capacities from the finite element study. A power-law correction factor

is introduced in equation 4.15 below.

ξ = 0.93 ·
(

L f

D

)0.04

f or 1 ≤
(

L f

D

)
≤ 6 (4.15)

Usage of this reduction factor is limited for piles and caissons of short aspect ratios
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ranging between 2 and 6. For the rest of the cases it should be set to be equal to one

(ξ = 1). Implementation of this reduction coefficient is presented figure 4.11, in terms of

moment-horizontal load interaction.

If an aspect ratio of 2 is selected, moment-horizontal load interaction diagrams can be

computed using both the failure mechanisms and compared against interaction diagrams

obtained through FE predictions. Figure 4.11 (a and b) presents the complete envelope,

this is, the load attachment point is varied from well above the mudline (positive part of

the plot) to well below the tip of the pile (negative part of the plot).

Figure 4.11: Moment-Horizontal load interaction diagram. FE solutions are superimposed
together with Flow-Around Mechanism and Scoop Mechanism

In Fig.4.11(a), results from plastic limit analyses are shown without applying any

type of reduction. It is possible to notice that FE predictions and scoop mechanism seem

to be in very good agreement when it comes to predicting moment capacities. However,
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for the case of pure translation (i.e. Nm = 0), the flow-around PLA (which controls this

part of the envelope) predicts numbers that are roughly 5% higher than FE results.

On the other hand, Fig. 4.11(b) presents reduced PLA calculations compared with

the same FE results as in Fig.4.11(a). Horizontal bearing capacities match perfectly (Nh ≈

10.75), whilst moment capacities are barely affected. Moment capacities for the cases of

forward rotation (load attached above the mudline), still show acceptable agreement with

FE solutions. Minor discrepancies can be observed for cases of backward rotation (load is

attached well below the pile tip), however, these cases are highly unlikely to occur and are

in general included for completeness.

4.5 Simplified Upper Bound PLA

Having presented improvements to traditional upper bound PLA methods, it is im-

portant to mention that they are in general tedious to code. Also, since their usage relies

on the selection of adequate optimization parameters, the user would be required to have

developed some insight on how to select appropriate initial and boundary values for these

parameters.

For this reason it becomes useful to recall the simplified upper bound PLA explained

previously in Chapter 2. The simplified PLA has the advantage of simplicity. It is a tool

that can be coded in research oriented programming languages, such as c++, Fortran and

Matlab, and yet it can be programmed in a simple spreadsheet. The other advantage that

the simplified method presents over its full PLA counterpart is the running time. While
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computation of capacity using the full PLA method could take from 5 to 30 depending on

complexities, the simplified PLA produces results in just seconds. Due to these reasons,

the simplified method has been widely used in industry by consulting firms and engineers

in order to generate benchmark solutions for design.

Since empirical functions initially introduced in this method were calculated only

based on Murff and Hamilton (1993) PLA code, it is expected that predictions will also

over-estimate results for cases of short piles and caissons. The most straight forward way

to improve predictions is to introduce modifications in the empirical function originally

developed by Murff and Hamilton (1993) based on soil resistance profiles (Nps) computed

from FE analyses using the approach presented in Section 3.2 of this document.

4.5.1 Modified soil resistance function

Figure 4.12 shows FE predictions of the distribution of side resistance Nps versus

depth for aspect ratios L f /D varying from 1 to 5 in a uniform soil strength profile. As it

was mentioned in Chapter 3, Nps was computed at a given depth by integrating the resultant

of computed FE stresses around the circumference of the caisson.

As a note of caution. The soil resistance profiles shown in Fig.4.12 ignore the severe

singularities and spikes that finite element typically produces at the base of the pile. As

it was mentioned in Chapter 3, this noisy behavior is very common and mainly due to the

abrupt change in stiffness from the last element of the pile to the next element, which is

only soil. The main purpose of extracting soil resistance profiles from FE analyses is to

re-calibrate the upper part of the diagram, which reflects influence of free surface.
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Nevertheless, it is very probable that once re-calibrated, the new soil resistance func-

tion will produce conservative results when compared to FE analyses in terms of total ca-

pacity. The reader should keep this in mind when checking results to be presented on this

section.

Figure 4.12: Distribution of side resistance compared to empirical function by Murff and
Hamilton (1993) and the one proposed in this study.

With the exception of very short caissons (L f /D = 1), the finite element calculations

generally support the assumption thatNps is essentially independent of aspect ratio (at least

this is true for cases in which no gapping is allowed). Below a normalized depth, z/D > 3,
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Nps is essentially uniform, indicating that a flow-around collapse mechanism prevails in

this region.

Comparison of the soil resistance profile (Nps) obtained from FE analyses to the

profile from the Murff and Hamilton (1993) mechanism for a uniform soil strength with

no gap shows the Murff and Hamilton (1993) empirical Nps profile to exceed the finite

element calculations at shallow depths (i.e. z/D < 2).

It is important to note here that the Murff and Hamilton (1993) profile shown here

is not directly derived from the full upper bound collapse mechanism for a no-gap failure

mechanism; i.e. surface failure wedges at the passive and active sides of the caisson (Fig.

4.1). Rather, it is based on a single-wedge collapse mechanism with the bearing factor

Nps doubled – but capped so as not to exceed the flow-around value – to account for the

added resistance provided by an active wedge. This suggests that the accuracy of the side

resistance functions Nps can be improved by developing completely independent empirical

relationships.

Murff and Hamilton (1993) proposed the following exponential form for the side

resistance bearing factor:

Nps = N1 −N2 exp(−ηz/D) (4.16)

The parameter N1 is the flow-around zone bearing resistance ranging from 9.43-

11.94, andN2 is the near-surface bearing resistance ranging from 2 to 2.82 when no gapping

occurs. The lower and upper bounds cited here relate to surface roughness range, α . The

parameter η controls the rate at which bearing resistance transitions from its near-surface
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value to the flow-around condition, which depends on the soil strength profile. For the

case of no-gapping, the method assumes that an active wedge forms behind the pile, reason

why the soil resistance (Nps) for these cases is doubled, but capped in such a way that the

maximum is given by N1.

Fitting of Equation 4.16 to the finite element profiles produced the η values which

closely follows a parabolic form, characterized by Eqs.4.17 and 4.18 presented below.

η = 0.129+0.03ρ −0.002ρ2 f or ρ ≤ 9 (4.17)

η = 0.27 f or ρ > 9 (4.18)

The equation has been validated for different strength gradient through comparison

to soil resistance distributions from FE analyses under similar conditions. Results are pre-

sented in Figure 4.13

Figure 4.13: Distribution of side resistance compared to new empirical function for differ-
ent strength gradients.

Having validated a new η function, the next step involves incorporating the modi-

106



fied equations into the existing simplified PLA code, developed by Aubeny et al. (2001a).

The method was briefly introduced in Chapter 2 of this document. However, it has been

extensively explained by Han (2002) and Aubeny et al. (2003).

Comparisons are presented in Figure 4.14. First observationwould be that the simpli-

fied solution predicts lower capacities than both the upper bound PLA and the FE method.

This is likely due to the fact that when fitting was done to obtain the updated function, high

stress concentrations at the pile tip were not considered. Data points corresponding to FE

analysis (plotted in red triangles) do include base resistance. As aspect ratio increases, the

proposed simplified function approaches capacities predicted by the two other methods.

Figure 4.14: Comparison of normalized capacities from different methods.
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4.6 Formation of Gaps

If gapping occurs, the reduction in horizontal load capacity due to loss of shearing

resistance in the active surface wedge is offset somewhat by the removal of the driving

stresses that occur when the active wedge separates from the caisson. Thus, modeling of

the gapped condition requires the following modifications to the formulation described

above for no-gapping:

1. The equivalent soil pressure Nps must not be doubled, since only a passive wedge is

assumed to form.

2. The net bearing resistance must be increased to account for the removal of the active

driving stresses from the surface wedge. Aubeny et al. (2001a) give the form of the

revised equation for the case of gap formation:

P = NpssuD + γ ′zD ≤ N1suD (4.19)

The inequality in Eq. 4.19 ensures that P will not exceed the flow-around resistance

value. However, care must be taken when using the simplified method, especially the re-

gion where free surface effects still dominate behavior. Cases with extremely high buoyant

unit weights (γ ′) could to produce soil resistance factors (Nps) higher than those where no

gapping is allowed. Whenever this happens, it is necessary to prevent the 'gapping' values

to go beyond the 'no-gapping' values. Figure 4.15 presents a comparison of soil resistance

distributions for different buoyant unit weights (designated as B.U.Wt. in the graph), rang-

ing from zero density to the case of no gapping, in which density plays no role at all.
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Figure 4.15: Distribution of side resistance compared to empirical function for strength
gradient of one.
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5 CAPACITY OF PILES AND CAISSONS IN SOILS WITH CRUST

5.1 Preliminaries

As it has been pointed out in Chapter 2, presence of crust zones in marine soils is

a problem that is becoming increasingly common in several locations around the globe.

Said this, most of the available tools for analyzing laterally loaded piles have been initially

developed for uniform soil profiles.

One of the tools that is readily available on these cases are finite element (FE) anal-

yses. A non-linear soil strength profile can be easily incorporated into the material prop-

erties of the soil. After running the model, stresses around the pile can be transformed

into equivalent springs (i.e. p-y curves) that can at the same time be used for performing

simpler load-deflection analyses.

A limitation of this approach is the fact that FE models need significant computa-

tional resources that might not be available to all users in industry. In this sense, plastic

limit analyses (PLA) such as the one proposed by Murff and Hamilton (1993) present the

advantage of simplicity. Complex soil strength profiles can be incorporated into the code

and running time is relatively short (≈ 15min per case) compared to most FE analyses.

Still, the Murff-Hamilton upper bound code is available as a Matlab-based application,

and learning to use the code adequately can become a time-consuming task.

Given this fact, it would be ideal to be able to incorporate non-linear soil profiles

into the simplified PLA approach by Aubeny et al. (2001a) (also explained in Chapter 2).
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However, as it stands right now, this approach is limited to either constant or linearly in-

creasing strength profiles. The reason for this is that the empirical soil resistance function

(which resembles response obtained with Murff-Hamilton code) depends on the dimen-

sionless strength gradient (ρ), which at the same time is function of the soil strength at the

mudline and the strength gradient of a linearly increasing strength configuration.

One of the main questions that needs to be answered is whether the presence of a

crust affects the equivalent soil resistance (Nps) profile of the soil in question. If that is the

case, then modifications need to be introduced to the empirical function in order to account

for crust effects. In addition, the effect of a crust on capacity is also uncertain at this point.

Thus, there is a need to develop a rational basis in order to select an equivalent linear profile

given a certain non-linear soil profile. This is the main purpose of this chapter.

5.2 Methodology

Ten different pile diameters have been selected for this segment of the study. Diam-

eters and corresponding notations are presented in Table 5.1. Most of the selected sizes

are relevant either to pile foundations or wells conductors. Piles 7 through 10 could also

be applicable to suction caissons. An aspect ratio (length to diameter, L f /D) of 5 was se-

lected in order to ensure that even small-diameter piles span through the crust and reach

the underlying weak layer. An example is the case of Pile No.1 having diameter is D =

0.92 meters. Considering a crust that spans a total depth of 2.5 meters from the mudline,

the minimum required aspect ratio such that Pile 1 could span the entire crust would be
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around L f /D ≈ 2.71. Thus, strictly speaking, an aspect ratio of 3 should suffice for this

purpose. However, prior to developing the analyses there was uncertainty on whether the

presence of a crust could affect soil resistance distributions for depths located below the

stiff layer. For this reason, aspect ratio was selected to be 5.

Although a revised version of the original Murff-Hamilton function has been pro-

posed in Chapter 4 of this dissertation, results obtained through PLA analysis will be com-

pared to the original function, because it was calibrated to match that solution.

Table 5.1: Selected pile diameters

Pile No. Diameter (inches) Diameter (m)
1 36 0.92
2 48 1.22
3 60 1.52
4 72 1.83
5 84 2.14
6 96 2.44
7 108 2.74
8 144 3.66
9 180 4.57
10 216 5.49

In order to develop this part of the research, the following steps were followed:

1. Definition of idealized soil strength profiles

2. Incorporation of nonlinear strength profiles into upper bound PLA program

3. Computation of capacities from PLA code

4. Computation of equivalent soil resistance distributions (Nps), using procedures pre-

viously outlined in Chapter 2 of this dissertation.

5. Comparison to FE analyses in terms of total capacity
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6. Comparison to the original Nps function.

Since comparisons are to be presented both in terms of total capacity and, most im-

portantly, lateral bearing capacity along depth, a significantly fine discretization in the

vertical (z) direction has been selected. In total approximately 1000 optimizations have

been executed per crust case for the pile diameters listed in table 5.1.

5.3 Idealized Soil Strength Profiles

Determination of both the strength and vertical extent of the crust is possible with

the use of cone penetrometer testing (CPT) and box core samplers. Fig. 5.1 presents CPT

data obtained from three locations around the world.

A total of 80 CPT records are presented: 46 from Site A, 33 from Site B and one

from Site C. The crust can be clearly observed at the top of the soil, with a linear increasing

profile occurring below the crust. For the data herein presented, the high shear strength in

the crust zone is believed to be either due to bioturbation or to the presence of high amounts

of silt and sand-size foraminifera.

A representative soil profile has been developed (Fig. 5.2) to bracket the range of

measured data. Parameters required to define geometry of the soil profile are also defined in

figure 5.2. Three benchmark cases have been chosen: the case of a high-strength, average-

strength and low-strength crust. Geometries for these cases are presented in Table 5.2.

However, arguably the case of a high crust is the simplest and easier to model.
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Figure 5.1: Undrained shear strength from CPT data at different locations (Courtesy of Dr.
Philippe Jeanjean)

5.3.1 Incorporation of non-linear strength profiles into upper bound PLA

The upper bound code has been adapted in order to accommodate nonlinear strength

profiles like the ones shown in Fig.5.2. This was done simply incorporating aMatlab based

subroutine with the pertinent geometry and strengths into the original Murff-Hamilton

code.

The code computes energy dissipation rates for each integration point. For example:

within the active wedge, there are one hundred integration points. Each of those points
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Figure 5.2: Schematic of idealized soil strength profile for stratified analyses

Table 5.2: Soil strength profiles to be considered

Parameter Soil 1 Soil 2 Soil 3
su0 (kPa) 5.00 2.75 0.5
su−crust (kPa) 15.00 10.00 5.00
su−crust−bot (kPa) 7.00 4.50 2.00
su1 (kPa/m) 1.5 1.5 1.5
dcrust−top−peak (m) 0 0.25 0.50
dcrust−bot−peak (m) 2.00 1.25 0.50
dcrust−bot (m) 2.50 1.50 1.00

has its properties well defined: position (r, θ ,z) and undrained shear strength (su). Thus,

by defining a depth dependent non-linear shear strength profile, one can ensure that every

single point along the depth of the pile is assigned different strength properties.

This small fact is one of the major advantages of the upper bound PLAmethod (Men-

tioned in Chapter 1). It is very versatile and allows incorporation of highly complex ge-

ometries and material properties. The downside of this is that running time triplicates (and

sometimes quadruplicates) compared to uniform soils: from 5minutes to more than 15 min
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per optimization. However, it is still less time than most three dimensional finite element

simulations would take.

5.4 Case 1: High Strength Crust

5.4.1 Normalized capacities

Figures 5.3(a and b) and 5.4(a and b) present comparisons in terms of capacity for

the case of a high-strength crust (Soil No. 1).

Capacity is indeed affected by the depth of the crust, however, there does not seems

to be a consistent pattern in how the curves behave. For small diameters, the presence of a

crust seems to produce a rapid increase in capacity with aspect ratio. As diameter increases,

the curves resemble more those obtained for linearly increasing strength profiles.

Figures 5.3(a and b) present result of analyses including base resistance. As a con-

sequence, for short caissons in which the diameter is more than the actual length (i.e.

L f /D < 1) the normalized capacity seems to increase asymptotically, basically because the

contribution from base resistance represents a large percentage of the total capacity. This

behavior is unrealistic and is one of the many reasons why the flow-around mechanism

(i.e. Murff and Hamilton, 1993) is not suitable for these range of diameters. Nevertheless,

when computing capacity of a pile under lateral load, base resistance definitely represents a

percentage of the load, thus, for longer piles and caissons it was pertinent to present results

this way. The figure has been divided into part a and part b. Figure 5.3a presents capacity

curves for those piles which diameter (D) is less than the crustal depth whilst Fig.5.3b plots
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Figure 5.3: Horizontal bearing capacity for different aspect ratios. Base resistance in-
cluded. Piles under translation

capacity curves for diameters larger than the crustal depth.

As it was mentioned in previous paragraphs, there is no consistent pattern in how the
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curves behave. What is a fact is that the thickness of the crust does play a very important

role regarding behavior of the pile. For diameters shorter than the crust depth, it can be

observed that curves corresponding to smaller diameters (for example, P1, with diameter

of 0.92) tend to peak earlier than those from larger diameters (example, P6, with diameter

of ), which reach their peak in a more gradual way.

The opposite is observed for cases in which diameter is larger than the crust thickness

(Fig.5.3b). The smallest diameter in this picture (P7, D = 2.74m) reaches its maximum

resistance gradually at around aspect ratios of 5. On the other hand, the largest diameter

pile (P10, D = 5.49m) reaches higher capacities than pile No. 7 for much shorter aspect

ratios.

A similar but less severe behavioral pattern can be observed in figures 5.4(a and b),

which show results with base resistance subtracted from capacity. A first observation is

the fact that small aspect ratios do not reach their maximum as early as larger ones. This

reassures our previously mentioned hypothesis. Still there are slight differences between

diameters.

This newly observed behavior is in contrast with previous bearing capacity plots,

where the strength was considered either constant or linearly increasing with depth. For

those cases, normalization does bring all the curves together to the same values, which is

not the case for crusted soil profiles.

118



Figure 5.4: Horizontal bearing capacity for different aspect ratios. Without base resistance.
Piles under translation.
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5.4.2 Soil bearing capacity distributions

Soil resistance distributions profiles for all the piles are plotted in Figure 5.5. It can

be observed in that there is an evident influence of the crust on the equivalent soil resistance

which is particularly noticeable for piles with diameters larger than the assumed crust depth

(i.e. Piles 7 through 10). The rest of the piles to converge to the solution of a pile loaded in

a linearly increasing soil profile. This observation reinforces the hypothesis that capacities

of piles of larger diameters increase in a more significant way by the presence of a crust.

Figure 5.5 is the typical diagram that is utilized in order to generate equivalent p-

y curves. However, for the purpose of interpretation and analysis, it could be perhaps a

bit misleading. It becomes useful to plot soil pressure distributions versus actual depth (in

meters) instead of normalized depth. This is presented in Figure 5.6, which is a lot easier to

interpret. The upper zone (red-shaded) corresponds to the peak strength of the crust. Then

there is an intermediate region (yellow) named 'transition zone' which is basically the zone

in which the crust strength starts decreasing down to the strength of the underlying soil.

An interesting observation here is that soil resistance profiles for small diameter piles

seem to be relatively independent of whether there is a crust or not in the seabed. This is

very noticeable in plots corresponding to Pile 1 up to Pile 5. Piles 6 and 7 seem to be

somewhat affected by the transition zone. This is, the curved portion of their Nps profiles

do not end within the crust, but seem to try to kick back to the top of the transition zone.

Probably the most interesting fact to highlight is the behavior of large-diameter piles

(8 through 10) with diameters ranging from 3.65 to 5.48meters. First, these three diameters
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Figure 5.5: Lateral bearing capacity profiles. Case of High-Crust

exceed the crustal depth, and yet, behavior of soil distribution is definitely controlled by

the crust. For these three piles, it can be observed that there are three stages. Within

the crust, they seem to follow an exponential path (coherent with empirical Nps functions

previously mentioned). However, as soon as they hit the transition zone (yellow), they

seem to experience a 'kick-back" and rapidly go to the flow-around limit.
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Figure 5.6: Lateral bearing capacity plotted against depth. Case of High-Crust.
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5.5 Cases 2 and 3: Average and Low Strength Crusts

Data for cases 2 and 3 have been computed and extracted. Results for piles embed-

ded in average and low crusts are presented in Fig.5.7 and 5.8. Interpretation of these is

somewhat more complicated. Nevertheless, there is a clear influence of the crust, which

can be noticed in Fig. 5.7 at a depth of 1.5m and Fig. 5.8 at a depth of 1m below the

mudline.

It is believed that due to the number of different layers (4 layers in the average crust),

the formal upper bound method becomes relatively unstable, and this can be observed as

random dots that plot outside of the general trend. This resonates with the recommenda-

tion initially given by Murff and Hamilton (1993) about the failure mechanism loosing its

validity for cases with severe changes in strength.

Figure 5.7: Lateral bearing capacity profiles for Average-Crust
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Figure 5.8: Lateral bearing capacity profiles for Low-Crust

5.6 Simplified Approach to Calculate Bearing Capacities

An objective of this study was to compare the original Nps empirical function for

a linearly increasing strength, to the newly calculated Nps profiles for soils with crust.

Two different approaches have been selected. Figures 5.9 through 5.11 present a graphical

representation (not to scale) of the studied soil profiles (plotted in black) together with the

two approaches.

The first approach consists of applying the empirical Nps function for each soil type

by using the equation of the linearly increasing profile corresponding to the soil at the

bottom of the crust. This approach has been denominated as ‘Empirical-A’ and is presented

as green dashed lines in Figures 5.9 through 5.11. Utilized numbers are presented as well

in the figures. Notice that in this case the intercept with the mudline is a dummy variable
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Figure 5.9: Original soil profile for a high-strength crust overlayed with approaches A and
B.

Figure 5.10: Original soil profile for an average-strength crust overlayed with approaches
A and B.
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Figure 5.11: Original soil profile for a low-strength crust overlayed with approaches A and
B.

that is needed merely for the purpose of using the Nps function.

In the second approach (‘Empirical-B’), the Nps empirical function has also been

evaluated using the maximum crust strength which is assumed to be a constant strength

number and is indicated as blue dotted lines in the figures. This was done based on the

observation that for relatively small diameters (i.e. piles 1 to 6) the vertical extent of the

failure wedge seems to occur within the crust, which implies that the bearing capacity

would not affected by the linearly increasing profile corresponding to the soft soil. Values

for su-crust are presented in Fig. 5.9 through 5.11.

Figures 5.12 through 5.19 present comparisons of soil profiles calculated using the

formal upper bound PLA method (i.e. Murff-Hamilton) together with the empirical func-

tion. PLA results are plotted as squares and the empirical function is presented as a con-
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tinuous black line (Empirical-A) and dashed black line (Empirical-B).

Figure 5.12 presents results for a diameter of 36 in (0.9144m). From Fig. 5.12a it can

be concluded that the crust’s strength seems to be more appropriate to model behavior of

soils with a high-crust. Nevertheless, for the other two crusts (Fig. 5.12b and c), utilizing

the crust’s depth could lead to an over-estimation of the actual capacity.

Figure 5.12: Formal PLA vs empirical approaches for Pile 1, Diameter = 36in.

Results for Pile 10, with diameter D = 216 in (5.49 m) are presented in Fig. 5.13

(a, b and c). Contrary to Pile 1, for which predicted bearing capacities were encompassed

between the dashed and continuous lines, for this case the PLA predictions indicate that

there seems to be a spike, which occurs around the location of the crust (Hcrust /D). For

example: for Soil 1 (Fig.5.13a) the spike occurs at a normalized depth of 0.5 whilst for Soil

3 (Fig.5.13c) it occurs at a normalized depth of around 0.2. After a thorough process of trial

and error, there was no simple modification that could be applied to the original empirical

Nps function to produce a trend similar to that predicted by the upper bound method for
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Pile 10.

Figure 5.13: Formal PLA vs empirical approaches for Pile 10, Diameter = 216in.

An intermediate diameter (Pile 4, D = 1.83m) is presented in Fig. 5.14(a, b and c).

The solution ‘Empirical-B’, seems to be able to produce an acceptable fit for both the high

crust (Hcrust = 2.5) and average crust (Hcrust = 1.5). This can be observed in Figs.5.14(a

and b). For the low crust (Fig.5.14c), a somewhat less accurate approximation is observed,

however it still looks acceptable.

While the approach ‘Empirical-A’ clearly does not model the increased bearing ca-

pacity due to the crust, the approach ‘Empirical-B’ seems to produce an acceptable fit to the

formal upper bound method, at least for small diameters. In order to determine the range

of diameters for which this approximation stands valid, the same exercise was repeated for

piles P5 through P9. Results are shown in Figs. 5.15 to 5.19.

Upon examination of these figures, it is possible to conclude that for a high crust soil

profile the simplification (i.e. ‘Empirical-B’), is in very good agreement with upper bound
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Figure 5.14: Formal PLA vs empirical approaches for Pile 4, Diameter = 72in.

Figure 5.15: Formal PLA vs empirical approaches for Pile 5, Diameter = 84in.

predictions up to a diameter of 108 in (Pile 7), as shown in Fig. 5.17. Also, this diameter

is very close to the actual crust thickness (Hcrust), which has a depth of 2.5 m for this soil.

For the case of an average crust, excellent agreement is observed up to a diameter

of 72 inches (Fig. 5.14b). For larger diameters, the simplified approach starts departing

from upper bound predictions. However, piles P5 and P6, depict a relatively acceptable fit
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Figure 5.16: Formal PLA vs empirical approaches for Pile 6, Diameter = 96in.

Figure 5.17: Formal PLA vs empirical approaches for Pile 7, Diameter = 108in.

is observed (Figs. 5.15b and 5.16b ).

Finally, almost no agreement between empirical and PLA solutions is observed for

the case of piles embedded in a low crust soil. Upper bound predictions for small diameters

(i.e. P1 to P4) seem to fall in between the lines described by approaches ‘Empirical-A’

and ‘Empirical-B’. For larger diameters (i.e. P5 to P10) a completely different pattern is
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observed in which a relatively concave curve increases up to a peak (presumably at the

location of the triangular crust) and then decreases slightly and approximates the flow-

around solution.

Figure 5.18: Formal PLA vs empirical approaches for Pile 8, Diameter = 144in.

Figure 5.19: Formal PLA vs empirical approaches for Pile 9, Diameter = 180in.

A simple modification to the original Nps function can successfully approximate the
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behavior of relatively small diameter piles in a high crusted soil. This is considered a

positive outcome of this study, because these diameters, 36 to 96 inches, encompass the

dimensions of most offshore wells conductors and piles used today.

For cases where pile diameter is greater than 96 inches (as it is the case of suction

caissons) it seems preferable to use the empirical function Nps with the strength gradient

corresponding to the soft soil at the bottom of the crust (i.e. approach ‘Empirical-A’). How-

ever, this would likely underestimate the capacity of the soil-foundation system. Towards

this end, a new more complex function would be required for such cases.
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6 STRAIN PATH ANALYSIS OF PORE PRESSURE DISSIPATION

TIMES

6.1 Strain Path Solution

Chin (1986) approximated the displacement fields surrounding a penetrating open-

ended pile by adapting the analytical solution for a ring source expanding in an incompress-

ible medium (Kuchemann and Weber, 1953) in order to. Equations 6.1 and 6.2 describe

the horizontal and vertical velocity (vr and vz respectively) components of an infinitesimal

soil particle with respect to the vertically advancing pipe. It is assumed that the ring source

is made of incompressible material and has a radius Rr and a vertical penetration velocity

U .

vr =
V

4π2
1

r
√
(r+Rr)

2 + z2

[
K(k)

{
1− 2r(r−Rr)

z2 +(r−Rr)
2

}
E(k)

]
(6.1)

vz =U +
V

4π2
2z

(z2 +(r−Rr)
2)

√
(r+Rr)

2 + z2
E(k) (6.2)

Where z is vertical and r is radial coordinate. The functions K(k) and E(k) are elliptic

integrals (first and second kind, respectively), which can be defined in terms of infinite

series as follows (Eq.6.3 and 6.4):
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k4 + ...

]
(6.3)
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where k is a position parameter defined by Eq. 6.5:

k =
4rRr

(r+Rr)
2 + z2

(6.5)

The source strengthV must be given in units of flow rate, and it must be set equal to

the rate at which soil is displaced by the pile as it moves downward, which can computed

as the cross-sectional area of the pile multiplied by its penetration rate, as described in Eq.

(6.6):

V = π
[
R2 − (R− tw)

2
]

U ≈ πDtwU (6.6)

where R is the outer radius of the pile and tw is its wall thickness. This approximation

typically applies for thin-walled piles in which second order terms can be treated as neg-

ligible. If a rate-independent constitutive model is introduced, a penetration rateU can be

arbitrarily selected which is usually assumed to be equal to one.

A careful analysis of this solution shows that the stagnation streamline tends to occurs

at an original radial coordinate r0 located approximately three-quarters inside the outer wall

of the pile. Therefore, the target pile radius can be achieved by setting the radius of the

ring source at a distance 0.75·tw inside the outer pile wall, or: Rr = R−0.75 · tw.

The path (i.e. trajectory) of any single soil particle located near the advancing pile is

then calculated by integrating Equations 6.1 and 6.2 with respect to time, as described in
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Eqs. 6.7 and 6.8:

r = r0 +
∫

t
vr dt (6.7)

z = z0 +
∫

t
vz dt (6.8)

The initial vertical coordinate z0 should always assumed as the distance below the

tip of the pile or caisson, because at this point the effects of penetration are negligible.

A series of initial radial coordinates r0 and the time range t over which the integration is

conducted are selected according to the respective horizontal and vertical ranges of interest

(Aubeny and Grajales, 2015). An example of a deformation grid is shown in Fig. 6.1 for

the specific case of an open-ended pile with thickness ratio (or normalized thickness) of

D/tw = 40. Notice that only half of the pile is shown, and the pile wall is presented as an

empty-white space in between the grid.

Strains at any point are usually calculated by taking the spatial derivatives of the

velocity of equations 6.1 and 6.2 to obtain strain rates and then integration of these strain

rates along each streamline with respect to time allows to obtain strain. However, these

calculations can be significantly simplified by recognizing that, if the penetration rateU in

the vertical direction is assumed to be a steady velocity, then the derivatives with respect

to time are going to be proportional to the spatial derivatives with respect to the verti-

cal dimension. As a result, the following simplifications are possible for calculating the

respective strain components (i.e.vertical, tangential, radial and meridianal):
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Figure 6.1: Deformation Grid for a thickness ratio of D/tw = 40. Caisson wall removed
from figure.

εzz = −
∫

t

∂vz

∂ z
dt =−

∫
t

1
U

∂vz

∂ t
dt = 1− vz

U
(6.9)

εθθ = −
∫

t

vr

r
dt =−

∫
r

dr
r

=− ln(r/r0) (6.10)
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εrr = −εzz − εθθ (6.11)

εrz = −
∫

t

∂vr

∂ z
dt =−

∫
t

1
U

∂vr

∂ t
dt =−vr

U
(6.12)

The strain rates in Eqs. 6.9 to 6.12 have been expressed utilizing a soil mechanics

sign convention where compression is assumed as positive and tension is negative. The

simplified expression for the meridianal strain term εrz can be derived by recognizing the

velocity field in this case is irrotational and Eq. 6.11 embodies the incompressibility con-

straint (Aubeny and Grajales, 2015). As a result, the strain at any location can be accurately

computed from relatively simple expressions in terms of the current position and velocity

of each soil element in question, which simplifies significantly the computational effort.

An example of strains obtained through usage of these equations is presented in Fig.

6.2. Since the system is symmetric, contours are presented only for the right-half of the

system. The penetrator had a normalized thickness D/tw = 40. It can be observed that

severe strain concentrations occur at the tip of the penetrator (i.e. 5% and 10% strain).

Once strain histories are defined at all points, deviatoric stresses (si j) can be com-

puted using a constitutive model. For this dissertation, a Prandtl-Reuss model has been

used. The model has linearly elastic behavior beneath the yield surface, a von Mises yield

criterion, an associated flow rule, and perfectly plastic behavior upon yielding (Aubeny

and Grajales, 2015). The constitutive law is then expressed as presented in Eq. 6.13:
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Figure 6.2: Contours of maximum shear strain for open-ended penetration. Normalized
thickness D/tw = 40

[δ s] = [Cd][δε ] (6.13)

where δs are the increments of deviatoric stress and δε are the increments of strain calcu-

lated by integrating Eqs. 6.9 to 6.12.
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The constitutive matrix needed to relate deviatoric stresses to strains [Cd] for a

Prandtl-Reuss model under axisymmetric conditions can be defined as follows:

[Cd] =



4G/3 −2G/3 −2G/3 0

−2G/3 4G/3 −2G/3 0

−2G/3 −2G/3 4G/3 0

0 0 0 2G


− χG

2s2
u



srrsrr srrszz srrsθθ srrsrz

szzsrr szzszz szzsθθ szzsrz

sθθ srr sθθ szz sθθ sθθ sθθ srz

srzsrr srzszz srzsθθ srzsrz


(6.14)

In Equation 6.14, G is shear modulus and su is undrained shear strength in a simple

shear mode. The parameter χ is a dummy variable that activates the plastic response. For

stress states beneath yield or for unloading from the yield surface it is equal to zero and

otherwise set to unity. Deviatoric stress histories are computed by performing numerical

integration of Eq. 6.13 along each streamline.

Changes in mean stress (∆σ ) are indeterminate from Eqs. 6.13 and 6.14; neverthe-

less, they can be evaluated from considerations of force equilibrium (Baligh, 1986, 1985;

Aubeny and Grajales, 2015). If horizontal equilibrium is assumed, the relevant equation

becomes:

∂ (∆σ)

∂ r
= −

(
∂ srr

∂ r
+

srr − sθθ
r

+
∂ srz

∂ z

)
(6.15)

Changes in mean stress (∆σ ) during penetration are computed by performing nu-

merical integration of Eq. 6.15 starting from a point located at a sufficiently large radial

distance from the pile outer wall, in such a way that disturbance effects can be considered
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negligible. If the shear-induced pore pressures are neglected, then the changes in mean

stress (∆σ ) can be assumed to be the excess pore pressure ue induced by pile installation.

Distributions of excess pore pressures are presented in Fig. 6.3, for a vertical distance of

40·tw above the pile tip. They have been calculated by using Eqs. 6.6 to 6.15 for sev-

eral normalized wall thicknesses ranging from D/tw = 10 to 160 and a soil rigidity index

Ir = G/su = 100, which is typical for NC clays.

Figure 6.3: Mean stress component of initial excess pore pressure distribution

Also shown in Fig. 6.3 is the excess pore pressure distribution for a solid (or plugged)

pile, which is included as a reference for comparisons to be developed later in this chapter.

Velocity fields for the solid case (plotted in red circles) are calculated based on the solution

for simple pile penetration presented by Baligh (1985):

vr =UR2/(4ρ2 sinφ) (6.16)
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vz =U +UR2/(4ρ2 cosφ) (6.17)

where R is the radius, φ is the polar angle defined as tan−1(r/z), and ρ is the polar ra-

dius (r2 + z2)1/2. Except for the modified velocity fields, the rest of the calculations for

solid pile penetration are identical to those for open pile penetration, which were previ-

ously described in Eqs. 6.7 to 6.15. From Fig.6.3, it can be observed that disturbance is

significantly higher as the thickness ratio (D/tw) increases, with minimal increases in mean

stress observed for thin piles (i.e.D/tw = 160)

6.2 Pore Pressure Dissipation

The study presented in this dissertation consists on prediction dissipation of excess

pore pressures along the pile shaft without considering the influence of tip effects. This

problem can be easily characterized in terms of a one-dimensional consolidation process

in a homogeneous, semi-finite soil mass. For these conditions an uncoupled analysis is

valid (Aubeny and Grajales, 2015), as explained by Levadeux and Baligh (1986) and Sills

(1975). Therefore, the time required for excess pore pressures to dissipate of may be com-

puted from a relatively simple one-dimensional diffusion equation. The governing differ-

ential equation in polar coordinates is given as:

c
(

∂ 2ue

∂ r2 +
1
r

∂ue

∂ r

)
=

∂ue

∂ t
(6.18)

where the variable c is the coefficient of consolidation. Initial conditions (i.e. pore pres-

sures) are given as presented in Figure 6.3. Several alternatives are feasible for solution of

Eq. 6.18. An implicit Euler backward difference approach has been adopted. Computa-
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tions of normalized pore pressured decay from Eq.6.18 are shown in Fig. 6.4 for the initial

conditions presented in Fig. 6.3. The non-dimensional time (or time factor) in Fig. 6.4 is

defined in terms of the coefficient of consolidation c, real time t, and radius R as described

below:

T = c · t/R2 (6.19)

Based on the initial excess pore pressure distributions presented in Figure 6.3 for

Ir =100, strain path (SPM) solutions were computed for relative wall thicknesses D/tw

ranging from 2 to 160. These results are presented in Fig. 6.4. These wall thicknesses

encompasses the range commonly used in practice. These results are also compared with

dissipation times computed based on cavity expansion (CEM) calculation of disturbed pore

pressures. By looking at Fig. 6.4, it is possible to compare the two-dimensional SPM

analyses to the 1-D CEM ones. This result highlights the importance of accounting for

the two dimensional nature of the pile penetration process. SPM pore pressure predictions

seem to show much more spreaded results.

Normalized times for degrees of consolidation of 50 and 90 percent, T50 and T90, are

presented in Figs. 6.5 and 6.6 respectively. These figures can be used as design guides.

Predictions are presented for wall thicknesses D/tw = 2 to 160 and rigidity indices Ir = 50

to 500, which encompass typical stiffnesses of very soft to stiff clays.
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Figure 6.4: Predicted pore pressure dissipation after installation

6.3 Normalized Time Scale

With the purpose of unifying the predictions, normalizations of the time scale have

been considered. A rational basis for such type of normalization is provided by cylindrical

cavity expansion theory. A useful approach could be to define a modified time factor Tp

in terms of the radius of zone of plastic yielding during penetration (Rp). This radius is

related to the actual radius of the pile by the following equation:

Rp = R
√

IrAr (6.20)

where Ir is rigidity index (G/su) and Ar = 4tw/D is the ratio of gross pile cross-sectional

area to the annular area of the tip. A modified time factor (i.e. normalized time) can now
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Figure 6.5: Design Guide: Predicted times to 50% consolidation

be defined in terms of the radius of the plastic zone during penetration (Rp) as follows:

Tp = ct/
(
IrArR2) (6.21)

A series of comparisons is shown in Fig. 6.7. In them, the relative wall thickness

has been kept constant (D/tw = 40), whilst rigidity index has been varied from Ir = 50 to

500. The curves indicate that the normalization (i.e. Eq. 6.21) clearly narrows the band of
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Figure 6.6: Design Guide: Predicted times to 90% consolidation

the consolidation curves for different rigidity indices, this is especially true over a range

Ir = 200 to 500, which corresponds to either over-consolidated or relatively stiff clays.

However, the normalization is not very effective over a wider range of rigidity indices, Ir,

specifically less than 100.

A second series of consolidation curves are presented in Fig. 6.8. For this sensitivity
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Figure 6.7: Pore pressure dissipation vs modified time factor Tp: Effect of Ir

study, rigidity index was kept constant while the normalized wall thickness was varied over

a range of 2 to 160, where D/tw = 2 corresponds to a solid (or plugged) pile. Once more,

the normalization is only partially effective and brings together curves over a range D/tw

= 2 to 40, which correspond to relatively thick tubular piles. However, when thinner walls

are considered, for example D/tw = 80 to 160, the normalization clearly stops working.

Overall, normalizing based on a radius of the zone of plastic yielding (Rp) could be

said to be somewhat useful. However it cannot be reasonably taken to extremes, partic-

ularly to thin-walled piles (i.e. high thickness ratios, D/tw) and very soft clays (i.e. low

rigidity indices, Ir).
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Figure 6.8: Pore pressure dissipation vs modified time factor Tp: Effect of D/tw

6.4 Model Validation

6.4.1 Comparison and calibration to field data

Bogard and Matlock (1990) derived an empirical expression for degree of consoli-

dation around a probe in terms of the time to 50% consolidation t50, which was based on

pore pressure measurements on instrumented probes:

U = (t/t50)/(1.1+ t/t50) (6.22)

In this dissertation, the degree of consolidation is defined in terms of the normalized

excess pore pressure at the pile boundary U = 1− ue/ue0. Excellent agreement has been
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found between the strain path solutions (plotted as red circles) and the empirical expression

(continuous black line) for the case of a solid pile, as it is shown in Fig. 6.9. For open-ended

piles, relatively small deviations are observed between strain path solutions and Bogard's

empirical equation (Bogard and Matlock, 1990). Deviations seem to increase somewhat

if thin-walled piles are used. Nevertheless, Eq. 6.22 resembles very well the shape of the

consolidation curve for both solid and open-ended piles.

Figure 6.9: Strain Path comparison to empirical dissipation curves

In a later study, Bogard (2001) presented times to 50% consolidation following the

installation of solid piles from a several sites in the Gulf of Mexico (GoM). After normal-

izing by pile diameter, his data indicated times in a range of about t50/D2 = 68-100 m2/day.

In terms of pile radius this indicates an average of about t50/R2 = 340 m2/day. Figure 6.7
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gives a non-dimensional time factor in the range T50 = 5 to 10 when assuming rigidity

indices in the range of Ir = 100 to 200.

Applying this to Bogard’s data produces an apparent coefficient of consolidation

for the soil in the range of 0.015 to 0.029 m2/day (Aubeny and Grajales, 2015). Sites

considered in Bogard’s study (Bogard, 2001) had liquid limits (LL) ranging in general

between 70 and 100. By comparing these coefficients of consolidation and liquid limits

to the empirical correlations presented in NAVFAC (1986) it can be concluded that the

derived c values are consistent with pore pressure dissipation in a reloading mode (See

Fig. 2.19). This finding is consistent with the notion presented by (Levadeux and Baligh,

1986): the rate of recovery following undrained penetration largely involves reloading of

the soil and,thus, the coefficient of consolidation corresponding to conditions of reloading

is more adequate to characterize the process (Aubeny and Grajales, 2015).

Data on the effects of wall thickness on setup times for driven piles was presented by

Bogard and Matlock (1990) and Bogard (2001) for Gulf of Mexico sites. Their data show

considerable scatter, thus only the trend line of the ratio of the time to 50% consolidation

for an open-ended pile to 50% consolidation for a solid pile, t50/t50−solid is presented in

Fig. 6.10. Overall, the consolidation time for a pile with wall thickness D/tw = 24 is about

half that of a solid pile, while the consolidation time for a pile with wall thickness D/tw =

40 is about one-fifth that of a solid pile (Aubeny and Grajales, 2015).

in Fig. 6.10, analytical strain path predictions have been superimposed over the em-

pirical trend line (red). SPM predictions clearly under-predict the rate of excess pore pres-
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sure dissipation (Aubeny and Grajales, 2015). Given the uncertainties in the variables

affecting the penetration and setup process, the source of the discrepancies between mea-

surement and prediction is uncertain and subject to debate.

Figure 6.10: Comparison to dissipation times for driven piles

However, the most likely cause is that the strain path analysis under-predicts the

amount of soil moving into the interior of the pile (Aubeny and Grajales, 2015). Frictional

resistance on the inner pile wall allows less soil to "flow" inside the pile; therefore the

additional soil volume pushed outside the pile produces an increase of disturbance in this

region. A simple approach to simulating this ‘partial plugging’ effect is to increase the
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effective wall thickness of the pile. After trial and error, an effective wall thickness 2.5

times the physical wall thickness, twe f f = 2.5tw, was found to produce a reasonable match

between the SPM solutions and the field data Aubeny and Grajales (2015).

The comparisons presented in the previous paragraphs focused on relatively thick-

walled piles and probes installed by driving and jacking. At the other end of the current

state of practice are relatively thin-walled caissons installed by suction. Jeanjean (2006)

presented an extensive compilation of setup characteristics for caissons from various Gulf

of Mexico sites. Strictly speaking, his study investigated the increase in adhesion α over

time following installation of suction caissons. the time-dependent increase in α can be

taken as a proxy for degree of consolidation, at least for the purpose of a first order as-

sessment, keeping in mind however that thixotropy could also contribute to the setup phe-

nomenon.

Jeanjean (2006) proposed 6.23 in order to relate the adhesion factor (α) to the pore

pressure dissipation at a given time:

αt = α0 +

(
1− ut

u0

)
0.9

· (α90 −α0) (6.23)

where α0 is the adhesion factor at a time of 0.01 days, α90 is the adhesion factor after 90%

consolidation has occurred, αt is the adhesion factor at a time t and ut/u0 corresponds to

the normalized pore pressure as function of time (Aubeny and Grajales, 2015).

Strain path analyses have been performed for two representative caisson geometries

from his study with diameters D = 3.66 and 5.49 m. Both caissons had a wall thickness of
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tw = 0.0381 m. The SPM analyses were developed using a rigidity index Ir = 100 and a

coefficient of consolidation c = 0.022 m2/day, according to the above presented discussion.

After obtaining pore pressures (ut/u0) from SPM analyses, Eq. 6.23 was used to calculate

equivalent adhesion factors α .

Andersen and Joostad (2002) have suggested adhesion factor α90 = 0.65 with a sen-

sitivity of 3 for cases when no field data is available. However for this dissertation an

adhesion factor α90 = 0.75 has been selected in order to be consistent with recommenda-

tions and calculations given by Jeanjean (2006). An initial adhesion factor α0 has been

assumed to be the inverse of the sensitivity or 0.33.

Results presented by Jeanjean (2006) indicate that 90% setup occurred after about

70-80 days. The normalized wall thicknesses for the caissons considered in his study were

in the range D/tw = 96-144. Corresponding SPM analyses for the previously described

caissons are presented in Figure 6.11. The SPM predictions indicate that wall thickness is

the dominant factor controlling the rate of consolidation: the curves predicted analytically

are very similar despite the differences in diameter. The predicted time to 90% consoli-

dation is approximately 100 days, which is more than that indicated from the field data.

These predictions are in contrast to the case described above for driven piles, where the

strain path analyses predicted lower consolidation times (Aubeny and Grajales, 2015).

Given the uncertainty in the coefficient of consolidation and rigidity index, the dif-

ferences between predictions and measurements are not completely reliable. However, a

plausible cause of the over-estimation in the setup time could be related to the fact that
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Figure 6.11: Comparison to dissipation times for suction caissons

caissons were at least partially installed by suction. Therefore, instead of partial plugging

pushing soil outside the caisson, suction installation drawsmore soil inside the caisson than

would normally occur, producing a reduction on the size of the outer zone of disturbance

(Aubeny and Grajales, 2015).

To sum up, strain path estimates of setup time based seem to produce realistic but

possibly somewhat high estimates of setup time for suction caisson installations. The fact

that suction installation may draw more soil inside the caisson, thereby reducing the exte-

rior zone of disturbance, could be leading to the slight tendency to over-estimate setup time

(Aubeny and Grajales, 2015). In contrast, for the case of driven piles, the SPM based sim-
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ulations unmistakably under-predict setup time. A plausible cause of this discrepancy is

partial plugging of the pile, with soil near the inner surface of the pile being dragged down-

ward such that the effective wall thickness is substantially greater than the actual thickness.

In the case of the Gulf of Mexico pile installations using an effective wall thickness twe f f

= 2.5 tw produced a reasonable match between analytical predictions and measurements.

However, it is necessary to emphasize that this is a purely empirical adjustment that should

not necessarily be extrapolated to other soil and site conditions.

6.4.2 Comparison to data from geotechnical centrifuge tests

Cao et al. (2002a,b) developed centrifuge tests to investigate the distribution and dis-

sipation of excess pore pressures following the installation of suction caissons in normally

consolidated and slightly over-consolidated clays (Aubeny and Grajales, 2015). A sketch

of their test setup is presented in Fig. 6.12.

Their soil testing bed was made of fine kaolin clay with a reported liquid limit (LL)

of 69% and a plasticity index (PI) of 31 (Cao et al., 2002a). The coefficient of virgin

consolidation was given as 0.1 mm2/sec (0.00864 m2/day).

They performed eight sets of tests, however reported data corresponds to tests SAT06

and SAT08 (Cao et al., 2002b), which were both conducted on normally consolidated clay.

Both tests were conducted at a centrifuge acceleration equivalent to one hundred times

gravity (100g). Their model caisson corresponded to a prototype caisson with diameter

5.17 m, wall thickness of 65 mm (D/tw ≈ 80) and a submerged weight of 500kN (Cao

et al., 2002b).
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Figure 6.12: Schematic of testing bucket and placement of pore pressure sensors (Cao
et al., 2002b)

Cao et al. (2002b) compared their data to cavity expansion solutions and recom-

mended a rigidity index (Ir) of 150, which they assumed based on data presented by

Hjortnaes-Pedersen and Bezuijen (1992). However, for reasons discussed in previous sec-

tions, rigidity indices of 100 and 200 are being considered for this dissertation.

Figure 6.13 presents results from strain path predictions plotted against Cao et al.

(2002b) data for tests SAT06 and SAT08. A Somewhat reasonable agreement has been

found.

During initial stages of consolidation (U < 50%), SPMpredictions for rigidity indices

of 100 and 200 bound data from both tests. During final stages, recorded pore pressures

seem to correlate better to a rigidity index of 100. The high amount of noise present in Cao

et al. (2002b) data set makes uncertain the selection of t90 (time to 90% consolidation),
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Figure 6.13: Comparison of SPM predictions to geotechnical centrifuge data. (Cao et al.,
2002b)

which could range anywhere from 350 to 800 days. Cao et al. (2002b) reported a measured

dissipation time to 90% consolidation of 442 days for SAT06 and 510 days for SAT08.

Compared to these values, strain path predictions are considered to be somewhat high:

dissipation times are overestimated, with t90 ≈ 1000 days. On the other hand, a womewhat

better agreement is observed for t50 (time to 50% consolidation). Centrifuge data shows

pore pressures ranging from 50 to 70 days for SAT08 and 80 to 90 days for SAT06, whilst

according to strain path predictions for a rigidity index Ir = 100, t50 is approximately 100

days.
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6.4.3 Comparison to laboratory data

Olson et al. (2003) conducted a series of 1g laboratory tests to investigate the re-

consolidation of soil around suction caissons during and after their installation in clay.

Their model caisson consisted of a 100mm diameter aluminum pipe with a wall thick-

ness of 0.81mm (diameter to thickness ratio, D/tw ≈ 125). The aspect ratio (L f /D) was

approximately 9, value that corresponds to a relatively long caisson.

Olson et al. (2003) placed pore pressure transducers at different locations both in-

side and outside the caisson wall to measure pore water pressures (Fig. 6.14). For the

requirements of this dissertation, measurements recorded by a transducer located at mid-

depth outside the caisson wall are going to be used (Sensor O1 in Fig. 6.14). Two different

installation procedures were considered: (1) dead weight penetration and (2) penetration

by both dead weight and suction. A sketch of sensor placement as well as pore pressure

recordings is presented in Figure 6.14.

Their soil test bed was designed to be a normally consolidated soil deposit prepared

using kaolinite slurry (Pedersen, 2001). Liquid limit (LL) ranged from 54 to 58% and the

plasticity index (PI) was reported to be 24 (Aubeny and Grajales, 2015). According to data

presented by Pedersen (2001) the coefficient of consolidation ranged from 0.01 ft2/day to

0.04 ft2/day (0.0009 m2/day to 0.004 m2/day).

Their pore pressure versus time measurements seem to indicate no (or even a slight)

increase in pore pressure at initial testing times (approximately 0 to 1 hr). The cause of

this is not clear. However one reason could be the actual two-dimensional nature of pore
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Figure 6.14: Pore pressure dissipations measured with different sensors (Olson et al., 2003)

water dissipation around a penetrating element, which produces elevated pore pressures at

the pile tip to migrate upward along the shaft.

For the purpose of performing a comparison between analytical predictions against

laboratory measurements, the origin of the time scale for pore water pressure dissipation

(t0) has been taken as the time at which the pore pressure data set reaches its peak value.

For example, in the case of dead weight installation t0 was assumed to be 0.6 hr (≈ 40min)

whilst for suction installation a value of 1 hour was selected.

Strain path analyses were performed according to the previously discussed param-

eters. As mentioned in Chapter 2 of this dissertation, rigidity indices (Ir) were assumed

to range from 100 to 200. Comparisons between laboratory data (Olson et al., 2003) and

strain path predictions (Aubeny and Grajales, 2015) are presented in Fig. 6.15. For each
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rigidity index, upper and lower bounds are plotted (not to be confused with plasticity meth-

ods). For example, for the case of Ir = 100, the lower bound corresponds to a consolidation

coefficient of 0.01 ft2/day whilst the upper bound corresponds to 0.04 ft2/day. Overall,

the analytical predictions seemed to provide a relatively good representation of the data

(Aubeny and Grajales, 2015).

Figure 6.15: Comparison of SPM predictions to laboratory model test data

Experimental readings seem to show that dissipation of pore pressures is not substan-

tially influenced by the installation mode (i.e. dead weight vs suction installation). During

the final stages of the consolidation process (this is, U = 80 to 90%), recorded datapoints

for both installation methods is in very good agreement with strain path predictions for Ir

= 100.
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When comparing predictions of normalized time at 50% and 90% consolidation (T50

and T90 respectively) from both experiments against those shown previously in Fig. 6.5 and

6.6, it is observed that they are also within the expected range of values. As an illustrative

example: if the lowest coefficient of consolidation is used, for dead weight penetration

T50 ≈ 0.2 and T90 ≈ 1.6 while for suction penetration T50 ≈ 0.2 and T90 ≈ 3.2.
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7 SUMMARY AND CONCLUSIONS

7.1 Finite Element Model

A three-dimensional finite element model has been created using the software

ABAQUS. The model has been successfully calibrated by using rigorous solutions (Ran-

dolph and Houlsby, 1984) and validated by comparisons to both centrifuge and laboratory

data (Murali, 2015; Beemer, 2015) . Although in this study the model was utilized only to

model the pile or caisson as a rigid body, it has capabilities to accommodate different pile

materials and account for elastic effects.

In order to construct the mesh, a systematic tool was developed using Matlab. This

tool allows the user to change the geometry, material properties, contact properties and

boundary conditions in a quick way, without having to make a different code for each

variation needed. In addition, the mesh generator provides a significant advantage when

developing parametric studies, since the 'model generation' stage is reduced to around 5

minutes per model. This tool will be readily available to future students and can be used to

model any type of vertically installed solid or tubular member (e.g. piles, caissons, skirts,

conductors).

161



7.2 Capacity of laterally loaded piles and caisson

7.2.1 Upper bound analysis of laterally loaded piles in clay

A bimodal three dimensional plastic limit analysis method has been presented. The

method combines the traditional collapse mechanism presented by Murff and Hamilton

(1993) with a scoop failure mechanism inspired by previous publications by Randolph and

House (2002). The new mechanism seems to perform significantly better for caissons of

very short aspect ratio: L f /D ≈ 1.5.

The scoop mechanism geometry more closely matches the collapse mechanism pre-

dicted by FE and also provides improved numerical estimates of collapse loads. However,

both mechanisms still tend to over-estimate collapse load, for caisson aspect ratios in the

range of 2 to 4. For aspect ratios in this range, a reduction coefficient has been developed

to better calibrate the PLA predictions to finite element analyses (Equation 4.15). The re-

duction takes the form of a power function and depends on the aspect ratio. One advantage

of this approach is that while it enables the method to be used for short piles and caissons,it

does not alter the predicted capacities for long slender piles, for which the original PLA

model is believed to provide accurate results.

7.2.2 Simplified upper bound method

A disadvantage of the three dimensional failure mechanism is the fact that relatively

high programming skills are required in order to code it. The method can not be easily im-

plemented in a traditional spreadsheet. Furthermore, running time is significantly affected

by complexities related to optimization parameters, which need to be selected with care.
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For this reason the original Murff-Hamilton simplified approach has been modified.

The newly developed approach relies on selection of soil resistance distributions based on

finite element results. Finite element soil distributions were found to be in disagreement

with previously published empirical functions by Murff and Hamilton (1993). The dis-

crepancy was mostly affecting results for caissons with short aspect ratios (i.e. less than

4).

In order to minimize the changes to the current expression for soil resistance distribu-

tions, presented in Eq.4.16 (Murff and Hamilton, 1993), it was decided to make modifica-

tions to the variableη which is a function of the normalized strength gradient (ρ = su0/kD).

Usage of a parabolic equationwith adequate fitting parameters produced a very good agree-

ment with bearing capacity profiles obtained from finite element predictions for both the

case of constant strength profile (Fig. 4.12) and for a wide range of normalized strength

gradients, as presented in Fig. 4.13.

Finally, comparisons in terms of total capacity between finite element, 3-D Upper

bound and Simplified upper bound, show very good agreement with predicted capacities

for long piles, with the simplified method given slightly lower estimates. Capacities for

short caissons have been significantly improved in both 3-D Upper bound and Simplified

upper bound methods, however once more, results obtained through the simplified equa-

tions are somewhat more conservative.

While this last fact might possibly raise some criticism, the advantages of simplicity

and accessibility for routine design use are believed to offset the disadvantage of some
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level of conservatism in capacities at small aspect ratios.

7.3 Capacity of laterally loaded piles and caissons in stratified soils

The existent upper bound PLA code has beenmodified in order to accommodate non-

linear soil profiles, specifically the case where a relatively stiff ‘crust’ overlays a stratum

of soft cohesive soil.. Results show that there is significant influence associated with the

presence of crusts on top of soft soil strata.

Lateral bearing capacity is somewhat affected by the presence of a crust. Behavior

could be divided into to categories: (1) diameters shorter than the crust depth and (2)

diameters larger than the crust depth. For case 1, small diameters reach higher capacities

with lower aspect ratios. The opposite happens for case 2, as larger diameter piles can bear

more horizontal load at shorter aspect ratios.

A series of parametric studies were developed, to assess the effect of pile diameter

and soil strength. Conclusions from this chapter are important for the prediction of capacity

of piles and caissons and for computation of p-y curves.

The original empirical fit initially developed by Murff and Hamilton (1993) does not

seems to be adequate for modeling the behavior of laterally loaded piles in non-linear soils

and specially for cases in which the crust’s strength profile exhibits a relatively irregular

shape (i.e. triangular or trapezoidal) such as the average and low crusts.

For cases where the crust has a relatively constant strength (i.e. high crust), the

depth of the crust seems to control the vertical extent of the failure wedge. A simplified
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approach has been proposed to calculate bearing capacities Nps for the cases in which pile

diameter (D) is less than the crust thickness (D < Hcrust) is to utilize the original empirical

function, but modifying the strength profile as per profiles ‘Empirical-B’. However, the

limit pressure should be calculated as pu =NpssuD, without modifying the original strength

profile of the soil with crust.

This practical approach should be limited for piles with diameters less than the crust

thickness (Hcrust). For typical crust profiles, the proposed simplification is limited to pile

diameters less than 2.44 m (96 in).

7.4 Strain Path Solution of Setup Time Around Piles in Clay

An analysis of setup time following pile or caisson installation is conducted in terms

of a strain path analysis using the ring source solution proposed by Chin (1986) for analy-

sis of open ended pile penetration. The analytical approach used herein implicitly assumes

that setup occurs primarily due to dissipation of excess pore pressures during the pile in-

stallation process; possible interactions with thixotropic effects are not considered. The

analysis utilizes an elastic perfectly plastic model of soil behavior and an uncoupled analy-

sis of consolidation to simulate conditions sufficiently far above the pile tip to be unaffected

by end effects.

A series of parametric studies investigate the effects of relative wall thickness and

soil rigidity index. Wall thickness ratios ranging from D/tw = 2 (i.e., a solid or plugged

pile) to 160 are considered, which is broadly representative of the range of piles and suction
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caissons seen in practice. A range of rigidity indices Ir ranging from 50 to 500 is considered

in the parametric study, which may be considered representative of several normally to

over-consolidated clays.

The strain path predictions are compared to laboratory data for suction caissons in a

kaolinite slurry test bed and to field data for driven piles and suction caissons at variousGulf

of Mexico sites. The following items can be highlighted from obtained results (Aubeny

and Grajales, 2015):

• Setup time is strongly influenced by pile wall thickness, as seen in Figures 6.4, 6.5

and 6.6 , with setup times varying by 3 orders of magnitude over a wall thickness

range D/tw = 2 to 160. On the other hand, rigidity index Ir over a range Ir = 50-500

can influence setup times by 1-2 orders of magnitude. In this case thin-walled piles

are more sensitive to Ir than solid piles.

• Definition of the time scale in terms of the zone of plastic yielding (Eqs.6.20 and

6.21) reduces significantly the width of the band of predicted consolidation curves

for various wall thicknesses and rigidity indices (Fig. 6.7 and 6.8). However, it

does not produce a band of consolidation curves sufficiently narrow for practical

prediction of setup time. Towards this end, the most suitable framework for setup

time prediction is in terms of a time factor defined by Eq. 16 together with predictions

for specific values of D/tw and Ir (Fig. 6.4 through 6.7).

• Comparison of strain path predictions to data derived from pore pressure decay mea-

surements from various Gulf of Mexico sites support the notion (Levadeux and Ba-
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ligh, 1986) that the coefficient of consolidation corresponding to reloading condi-

tions is the most suitable choice for c in Eq. 6.19. Furthermore, comparison to

laboratory experimental data (Fig. 6.14 and 6.15) suggests that strain path predic-

tions provide reasonable estimates of consolidation time around a caisson in normally

consolidated clay. Nevertheless, care must be taken when using the method because,

analytical predictions are highly sensitive to the selected value of coefficient of con-

solidation c.

• The ‘simple open ended pile’ solution (Eqs. 6.1 and 6.2) cannot strictly simulate

the effects of inner wall resistance or suction installation, which at the same time

inhibit or enhance the amount of soil going inside the pile relative to that predicted

by the simple pile solution. These effects are most severe for driven piles. A way

of mitigating this limitation is by using an empirical effective wall thickness twe,

depending on the conditions of installation, when using Figure 6.4 through 6.6 for

pore pressure dissipation predictions.

7.5 Future Studies

Following this study several research topics can be explored, some of which are

mentioned below:

7.5.1 Occurrence of gaps behind laterally loaded piles

Although this topic has been somewhat mentioned in this study, more research is

required. Current FE codes do not seem to be able to model the gap in an appropriate way:
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they show that gaps extend all the way to the bottom of the pile when a lateral translational

displacement is applied. Furthermore, there is no clear evidence of gapping for monotonic

loading, in field conditions. However many authors disagree with this fact.

7.5.2 Permanent deformations of piles and caissons

Accepted practice for deep foundations is tomodel the pile as an elastic beam-column

with the soil continuum modeled as discrete, uncoupled, non-linear springs (p-y curves).

The resulting pile-spring model is used to simulate a compliant foundation in the structural

analysis of the superstructure as well as to design the pile itself. Guidelines for constructing

p-y curves (lateral springs) and t-z curves (axial springs) have been developed empirically

from load test data corresponding to certain types of soil conditions, for monotonic and

cyclic loading (Matlock (1970) Reese et al. (1975)).

In recent years, more authors have presented studies about the implementation of the

p-y method developed by Matlock Matlock (1970) to the design of large diameter founda-

tions and caissons. However, it has been shown that when comparing FEM results with

those obtained with the p-y method, the latter tends to underestimate capacity and over-

estimate deformations. In addition to the previously mentioned studies, Gerolymos and

Gazetas (2006b) and Gerolymos and Gazetas (2006a) have suggested the use of Winkler

models in order to simulate the soil stiffness for suction caissons and large diameter piles.

7.5.3 Performance of laterally loaded piles in non-linear soil profiles

This item probably represents one of the newest finding of this research. Work

needed could include experimental modeling and numerical simulations in order to be able
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to generate equivalent p-y curves that could effectively capture the influence of an irregular

soil profile, particularly those cases in which a stiff stratum is either on top of the soil mas

or within the soil mass.

169



REFERENCES

Andersen, K. and Joostad, H. (2002). ``Shear strength along outside wall of suction anchors

in clay after installation.'' Proceedings of 12th ISOPE Conference, Kyushu, Japan.

Andersen, K., Murff, J., Randolph, M., Clukey, E., Erbrich, C., Jostad, H., Hansen, B.,

Aubeny, C., Sharma, P., and Supachawarote, C. (2005). ``Suction anchors for deepwa-

ter applications.'' Keynote. Proceedings of the International Symposium on Frontiers in

Offshore Geotechnics, Perth, Western Australia. (September).

Andresen, L., Jostad, H., and Andersen, K. (2011). ``Finite element analyses applied in

design of foundations and anchors for offshore structures.'' International Journal of Ge-

omechanics, 11(6), 417--430.

Aubeny, C. (1992). ``Rational interpretation of in situ tests in cohesive soils.'' Ph.D. Dis-

sertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Aubeny, C. and Grajales, F. (2015). ``Strain path analysis of setup time around piles and

caissons.'' Proceedings of the ASME2015 34 Int. Conf Ocean, Offshore and Arctic Engr,

OMAE2015.

Aubeny, C., Han, S., and Murff, J. (2003). ``Inclined load capacity of suction caissons.''

Int. J. Numer. Anal. Meth. Geomech., 27, 1235--1254.

Aubeny, C., Moon, S., and Murff, J. (2001a). ``Lateral undrained resistance of suction

caisson anchors.'' Intl. J. Offshore and Polar Engineering, 11 (3), 211--219.

Aubeny, C. and Murff, J. (2005). ``Simplified limit solutions for the capacity of suction

170



anchors under undrained conditions.'' Ocean Engineering, 32, 864--877.

Aubeny, C., Murff, J., and Roesset, J. (2001b). ``Geotechnical issues in deep and ultra

deep waters.'' International Journal of Geomechanics, 1(2), 225--247.

Aubeny, C., Whittle, A., and Ladd (2000). ``Effects of disturbance on undrained strengths

interpreted from pressuremeter tests.'' Journal of Geotechnical and Geoenvironmental

Engineering, (126), 1133--1144.

Azzouz, A., Baligh, M., and Whittle, A. (1990). ``Shaft resistance of piles in clay.'' ASCE

Journal of Geotechnical Engineering, (116), 202--221.

Baligh, M. (1985). ``The strain pathmethod.'' Journal of Geotechnical Engineering, ASCE,

(111), 1108--1136.

Baligh, M. (1986). ``Fundamental of deep penetration I: Shear stresses.'' Geotechnique,

36(4), 471--485.

Baligh, M., Azzouz, A., and Chin, C. (1987). ``Disturbances due to ideal tube sampling.''

Journal of Geotechnical Engineering, American Society of Civil Engineers, (113), 739-

-757.

Beemer, R., Murali, M., Aubeny, C., and Biscontin, G. (2016). ``Rotational behavior of

squat monopiles in soft clay from centrifuge experiments.'' GeoChicago2016.

Beemer, R. D. (2015). ``Global stiffness of offshore monopile and its behaviour under

cyclic conditions.'' Ph.D. Dissertation, Texas A&M University, College Station, Texas,

USA.

Bennett, R., Ransom, B., Kastner, M., Baerwald, R., Hulbert, M., Sawyer, W., H., O., and

171



M., L. (1999). ``Early diagenesis: impact of organic matter on mass physical properties

and processes, california continental margin..''Marine Geology, (159), 7--34.

Bogard, D. (2001). ``Effective stress and axial pile capacity: Lessons learned from em-

pire..'' Offshore Technology Conference, OTC-13059.

Bogard, D. and Matlock, H. (1990). ``Application of model pile tests to axial design.''

Offshore Technology Conference, OTC-6376.

Bohlke, B. and Bennett, R. (1980). ``Mississippi prodelta crusts: a clay fabric and geotech-

nical analysis..''Marine Geotechnology, (4), 55--82.

Boylan, N., Long, M., Ward, D., Barwise, A., and B., G. (2007). ``Full-flow penetrometer

testing in bothkennar clay.'' Proceedings of the 6th International Offshore Site Investi-

gation and Geotechnics Conference: Confronting New Challenges and Sharing Knowl-

edge, 177--186.

Bransby, M. F. and Randolph, M. (1998). ``Combined loading of skirted foundations.''

Géotechnique, 48 (5), 637--655.

Broms, B. B. (1964). ``Lateral resistance of piles in cohesive soils.'' Journal of the Soil

Mechanics and Foundations Division, 90, 27--63.

Calladine, C. (2000). Plasticity for Engineers. Horwood Publishing, Chichester, England.

Cao, J., Phillips, R., Popescu, R., Al-Khafaji, Z., and Audilbert, J. (2002a). ``Penetration

resistance of suction caissons in clay.''Proceedings of 12th ISOPEConference, 800--806.

Cao, J., Phillips, R., Popescu, R., Audilbert, J., and Al-Khafaji, Z. (2002b). ``Excess pore

pressures induced by installation of suction caissons in NC clays.'' Society of Underwater

172



Technology, SUT-OSIG-02-405.

Carter, J., Randolph, M., and Wroth, C. (1979). ``Stress and pore pressure changes in

clay during and after the expansion of a cylindrical cavity.'' International Journal for

Numerical and Analytical Methods in Geomechanics, (3), 305--322.

Cassidy, M. (2012). ``Experimental observations of the penetration of spudcan footings in

silt.'' Geotechnique, 62(8), 727--732.

Cassidy, M. and Byrne, B. (2001). ``Drum centrifuge model tests comparing the perfor-

mance of sspudcan and caissons in kaolin clay.'' Report No. Report No. OUEL 2248/01,

University of Oxford.

Chakrabarti, S. K. (2005). Handbook of Offshore Engineering. Elsevier Science, London,

UK

Chen, W.-F. (2008). Limit Analysis and Soil Plasticity. J. Ross Publishing, Florida, USA

Chi, C.-M. (2010). ``Plastic limit analysis of offshore foundation and anchor.'' Ph.D. Dis-

sertation, Texas A&M University, College Station, Texas, USA.

Chin, C.-T. (1986). ``Open-ended pile penetration in saturated clays.'' Ph.D. Dissertation,

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Clukey, E., Aubeny, C., and Murff, J. (2004). ``Comparison of analytical and centrifuge

model tests for suction caissons subjected to combined loads.'' Journal for Offshore Me-

chanics and Arctic Engineering, ASME, 126 No. 4, 364--367.

Colliat, J.-L., Dendani, H., Puech, A., and Nauroy, J.-F. (2011). ``Gulf of guinea deep-

water sediments: geotechnical properties, design issues and installation experiences.''

173



Frontiers in Offshore Geotechnics II, S. Gourvenec and White, eds., London, Taylor &

Francis, 59--86.

Davisson, M. and Gill, H. (1963). ``Laterally loaded piles in a layered soil system.'' Journal

of the Soil Mechanics and Foundations Division, ASCE, (89), 63--94.

Dean, E. R., James, R., Schofield, A. N., Tan, F., and Tsukamoto, Y. (1992). ``The bearing

capacity of conical footings on sand in relation to the behaviour of spudcan footing of

jackups.'' Proceedings of the Wroth Memorial Symposium 'Predictive soil mechanics',

230--253.

Doyle, E. (1973). ``Soil-wave tank studies of marine soil instability..''Offshore Technology

Conference, OTC-1901.

Doyle, E., McClelland, B., and G., F. (1971). ``Wire-line vane probe for deep penetra-

tion measurements of ocean sediment strength.'' Offshore Technology Conference, OTC-

1327-MS.

Ehlers, C., Chen, J., Roberts, H., and Lee, Y. (2005). ``The origin of near-seafloor 'crust

zones' in deepwater.'' Proceedings of the International Symposium on Frontiers in Off-

shore Geotechnics (ISFOG), 927--933.

Elgamal, A., Dobry, R., and Van Laak, P. (1991). ``Design, construction and operation of

100 g-ton centrifuge at rpi.'' Centrifuge, Boulder, CO, 27--34.

Foott, R., R. and Ladd, C. (1981). ``Undrained settlement of plastic and organic clays.''

Journal of the Geotechnical Eng Division, ASCE, 107(107), 1079--1094 Proc. Paper

16421.

174



Georgiadis, M. (1983). ``Development of p-y curves for layered soils.'' Proceedings of the

Conference on Geotechnical Practice in Offshore Engineering, 536--545.

Gerolymos, N. and Gazetas, G. (2006a). ``Development of winkler model for static and

dynamic response of caisson foundations with soil and interface nonlinearities.'' Soil Dy-

namics and Earthquake Engineering, 26, 363--376.

Gerolymos, N. and Gazetas, G. (2006b). ``Winkler model for lateral response of rigid

caisson foundations in linear soil.'' Soil Dynamics and Earthquake Engineering, 26, 347-

-361.

Gerwick, B. C. (2007). Construction of Marine and Offshore Structures. 3rd edition, CRC

Press, Florida, USA.

Goodman, L., Lee, C., and Walker, F. (1961). ``The feasibility of vacuum anchorage in

soil.'' Geotechnique, (11), 356--359.

Gourvenec, S. (2007). ``Failure envelopes for offshore shallow foundations under general

loading.'' Géotechnique, 57 (9), 715--727.

Gourvenec, S. (2008). ``Effect of embedment on the undrained capacity of shallow foun-

dations under general loading.'' Geotechnique, 58(3), 177--185.

Grajales, F., Beemer, R. D., Murali, M., Aubeny, C., and Biscontin, G. (2015). ``Re-

sponse of short monopiles for offshore wind turbine foundations: virgin and post-cyclic

capacity..'' Proceedings of the 68th Canadian Geotechnical Conference, Quebec, CA.

Hamilton, J., Phillips, R., Dunnavant, T., and Murff, J. (1991). ``Centrifuge study of lat-

erally loaded piles in soft clay.'' Proc Int Conf Centrifuge 1991, ISSMFE.

175



Han, S.-W. (2002). ``The capacity of suction caisson in isotropic and anisotropic cohesive

soils under general loading conditions.'' Ph.D. Dissertation, Texas A&MUniversity, Col-

lege Station, Texas, USA.

Hill, R. (1950). The Mathematical Theory of Plasticity. Oxford University Press Inc., New

York, USA.

Hjortnaes-Pedersen, A. and Bezuijen, A. (1992). ``Offshore skirt penetration in clay in

the geocentrifuge.'' BOSS 92, 6th International Conference on the Behavior of Offshore

Structures, Vol. 1, 528.

Hopper, J. (1980). ``Crustal layers in mississippi delta mudflows.'' Proceedings of the

Offshore Technology Conference.

Houlsby, G. T. and Martin, C. M. (1992). ``Modelling of the behaviour of foundations of

jack up units on clay..'' Proceedings of the Wroth Memorial Symposium 'Predictive soil

mechanics', 339--358.

Jeanjean, P. (2006). ``Setup characteristics for suction anchors in gulf of mexico clays:

Experience from field installation and retrieval.''Offshore Technology Conference, OTC-

18005-MS.

Jeanjean, P. (2017). Personal communication. January 2017.

Jeanjean, P., Campbell, K., andKalsnes, B. (1998). ``Use of integrated study to characterize

the marlin deepwater site.'' SUT Offshore Site Investigation and Foundation Behaviour,

Paper OSIFB-98-139.

Kavvadas, M. (1982). ``Non-linear consolidation around driven piles in clays.'' Ph.D. Dis-

176



sertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Kay, S. and Palix, E. (2011). ``Caisson capacity in clay: VHM resistance envelope - Part

2: VHM envelope equation and design procedures.'' Frontiers in Offshore Geotechnics

II, Taylor & Francis Group, London.

Khadilkar, B., Chandrasekaran, V., and Rizvi, I. (1973). ``Analysis of laterally loaded

piles in two-layered soils.'' Proceedings of the eight international conference on soil me-

chanics and foundation engineering, Vol. 21, 155--158.

Kuchemann, D. and Weber, J. (1953). Aerodynamics of Propulsion. 1st edition. McGraw

Hill. New York, USA

Kuo, M. (2011). ``Deep ocean clay crust: behaviour and biological origin.'' Ph.D. Disser-

tation, University of Cambridge, Cambridge, UK.

Kuo, M. and Bolton, M. (2009). ``Soil characterization of deep sea west african clays: Is

biology a source of mechanical strength?.'' Proceedings of the Nineteenth International

Offshore and Polar Engineering Conference (ISOPE), 488--494.

Kuo, M. and Bolton, M. (2013). ``The nature and origin of deep ocean clay crust from the

gulf of guinea.'' Geotechnique, (63), 500--509.

Kuo, M., Bolton, M., Hill, A., and Rattley, M. (2011). ``New evidence for the origin and

behaviour of deep ocean 'crusts'.'' Proceedings of the 2nd International Symposium on

Frontiers in Offshore Geotechnics, 365--370.

Lau, B. (2015). ``Cyclic behaviour of monopile foundations for offshore wind turbines in

clay.'' Ph.D. Dissertation, University of Cambridge, Cambridge, UK.

177



Levadeux, J.-N. and Baligh (1986). ``Consolidation after undrained piezocone penetra-

tion. i: Prediction.'' Journal of Geotechnical Engineering, American Society of Civil En-

gineers, (112), 707--726.

Liedtke, E., Jeanjean, P., and Humphrey, G. (2006). ``Geotechnical site investigation for

the mad dog spar anchors.'' Offshore Technology Conference, OTC-17862.

Low, H., Randolph, M., Rutherford, C., B., B., and Brooks, J. (2008). ``Characterization

of near seabed surface sediment.'' Offshore Technology Conference, OTC-19149.

Maholtra, S. (2009). ``Design considerations for offshore wind turbine foundations in the

united states.'' Proceedings of the Nineteenth International Offshore and Polar Engineer-

ing Conference.

Martin, C. M. (1994). ``Physical and numerical modelling of offshore foundations under

combined load.'' Ph.D. Dissertation, University of Oxford, Oxford, UK.

Martin, C. M. (2001). ``Vertical bearing capacity of skirted circular foundations on tresca

soil.'' Proc. 15th Int. Conference on Soil Mechanics and Geotechnical Engineering, Is-

tanbul, 743--746.

Martin, C. M. and Randolph, M. F. (2006). ``Upper bound analysis of lateral pile capacity

in cohesive soil..'' Geotechnique, 56(2), 141--145.

Matlock, H. (1970). ``Correlations for design of laterally loaded piles in soft clay.''Offshore

Technology Conference, OTC-1204

McCave, I. (1984). ``Erosion, transport and deposition of fine-grained marine sediments.''

Fine-Grained Sediments: Deep-Water Processes and Facies. Geological Society Special

178



Publications, (15), 35--69.

Murali, M. (2011). ``Characterisation of gulf of mexico clay.'' M.S. Thesis, Texas A&M

University, Texas A&M University.

Murali, M. (2015). ``Characterization of soft clays and the response of soil-foundations

systems for offshore applications.'' Ph.D. Dissertation, Texas A&M University, College

Station, Texas, USA.

Murali, M., Grajales, F., Beemer, R., Biscontin, G., and Aubeny, C. (2015). ``Cen-

trifuge and numerical modeling of monopiles for offshore wind towers in clay.'' Proceed-

ings of the 34rd International Conference on Ocean, Offshore and Arctic Engineering

(OMAE2015-41332).

Murff, J. (2002). ``Notes on Geomechanics (CVEN-651). Texas A&MUniversity, College

Station, Texas, USA.

Murff, J. and Hamilton, J. (1993). ``P-ultimate for undrained analysis of laterally loaded

piles..'' ASCE Journal of Geotechnical Engineering, 119 (1), 91--107.

Murff, J. D. (1994). ``Limit analysis of multi footing foundation systems.'' Proc. 8th Inter-

national conference of computational methods and advanced geomechanics., 223--244.

Naik, T. and Peyrot, A. (1976). ``Analysis and design of laterally loaded piles and caissons

in a layered soil system.'' Methods of Structural Analysis, Proceedings of the National

Structural Engineering Conference, ASCE, (2), 589--606.

NAVFAC (1986). Soil Mechanics: Foundations and Earth Structures Design Manual.

Olson, R., Rauch, A., Luke, A., Maniar, D., Tassoulas, J., and Mecham, E. (2003). ``Soil

179



reconsolidation following the installation of suction caissons.''Offshore Technology Con-

ference, OTC-15263.

Palix, E., Chan, N., Yangrui, Z., and Haijing, W. (2013). ``Liwan 3-1: How deep wa-

ter sediments from south china sea compare with gulf of guinea sediments.'' Offshore

Technology Conference, OTC-24010.

Pedersen, R. (2001). ``Model offshore soil deposit: Design, preparation and characteriza-

tion.'' M.S. thesis, The University of Texas at Austin, Austin, Texas, USA.

Peuchen, J. (2000). ``Deepwater cone penetration tests.''Offshore Technology Conference,

OTC-12094.

Prager, W. (1959). An Introduction to Plasticity. Addison-Wesley Publishing Co., Mas-

sachusetts, USA

Puech, A., Colliat, J.-L., Nauroy, J.-F., andMeunier, J. (2005). ``Some geotechnical specis-

pecific of gulf of guinea deepwater sediments.'' Proceedings of the International Sympo-

sium on Frontiers in Offshore Geotechnics (ISFOG), 1047--1053.

Randall, R. E. (2010). Elements of Ocean Engineering. The Society of Naval Architects

and Marine Engineers, 2nd edition. USA.

Randolph, M. (2003). ``Science and empiricism in pile foundation design.'' Geotechnique,

(53), 847--875.

Randolph, M. andGourvenec, S. (2011). Offshore Geotechnical Engineering. SPONPress,

Taylor and Francis Group, New York, USA.

Randolph, M., O'Neil, M., and Stewart, D. (1998). ``Performance of suction anchors in

180



fine-grained calcareous soil.'' Offshore Technology Conference, OTC-8831.

Randolph, M. and Wroth, C. (1979). ``An analytical solution for the consolidation around

a driven pile.'' International Journal for Numerical and Analytical Methods in Geome-

chanics, (3), 217--229.

Randolph, M. F. and Houlsby, G. T. (1984). ``The limiting pressure on a circular pile

loaded laterally in cohesive soil.'' Géotechnique, 34(4), 613--623.

Randolph, M. F. and House, A. (2002). ``Analysis of suction caisson capacity in clay.''

Offshore Technology Conference, OTC-14236.

Rani, S. and Prashant, A. (2015). ``Estimation of the linear spring constant for a laterally

loaded monopile embedded in nonlinear soil.'' International Journal of Geomechanics,

ASCE, (15), 04014090.

Reese, L. C., Cox, W. R., , and Koop, F. (1975). ``Field testing and analysis of laterally

loaded piles in stiff clay.'' Offshore Technology Conference, OTC-2312.

Roberts, H., Cratsley, D., and Whelan, T. (1976). ``Stability of mississippi delta sediments

as evaluated by analysis of structural features in sediment borings.''Offshore Technology

Conference, OTC-2425-MS.

Schneider, J. and Senders, M. (2010). ``Foundation design: A comparisson of oil and gas

platforms with offshore wind turbines.'' Marine Technology Society Journal, Vol. 44,

No.1, 32--51.

Schroeder, K., Andersen, K., and Tjok, K.-M. (2006). ``Laboratory testing and detailed

geotechnical design of the mad dog anchors.'' Offshore Technology Conference, OTC-

181



17949.

Schroeder, K. and Resseguier, S. (2015). ``Comparison of dnv and api design codes for

design of suction anchors.'' Frontiers in Offshore Geotechnics III, 1387--1391.

Sharma, P. (2004). ``Ultimate capacity of suction caisson in normally and lightly overcon-

solidated clays.'' M.S. thesis, Texas A&M University, College Station, Texas, USA.

Shi, H. (2005). ``Numerical simulation and predictive models of undrained penetration in

soft soils..'' Ph.D. Dissertation, Texas A&M University, College Station, Texas, USA.

Sills, G. (1975). ``Some conditions under which biot equations of consolidation reduce to

terzaghi equation.'' Geotechnique, (25), 129--132.

SIMULIA (2012). ABAQUS/Standard V6.12 Users Manual.

Smithsonian (2016). Ocean portal: Foraminifera,

https://ocean.si.edu/slideshow/foraminifera

Soderberg, L. (1962). ``Consolidation theory applied to time effects.'' Geotechnique, (12),

217--225.

Stewart, D. P. and Randolph, M. F. (1991). ``A new site investigation tool for the cen-

trifuge.'' Proc. Int. Conf. On Centrifuge Modelling, Balkema, Rotterdam, Netherlands,

531--538.

Sukumaran, B. and McCarron, W. (1999). ``Total and effective stress analysis of suction

caissons for gulf of mexico conditions.'' Analysis, Design Construction and Testing of

Deep Foundations, ASCE Geotechnical Special Publication, 88, 247--260.

Tan, F. (1990). ``Centrifuge and theoretical modelling of conical footings on sand.'' Ph.D.

182



Dissertation, University of Cambridge, Cambridge, UK.

Ubilla, J., Abdoun, T., and Zimmie, T. (2006). ``Application of in-flight robot in centrifuge

modeling of laterally loaded stiff pile foundations.'' 6th ICPMG'06, Taylor and Francis,

eds., Hong Kong, 259--264.

Vasquez, L., Maniar, D., and Tassoulas, J. (2010). ``Installation and axial pullout of suc-

tion caissons: Numerical modelling.'' Journal of Geotechnical and Geoenvironmental

Engineering, (136), 1137--1147.

Vesic, A. (1972). ``Expansion of cavities in infinite soil mass.'' ASCE J. Geotech. Engng,

98(3), 265--290.

Villalobos, F. A., Byrne, B. W., and Houlsby, G. (2009). ``An experimental study of the

drained capacity of suction caisson foundations under monotonic loading for offshore

applications.'' Soils and Foundations, 49, No 3, 477--488.

Yang, M. (2008). ``Undrained behavior of plate anchors subjected to general loading.''

Ph.D. Dissertation, Texas A&M University, College Station, Texas, USA.

Yang, Z. and Jeremic, B. (2005). ``Study of soil layering effects on lateral loading behavior

of piles.'' Journal of Geotechnical and Geoenvironmental Engineering, ASCE, (131),

762--770.

Yetniger, A., Tjelta, T., Yang, S., Lunne, T., Colliat-Dangus, J.-L., and Longuet, A. (2012).

``Seafloor based drilling and sample quality at soft clay sites.'' Society of Underwater

Technology (SUT-OSIG-12-75), 659--666.

Young, A., Bryant, W., Slowey, N., Brand, J., and Gartner, S. (2003). ``Age dating of past

183



slope failures of the sigsbee escarpment within Atlantis and Mad Dog developments.''

Offshore Technology Conference, OTC-15204.

Yu, H. (2000). Cavity ExpansionMethods in Geomechanics. Kluwer Academic Publishers,

The Netherlands.

Yu, H. (2006). Plasticity and Geotechnics. Springer, New York, USA.

Yu, J., Huang, M., and Zhang, C. (2015). ``Three-dimensional upper-bound analysis for

ultimate bearing capacity of laterally loaded rigid pile in undrained clay.'' Canadian

Geotechnical Journal, (52), 1775--1790.

Zhang, C., White, D., and Randolph, M. (2011). ``Centrifuge modeling of the cyclic lateral

response of a rigid pile in soft clay.'' Journal of Geotechnical and Geoenvironmental

Engineering, 137(7), 717--729.

Zhang, L., Minghua, Z., and Zou, X. (2015). ``Behavior of laterally loaded piles in multi-

layered soils.'' International Journal of Geomechanics, ASCE, (15) Technical Note.

Zhang, Y. (2015). ``Finite element analysis of elastic behavior of suction caisson.'' Ph.D.

Dissertation, Texas A&M University, College Station, Texas, USA.

Zhu, B., Sun, Y., Chen, R., Guo, W., and Yang, Y. (2015). ``Experimental and analyt-

ical models of laterally loaded rigid monopiles with hardening p-y curves.'' Journal of

Waterway, Port, Coastal and Ocean Engineering (ASCE), , 10.1061/(ASCE)WW.1943-

5460.0000310 , 04015007.

184



APPENDIX A

MESH GENERATION CODE

%Mesh generator for suction caisson
%Created by: Francisco Grajales & Dr. Charles Aubeny
%Flexible bottom boundary
%this version allows slippage/gaps at soil-pile interface
%column of cubes at centerline to avoid wedge elements
clear all
clc
%caisson or pile dimensions/features
D=5; %Diameter
t=.05; %Thickness
L=10; %Length
zpad=-.0001; %Depth of load attachment (padeye)
Ltotal=3*L; %total depth of mesh
topcap=0; %rigid topcap: 1=yes, 0=no
padstiff=0; %padeye stiffener: 1=yes, 0=no
%elment size controls
nelz=L; %number of elements within depth of pile
nelztotal=3*L; %total number elements in z direction
nelrad_in=7;
nelrad_out=20;
neltheta=48; %pick even mulitple of 6
ncore=neltheta/8; %cube elements in center half-core
dcore=0.5; %core element dimension (prior to adjusting)
rc=1.3; %adjustment ratio of core elements
aspect=2.5;
%loading
nstep=1; %=40
%loadinc=0.5;
cloadinc=10000;
%Total Displacement
disptot=3;
%Total Rotation
rottot=0;
%soil properties
su0=2; %Strength at mudline
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k=1.6; %Strength gradient
gamma=7; %Soil Density
alpha_out=1; %adhesion on outer pile surface
alpha_in=1; %adhesion on inner pile surface
slip_out=1; %slippage/gap at outer interface; 0=no; 1=yes
slip_in=1; %slippage/gap at inner interface; 0=no; 1=yes
su_rf=0.025; %reduction factor for soil at tip
%printing summary of inputs
fid=fopen('SpecialRun6.txt','w');
fprintf(fid,'============␣S␣U␣M␣M␣A␣R␣Y␣␣O␣F␣␣I␣N␣P␣U␣T␣S...
␣===========\r\n\r\n\r\n');
fprintf(fid,'I)␣CAISSON␣PROPERTIES\r\n\r\n');
fprintf(fid,'Diameter␣=␣%u\r\n',D);
fprintf(fid,'Length␣=␣%u\r\n',L);
fprintf(fid,'Wall␣thickness␣=␣%u\r\n',t);
fprintf(fid,'Padeye␣location␣=␣%u\r\n',zpad);
fprintf(fid,'Padeye␣stiffener␣(yes=1;␣no=0)=␣%u\r\n',...
padstiff);
fprintf(fid,'\r\nII)␣MESH␣PROPERTIES\r\n\r\n');
fprintf(fid,'Total␣depth␣of␣the␣mesh␣=␣%u\r\n',Ltotal);
fprintf(fid,'Number␣caisson␣elements ,...
␣vertical␣direction␣=␣%u\r\n',nelz);
fprintf(fid,'Number␣of␣elements␣in␣vertical...
␣direction␣=␣%u\r\n',nelztotal);
fprintf(fid,'Number␣of␣elements␣in␣the␣radial␣direction ,...
␣inside␣the␣pile␣=␣%u\r\n',nelrad_in);
fprintf(fid,'Number␣of␣elements␣in␣the␣radial␣direction ,...
␣outside␣the␣pile␣=␣%u\r\n',nelrad_out);
fprintf(fid,'Number␣of␣elements␣in␣the␣angular...
␣direction␣=␣%u\r\n',neltheta);
fprintf(fid,'Number␣of␣cube␣elements␣in␣the␣center...
␣half␣core␣=␣%u\r\n',ncore);
fprintf(fid,'Core␣element␣dimension␣=␣%u\r\n',dcore);
fprintf(fid,'Adjustment␣ratio␣of␣core...
␣elements␣=␣%u\r\n',rc);
fprintf(fid,'Aspect␣ratio␣=␣%u\r\n',aspect);
fprintf(fid,'\r\nIII)␣SOIL␣PROPERTIES\r\n\r\n');
fprintf(fid,'Soil␣unit␣weight␣(gamma)=␣%u\r\n',gamma);
fprintf(fid,'Soil␣undrained␣shear␣strength␣is...
␣characterized␣by␣a␣linear\r\n');
fprintf(fid,'relationship␣of␣the␣type...
␣Su(z)␣=␣Su0␣+␣k*z\r\n');
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fprintf(fid,'Su0␣=␣%u\r\n',su0);
fprintf(fid,'k␣=␣%u\r\n',k);
fprintf(fid,'Adhesion␣on␣outer...
␣pile␣surface␣=␣%u\r\n',alpha_out);
fprintf(fid,'Adhesion␣on␣inner...
␣pile␣surface␣=␣%u\r\n',alpha_in);
fprintf(fid,'slippage/gapping␣at␣outer...
␣soil -pile␣interface;...
␣(0=no;␣1=yes)␣=␣%u\r\n',slip_out);
fprintf(fid,'slippage/gapping␣at␣inner...
␣soil -pile␣interface;...
␣(0=no;␣1=yes)␣=␣%u\r\n',slip_in);
fclose(fid);
%CREATE JOB FILE
fid=fopen('SpecialRun6.job','w');
fprintf(fid,'#BSUB␣-J␣SpecialRun6\n');
fprintf(fid,'#BSUB␣-L␣/bin/bash\n');
fprintf(fid,'#BSUB␣-W␣16:00\n');
fprintf(fid,'#BSUB␣-n␣1\n');
fprintf(fid,'#BSUB␣-R␣"span[ptile=1]"\n');
fprintf(fid,'#BSUB␣-R␣"select[nxt]"\n');
fprintf(fid,'#BSUB␣-R␣"rusage[mem=16000]"\n');
fprintf(fid,'#BSUB␣-M␣16000\n');
fprintf(fid,'#BSUB␣-o␣stdout1.%%J\n');
fprintf(fid,'#BSUB␣-u␣fran09.supercomputer@gmail.com\n');
fprintf(fid,'#BSUB␣-B␣-N\n');
fprintf(fid,'cd␣$SCRATCH/CALIBRATION\n');
fprintf(fid,'module␣load␣ABAQUS/6.12.1-linux -x86_64\n');
fprintf(fid,'abaqus␣memory="16gb"...
␣job=SpecialRun6␣input=SpecialRun6.inp\n');
fclose(fid);
%preprocess
nnode_in=(nelztotal+1)+(nelztotal+1)*nelrad_in*neltheta;
nnode_shell=2*(nelz+1)*neltheta;
nnode_middle=2*(nelztotal -nelz)*neltheta;
nnode_out=(nelztotal+1)*(nelrad_out+1)*neltheta;
delz=L/nelz;
delr0=delz/aspect;
deltheta=2*pi/neltheta;
nnode_total=nnode_in+nnode_out;
%initialize nodal arrays
node(1:nnode_total)=0; %all nodes
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x(1:nnode_total)=0; %x-coordinates of nodes
y(1:nnode_total)=0; %y-coordinates of nodes
z(1:nnode_total)=0; %z-coordinates of nodes
%For nodes between core and inner shell nodes
inner_soil_surface((nelz+1)*(neltheta))=0;
%For nodes between core and inner "middle" nodes
inner_soil_surface2((nelztotal -nelz+1)*(neltheta))=0;
%For nodes outside shell nodes
outer_soil_surface((nelz+1)*(neltheta))=0;
%For nodes outside "middle" nodes
outer_soil_surface2((nelztotal -nelz+1)*(neltheta))=0;
%For nodes forming the caisson shell
%inner shell nodes
shell_in((nelz+1)*(neltheta))=0;
%outer shell nodes
shell_out((nelz+1)*(neltheta))=0;
x_shell_in((nelz+1)*(neltheta))=0; %inner shell coordinates
y_shell_in((nelz+1)*(neltheta))=0;
z_shell_in((nelz+1)*(neltheta))=0;
x_shell_out((nelz+1)*(neltheta))=0; %outer shell coordinates
y_shell_out((nelz+1)*(neltheta))=0;
z_shell_out((nelz+1)*(neltheta))=0;
%For nodes located right below the caisson
%shell to the bottom of mesh
%inner shell nodes
shell2_in((nelztotal -nelz+1)*(neltheta))=0;
%outer shell nodes
shell2_out((nelztotal -nelz+1)*(neltheta))=0;
%inner shell coordinates
x_shell2_in((nelztotal -nelz+1)*(neltheta))=0;
y_shell2_in((nelztotal -nelz+1)*(neltheta))=0;
z_shell2_in((nelztotal -nelz+1)*(neltheta))=0;
%outer shell coordinates
x_shell2_out((nelztotal -nelz+1)*(neltheta))=0;
y_shell2_out((nelztotal -nelz+1)*(neltheta))=0;
z_shell2_out((nelztotal -nelz+1)*(neltheta))=0;
%For nodes forming the bottom of the mesh
bottom(1:1+(3+nelrad_in+nelrad_out)*neltheta)=0;
%For nodes forming the top of the caisson
inner_top(neltheta*nelrad_in)=0;
%For nodes forming the far ends (infinite elements)
far(neltheta*(nelztotal+1))=0;
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%Not sure about nelztotal in this three next counters
inner_circum(nelz+1,neltheta)=0;
outer_circum(nelz+1,neltheta)=0;
inner_circum2(nelztotal -nelz+1,neltheta)=0;
outer_circum2(nelztotal -nelz+1,neltheta)=0;
core_matrix(2*ncore+1,2*ncore+1,nelztotal+1)=0;
%iniialize element arrays
iel(nelz*neltheta*(nelrad_in+nelrad_out),9)=0;%all elements
elshell(1:nelz*neltheta)=0; %shell elements
elmiddle(1:neltheta*(nelztotal -nelz))=0;
%inner soil elements
ellayin(1:nelz ,1:nelrad_in -1,neltheta)=0;
%outer soil elements
ellayout(1:nelz ,1:nelrad_out ,neltheta)=0;
%%%%%%%%%%%%%%%%%%% NODES %%%%%%%%%%%%%
nnode=0;
nbottom=0;
if topcap==1
topcontrol=1;
else
topcontrol=0;
end
%create inner soil nodes in radial segments
r0=dcore*ncore*sqrt(2); %radius of core
delr=(D/2-t-r0)/(nelrad_in -ncore);
n_inner_soil_surface=0;
n_inner_soil_surface2=0;
n_inner_shell_surface=0;
n_inner_shell_surface2=0;
n_inner_circum=0; n_inner_circum2=0;
ninner_top=0;
ncoresurfB=0;
ninner_pile=0;
for jj=ncore:nelrad_in;
for ii=1:nelztotal+1
% n_inner_circum(ii)=0;
% n_inner_circum2(ii)=0;
nnode=nnode+1;
node(nnode)=10000*ii+100*jj;
rad=r0+delr*(jj-ncore);
x(nnode)=rad;
y(nnode)=0;
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z(nnode)=-delz*(ii-1);
if ii==nelztotal+1 && jj<nelrad_in
nbottom=nbottom+1;
bottom(nbottom)=node(nnode);
end
if ii==topcontrol && jj<nelrad_in
ninner_top=ninner_top+1;
inner_top(ninner_top)=node(nnode);
end
if jj==ncore
if ii>topcontrol
ncoresurfB=ncoresurfB+1;
coresurfB(ncoresurfB)=node(nnode);
end
%adjust surface of core to octagon shape
x(nnode)=ncore*dcore*rc;
y(nnode)=0;
end
if jj==nelrad_in
if ii<=nelz+1; %For nodes located in the pile
%record inner soil surface
n_inner_soil_surface=n_inner_soil_surface+1;
inner_soil_surface(n_inner_soil_surface)=node(nnode);
%create inner shell surface
n_inner_shell_surface=n_inner_shell_surface+1;
ndum=n_inner_shell_surface;
shell_in(ndum)=node(nnode)+1000000;
x_shell_in(ndum)=x(nnode);
y_shell_in(ndum)=y(nnode);
z_shell_in(ndum)=z(nnode);
% if ii==nelztotal+1
% nbottom=nbottom+1;
% bottom(nbottom)=shell_in(ndum);
% end
n_inner_circum=ii;%n_inner_circum+1;
inner_circum(n_inner_circum ,1)=node(nnode);
%store inner nodes on pile shell
if ii==topcontrol
ninner_pile=ninner_pile+1;
inner_pile(ninner_pile)=node(nnode)+1000000;
end
elseif ii>=nelz+1; %For nodes located right below the pile
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%record inner soil surface
n_inner_soil_surface2=n_inner_soil_surface2+1;
inner_soil_surface2(n_inner_soil_surface2)=node(nnode);
%create inner shell surface
n_inner_shell_surface2=n_inner_shell_surface2+1;
ndum=n_inner_shell_surface2;
shell2_in(ndum)=node(nnode)+1000000;
x_shell2_in(ndum)=x(nnode);
y_shell2_in(ndum)=y(nnode);
z_shell2_in(ndum)=z(nnode);
if ii==nelztotal+1
nbottom=nbottom+1;
bottom(nbottom)=shell2_in(ndum);
end
n_inner_circum2=ii-(nelz+1);%n_inner_circum2+1;
inner_circum2(n_inner_circum2 ,1)=node(nnode);
end
end
for kk=1:neltheta -1
theta=kk*deltheta;
nnode=nnode+1;
node(nnode)=node(nnode -1)+1;
x(nnode)=rad*cos(theta);
y(nnode)=rad*sin(theta);
z(nnode)=-delz*(ii-1);
if ii==nelztotal+1 && jj < nelrad_in
nbottom=nbottom+1;
bottom(nbottom)=node(nnode);
end
if ii==topcontrol && jj < nelrad_in
ninner_top=ninner_top+1;
inner_top(ninner_top)=node(nnode);
end
if jj==ncore
if ii>topcontrol
ncoresurfB=ncoresurfB+1;
coresurfB(ncoresurfB)=node(nnode);
end
%adjust surface of core to octagon shape
if kk<=ncore
mm=ncore;
nn=kk;
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signx=1;
signy=1;
end
if kk>ncore && kk<=2*ncore
mm=2*ncore -kk;
nn=ncore;
signx=1;
signy=1;
end
if kk>2*ncore && kk<=3*ncore
mm=kk-2*ncore;
nn=ncore;
signx=-1;
signy=1;
end
if kk>3*ncore && kk<=4*ncore
mm=ncore;
nn=4*ncore -kk;
signx=-1;
signy=1;
end
if kk>4*ncore && kk<=5*ncore
mm=ncore;
nn=kk-4*ncore;
signx=-1;
signy=-1;
end
if kk>5*ncore && kk<=6*ncore
mm=6*ncore -kk;
nn=ncore;
signx=-1;
signy=-1;
end
if kk>6*ncore && kk<=7*ncore
mm=kk-6*ncore;
nn=ncore;
signx=1;
signy=-1;
end
if kk>7*ncore && kk<=8*ncore -1
mm=ncore;
nn=8*ncore -kk;
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signx=1;
signy=-1;
end
x(nnode)=signx*mm*dcore*(rc-(rc-1)*nn/ncore);
y(nnode)=signy*nn*dcore*(rc-(rc-1)*mm/ncore);
end
if jj==nelrad_in
if ii<=nelz+1; %For nodes located in the pile
%record inner soil surface
n_inner_soil_surface=n_inner_soil_surface+1;
inner_soil_surface(n_inner_soil_surface)=node(nnode);
%create inner shell surface
n_inner_shell_surface=n_inner_shell_surface+1;
ndum=n_inner_shell_surface;
shell_in(ndum)=node(nnode)+1000000;
x_shell_in(ndum)=x(nnode);
y_shell_in(ndum)=y(nnode);
z_shell_in(ndum)=z(nnode);
n_inner_circum=ii;%n_inner_circum+1;
inner_circum(n_inner_circum ,kk+1)=node(nnode);
%store inner nodes on pile shell
if ii==topcontrol
ninner_pile=ninner_pile+1;
inner_pile(ninner_pile)=node(nnode)+1000000;
end
elseif ii>=nelz+1; %For nodes located right below the pile
%record inner soil surface
n_inner_soil_surface2=n_inner_soil_surface2+1;
inner_soil_surface2(n_inner_soil_surface2)=node(nnode);
%create inner shell surface
n_inner_shell_surface2=n_inner_shell_surface2+1;
ndum=n_inner_shell_surface2;
shell2_in(ndum)=node(nnode)+1000000;
x_shell2_in(ndum)=x(nnode);
y_shell2_in(ndum)=y(nnode);
z_shell2_in(ndum)=z(nnode);
if ii==nelztotal+1
nbottom=nbottom+1;
bottom(nbottom)=shell2_in(ndum);
end
n_inner_circum2=ii-(nelz+1);%n_inner_circum2+1;
inner_circum2(n_inner_circum2 ,kk+1)=node(nnode);
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end
end
end
end
end
%Create soil nodes outside of pile
rad=D/2;
n_outer_soil_surface=0;
n_outer_soil_surface2=0;
n_outer_shell_surface=0;
n_outer_shell_surface2=0;
n_outer_circum=0;
n_outer_circum2=0;
nfar=0;
nnodei=0;
n_inf_bot=0;
for jj=1:nelrad_out+1;
for ii=1:nelztotal+1
nnode=nnode+1;
node(nnode)=10000*ii+100*(jj+nelrad_in);
x(nnode)=rad;
y(nnode)=0;
z(nnode)=-delz*(ii-1);
if ii==nelztotal+1 && jj > 1
nbottom=nbottom+1;
bottom(nbottom)=node(nnode);
end
if jj==nelrad_out+1
nfar=nfar+1;
far(nfar)=node(nnode);
end
if jj==nelrad_out+1 %infinite nodes
nnodei=nnodei+1;
nodei(nnodei)=node(nnode)+100;
xi(nnodei)=2*x(nnode);
yi(nnodei)=2*y(nnode);
zi(nnodei)=z(nnode);
%record bottom nodes in infinite elements
if ii==nelztotal+1
n_inf_bot=n_inf_bot+1;
inf_bot(n_inf_bot)=node(nnode);
n_inf_bot=n_inf_bot+1;
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inf_bot(n_inf_bot)=nodei(nnodei);
end
end
if jj==1
if ii<=nelz+1;%Nodes forming the pile
%record outer soil surface
n_outer_soil_surface=n_outer_soil_surface+1;
outer_soil_surface(n_outer_soil_surface)=node(nnode);
%create outer shell surface
n_outer_shell_surface=n_outer_shell_surface+1;
ndum=n_outer_shell_surface;
shell_out(ndum)=node(nnode)+1000000;
x_shell_out(ndum)=x(nnode);
y_shell_out(ndum)=y(nnode);
z_shell_out(ndum)=z(nnode);
if z_shell_out(ndum) <= zpad &&...
z_shell_out(ndum -neltheta) > zpad

padmid=shell_out(ndum);
padtop=padmid -10000;
padbot=padmid+10000;
end
n_outer_circum=ii;%n_outer_circum+1;
outer_circum(n_outer_circum ,1)=node(nnode);
elseif ii>=nelz+1; %Soil nodes below pile
%record outer soil surface
n_outer_soil_surface2=n_outer_soil_surface2+1;
outer_soil_surface2(n_outer_soil_surface2)=node(nnode);
%create outer shell surface
n_outer_shell_surface2=n_outer_shell_surface2+1;
ndum=n_outer_shell_surface2;
shell2_out(ndum)=node(nnode)+1000000;
x_shell2_out(ndum)=x(nnode);
y_shell2_out(ndum)=y(nnode);
z_shell2_out(ndum)=z(nnode);
if ii==nelztotal+1
nbottom=nbottom+1;
bottom(nbottom)=shell2_out(ndum);
end
n_outer_circum2=ii-(nelz+1);%n_outer_circum2+1;
outer_circum2(n_outer_circum2 ,1)=node(nnode);
end
end
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for kk=1:neltheta -1
theta=kk*deltheta;
nnode=nnode+1;
node(nnode)=node(nnode -1)+1;
x(nnode)=rad*cos(theta);
y(nnode)=rad*sin(theta);
z(nnode)=-delz*(ii-1);
if ii==nelztotal+1 && jj > 1
nbottom=nbottom+1;
bottom(nbottom)=node(nnode);
end
if jj==nelrad_out+1
nfar=nfar+1;
far(nfar)=node(nnode);
end
if jj==nelrad_out+1 %infinite nodes
nnodei=nnodei+1;
nodei(nnodei)=node(nnode)+100;
xi(nnodei)=2*x(nnode);
yi(nnodei)=2*y(nnode);
zi(nnodei)=z(nnode);
%record bottom nodes in infinite elements
if ii==nelztotal+1
n_inf_bot=n_inf_bot+1;
inf_bot(n_inf_bot)=node(nnode);
n_inf_bot=n_inf_bot+1;
inf_bot(n_inf_bot)=nodei(nnodei);
end
end
if jj==1
if ii<=nelz+1;%Nodes forming the pile
%record outer soil surface
n_outer_soil_surface=n_outer_soil_surface+1;
outer_soil_surface(n_outer_soil_surface)=node(nnode);
%create outer shell surface
n_outer_shell_surface=n_outer_shell_surface+1;
ndum=n_outer_shell_surface;
shell_out(ndum)=node(nnode)+1000000;
x_shell_out(ndum)=x(nnode);
y_shell_out(ndum)=y(nnode);
z_shell_out(ndum)=z(nnode);
n_outer_circum=ii;%n_outer_circum+1;
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outer_circum(n_outer_circum ,kk+1)=node(nnode);
elseif ii>=nelz+1; %Soil nodes below pile
%record outer soil surface
n_outer_soil_surface2=n_outer_soil_surface2+1;
outer_soil_surface2(n_outer_soil_surface2)=node(nnode);
%create outer shell surface
n_outer_shell_surface2=n_outer_shell_surface2+1;
ndum=n_outer_shell_surface2;
shell2_out(ndum)=node(nnode)+1000000;
x_shell2_out(ndum)=x(nnode);
y_shell2_out(ndum)=y(nnode);
z_shell2_out(ndum)=z(nnode);
if ii==nelztotal+1
nbottom=nbottom+1;
bottom(nbottom)=shell2_out(ndum);
end
n_outer_circum2=ii-(nelz+1);%n_outer_circum2+1;
outer_circum2(n_outer_circum2 ,kk+1)=node(nnode);
end
end
end
end
delr=6.28*rad/(neltheta -3.14);
if delr <delr0
delr=delr0;
end
rad=rad+delr;
end
%create core nodes
nnode_core=0;
nstart=2000000;
ngrid=2*ncore+1;
ncoretop=0;
ncoresurfA=0;
for ii=1:nelztotal+1
for mx=1:ngrid
for ny=1:ngrid
nnode_core=nnode_core+1;
node_core(nnode_core)=nnode_core+nstart;
mm=mx-ncore -1;
nn=ny-ncore -1;
x_core(nnode_core)=mm*dcore*(rc-(rc-1)*abs(nn)/ncore);
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y_core(nnode_core)=nn*dcore*(rc-(rc-1)*abs(mm)/ncore);
z_core(nnode_core)=-(ii-1)*delz;
core_matrix(mx,ny,ii)=nnode_core+nstart;
if mx==1 || mx==ngrid || ny==1 || ny==ngrid
if ii>topcontrol
ncoresurfA=ncoresurfA+1; %surface of inner core
coresurfA(ncoresurfA)=nnode_core+nstart;
end
end
if ii==topcontrol
ncoretop=ncoretop+1;
coretop(ncoretop)=nnode_core+nstart;
end
if ii==nelztotal+1
nbottom=nbottom+1;
bottom(nbottom)=node_core(nnode_core);
end
end
end
end
%%%%%%%%%%%%%%%% ELEMENTS %%%%%%%%%%
% % on centerline
nel=0;
nelbot=0;
nmast=0;
mast(1:nelz*neltheta)=0;
% inner elements
for jj=ncore+1:nelrad_in
for ii=1:nelztotal
for kk=1:neltheta
n1=(ii+1)*10000+100*(jj-1)+kk-1;
n2=n1+100;
n5=n1 -10000;
n6=n5+100;
if kk<neltheta
n3=n2+1;
n4=n1+1;
n7=n6+1;
n8=n5+1;
else
n3=n2-neltheta+1;
n4=n1-neltheta+1;
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n7=n6-neltheta+1;
n8=n5-neltheta+1;
end
nel=nel+1;
iel(nel ,1)=nel;
iel(nel ,2)=n1;
iel(nel ,3)=n2;
iel(nel ,4)=n3;
iel(nel ,5)=n4;
iel(nel ,6)=n5;
iel(nel ,7)=n6;
iel(nel ,8)=n7;
iel(nel ,9)=n8;
ellayin(ii,jj-ncore ,kk)=nel;
%record bottom elements
if ii==nelztotal
nelbot=nelbot+1;
elbot(nelbot)=nel;
end
%record elements of inner octagonal surface
if jj==ncore+1
nmast=nmast+1;
mast(nmast)=nel;
end
end
end
end
% outer elements
nstart=10000+(nelrad_in+1)*100;
for jj=1:nelrad_out
for ii=1:nelztotal
for kk=1:neltheta
n1=nstart+(ii)*10000+100*(jj-1)+kk-1;
n2=n1+100;
n5=n1 -10000;
n6=n5+100;
if kk<neltheta
n3=n2+1;
n4=n1+1;
n7=n6+1;
n8=n5+1;
else
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n3=n2-neltheta+1;
n4=n1-neltheta+1;
n7=n6-neltheta+1;
n8=n5-neltheta+1;
end
nel=nel+1;
iel(nel ,1)=nel;
iel(nel ,2)=n1;
iel(nel ,3)=n2;
iel(nel ,4)=n3;
iel(nel ,5)=n4;
iel(nel ,6)=n5;
iel(nel ,7)=n6;
iel(nel ,8)=n7;
iel(nel ,9)=n8;
ellayout(ii,jj,kk)=nel;
if ii==nelztotal;
nelbot=nelbot+1;
elbot(nelbot)=nel;
end
end
end
end
% shell elements
nstart=shell_in(1)+10000;
nelshell=0;
for ii=1:nelz
for kk=1:neltheta
n1=nstart+(ii -1)*10000+kk-1;
n2=n1+100;
n5=n1 -10000;
n6=n5+100;
if kk<neltheta
n3=n2+1;
n4=n1+1;
n7=n6+1;
n8=n5+1;
else
n3=n2-neltheta+1;
n4=n1-neltheta+1;
n7=n6-neltheta+1;
n8=n5-neltheta+1;
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end
nel=nel+1;
nelshell=nelshell+1;
iel(nel ,1)=nel;
iel(nel ,2)=n1;
iel(nel ,3)=n2;
iel(nel ,4)=n3;
iel(nel ,5)=n4;
iel(nel ,6)=n5;
iel(nel ,7)=n6;
iel(nel ,8)=n7;
iel(nel ,9)=n8;
elshell(nelshell)=nel;
if ii==nelztotal
nelbot=nelbot+1;
elbot(nelbot)=nel;
end
end
end
nelmiddle=0;
nstart=shell2_in(1);%+10000;
for ii=1:(nelztotal -nelz);
for kk=1:neltheta;
n1=nstart+(ii -1)*10000+kk-1;
n2=n1+100;
n5=n1 -10000;
n6=n5+100;
if kk<neltheta
n3=n2+1;
n4=n1+1;
n7=n6+1;
n8=n5+1;
else
n3=n2-neltheta+1;
n4=n1-neltheta+1;
n7=n6-neltheta+1;
n8=n5-neltheta+1;
end
nel=nel+1;
nelmiddle=nelmiddle+1;
iel(nel ,1)=nel;
iel(nel ,2)=n1;
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iel(nel ,3)=n2;
iel(nel ,4)=n3;
iel(nel ,5)=n4;
iel(nel ,6)=n5;
iel(nel ,7)=n6;
iel(nel ,8)=n7;
iel(nel ,9)=n8;
elmiddle(nelmiddle)=nel;
if ii==nelztotal;
nelbot=nelbot+1;
elbot(nelbot)=nel;
end
end
end
% infinite elements
nstart=far(1);
nelinf=0;
for ii=1:nelztotal
for kk=1:neltheta
n1=nstart+ii*10000+kk-1;
n2=n1+1;
n3=n2 -10000;
n4=n3-1;
n5=n1+100;
n6=n2+100;
n7=n3+100;
n8=n4+100;
if kk==neltheta
n2=n2-neltheta;
n3=n3-neltheta;
n6=n6-neltheta;
n7=n7-neltheta;
end
nel=nel+1;
nelinf=nelinf+1;
iel(nel ,1)=nel;
iel(nel ,2)=n1;
iel(nel ,3)=n2;
iel(nel ,4)=n3;
iel(nel ,5)=n4;
iel(nel ,6)=n5;
iel(nel ,7)=n6;
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iel(nel ,8)=n7;
iel(nel ,9)=n8;
elinf(ii,kk)=nel;
end
end
%core elements
nelcore=0;
corestart=2000000;
ncorebot=0;
for ii=1:nelztotal;
for mx=1:2*ncore
for ny=1:2*ncore
n1=core_matrix(mx, ny, ii+1);
n2=core_matrix(mx+1,ny, ii+1);
n3=core_matrix(mx+1,ny+1,ii+1);
n4=core_matrix(mx, ny+1,ii+1);
n5=core_matrix(mx, ny, ii);
n6=core_matrix(mx+1,ny, ii);
n7=core_matrix(mx+1,ny+1,ii);
n8=core_matrix(mx, ny+1,ii);
nelcore=nelcore+1;
elcore(nelcore ,1)=nelcore+corestart;
elcore(nelcore ,2)=n1;
elcore(nelcore ,3)=n2;
elcore(nelcore ,4)=n3;
elcore(nelcore ,5)=n4;
elcore(nelcore ,6)=n5;
elcore(nelcore ,7)=n6;
elcore(nelcore ,8)=n7;
elcore(nelcore ,9)=n8;
if ii==nelztotal;
ncorebot=ncorebot+1;
corebot(ncorebot)=nelcore+corestart;
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CREATE ABAQUS INPUT FILE %%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fid=fopen('SpecialRun6.inp','w'); %open output file

203



%PRINTING HEADING OF THE INPUT FILE
fprintf(fid,'*HEADING\n␣NEES␣WIND:CAPACITY␣AND...
␣PERFORMANCE␣OF␣FOUNDATIONS␣FOR␣OFFSHORE␣WIND␣TURBINES\n');
fprintf(fid,'␣3D␣ANALYSIS␣OF␣A␣LATERALLY␣LOADED...
␣PILE␣USING␣ELASTIC -PERFECTLY␣PLASTIC␣MATERIAL␣MODEL\n');
fprintf(fid,'␣PRINCIPAL␣INVESTIGATOR(S):␣DR.GIOVANNA...
␣BISCONTIN ,␣DR.CHARLES␣AUBENY\n␣STUDENT:...
␣␣FRANCISCO␣GRAJALES\n␣DATE:\n');
fprintf(fid,'␣ZACHRY␣DEPARTMENT␣OF␣CIVIL...
␣ENGINEERING ,␣TEXAS␣A&M␣UNIVERSITY\n');
fprintf(fid,'**--------------------------...
--------\n');
%%%%%%%%%%%%%%%%%%%%%%%%%% NODES %%%%%%%%%%%
%print all node definitions: soil and pile%%%
%soil
fprintf(fid,'*NODE ,␣NSET=LOADINGNODE\r\n');
fprintf(fid,'989898,0,0,0\r\n');
fprintf(fid,'*NODE ,␣NSET=SOIL\r\n');
for ijk=1:nnode
fprintf(fid,'%u,%f,%f,%f\r\n',...
node(ijk),x(ijk),y(ijk),z(ijk));
end
%pile
fprintf(fid,'*NODE ,␣NSET=PILE\r\n');
for ijk=1:nnode_shell/2
fprintf(fid,'%u,%f,%f,%f\r\n',...
shell_in(ijk),x_shell_in(ijk),...
y_shell_in(ijk),z_shell_in(ijk));
end
for ijk=1:nnode_shell/2
fprintf(fid,'%u,%f,%f,%f\r\n',...
shell_out(ijk),x_shell_out(ijk),...
y_shell_out(ijk),z_shell_out(ijk));
end
%Inner Pile
fprintf(fid,'*NSET ,␣NSET=PILEIN\r\n');
for ijk=1:nnode_shell/2
if ijk<nnode_shell/2;
fprintf(fid,'%u,\r\n',shell_in(ijk));
elseif ijk==nnode_shell/2;
fprintf(fid,'%u\r\n',shell_in(ijk));
end
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end
%Outer Pile
fprintf(fid,'*NSET ,␣NSET=PILEOUT\r\n');
for ijk=1:nnode_shell/2
if ijk<nnode_shell/2;
fprintf(fid,'%u,\r\n',shell_out(ijk));
elseif ijk==nnode_shell/2;
fprintf(fid,'%u\r\n',shell_out(ijk));
end
end
%Inner Pile Rings
dumdum1=0;
dumdum2=0;
for ijk=1:(nelz+1);
dumdum1=dumdum1+1;
fprintf(fid,'*NSET ,␣NSET=PILEIN -%u\r\n',dumdum1);
for kji=1:neltheta;
dumdum2=dumdum2+1;
if kji<neltheta;
fprintf(fid,'%u,\r\n',shell_in(dumdum2));
elseif kji==neltheta;
fprintf(fid,'%u\r\n',shell_in(dumdum2));
end
end
end
%Outer Pile Rings
dumdum1=0;
dumdum2=0;
for ijk=1:(nelz+1);
dumdum1=dumdum1+1;
fprintf(fid,'*NSET ,␣NSET=PILEOUT -%u\r\n',dumdum1);
for kji=1:neltheta;
dumdum2=dumdum2+1;
if kji<neltheta;
fprintf(fid,'%u,\r\n',shell_out(dumdum2));
elseif kji==neltheta;
fprintf(fid,'%u\r\n',shell_out(dumdum2));
end
end
end
%Middle
fprintf(fid,'*NODE ,␣NSET=N_MIDDLE\r\n');
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for ijk=1:nnode_middle/2
fprintf(fid,'%u,%f,%f,%f\r\n',...
shell2_in(ijk),x_shell2_in(ijk),...
y_shell2_in(ijk),z_shell2_in(ijk));
end
for ijk=1:nnode_middle/2
fprintf(fid,'%u,%f,%f,%f\r\n',...
shell2_out(ijk),x_shell2_out(ijk),...
y_shell2_out(ijk),z_shell2_out(ijk));
end
%infinite
fprintf(fid,'*NODE ,␣NSET=INFINITE\r\n');
for ijk=1:nnodei
fprintf(fid,'%u,%f,%f,%f\r\n',...
nodei(ijk),xi(ijk),yi(ijk),zi(ijk));
end
%core nodes
fprintf(fid,'*NODE ,␣NSET=CORE\r\n');
for ijk=1:nnode_core
fprintf(fid,'%u,%f,%f,%f\r\n',...
node_core(ijk),x_core(ijk),y_core(ijk),z_core(ijk));
end
%print bottom layer node set
last=mod(nbottom ,6);
tmp=bottom;
fprintf(fid,'*NSET ,␣NSET=BOTTOM\r\n');
for i=1:6:nbottom -last
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
i1=nbottom -last+1;
i2=nbottom -last+2;
i3=nbottom -last+3;
i4=nbottom -last+4;
i5=nbottom -last+5;
if last==1
fprintf(fid,'%u\r\n',tmp(i1));
elseif last==2
fprintf(fid,'%u,%u\r\n',tmp(i1),tmp(i2));
elseif last==3
fprintf(fid,'%u,%u,%u\r\n',tmp(i1),tmp(i2),tmp(i3));
elseif last==4
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fprintf(fid,'%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4));
elseif last==5
fprintf(fid,'%u,%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4),tmp(i5));
end
%print inner soil surface node set
last=mod(n_inner_soil_surface ,6);
tmp=inner_soil_surface;
fprintf(fid,'*NSET ,␣NSET=INNER_SOIL_SURFACE\r\n');
for i=1:6:n_inner_soil_surface -last
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
i1=n_inner_soil_surface -last+1;
i2=n_inner_soil_surface -last+2;
i3=n_inner_soil_surface -last+3;
i4=n_inner_soil_surface -last+4;
i5=n_inner_soil_surface -last+5;
if last==1
fprintf(fid,'%u\r\n',tmp(i1));
elseif last==2
fprintf(fid,'%u,%u\r\n',tmp(i1),tmp(i2));
elseif last==3
fprintf(fid,'%u,%u,%u\r\n',tmp(i1),tmp(i2),tmp(i3));
elseif last==4
fprintf(fid,'%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4));
elseif last==5
fprintf(fid,'%u,%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4),tmp(i5));
end
%print outer soil surface node set
last=mod(n_outer_soil_surface ,6);
tmp=outer_soil_surface;
fprintf(fid,'*NSET ,␣NSET=OUTER_SOIL_SURFACE\r\n');
for i=1:6:n_outer_soil_surface -last
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
i1=n_outer_soil_surface -last+1;
i2=n_outer_soil_surface -last+2;
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i3=n_outer_soil_surface -last+3;
i4=n_outer_soil_surface -last+4;
i5=n_outer_soil_surface -last+5;
if last==1
fprintf(fid,'%u\r\n',tmp(i1));
elseif last==2
fprintf(fid,'%u,%u\r\n',tmp(i1),tmp(i2));
elseif last==3
fprintf(fid,'%u,%u,%u\r\n',tmp(i1),tmp(i2),tmp(i3));
elseif last==4
fprintf(fid,'%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4));
elseif last==5
fprintf(fid,'%u,%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4),tmp(i5));
end
%print inner pile surface node set
last=mod(n_inner_shell_surface ,6);
tmp=shell_in;
fprintf(fid,'*NSET ,␣NSET=INNER_SHELL_SURFACE\r\n');
for i=1:6:n_inner_shell_surface -last
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
i1=n_inner_shell_surface -last+1;
i2=n_inner_shell_surface -last+2;
i3=n_inner_shell_surface -last+3;
i4=n_inner_shell_surface -last+4;
i5=n_inner_shell_surface -last+5;
if last==1
fprintf(fid,'%u\r\n',tmp(i1));
elseif last==2
fprintf(fid,'%u,%u\r\n',tmp(i1),tmp(i2));
elseif last==3
fprintf(fid,'%u,%u,%u\r\n',tmp(i1),tmp(i2),tmp(i3));
elseif last==4
fprintf(fid,'%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4));
elseif last==5
fprintf(fid,'%u,%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4),tmp(i5));
end
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%print outer pile surface node set
last=mod(n_outer_shell_surface ,6);
tmp=shell_out;
fprintf(fid,'*NSET ,␣NSET=OUTER_SHELL_SURFACE\r\n');
for i=1:6:n_outer_shell_surface -last
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
i1=n_outer_shell_surface -last+1;
i2=n_outer_shell_surface -last+2;
i3=n_outer_shell_surface -last+3;
i4=n_outer_shell_surface -last+4;
i5=n_outer_shell_surface -last+5;
if last==1
fprintf(fid,'%u\r\n',tmp(i1));
elseif last==2
fprintf(fid,'%u,%u\r\n',tmp(i1),tmp(i2));
elseif last==3
fprintf(fid,'%u,%u,%u\r\n',tmp(i1),tmp(i2),tmp(i3));
elseif last==4
fprintf(fid,'%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4));
elseif last==5
fprintf(fid,'%u,%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4),tmp(i5));
end
%print inner top soil boundary node set (outside of core)
if topcap==1
last=mod(ninner_top ,6);
tmp=inner_top;
fprintf(fid,'*NSET ,␣NSET=INNER_TOP_SOIL\r\n');
for i=1:6:ninner_top -last
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
i1=ninner_top -last+1;
i2=ninner_top -last+2;
i3=ninner_top -last+3;
i4=ninner_top -last+4;
i5=ninner_top -last+5;
if last==1
fprintf(fid,'%u\r\n',tmp(i1));
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elseif last==2
fprintf(fid,'%u,%u\r\n',tmp(i1),tmp(i2));
elseif last==3
fprintf(fid,'%u,%u,%u\r\n',tmp(i1),tmp(i2),tmp(i3));
elseif last==4
fprintf(fid,'%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4));
elseif last==5
fprintf(fid,'%u,%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4),tmp(i5));
end
end
%print top nodes on core outer surface
if topcap==1
fprintf(fid,'*NSET ,␣NSET=CORETOP\r\n');
tmp=coretop;
for kk=1:ncoretop
fprintf(fid,'%u\r\n',tmp(kk));
end
end
%print far field node set
last=mod(nfar ,6);
tmp=far;
fprintf(fid,'*NSET ,␣NSET=FAR\r\n');
for i=1:6:nfar -last
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
i1=nfar -last+1;
i2=nfar -last+2;
i3=nfar -last+3;
i4=nfar -last+4;
i5=nfar -last+5;
if last==1
fprintf(fid,'%u\r\n',tmp(i1));
elseif last==2
fprintf(fid,'%u,%u\r\n',tmp(i1),tmp(i2));
elseif last==3
fprintf(fid,'%u,%u,%u\r\n',tmp(i1),tmp(i2),tmp(i3));
elseif last==4
fprintf(fid,'%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4));
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elseif last==5
fprintf(fid,'%u,%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4),tmp(i5));
end
%print inner soil boundary nodes by layer
%(assume neltheta even mulitple of 6)
for ii=1:nelz+1
fprintf(fid,'*NSET ,␣NSET=INNERLAYER%u\r\n',ii);
tmp(1:neltheta)=inner_circum(ii,1:neltheta);
for kk=1:6:neltheta
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(kk),tmp(kk+1),tmp(kk+2),tmp(kk+3),tmp(kk+4),tmp(kk+5));
end
end
for ii=1:nelztotal -nelz
fprintf(fid,'*NSET ,␣NSET=INNERLAYERbot%u\r\n',ii);
tmp(1:neltheta)=inner_circum2(ii,1:neltheta);
for kk=1:6:neltheta
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(kk),tmp(kk+1),tmp(kk+2),tmp(kk+3),tmp(kk+4),tmp(kk+5));
end
end
%print outer soil boundary nodes by layer
%(assume neltheta even mulitple of 6)
for ii=1:nelz+1
fprintf(fid,'*NSET ,␣NSET=OUTERLAYER%u\r\n',ii);
tmp(1:neltheta)=outer_circum(ii,1:neltheta);
for kk=1:6:neltheta
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(kk),tmp(kk+1),tmp(kk+2),tmp(kk+3),tmp(kk+4),tmp(kk+5));
end
end
for ii=1:nelztotal -nelz
fprintf(fid,'*NSET ,␣NSET=OUTERLAYERbot%u\r\n',ii);
tmp(1:neltheta)=outer_circum2(ii,1:neltheta);
for kk=1:6:neltheta
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(kk),tmp(kk+1),tmp(kk+2),tmp(kk+3),tmp(kk+4),tmp(kk+5));
end
end
%print infinite element nodes on bottom boundary
%(assume neltheta even mulitple of 6)

211



fprintf(fid,'*NSET ,␣NSET=BOTTOM_INFINITE\r\n');
tmp=inf_bot;
for kk=1:6:2*neltheta
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(kk),tmp(kk+1),tmp(kk+2),tmp(kk+3),tmp(kk+4),tmp(kk+5));
end
%print nodes at surface of inner core (slave nodes)
fprintf(fid,'*NSET ,␣NSET=CORE_SLAVE\r\n');
tmp=coresurfA;
for i=1:6:ncoresurfA
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
%print nodes at top inner surface of pile
if topcap==1
fprintf(fid,'*NSET ,␣NSET=PILETOP\r\n');
tmp=inner_pile;
for i=1:6:neltheta
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
end
%print set of padeye nodes (load control)
fprintf(fid,'*NSET ,␣NSET=PADEYE\r\n');
fprintf(fid,'%u,%u,%u\r\n',padtop ,padmid ,padbot);
%padeye (displacement control)
% pad=5000000;
% xpad=1000;
% ypad=0;
% fprintf(fid,'*NODE, NSET=PADEYE\r\n');
% fprintf(fid,'%u,%u,%u,%u\r\n',pad,xpad,ypad,zpad);
%%%%%%%%%%%%%%%%%%%%%%%%%% ELEMENTS %%%%
%print inner soil elements layer by layer
for ii=1:nelztotal
fprintf(fid,'*ELEMENT ,...
␣TYPE=C3D8 ,ELSET=INNERLAYER%u\r\n',ii);
for jj=1:nelrad_in -ncore
for kk=1:neltheta
el=ellayin(ii,jj,kk);
id=iel(el,1);
n1=iel(el,2);
n2=iel(el,3);
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n3=iel(el,4);
n4=iel(el,5);
n5=iel(el,6);
n6=iel(el,7);
n7=iel(el,8);
n8=iel(el,9);
fprintf(fid,'%u,%u,%u,%u,%u,%u,%u,%u,%u\r\n',...
id,n1,n2,n3,n4,n5,n6,n7,n8);
%Evaluate if nodes belong to the ring of elements located
%immediately close to the wall
if jj==(nelrad_in -ncore) && ii<=(nelz+2);
soil_in_r(ii,kk)=id;
%This should define an extra ring of
%soil right below the caisson tip
end
end
end
end
%print outer elements layer by layer
for ii=1:nelztotal
fprintf(fid,'*ELEMENT ,␣TYPE=C3D8 ,...
ELSET=OUTERLAYER%u\r\n',ii);
for jj=1:nelrad_out
for kk=1:neltheta;
el=ellayout(ii,jj,kk);
id=iel(el,1);
n1=iel(el,2);
n2=iel(el,3);
n3=iel(el,4);
n4=iel(el,5);
n5=iel(el,6);
n6=iel(el,7);
n7=iel(el,8);
n8=iel(el,9);
fprintf(fid,'%u,%u,%u,%u,%u,%u,%u,%u,%u\r\n',...
id,n1,n2,n3,n4,n5,n6,n7,n8);
%Evaluate if nodes belong to the 'ring' of elements located
%immediately close to the wall ,...
store elem number in an array

if jj==1 && ii<=(nelz+2);
%This should define an extra ring of
%soil right below the caisson tip
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soil_r(ii,kk)=id;
end
if jj==2 && ii<=(nelz+2);
soil_r2(ii,kk)=id;
end
end
end
end
%print 'soil-rings' stored in array soil_r;
for ii=1:(nelz+2);
fprintf(fid,'*ELSET ,␣ELSET=SOILCIRC%u\r\n',ii);
for jj=1:neltheta;
fprintf(fid,'%u\r\n',soil_r(ii,jj));
end
end
for ii=1:(nelz+2);
fprintf(fid,'*ELSET ,␣ELSET=SOILCIRCOUT%u\r\n',ii);
for jj=1:neltheta;
fprintf(fid,'%u\r\n',soil_r2(ii,jj));
end
end
%print 'soil-rings' stored in array soil_in_r;
for ii=1:(nelz+2);
fprintf(fid,'*ELSET ,␣ELSET=SOILCIRCIN%u\r\n',ii);
for jj=1:neltheta;
fprintf(fid,'%u\r\n',soil_in_r(ii,jj));
end
end
%print core elements layer by layer
nelplane=(2*ncore)^2;
for ii=1:nelztotal
fprintf(fid,'*ELEMENT ,␣TYPE=C3D8 ,ELSET=CORE%u\r\n',ii);
for mm=1:nelplane
el=nelplane*(ii-1)+mm;
id=elcore(el,1);
n1=elcore(el,2);
n2=elcore(el,3);
n3=elcore(el,4);
n4=elcore(el,5);
n5=elcore(el,6);
n6=elcore(el,7);
n7=elcore(el,8);
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n8=elcore(el,9);
fprintf(fid,'%u,%u,%u,%u,%u,%u,%u,%u,%u\r\n',...
id,n1,n2,n3,n4,n5,n6,n7,n8);
end
end
%print infinite elements layer by layer
for ii=1:nelztotal
fprintf(fid,'*ELEMENT ,␣TYPE=CIN3D8 ,ELSET=ILAYER%u\r\n',ii);
for kk=1:neltheta
el=elinf(ii,kk);
id=iel(el,1);
n1=iel(el,2);
n2=iel(el,3);
n3=iel(el,4);
n4=iel(el,5);
n5=iel(el,6);
n6=iel(el,7);
n7=iel(el,8);
n8=iel(el,9);
fprintf(fid,'%u,%u,%u,%u,%u,%u,%u,%u,%u\r\n',...
id,n1,n2,n3,n4,n5,n6,n7,n8);
end
end
%print shell elements layer by layer
fprintf(fid,'*ELEMENT ,␣TYPE=C3D8I ,ELSET=PILE\r\n');
for ijk=1:nelshell
el=elshell(ijk);
id=iel(el,1);
n1=iel(el,2);
n2=iel(el,3);
n3=iel(el,4);
n4=iel(el,5);
n5=iel(el,6);
n6=iel(el,7);
n7=iel(el,8);
n8=iel(el,9);
fprintf(fid,'%u,%u,%u,%u,%u,%u,%u,%u,%u\r\n',...
id,n1,n2,n3,n4,n5,n6,n7,n8);
end
%print pile element rings
dumdum3=0;
for ii=1:nelz;
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fprintf(fid,'*ELSET ,␣ELSET=PILERING -%u\r\n',ii);
for jj=1:neltheta;
dumdum3=dumdum3+1;
if jj<neltheta;
fprintf(fid,'%u,\r\n',elshell(dumdum3));
elseif jj==neltheta;
fprintf(fid,'%u\r\n',elshell(dumdum3));
end
end
end
%print 'middle' soil elements layer by layer
countf=0;
for ijk=(nelz+1):nelztotal;
fprintf(fid,'*ELEMENT ,␣TYPE=C3D8 ,ELSET=MIDDLE%u\r\n',ijk);
for kk=1:neltheta
countf=countf+1;
el=elmiddle(countf);
id=iel(el,1);
n1=iel(el,2);
n2=iel(el,3);
n3=iel(el,4);
n4=iel(el,5);
n5=iel(el,6);
n6=iel(el,7);
n7=iel(el,8);
n8=iel(el,9);
fprintf(fid,'%u,%u,%u,%u,%u,%u,%u,%u,%u\r\n',...
id,n1,n2,n3,n4,n5,n6,n7,n8);
end
end
%Combine inner and outer soil layers
%into single element sets
for ii=1:nelztotal;
if ii<=nelz;
fprintf(fid,'*ELSET ,ELSET=LAYER%u\r\n',ii);
fprintf(fid,'CORE%u,INNERLAYER%u,...
OUTERLAYER%u\r\n',ii,ii,ii);
elseif ii>nelz;
fprintf(fid,'*ELSET ,ELSET=LAYER%u\r\n',ii);
fprintf(fid,'CORE%u,INNERLAYER%u,...
OUTERLAYER%u,MIDDLE%u\r\n',ii,ii,ii,ii);
end
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end
%ADDED SEPTEMBER 29, 2014
%NEED TO MODIFY
z1=nelz; z2=nelz+1;
fprintf(fid,'*ELSET ,ELSET=SOILTIP\r\n');
fprintf(fid,'SOILCIRC%u,SOILCIRCIN%u,\r\n',z1,z1);
fprintf(fid,'SOILCIRC%u,SOILCIRCIN%u,\r\n',z2,z2);
fprintf(fid,'MIDDLE%u\r\n',z2);
%ADDED SEPTEMBER 29, 2014
fprintf(fid,'*ELSET ,ELSET=CYLINDER\r\n');
fprintf(fid,'PILE\r\n');
for ii=1:nelz;
fprintf(fid,'CORE%u,INNERLAYER%u\r\n',ii,ii);
end
%print bottom element set
last=mod(nelbot ,6);
tmp=elbot;
fprintf(fid,'*ELSET ,␣ELSET=ELBOT\r\n');
for i=1:6:nelbot -last
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
i1=nelbot -last+1;
i2=nelbot -last+2;
i3=nelbot -last+3;
i4=nelbot -last+4;
i5=nelbot -last+5;
if last==1
fprintf(fid,'%u\r\n',tmp(i1));
elseif last==2
fprintf(fid,'%u,%u\r\n',tmp(i1),tmp(i2));
elseif last==3
fprintf(fid,'%u,%u,%u\r\n',tmp(i1),tmp(i2),tmp(i3));
elseif last==4
fprintf(fid,'%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4));
elseif last==5
fprintf(fid,'%u,%u,%u,%u,%u\r\n',...
tmp(i1),tmp(i2),tmp(i3),tmp(i4),tmp(i5));
end
%print elements at surface of inner core (master elements)
fprintf(fid,'*ELSET ,␣ELSET=CORE_MASTER\r\n');
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tmp=mast;
for i=1:6:nmast
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
%print elements at bottom of inner core (master elements)
fprintf(fid,'*ELSET ,␣ELSET=COREBOT\r\n');
tmp=corebot;
for i=1:6:ncorebot
fprintf(fid,'%u,%u,%u,%u,%u,%u\r\n',...
tmp(i),tmp(i+1),tmp(i+2),tmp(i+3),tmp(i+4),tmp(i+5));
end
%%%%%%%%%%%%%%%%%%%%%%%%%% MATERIAL %%%%
% Solid section declaration
% pile
fprintf(fid,'*SOLID␣SECTION ,ELSET=PILE ,MATERIAL=PILE\r\n');
% soil
for ii=1:nelztotal;
fprintf(fid,'*SOLID␣SECTION ,ELSET=LAYER%u,...
MATERIAL=LAYER%u\r\n',ii,ii);
end
% infinite
for ii=1:nelztotal;
fprintf(fid,'*SOLID␣SECTION ,ELSET=ILAYER%u,...
MATERIAL=ILAYER%u\r\n',ii,ii);
end
%Tip Elements (almost no shear strength)
fprintf(fid,'*SOLID␣SECTION ,␣ELSET=SOILTIP ,...
MATERIAL=WEAKSOIL\r\n');
%Elements in contact with the wall
for ii=1:nelztotal;
fprintf(fid,'*SOLID␣SECTION ,ELSET=SOILCIRC%u,...
MATERIAL=SOILCIRC%u\r\n',ii,ii);
end
%material properties definition
% pile
fprintf(fid,'*MATERIAL ,NAME=PILE\r\n');
fprintf(fid,'*ELASTIC ,TYPE=ISOTROPIC\r\n');
fprintf(fid,'1E+12,0.3,0.0\r\n');
% soil
for ii=1:nelztotal;
su=su0+k*(ii -0.5)*delz;
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E=150*su;
mu=0.49;
fprintf(fid,'*MATERIAL ,NAME=LAYER%u\r\n',ii);
fprintf(fid,'*ELASTIC ,TYPE=ISOTROPIC\r\n');
fprintf(fid,'%u,%u,0.0\r\n',E,mu);
fprintf(fid,'*MOHR␣COULOMB\r\n');
fprintf(fid,'0.0␣␣␣ ,0.0\r\n');
fprintf(fid,'*MOHR␣COULOMB␣HARDENING\r\n');
fprintf(fid,'%u\r\n',su);
end
% soil in contact
for ii=1:nelztotal;
su=alpha_out*(su0+k*(ii -0.5)*delz);
E=150*su;
mu=0.49;
fprintf(fid,'*MATERIAL ,NAME=SOILCIRC%u\r\n',ii);
fprintf(fid,'*ELASTIC ,TYPE=ISOTROPIC\r\n');
fprintf(fid,'%u,%u,0.0\r\n',E,mu);
fprintf(fid,'*MOHR␣COULOMB\r\n');
fprintf(fid,'0.0␣␣␣ ,0.0\r\n');
fprintf(fid,'*MOHR␣COULOMB␣HARDENING\r\n');
fprintf(fid,'%u\r\n',su);
end
% infinite
for ii=1:nelztotal;
su=su0+k*(ii -0.5)*delz;
E=150*su;
mu=0.49;
fprintf(fid,'*MATERIAL ,NAME=ILAYER%u\r\n',ii);
fprintf(fid,'*ELASTIC ,TYPE=ISOTROPIC\r\n');
fprintf(fid,'%u,%u,0.0\r\n',E,mu);
end
%Weak soil
fprintf(fid,'*MATERIAL ,NAME=WEAKSOIL\r\n');
fprintf(fid,'*ELASTIC ,␣TYPE=ISOTROPIC\r\n');
su_r=su_rf*(su0+k*(L)); mu=0.49;
E=150*su_r;
fprintf(fid,'%u,%u,0.0\r\n',E,mu);
fprintf(fid,'*MOHR␣COULOMB\r\n');
fprintf(fid,'0.0␣␣␣ ,0.0\r\n');
fprintf(fid,'*MOHR␣COULOMB␣HARDENING\r\n');
fprintf(fid,'%u\r\n',su_r);
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% %%%%%%%%%%%%%%%%%% INITIAL CONDITIONS %%%%
sigze=-gamma*100;
fprintf(fid,'*INITIAL␣CONDITIONS ,...
TYPE=STRESS ,GEOSTATIC\r\n');
fprintf(fid,'PILE ,0.0,0.0,%u,-100.0,0.55,0.55\r\n',sigze);
for ii=1:nelztotal;
fprintf(fid,'LAYER%u,0.0,0.0,%u,...
-100.0,0.55,0.55\r\n',ii,sigze);
end
for ii=1:nelztotal;
fprintf(fid,'ILAYER%u,0.0,0.0,%u,...
-100.0,0.55,0.55\r\n',ii,sigze);
end
%%%%%%%%%%%%%%%%%%%%% RIGID PADEYE STIFFENER %%
if padstiff==1
fprintf(fid,'*KINEMATIC␣COUPLING ,REF␣NODE=%u\r\n',padtop);
fprintf(fid,'%u,1,3\r\n',padtop+neltheta/2);
fprintf(fid,'*KINEMATIC␣COUPLING ,REF␣NODE=%u\r\n',padmid);
fprintf(fid,'%u,1,3\r\n',padmid+neltheta/2);
fprintf(fid,'*KINEMATIC␣COUPLING ,REF␣NODE=%u\r\n',padbot);
fprintf(fid,'%u,1,3\r\n',padbot+neltheta/2);
end
%%%%%%%%%%%%%%%%%%%%% CONSTRAINT EQUATION %%
% ratio=(zpad-zpad2)/(zpad1-zpad2);
% A1=ratio;
% A2=1-ratio;
% DOF=1;
% load=-1;
% fprintf(fid,'*EQUATION\r\n');
% fprintf(fid,'3\r\n');
% fprintf(fid,'%u,%u,%u\r\n',pad1,DOF,A1);
% fprintf(fid,'%u,%u,%u\r\n',pad2,DOF,A2);
% fprintf(fid,'%u,%u,%u\r\n',pad,DOF,load);
%%%%%%%%% TIE INNER CORE ELEMENTS TO MESH %%%
fprintf(fid,'*SURFACE ,TYPE=ELEMENT ,NAME=CORE_MASTER\r\n');
fprintf(fid,'CORE_MASTER ,S6\r\n');
fprintf(fid,'*SURFACE ,TYPE=NODE ,NAME=CORE_SLAVE\r\n');
fprintf(fid,'CORE_SLAVE\r\n');
fprintf(fid,'*TIE,NAME=CORE\r\n');
fprintf(fid,'CORE_SLAVE ,CORE_MASTER\r\n');
%%%%%%%%%%%%%%%%%%%%%% RIGID TOP CAP %%
if topcap==1
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fprintf(fid,'*NSET ,NSET=CAP\r\n');
fprintf(fid,'INNER_TOP_SOIL ,CORETOP ,PILETOP\r\n');
fprintf(fid,'*NODE ,NSET=NODE_999\r\n');
fprintf(fid,'999,0.0,0.0,0.0\r\n');
fprintf(fid,'*RIGID␣BODY ,PIN␣NSET=CAP,REFNODE=999\r\n');
end
%%%%%%%%%%%%%%%%%% SURFACE DEFINITIONS %
%nomenclature
% NODE sets defining soil surfaces: INNERLAYERn , OUTERLAYERn
% ELEMENT sets defining pile:
%PILE (S6=inner surface, S4=outer surface))
% SURFACE names for soils: SLINn, SLOUTn
% SURFACE names for pile: PILEIN, PILEOUT
% INTERACTION names: SOILINn, SOILOUTn
% n=soil layer number
%define surfaces as needed for slip boundaries
%inner surface
if slip_in==1
%pile
fprintf(fid,'*SURFACE ,TYPE=ELEMENT ,NAME=PILEIN\r\n');
fprintf(fid,'PILE ,S6\r\n');
%soil
for ii=1:nelz+1
fprintf(fid,'*SURFACE ,TYPE=NODE ,NAME=SLIN%u\r\n',ii);
fprintf(fid,'INNERLAYER%u\r\n',ii);
end
%soil below pile
for ii=1:nelztotal -nelz;
fprintf(fid,'*SURFACE ,TYPE=NODE ,NAME=SLINbot2%u\r\n',ii);
fprintf(fid,'INNERLAYERbot%u\r\n',ii);
end
end
%outer surface
if slip_out==1
%pile
fprintf(fid,'*SURFACE ,TYPE=ELEMENT ,NAME=PILEOUT\r\n');
fprintf(fid,'PILE ,S4\r\n');
%soil around pile
for ii=1:nelz+1
fprintf(fid,'*SURFACE ,TYPE=NODE ,NAME=SLOUT%u\r\n',ii);
fprintf(fid,'OUTERLAYER%u\r\n',ii);
end
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%soil below pile
for ii=1:nelztotal -nelz;
fprintf(fid,'*SURFACE ,TYPE=NODE ,NAME=SLOUTbot2%u\r\n',ii);
fprintf(fid,'OUTERLAYERbot%u\r\n',ii);
end
end
%%%%%%%%%%%%%%%%%%%%%% CONTACT PAIRS %%%%
%define contacts between surfaces
%inner pile boundary and inner soil
if slip_in==1
for ii=1:nelz+1
fprintf(fid,'*CONTACT␣PAIR ,INTERACTION=SOILIN%u,...
ADJUST=INNERLAYER%u,SMALL␣SLIDING\r\n',ii,ii);
fprintf(fid,'SLIN%u,PILEIN\r\n',ii);
end
end
%outer pile boundary and inner soil
if slip_out==1
for ii=1:nelz+1
fprintf(fid,'*CONTACT␣PAIR ,INTERACTION=SOILOUT%u,...
ADJUST=OUTERLAYER%u,SMALL␣SLIDING\r\n',ii,ii);
fprintf(fid,'SLOUT%u,PILEOUT\r\n',ii);
end
end
%%%%%%%%%%%%%%%%%%% SURFACE INTERACTIONS %%%
%inner pile boundary and inner soil
if slip_in==1
for ii=1:nelz+1
su=su0+k*ii*delz;
taumax=alpha_in*su;
fprintf(fid,'*SURFACE␣INTERACTION ,␣NAME=SOILIN%u\r\n',ii);
fprintf(fid,'*FRICTION ,␣TAUMAX=%u\r\n',taumax);
fprintf(fid,'1,\r\n');
end
end
%outer pile boundary and outer soil
if slip_out==1
for ii=1:nelz+1
su=su0+k*ii*delz;
taumax=alpha_out*su;
fprintf(fid,'*SURFACE␣INTERACTION ,␣NAME=SOILOUT%u\r\n',ii);
fprintf(fid,'*FRICTION ,␣TAUMAX=%u\r\n',taumax);

222



fprintf(fid,'1,\r\n');
end
end
%%%%%%%%%%%%%%%%%%%%%% COUPLING %%%
if slip_in==0
for ijk=1:n_inner_soil_surface
slave=inner_soil_surface(ijk);
master=slave+1000000;
fprintf(fid,'*KINEMATIC␣COUPLING ,REF␣NODE=%u\r\n',master);
fprintf(fid,'%u,1,3\r\n',slave);
end
end
if slip_out==0
for ijk=1:n_outer_soil_surface
slave=outer_soil_surface(ijk);
master=slave+1000000;
fprintf(fid,'*KINEMATIC␣COUPLING ,REF␣NODE=%u\r\n',master);
fprintf(fid,'%u,1,3\r\n',slave);
end
end
for ijk=1:n_outer_soil_surface2
slave=outer_soil_surface2(ijk);
master=slave+1000000;
fprintf(fid,'*KINEMATIC␣COUPLING ,REF␣NODE=%u\r\n',master);
fprintf(fid,'%u,1,3\r\n',slave);
end
for ijk=1:n_inner_soil_surface2
slave=inner_soil_surface2(ijk);
master=slave+1000000;
fprintf(fid,'*KINEMATIC␣COUPLING ,REF␣NODE=%u\r\n',master);
fprintf(fid,'%u,1,3\r\n',slave);
end
%%%%%%% CREATING RIGID BODY %%%%%%%%%%%%
fprintf(fid,'**\r\n');
fprintf(fid,'*RIGID␣BODY ,...
␣TIE␣NSET=PILE ,␣REF␣NODE=LOADINGNODE\r\n');
fprintf(fid,'**\r\n');
%%%%%%%%% BOUNDARY CONDITIONS %%%%%%%%%%%%%%%
botcl=nelz(1)*10000;
% fprintf(fid,'*NSET,NSET=BOTCL\r\n');
% fprintf(fid,'%u\r\n',botcl);
fprintf(fid,'*BOUNDARY\r\n');
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fprintf(fid,'BOTTOM_INFINITE ,3,3,0.0\r\n');
fprintf(fid,'BOTTOM ,3,3,0.0\r\n');
%%%%%%%%%%%%%%%%%%%%%% LOADING %%%
fprintf(fid,'*RESTART ,WRITE ,FREQ=1000\r\n');
pbottom=gamma*L;
%GEOSTATIC
fprintf(fid,'*STEP\r\n');
fprintf(fid,'*GEOSTATIC\r\n');
fprintf(fid,'*DLOAD\r\n');
fprintf(fid,'PILE ,BZ,-%u\r\n',gamma);
for ii=1:nelztotal;
fprintf(fid,'LAYER%u,BZ,-%u\r\n',ii,gamma);
end
% fprintf(fid,'*DLOAD\r\n');
% fprintf(fid,'ELBOT,P1,%u\r\n',pbottom);
% fprintf(fid,'COREBOT,P1,%u\r\n',pbottom);
fprintf(fid,'*OUTPUT ,FIELD ,FREQ=1000\r\n');
fprintf(fid,'*ELEMENT␣OUTPUT\r\n');
fprintf(fid,'S,␣NFORC\r\n');
fprintf(fid,'*NODE␣OUTPUT\r\n');
fprintf(fid,'U\r\n');
fprintf(fid,'RF\r\n');
fprintf(fid,'*END␣STEP\r\n');
% %
% %GENERAL LOADING
% for step=1:nstep
% fprintf(fid,'*STEP\r\n');
% fprintf(fid,'*STATIC\r\n');
% fprintf(fid,'0.05,1.0,0.01\r\n');
% fprintf(fid,'*BOUNDARY , TYPE=DISPLACEMENT\r\n');
% fprintf(fid,'PADEYE ,1, 1, 0.1\r\n');
% fprintf(fid,'*OUTPUT,FIELD,FREQ=99\r\n');
% fprintf(fid,'*ELEMENT OUTPUT\r\n');
% fprintf(fid,'S\r\n');
% fprintf(fid,'*NODE OUTPUT\r\n');
% fprintf(fid,'U\r\n');
% fprintf(fid,'RF\r\n');
% fprintf(fid,'*END STEP\r\n');
% end
dispstep=0;
rotstep=0;
%GENERAL DISPLACEMENT
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for step=1:nstep
fprintf(fid,'*STEP ,␣NAME=LOADING -%u,␣INC=1000\r\n',step);
fprintf(fid,'*STATIC\r\n');
fprintf(fid,'0.05,1.0,0.01\r\n');
fprintf(fid,'*BOUNDARY ,␣TYPE=DISPLACEMENT\r\n');
if disptot >0;
dispstep=dispstep+disptot/nstep;
fprintf(fid,'LOADINGNODE ,␣1,␣1,␣%u\r\n',dispstep);
end
if rottot >0;
rotstep=rotstep+rottot/nstep;
fprintf(fid,'LOADINGNODE ,␣5,␣5,␣%u\r\n',rotstep);
end
if step==nstep;
fprintf(fid,'**********************\r\n');
fprintf(fid,'**␣.DAT␣PRINT␣OUTPUT\r\n');
fprintf(fid,'**********************\r\n');
fprintf(fid,'*NODE␣PRINT ,␣FREQ=1,NSET=LOADINGNODE\r\n');
fprintf(fid,'U,\r\nRF\r\n');
end
fprintf(fid,'**********************\r\n');
fprintf(fid,'**␣.ODB␣FIELD␣OUTPUT\r\n');
fprintf(fid,'**********************\r\n');
fprintf(fid,'*OUTPUT ,FIELD ,FREQUENCY=1\r\n');
fprintf(fid,'*ELEMENT␣OUTPUT\r\n');
fprintf(fid,'S,␣E,␣PE,␣NFORC\r\n');
fprintf(fid,'*NODE␣OUTPUT\r\n');
fprintf(fid,'U\r\n');
fprintf(fid,'RF\r\n');
fprintf(fid,'*END␣STEP\r\n');
fprintf(fid,'**\r\n**\r\n');
end
fclose(fid);
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APPENDIX B

MURFF-HAMILTON FUNCTION

function [FMH]=murff_hamilton_check(opt,var)
%Rename fixed variables
R=var(1);
Lf=var(2);
tw=var(3);
sum=var(4);
k=var(5);
eta=var(6);
v0=var(7);
lap=var(8);
Li=var(9);
gamma=var(10);
cas=var(11);
suc=var(12);
if cas==1;
L0=var(13);
end
%Rename opt variables
if cas==2;
L0=opt(1);
z0=opt(2);
r0=opt(3);
alpha=opt(4);
else
z0=opt(1);
r0=opt(2);
alpha=opt(3);
end
%Additional variable(s)
inc=100; %Spatial discretization for integration
cc=z0/L0;
%Lateral Bearing Factor from [RH1984]
%plane strain solution
if eta==0;
Np_RH=9.14;
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elseif eta==1;
Np_RH=11.94;
else
Np_RH=9.14+(11.94-9.14)*eta;
end
%COMPUTE DISSIPATION TERMS (INTERNAL WORK)
%==================== Compute D1dot ====================
%Reference: [MH1993, P104, Eq27]
%spatial discretization
dr=(r0-R)/inc;
dtheta=pi/2/inc;
dztarget=z0/inc;
%perform triple integration for D1dot
D1dot=0;
for ii=1:inc
r=R+dr*(ii -1+0.5);
zmax=z0*(r0-r)/(r0-R);
incz=round(zmax/dztarget);
dz=zmax/incz;
for jj=1:incz
z=dz*(jj -1+0.5);
su=sum+k*z; %soil strength
for kk=1:inc
theta=dtheta*(kk -1+0.5);
%g and its derivatives
g=v0*(alpha -1)*R^alpha/(r^(1+alpha))*cos(theta);
dgdr=-(R^alpha*v0*cos(theta)*(alpha -1)*...
(alpha+1))/r^(alpha+2);
dgdtheta=-(R^alpha*v0*sin(theta)*...
(alpha - 1))/r^(alpha + 1);
%h and its derivatives
h=v0*z0*cos(theta)*(R/r)^alpha*(r0-r)/(r0-R)*(-1/(r0-r)...
+cc/(r0-R)+(((1-alpha)/r)*(1-0.5*cc*(r0-r)/(r0-R))));
dhdr=(v0*z0*cos(theta)*(R/r)^alpha*(1/(r - r0) ...
- cc/(R - r0) + (((cc*(r - r0))/(2*(R - r0)) - 1)*...
(alpha - 1))/r))/(R - r0) - (v0*z0*cos(theta)*(R/r)...
^alpha*(r - r0)*(1/(r - r0)^2 + (((cc*(r - r0))/...
(2*(R - r0)) - 1)*(alpha - 1))/r^2 - (cc*(alpha - 1))/...
(2*r*(R - r0))))/(R - r0) - (R*alpha*v0*z0*cos(theta)*...
(R/r)^(alpha - 1)*(r - r0)*(1/(r - r0) - cc/(R - r0) + ...
(((cc*(r - r0))/(2*(R - r0)) - 1)*(alpha - 1))/r))/...
(r^2*(R - r0));
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dhdtheta=-(v0*z0*sin(theta)*(R/r)^alpha*(r - r0)*...
(1/(r - r0) - cc/(R - r0) + (((cc*(r - r0))/...
(2*(R - r0)) - 1)*(alpha - 1))/r))/(R - r0);
%radial velocity and its derivatives (dvrdz=0)
vr=v0*(R/r)^alpha*(1-cc*z/z0)*cos(theta);
dvrdr=(R*alpha*v0*cos(theta)*((cc*z)/z0 - 1)*...
(R/r)^(alpha - 1))/r^2;
dvrdtheta=v0*sin(theta)*((cc*z)/z0 - 1)*(R/r)^alpha;
dvrdz=-(cc*v0*cos(theta)*(R/r)^alpha)/z0;
%vertical velocity and its derivatives
vz=g*(z-cc*z^2/(2*z0))+h;
dvzdr=dgdr*(z-cc*z^2/(2*z0))+dhdr;
dvzdz=g*(1-cc*z/z0);
dvzdtheta=dgdtheta*(z-cc*z^2/2/z0)+dhdtheta;
%strain rates
errdot=dvrdr;
ettdot=vr/r;
ezzdot=dvzdz;
ertdot=1/2*(dvrdtheta/r);
etzdot=1/2*(dvzdtheta/r);
ezrdot=1/2*(dvzdr+dvrdz);
%energy dissipation per unit volume
sumsquare=errdot^2+ettdot^2+ezzdot^2;
sumsquare=sumsquare+2*(ertdot^2+etzdot^2+ezrdot^2);
E1dot=su*sqrt(2*sumsquare);
D1dot=D1dot+E1dot*r*dtheta*dz*dr;
end
end
end
D1dot=2*D1dot;
%==================== Compute D2dot ====================
%Reference: [MH1993, P105, Eq32]
%Spatial Discretization
D2dot=0;
dz=z0/inc;
%Perform Integration
for jj=1:inc
z=dz*(jj -1+0.5);
%Soil Strength
su=sum+k*z;
%Integration
denom=(r0-z/z0*(r0-R))^(alpha -1);
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D2dot=D2dot+(su*R^alpha*(1-cc*z/z0)/denom)*dz;
end
C1=2*v0*sqrt(1+(z0/(r0-R))^2)*sqrt(1+((R-r0)/z0)^2);
%Compute Dissipation
D2dot=C1*D2dot;
%==================== Compute D3dot ====================
%Reference: [MH1993, P105, Eq36]
%Spatial Discretization
dz=z0/inc; dtheta=pi/2/inc;
%Initialize D3dot
D3dot=0;
%Perform double integration
for ii=1:inc;
z=dz*(ii -1+0.5);
%Soil Strength
su=sum+k*z;
for jj=1:inc;
theta=dtheta*(jj -1+0.5);
%Compute circumferential slip velocity (vc)
%vc=v0*sin(theta);
%CORRECTION FOR CIRCUMFERENTIAL SLIP VELOCITY (vc)
vc=v0*(1-cc*z/z0)*sin(theta);
%Compute vertical slip [MH1993, Eq21, 22 & 25]
%Get g
g=v0*(alpha -1)*R^alpha/(r^(1+alpha))*cos(theta);
%Get h
h=v0*z0*cos(theta)*(R/r)^alpha*(r0-r)/...
(r0-R)*(-1/(r0-r)+cc/(r0-R)+(((1-alpha)/r)*...
(1-0.5*cc*(r0-r)/(r0-R))));
%Vertical Slip
vz=g*(z-cc*z^2/(2*z0))+h;
%Perform Integration
D3dot=D3dot+eta*su*R*sqrt(vc^2+vz^2)*dtheta*dz;
end
end
D3dot=2*D3dot;
%============= Compute D4dot and D5dot ===
%Note: D5dot is dependent on
%whether the center of rotation (herein defined
%by 'cc' falls withing the length of
%the pile or outside (below or above)
%the pile.
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%Reference: [MH1993 P105 Eq37 to 40]
%Initialize D4dot
D4dot=0;
D5dot=0;
if (L0)<abs(Lf);
%In cases in which the center of
%rotation is contained within the
%length of the pile, the next two
%integrals are required in order to
%compute D4dot and D5dot
%Integration limits for D4dot
zp_a=0; zp_b=(z0/cc)-z0;
%Spatial discretization
dzp=(zp_b -zp_a)/inc;
%Perform integration
for ii=1:inc;
z=z0+dzp*(ii -1+0.5);
%Soil Strength
su=sum+k*z;
zp=(z0/cc)-z;
D4dot=D4dot+v0*zp*(cc/z0)*su*Np_RH*R*dzp;
end
D4dot=2*D4dot;
%Integration limits for D5dot
zp_c=0; zp_d=Lf-(z0/cc);
%Spatial discretization
dzp=(zp_d -zp_c)/inc;
%Perform integration
for ii=1:inc;
z=z0/cc+dzp*(ii -1+0.5);
%Soil Strength
su=sum+k*z;
zp=z-(z0/cc);
D5dot=D5dot+v0*zp*(cc/z0)*su*Np_RH*R*dzp;
end
D5dot=2*D5dot;
elseif (L0)>abs(Lf);
%In cases in which the center of
%rotation falls outside the length of
%the pile (i.e. either above or below
%the pile), then the term D5dot is
%neglected and D4dot is computed as follows
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%Integration limits for D4dot
zp_a=(z0/cc)-Lf; zp_b=(z0/cc)-z0;
%Spatial discretization
dzp=(zp_b -zp_a)/inc;
%Perform integration
for ii=1:inc;
z=z0+dzp*(ii -1+0.5);
%Soil Strength
su=sum+k*z;
zp=(z0/cc)-z;
% %Soil Strength
% su=sum+k*((z0/cc)-zp);
D4dot=D4dot+v0*zp*(cc/z0)*su*Np_RH*R*dzp;
end
D4dot=2*D4dot;
end
%NOTE: Dissipation term for the
%formation of a plastic hinge has not been
%included in this version of the program.
%This program is mainly developed
%to be applied to large diameter piles
%and caissons. If the program is
%going to be modified in order to
%include the plastic hinge, then the term
%needs to be added.
%====== Compute D6dot (Tip Resistance) ==
%Reference: [MH1993 P106 Eq43]
R1=abs(Lf-L0);
R2=sqrt(R1^2+R^2);
%double integration
%inc=150;
wmax=asin(R/R2);
dw=wmax/inc;
dphi=2*pi/inc;
D6dot=0;
for i=1:inc;
phi=dphi*(i-1)+dphi/2;
for j=1:inc;
w=dw*(i-1)+dw/2;
if z0/cc<Lf
z_loc=(z0/cc)+R2*cos(w);
else
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z_loc=(z0/cc)-R2*cos(w);
end
su=sum+k*(z_loc);
f=sqrt(cos(w)^2+sin(w)^2*sin(phi)^2)*sin(w);
D6dot=D6dot+f*su*dw*dphi;
end
end
D6dot=v0*R2^3*cc*D6dot/z0;
%WORK DONE BY SOIL WEIGHT IN A GRAVITATIONAL FIELD
%==================== Compute W1dot ====================
%Reference: [MH1993, P106, Eq42]
%spatial discretization
dr=(r0-R)/inc;
dtheta=pi/2/inc;
dztarget=z0/inc;
%Perform triple integration for W1dot
W1dot=0;
for ii=1:inc
r=R+dr*(ii -1+0.5);
zmax=z0*(r0-r)/(r0-R);
incz=round(zmax/dztarget);
dz=zmax/incz;
for jj=1:incz
z=dz*(jj -1+0.5);
su=sum+k*z; %soil strength
for kk=1:inc
theta=dtheta*(kk -1+0.5);
%Compute vertical slip [MH1993, Eq21, 22 & 25]
%Get g
g=v0*(alpha -1)*R^alpha/(r^(1+alpha))*cos(theta);
%Get h
h=v0*z0*cos(theta)*(R/r)^alpha*(r0-r)/(r0-R)*...
(-1/(r0-r)+cc/(r0-R)+(((1-alpha)/r)*...
(1-0.5*cc*(r0-r)/(r0-R))));
%Vertical Slip
%vz=g*(z)+h;
vz=g*(z-cc*z^2/(2*z0))+h;
W1dot=W1dot+vz*gamma*r*dtheta*dz*dr;
end
end
end
W1dot=2*W1dot;
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%These next lines should go after
%all the possible cases that exist
suavg=(sum+(sum+k*Lf))/2;
if suc==2;
D1dot=2*D1dot;
D2dot=2*D2dot;
D3dot=2*D3dot;
W1dot=0;
end
if cas==2
vi=v0*abs(L0-Li)/L0;
FMH=(D1dot+D2dot+D3dot+D4dot+D5dot+D6dot -W1dot)/vi;
elseif cas==1
FMH=(D1dot+D2dot+D3dot+D4dot+D5dot+D6dot -W1dot)/v0;
end
FMH
NMH=FMH/(2*R*Lf*suavg)
disp('D1dot␣D2dot␣D3dot␣D4dot␣D5dot␣D6dot␣W1dot');
Dissip=[D1dot D2dot D3dot D4dot D5dot D6dot W1dot]
if cas==1
disp('z0␣␣␣␣r0␣␣␣␣alpha');
optimization_var=[z0 r0 alpha]
elseif cas==2
%disp('L0 z0 r0 alpha ');
optimization_var=[L0 z0 r0 alpha];
end
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