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ABSTRACT 

In this dissertation, I will present my research work on two different topics. The first topic 

is production data analysis of low-permeability well. The second topic is a quantitative 

evaluation of key completion controls on shale oil production.  

In Topic 1, I propose and investigate two novel methodologies that can be applied to 

improve the results of low-permeability well decline curve analysis. Specifically, I first 

proposed an iterative two-stage optimization algorithm for decline curve parameter 

estimation on the basis of two-segment hyperbolic model. This algorithm can be applied 

to find optimal parameter results from the production history data. By making use of a 

useful relation that exits between material balance time (MBT) and the original production 

profile, we propose a three-step diagnostic approach for the preliminary analysis of 

production history data, which can effectively assist us in identifying fluid flow regimes 

and increase our confidence in the estimation of decline curve parameters. The second 

approach is a data-driven method for primary phase production forecasting. Functional 

principal component analysis (fPCA) is applied to extract key features of production 

decline patterns on basis of multiple wells with sufficiently long production histories. A 

predictive model is then built using principal component functions obtained from the 

training production data set. Finally, we make predictions for the test wells to assess the 

quality of prediction with reference to true production data. Both methods are validated 

using field data and the accuracy of production forecasts gives us confidence in the new 

approaches.  
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In Topic 2, generalized additive model (GAM) is applied to investigate possibly nonlinear 

associations between production and key completion parameters (e.g., completed lateral 

length, proppant volume per stage, fluid volume per stage) while accounting for the 

influence of different geological environments on hydrocarbon production. The geological 

cofounding effect is treated as a random clustered effect and incorporated in the GAM 

model by means of a state-of-the-art statistical machine learning method graphic fused 

LASSO. We provide several key findings on the relation between completion parameters 

and hydrocarbon production, which provide guidance in the development of efficient 

completion practices.  
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NOMENCLATURE 

𝑏𝑖 Arps 𝑏 parameter in transient flow regime 

𝑏𝑓 Arps 𝑏 parameter in boundary dominant flow regime 

𝐷𝑖 Initial decline rate,       1/D 

𝐷min  Minimum decline rate, 1/D 

𝐷∞  Power law decline at “infinite time” constant, 1/D 

𝐺𝑝  Oil cumulative production, bbl 

𝑞𝑖 Initial production rate, bbl/D  

𝑞1  Production rate at Day 1, bbl/D 

𝑞∞  Production rate at “infinite time”, bbl/D 

𝑡𝑐  Switching time from transient flow to boundary dominant flow 

𝜏  Characteristic time in stretch exponential model, 1/D 

𝛽𝑙 Constant for late-time period in extended exponential model 

𝛽𝑒  Constant for early-time period in extended exponential model 

ACE Alternating conditional expectation 

BDF Boundary dominant flow 

CI Confidence interval 

DCA Decline curve analysis 

DEN Rock density 

EEDCA Empirical extended exponential model 

EUR Estimated ultimate recovery 
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fPCA Functional principal component analysis 

GAM Generalized additive model 

GR Gamma ray 

GOR Gas Oil Ratio, scf/STB 

LOO Leave one out 

LASSO Least absolute shrinkage and selection operator 

MBT Material balance time 

MCMC Markov Chain Monte Carlo 

MSE Mean square error 

NEU_LIM Neutron porosity 

PCA Principal component analysis 

RESDEP Deep resistivity    

SSE Sum of square error                          

WOR Water Oil Ratio, bbl/STB 
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CHAPTER I  

INTRODUCTION 

The US shale oil boom has reshaped the global energy landscape (Holditch 2010) and 

according to preliminary estimates published recently by the Energy Department, the 

United States is the world’s largest producer of crude oil for the first time since 1973 

(Figure 1). This great economic success in developing these resources have been largely 

driven by the advances in drilling technologies such as multistage horizontal well drilling 

and multistage fracturing. However, the lack of sufficient knowledge in physical 

properties and the physics controlling production from shale formation limits our ability 

to model and forecast with confidence production and reserves from these important plays. 

Advances in the industry’s ability to forecast future production more accurately impacts 

financial forecasts, perceived asset values and accuracy of reserves disclosed to the public.  

 

 

Figure 1: Monthly crude oil production 
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A variety of tools have been developed for reserve evaluation and production forecasting 

in the petroleum industry. One approach most frequently used in industry is history 

matching through numerical simulation (Aziz, K. and Settari, A. 1979). This method 

incorporates the observed production data into the geological model by calibration. Once 

unknown reservoir and well properties are determined through history matching, the 

improved numerical model can be used to forecast future production and remaining 

reserves. The advantage of this method is that it accounts for complex reservoir 

heterogeneity, rock compaction, pressure dependence of reservoir fluid properties and 

many other important features of shale reservoirs. The disadvantage is that this method 

requires much work in reservoir characterization and numerical simulation, which is 

typically time consuming. For unconventional reservoirs, fracture geometry, distribution 

and connections are difficult to characterize and therefore, construction of a robust 

detailed numerical model can be difficult, and requires extensive manpower, cost, time 

and data collection.  

 

In practice, decline curve analysis (DCA) is a quick and efficient method for engineers to 

make prediction on well future production. However, it turns out that the traditional Arps 

equation (Arps 1944) is not applicable to ultra-low permeability formations because 

production data from these shale wells differ significantly from conventional production 

data. As a result, a large amount of work has been done for unconventional well decline 

curve analysis and a review of different decline curve models will be given in next section.  
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1.1 Decline curve literature review 

In the study of production data from unconventional reservoirs, engineers always have the 

difficulties of simultaneously matching the high initial production rate, extremely sharp 

decline rate in the transient period, and shallow declines in the boundary-dominated flow 

(BDF) period. In the early life of the shale producer, the decline rate can only be captured 

with a 𝑏 factor greater than 1, which is out of the bounds of traditional Arps equation. 

Thus, researchers have developed many different empirical models with the goal of 

finding models more suitable for low permeability reservoirs. In this section, the current 

existing decline curve model are reviewed.  

 

Ilk et al. (2008) proposed a power-law model for the production data from shale reservoirs. 

This model is a rate equation:  

 

𝑞(𝑡) = 𝑞𝑖 exp[−𝐷∞𝑡 − 𝐷𝑖𝑡
𝑛]                                                                                            (1.1) 

 

where 𝑞𝑖 is the initial flow rate; 𝐷∞ is a decline constant at “infinite time”; 𝐷𝑖 is another 

decline constant that is introduced for the fitting on the production data at early transient 

flow period; 𝑛 is an exponential index that is less than 1, but greater than 0. According to 

the definition of decline rate, 𝐷(𝑡) can be written as  

 

𝐷(𝑡) = 𝐷∞ + 𝑛𝐷𝑖𝑡
𝑛−1                                                                                                     (1.2) 
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In this model, there are four parameters to be determined.  

 

Valko et al. (2010) proposed another empirical stretched exponential model for 

unconventional production data analysis. The rate equation is given as 

 

𝑞(𝑡) = 𝑞𝑖 exp [− (
𝑡

𝜏
)
𝑛

]                                                                                                      (1.3) 

 

where 𝑞𝑖 is the initial flow rate; 𝜏 is a characteristic time parameter; 𝑛 is an exponential 

index with the value being in the domain from 0 to 1. The decline rate of this model is 

given as  

 

𝐷(𝑡) =
𝑛

𝜏
(
𝜏

𝑡
)
1−𝑛

                                                                                                              (1.4) 

 

In this model, there are three parameters to be determined.  

It turns out that these two models can be derived based on the following two conditions: 

(1) The decline rate is always positive  

 

(2) The production decline at late time is assumed to be exponential decline. 

 

Based on these two conditions, the form of rate equation should be given as follows: 

 

𝑞(𝑡) = 𝑞𝑖 exp[−(𝛽𝑙 + 𝑓(𝑡))𝑡]                                                                                        (1.5) 



 

5 

 

where 𝛽𝑙 is a nonnegative constant to account for the late-life flow rate performance and 

𝑓(𝑡) is a function we can select so that 𝑞(𝑡) will satisfy the above two conditions. The 

selection will follow some reasonable principles. The first principle for 𝑓(𝑡) is that the 

limit value of 𝑓(𝑡)  should be zero at 𝑡  goes to infinity and 𝑓(𝑡)  is a monotonically 

decreasing function (the first derivative of 𝑓(𝑡) is always negative). The expression for 

the first principle is, therefore, given as  

 

𝑓(𝑡) → 0 as 𝑡 → ∞ and 𝑓′(𝑡) < 0 for all 𝑡                                                                     (1.6) 

 

The first principle guarantees the condition 2 is automatically satisfied.  

The second principle is associated with the decline rate. The equation of decline rate is  

 

𝐷(𝑡) = 𝛽𝑙 + 𝑓(𝑡) + 𝑡𝑓′(𝑡)                                                                                               (1.7) 

 

To guarantee that 𝐷(𝑡) is always positive definite, a sufficient condition is that  

 

𝑓(𝑡) + 𝑡𝑓′(𝑡) > 0                                                                                                           (1.8) 

 

Since 𝑓′(𝑡) is required to be always negative according to (1.6), then we can write the 

condition (1.8) as  

 

1

𝑡
> −

𝑓′(𝑡)

𝑓(𝑡)
> 0                                                                                                                (1.9) 
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One solution that satisfies condition (1.9) can be easily seen  

 

−
𝑓′(𝑡)

𝑓(𝑡)
=

𝑛

𝑡
, 0 < 𝑛 < 1                                                                                                      (1.10) 

 

Then, solve equation (1.10) and we have 𝑓(𝑡) as  

 

𝑓(𝑡) = 𝐶1𝑡
−𝑛 + 𝐶2                                                                                                          (1.11) 

 

where 𝐶1 and 𝐶2 are two constants. To make sure that 𝑓(𝑡) goes to zero as 𝑡 approaches 

infinity, 𝐶2 is set to be zero. Then 𝑓(𝑡) is 𝐶1𝑡
−𝑛 with 0 < 𝑛 < 1. This solution is just the 

Power law rate equation. If 𝛽𝑙  is set to be zero, then the rate equation is reduced to 

stretched exponential model. Therefore, power law model and stretched exponential 

model both have the same origin and their difference is only whether the production 

decline at late BDF is assumed to be exponential decline or not. The stretched exponential 

model has problems in switching from linear to BDF flow regimes (Freeborn and Russel, 

2014).  

 

The Duong model (Duong, 2010) was developed specifically for low-permeability 

reservoirs. The equation of Duong model is  

 

𝐺𝑝 =
𝑞1

𝑎
𝑒

𝑎

1−𝑚
(𝑡1−𝑚−1)

                                                                                                      (1.12) 
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where 𝑞1 is rate at day 1, 𝑎 and 𝑚 are constant parameters to be determined from log
𝑞(𝑡)

𝐺𝑝
 

vs log 𝑡 and 𝑡 is in days. The estimation of 𝑎 and 𝑚 can be derived from the intercept on 

𝑦 axis and the slope, respectively. This method has been applied to some shale gas wells 

and it is found that this method is unable to work with mixed flow regimes, like switching 

from transient to BDF regimes (Freeborn and Russel, 2014). As a result, modified Duong’s 

model (Joshi and Lee, 2013) is suggested where the regression line is forced through the 

origin (𝑞∞ = 0) and a change from transient flow to boundary dominated flow is modeled 

using a hyperbolic decline of 5%.  

 

Zhang et al. (2015) proposed an empirical extended exponential decline model for shale 

reservoir. The equation of extended exponential decline model is  

 

𝑞(𝑡) = 𝑞𝑖𝑒
−𝑎𝑡                                                                                                                      (1.13) 

 

where 𝑎 = 𝛽𝑙 + 𝛽𝑒𝑒
−𝑡𝑛; 𝛽𝑙 is a constant to account for the late-life period; 𝛽𝑒 is a constant 

to account for the early transient period; 𝑛 is an empirical exponent and 𝑡 is the time in 

months. The decline rate derived from extended exponential decline model is  

 

𝐷(𝑡) = 𝛽𝑙 + 𝛽𝑒𝑒
−𝑡𝑛(1 − 𝑛𝑡𝑛)                                                                                       (1.14) 

 

The decline rate (1.14) is not always positive definite. The second term of (1.14) is not a 

monotone function. The decline rate will decrease as 𝑡 increases at early time and then at 
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some point 𝑡𝑐𝑟𝑖𝑡, the first derivative of 𝐷(𝑡) will be equal to zero. After that critical point, 

the decline rate starts to increase and the limit value of 𝐷(𝑡) is 𝛽𝑙 as 𝑡 goes to infinity. In 

other words, the value of 𝐷(𝑡) at the critical point 𝑡𝑐𝑟𝑖𝑡 is a minimum value. However, the 

minimum value of 𝐷(𝑡) is not always positive. The equation of minimum decline rate is  

 

min𝐷(𝑡) = 𝛽𝑙 − 𝛽𝑒𝑒
−
𝑛+1

𝑛                                                                                                (1.15) 

 

If 𝛽𝑙 > 𝛽𝑒𝑒
−
𝑛+1

𝑛 , 𝐷(𝑡) is always positive; otherwise, 𝐷(𝑡) can be negative, which means 

the production rate does not always decline and may increase in some period of time. As 

a result, we should be cautious to use extended exponential decline model in production 

data analysis for shale wells.  

 

Modified hyperbolic model is the most popular decline model used in the industry due to 

its simplicity. The early transient flow is modeled by hyperbolic decline with Arp’s 𝑏 

parameter greater than 1 and the late BDF is modeled by exponential decline, which will 

yield finite estimates of ultimate recovery (EUR). The switching time from transient flow 

to BDF is assumed to be at the time when the decline rate is approximately 5% according 

to engineering experience. Modified hyperbolic model is always used as a benchmark 

model to assess the quality of other new models.  
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1.2 Machine learning in petroleum engineering 

Machine learning has proved to be a very powerful technology in IT industries. In machine 

learning, we use statistical and optimization knowledge to analyze data with the goal of 

constructing reliable models for forecasting and classification. This technology is 

appealing to the petroleum industry since it might bring some breakthroughs on many 

problems that require data analysis. There is a massive amount of studies being done using 

machine learning in petroleum engineering. In this section, a review is given on several 

popular topics that researchers have tried to solve by machine learning.  

 

The first topic is about sweet spots exploration. A shale reservoir may be thought of a 

sweet spot if it has high total organic carbon (TOC) and high fracability. TOC is one of 

the main factors for identifying the reservoir with higher potential gas production; the 

fracability affects the flow of hydrocarbons in a shale reservoir and future fracking in it 

(Tahmasebi et al., 2017), and brittle shale is more likely to be naturally fractured and get 

good response to it. The related sub-topics on sweet spots exploration include TOC 

estimation, permeability and porosity prediction, lithofacies classification, etc, as is shown 

in Table 1. 
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Topic Inputs Outputs Techniques 

TOC estimation Log data 

Limited core data (to 

train algorithm) 

TOC values Support vector 

regression/machine 

Neural network 

Fuzzy logic 

Others: multi-linear regression, 

extreme learning machine 

Permeability and 

Porosity 

Prediction 

Log data 

volume of shale 

the sonic and density 

logs 

the porosity log 

core permeability 

measurements 

Permeability 

values 

Discriminant analysis 

Fuzzy/Neural Inference 

Principal component analysis 

Others: Hybrid Genetic 

Programming 

Lithofacies 

analysis 

Core analysis data 

log data 

seismic data 

Lithofacies 

class 

Neural network 

Support vector machine 

Quantitative 

seismic 

interpretation 

Seismic Volume 

well log 

frackability 

lithofacies 

Neural network 

Support vector machine 

Others: self-organizing map 

Table 1: Summary for sweet spots exploration 

 

 

 

The second topic is about well operations. The related sub-topics include completion 

design analysis, well design, hydraulic fracture performance, stage completion 

performance, fracture spacing analysis, etc. A summary for well operations is given in 

Table 2 below.  
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Topic Input Output Techniques 

Production 

optimization  

Reservoir quality proxies 

 Well architecture 

 Well completion 

Oil Production 

 

Gradient Boosting 

Models 

 Random Forests 

 Support Vector Machine 

 Kriging Method  

Completion 

design 

analysis 

Reservoir quality proxies 

 Well architecture 

 Well completion 

Oil production Gradient Boosting 

Machine/Boosted Tree 

Regression 

Well design 

Geological, geophysical, 

geomechanical, 

stimulation, petrophysical, 

reservoir, production, etc. 

Recommendations  

for well stimulation, 

well location, 

orientation, design 

and operation 

Others: a self-teaching 

expert system 

Hydraulic 

fracture 

performance 

Reservoir quality proxies 

Well architecture 

Well completion 

Stimulation data 

Production Boosted tree method 

Random forest 

Others: learning machine 

Stage 

completion 

performance 

near-wellbore geologic 

parameters 

Stage-level engineering 

parameters 

Seismic-derived inversion 

reservoir properties 

pressure response Random Forests 

Fracture 

spacing 

analysis 

bed thickness 

Structural position 

fracture spacing Neural network 

Table 2: Summary for well operations 

 

 

Specifically, Baker Hughes implemented random forest and gradient boosting models to 

well production optimization via completion design (Lafollette et al., 2014; Zhong et al., 

2015; Schuetter et al., 2015; Vera et al., 2015; Lafollette et al., 2012). Ruths et al. (2017) 

applied random forests to merge seismic, geologic, and engineering data to predict 

completion performance, with respect to well design, hydraulic fracture performance, 

pressure response, stage completion performance, etc. Moreover, Lolon et al. (2016) from 
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Liberty Oilfield Services analyzed completion design and fracture treatment by gradient 

boosting models and random forests to determine the important predictors.  

 

Additionally, there are several studies using MCMC for production analysis. For example, 

Fulford et al. (2015) used MCMC and transient hyperbolic model to analyze the rate time 

decline behavior. Khanal et al. (2017) proposed a new forecasting method combining 

principal component analysis and MCMC. McLane and Gouveia (2015) applied Monte-

Carlo for validating analog production type curves. More Bayesian framework methods 

are implemented into history matching studies.  

 

Other than the topics mentioned above, there are several studies for fracture spacing 

analysis. Kaviani et al. (2006) applied radial basis function (RBF) into artificial neural 

network for small datasets. Inverse fluid modeling facilities designing drilling, spacer, 

cement or fracturing fluids is studies by Tarrahi and Shadravan (2016) through Gaussian 

Process Regression.  

 

The third topic is about asset evaluation. Asset evaluation includes studies related with 

production forecasting, history matching, reservoir evaluation (i.e., PVT analysis) and 

asset management. A summary for asset evaluation is given in Table 3 below: 
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Topic Inputs Outputs Techniques 

Production 

prediction  

 Historical production 

data 

 Tubing head pressure 

 Production rate 

 Geological map 

 Oil 

production 

 Decision Tree 

 Time series analysis 

 Clustering analysis 

 Neural Network 

 Others: learning machine 

systems, Bayesian 

machine learning methods, 

self-organizing map 

 Principal Component 

Analysis 

History matching 

Production data Facies 

model; 

Reservoir 

model 

PCA 

Others:  

Ensemble Kalman filter,  

Bayesian analysis 

Bubble point 

pressure 

data from a variety of 

crude oil of various 

composition ranges and 

from various 

geographical locations 

Bubble point 

pressure 

Support vector machine 

Principal component 

analysis 

Neural network 

Crude oil viscosity experimental PVT data  Oil viscosity Support vector machine 

Condensate-to gas 

ratio 

experimental data and 

some PVT data available 

in the literature 

condensate-

to-gas ratio 

Neural network 

Asset 

management/quality 

assessment 

 High-frequency data, 

i.e., water rate, oil rate, 

fluid temperature and 

water content in oil. 

 Expert 

decision, i.e., 

healthy or 

faulty 

 Others: active learning, 

semi-supervised learning 

Table 3: Summary of asset evaluation 

 

 

 

Several learning systems have been created for production prediction in recent years. 

AKW Analytics Inc developed a generalized Petroleum Analytics Learning Machine 

(PALM) system (Anderson et al., 2016a; 2016b). This learning machine includes many 

machine learning algorithms, Systems Integration Database (SID) and cloud-based file 

system. This learning system enables users to model oil and gas production based on 
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hundreds of geological, geophysical, and petroleum engineering attributes, not only 

measured in the field, but also computed form models such as reservoir simulations. 

Different from other study systems, this learning machine collects not only statistical 

machine learning methods, but also other big data analytics methods, such as information 

extraction, noisy test processing, knowledge discovery, etc. Those methods make the 

system more powerful in unstructured data analysis. PALM can be used in many ways. 

Anderson et al. (2016a, 2016b) provided several examples, such as forecasting production, 

classifying hydraulic fractures and discovering the correlations between machine 

recognized Frac-Classes, completion improvements and production performance.  

 

History matching is simulation modelling-matching historical data through tuning the 

parameters in the simulation model. It has been analyzed for a long time, and different 

stochastic approaches have been proposed (Landa et al., 2005; Gao et al., 2004; Oliver et 

al., 2008; Oliver and Chen, 2011; Rwechungura et al., 2011; Emerick and Reynolds, 2012; 

Tavakoli et al., 2014; Vink et al, 2015; Chen et al., 2012, 2014, 2016; Gao et al., 2016). 

Chen et al. (2014, 2016) implemented a pluri-principal-component-analysis (PCA), which 

combines PCA with pluri-Gaussian simulation, to extract the major geological features 

and generate real-valued facies. The authors integrated pluri-PCA with a derivative-free 

optimization algorithm and built the rock-type rules automatically according to the 

proposed method. The proposed model allows gradually changing facies distribution to 

match production data, and it is geologically and physically consistent (Chen et al., 2016). 

Based on their pluri-PCA model, Honorio et al. (2015) extended the model with PRaD 
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method (Piecewise Reconstruction from a Dictionary). Compared with the pluri-PCA 

method, integration of PRaD with pluri-PCA may further reduce the misclassified facies 

by 80% when 200 or more PCs are used. Ensemble Kalman Filter (EnKF), introduced by 

Evensen (2003), is also a popular method in petroleum engineering. Tavakoli et al. (2014), 

Emerick and Reynolds (2013), Oliver and Chen (2011) applied EnKF as a useful history-

matching tool.  

 

As for reservoir evaluation, there is a group of research related with PVT analysis which 

describes the reservoir characteristics, i.e., bubble point pressure, crude oil viscosity, 

saturation pressure, etc; other studies focus on breakthrough time of water coning, 

condensate-to-gas ratio. Support vector machine and neural network are widely used in 

this area (Ramirez et al., 2017; Farasat et al., 2013; Hemmati Sarapardeh et al., 2014; 

Zendehboudi et al., 2012; Rafiee-Taghanaki et al., 2014). Most of the models show stable 

performances and have good agreement with experimental or field data.  

 

Last but not the least, asset management is especially challenging due to its multi-

disciplinary, cross-functional, and human expertise-intensive (El-Bakry et al., 2012). 

Meanwhile, the large amount of data and the complexity of the components and processes 

also create difficulties for real-time decision making. The related problems include data 

acquisition and storage, asset health monitoring (Shyeh et al., 2008; El-Bakry et al., 2012; 

Subrahmanya et al., 2014). ExxonMobil is a leader in the asset management area.  
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Overall, it is worth more research in petroleum engineering by machine learning.  

 

1.3 Motivation and scope of the work 

As we mentioned in section 1.1, the switching time required in the modified hyperbolic 

model always depends on an evaluator’s experience. In addition, in the modified 

hyperbolic model we assume that the decline during late BDF is exponential. As a result, 

based on a two-segment hyperbolic model, in Chapter 2 we propose an optimization 

algorithm with the objective of removing the two assumptions required by modified 

hyperbolic model. Next, in Chapter 3 a data-driven method is proposed for primary phase 

production forecasting and this method is based on the well-established statistical machine 

learning technique, functional principal component analysis (fPCA). Lastly, in Chapter 4, 

we develop a statistical machine learning method to investigate the association between 

oil production and key completion parameters while accounting for the confounding 

geological effect. The objective of this research is to use an efficient way to find optimal 

completion design that maximize well productivity. Chapter 3 and Chapter 4 are 

associated with machine learning.  
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CHAPTER II  

ALGORITHM FOR DECLINE CURVE PARAMETER INFERENCE1 

2.1 Overview 

In this chapter, I first present important criteria that have been overlooked in existing 

empirical models but that are necessary for a robust and accurate production decline 

model. It turns out that the modified hyperbolic model does not violate these criteria. As 

a result, on the basis of a two-segment hyperbolic model, an optimization algorithm is 

proposed to estimate five important production parameters for a well that is in the 

boundary dominant flow (BDF) regime (1) initial production rate 𝑞𝑖, (2) initial decline 

rate 𝐷𝑖, (3) initial Arps 𝑏 parameter 𝑏𝑖 for early transient flow, (4) final Arps 𝑏 parameter 

𝑏𝑓 for late BDF, and (5) optimal switching time 𝑡𝑐 from early transient flow to late BDF. 

In addition, we developed a three-step diagnostic approach for the analysis of flow regime 

that a well has gone through. The proposed diagnostic approach is effective in reducing 

the uncertainty in well flow regime and the estimation of production parameters. The 

merits of this new algorithm are demonstrated with the application to analysis of real 

production data in Eagle Ford and Bakken reservoirs.  

 

The methods proposed in this chapter are the cornerstone to predict well estimated 

ultimate recovery (EUR). In addition, this work has significant impact on many other 

                                                 
1 The following URTeC paper, Criteria for Proper Production Decline Models and Algorithm for Decline 

Curve Parameter Inference, is reprinted with permission from the Unconventional Resources Technology 

Conference, whose permission is required for further use. 
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related projects such as the construction of type well production profiles, optimal 

completion design and probabilistic decline curve analysis since there all depend on the 

five production parameters.  

 

2.2 Formulation and algorithm 

In the traditional Arps hyperbolic decline model, two hyperbolic parameters are important: 

 

𝑎(𝑡) =
1

𝐷(𝑡)
= −

𝑞(𝑡)

𝑑𝑞(𝑡) 𝑑𝑡⁄
;                                               (Loss-Ratio)                              (2.1) 

 𝑏(𝑡) =
𝑑𝑎(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
[
1

𝐷(𝑡)
] = −

𝑑

𝑑𝑡
[

𝑞(𝑡)

𝑑𝑞(𝑡) 𝑑𝑡⁄
] ;                      (Derivative of Loss Ratio)         (2.2) 

 

where 𝑞(𝑡) denotes the oil/gas production rate at time 𝑡. Several important criteria are 

necessary for a robust and accurate production decline model. The first condition is that 

the decline rate 𝐷(𝑡)  must be finite and positive. In addition, consistent with field 

experience, the Arps 𝑏 parameter must be nonnegative. The last condition is that EUR 

must be finite at long time, which implies that the Arps 𝑏 parameter must be less than 1 

during the late BDF regime. From (2.1) and (2.2) we can write the production rate as 

 

ln 𝑞̂(𝑡) = ln 𝑞̂𝑖 − 𝐷𝑖 ∫ 𝑑𝜏
1

1+𝐷𝑖 ∫ 𝑏(𝑠)𝑑𝑠
𝜏
0

𝑡

0
                                                                              (2.3) 
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where 𝑞̂𝑖  and 𝐷𝑖  are initial production rate and decline rate, respectively; the Arps 𝑏 

parameter is a nonnegative function of time. The equation of decline rate is obtained from 

(2.3) as follows: 

 

𝐷(𝑡) =
𝐷𝑖

1+𝐷𝑖 ∫ 𝑏(𝑠)𝑑𝑠
𝑡
0

                                                                                                        (2.4) 

 

From (2.4) we can see that the decline rate 𝐷(𝑡) is positive and finite provided that initial 

decline rate 𝐷𝑖 is positive.  

 

Now we see that the first two conditions are satisfied with the constraints on 𝑏(𝑡) and 𝐷𝑖. 

Next, suppose that we have a series of production data points 𝑞(𝑡𝑖)(𝑖 = 1,2,3,⋯ ,𝑁). 

Then our goal is to find a smoothing decline curve by the model ln 𝑞𝛼 = ln 𝑞̂𝛼 + 𝜖𝛼 where 

𝑞̂𝛼  is the estimator of production rate at time 𝑡𝛼  and the values 𝜖𝛼  are assumed 

independent and identically distributed error with mean 0 and variance 𝜎2 . Then the 

objective optimization problem considered here is 

 

𝐹(𝐪|𝑤) = 𝑁−1∑ {ln 𝑞𝛼 − ln 𝑞̂𝑖 + 𝐷𝑖𝑚(𝑡𝛼)}
2

𝛼                                                                  (2.5) 

 

where 

 

𝑚(𝑡) = ∫ 𝑑𝜏
𝑡

0

1

1+𝐷𝑖 ∫ 𝑏(𝑠)𝑑𝑠
𝜏
0

                                                                                             (2.6) 
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Eq. (2.5) represents the sum of square residual error and could be generalized to include 

variable weights for the observations. An estimate of 𝜎2 is 

 

𝜎̂2 = (𝑁 − 2)−1𝑁−1∑ {ln 𝑞𝛼 − ln 𝑞̂𝑖 + 𝐷𝑖𝑚(𝑡𝛼)}
2

𝛼                                                      (2.7) 

 

The confidence interval (CI) can be estimated using bootstrapping (Casella and Berger, 

2002).  

 

The transient Arps 𝑏 parameter is hard to estimate since it is correlated with the second 

derivative of production rate 𝑞̂(𝑡). A simplification is necessary for Arps 𝑏 parameter. 

Here we consider the Arps 𝑏 parameter is modeled by a two-segment piecewise constant 

function  

 

𝑏(𝑡) = {
𝑏𝑖; 0 < 𝑡 < 𝑡𝑐
𝑏𝑓;         𝑡 > 𝑡𝑐

                                                                                                    (2.8) 

 

where 𝑡𝑐 denotes the switching time from early transient flow to late BDF flow. 𝑏𝑖 and 𝑏𝑓 

are the characteristic 𝑏 parameter for early transient flow and late BDF flow. The final 

Arps 𝑏 parameter 𝑏𝑓 must be less than 1 to make sure that EUR is finite at long time. The 

corresponding production rate 𝑞̂(𝑡) of two-segment hyperbolic model is 
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𝑞̂(𝑡) =

{
 
 

 
 

𝑞𝑖

(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖

;                                                                     𝑡 ≤ 𝑡𝑐

𝑞𝑖

(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖

[
1+𝐷𝑖𝑏𝑖𝑡𝑐

1+𝐷𝑖𝑏𝑖𝑡𝑐−𝐷𝑖𝑏𝑓𝑡𝑐+𝐷𝑖𝑏𝑓𝑡
]

1

𝑏𝑓
;                          𝑡 > 𝑡𝑐

                                      (2.9) 

 

Next, we will consider how to estimate the five important parameters 𝑞𝑖, 𝐷𝑖 , 𝑏𝑖, 𝑏𝑓 , 𝑡𝑐. On 

the basis of two-segment modified hyperbolic model, 𝑚(𝑡) in (2.6) can be written as 

 

𝑚(𝑡) = {

1

𝐷𝑖𝑏𝑖
ln(1 + 𝐷𝑖𝑏𝑖𝑡) ;                                                            𝑡 ≤ 𝑡𝑐

1

𝐷𝑖𝑏𝑖
ln(1 + 𝐷𝑖𝑏𝑖𝑡𝑐) +

1

𝐷𝑖𝑏𝑓
ln

1+𝐷𝑖(𝑏𝑖−𝑏𝑓)𝑡𝑐+𝐷𝑖𝑏𝑓𝑡

1+𝐷𝑖𝑏𝑖𝑡𝑐
;      𝑡 > 𝑡𝑐

                             (2.10) 

 

Let (𝑏𝐷)𝑖 ≡ 𝐷𝑖𝑏𝑖, (𝑏𝐷)𝑓 ≡ 𝐷𝑖𝑏𝑓 and we can see that in Eq. (2.10) the variables 𝑏𝑖 and 𝑏𝑓 

are both bounded with initial decline rate 𝐷𝑖. This observation motivates us to propose the 

following method for optimal solution of 𝑞𝑖, 𝐷𝑖 , 𝑏𝑖, 𝑏𝑓 , 𝑡𝑐.  

 

Since the final Arps 𝑏 parameter 𝑏𝑓 must be bounded between 0 and 1 and it is sufficient 

that the estimation for 𝑏𝑓 is numerically precise up to the order of 0.1, we can use the 

parameter sweeping method to find optimal 𝑏𝑓 by searching exhaustively in the interval 

from 0 to 1 at step size of 0.05 (candidate array). The number of search required for 

optimal 𝑏𝑓  is equal to the size of candidate array and in the ideal case the optimal 𝑏𝑓 

should be the element that yields the minimum least square error. The ideal case refers to 

the situation that the residual error is identical and independent distributed. However, in 
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real cases this condition may be violated and as a result, we use a relatively weak criterion 

to determine 𝑏𝑓 (step 12 in the algorithm below). For each element in the candidate array 

of 𝑏𝑓, we apply an iterated two-stage algorithm to find the optimal solution of 𝑞𝑖 , 𝐷𝑖 , 𝑏𝑖, 𝑡𝑐: 

first, begin with an initial nonzero estimate 𝑏𝑖
(0)

, 𝑡𝑐
(0)

 and estimate initial production rate 

𝑞𝑖
(0)

 and initial decline rate 𝐷𝑖
(0)

 by linear regression. 𝑚(𝑡) is considered as a predictor for 

linear regression. However, since 𝐷𝑖 is also involved in the equation for 𝑚(𝑡), the estimate 

for 𝐷𝑖
(0)

 and 𝑞𝑖
(0)

 requires a secondary iteration for a consistent convergent estimate of 

𝐷𝑖
(0)

 and 𝑞𝑖
(0)

. Then on any main iteration 𝜈 > 0 for which 𝑞𝑖
(𝜈−1), 𝐷𝑖

(𝜈−1), 𝑏𝑖
(𝜈−1), 𝑡𝑐

(𝜈−1)
 

are estimates on the previous iteration, we update 𝑏𝑖 and 𝑡𝑐 by the L-BFGS-B method to 

obtain 𝑏𝑖
(𝜈) 

 and 𝑡𝑐
(𝜈)

, and then compute 𝑞𝑖
(𝜈)

 and 𝐷𝑖
(𝜈)

 by linear regression. The algorithm 

pseudocode and secondary iteration detail are given below:   

 

 

 

Decline Curve Analysis (DCA) Algorithm for Unconventional Reservoir  

Input:   a series of production data points (𝑞(𝑡𝑖), 𝑖 = 1,2, … , 𝑁), a weight vector 𝒘, 

maximum number of iterations MAX.MAIN. ITER and error tolerance 𝛿1, 𝜖    

Output: 𝑞𝑖, 𝐷𝑖 , 𝑏𝑖, 𝑏𝑓 , 𝑡𝑐 

1.   Parameter sweeping: set up a candidate array 𝑆 of length 𝐿 for 𝑏𝑓  by equal space 

discretization of the interval [0,1]. 
2.   for 𝑖 = 1 to 𝐿 do 

3.        Start with 𝑏𝑓 = 𝑆[𝑖] and an initial estimate of 𝑏𝑖
(0), 𝑡𝑐

(0)
 

4.         Estimate initial production rate 𝑞𝑖
(0)

 and initial decline rate 𝐷𝑖
(0)

 by linear 

regression. An iteration (secondary iteration) is required here to find consistent 

convergent estimate of 𝐷𝑖
(0)

 and 𝑞𝑖
(0)

. Then compute the residual error 𝑓(0).   
5.        for 𝜈 = 1 to MAX.MAIN. ITER + 1 do 

6.          given 𝑞𝑖
(𝜈−1), 𝐷𝑖

(𝜈−1), 𝑏𝑖
(𝜈−1), 𝑡𝑐

(𝜈−1)
, update 𝑏𝑖 and 𝑡𝑐 by L-BFGS-B method to 

obtain 𝑏𝑖
(𝜈)

 and 𝑡𝑐
(𝜈)

.  
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7.          given 𝑏𝑖
(𝜈)

 and 𝑡𝑐
(𝜈)

, compute 𝑞𝑖
(𝜈)

 and 𝐷𝑖
(𝜈)

 by linear regression. An iteration 

(secondary iteration) is required here to find consistent convergent estimate of 

𝐷𝑖
(𝜈)

 and 𝑞𝑖
(𝜈)

. Then compute the residual error 𝑓(𝜈). 

8.           if (𝑓(𝜈−1) − 𝑓(𝜈))/𝑓(𝜈) < 𝛿1 then 

                               break 

              else  

                       if 𝜈 > MAX.MAIN. ITER then 

                            throw exception and print out the message on non-convergence.  

                       end if 

              end if  

9.       end for 

10.     res. cur = 𝑓(𝜈) 
11.     if 𝑖 = 1 then  

                 𝑞𝑖 = 𝑞𝑖
(𝜈), 𝐷𝑖 = 𝐷𝑖

(𝜈), 𝑏𝑖 = 𝑏𝑖
(𝜈), 𝑏𝑓 = 𝑏𝑓

(𝜈), 𝑡𝑐 = 𝑡𝑐
(𝜈), res. prev = 𝑓(𝜈) 

          end if 

12.     if (res. prev − res. cur) > 𝜖 then 

                update 𝑞𝑖, 𝐷𝑖 , 𝑏𝑖, 𝑏𝑓 , 𝑡𝑐 and res. prev 

          end if 

13.   end for 

 

 

 

 Secondary Iteration for Step 5 and 8 in DCA algorithm  

1. Begin with an initial estimate of 𝐷𝑖
(𝑝)

 ("𝑝" stands for old value), maximum number of 

iterations MAX. SECONDARY. ITER and error tolerance 𝛿2 

2. Compute 𝑚(𝑡) at different time (𝑡1, 𝑡2, … , 𝑡𝑁) using 𝐷𝑖
(𝑝)

 

3. Compute least square solution of (ln 𝑞𝑖)
(𝑐) and 𝐷𝑖

(𝑐)
 from linear regression ("𝑐" stands 

for current value) 

4. if |𝐷𝑖
(𝑝) − 𝐷𝑖

(𝑐)| /𝐷𝑖
(𝑐) < 𝛿2 then 

             return 𝐷𝑖
(𝑐)

 and (ln 𝑞𝑖)
(𝑐) 

      else 

             𝐷𝑖
(𝑝) = 𝐷𝑖

(𝑐)
 

      end if 

5. Repeat steps from 2 to 4 until the number of iterations is equal to 

MAX. SECONDARY. ITER . If 𝐷𝑖  fails to converge after MAX. SECONDARY. ITER 

iterations, stop and print out the message on non-convergence.    
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In the first part of the algorithm above, the criterion used in step 12, which needs to be 

consistent with the tolerance error in step 8, is necessary to prevent erroneous estimation 

of 𝑏𝑓  due to some unknown interference in the production history that distorts the 

production decline pattern. In addition, post-analysis of production parameter results is 

important to make sure the resulting predictive model is correct and reliable for EUR 

determination. Given the amount of well production history data and the number of 

parameters for estimation, sweeping from 0 to 1 for the optimal 𝑏𝑓 is not a computational 

issue. This sweeping method is similar to type curve matching where we compare the well 

production history data with multiple dimensionless type curves and find a type curve that 

fits the production data best. For each element in the candidate array of 𝑏𝑓, the algorithm 

converges very fast. The most difficult step in the algorithm is initial estimate of 𝑡𝑐 since 

updating 𝑏𝑖 and 𝑡𝑐 is a non-convex problem and the final result of 𝑏𝑖 and 𝑡𝑐 depends on 

the initial starting point of 𝑡𝑐. Therefore, it is important to conduct a preliminary analysis 

of production data using log-log diagnostic plot to estimate the possible value of 𝑡𝑐. With 

this step we will know whether the well is in the boundary dominated flow regime. If 

boundary dominated flow is hard to identify from diagnostic plot or the production data is 

too noisy, we recommend fitting the data using the hyperbolic model with a single Arps 𝑏 

parameter. We can make simple modifications to the DCA algorithm so that it is applicable 

for estimating parameters for the hyperbolic model with a single 𝑏  parameter. If the 

hyperbolic model has only one 𝑏 parameter, using the DCA algorithm we can find the 

parameters that minimize eq. (5) globally. If production data is too noisy, the assumption 

on the residual error is invalid and we should be cautious with the model from least square 
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regression. The implementation of the DCA algorithm is easy since many robust free 

package are available online for the step of updating 𝑏𝑖  and 𝑡𝑐  with the L-BFGS-B 

method. If we assume the final Arps 𝑏 parameter 𝑏𝑓 is a fixed value (1/3 for oil well or 

0.4 for gas well according to Fetkovich and Spivey et al.), then we will have only four 

parameters to estimate and the computation time will be reduced.  

 

2.3 Flow regime diagnosis 

As we mentioned earlier, the preliminary analysis of well production data is important to 

make sure that the production predictive model is correct and reliable for EUR estimation. 

The chief goal of this step is to determine the flow regime well production has gone 

through using a log-log diagnostic plot. There are two different diagnostic plots frequently 

used for diagnostic analysis. One is the plot based on production rate 𝑞(𝑡) and production 

time 𝑡. The other one is plotted with respect to material balance time (MBT), 𝑡𝑀𝐵𝑇(𝑡), 

instead of real production time. If we use a two-segment hyperbolic model for shale well 

production decline, the slope 𝑘𝑃𝑇 of ln 𝑞(𝑡) vs. ln 𝑡 is  

 

𝑘𝑃𝑇 = |
𝑑 ln𝑞(𝑡)

𝑑 ln 𝑡
| = {

𝐷𝑖𝑡

1+𝐷𝑖𝑏𝑖𝑡
; 𝑡 ≤ 𝑡𝑐

𝐷𝑡𝑐𝑡

1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐)
; 𝑡 > 𝑡𝑐

                                                                      (2.11) 

 

where 𝐷𝑡𝑐 =
𝐷𝑖

1+𝐷𝑖𝑏𝑖𝑡𝑐
 denotes the decline rate at the switching time 𝑡𝑐. The slope 𝑘𝑀𝐵𝑇 of 

ln 𝑞(𝑡) vs. ln 𝑡𝑀𝐵𝑇(𝑡) (appendix A) is 
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𝑘𝑀𝐵𝑇 = |
𝑑 ln𝑞(𝑡)

𝑑 ln 𝑡𝑀𝐵𝑇(𝑡)
| =

{
  
 

  
 1−(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖
−1

𝑏𝑖−(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖
−1
 (𝑏𝑖 > 1);                                                                            𝑡 ≤ 𝑡𝑐

𝑏𝑓−1

𝑏𝑖−1
[1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1
]−1+     [1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐)]

−
1
𝑏𝑓
+1

𝑏𝑓−1

𝑏𝑖−1
[1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1
]−1+𝑏𝑓[1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐)]

−
1
𝑏𝑓
+1
 (0 < 𝑏𝑓 < 1);           𝑡 > 𝑡𝑐

                 (2.12) 

 

The equation of 𝑘𝑀𝐵𝑇  in the limit of 𝑏𝑖 = 1  or 𝑏𝑓 = 0  can be derived using three 

equations as shown below: 

 

lim
𝑏𝑖→1

1−(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖
−1

𝑏𝑖−(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖
−1
=

ln(1+𝐷𝑖𝑡)

1+ln(1+𝐷𝑖𝑡)
                                                                                   (2.13.1) 

lim
𝑏𝑖→1

1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1

𝑏𝑖−1
= ln(1 + 𝐷𝑖𝑡)                                                                            (2.13.2) 

lim
𝑏𝑓→0

 [1 + 𝐷𝑡𝑐𝑏𝑓(𝑡 − 𝑡𝑐)]
−
1

𝑏𝑓
+1
= exp[−𝐷𝑡𝑐(𝑡 − 𝑡𝑐)]                                              (2.13.3) 

 

Eqs. (2.11) and (2.12) are both monotonically increasing functions with respect to 

production time 𝑡. If 𝑡 ≤ 𝑡𝑐, we have 

 

𝑘𝑃𝑇 ≤
1

1

𝐷𝑖𝑡𝑐
+𝑏𝑖
; 𝑘𝑀𝐵𝑇 ≤

1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1

𝑏𝑖−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1

                                                                        (2.14) 
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In addition, 

 

𝑘𝑃𝑇 →
1

1

𝐷𝑖𝑡𝑐
+𝑏𝑖
; 𝑘𝑀𝐵𝑇 →

1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1

𝑏𝑖−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1
, as 𝑡 → 𝑡𝑐                                                      (2.15) 

 

If the switching time 𝑡𝑐  has a very large value (𝐷𝑖𝑡𝑐 ≫ 1), 𝑘𝑃𝑇 →
1

𝑏𝑖
 and 𝑘𝑀𝐵𝑇 →

1

𝑏𝑖
 as 

𝑡 → 𝑡𝑐. This implies that when the value of 𝑡𝑐 is large enough, in the vicinity of 𝑡𝑐 the rate 

curve based on production time (PT curve) is almost parallel to the curve based on material 

balance time (MBT curve). If 𝑡 > 𝑡𝑐 , we have 𝑘𝑃𝑇 →
1

𝑏𝑓
> 1  and 𝑘𝑀𝐵𝑇 → 1 as 𝑡 → ∞. 

Since 𝑘𝑃𝑇 ≥ 𝑘𝑀𝐵𝑇  at any time 𝑡  (appendix B), the following method is proposed to 

determine the flow regime more accurately.   

 

(1) Plot the PT curve and MBT curve on the same log-log plot. 

 

(2) Draw a line 𝐿 tangent to the end of MBT curve. If the slope of line 𝐿 is very close to 

unit slope, then the well should be in BDF regime. However, in most cases the slope 

of line 𝐿 is less than 1 and we need step 3 to determine whether the well is in BDF 

regime or not.  

(3) Move line 𝐿 onto the PT curve at the point 𝑃 where 𝐿 is approximately tangent to PT 

curve. Since 𝑘𝑃𝑇 ≥ 𝑘𝑀𝐵𝑇 at any time 𝑡, we expect that, in the interval between point 

P and the end of well production, there should be some data points the tangent slope 

of which is greater than the slope of line 𝐿. If we can draw another line for the data 
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after point 𝑃 and the slope of second line is greater than or equal to 1, we have high 

confidence that the well is in BDF regime. If there are very few data points after point 

𝑃 and it is hard to draw a line with slope greater than that of line 𝐿, then there is a high 

chance that the well is still in the transient flow regime. In addition, if we denote the 

slope of line 𝐿 as 𝑘, the initial Arps 𝑏 parameter 𝑏𝑖 must be less than or equal to 
1

𝑘
.  

 

As we will see in the examples shown later, the above three steps will be utilized in the 

preliminary diagnostic analysis of well production data. Using these three steps makes it 

easy for us to identify flow regime and effectively reduce the uncertainty on the results of 

production parameters. 

 

2.4 Method validation 

We applied the proposed algorithm to analyze eight wells from Bakken and Eagle Ford – 

4 oil wells and 4 gas wells. Data cleaning is required to remove the initial “ramp-up” part 

in production history. From the results of the following eight wells, we can see the power 

of the new diagnostic approach and new optimization algorithm. If the well production 

has switched from transient flow regime to BDF regime, we can determine the optimal 

switching point. We can also determine the decline rate at the switching point, which is 

an advantage over the traditional modified hyperbolic model that requires the evaluator to 

provide a minimum decline rate before knowing the switching time point.  
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Example #1: a shale oil well located in Billings County, North Dakota, producing from 

Bakken reservoir - API number 33 − 007 − 01707. From the log-log diagnostic plot, if 

we draw two parallel straight lines, one tangent to the data at the end of material balance 

time (yellow points), we can see the data at the end of production time (red points) lies in 

a line with slope greater than 1, indicating that the well should be in the BDF regime. The 

estimation results of production parameters are given in Figure 2 below. From the results 

of production parameters, the estimated switching time is at 538 days.   

 

 

 

Production Parameters 

Initial production rate 𝑞𝑖 474 STB/D 

Initial decline rate 𝐷𝑖  0.0115 1/D 

Initial Arps 𝑏 parameter 𝑏𝑖 1.39  

Final Arps 𝑏 parameter 𝑏𝑓 0.5  

Decline rate at switching 𝐷𝑠𝑤 0.0012 1/D 

Switching time 𝑡𝑐 538 Days 

Figure 2: Well #1 decline curve analysis result (Zhou et al. 2018) 
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Example #2: a shale oil well located in Billings County, North Dakota, producing from 

Bakken reservoir - API number 33 − 007 − 01656. From the diagnostic plot, we have 

high confidence that well #2 is in the transient flow regime. The analysis result is given in 

Figure 3 below. The estimation results of production parameters are consistent with 

diagnostic plot. In order to predict EUR, we need to know switching time 𝑡𝑐 from transient 

flow to BDF and the final Arps 𝑏 parameter 𝑏𝑓. If we can find an analogous well which is 

already in the BDF regime, located in similar geological environment and has similar 

completion parameters, we may use the values of 𝑡𝑐 and 𝑏𝑓 from the analogous well to 

predict EUR of well #2. 

 

 

  
 

Production Parameters 

Initial production rate 𝑞𝑖 164 STB/D 

Initial decline rate 𝐷𝑖  0.0155 1/D 

Initial Arps 𝑏 parameter 𝑏𝑖 1.65  

Final Arps 𝑏 parameter 𝑏𝑓 NA  

Decline rate at switching 𝐷𝑠𝑤 NA 1/D 

Switching time 𝑡𝑐 NA Days 

Figure 3: Well #2 decline curve analysis result (Zhou et al. 2018) 
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Example #3: a shale oil well located in McKenzie County, North Dakota, producing from 

Bakken reservoir - API number 33 − 053 − 03247 . Similar to well #2, from the 

diagnostic plot we have high confidence that well #3 is still in the transient flow regime. 

The analysis result is given in Figure 4 below and it is consistent with the analysis from 

diagnostic plot.  

 

 

  

Production Parameters 

Initial production rate 𝑞𝑖 738 STB/D 

Initial decline rate 𝐷𝑖  0.0209 1/D 

Initial Arps 𝑏 parameter 𝑏𝑖 1.76  

Final Arps 𝑏 parameter 𝑏𝑓 NA  

Decline rate at switching 𝐷𝑠𝑤 NA 1/D 

Switching time 𝑡𝑐 NA Days 

Figure 4: Well #3 decline curve analysis result (Zhou et al. 2018) 

 

 

Example #4: a shale oil well located in McKenzie County, North Dakota, producing from 

Bakken reservoir - API number 33 − 053 − 03318. The analysis result is given in Figure 
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5 below. According to the results of production parameters, we can see that well #4 follows 

exponential decline after 436 days from the first production day.  

 

 

  

Production Parameters 

Initial production rate 𝑞𝑖 589 STB/D 

Initial decline rate 𝐷𝑖  0.0202 1/D 

Initial Arps 𝑏 parameter 𝑏𝑖 1.68  

Final Arps 𝑏 parameter 𝑏𝑓 0  

Decline rate at switching 𝐷𝑠𝑤 0.00128 1/D 

Switching time 𝑡𝑐 436 Days 

Figure 5: Well #4 decline curve analysis result (Zhou et al. 2018) 
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reached the BDF regime since the production data at the end of production time (red 

points) lies on a line with slope greater than 1. The production parameter result is given in 
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Figure 6 below. The production of well #5 switched to exponential decline after 1797 

days from the first production day and it is consistent with our analysis from diagnostic 

plot.   

 

 

  

Production Parameters 

Initial production rate 𝑞𝑖 5218 MCF/D 

Initial decline rate 𝐷𝑖  0.00917 1/D 

Initial Arps 𝑏 parameter 𝑏𝑖 1.29  

Final Arps 𝑏 parameter 𝑏𝑓 0  

Decline rate at switching 𝐷𝑠𝑤 0.00041 1/D 

Switching time 𝑡𝑐 1797 Days 

Figure 6: Well #5 decline curve analysis result (Zhou et al. 2018) 
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that is tangent to production data (red points), we can see production data at the end of 

production time lies on a line with slope greater than 1. The production parameter results 

are given in Figure 7 below. The production of well #6 switched to BDF after 579 days 

from the first production day. The optimal final Arps 𝑏  parameter 𝑏𝑓  is 0.4  which is 

consistent with our observation in diagnostic plot.  

 

 

  

Production Parameters 

Initial production rate 𝑞𝑖 1373 MCF/D 

Initial decline rate 𝐷𝑖  0.0147 1/D 

Initial Arps 𝑏 parameter 𝑏𝑖 1.37  

Final Arps 𝑏 parameter 𝑏𝑓 0.4  

Decline rate at switching 𝐷𝑠𝑤 0.0012 1/D 

Switching time 𝑡𝑐 579 Days 

Figure 7: Well #6 decline curve analysis result (Zhou et al. 2018) 
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end of material balance time (yellow points) indicating BDF. The production parameter 

results are given in Figure 8 below. The production of well #7 switched to BDF after 449 

days from the first production day. In addition, the value of initial Arps 𝑏 parameter is 

1.97 indicating linear transient flow and the optimal final Arps 𝑏 parameter for BDF is 

0.7. 

 

 

 

Production Parameters 

Initial production rate 𝑞𝑖 1832 MCF/D 

Initial decline rate 𝐷𝑖  0.0210 1/D 

Initial Arps 𝑏 parameter 𝑏𝑖 1.97  

Final Arps 𝑏 parameter 𝑏𝑓 0.7  

Decline rate at switching 𝐷𝑠𝑤 0.00107 1/D 

Switching time 𝑡𝑐 449 Days 

Figure 8: Well #7 decline curve analysis result (Zhou et al. 2018) 
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end of material balance time (yellow points) indicating BDF. The production parameter 

results are given in Figure 9 below. Well #8 starts with linear transient flow (initial Arps 

𝑏 parameter is 2.03) and then switched to exponential decline after 623 days from the first 

production day.  

 

 

  

Production Parameters 

Initial production rate 𝑞𝑖 3422 MCF/D 

Initial decline rate 𝐷𝑖  0.0221 1/D 

Initial Arps 𝑏 parameter 𝑏𝑖 2.03  

Final Arps 𝑏 parameter 𝑏𝑓 0.0  

Decline rate at switching 𝐷𝑠𝑤 0.00076 1/D 

Switching time 𝑡𝑐 623 Days 

Figure 9: Well #8 decline curve analysis result (Zhou et al. 2018) 

 

 

2.5 Discussion 

In the modified hyperbolic model, traditionally engineers specify a minimum annual 

decline rate 𝐷𝑚𝑖𝑛 (e.g., 5%) as the criterion for the switching from transient flow to BDF. 
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Now let us review Example 1 in the previous section to see what problem we may 

encounter if we use minimum annual decline rate as the standard for the change of flow 

regime. If the minimum annual decline rate 𝐷𝑚𝑖𝑛 is set to 5%, then the corresponding 

minimum daily decline rate will be approximately 1.37 × 10−4 1/D. This means only 

when the daily decline rate is less than 1.37 × 10−4 1/D, will the production decline reach 

exponential decline. According to our diagnostic plot shown in Example 1, we know that 

at 1000 days the well is already in the boundary dominated flow regime. Now we need to 

know at 𝑡 = 1000  days if it is possible that the daily decline rate is below 

1.37 × 10−4 1/D. Before the switching time, the equation of decline rate is written as 

follows: 

 

𝐷(𝑡) =
1

1

𝐷𝑖
+𝑏𝑖𝑡

 ; 𝑡 ≤ 𝑡𝑐                                                                                                   (2.16) 

 

According to our analysis we know the initial decline rate should be of the order of 10−2 

and the value of initial Arps 𝑏 parameter 𝑏𝑖 should be less than 2, then we can see that at 

𝑡 = 1000 days, 𝐷(𝑡) will be at least 
1

2000
 1/D (here we neglect 

1

𝐷𝑖
 since 

1

𝐷𝑖
≪ 𝑏𝑖𝑡 at 𝑡 =

1000 days). Therefore, 𝐷(𝑡) at 𝑡 = 1000 days will be at least 5 × 10−4 1/D which is 

approximately 3.6 times of the value 1.37 × 10−4 1/D. As a result, if we use 𝐷𝑚𝑖𝑛 as the 

standard for the switching from hyperbolic decline to exponential decline, we will have 

the result that the well in Example 1 is still in the transient flow regime, which is not true 
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according to our diagnostic analysis. Therefore, from this analysis we can see the 

drawback of using 𝐷𝑚𝑖𝑛 for modified hyperbolic model.     
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CHAPTER III 

APPLICATION OF STATISTICAL METHODS TO PREDICT PRODUCTION 

FROM LIQUID-RICH SHALE RESERVOIR 2 

3.1 Overview 

In this chapter, we propose a data-driven method for primary phase production forecasting. 

This method is based on a well-established statistical machine learning technique, 

functional principal component analysis (fPCA) – an extension to principal component 

analysis (PCA) (Ramsay and Silverman, 2005). The PCA method is a well-established 

approach for data analysis in statistics and has been used for production data analysis by 

some researchers (Makinde and Lee, 2016; Bhattacharya and Nikolaou, 2013). PCA has 

several limitations in production analysis. One limitation is that from PCA we cannot 

determine EUR of a well and the prediction can be extended only to the maximum 

production time used in the training set. In this work, we propose to use fPCA for 

production data analysis and forecasting given the fact that production data collection from 

a well are a functional time series with strong temporal correlation. For the sake of 

convenience, we call this approach the fPCA method. Compared to the analytical approach 

and reservoir numerical simulation, the fPCA method requires neither an analytical 

production model nor a high-resolution geological model necessary for numerical 

simulation. The prediction is made based on the study of production histories from many 

different low permeability wells. This method is efficient in that the production analysis 

                                                 
2 The following URTeC paper, Application of Statistical Methods to Predict Production From Liquid-Rich 

Shale Reservoirs, is reprinted with permission from the Unconventional Resources Technology Conference, 

whose permission is required for further use. 
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for a large number of wells can be conducted at the same time. Also, this method is very 

easy to implement with the use of the free R-package “fda” (Ramsay et al., 2009). 

 

3.2 Data description and preprocessing 

 

 
Figure 10: Unconventional well production data (a) Eagle Ford Reservoir (b) 

Bakken Reservoir (Zhou et al. 2017) 
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In this study, we selected 100 gas wells from the Eagle Ford and 100 oil wells from the 

Bakken. Both data sets are for wells that undergo multiphase flow eventually. These kinds 

of wells are more difficult to forecast that wells with single phase flow. All the wells are 

currently still active with production histories no longer than 9 years. The data available 

for analysis was monthly production with no other geological/well completion 

information available. In the preprocessing step, we discarded the initial “ramp-up” 

production data and focused on data after decline began. In addition, we ignored the exact 

physical time associated with the production data and aligned the peak production data in 

a line with the same time coordinate. The data resulting after these two pre-processing 

steps are shown in Figure 10.  

 

In Figure 10, we see that the production data are still quite noisy, so one more 

preprocessing step was required to clean the data prior to the analysis. Since the 

cumulative production-time plot is much smoother than the rate-time plot, we used (and 

recommend) the cumulative production data with the aid of the Bourdet derivative 

algorithm to calculate monthly production rate. Figure 11 shows the result of the Bourdet 

production rate (red dots) and we see that it has much less noise than the original average 

production rate (purple dots).   
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Figure 11: Monthly production rate (average vs. Bourdet derivative) (Zhou et al. 

2017) 

 

 

 

In addition, experience tells us that we be much more confident in our predictions if 

boundary-dominated flow (BDF) can be identified in the production data. As a result, log-

log diagnostic plot analysis was conducted to determine how many wells in our data sets 

reached the BDF regime. We found that 14 of the 100 oil wells in the Bakken formation 

reached the BDF regime. In the Eagle Ford formation, 47 out of 100 gas wells reached 

BDF. Figure 12 provides examples of flow regime diagnostic plots.  

 

 

 

 
Figure 12: Log-log plot diagnostic analysis (Zhou et al. 2017) 
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3.3 Methodology 

Production prediction starts with a study of the shale well production features. As 

mentioned above, production data from ultra-low permeability reservoirs has quite 

different features than data from conventional resources. In order to identify those features, 

we use the functional principal component analysis (fPCA) technique which accounts for 

the strong temporal correlation within a series of production data when learning decline 

curves. Specifically, we collect the production data from N wells at a set of locations S

. These wells have long production histories and hence are used as training data sets. For 

each well, the production data after pre-processing will be scaled by dividing the 

production from each well by its initial maximum production rate. Next, the processed 

production data of each well are treated as observations of a functional time series and 

modeled by a smooth function by basis function representations. Here we used B-spline 

functions as the basis functions for interpolation since the production function is a non-

periodic function. On the basis of a set of scaled production curves 𝑞𝑖(𝑡)(𝑖 = 1,2, … ,𝑁), 

we can find a set of K principal component (PC) functions 𝜉𝑗(𝑡)(𝑗 = 1,2,3, … , 𝐾) which 

satisfy the following equation 

 

∫ 𝜈(𝑠, 𝑡)𝜉(𝑠)𝑑𝑠 = 𝜌𝜉(𝑡)                                                                                                (3.1) 

 

where 𝜌 is some appropriate eigenvalue associated with the covariance function 𝜈(𝑠, 𝑡), 

defined as 
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𝜈(𝑠, 𝑡) = 𝑁−1∑ [𝑞𝑖(𝑠) − 𝑞̅(𝑠)][𝑞𝑖(𝑡) − 𝑞̅(𝑡)]
𝑁
𝑖=1                                                            (3.2) 

 

In the covariance function 𝜈(𝑠, 𝑡), 𝑞̅(𝑡) represents the scaled production mean value at 

time 𝑡. To obtain the PC functions, we can use the free R-package “fda”. The PC functions 

𝜉𝑗 are orthonormal to each other and can be treated as basis functions so that the expansion 

of each production curve in the training set in terms of these basis functions approximates 

the true production curve as closely as possible. The number of PC functions needed for 

expansion depends on the magnitude of the eigenvalue 𝜌. We retain only the PC functions 

that capture the most significant variation in the production function. Once the PC 

functions 𝜉𝑗  are extracted from the training production curves, we use them as the 

interpolation basis for the production data of other testing wells since these PC functions 

are the characteristic functions of the well production in location 𝑆. Mathematically, the 

functional form of the testing well production is  

 

𝑞̂𝑡𝑒𝑠𝑡(𝑡) = 𝑞̅(𝑡) + ∑ 𝑓𝑙𝜉𝑙(𝑡)
𝐾
𝑙=1                                                                                        (3.3) 

 

where 𝑞̂𝑡𝑒𝑠𝑡 is a functional production estimator and 𝑓𝑙 is the weighting coefficient which 

can be determined by the simple multiple regression. Assuming that a test well has 𝑝 

observed production data points, we determine the coefficients 𝑓𝑙(𝑙 = 1,2, … , 𝐾)  by 

minimizing the sum of squared errors defined as follows: 
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𝑆𝑆𝐸 = ∑ [𝑞𝑡𝑒𝑠𝑡
𝑜𝑏𝑠 (𝑡𝑗) − 𝑞̂𝑡𝑒𝑠𝑡(𝑡𝑗)]

2𝑝
𝑗=1                                                                                (3.4) 

 

where 𝑞𝑡𝑒𝑠𝑡
𝑜𝑏𝑠 (𝑡𝑗) denotes the observed production data at time 𝑡𝑗 after normalization. Since 

the number of production data points 𝑝 is always much larger than the number of PC 

expansion basis functions 𝐾, this minimization problem always has a unique solution for 

𝑓𝑙 .  After determining the coefficients 𝑓𝑙 , we can use the resulting model 𝑞̂𝑡𝑒𝑠𝑡(𝑡) for 

production prediction. Figure 13 below summarizes the entire procedure for production 

forecasting.   

 

 

 

 

Figure 13: Workflow of functional principal component analysis for well 

production data (Zhou et al. 2017) 
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3.4 Results 

3.4.1 Method validation 

 

In order to assess the performance of fPCA in production prediction, the 100 wells in 

Eagle Ford/Bakken were both divided into two groups. 50 wells were used for training 

and the other 50 wells were test wells. The training wells have longer production histories. 

From the training well data, we computed the first ten leading eigenvalues and the 

corresponding PC functions. In this way we could decide how many PC functions should 

be kept for the linear production model. The eigenvalue results are shown in Figure 14. 

In Figure 14 we see in both cases the first eigenvalue is dominant compared to other 

eigenvalues and the eigenvalues decline very rapidly. In addition, Figure 15 shows the 

first three principal component functions by displaying the mean curve along with +’s and 

–‘s indicating the consequences of adding and subtracting a small amount of each principal 

component. This occurs because a principal component represents variation around the 

mean, and therefore is naturally plotted as such. In the Eagle Ford we see that the first 

three PC functions account for 99.2% of the variation while in Bakken the first PC function 

accounts for 97.9% of the variation. Therefore, it is accurate enough to retain only the first 

three PC functions as the expansion basis for the linear production model.  
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Figure 14: Eigenvalues from fPCA (Zhou et al. 2017) 

 

 

 

 
(a) 

 
(b) 

Figure 15: Three principal component functions (a) Eagle Ford; (b) Bakken (Zhou 

et al. 2017) 
 

 

 

The test wells were used for validation. For each test well, we constructed a linear 

production model with a portion of the observed production data as the response input. 
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With the resulting production function, we predicted the production rate at late times and 

compared the results with the observed rates to check the prediction quality. In this 

experiment, we predicted the final two years of production for test wells; Figure 16 (Eagle 

Ford) and Figure 17 (Bakken) show the results. In Figures 16 and 17, the red line on the 

right side of the blue bar is the predicted result and the black data points on the left side of 

the bar are input data. These figures show that the predictions obtained with the fPCA 

method are reasonably good.   

 

 

 

Eagle Ford 

 

Figure 16: Test well production prediction verification (Eagle Ford: monthly rate 

vs. time) (Zhou et al. 2017) 
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Figure 16: Continued 
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Figure 16: Continued 
 



 

51 

 

 

Figure 16: Continued 

 

 

 

Bakken 
 

 

Figure 17: Test well production prediction verification (Bakken: monthly rate vs. 

time) (Zhou et al. 2017) 
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Figure 17: Continued 
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Figure 17: Continued 
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Figure 17: Continued 

 

 

3.4.2 Comparison of fPCA method and empirical decline model forecasts 

 

The production predictive model derived from fPCA has a functional form from which we 

can forecast future production and calculate the EUR of a well. We compared these 

forecasts to those obtained from the traditional modified Arps hyperbolic model and the 

empirical extended exponential model (EEDCA) (Zhang et al., 2015; Zhang et al., 2016) 

published recently. For the modified Arps hyperbolic model, we chose a minimum 

terminal decline rate of 4 %. 15 gas wells are selected from the Eagle Ford and 15 oil wells 

from Bakken. We make prediction on the primary phase production in the next 10-20 

years. The detailed results for one gas well from Eagle Ford and one oil well from Bakken 

are shown in Figure 18. In Figure 18 we observe boundary-dominated flow at late times 

on both plots, and the prediction from fPCA is close to the estimate from the modified 

hyperbolic. The EEDCA result is higher than that from the other two methods. To be more 
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comprehensive, we present results from analysis of 30 wells in Appendix C. The results 

presented in Appendix C indicate that fPCA produces predictions comparable to the 

modified hyperbolic model and extended exponential model.  

 

 

 

 
(a) 

 
(b) 

Figure 18: DCA with fPCA, modified Arps and EEDCA (upper: Eagle Ford; lower: 

Bakken) (Zhou et al. 2017) 
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CHAPTER IV 

QUANTITATIVE EVALUATION OF KEY COMPLETION CONTROLS ON 

SHALE OIL PRODUCTION 

4.1 Overview 

Since the oil price downturn in 2014, US oil industry has been focusing on reducing the 

operational expenditures and improving well productivity to stay profitable in the sub-$60 

oil price environment (Curtis and Montalbano, 2017). Since well productivity is strongly 

influenced by the completion design, completion optimization is a key cost-saving method 

to increase oil production. However, this problem is challenging because well production 

is influenced simultaneously by a complex combination of many factors such as geological 

environment, reservoir fluid properties and well completion parameters. It remains largely 

elusive which features should be extracted from a rich pool of available measurements on 

reservoir properties to predict production. Even with the knowledge of feature extraction, 

the functional association between geological features and production can be complex in 

nature and challenging to characterize. This challenging partially stems from the spatial 

misalignment issue between horizontal producers and geological data from nearby vertical 

wells. Wells with complete measurements in the Permian database are quite limited. The 

database has both vertical deeper-well logs that penetrate Permian Shale but do not have 

Permian production, and Permian horizontal wells that do not penetrate the full formation 

but have production data. In addition, a common relationship may not hold across different 

sub-regions in a reservoir area. 
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In this chapter, based on production data, completion data, geological data and other 

relevant information such as water oil ratio (WOR) and gas oil ratio (GOR), we develop a 

generalized additive model (GAM) (Hastie and Tibshirani, 1986) to investigate possibly 

nonlinear functional associations between production and key completion parameters. The 

geological confounding effect can be incorporated in the model in two ways. In the first 

method, the categorical geological variable “internal zone” (internal layer where the 

horizontal lateral is located) is included in the GAM model. We can see the importance of 

“internal zone” according to the statistical significance p value and the leave one out 

(LOO) cross validation error. In case of the missing of the feature “internal zone”, we 

propose the second method where the geological effect extracted from well logging data 

is treated as a clustered random effect by extending a state-of-the-art statistical machine 

learning method via homogeneity pursuit regularizations that allows us to automatically 

find clusters without the need to specify the number of clusters in prior and estimate 

completion control effects simultaneously. The model performance is assessed in terms of 

prediction accuracy using LOO cross validation. To assess the merits of GAM model, a 

comparison is made with another additive model derived from alternating conditional 

expectation (ACE) algorithm (Breiman and Friedman, 1985). It turns out the GAM model 

outperforms ACE model in prediction accuracy. In addition, GAM model has advantages 

over ACE model in two folds: (1) we can directly see the relation of oil production with 

key completion parameters while in ACE model we need an additional inverse transform 

on both the response and predictors. (2) ACE model is strongly based on the assumption 

of the additivity of predictors and fails to account for the interaction between predictors 
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while GAM model allows us to include interaction in the model. The learning results of 

such associations can provide guidance in the development of efficient completion 

practices.  

 

4.2 Literature review 

Using reservoir simulation, Malayalam et.al (2014) presented an approach to answer the 

questions such as how long the lateral to drill, how many stages to complete and how far 

apart to place the laterals. For the single well optimization study, they made the conclusion 

that (1) incremental recovery decreases as more stages are added and (2) for a set number 

of stages longer laterals yields more production due to less fracture interference. In 

addition, a case study by Zhong et.al (Zhong, et al., 2015) using data mining approach 

reveals that completion lateral length and total proppant amount are important factors 

driving the first 12-month cumulative oil production. Recently, Pradhan and Xiong 

(Pradhan and Xiong, 2018) conducted a study aiming to determine optimal lateral lengths 

and trajectories in Permian Basin. A finding from this study is that long lateral lengths do 

not completely ensure proportionately more production and some other factors could 

influence recoveries per lateral length when drilling longer laterals. Another study by 

Yuan et.al. (Yuan et al., 2017) also made a similar claim that through data analytical 

studies no distinctive advantage of drilling a well with higher lateral length was found. No 

clear correlation trend was observed between higher lateral length and better production 

performance in the Barnett.  
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Although the recent progress in the study of completion design has greatly increased our 

understanding of key completion controls on shale reservoir productivity, a quick and 

efficient method that clearly reveals the quantitative relation between production and key 

completion engineering parameters is still missing. In practice, engineers prefer a method 

which can quickly provide a clear solution on the questions such as how long the lateral 

to drill, what is the stage spacing and how much proppant should be used. The major 

objective of this study is to answer those questions using statistical machine learning 

method. Our method is a data driven method which is based on all the useful data 

information we can collect from the existing wells. We claim that our method can provide 

engineers useful guidance that maximizes well productivity and save operational cost.  

 

4.3 Data and preliminary analysis 

In this study, the raw data consists of 355 vertical well logging data, production histories 

and relevant completion data of 1532 horizontal producing wells and 2221 vertical 

producing wells from Permian Basin. The target variable is 1-year cumulative oil 

production and the relevant nongeological features include amount of proppant per stage 

(lb/stage), fluid per stage (gal/stage), stage spacing (feet), completed lateral length (feet), 

water oil ratio (WOR), cumulative gas oil ratio (cumGOR) and shut in days (Days). The 

geological feature is either categorical variable “internal zone” or well logging data. We 

assume that the logs of each horizontal lateral can be inferred from the logging data of its 

nearest vertical well at approximately the same depth. The logging data of horizontal wells 

are used for geological feature clustering and it consists of gamma ray (GR), rock density 



 

60 

 

(DEN), deep resistivity (RESDEP) and neutron porosity (NEU_LIM). GR is known to be 

associated with the rock type in the reservoir. High GR value indicates high shale volume 

and lower GR value indicates lower shale volume. RESDEP indicates the water saturation 

level at the well location. High deep resistivity indicates lower water saturation since the 

hydrocarbon has high resistivity compared to the fresh water in the formation. NEU_LIM 

and DEN are associated with the medium porosity at the well location. The density of pure 

sandstone is 2.65 g/cm3  and the density of pure limestone is 2.71 g/cm3 , but the 

hydrocarbon and water in the pore will change the rock density. We can estimate the 

medium porosity according to NEU_LIM and DEN logs. In this study, our interest is 

focused on a Beta zone which has four sub-layers named as WC_SH_B, WC_SH_B1, 

WC_SH_B2 and WC_SH_B3. Finally, the number of wells with 1-year production history 

in Beta zone is 106. Figure 19 below shows the spatial distribution of vertical wells and 

our target horizontal wells. From Figure 19, vertical wells and horizontal wells are 

spatially close to each other and as a result, it is reasonable for us to estimate a geological 

parameter at the location of a horizontal well by using the corresponding nearest vertical 

log.  
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Figure 19: Spatial distribution of horizontal (red) and vertical (black) wells for 

completion design analysis 

 

 

 The histogram of the response and relevant features are shown in Figure 20 below. As 

we can see, the response variable 12-month cumulative oil production approximately 

follows the log normal distribution. As we will show later in the LOO cross validation 

result, in the modeling it is better to take log transformation on the response variable, 

which yields lower cross validation error compared to the model using the original 

response. In addition, from the histogram of completed lateral length, we can see there are 

very few wells with long lateral length from which we expect that the model will have 

high uncertainty in the relation between oil production and long completed lateral length.  
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Figure 20: Histogram of response and predictors 

 

 

The correlation of the response with predictors is shown in Figure 21 below:  
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Figure 21: Correlation of cumulative oil production with relevant features 

 

 

From Figure 21, we see that proppant per stage and fluid per stage have strong correlation. 

In addition, the cumulative oil production is negatively correlated with WOR. It is hard to 

see the rest of relation pattern from Figure 21 and as a result, the correlation matrix is 

given in Table 4 below:  
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 Cum. 

Oil.12 

Proppant 

 per stage 

Fluid  

per stage 

Stage 

spacing 

Completed  

Lateral 

Length 

WOR cumGOR Shut in 

Days 

Cum. 

Oil.12 

   1.0     0.2428 0.083 -0.221 0.168 -0.531 -0.170 -0.082 

Proppant 

per stage 

0.2428 1.0 0.654 0.372 0.125 -0.233 -0.038 0.029 

Fluid  

per stage 

0.083 0.654 1.0 0.567 -0.042 -0.120 -0.085 -0.167 

Stage 

spacing 

-0.221 0.372 0.567 1.0 0.029 -0.111 -0.061 -0.028 

Completed 

Lateral 

Length 

0.168 0.125 -0.042 0.029 1.0 -0.037 0.151 -0.014 

WOR -0.531 -0.233 -0.120 -0.111 -0.037 1.0 0.319 -0.269 

cumGOR -0.170 -0.038 -0.085 -0.061 0.151 0.319 1.0 0.169 

Shut in 

Days 

-0.082 0.029 -0.167 -0.028 -0.014 -0.269 0.169 1.0 

Table 4: Correlation matrix of cumulative oil production with relevant features 

 



 

65 

 

The table above conveys us the general information on the relation of oil cumulative 

production with each predictor and more investigation is required to characterize the 

influence of key completion parameters on oil production.  

 

4.4 Modeling 

In this section, we will have a discussion on the statistical model that characterizes the 

associations of production with geological and nongeological variables. Most of 

nongeological variables are well completion parameters. First, we introduce notations. We 

denote 𝑌𝑖 as the (transformed) production at well location 𝐬𝑖. Let 𝑁 denote the number of 

production wells. The geological feature at well location 𝒔𝑖  is denoted as 𝐗𝑔
𝑖 . This 

geological feature can be either the categorical variable “internal zone” or a group of 

variables derived from well logging data. As we will show later, different methods will be 

applied to the two different cases of geological features. The vector of nongeological 

variables at well location 𝐬𝑖  is denoted by 𝐗𝑛𝑔
𝑖 = (𝑥𝑛𝑔,1

𝑖 , 𝑥𝑛𝑔,2
𝑖 , … , 𝑥𝑛𝑔,7

𝑖 )  where the 

variables from 𝑥𝑛𝑔,1
𝑖  to 𝑥𝑛𝑔,7

𝑖  stand for proppant per stage, completed lateral length, stage 

spacing, fluid per stage, WOR, cumulative GOR and shut in days at well location 𝐬𝑖 , 

respectively. Whatever geological feature we use, we consider oil production model as an 

additive model with the form as follows: 

 

𝑌𝑖 = 𝑓(𝑛𝑔)(𝐗𝑛𝑔
𝑖 ) + 𝑓(𝑔)(𝐗𝑔

𝑖 ) + 𝜖𝑖                                                                                   (4.1) 
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where 𝜖𝑖 is the residual, and 𝑓(𝑛𝑔) and 𝑓(𝑔) are nongeological effect and geological effect, 

carrying information on how geological parameters and nongeological parameters 

influence production, respectively.  

 

The nongeological effect 𝑓(𝑛𝑔)  is expected to be a relatively smooth function and the 

interpretability of this function is of high priority for practical engineering controls. We 

choose to model it as a generalized additive model (GAM) , which has been acknowledged 

as an appealing choice to model multivariate function models. It represents the 

relationships between the predictors and the dependent variable as a sum of unknown 

smooth functions, which flexibly allow both linear or nonlinear fits with relaxed 

assumptions on the actual relationship between response and predictor with interpretable 

results. Specifically, the GAM model for 𝑓(𝑛𝑔) takes the form 

 

𝑓(𝑛𝑔)(𝐗𝑛𝑔) = ∑ 𝑓𝑖
(𝑛𝑔)

(𝑥𝑛𝑔,𝑖; 𝛽𝑛𝑔,𝑖)
7
𝑖=1                                                                            (4.2) 

 

in which each 𝑓𝑖
(𝑛𝑔)

 is modeled as a smooth function with parameters 𝜷𝑖 for 𝑖 = 1, … ,7. 

Here the equation of 𝑓(𝑛𝑔) does not consider the interaction between predictors, but it is 

easy to generalize this model to take account of the interaction if necessary. For the sake 

of convenience, the discussion below does not include the interaction. One popular choice 

of such functions is the cubic smoothing splines (Wood, 2006), where the natural spline 

basis functions are used with the knots placed at all the observed points to circumvent the 
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problem of knot selection, and the coefficients of these basis functions are regularized to 

suppress overly wiggly components and to avoid overfitting.  

 

For the 𝑘-th nongeological predictor, let 𝜙𝑘
1, … , 𝜙𝑘

𝑁 be the truncated power basis functions 

for natural cubic spline with knots at 𝑥𝑛𝑔,𝑘
1 , … , 𝑥𝑛𝑔,𝑘

𝑁 . Then each individual function 𝑓𝑘
(𝑛𝑔)

 

can be expressed as 𝑓𝑘
(𝑛𝑔)

(𝑥𝑛𝑔,𝑘) = ∑ 𝜙𝑘
𝑗
(𝑥𝑛𝑔,𝑘)

𝑁
𝑗=1 𝛽𝑘

𝑗
, the smoothing penalty term is 

𝜆𝑛𝑔𝜷𝑘
𝑇Ω𝑘𝜷𝑘, where Ω𝑘 is the 𝑛 × 𝑛 smoothing penalty matrix whose (𝑖, 𝑗)-th element is 

𝜔𝑘
𝑖𝑗
= ∫ 𝜙𝑘

′′𝑖(𝑡)𝜙𝑘
′′𝑗
(𝑡)𝑑𝑡 . It plays an important role to control for overfitting by 

penalizing the wiggliness for each 𝑓𝑘
(𝑛𝑔)

. The penalty term involves a so called smoothing 

parameter 𝜆𝑛𝑔, controlling the level of penalty; the larger the value of 𝜆𝑛𝑔, the smoother 

the function.  

 

A remaining challenging is to determine the specification for the geological effect 𝑓(𝑔). It 

is known that subsurface consists of complex and heterogeneous multiple layers and hence 

underground geophysical properties are often expected to change abruptly. Therefore, 

relationships between production and geological covariates are expected to exhibit 

spatially non-smoothly varying patterns. Detecting these clusters allows straightforward 

interpretations of local associations between response variables and covariates. There are 

two methods that can be applied to determine the well cluster membership. The first 

method is to directly use the geological categorical variable “internal zone” as well cluster 

label. Then the function 𝑓(𝑔) is a piecewise constant function of “internal zone”. This 
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method is easy and straightforward. In case of the missing of “internal zone”, we can resort 

to well logging data for clustering and in the next section, we will mainly discuss 

geological clustering by well logging data.  

 

4.5 Geological clustering by logging data 

In the second method, we consider a flexible regularization model for 𝑓(𝑔) that extends 

the spatial fused lasso and the 𝑘-nearest-neighbor (K − NN) lasso for non-parametric 

regression. This method is performed in the following steps: 

(1) Combine the geological covariates and the spatial coordinates, and define a 

distance metric between pairs of covariate vectors.  

(2)  Construct a 𝑘-nearest-neighbor (K − NN) graph, denoted it as 𝐺 = (𝑉, 𝐸) where 

𝑉 = {𝑣1, … , 𝑣𝑛} is the vertex set with 𝑛 vertices and 𝐸 is the edge set.  

(3) Use this k − NN graph to construct the fused lasso penalty for 𝑓(𝑔) as follows: 

𝜆𝑔 ∑ |𝑓(𝑔)(𝐗𝑔
𝑖 ) − 𝑓(𝑔)(𝐗𝑔

𝑗
)|

(𝑖,𝑗)∈𝐸

 

 

The regularization, referred to as the fused lasso penalty (Tibshirani and Taylor, 2011), is 

to encourage homogeneity between the geological effects at two locations if they are 

connected by an edge in 𝐸. We will discuss how to construct the edge set 𝐸 later. 𝜆𝑔 is a 

regularization parameter determining the strength of fused lasso penalty. Since the 

solution of 𝑙1 penalty results in exact fusion or separation between 𝑓(𝑔)(𝐬𝑖) and 𝑓(𝑔)(𝐬𝑗), 

this regularization automatically leads to a spatially clustered geological random effect. 
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The values of nearest neighbors 𝑘 and clustering number are two tuning parameters that 

are required as input. The optimal number of nearest neighbors and the optimal number of 

clusters are determined by LOO cross validation. The advantages of using fused lasso for 

cluster detection are in three folds; it provides an integrated approach that allows to detect 

clusters and estimate model parameters simultaneously; the number of clusters is 

completely data driven and there is no strong restrictions on the shape of clusters; 

furthermore, although designed for piecewise constant coefficients, previous theoretical 

studies show that this penalty has strong local adaptivity in that it can also successfully 

capture piecewise Lipschitz continuous functions.  

 

The edge set 𝐸 is a key ingredient in the model since it reflects the prior assumption on 

the homogeneity structure of geological effects. Note the fact that similar geological 

conditions are likely to lead to similar effect on production. It is therefore desirable to 

construct 𝐸 such that pairs of locations that have similar values of geological parameters 

are included to reflect homogeneity among them. As aforementioned, in this study, we 

choose to include all edges that connect a well location with each of its 𝑘  nearest 

neighbors. Here, the neighbors are searched by using the distance metric defined on 

principle component scores of geological parameter values. By principle component 

analysis (PCA), all wells share one space coordinate system spanned by the principle 

components and for each well, the corresponding score vector can be interpreted as the 

projection of the original vector (defined by the spatial coordinates and geological 

parameters at that specific well location) onto each unit principle component coordinate. 
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As a result, we can take the principle component score vector as point coordinates that 

specify the location in the space spanned by the principle component vectors.  Thus, we 

propose to use the principle component score metric to measure the geological similarity, 

which is analogous to the method we normally apply to define two-point distance in 

Euclidean space.  

 

Using the above regularization models for 𝑓(𝑔)  and 𝑓(𝑛𝑔) , we have an optimization 

problem as follows: 

 

1

𝑁
∑ {𝑌𝑖 − ∑ ∑ 𝜙𝑘

𝑗
(𝑥𝑛𝑔,𝑘)𝛽𝑘

𝑗𝑁
𝑗=1

7
𝑘=1 − 𝑓(𝑔)(𝐗𝑔

𝑖 )}
2

𝑁
𝑖=1 + ∑ 𝜆𝑛𝑔𝜷𝑘

𝑇Ω𝑘𝜷𝑘
7
𝑘=1 +

𝜆𝑔∑ |𝑓(𝑔)(𝐗𝑔
𝑖 ) − 𝑓(𝑔)(𝐗𝑔

𝑗
)|(𝑖,𝑗)∈𝐸                                                                                        (4.3) 

 

Our goal is to find the estimates of 𝜷𝑘  and 𝑓(𝑔)  that maximizes the above objective 

function. 

 

4.6 Estimation 

In this section, we will show an iterative optimization algorithm for the estimation of the 

parameter 𝜷𝑘 and 𝑓(𝑔)(𝐗𝑔
𝑖 ) in Eq. (4.3). 

 

Given values of 𝑓(𝑔)(𝐗𝑔
𝑖 ), the vector 𝜷𝑘(𝑘 = 1,2, … ,7) are estimated via a quadratically 

penalized least square method, i.e., by minimizing  
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1

𝑁
∑ {𝑌𝑖 − ∑ ∑ 𝜙𝑘

𝑗
(𝑥𝑛𝑔,𝑘

𝑗
)𝛽𝑘

𝑗𝑁
𝑗=1

7
𝑘=1 − 𝑓(𝑔)(𝐗𝑔

𝑖 )}
2

𝑁
𝑖=1 + ∑ 𝜆𝑛𝑔𝜷𝑘

𝑇Ω𝑘𝜷𝑘
7
𝑘=1                         (4.4) 

 

We use the function gam in the R package mgcv to solve this optimization. And we follow 

the Generalized Cross Validation (GCV) criterion to estimate the smoothing parameters 

𝜆𝑛𝑔.  

 

Given values of 𝜷𝑘(𝑘 = 1,2, … ,7), 𝑓(𝑔)(𝐗𝑔
𝑖 ) is obtained by solving a regularized convex 

optimization as below: 

 

1

𝑁
∑ {𝑌𝑖 − ∑ ∑ 𝜙𝑘

𝑗
(𝑥𝑛𝑔,𝑘

𝑗
)𝛽𝑘

𝑗𝑁
𝑗=1

7
𝑘=1 − 𝑓(𝑔)(𝐗𝑔

𝑖 )}
2

𝑁
𝑖=1 ++𝜆𝑔 ∑ |𝑓(𝑔)(𝐗𝑔

𝑖 ) −(𝑖,𝑗)∈𝐸

𝑓(𝑔)(𝐗𝑔
𝑗
)|                                                                                                                               (4.5) 

 

We first reformulate the above equation as a generalized Lasso problem as follows: 

 

1

𝑁
∑ {𝑌𝑖 − ∑ ∑ 𝜙𝑘

𝑗
(𝑥𝑛𝑔,𝑘

𝑗
)𝛽𝑘

𝑗𝑁
𝑗=1

7
𝑘=1 − 𝑓(𝑔)(𝐗𝑔

𝑖 )}
2

𝑁
𝑖=1 + 𝜆𝑔‖𝐇𝐟

(𝑔)‖
1
                                (4.6) 

 

where 𝐟(𝑔) = (𝑓(𝑔)(𝐗𝑔
1),… , 𝑓(𝑔)(𝐗𝑔

𝑁)), 𝐇 is a 𝑚 × 𝑛 matrix constructed from the edge 

set 𝐸  with 𝑚 edges. For an edge connecting two locations 𝑠𝑖  and 𝑠𝑗 , we represent the 

penalty term |𝑓(𝑔)(𝐗𝑔
𝑖 ) − 𝑓(𝑔)(𝐗𝑔

𝑗
)| as |𝐇𝑚𝐟

(𝑔)| where 𝐇𝑚  is a row vector of 𝐇 only 

containing two non-zero elements, 1 at 𝑖-th element and −1 at 𝑗-th. The standard ADMM 



 

72 

 

proceeds by first decoupling the likelihood term and the regularization term by introducing 

new equality constraints 𝐇𝐟(𝑔) − 𝜸 = 𝟎, that is to  

 

minimize‖𝐘 − 𝐟(𝑛𝑔) − 𝐟(𝑔)‖
2

2
+ 𝜆𝑔‖𝜸‖

1
, subject to 𝐇𝐟(𝑔) − 𝜸 = 𝟎 

 

Then, the standard ADMM solves the above equivalent formulation following the iteration 

steps as below: 

 

Step 1: 𝐟(𝑡+1)
(𝑔)

= (𝐈 + 𝜌𝐇𝑇𝐇)−1(𝐘 − 𝐟(𝑛𝑔) + 𝜌𝐇𝑇(𝜸(𝑡) − 𝐮(𝑡)))                                (4.7.1) 

Step 2: 𝜸(𝑡+1) = 𝑆𝜆𝑔 𝜌⁄ (𝐇𝐟(𝑡+1)
(𝑔)

+ 𝐮(𝑡))                                                                       (4.7.2) 

Step 3: 𝐮(𝑡+1) = 𝐮(𝑡) + 𝐇𝐟(𝑡+1)
(𝑔)

− 𝜸(𝑡+1)                                                                    (4.7.3) 

 

where 𝑆𝜆𝑔 𝜌⁄   is the soft thresholding function. We use the admm.genlasso function in the 

R package penreg to solve it.  The two optimizations are run iteratively until cluster 

memberships and model parameters converge.  

 

LOO cross validation is needed for either model assessment or tuning parameter selection 

since the number of wells available for the study is limited. Specifically, given 𝑛 

horizontal wells, we choose 𝑛 − 1 horizontal wells as training wells to build a production 

model that incorporates both geological and completion effects and then make prediction 

on production for the well that is left out. Each well in our study will serve as a test well 
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once and finally, we will compare the true production values with the prediction obtained 

from cross validation. The equation of cross validation error is 

 

C. V. Error = √
∑ (ytrue,𝑖−ypred,𝑖)

2
𝑖

∑ 𝑦true,𝑖
2

𝑖
                                                                                         (4.8) 

 

where 𝑦true and 𝑦pred denote the true value and prediction value of 1-year cumulative oil 

production, respectively. We will select the model or the tuning parameters that yield the 

minimum cross validation error.  

 

4.7 Real data results 

We first consider the GAM model that includes the feature “internal zone”. Not all the 

nongeological features are important to GAM production model and 𝑝 value is used to 

find out features that are statistically significant. LOO cross validation is used to support 

our argument on feature selection. According to fracture mechanics, the amount of 

proppant and fluid used in fracking are correlated. Therefore, an additional term is added 

in GAM to take account of the interaction between proppant and fluid. To show the 

importance of interaction term, we compare the results with and without the interaction in 

terms of the criterion LOO cross validation error. Also, we will compare the results with 

and without applying log transformation to the response variable. Then we will present 

the results including geological clustering. Finally, the result from ACE method will be 

used for model comparison.  



 

74 

 

Functional terms of features p-value 

(case 1) 

p-value 

(case 2) 

p-value 

(case 3) 

p-value 

(case 4) 

ti(proppant per stage) 0.0458 0.0296 0.0183 0.0200 

ti(stage spacing) 1.45e-5 4.62e-6 8.99e-6 2.1e-6 

ti(completed lateral length) 0.0342 0.0758 NA NA 

ti(fluid per stage) 0.0446 0.0286 0.0566 0.0315 

ti(proppant per stage, 

   fluid per stage) 

0.0322 0.0207 0.0132 NA 

ti(cumGOR) 0.167 NA NA NA 

ti(WOR) 9.78e-9 2.76e-9 3.62e-9 9.04e-9 

ti(shut in days) 0.0026 0.00454 0.00214 0.0039 

Internal Zone 0.0244 0.0161 0.0122 0.0168 

Cross validation 0.2576 0.2512 0.2490 0.2643 

Table 5: p value table of GAM model 

 

 

The second column of Table 5 above shows the p value of each feature for the model 

containing all the features (case 1). The LOO cross validation error is 0.2576. As we can 

see, the feature cumulative GOR has very high p value, which indicates this feature is not 

statistically significant in oil production model. Then we run the second model without 

cumulative GOR (case 2) and the p value of each feature is shown in the third column of 

Table 5. The LOO cross validation error is 0.2512. Therefore, without cumulative GOR, 

the LOO cross validation error becomes smaller. Furthermore, in case 2 we see the 𝑝 value 

of completed lateral length is 0.0758 and therefore, the third model (case 3) without 

completed lateral length is tested. The LOO cross validation error is 0.2490. Thus, the 

most important features for oil production are proppant per stage, fluid per stage, stage 

spacing, WOR, shut in days and internal zone. In addition, the interaction between 

proppant per stage and fluid per stage is very important, which can be seen from the 

comparison between case 3 and case 4. In case 4, the model without interaction yields the 
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cross validation 0.2643 much larger than the result from case 3. Thus, the final predictive 

model for oil production is chosen to be case 3. Completed lateral length does not show 

the statistical importance in predicting oil cumulative production. This is because in our 

dataset most of wells have completed lateral length highly concentrated within one interval 

and then we do not see the importance of this feature. However, according to the domain 

knowledge from production engineering, we believe completed lateral length is an 

important feature and in addition, since one of our goals is to answer the question whether 

longer completed lateral length necessarily indicates higher cumulative production, we 

will include completed lateral length in the final model to see the effect of long complete 

lateral length on oil production. The relations of oil production with proppant per stage, 

fluid per stage, stage spacing, WOR, shut in days and completed lateral length are given 

in Figure 22 below: 
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Figure 22: The relation of oil cumulative production with key nongeological features 
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In Figure 22, the first plot shows the functional association between oil cumulative 

production and proppant per stage at different levels of fluid per stage. Focus on the peak 

points of the 5 curves and we see at that point the amount of proppant and fluid are 

positively correlated. The more fluid we use during fracking, the more proppant we need. 

We can find physical explanation for this result. The fluid is injected mainly to stimulate 

fracture propagation and the proppant is injected into the fracture for supporting purpose 

which prevent the fracture from being closed again. The more fluid we inject, the larger 

the fracture volume will be and as a result, the more proppant is needed to keep the fracture 

open. In addition, when the amount of fluid per stage is fixed, injecting more proppant 

does not necessarily indicate the increase of oil production. At the average level of fluid 

per stage, the proppant efficiency starts to decline when proppant per stage is 

approximately over 3 × 105 lb/stage. It is recommended to determine the optimal value 

of proppant per stage after we decide how much fluid we will use for fracking. Next, in 

the second plot the blue dot line represents the expected contribution to oil cumulative 

production from each of the other three features and the two red lines in each plot represent 

the uncertainty on the estimation. The feature stage spacing is negatively correlated with 

oil cumulative production. The smaller the stage spacing is, the higher the cumulative 

production will be. However, we also notice that the number of wells with stage spacing 

less than 150 ft is very few and it is recommended to have more wells with stage spacing 

around 100 ft to 150 ft and we expect higher cumulative production compared to other 

wells with stage spacing greater than 150 ft. As for WOR, we can see that the higher water 

oil ratio is, the lower the oil cumulative oil production will be. The same relation holds for 
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the feature shut in days. The last plot is a relation between oil production and completed 

lateral length. From Figure 22, we see the oil production rises with the increase of 

completed lateral length. However, there are very few wells with completed lateral length 

higher than 5000 ft and the production uncertainty at long lateral length is large. Therefore, 

it is recommended that we should drill more wells with completed lateral length between 

5000 ft and 7000 ft to help us understand more about production from long horizontal 

wells. This will reduce our uncertainty on the production from long horizontal wells. At 

least, from the current figure we have high confidence that the completed lateral length 

5000 ft is better than completed lateral length 4000 ft in the aspect of maximizing well 

productivity. This observation should be helpful to engineers who need to decide how long 

the well should be drilled. In summary, according to Figure 22, we can determine the 

optimal value of stage spacing. The optimal value of proppant per stage depends on the 

amount of fluid we plan for each stage. The completed lateral length is recommended to 

be between 5000 ft and 7000 ft.  

 

If we do not apply log transformation to the original oil cumulative production, the LOO 

cross validation error is 0.273. Therefore, we can see the model with log transformation 

yields lower cross validation error. This is one reason why the response variable is 

transformed in this study. Another reason for log transformation is that the GAM model 

with log transformation implies that the nonlinear function of true production is the 

product of a function for geological effect and another function for completion effect. If a 

reservoir is a sweet spot with good geological properties, then we expect the production 
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will be high; if the geological condition is the same, then good completion design will also 

increase well productivity.  

 

Now we will discuss the geological clustering. In geological clustering, the feature Internal 

zone is not used. The optimal number of neighbors and clusters are determined by LOO 

cross validation. The result is given in Table 6 below: 

 

      Clusters 

 

Neighbors 

2 3 4 5 6 7 8 9 10 

3 NA NA 0.2

584 

0.2

569 

0.2

534 

0.25

25 

0.2

523 

0.25

05 

0.25

34 

4 0.25

52 

0.25

52 

0.2

498 

0.2

498 

0.2

498 

0.25

12 

0.2

534 

0.25

57 

0.25

56 

5 0.25

52 

0.25

54 

0.2

519 

0.2

516 

0.2

518 

0.25

23 

0.2

531 

0.25

42 

0.25

47 

Table 6: Leave one out cross validation error (geological clustering) 

 

 

From Table 6 we can see that the optimal number of neighbors is 4 and the optimal number 

of clusters is 4. The LOO cross validation error is 0.2498 which is close to the error from 

the first model that has the component “internal zone”. When the number of neighbors is 
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4, the minimum number of clusters is 4. Based on the optimal hyperparameter values, we 

have the geological clustering results in Figure 23 and Figure 24. From Figure 24, we 

see the relations of oil production with stage spacing, WOR, shut-in day and completed 

lateral length are the same as those from the GAM model based on “internal zone”. As for 

the relation between oil production and proppant per stage, we see a slight difference when 

the amount of fluid per stage is 4.8 × 105 gal/stage compared to the plot in Figure 22. 

This does not indicate that in the second approach the nonlinear functions of proppant per 

stage, fluid per stage and the interaction term are different from those in the first model. It 

turns out that we will see similar trend in the first model when we increase the amount of 

fluid in each stage. This difference arises from the difference of the two methods we 

proposed in handling the geological confounding effect. Geologists determine the internal 

zone according to their analysis on all the geological information available including well 

logging data, while in the second approach well logging data is only used as prior 

information and the final clustering is Bayesian result which incorporates both well 

logging and production information. In addition, we have a comparison on the estimated 

average production that is only due to the geology part by letting the completion effect on 

production be the same in the two models. It turns out that the two estimated mean values 

are very close to each other with a difference by only 3%. This indicates the similarity of 

the two models. According to the result from the second model (geological clustering by 

well logging), we recommend the amount of proppant per stage to be between 3.5 × 105 

lb/stage and 4.0 × 105 lb/stage given the large uncertainty that exists at large proppant per 

stage. Fluid per stage is recommended to be no less than 4.0 × 105 gal/stage.  
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Figure 23: Geological clustering  

 

 

Figure 24: The relation of oil cumulative production with key nongeological 

features (geological clustering by logging data) 
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Figure 24: Continued 

 

 

Lastly, we compare our method with the model derived from ACE algorithm. ACE builds 

transformations of the independent variables 𝑋𝑖 → 𝜙(𝑋𝑖) and the response variable 𝑌 →

𝜃(𝑌) which minimize the regression error variance in the transformed space: 

 

𝑒2(𝜃, 𝜙1, 𝜙2, … , 𝜙𝑛) =
𝐸{[𝜃(𝑌)−∑ 𝜙𝑖(𝑋𝑖)

𝑛
𝑖=1 ]

2
}

𝐸[𝜃2(𝑌)]
                                                                      (4.9) 

 

The features used in ACE model are the same as the features used in GAM model, but 

ACE model does not take account of the interaction between proppant and fluid. The result 

of ACE algorithm is given below: 
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Figure 25: Nonlinear transform of features by ACE algorithm 

 

 

In Figure 25, we can see the transformed functions of proppant per stage and fluid per 

stage are very similar to the functions we obtained in GAM model. Stage spacing, WOR 

and shut in days also hold similar relation. But the LOO cross validation error from ACE 

model is 0.29 which is 16% higher than the GAM model. As a result, we recommended 

the GAM model for the oil production model.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

In chapter 2, we developed an optimization algorithm for shale well decline curve analysis. 

For a well that is already in the BDF regime, this algorithm can be combined with a three-

step diagnostic method to find the optimal solution of five important production 

parameters 𝑞𝑖, 𝑏𝑖, 𝐷𝑖 , 𝑏𝑓 , 𝑡𝑐 . Since there is a rigorous theoretical proof supporting the 

proposed three-step diagnostic method, we can use the new diagnostic method to 

effectively identify production flow regime, and this improvement can help us have more 

confidence on the estimated parameter values. In contrast, from the discussion in section 

2.5, we see the drawback of using traditional modified hyperbolic model based minimum 

decline rate 𝐷min . If the wells are still in the transient flow regime, with simple 

modification of the algorithm we can uniquely determine the optimal value of 𝑞𝑖, 𝐷𝑖 , 𝑏𝑖 

that yields global minimum residual errors. The foundation of the proposed algorithm is 

the assumption that the residual errors are identical and independent, and we can check its 

validity by computing the autocorrelation of the residual errors. We must check the value 

of decline curve parameters to see if the results are consistent with our physical domain 

knowledge of reservoir fluid flow. The proposed diagnostic plot is recommended for 

parameter verification. From diagnostic plot, we determine the flow regime and then we 

have a rough idea on the range of parameter values and then we check whether our result 

fits with our preliminary analysis. If not, we need further investigation on the well 

production data for the reason of mismatch (e.g., outlier). The value of switching time 𝑡𝑐 

can affect the value of initial Arps 𝑏 parameter and as a result, the additional parameter 
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verification is extremely important when the production data is severely discontinuous. 

Accurate estimation of 𝑞𝑖, 𝑏𝑖, 𝐷𝑖, 𝑏𝑓 , 𝑡𝑐  is important to EUR estimation. In probabilistic 

decline curve analysis (PDCA), we need to specify the distribution of production 

parameters which is the cornerstone to the MCMC step of PDCA. The distribution of 

production parameters is based on the analysis of all the existing well production data. If 

there are not enough wells for analysis, the additional assumption is made about the 

distribution function that each decline curve parameter may satisfy and then we can use 

the maximum likelihood function or method of moments to estimate the unknown 

parameters of each distribution function. Using the algorithm proposed in this chapter we 

can effectively improve the estimation accuracy of decline curve parameters for each 

single well. Therefore, we will also improve our estimation on the distributions of 

𝑞𝑖, 𝑏𝑖 , 𝐷𝑖 , 𝑏𝑓 , 𝑡𝑐. In addition, our work can be applied in the construction of type wells and 

EUR estimation for undrilled wells. 

 

In chapter 3, we have developed a new method for forecasting primary phase production 

from liquid-rich shale reservoirs. Functional principal component analysis is the core of 

our approach.  We conducted a hindcasting experiment, which demonstrated the ability of 

the fPCA method to predict production accurately according to the comparison between 

prediction and true observation. In the fPCA method we construct a linear production 

model with the principal component functions as the expansion basis. From the linear 

production model, we can construct a production decline curve which honors the observed 

production data and which also predicts the EUR of a well. The estimates of ultimate 
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recovery (EUR) by fPCA method is close to the estimation based on modified hyperbolic 

model and in some cases the extended exponential decline model produces wrong 

estimation. 

 

In contrast to decline-model techniques for low-permeability well production analysis, the 

fPCA approach is driven purely by the production data. In the decline-model based 

approach, our goal is to fit the observed production data with an empirical model by 

adjusting model parameters so that the discrepancy between the observed data and 

estimation is minimum. This is a nonlinear regression problem and we will always 

encounter the issue that the model parameter determination does not have a unique 

solution. Different parameter values may result in quite different predictions. In addition, 

for the modified hyperbolic model, we need to specify the switching point from a 

hyperbolic model to an exponential model. This switching point depends on a minimum 

decline rate which is selected by the analyst. This introduces uncertainty in the prediction 

results due to humans, who often introduce subjective biases into their analyses. The 

advantages of the FPCA approach is that it does not have the issue with non-uniqueness 

and it is also easy to implement with the aid of the free R-package “fda” available online. 

This approach is also efficient and can be used to analyze the production from a large 

number of producing wells at the same time.  

  

One limitation of the fPCA approach is its requirement on the smoothness of production 

data. We developed an approach using a cumulative production curve coupled with the 
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Bourdet derivative algorithm to calculate rates which reduces the noise that exists in field 

data. For the 200 wells from Eagle Ford and Bakken formations, we see the smoothness 

of production data is improved after using the cumulative production data and Bourdet 

derivative algorithm. In addition, the new production profile matches well with the 

original profile. Another limitation of the fPCA approach is the need for the training wells 

with long production histories from which we can extract production features. Training 

well histories must include boundary-dominated flow; otherwise, the forecasts will be 

inaccurate. This limitation can be mitigated with the use of reservoir simulation when an 

insufficient number of wells are available for training. However, successful simulation 

requires a high-quality geoscience reservoir model. 

  

Last, but not least, in this work we did not consider spatial correlation which might exist 

in the production data due to well interference. We recommend a study of this problem in 

future work. In addition, the important problem of predicting secondary phase production 

is important in liquid-rich low permeability reservoirs is worth investigating in the future.  

 

In chapter 4, we consider the problem of completion design optimization. We propose a 

generalized additive model (GAM) to investigate possibly nonlinear associations between 

production and key completion parameters (e.g. completion lateral length, total proppant, 

number of hydraulic fracturing stages). The geological confounding effect is incorporated 

in the model in two ways. In the first method, we add the categorical feature “internal 

zone” (internal layer where the horizontal lateral is located) to the GAM model. In case of 
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the missing of the feature “internal zone”, we propose the second method where the 

geological effect extracted from well logging data is treated as a clustered random effect 

by means of graphic fused LASSO. Feature selection is carried out based on the p value 

of each term in the generalized additive model. Leave-one out (LOO) cross validation 

error is used to assess the goodness of feature selection. The results show that the 

following features are important to the prediction of oil cumulative production (1) 

proppant per stage (2) fluid per stage (3) stage spacing (4) water oil ratio (WOR) (5) shut 

in days and (6) internal zone. Based on the Permian dataset used in this study, completed 

lateral length is not statistically significant in the predictive model of oil production. This 

is because the completed lateral length in our dataset has low variation and is highly 

concentrated within one region. According to our domain knowledge on well production, 

we believe completed lateral length is an important feature and as a result, we have 

completed lateral length included in our final model. In addition, it is recommended to 

collect more data from wells with long completed lateral length. The model using the 

feature “internal zone” has an advantage over the second model in computational 

efficiency. It requires no iteration and no hyperparameter tuning by cross validation. 

Hyperparameter tuning by cross validation is the most time-consuming part in the second 

model. The second model has the advantage over the first model in the aspect that the 

clustering result is a result that incorporates both geological and production information.  

 

Furthermore, we have the following recommendation for well completion in practice after 

the analysis of the 106 horizontal wells in Permian basin: (1) the optimal amount of 
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proppant at each stage depends on the amount of fluid to be injected for hydraulic 

fracturing. The more fluid we use for multistage fracturing, the more proppant is needed 

to keep the fracture open. Based on our dataset, when the amount of fluid in each stage is 

less than 4.0 × 105 gal/stage, we see that there is an optimal value for the average amount 

of proppant to be injected in each stage and the production will no longer increase when 

proppant per stage is more than that optimal value. On the other hand, when fluid per stage 

exceeds 4.0 × 105 gal/stage, from our dataset we do not see the decline of production due 

to the increase of proppant in each stage. We recommend that proppant per stage not be 

less than 3.5 × 105 lb/stage and the fluid per stage not be less than 4.0 × 105 gal/stage. 

(2) We recommend a stage spacing of 150 ft (3) We recommend a completed lateral length 

between 5000 ft and 6000 ft. To address the issue of economics, we need more data such 

as estimated ultimate recovery (EUR) and completion cost. This topic is, however, beyond 

the scope of this study.   
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APPENDIX A 

DERIVATION OF 𝒌𝑷𝑻 AND 𝒌𝑴𝑩𝑻 

In this appendix, we will show the derivation for Eq. (2.12). According to the definition 

of 𝑘𝑀𝐵𝑇, we have 

 

𝑘𝑀𝐵𝑇 = −
𝑑 ln𝑞

𝑑 ln 𝑡𝑀𝐵𝑇
= −

𝑑 ln𝑞

𝑑 𝑡

𝑑𝑡

𝑑 ln 𝑡𝑀𝐵𝑇
= 𝐷(𝑡) 

𝑑𝑡

𝑑 ln 𝑡𝑀𝐵𝑇
                                                 (A.1) 

 

where 𝐷(𝑡) denotes the production decline rate at time 𝑡.   

Since 

 

𝑑 ln 𝑡𝑀𝐵𝑇

𝑑𝑡
=

1

𝑡𝑀𝐵𝑇
(1 −

𝑁𝑝

𝑞(𝑡)2
𝑑𝑞(𝑡)

𝑑𝑡
) =

1

𝑡𝑀𝐵𝑇
+ 𝐷(𝑡)                                                              (A.2) 

 

where 𝑁𝑝 denotes the cumulative production at time 𝑡.   

Then 

 

𝑘𝑀𝐵𝑇 =
𝐷(𝑡)𝑡𝑀𝐵𝑇

1+𝐷(𝑡)𝑡𝑀𝐵𝑇
                                                                                                          (A.3) 

 

If the production decline model is two-segment hyperbolic model with 𝑏𝑖 > 1 and 0 <

𝑏𝑓 < 1, then we have the equation for the decline rate as follows 
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𝐷(𝑡) = {

𝐷𝑖

1+𝐷𝑖𝑏𝑖𝑡
;                      𝑡 ≤ 𝑡𝑐
𝐷𝑖

1+𝐷𝑖𝑏𝑖𝑡𝑐+𝐷𝑖𝑏𝑓(𝑡−𝑡𝑐)
; 𝑡 > 𝑡𝑐

                                                                                 (A.4)  

 

Since the cumulative production and production rate at time 𝑡 ≤ 𝑡𝑐 is  

 

𝑁𝑝 =
𝑞𝑖
𝑏

(𝑏𝑖−1)𝐷𝑖
[𝑞1−𝑏𝑖 − 𝑞𝑖

1−𝑏𝑖]                                                                                        (A.5) 

𝑞(𝑡) =
𝑞𝑖

(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖

                                                                                                            (A.6) 

 

The equation of 𝑡𝑀𝐵𝑇 at time 𝑡 ≤ 𝑡𝑐 is 

 

𝑡𝑀𝐵𝑇(𝑡) =
𝑁𝑝

𝑞(𝑡)
=

1

(𝑏𝑖−1)𝐷𝑖
[(1 + 𝐷𝑖𝑏𝑖𝑡) − (1 + 𝐷𝑖𝑏𝑖𝑡)

1

𝑏𝑖]                                              (A.7) 

 

Thus, at time 𝑡 ≤ 𝑡𝑐 we have 

 

𝑘𝑀𝐵𝑇 =
1−(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖
−1

𝑏𝑖−(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖
−1
; 𝑡 ≤ 𝑡𝑐                                                                                      (A.8) 

 

At 𝑡 > 𝑡𝑐 the equation of cumulative production and production rate is 

 

𝑁𝑝 =
𝑞
𝑖

𝑏𝑖

(𝑏𝑖−1)𝐷𝑖
[𝑞𝑡𝑐
1−𝑏𝑖 − 𝑞𝑖

1−𝑏𝑖] +
𝑞𝑡𝑐

𝑏𝑓

(𝑏𝑓−1)𝐷𝑡𝑐
[𝑞1−𝑏𝑓 − 𝑞𝑡𝑐

1−𝑏𝑓]                                           (A.9) 
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𝑞(𝑡) =
𝑞𝑡𝑐

(1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐))

1
𝑏𝑓

                                                                                                   (A.10) 

 

where 𝑞𝑡𝑐 denotes the production rate at the switching time 𝑡𝑐 given as follows 

 

𝑞𝑡𝑐 =
𝑞𝑖

(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖

                                                                                                           (A.11) 

 

Thus, the equation of 𝑡𝑀𝐵𝑇 at 𝑡 > 𝑡𝑐 is 

 

𝑡𝑀𝐵𝑇 =
(1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐))

1
𝑏𝑓
−1

(𝑏𝑖−1)𝐷(𝑡)
[1 − (1 + 𝐷𝑖𝑏𝑖𝑡𝑐)

1

𝑏𝑖
−1
] +

1

(𝑏𝑓−1)𝐷(𝑡)
[1 − (1 + 𝐷𝑡𝑐𝑏𝑓(𝑡 −

𝑡𝑐))

1

𝑏𝑓
−1

]                                                                                                                        (A.12) 

 

Then at 𝑡 > 𝑡𝑐 the slope 𝑘𝑀𝐵𝑇 is 

 

𝑘𝑀𝐵𝑇 =

𝑏𝑓−1

𝑏𝑖−1
[1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1
]−1+     (1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐))

−
1
𝑏𝑓
+1

𝑏𝑓−1

𝑏𝑖−1
[1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1
]−1+𝑏𝑓(1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐))

−
1
𝑏𝑓
+1

                                                  (A.13) 
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APPENDIX B 

INEQUALITY RELATION BETWEEN 𝒌𝑷𝑻 AND 𝒌𝑴𝑩𝑻 

In this appendix, we will show that in the diagnostic plot, at any time 𝑡 the slope of PT 

curve 𝑘𝑃𝑇  is always greater than or equal to the slope of MBT curve 𝑘𝑀𝐵𝑇 . Here we 

assume 𝑏𝑖 > 1 and 0 < 𝑏𝑓 < 1. The proof for the special case 𝑏𝑖 = 1 or 𝑏𝑓 = 0 follows 

the similar argument as below.  

 

Proof: 

Part 1:  

When 𝑡 ≤ 𝑡𝑐, we have 

 

𝑘𝑃𝑇 =
1

1

𝐷𝑖𝑡
+𝑏𝑖

                                                                                                                     (B.1) 

𝑘𝑀𝐵𝑇 =
1−(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖
−1

𝑏𝑖−(1+𝐷𝑖𝑏𝑖𝑡)

1
𝑏𝑖
−1

                                                                                                   (B.2) 

 

When 𝑏𝑖 > 1, we have 

 

(1 + 𝐷𝑖𝑏𝑖𝑡)
1
𝑏𝑖
−1
≤ 1 for all 𝑡 

 

Therefore, to prove that 𝑘𝑃𝑇 ≥ 𝑘𝑀𝐵𝑇, it is equivalent to proof the following inequality 
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(
1

𝐷𝑖𝑡
+ 𝑏𝑖) [1 − (1 + 𝐷𝑖𝑏𝑖𝑡)

1

𝑏𝑖
−1
] ≤ 𝑏𝑖 − (1 + 𝐷𝑖𝑏𝑖𝑡)

1

𝑏𝑖
−1

                                             (B.3) 

 

Furthermore, the inequality (B.3) is equivalent to the following equality: 

 

(1 + 𝐷𝑖𝑏𝑖𝑡 − 𝐷𝑖𝑡)(1 + 𝐷𝑖𝑏𝑖𝑡)
1

𝑏𝑖
−1
≥ 1                                                                          (B.4) 

 

Let 𝑔(𝑡) = [1 + 𝐷𝑖(𝑏𝑖 − 1)𝑡](1 + 𝐷𝑖𝑏𝑖𝑡)
1

𝑏𝑖
−1

, then the first derivative of 𝑔(𝑡) is 

 

𝑔′(𝑡) = 𝐷𝑖
2(𝑏𝑖 − 1)(1 + 𝐷𝑖𝑏𝑖𝑡)

1

𝑏𝑖
−2
𝑡 ≥ 0 for all 𝑡                                                        (B.5) 

 

Since the first derivative of 𝑔(𝑡) is non-negative, the minimum value of 𝑔(𝑡) is 𝑔(0) =

1. Therefore, the inequality (B.4) is true and we have 𝑘𝑃𝑇 ≥ 𝑘𝑀𝐵𝑇 at time 𝑡 ≤ 𝑡𝑐.  

 

Part 2: 

When 𝑡 ≥ 𝑡𝑐, we have 

 

𝑘𝑃𝑇 =
1

1−𝐷𝑡𝑐𝑏𝑓𝑡𝑐

𝐷𝑡𝑐𝑡
+𝑏𝑓

                                                                                                           (B.6) 

𝑘𝑀𝐵𝑇 =

𝑏𝑓−1

𝑏𝑖−1
[1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1
]−1+     [1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐)]

−
1
𝑏𝑓
+1

𝑏𝑓−1

𝑏𝑖−1
[1−(1+𝐷𝑖𝑏𝑖𝑡𝑐)

1
𝑏𝑖
−1
]−1+𝑏𝑓[1+𝐷𝑡𝑐𝑏𝑓(𝑡−𝑡𝑐)]

−
1
𝑏𝑓
+1

                                                   (B.7) 
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Let  

 

𝑏𝑓−1

𝑏𝑖−1
[1 − (1 + 𝐷𝑖𝑏𝑖𝑡𝑐)

1

𝑏𝑖
−1
] − 1 = 𝛼                                                                             (B.8) 

1−𝐷𝑡𝑐𝑏𝑓𝑡𝑐

𝐷𝑡𝑐
=

1

𝛽
                                                                                                                  (B.9) 

 

Then when 0 < 𝑏𝑓 < 1, we have 𝛼 < −1, 𝛽 > 0 and  

 

𝛼 + [1 + 𝐷𝑡𝑐𝑏𝑓(𝑡 − 𝑡𝑐)]
−
1
𝑏𝑓
+1
< 0 

 

Therefore, to prove 𝑘𝑃𝑇 ≥ 𝑘𝑀𝐵𝑇, we only need to prove the following inequality: 

 

(
1

𝛽𝑡
+ 𝑏𝑓) (𝛼 + [1 + 𝐷𝑡𝑐𝑏𝑓(𝑡 − 𝑡𝑐)]

−
1

𝑏𝑓
+1
) ≥ 𝛼 + 𝑏𝑓[1 + 𝐷𝑡𝑐𝑏𝑓(𝑡 − 𝑡𝑐)]

−
1

𝑏𝑓
+1

                                          

(B.10) 

Th inequality (B.10) is equivalent to the following inequality: 

 

1

𝛼
≤ (𝛽𝑡 − 𝑏𝑓𝛽𝑡 − 1)[1 + 𝐷𝑡𝑐𝑏𝑓(𝑡 − 𝑡𝑐)]

1

𝑏𝑓
−1

                                                             (B.11) 

 

Let  
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ℎ(𝑡) = (𝛽𝑡 − 𝑏𝑓𝛽𝑡 − 1)[1 + 𝐷𝑡𝑐𝑏𝑓(𝑡 − 𝑡𝑐)]
1
𝑏𝑓
−1

 

 

Then the first derivative of ℎ(𝑡) is  

 

ℎ′(𝑡) =
𝐷𝑡𝑐
2 𝑡(1 − 𝑏𝑓)

1 − 𝐷𝑡𝑐𝑏𝑓𝑡𝑐
[1 + 𝐷𝑡𝑐𝑏𝑓(𝑡 − 𝑡𝑐)]

1
𝑏𝑓
−2
> 0 for all 𝑡 > 𝑡𝑐 

 

The minimum value of ℎ(𝑡) is ℎ(𝑡𝑐) =
𝐷𝑡𝑐𝑡𝑐−1

1−𝐷𝑡𝑐𝑏𝑓𝑡𝑐
 and with some simple algebra we can 

easily show that it is greater than 
1

𝛼
. Thus, the inequality (B.11) is correct and 𝑘𝑃𝑇 > 𝑘𝑀𝐵𝑇 

when 𝑡 > 𝑡𝑐. This complete the proof that 𝑘𝑃𝑇 ≥ 𝑘𝑀𝐵𝑇 for all time 𝑡.  
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APPENDIX C 

COMPARISON BETWEEN DIFFERENT APPROACHES 

A comparison of different approaches (fPCA, modified Arps, extended exponential):  

 

 

 

 

Figure 26: Production decline analysis of gas wells in Eagle Ford (Zhou et al. 2017) 
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Figure 26: Continued 
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Figure 27: Production decline analysis of oil wells in Bakken (Zhou et al. 2017) 
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Figure 27: Continued 


