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ABSTRACT

The necklace braid group NBn is the motion group of the n + 1 component necklace link Ln

in Euclidean R3. The link Ln consists of n pairwise unlinked Euclidean circles each linked to an

auxiliary circle. Partially motivated by physical considerations, we study representations of the

necklace braid group NBn, especially those obtained as extensions of representations of the braid

group Bn. During this study, we show that any completely reducible Bn representation extends to

NBn in a standard way.

We also investigate non-standard extensions of several well-known Bn-representations such as

the Burau and Lawrence-Krammer-Bigelow representations. Moreover, we prove that any local

representation of Bn (i.e. coming from a braided vector space) can be extended to NBn.

Motivated by the extensions of these local representations, we investigate local representations

of Bn from the twisted tensor products of group algebras. We start by discussing the case of using

the group Z3 × Z3, and even give some explicit examples.
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1. INTRODUCTION

Knot Theory owes much of its early development to Lord Kelvin and Tait’s theory of the

atom. Based off of the experiments of Helmholtz, they theorized that the atoms were knotted tubes

of æther, and were distinguished by their knot type [15]. While this theory was dismissed, the

tabulation of knots with few crossing by Tait arguably began modern knot theory.

Due to topological quantum computation [12, 17], the study of non-abelian statistics of anyons

has become alluring. The exchanging of non-abelian anyons induces unitary representations of the

braid group Bn. This can yield braiding-only models for universal quantum computing. Thanks

to the braid group acting faithfully on the fundamental group of the punctured plane, this is a

mathematically rich theory. The well-studied theory of (2+1)-TQFTs can be used to systematically

study such representations and their generalizations to mapping class groups of punctured surfaces

of any genus.

The natural ambition is to extend these ideas to 3-dimensional topological materials. However,

unlike (2+1)-TQFTs, (3+1)-TQFTs are not well-studied. Thus we can not obtain explicit descrip-

tions as we could in the 2-dimensional case. When moving to 3-dimensions, we must be careful.

This is due to the fact that the fundamental group of R3 with n points removed is trivial. However,

excitations of loop or closed string particles naturally occur in condensed matter physics and string

theory. The study of low dimensional local representations of the loop braid group, LBn, was

done in [9, 3]. In Chapter 3 we instead will look at representations of the necklace braid group,

NBn: the motion of n unlinked oriented circles that are linked to another auxiliary oriented circle

(a visualization ofNBn is shown in Figure 1). This configuration is thought to be more physically

feasible than the free loop setup.

In studying representations of NBn, it was discovered that local representations of the braid

group will always extend to NBn. This is in contrast to the situation with LBn. This motivated

looking at local representations of Bn (as they would also lead to local representations of NBn).

One idea to pursue local representations comes from realizing the representations described in

1
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Figure 1.1: The necklace Ln as seen from a generic observation point

[13] and [6] as twisted tensors of group algebras. From this, we begin by trying to expand the

representation in [6]. However, we show that its extension is not as compelling as one may hope.

Therefore we consider a smaller case, the twisting of the group algebra C[Z3 × Z3] (denoted

C[Z3×Z3]
⊗
τ n−1. We classify unitary representations of from Bn into C[Z3×Z3]

⊗
τ n−1, and then

describe methods to then get a Braided Vector Space from these representations.

2



2. PRELIMINARIES

This chapter provides necessary definitions and properties in areas including representation and

group theory that will be used throughout the dissertation.

For the remainder of the document, unless otherwise stated, V will denote a finite dimensional

vector space. Let ei be the ith standard basis vector for V (i.e. ei has a 1 in the ith entry and a 0

elsewhere). We denote the group commutator with [, ], meaning, for elements g, h in a group G,

[g, h] = ghg−1h−1.

2.1 Linear Representations

LetG be a group, andGL(V ) be the general linear group of V . A linear representation of G, is

a pair (ρ, V ), where ρ : G→ GL(V ) is a group homomorphism. This yields a natural action of G

on V defined by g.v = ρ(g)v, for any g ∈ G, v ∈ V . For ease of notation, we may omit the period

in the G-action on V , simply writing gv instead of g.v (or ρ(g)v). If the vector space V is clear,

then often we denote (ρ, V ) by just ρ. The dimension of the representation (ρ, V ) is the dimension

of V . If W ⊂ V is a nontrivial proper subspace, and for all g ∈ G, ρ(g)W ⊂ W , then W is

called G-invariant, and (ρ,W ) is a subrepresentation of (ρ, V ). The subrepresentation (ρ,W ) is

sometimes denoted ρ|W . This notation is also used in a similar manner to describe a representation

ρ of G that’s had its domain restricted to a subgroup H < G, ρ|H .

If the only G-invariant subspace of V are trivial (V and ∅), then (ρ, V ) is an irreducible repre-

sentation. Otherwise ρ is called reducible. A representation (ρ, V ) is called completely reducible if

it can be expressed as the direct sum of proper nonzero irreducible subrepresentations. Contrarily

(ρ, V ) is called indecomposible if and only if it can not be expressed as the direct sum of proper

nonzero irreducible subrepresentations.

Example 2.1.1. Consider the integers, Z, as an additive group, and the representation (ρ,C3),

3



where ρ is defined by 1 7→


1 1 1

0 1 1

0 0 1

 . Since subspace W ⊂ C3 spanned by the standard basis

vectors e1, e2 is Z-invariant, ρ is reducible. However, notice that the orthogonal complement of W

(which is the subspace spanned by e3) is not Z invariant, ρ is indecomposible.

Example 2.1.2. Similarly, the 2-dimensional subrepresentation (ρ,W ) of (ρ, V ), which is defined

by 1 7→

1 1

0 1

 is also reducible and indecomposible. In fact, the only irreducible representations

of Z are 1-dimensional.

Example 2.1.3. Let S3 denote the symmetric group on 3 elements. The representation (ρ,C2)

defined by

(1, 2) 7→

0 1

1 0

 and (1, 2, 3) 7→

0 −1

1 −1


is an irreducible representation of S3.

A representation (ρ, V ) is a unitary representation if ρ(g) is a unitary transformation for all

g ∈ G. Note that the product of unitary transformations is also unitary, meaning that it is sufficient

to check if ρ(x) is unitary for all the generators x of G.

The following is a useful theorem:

Lemma 2.1.4 (Schur). If (ρ, V ) and (φ,W ) are irreducible representations of G and ϕ : V → W

is a G-module homomorphism, then

1. Either ϕ is an isomorphism, or ϕ = 0.

2. If V = W , then ϕ = λIV for some scalar λ.

4



2.2 The n-strand Braid Group

The n-strand braid group Bn is the finitely generated group, with generators σ1, . . . , σn−1 sub-

ject to the following relations:

σiσi+1σi =σi+1σiσi+1 for all i < n− 1 (2.2.1)

σiσj =σjσi if |i− j| > 1. (2.2.2)

The relation (2.2.1) is often called the braid relation. We may also refer to the braid relations, and

refer to the pair or relations (2.2.1) and (2.2.2). One notable element of Bn, γ = σ1σ2 · · ·σn−1 is

called the single twist. It conjugates σi to σi+1 (i.e. γσiγ−1 = σi+1), therefore Bn can be generated

by γ and σ1, as γkσ1γ−k = σk+1 (for 1 ≤ k < n − 1). It is also of interest as γn generates the

center of Bn.

2.2.1 A Few Famous Representations of Bn

A few well studied representations of Bn that we will study include the standard representa-

tion β, the reduced Burau representation %, and the Lawrence-Krammer-Bigelow representation

(LKB). The first two are discussed in depth in [5] and [16], and the LKB is discussed in many

papers, most notably in [2].

The standard representation is an n dimensional representation, and for n ≥ 3, β is irreducible.

β is defined as

β(σi) = Ii−1 ⊕

0 z

1 0

⊕ In−i−1,
where Ik is the kth dimensional identity, and z ∈ C\{0, 1}. Notice that this is not irreducible in

the n = 2 case, as σ1 =

0 z

1 0

, and the subspace spanned by

√z
1

 is fixed under the action

of σ1. One may also see that β is not irreducible for n = 2 by recalling that B2 ∼= Z, and the only

irreducible representations of Z are one dimensional.

5



The reduced Burau representation is an n− 1 dimensional representation %, defined as:

%(σ1) =

−t 0

−1 1

⊕ In−3, %(σn−1) = In−3 ⊕

1 −t

0 −t


and

%(σi) = Ii−2 ⊕


1 −t 0

0 −t 0

0 −1 1

⊕ In−i−2 for 1 < i < n− 1

where t is a nonzero complex number. This representation is irreducible if 1+t+t2+· · ·+tn−1 6= 0.

The reduced Burau representation is the n− 1 dimensional subrepresentation of the much studied

n dimensional Burau representation. The Burau representation was thought to be a great candidate

for showing that the braid group is linear (meaning it has a faithful representation). However it

was shown to be faithful for n = 3, and unfaithful for n > 4. The Burau representation Φ : Bn →

GL(V ) is defined as Φ(σi) = Ii−1 ⊕

1− t t

1 0

 ⊕ In−i−1, where t 6= 0. Notice that if t = 1,

then Φ(σi) is just a permutation matrix. As stated, Φ is completely reducible. The fact that it is not

irreducible can be quickly verified, as the (n × 1) vector of all 1’s (in V ) is fixed by Φ(σi) for all

i. Sometimes Φ is referred to as the unreduced Burau, to distinguish it from the n− 1 dimensional

subrepresentation.

The next representation was shown to be faithful for n ≥ 3 (and thus proving that Bn is a

linear group). For the Lawrence-Krammer-Bigelow representation, let V be an
(
n
2

)
dimensional

vector space with basis vi,j (1≤ i < j ≤ n). Assuming that the order of the indices do not

matter (i.e. assuming that vi,j = vj,i), and letting t, q be two nonzero complex numbers, the LKB

6



representation is defined as:

LKB(σi)vi,i+1 = tq2vi,i+1

LKB(σi)vj,k = vj,k for {i, i+ 1} ∩ {j, k} = ∅

LKB(σi)vi+1,j = vi,j for j 6= i, i+ 1

LKB(σi)vi,j = tq(q − 1)vi,i+1 + (1− q)vi,j + qvi+1,j if i+ 1 < j

LKB(σi)vj,i = (1− q)vj,i + qvj,i+1 + q(q − 1)vi,i+1 if j < i.

As previously mentioned, LKB was used to show that Bn is a linear group [2]. It should also be

noted that in general, this representation is irreducible. However, the following result explains

when specializations of t and q make LKB reducible:

Theorem 2.2.1. [11] Let n ≥ 3 and assume that qk 6= 1 for all integers 1 ≤ k ≤ n. Then the LKB

representation is reducible if

t ∈
{
−1,

1

q
,

1

qn
,

1
√
qn
,
−1
√
qn

}
.

2.2.2 Local Representations of Bn

One source of representations of Bn is obtained from braided vector spaces (BVS). A BVS is

a pair (R, V ), where V is a vector space, and R ∈ Aut(V ⊗2) satisfies the Yang-Baxer equation on

V ⊗3:

(R⊗ IV )(IV ⊗R)(R⊗ IV ) = (IV ⊗R)(R⊗ IV )(IV ⊗R).

A representation of Bn on V ⊗n is then yielded by assigning ρR(σi) = I
⊗(i−1)
V ⊗R⊗I⊗(n−i−1)V . The

reason this is called a local representation is due to the fact that each generator acts non-trivially

only on two adjacent copies of V. Later when we extend this notion to NBn, we will consider the

last and the first tensor copies of V in V ⊗n adjacent.

One notable property of local representations is the following:

7



Lemma 2.2.2. [6, Lemma 2.1] If R has finite order, and ρR(Bn) is finite modulo its center ZR,

then ρR(Bn) itself is finite.

An example of one such R is:
1√
2



1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1


. Next we introduce two local represen-

tations of Bn that come from first mapping the braid group into an algebra, and then obtaining a

braided vector space from the algebra.

2.2.2.1 Gaussian Representations

The first local representation of Bn we introduce are Gaussian representations. They were first

studied by Jones [8] and analyzed in [6]. As the matrices from these representations are rather

cumbersome, we take a more algebraic approach.

Following [6], let m ∈ N and q =


e2πi/m, if m odd

eπi/m, if m even
, and define ES(m,n − 1) as the

algebra generated by u1, . . . , un−1 with the relations:

1. umi = 1,

2. [ui, ui+1] = q2,

3. [ui, uj] = 1 if |i− j| > 1.

Setting ϕn(σi) = 1√
m

∑m−1
j=0 q

j2uji defines a group homomorphism ϕn : Bn → ES(m,n − 1)×.

To get a braided vector space from ES(m,n − 1) it is enough to find a vector space V and U ∈

Aut(V ⊗2) such that the map ui 7→ I⊗i−1V ⊗U⊗I⊗n−i−1V defines a representation ofES(m,n−1) on

V ⊗n. Let V ∼= Cm,with standard basis {ei|0 ≤ i ≤ m−1}. Define ei+m = ei, andU ∈ End(V ⊗2)

by U(ei ⊗ ej) = qj−iei+1 ⊗ ej+1. In [6] it was shown that ui 7→ Ui := I⊗i−1 ⊗ U ⊗ I⊗n−i−1

gives a ∗-algebra homomorphism (where u∗i = u−1i ) from ES(m,n− 1) to End(V ⊗n). It was also

shown that R :=
1√
m

m−1∑
j=0

qj
2

U j is a unitary operator. Composing with ϕn we obtain a unitary
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representation φn : Bn → Aut(V ⊗n), where φn(σi) =
1√
m

m−1∑
j=0

qj
2

U j
i .

2.2.2.2 Quaternionic Representation

Similar to the subsection above, except this time following the presentation in [13], we de-

fine and algebra Qn. For this representation, let q = e2iπ/6 (note that unlike before, q is fixed),

and define Qn to be the algebra generated by u1, . . . , un−1, v1, . . . , vn−1 subject to the following

relations:

1. u2i = v2i = −1 for all i,

2. [ui, vj] = −1 if |i− j| < 2,

3. [ui, vj] = 1 if |i− j| ≥ 2,

4. [ui, uj] = [vi, vj] = 1.

The map υ : Bn → Qn defined by σi 7→ −1
2q

(1 + ui + vi + uivi) gives a representation of Bn into

Qn. Unlike to the Gaussian case, Qn does not have any obvious local representations. Instead, a

3-local representation (see [7, Theorem 5.28]).

2.3 The Necklace Braid Group

The necklace Ln (as shown in Figure 1), in R3, is the link of n oriented distinct circles

(L1, . . . , Ln) linked together by another auxiliary oriented circle (L0). The necklace braid group

is the fundamental group of the configuration space of Ln. We denote this group as NBn. Similar

to the case of Bn, we let σi denote swapping objects in the ith and the i + 1st spots. However in

NBn, σi denotes passing the ith loop through the i + 1st. There are two elements of interest in

NBn that distinguish it from Bn. The first is σn, which interchanges the nth and the 1st loops. Sec-

ond is the generator denoted τ . The element τn can be thought of in two distinct ways. One way

is by rotating L0 (and thus the whole Ln system) in such a way that each of the loops L1, . . . , Ln

return to their original position. The other vision of τn can be seen as, first by assuming the loops

L1, . . . , Ln are sufficiently close, rotating the auxiliary loop L0 around the other n. Figure 2.1,

9



Figure 2.1: The two realizations of τn

Reprinted from [1].

as seen in [1], helps visualize the two versions of τn. In the figure, the blue circles illustrate the

rotations of L0. Each realization is a full rotation about an axis, however we can continually swap

between the two. For instance, we can alternate which axis τ is rotating around, and thus need to

perform the operation τ 2n times to return to the original state.

The next theorem gives a presentation of NBn by abstract generators and relations, cf. [1,

Theorem 2.3].

Theorem 2.3.1 ([1]). We have a presentation of a group isomorphic toNBn by abstract generators

σ1, . . . , σn, τ satisfying:

(B1) σiσi+1σi = σi+1σiσi+1

(B2) σiσj = σjσi for |i− j| 6= 1 (mod n),

(N1) τσiτ−1 = σi+1 for 1 ≤ i ≤ n

(N2) τ 2n = 1

Where indices are taken modulo n, with σn+1 := σ1 and σ0 := σn.

From this presentation, it is clear that the subgroup generated by the σi for 1 ≤ i ≤ n − 1 is

a quotient of Bn. As it turns out, both (N1) and (N2) do not induce any further relations among

σ1, . . . , σn−1. Therefore, we in fact have Bn < NBn.

The presentation also gives us that NBn has a normal subgroup isomorphic to the affine braid

group (of type A) on n strands BÃn ∼= 〈σ1, . . . , σn〉 C NBn. These facts, along with [NBn :
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BÃn] = 2n and NBn = BÃn o 〈τ〉, were shown in [1]. From NBn = BÃn o 〈τ〉, we can write

any element of NBn as τ kβ, where β ∈ BÃn.

As it turns out, some of the relations (B1-N2) for NBn are redundant. The below reduces the

number of defining relations from 1
2
n(n+ 1) + 1 to 2n− 1:

Lemma 2.3.2. The relations (N1),(N2), (B1) for i=1 (i.e. σ1σ2σ1 = σ2σ1σ2), and (B2) for i = 1

and 3 ≤ j ≤ n− 1 (i.e. σ1σj = σjσ1 for 3 ≤ j ≤ n− 1), imply all the relations of Theorem 2.3.1.

Proof. To prove the lemma, we must show that all of (B1) and (B2) are satisfied for all i, j. First

we verify (B1). Assuming (N1) gives us τ i−1σ1τ−i+1 = σi for all iwhere indices are taken modulo

n. Thus σ1σ2σ1 = σ2σ1σ2 implies that for any i:

σiσi+1σi = (τ i−1σ1τ
−i+1)(τ iσ1τ

−i)(τ i−1σ1τ
−i+1)

= τ i−1σ1τ
1σ1τ

−1σ1τ
−i+1

= τ i−1σ1σ2σ1τ
−i+1

= τ i−1σ2σ1σ2τ
−i+1

= τ iσ1τ
−1σ1τ

1σ1τ
−i

= (τ iσ1τ
−i)(τ i−1σ1τ

−i+1)(τ iσ1τ
−i)

= σi+1σiσi+1.

To verify (B2), assume σ1 commutes with σk with 3 ≤ k ≤ n− 1. We may assume n ≥ j > i > 1

and |j − i| 6≡ 1 (mod n).

σiσj = τ i−1σ1τ
−i+1τ i−1σj−i+1τ

−i+1

= τ i−1σ1σj−i+1τ
−i+1

= τ i−1σj−i+1σ1τ
−i+1

= τ i−1σj−i+1τ
−i+1τ i−1σ1τ

−i+1 = σjσi
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While the reduction in the number of needed relations may not necessarily make it easier to

understand NBn, it does make discovering representations of NBn more manageable. Observe

that for n = 2, B2 ∼= Z, and thus is less interesting than the n ≥ 3 cases. However, for NBn it is a

different story. In fact NB2 = 〈σ1, σ2, τ〉 with relations τ 4 = 1, σ1σ2σ1 = σ2σ1σ2, τσ1τ−1 = σ2,

and τσ2τ−1 = σ1, and thereforeNB2 6∼= Z. This means representations ofNB2 may be of interest

(in contrast to those of B2).
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3. REPRESENTATIONS OF THE NECKLACE BRAID GROUP

In this chapter we will discuss representations of the necklace braid group. First will be a dis-

cussion of constructing representations from the ordinary braid group Bn. Then we will discuss

extending known representations of Bn to representations of NBn. Lastly we discuss low dimen-

sional representations of NBn. Unless stated otherwise, V is a finite dimensional vector space,

and IV be the identity automorphism on V . Also, in showing that something is a representation

of NBn, we will take advantage of the reduced set of relations as in Lemma 2.3.2. This chapter

follows and includes many ideas from [4].

3.1 A Standard Extension

As stated in Section 2.3, the braid group on n strands, Bn, is isomorphic to the subgroup of

NBn generated by σ1, . . . , σn−1. Leaving out the generators σn and τ means that the indices in

(B1) and (B2) need not me considered modulo n. Also, since Bn < NBn, any representation

of NBn will restrict to a representation of Bn. Recall the element of Bn, the single twist γ =

σ1 · · ·σn−1. As previously stated, γkσ1γ−k = σk+1 for 1 ≤ k ≤ n − 2. If we were to define

σ̄n := γn−1σ1γ
1−n = γσn−1γ

−1, then we have σ1, . . . , σn−1, σ̄n will satisfy the relations (B1) and

(B2) in 2.3.1. Also setting τ = γ will give us (N1), however, (N2) would not hold in general.

However, this general set up will be advantageous to work with when producing representations of

NBn.

Lemma 3.1.1. Let ρ : Bn → GL(V ) be any finite-dimensional representation of Bn such that

ρ(γ2n) = CρIV for some scalar Cρ. Then ρ extends to an indecomposable representation of NBn

by ρ(σn) = ρ(γσn−1γ
−1) and ρ(τ) = (Cρ)

−1/2nρ(γ).

Proof. As shown in Lemma 2.3.2, we need only check (N1), (N2), σ1σ2σ1 = σ2σ1σ2, and σ1σj =

σjσ1 (for 3 ≤ j ≤ n−2). The later two relations are satisfied, as ρ is defined to be a representation
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of Bn. The fact that γn is central (in Bn) provides

ρ(τσnτ
−1) = ρ(τ(τn−1σ1τ

1−n)τ−1)

= ρ(τn)ρ(σ1)ρ(τ−n) =
(
C−1/2p ρ(γn)

)
ρ(σ1)

(
C1/2
p ρ(γ−n)

)
= ρ(γnσ1γ

−n) = ρ(σ1),

and therefore (N1) holds. For (N2), we note:

ρ(τ 2n) = ((Cρ)
−1/2nρ(γ))2n =

1

Cρ
ρ(γ2n) = IV .

Since the braid relations, (B1) and (B2), are homogeneous we can rescale the images ρ(σi)

by some nonzero a and get a new representation of Bn defined as ρ̄(σi) = aρ(σi). By defining

ρ̄(τ) = ρ̄(γ), the rescaling will not affect (B1), (B2), or (N1), however, a can be chosen to cancel

the scalar with ρ(γ2n).

Now consider ρ to be any finite dimensional representation of Bn and let ρi be indecomposable

representations (also of Bn) such that ρ =
⊕
i

ρi. There exists a projection of ρ onto each of the ρi

in EndBn(V ). Summing each projection rescaled (as in Lemma 3.1.1) will give ρ(τ), and therefore

a representation of NBn. In particular, we have the following:

Theorem 3.1.2. Let ρ : Bn → GL(V ) be any completely reducible complex representation of Bn.

Then there exists a D ∈ EndBn(V ) such that defining

ρ(τ) = Dρ(γ), ρ(σn) = ρ(γσn−1γ
−1)

gives a representation of NBn.

Proof. By complete reducibility of ρ, there exist a collection Wii nontrivial subspace of V such

that V ∼=
⊕

iWi. Let ρWi
denote the projections of ρ ontoWi. Since γ2n is a central element of Bn,
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we have ρWi
(γ2n) = CiIWi

for some Ci ∈ C. Define D =
⊕

i(Ci)
−1/2nIWi

∈ EndBn(V ). This

means that (Dρ(γ))2n = IV . Also note that D commutes with ρ(γ) and ρ(σi) for 1 ≤ i ≤ n − 1.

Therefore defining ρ(τ) = Dρ(γ) and ρ(σn) = ρ(γσn−1γ
−1) extends ρ to a representation ofNBn

as desired.

Remark 3.1.3. Most notably, Theorem 3.1.2 applies to any irreducible or unitary representation

of Bn.

The notions in the above theorem resemble that of a standard extension found in [3]. Because of

this we will adopt the same nomenclature, and call any representation ρ ofNBn with ρ(τ) = Aρ(γ)

with [A, ρ(σi)] = 1 for all i, a standard extension. Note that A in this case is already in the image

ρ(NBn), as A = ρ(τγ−1). This means that ρ(NBn) can be generated by A and ρ(Bn). It should

also be noted that standard extensions do not fully capitalize on the (3+1)-dimensional structure of

NBn. Instead, the intriguing information contained in standard extensions are already present in

Bn, which pertains to (2+1)-dimensional topology.

Remark 3.1.4. Schur’s Lemma gives us that a standard extension of an irreducible representation

of Bn has the form ρ(τ) = λρ(γ) for some scalar λ.

Remark 3.1.5. One observation is that if a representation is not completely reducible, it does not

imply that it has no standard extension. For example: The Bn representation defined as ρ(σi) =

J =

1 1

0 1

 for all i is not completely reducible (as 〈e1〉 is Bn invariant, but 〈e2〉 is not). Observe

that ρ(γ) = Jn−1 and J1−n commutes with ρ(σi) for all i. Hence ρ(τ) = I2 = (J1−n)ρ(γ) is a

standard extension of ρ.

Another observation worth making is that, while Theorem 3.1.2 provides existence of standard

extensions, it does not provide a way to construct these extensions. In this context, a computational

distinction is made between each value of n, and construction that begins with a braid group

representation for all n (such as the reduced Burau representation) that then determines a D for

each n.
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In the next few sections, we will present concrete examples of representations ofNBn acquired

by extending well-studied representations of Bn (as defined in Section 2.2.1).

3.2 The Standard Representation

This section will require a bit of vigilance from the reader, as the nomenclature means we

will now discuss standard (and non-standard) extensions of the standard representation. Recall the

standard representation (β, V ) is n dimensional, and defined as β(σi) = Ii−1⊕

0 z

1 0

⊕In−i−1.
Proposition 3.2.1. For n ≥ 3 any standard extension of the standard representation, β from Bn to

a representation ρ of NBn is of the form ρ(τ) = λβ(γ), where λ ∈ C such that λ2n = z−2(n−1).

Proof. From the fact that the standard representation is irreducible for n ≥ 3 [16, Lemmas 5.3 and

5.4], we have that ρ(τ) = λβ(γ) for some λ ∈ C\{0}. Next, observe that

In = ρ(τ 2n) = (ρ(τ))2n = (λβ(γ))2n = λ2n(β(γ))2n,

and (β(γ))2n = z2(n−1)In. Hence λ2n = z−2(n−1) as desired.

As mentioned in Chapter 2, when n = 2 also deserves investigation. Notice that in this case,

γ = σ1. Let Z =

0 z

1 0

. In this case, we want A =

a b

c d

 such that AZ = ZA, (AZ)4 = I2,

and (AZ)2Z(AZ)−2 = Z. The last relation comes from the relation τσ2τ−1 = σ1, and we are

defining the image of σ2 to be the image of τσ1τ−1. The first relation (AZ = ZA) gives us that

a = d and b = zc. This, along with the other relations, we get the following possibilities for

ρ(τ) = AZ:

±I2,±
1 0

0 i(z)−1

 , ξ4

 0
√
z

(
√
z)−1 0

 ,±1

2

 1± i (1∓ i)
√
z

(1∓ i)
√
z
−1

1± i


 ,

where ξ4 is a choice of 4th root of unity.

Next we examine non-standard extensions of β. In particular we have the following:
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Theorem 3.2.2. For n ≥ 3, a representation, φ, of NBn is an extension of the standard represen-

tation, β, of Bn if φ(σi) = β(σi) for i = 1, . . . , n− 1, φ(τ) =

 0 t−n+1

tIn−1 0

 (with t 6= 0), and

φ(σn) = φ(τ)β(σn−1)φ(τ−1).

If t2n = z−2(n−1), then the representation φ is a standard extension of β, i.e. the image of τ is a

rescaling of the image of the single twist γ.

Proof. Let (φ, V ) be a representation of NBn, along with T ∈ End(V ) such that φ(τ) = T , and

T 6= λβ(γ) (for any choice of λ described in Proposition 3.2.1). This means that T must satisfy:

T 2n = IV , Tβ(σi) = β(σi+1)T for all 1 ≤ i ≤ n − 2, and that T 2β(σn−1) = β(σ1)T
2. Let

T = (ti,j)
n
i,j=1. The later two relations give us ti,j = 0 if j 6≡ i − 1 mod n and ti,i−1 = t2,1 for

i = 2, . . . , n− 1. This means that T has the following block form:

T =

 0 a

tIn−1 0

 .

From T 2n = IV , we get that a = t−n+1, meaning that T =

 0 t−n+1

tIn−1 0

. By Proposition 3.1.2

if t2n = z−2(n−1), then we would have a standard extension of β. And therefore, a nonstandard

extension of β would be when t2n 6= z−2(n−1).

3.3 The Reduced Burau Representation

Recall that the reduced Burau representation, %, is irreducible if 1+t+· · ·+tn−1 6= 0. Meaning

that any standard extension ρ of %, is one where ρ(τ) = λ%(γ).

Proposition 3.3.1. Any standard extension ρ of NBn of the reduced Burau representation (with

1 + t+ · · ·+ tn−1 6= 0), % has the form ρ(τ) = λ%(γ) with λ2n = t−2n.

Proof. From the reduced Burau representation being irreducible, any standard extension ρ of %

will send ρ(τ) = λ%(γ) for some scalar λ. It can be computed that %(γ)2n = t2nIV . Therefore,

from IV = ρ(τ)2n = (λ%(γ))2n = λ2n%(γ)2n, we get λ2n = t−2n as desired.
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3.4 The Lawrence-Krammer-Bigelow Representation

As in the definition of the Lawrence-Krammer-Bigelow, LKB, representation, let V be a
(
n
2

)
dimensional vector space with basis vi,j (1 ≤ i, j ≤ n) where the order of the indices (on the

basis elements) does not matter. Also let t, q be the nonzero complex numbers in the definition of

LKB. Recall in Theorem 2.2.1, there were specializations of t and q that would lead to LKB being

reducible. The following proposition is stated for when t and q are left as generic scalars (and thus

the LKB is irreducible).

Proposition 3.4.1. Any
(
n
2

)
dimensional representation, ρ, ofNBn is a standard extension of LKB

if ρ(τ) = λLKB(γ), where λ = ω2n(t−1/nq−2), and ω2n is a choise of 2nth root of unity.

Proof. From our definition, one can compute that LBK(γ)vi,j =

 tq2vi,i+1 if j = n

q2vi+1,j+1 if j < n
. Thus

further computation gives us that LBK(γ2n)vi,j = t2q4nvi,j , and thus λ = ω2nt
−1/nq−2 as desired.

Remark 3.4.2. If ω2n is a nth root of unity, then τn is in the kernel of the standard extension, and

therefore it would not be a faithful representation of NBn.

3.4.1 Nonstandard Extensions of LKB

For n = 2, the LKB (and also any extension to NBn) is a 1 dimensional representation.

Therefore, any extension to NBn would be standard.

The case where n = 3 gives us the first nonstandard extension. Let α be a choice of cube root

of ±t−1. The following gives a nonstandard extension of the LKB representation:

τ 7→ α


0 (q2 − q + 1)q−2 −(q − 1)q−2

0 −(q − 1)q−1 q−1

tq2 (q − 1)(tq2 − q + 1)q−1 (q − 1)q−1

 .

If α is chosen to be the positive cube root of t−1, then the extension is not faithful, as t3 would be

in the kernel.

18



For n = 4, again we assume that q 6= 1, and let α ∈ {±
√
±t, (−t2) 1

4} and p = q − 1. With

this, the following gives us an extension of LKB that is nonstandard:

τ 7→ α



0 0 (q4t)−1(q3 − q + 1) 0 −(q4t)−1p −(q4t)−1p

0 0 −(q3t)−1p 0 (q3t)−1(q2 − q + 1) −(q3t)−1p

0 0 −(q2t)−1p 0 −(q2t)−1p (q2t)−1

q2 0 (q3t)−1p(q3t− q + 1) 0 (q3t)−1(q3 − 2q2 + 2q − 1) −(q3t)−1p2

0 q2 (q2t)−1p(q3t− q + 1) 0 −(q2t)−1p2 (q2t)−1p

0 0 −(qt)−1p2 q2 (qt)−1(q3t− q2(t+ 1) + 2q − 1) (qt)−1p


.

Similar to the previous case, if α = ±
√
±t, then τ 4 is in the kernel of the extension.

3.5 Extending Irreducible Representation Gaps

There are gaps in the irreducible representation degrees of Bn (see [10] and references therein):

for example Bn has no irreducible representations of dimension 2 ≤ d ≤ n− 3, for n ≥ 5. In this

section, we show that these gaps extend to NBn. We first prove a useful lemma.

Lemma 3.5.1. Let (ρ, V ) to be an irreducibleNBn representation, w ∈ V , and 0 < α be minimal

such that τ−αw ∈ span{τ−γw|0 ≤ γ < α}. Then τ−(α+1)w ∈ span{τ−γw|0 ≤ γ < α}.

Proof. We have that τ−αw =
α−1∑
i=0

aiτ
−iw for ai scalars. Then

τ−(α+1)w = τ−1(τ−αw) = τ−1

(
α−1∑
i=0

aiτ
−iw

)

=
α−1∑
i=0

aiτ
−i−1w

=

(
α−1∑
i=1

ai−1τ
−iw

)
+ τ−αw

which is in the span of {τ−γw|0 ≤ γ < α}.

Using this lemma, we can prove the following.
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Theorem 3.5.2. Let n ≥ 5 and (ρ, V ) be an irreducibleNBn representation with dimV = n− 2,

then φ = ρ|Bn is an irreducible representation of Bn.

Proof. Assume that (ρ, V ) is an irreducible NBn representation and to the contrary that ρ|Bn is

not irreducible. So we have the existence a proper nonempty subspace W (of minimal dimen-

sion, 1 ≤ d < n − 2) of V such that (φ|W ,W ) is a Bn representation. Note that W being

minimal dimension guarantees that (φ|W ,W ) is irreducible. Since n ≥ 5, we have that the only

irreducible representations of Bn of dimension strictly less than n − 2 are 1-dimensional. Let W

be spanned by the vector w ∈ V . Since W is a Bn invariant space, we have that σiw = λiw

for all 1 ≤ i ≤ n − 1 (i.e. w is an eigenvector for all ρ(σi)). As all the σi are conjugate to

each other, we have that w is an eigenvector of the same eigenvalue. From τ 2n = 1 and the

assumption that V is irreducible, we also have that ρ(τ)±n = ±1. Note that, the subset of V

M = {w, τ−1w, · · · , τ−nw} is linearly dependent and that the span of M is τ invariant. We

may extract a basis β = {τ−α1w, τ−α2w, . . . , τ−αkw|0 ≤ α1 < α2 < · · · < αk ≤ n} for

Q = span(M). Since Q is τ invariant, we may instead use the basis β′ = τα1β. This gives us that

w ∈ β′. From the above lemma, we obtain β′ = {w, τ−1w, . . . , τ−αw} (where α < n − 2) is a

basis for Q. The restriction that α < n − 2 comes from the fact that Q is a subspace of V , and

therefore dimQ ≤ n− 2.

Let 0 ≤ x ≤ α < n − 2. This means that σx+1 ∈ Bn. From the relation τxσ1τ−x = σx+1, we get

that σ1τ−xw = τ−xσx+1w = λ(τxw). Consequently Q is also σ1 invariant. Hence Q is both τ

and σ1 invariant, and therefore NBn invariant. Since V was irreducible, and Q is a NBn invariant

subspace of V , we have that Q = V . This means that β′ is also a basis for V , and in this basis,

ρ(σ1) = λ · IV . Hence

ρ(σ2) = ρ(τ)ρ(σ1)ρ(τ−1) = λρ(τ)ρ(τ−1) = λ · IV = ρ(σ1).

This gives us that ρ(τ)ρ(σ1) = ρ(σ1)ρ(τ). Which gives us a contradiction that (ρ, V ) is not an

irreducible NBn representation.
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We can now show that NBn also has gaps in its irreducible representation degrees:

Corollary 3.5.3. For n ≥ 5, the only irreducible representations of NBn of dimension at most

n− 3 are 1-dimensional.

Proof. Assume to the contrary that (ρ, V ) is an irreducible representation of NBn with 2 ≤

dimV < n − 2. Since Bn has no irreducible representations of dimension between 2 and n − 3,

ρ|Bn can not be an irreducible Bn representation. Hence there exists a 1 dimensional subrepresen-

taion of ρ|Bn . Following the proof of Theorem 3.5.2, we would get that ρ(NBn) is abelian, and

therefore not irreducible.

The previous theorem and corollary provide the question: Can we say something similar for

other dimensions? The following theorem, and the remark thereafter, attempt to answer this.

Theorem 3.5.4. Let n ≥ 5 and (ρ, V ) be an irreducibleNBn representation with dimV = n− 1.

If ρ|Bn is completely reducible, then ρ|Bn is also an irreducible Bn representation.

Proof. Assume to the contrary that ρ|Bn is completely reducible and not irreducible. Then we have

two possibilities, V =
⊕n−1

i=1 Wi or V = W ⊕ U where W,Wi are all 1-dimensional subrepre-

sentations, and U is an n-2 irreducible subrepresentation of V for Bn. In either case, we have the

existence of a 1-dimensional subrepresentation. From here, we follow the proof of Theorem 3.5.2,

and note that the inequality that α < n − 2 becomes α ≤ n − 2. This change in equality still

ensures that Q is σ1 invariant, because again, σn−1 = τn−2σ1τ
−n+2. So again, we would get the

contradiction that (ρ, V ) is not an irreducible representation of NBn.

Remark 3.5.5. This idea, however, halts at dimV = n. Recall the definition of the unreduced

Burau representation Φ, and consider the mapping τ 7→

 0 an−1

1
a
In−1 0

. It can be checked that

Φ(τ−1σiτ) = Φ(σi+1) and Φ(τ)2n = In. Thus we obtain a representation of NBn. Note that any

invariant subspace of Φ(NBn) will also be invariant under Φ(Bn) (but not necessarily vise versa).

It is known that the Burau representation is reducible with invariant subspaces of dimension 1 and
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n − 1. The 1 dimensional subrepresentation is spanned by the vector of 1’s. The other is the

subspace of Cn of all vectors whose entries sum to 0. If a 6= 1, then we get that the vector of

1′s is not fixed by τ . If an 6= 1, then we get that τ does not fix the n − 1-dimensional subspace.

This means that if NBn has no invariant subspaces. Therefore if an 6= 1, then the extension of the

Burau representation described above is an irreducible representation of NBn whose restriction

to Bn is reducible. As this shows, there exist irreducible representations of NBn of dimension n

whose restriction to Bn is no longer irreducible.

3.6 Irreducible Representations of dimension 2

From the fact that τ has order 2n, we may assume that we have chosen a basis for V such

that ρ(τ) =

t1 0

0 t2

 where t1, t2 are 2nth roots of unity. As stated before, for all n ≥ 5, there

are no irreducible 2 dimensional representations. This means we need only consider n = 2, 3, and

4. Since we are wanting irreducible reps, we have that t1 6= t2. Similarly we have that ρ(σ1) is

not upper or lower triangular, as otherwise (1, 0) (or (0, 1) repspectively) would generate a NBn

invariant subspace. Due to rescaling, we may assume that ρ(σ1) =

a 1

c d

. Since we wish

the image of σi to not be triangular, we see that that c 6= 0. Wanting our representations to be

irreducible, we also have at least one of a or d are nonzero. Otherwise, if both are zero, then we

could have a subspace

Proposition 3.6.1. Any irreducible dimension 2 representation of NB2,NB3 or NB4 is isomor-

phic to one of those forms in Table A.1.

In Table A.1, if no restriction on n is listed, then any 2 ≤ n ≤ 4 works. Also t in ρ(τ) in the

first row is a choice of 2nth root of unity.
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4. LOCAL REPRESENTATIONS

In this chapter we begin by showing that any local representation extends to NBn in a (possi-

bly) nonstandard way. Then we extend the Gaussian and Quaternionic representations from Bn to

NBn and examine whether the image of the extensions is still finite. Lastly, we dive into ways to

obtain local representations of Bn from twisted tensors of group algebras. We continue with the

notation stated previously, that ρR would be the representation induced by the braided vector space

pair (R, V ).

4.1 Extending Local Representations to NBn

As discussed in the preliminaries, Braided vector spaces (BVS) is one source of matrix repre-

sentations of Bn. By Theorem 3.1.2, if ρR is completely reducible, then it has a standard extension.

Also discussed, the standard extension to NBn does not bear any new information than ρR itself.

However, there is another way to extend ρR by use of the symmetric group. For this, we define the

flip operator P (x⊗ y) = y ⊗ x on V ⊗ V . This gives us the following theorem:

Theorem 4.1.1. Suppose that (R, V ) is a BVS with corresponding Bn representation ρR. For

n ≥ 3, setting

ρR(τ) = (P ⊗ I⊗n−2V )(IV ⊗ P ⊗ I⊗n−3V ) · · · (I⊗n−2V ⊗ P )

defines an extension of ρR to a representation to NBn.

Proof. From Lemma 2.3.2, we need only check (N1) and (N2). The relations (B1), for i=1, and

(B2) for i = 1 and 3 ≤ j ≤ n − 1 are immediate because (R, V ) is a BVS. Notice that the way

we define ρR(τ), that it has order n (as it is just an n-cycle permutation on V ⊗n). Hence (N2) is

satisfied. This means that only (N1) is left. To prove this, it is sufficient to show that the following

holds ρR(τσ1τ
−1) = ρR(σ2). Equivalently, we need to show:

(P ⊗ I)(I ⊗ P )(R⊗ I)(P ⊗ I)(I ⊗ P ) = (I ⊗R).
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To do this, we compare the two operations on a pure tensor of basis elements v1⊗ v2⊗ v3 on V ⊗3.

Doing this gives us the following:

ρR(τ)(R⊗ I)(P ⊗ I)(I ⊗ P )(v1 ⊗ v2 ⊗ v3) = (P ⊗ I)(I ⊗ P )[R(v2 ⊗ v3)⊗ v1] (4.1.1)

(I ⊗R)(v1 ⊗ v2 ⊗ v3) = v1 ⊗R(v2 ⊗ v3) (4.1.2)

for the left and right hand sides respectively. These two equations are easily seen as equal since

(P ⊗ I)(I ⊗ P )[R(v2 ⊗ v3)⊗ v1] = v1 ⊗R(v2 ⊗ v3).

A few remarks are needed to clarify a few possibly subtle points.

Remark 4.1.2. While calling ρR for Bn, a local representation made sense, the operator ρR(τ)

defined in Theorem 4.1.1 is not local in the strict sense. While it does act non-trivially on all of

the tensor factors, its action does not mix vectors within tensor factors. Instead it permutes the

factors globally. despite of this, we will still call ρR a local representation of NBn to keep the

nomenclature consistent.

Remark 4.1.3. An interesting question: given R, how much bigger is the image ρR(NBn) than

ρR(Bn)? While the subgroup BÃn has index 2n in NBn, Bn has infinite index. Therefore it is not

immediate that if |ρR(Bn)| <∞, then |ρR(NBn)| <∞.

Remark 4.1.4. The theorem is stated for n ≥ 3. This is because in the n = 2 case, B2 ∼= Z, so

any R ∈ Aut(V ⊗n) gives a representation of B2. Setting ρR(τ) = P defines an extension to NB2

if R is symmetric in the standard product basis of V ⊗ V . We have ρR(σ1) = R, ρR(τ) = P ,

and ρR(σ2) = PRP . The only relation requiring attention is ρR(σ1σ2σ1) = ρR(σ2σ1σ2) (i.e.

RPRPR = PRPRPRP ). This is satisfied if R is symmetric (i.e. PRP = R). It should be

noted that, in this n = 2 case, (B1) does not hold for every R satisfying the Yang-Baxter equation.

Below is an example that clarifies this point.
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Example 4.1.5. Consider dimV = 2 (i.e. V ∼= C2), and R =
1√
2



1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1


. This gives

us that

ρR(σ1σ2σ1)(e2 ⊗ e1) 6= ρR(σ2σ1σ2)(e2 ⊗ e1).

Hence mapping ρR(τ) = P would not give an extension of ρR from Bn to NBn.

For the R in this example, we have confirmed the following conjecture of n ≤ 6.

Conjecture 4.1.6. Given the above R, n ≥ 3, and using the extension defined in Theorem 4.1.1,

|ρR(NBn)| = n|ρR(BÃn)| = n2n|ρR(Bn)|.

This means that the image ofNBn, while still being finite, can be significantly larger than that

of Bn.

4.2 Gaussian Braided Vector Spaces

In this section we take the idea outlined in Section 2.2.2.1 and we wish to extend it to NBn.

To do this, we first define an algebra NES(m,n), which will be an extension of ES(m,n − 1).

Define NES(m,n) to be the algebra generated by u1, . . . , un−1, t with the following relations:

1. umi = 1 = t

2. [ui, ui+1] = q2 for all 1 ≤ i ≤ n− 2

3. [ui, uj] = 1 if |i− j| 6= 1

4. tuit−1 = ui+1 for all 1 ≤ i ≤ n− 2

Where q once again is either a 2mth or mth root of unity, depending if m is odd or even (respec-

tively).

This gives us that NES(m,n) is almost a semidirect product of ES(m,n − 1) and Zn. To

make the extension to NBn more apparent, we introduce an ancillary generator (named un) to

obtain a presentation more familiar to the modulo n relations in NBn.
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Lemma 4.2.1. Define un := tun−1t
−1, then un satisfies (1) above, relations (2) and (4) above hold

for indices modulo n, and the condition |i−j| 6= 1 in (4) may be replaced with |i−j| 6≡ 1 mod n.

Proof. From our definition, umn = (tun−1t
−1)m = t(umn−1)t

−1 = 1. Notice that un−1 = tn−2u1t
2−n

and tn = 1 give us tun−1t−1 = tn−1u1t
1−n = un. Therefore we also get tunt−1 = u1. Meaning (4)

holds with indices modulo n. Next, we observe that

un−1un = tun−2un−1t
−1 = t(q2un−1un−2)t

−1 = q2tun−1t
−1tun−2t

−1 = q2unun−1.

Which gives us that [un−1, un] = q2. With this, [u1, un] = q2 is similarly verified. Lastly, to check

(3), it is enough to verify that un commutes with un−2 (for n ≥ 4). This is also easily seen, as:

unun−2 = tun−1un−3t
−1 = tun−3un−1t

−1 = un−2un.

Next, we show that NBn admits a representation in NES(m,n).

Theorem 4.2.2. The map ϕ̂n : NBn → NES(m,n)∗ defined by σi 7→ Ri(m) =
1√
m

m−1∑
j=0

qj
2

uji

and τ 7→ t is a group homomorphism.

Proof. As shown in [6, Proposition 3.1], the relation ϕ̂n(σ1σ2σ1) = ϕ̂n(σ2σ1σ2) and ϕ̂n(σ1σj) =

ϕ̂n(σjσ1) for 1 < j < n hold. From the definition of t, ϕ̂n(τσiτ
−1) = ϕ̂n(σi+1) and ϕ̂n(τ)2n = 1.

Therefore we have that ϕ̂n is a group homomorphism, and thus a representation of NBn into

NES(m,n) as desired.

To obtain a BVS, we will again let V ∼= Cm, with standard basis {e0, . . . , em−1}, where ei+m =

ei. Next we define U, T ∈ End(V ⊗2) by U(ei ⊗ ej) = qj−iei+1 ⊗ ej+1 and T (ei ⊗ ej) = ej ⊗ ei.

We additionally define, for n ≥ 2, elements X,Ui ∈ Aut(V ⊗n) by:

X := (T ⊗ I⊗n−2V )(Iv ⊗ T ⊗ I⊗n−3V ) · · · (I⊗n−2V ⊗ T ),
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Ui := I⊗i−1V ⊗ U ⊗ In−i−1V for 1 ≤ i ≤ n − 1, and Un := XUn−1X
−1. To help alleviate any

confusion in upcoming calculations, the following three equalities should be observed:

X(ei1 ⊗ ei2 ⊗ · · · ⊗ ein) = ein ⊗ ei1 ⊗ ei2 ⊗ · · · ein−1 (4.2.1)

X−1(ei1 ⊗ ei2 ⊗ · · · ⊗ ein) = ei2 ⊗ ei3 ⊗ · · · ein ⊗ ei1 (4.2.2)

Um(ei ⊗ ej) =


q(m−j)(j−i)q(j−i−m)(j−i)q(j−i)iei ⊗ ej = ei ⊗ ej i ≤ j

q(m−i)(j−i)q(i−j−m)(j−i)q(j−i)jei ⊗ ej = ei ⊗ ej i > j.

(4.2.3)

To prove the following proposition, we need only verify the relations (1)-(4) for NES(m,n).

Proposition 4.2.3. The map Ψ : NES(m,n) → Aut(V ⊗n) defined by ui 7→ Ui and t 7→ X

defines a representation of NES(m,n) on V ⊗n.

Proof. From the definition ofUi, it is evident thatUi would commute withUj if |i−j| 6∼= 1 mod n.

This is because they would not “interact” with the same tensor factor in V ⊗n. Thus proving (3).

The relation (1) is satisfied, because of equation (4.2.3) and X has order n. For (4) observe the

following calculation:

XU1X
−1(ej1 ⊗ · · · ⊗ ejn) = XU1(ej2 ⊗ ej3 ⊗ · · · ejn ⊗ ej1)

= X(qj3−j2ej2+1 ⊗ ej3+1 ⊗ · · · ⊗ ejn ⊗ ej1)

= qj3−j2(ej1 ⊗ ej2+1 ⊗ ej3+1 ⊗ · · · ⊗ ejn)

= U2(ej1 ⊗ ej2 ⊗ ej3 ⊗ · · · ⊗ ejn).

While the above calculation was just for U1 and U2, the calculation for Ui and Ui+1 is identical.

Hence (4) holds. For the last relation, (2), it is sufficient to check for U1, U2 with n = 3. This has

already be verified in [6], where they showed U1U2(ei ⊗ ej ⊗ ek) = q2U2U1(ei ⊗ ej ⊗ ek).

Notice that the composition Ψ ◦ ϕ̂n : NBn → Aut(V ⊗n) gives a local representation of NBn.
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For the case of m = 2, a realization of R is given in Example 4.1. While the image ρR(NBn) is

conjectured to have finite image in that case, it was shown in [6], the image ϕ̂n(Bn) inES(m,n−1)

is finite. Following a similar approach, we will obtain the following:

Theorem 4.2.4. The image ϕ̂n(NBn) in NES(m,n) is a finite group.

Proof. Notice that the monomials in NES(m,n) have the following normal form: tαuα1
1 · · ·uαnn

where 0 ≤ α < n and 0 ≤ αi < m. In fact, we see that these n(m)n monomials form a basis

for NES(m,n) over Q(q). The structure of NES(m,n) is more complicated than ES(m,n− 1),

which is actually simple for n odd and has exactly m simple components for n even [14]. We let

ϕ̂n(NBn) ⊂ NES(m,n) act on the span of Û = {uα1
1 · · ·uαnn } by conjugation. Since conjugation

by t obviously permutes this spanning set, we first show that the conjugation action of Ri(m) also

permutes this set. The same approach as in [6] works here: (note we may omit the scalar 1√
m

in

Ri(m) in these calculations):

qu−1i ui+1Ri(m) = qu−1i ui+1

m−1∑
j=0

qj
2

uji = q−1ui+1u
−1
i

m−1∑
j=0

qj
2

uji

= q−1
m−1∑
j=0

qj
2

ui+1u
j−1
i = q−1

m−1∑
j=0

qj
2

(q−2(j−1))uj−1i ui+1

=
m−1∑
j=0

q−1qj
2

q−2j+2uj−1i ui+1

=

(
m−1∑
j=0

q(j−1)
2

uj−1i

)
ui+1 = Ri(m)ui+1
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and

q−1ui−1uiRi(m) = quiui−1

m−1∑
j=0

qj
2

uji

= qui

m−1∑
j=0

qj
2

ui−1u
j
i = qui

m−1∑
j=0

qj
2

q2jujiui−1

=
m−1∑
j=0

qqj
2

q2juj+1
i ui−1

=

(
m−1∑
j=0

q(j+1)2uj+1
i

)
ui−1 = Ri(m)ui−1.

This shows thatRi(m)ui+1Ri(m)−1 = qu−1i ui+1 andRi(m)ui−1Ri(m)−1 = q−1ui−1ui. Thus con-

jugation by Ri(m) permutes the spanning set Û up to scalars that are roots of unity (i.e. powers of

q). This gives us that ϕ̂n(NBn) is finite modulo the center. The subalgebra of NES(m,n) gen-

erated by ϕ̂n(NBn) is semisimple, so that the faithful representation of ϕ̂n(NBn) on NES(m,n)

decomposes into full matrix algebras. Thus any element x of the center of ϕ̂n(NBn) acts via a

scalar matrix on each irreducible subrepresentation. But since the generators of ϕ̂n(NBn) have

determinant a root of unity (of degree m or n), the scalar x is also a root of unity of degree only

depending on m and n (indeed the degree of each irreducible representation depends only on

m,n). Thus the center of ϕ̂n(NBn) is a finite group and has finite index, so ϕ̂n(NBn) is a finite

group.

4.3 Quaternionic Representation

Similar to the Gaussian Braided Vector Space, the idea is to take a finite group (in this case the

quaternion group K8) and consider the group algebra with n copies of the group, where the gen-

erators will interact with ‘close’ neighbours in a specific way, but commute with ‘far’ neighbours.

In this section we let q = e2iπ/6. Similar to the Gaussian case, we take the algebra Qn defined in

[13], and define another algebra to be (almost) a semi-direct product of Qn with Zn. Define Qn as

the algebra generated by t, u1, . . . , un−1, v1, . . . , vn−1 with the following relations:
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1. u2i = v2i = −1 for all i,

2. [ui, vj] = −1 if |i− j| < 2,

3. [ui, vj] = 1 if |i− j| ≥ 2,

4. [ui, uj] = [vi, vj] = 1 = tn,

5. tuit−1 = ui+1, and tvit−1 = vi+1 for all i.

As was in the previous section, to make the connection to NBn a bit clearer, we use the following

lemma.

Lemma 4.3.1. Defining, in Qn, un := tun−1t
−1 and vn := tvn−1t

−1, vn, un satisfy relations

(1)− (5) with indices mod n (defining v0 = vn and vn+1 = v1).

Proof. We must check that un and vn also satisfy the relations (1) − (5). For (1), note that u2n =

(tun−1t
−1)2 = tu2n−1t

−1 = −1 = tv2n−1t
−1 = (tvn−1t

−1)2 = v2n. The relation (5) follows from the

definition of un,vn and tn = 1; tunt−1 = t(tun−1t
−1)t−1 = t(tn−1u1t

−n+1)t−1 = tnu1t
−n = u1

and similarly tvnt−1 = v1. For (2) and (3), we will first consider [un, vj]. Doing so gives the

following:

[un, vj] = [tun−1t
−1, vj] = tun−1t

−1vjtu
−1
n−1t

−1v−1j

= tun−1vj+1u
−1
n−1v

−1
j+1t

−1

= t[un−1, vj+1]t
−1.

Similarly [uj, vn] = t[uj+1, vn−1]t
−1. Thus the relation (3) holds for |i − j| mod n ≥ 2. For (2)

we need to check the above equation, j = 1, n− 1, n.

[un, v1] = [t−1u1t, v1] = t−1[u1, v2]t = −1

[un, vn−1] = [tun−1t
−1, tvn−2t

−1] = t[un−1, vn−2]t
−1 = −1

[un, vn] = [tun−1t
−1, tvn−1t

−1] = t[un−1, vn−1]t
−1 = −1.
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Hence (2) holds for |i − j| mod n < 2. Lastly (4) holds from [un, uj] = t[un−1, uj]t
−1 and

[vn, vj] = t[vn−1, vj]t
−1.

Theorem 4.3.2. The map ξn : NBn → Q×n given by ξn(σi) =
−1

2q
(1+ui+vi+uivi) and ξn(τ) = t

defines a group homomorphism.

Observe that this theorem is showing that ξn is an extension of υ from Bn to NBn.

Proof. It was shown in [13] that ξn(σ1σ2σ1) = ξn(σ2σ1σ2) and ξn(σ1σj) = ξn(σjσ1) for 1 < j < n

hold. By Lemma 2.3.2 we just need to check ξn(τσiτ
−1) = ξn(σi+1) and [ξn(τ)]2n = 1. However,

these are both immediate from the (last two) relations in Qn.

As mentioned in Chapter 2, Qn does not have an apparent local representation. It is however,

easy to show the following:

Theorem 4.3.3. The image ξn(NBn) in Qn is a finite group.

Proof. First we show that,the conjugation action on the subalgebra Q̂n generated by u1, . . . , un,

v1, . . . , vn is finite as follows. Observe that Q̂n is spanned by monomials of the form

uε11 · · ·uεnn v
ν1
1 · · · vνnn

where nonzero εi, νi ∈ {0,±1}. The action of ξn(τ) = t obviously permutes this generating set.

We can now compute, with k = i± 1:

uiξn(σi) =
−1

2q
ui(1 + ui + vi + uivi) =

−1

2q
(ui − 1 + uivi − vi)

=
−1

2q
(viuivi + uiviuivi + uivi + uiuivi) =

−1

2q
(vi + uivi + 1 + ui)uivi)

= ξn(σi)uivi
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and

viξn(σi) =
−1

2q
vi(1 + ui + vi + uivi) = ξn(σi)ui

ukξn(σi) =
−1

2q
uk(1 + ui + vi + uivi) = ξn(σi)ukvi

vkξn(σi) =
−1

2q
vk(1 + ui + vi + uivi) = ξn(σi)(−uivivk).

Thus the conjugation action of ξn(NBn) permutes a spanning set up to roots of unity so that

ξn(NBn) is finite modulo its center.

Now again, as in the Gaussian case, we can see that the Qn is a finite dimensional semisimple

algebra and the restriction to the center of ξn(NBn) on any irreducible subrepresentation of the

faithful regular representation gives a scalar of finite order, hence ξn(NBn) has finite center and is

thus a finite group.
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5. TWISTED TENSOR REPRESENTATIONS

In this chapter, we will discuss an idea inspired by analyzing the Bn representations in Sections

2.2.2.1 and 2.2.2.2. Motivation also comes from Chapter 4, as any local representation of Bn

extend to a local representation of NBn in a natural way.

Recall the algebra ES(m,n − 1) presented in Section 2.2.2.1. Upon further examination,

ES(m,n − 1) can be realized as the twisted tensor product of n − 1 copies of the group algebra

C[Zm]. Let u denote the generator for the group Zm. We define an algebra isomorphism A :

ES(m,n− 1)→ C[Zm]
⊗
τ (n−1) as

ui 7→ 1⊗τ · · · ⊗τ 1︸ ︷︷ ︸
i−1 copies

⊗τu⊗τ 1⊗τ · · · ⊗τ 1︸ ︷︷ ︸
n−i copies

.

Because of this identification, we shall relax notation and omit the tensor products when talking

about elements in C[Zm]
⊗
τ (n−1). It should be noted that the τ in

⊗
τ is not the generator ofNBn,

but instead just common notation for twisted tensor product. The twisting τ : C[Zm] ⊗ C[Zm] →

C[Zm]⊗C[Zm] is described by the relations ofES(m,n−1). In particular, τ(ui+1, ui) = q−2uiui+1

and τ(ui, uj) = ujui if |i − j| > 1. Looking at the algebra Qn presented in Section 2.2.2.2,

similarly, we observe Qn is the twisted group algebra of the quaternion group. This leads to the

idea of generating local representations of Bn from twisting n − 1 copies of finite abelian group

algebras.

5.1 Extending the Gaussian Representation to Zm × Zm

A first step is to extend the idea from the Gaussian case
(
C[Zm]

⊗
τ (n−1)

)
to the twisted algebra

C[Zm×Zm]
⊗
τ (n−1). Similar to above, we will omit the tensor product in elements of C[Zm×Zm]

when apparent. Let ui, vi be the generators of the ith tensor copy of C[Zm × Zm]. We intend to

define an algebra Anm generated by u1, v1, . . . , un−1, vn−1 which extends ES(m,n − 1). Because

of this, we want umi = vmi = 1, for all i, and [ui, ui+1] = [vi, vi+1] = q2 for 1 ≤ i ≤ n − 2. This
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gives us two unknowns, [ui, vi+1] = x and [vi, ui+1] = y.

Recall that in the gaussian representation, we had the image of σi in ES(m,n − 1) was
1√
m

m−1∑
j=0

qj
2

uji . Hence, in Anm, we define ρnm : Bn → Anm by

ρnm(σi) =

(
1√
m

m−1∑
j=0

qj
2

uji

)(
1√
m

m−1∑
k=0

qk
2

vki

)
=

1

m

m−1∑
j,k=0

qj
2+k2ujiv

k
i = R̂i.

From this, we find values for [ui, vi+1] = x and [vi, ui+1] = y, which cause the Ri to satisfy the

braid relation.

In [6], and stated in Section 2.2.2.1, a braided vector space (U, V ) was used to get a linear

representation of Bn. For Zm×Zm however, we regard V = V ⊗V ∼= Cm×m. Further, as in [6], we

define a basis of V to be {ei ⊗ ej | 1 ≤ i, j ≤ m}, with em+i = ei, and define Uu,Uv ∈ Aut(V⊗2)

as:

Uu(ei ⊗ ej ⊗ ek ⊗ el) = qk−iei+1 ⊗ ej ⊗ ek+1 ⊗ el

Uv(ei ⊗ ej ⊗ ek ⊗ el) = ql−jei ⊗ ej+1 ⊗ ek ⊗ el+1.

The rationale that Uu and Uv are defined the way they are, comes from the realization that ui

interacts the first tensor product of V in V , and vi interacts with the second. Hence on V⊗2, Uu

should interact with the first and third tensor copies of V (respectively Uv interacting with the

second and forth copy). From their definition, the following on V⊗3 can readily be observed:

(Uu ⊗ IV)(IV ⊗ Uv) = (IV ⊗ Uv)(Uu ⊗ IV) (5.1.1)

(Uv ⊗ IV)(IV ⊗ Uu) = (IV ⊗ Uu)(Uv ⊗ IV) (5.1.2)

These equations, along with a desire for the map φm : Anm → End(V⊗n) defined by

ui → Uui := I
⊗(i−1)
V ⊗ Uu ⊗ I⊗(n−i−1)V and vi → Uvi := IV⊗(i−1) ⊗ Uv ⊗ I⊗(n−i−1)V
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to be an algebra homomorphism, imply that [ui, vi+1] = [vi, ui+1] = 1. To check that the above

map will also satisfy [ui, ui+1] = q2 = [vi, vi+1], we show

Uu1 Uu2 (ei ⊗ ej ⊗ ek ⊗ el ⊗ ex ⊗ ey) = q2Uu2 Uu1 (ei ⊗ ej ⊗ ek ⊗ el ⊗ ex ⊗ ey)

Uv1Uv2 (ei ⊗ ej ⊗ ek ⊗ el ⊗ ex ⊗ ey) = q2Uv2Uv1 (ei ⊗ ej ⊗ ek ⊗ el ⊗ ex ⊗ ey).

To see that the above two are indeed true, we cite [6, Proposition 3.4], and observe:

Uu1 Uu2 (ei ⊗ ej ⊗ ek ⊗ el ⊗ ex ⊗ ey) = qx−kq(k+1)−iei+1 ⊗ ej ⊗ ek+2 ⊗ el ⊗ ex+1 ⊗ ey

= q2qx−(k+1)qk−iei+1 ⊗ ej ⊗ ek+2 ⊗ el ⊗ ex+1 ⊗ ey

= q2Uu2 Uu1 (ei ⊗ ej ⊗ ek ⊗ el ⊗ ex ⊗ ey).

The relation Uv1Uv2 = q2Uv2Uv1 is shown similarly. Thus the defining relations on Anm are:

1. umi = vmi = 1 for all i

2. [ui, vj] = 1 for all i, j

3. [ui, ui+1] = [vi, vi+1] = q2.

While this does give us a local representation of Bn
(

by ϕm(σi) = 1
m

∑m−1
j,k=0 q

j2+k2(Uui )j(Uvi )k
)

,

it is just the tensor product of the Gaussian representation with itself. This in no way means that

every algebra C[Zm×Zm]
⊗
τ n−1 with [ui, ui+1] = q2 = [vi, vi+1] must have the u and v generators

commute. However, if we are wanting Ri = 1
m

∑m−1
j,k=0 q

j2+k2ujiv
k
i to be the image of σi, then the

u′s and v′s will be forced to commute. In the pursuit of more alluring representations of Bn, we

begin analyzing C[Z3 × Z3]
⊗
τ (n−1).

5.2 Local Representations from C[Z3 × Z3]

For lucidity sake, we restate the setting. The desire is to find local representations of Bn by

first mapping Bn into C[Z3 × Z3]
⊗
τ (n−1), say by ϕm. After such a map has been established, we
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aim to ‘localize’ C[Z3 × Z3]
⊗
τ (n−1). This is the process of finding Uu,Uv ∈ Aut(V ), such that

ui 7→ Uui and vi 7→ Uvi , provides a homomorphism and composing that with ϕm provides a local

representation of Bn. We call Uu,Uv a localization of C[Z3 × Z3]
⊗
τ (n−1), and ϕm composed with

this localization a representation of a representation of Bn through the algebra C[Z3×Z3]
⊗
τ (n−1).

The algebra C[Z3×Z3]
⊗
τ (n−1) is generated by u1, v1, . . . , un−1, vn−1 and subject to the following

relations:

1. u3i = 1 = v3i

2. [ui, vj] = 1 = [vi, uj] for all |i− j| 6= 1.

3. [ui, ui+1] = q1, [ui, vi+1] = q2, [vi, ui+1] = q3, and [vi, vi+1] = q4,

where q1, q2, q3, q4 are choices of third root of unity. The goal now would be, for each tuple

q = (q1, q2, q3, q4) to find αq
j,k ∈ C such that

σi → Ri :=
m−1∑
j,k=0

αq
j,ku

j
iv
k
i

defines a group homomorphism from Bn to (C[Z3 × Z3]
⊗
τ (n−1))×. The solutions that are of

most interest (due to their applications in TQC) are unitary solutions. Later we state a complete

classification of unitary solutions.

Solving for the Ri’s involve solving a system with 9 unknowns for 81 distinct cases. There

are many ways that we can narrow down these 81 cases into a less cumbersome amount. The first

way would be to recognize that the algebra isomorphism on C[Z3×Z3]
⊗
τ (n−1) by ω 7→ ω2 would

reduce the number of cases to 41. Another natural method to consider would be applying different

compositions of the isomorphism that swap tensor copies of C[Z3 × Z3]
⊗
τ (n−1) with each other

(i.e. ui ↔ uj and vi ↔ vj for i 6= j) and the isomorphism swapping generators within a single

tensor copy (ui ↔ vi). However, while applying these isomorphisms, one must be careful, as the

coefficients of the different Ri’s would be permuted, meaning that the coefficient for u1v21 in R1

may be different from the coefficient of u2v22 in R2. Due to this, we pursue another method.
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Instead of the above methods, we will use a notion of congruent matrices to reduce the number

of tuples q. Let α1, α2, α3, α4 ∈ Z3 such that ωαi = qi (for i = 1, 2, 3, 4), Q =

α1 α2

α3 α4

 , and

A =

a b

c d

 ∈ GL2(F3) correspond to the basis change of C[Z3 × Z3] in accordance with the

basis change of C[Z3 × Z3]
⊗
τ (n−1) of ui 7→ uai v

b
i and vi 7→ uciv

d
i . Note that the collection of all

possible Q is equivalent to M2(F3). A quick calculation shows that

AQAT =

a2α1 + ab(α2 + α3) + b2α4 acα1 + adα2 + bcα3 + bdα4

acα1 + bcα2 + adα3 + bdα4 c2α1 + cd(α2 + α3) + d2α4

 =

β1 β2

β3 β4

 .

The following calculates the new commutation relation for ui, vi+1 under the basis change from A:

[ui, vi+1] → [uai v
b
i , u

c
i+1v

d
i+1]

uivi+1 → uai v
b
iu

c
i+1v

d
i+1

uai v
b
iu

c
i+1v

d
i+1 = qbc3 u

a
i u

c
i+1v

b
iv
d
i+1

= qbc3 q
ac
1 q

bd
4 q

ad
2 u

c
i+1v

d
i+1u

a
i v

b
i

= (ωacα1+adα2+bcα3+bdα4)uci+1v
d
i+1u

a
i v

b
i

= ωβ2uci+1v
d
i+1u

a
i v

b
i .

Similarly, it can be shown that the βi are the image of αi under the basis change given by A.

From this, if we consider the action of GL2(F3) on M2(F3) by A.Q = AQAT for A ∈ GL2(F3),

Q ∈ M2(F3). The reason AQAT is the proper choice, instead of some AQB, is that we wish for

each tensor copy of C[Z3 × Z3] to have the same generators (i.e. we want u1, v1 to be sent to the

same basis as uj, vj . In [18, Theorem 2] they showed the following general theorem.
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Theorem 5.2.1 ([18]). The number of congruence classes in Mn(Fp) is the coefficient of tn in

∏
k≥1

(1 + tk)e(1− pt2)−1(1− tk)−1

where e = 2p mod 2.

A quick calculation shows that this means there are 7+p congruence classes in M2(Fp). Thus

we only have 10 cases. One considerable benefit to these congruence classes is that it corresponds

to a basis change. Hence the coefficient in Ri for uxi v
y
i is the same coefficient as in Rj for uxj v

y
j .

Class representatives in M2(F3), are listed below. The congruence classes are listed in A.2 and

A.3.

M1 :=

0 0

0 0

 ,M2 :=

0 0

0 1

 ,M3 :=

0 0

0 2

 ,M4 :=

0 0

1 0

 ,M5 :=

1 0

0 2



M6 :=

1 1

0 2

 ,M7 :=

0 1

2 0

 ,M8 :=

1 1

0 1

 ,M9 :=

2 2

0 2

 ,M10 :=

1 0

0 1

 .

Notice that one can transformM2 toM3 (and alsoM8 toM9) by simply sending ω → ω2. As this

is an algebra isomorphism, we further reduce the number of cases to 8, using the representatives

M1,M2,M4,M5,M6,M7,M8,M10. The only invertible solution for M1, is Ri = 1 (i.e.

αj,k = 0 if (j, k) 6= (0, 0)).

Proposition 5.2.2. For n ≥ 3, any unitary representation of Bn through C[Z3×Z3]
⊗
τ (n−1), given

by

σi 7→ Ri :=
2∑

j,k=0

αj,ku
j
iv
k
i ,

is isomorphic to a representation in Tables A.4 to A.10.

It should be noted, that Tables A.4 to A.10 only includes unitary representations. Some of

which may need rescaling (i.e. to unitarize R, we just multiply it by some scalar λ). If such a
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scalar is needed, it is provided. Also the Ri coefficients are presented as a set, as writing out each

solution as a polynomial with 9 terms is quite extensive.

The table does not contain all possible solutions for each congruence classMi. As the propo-

sition states, they only contain the unitary solutions. To expand on this further, we consider

the case M5. In this particular instance, the relations in C[Z3 × Z3]
⊗
τ (n−1) are [ui, ui+1] = ω,

[vi, vi+1] = ω2, and [ui, v`] = 1 (for all i, `). Before we solve for Ri that satisfy the braid relation,

we set α0,0 = 1, reducing our solution sets to 8 unknowns (this is the reason for possible rescaling

needed to have Ri be unitary). Now we have

Ri = 1 + α1,0ui + α0,1vi + α2,0u
2
i + α0,2v

2
i + α1,1uivi + α2,1u

2
i vi + α1,2uiv

2
i + α2,2u

2
i v

2
i

and will find αj,k such that RiRi+1Ri = Ri+1RiRi+1. There are many solutions to this that are not

of much interest, for instance αj,k = 0 for all j, k (i.e. Ri = 1 for all i) is a solution, however it

would only lead to trivial representations.

Another type of solution we wish to avoid are ones that would have a solution that is not invert-

ible. In this section, we discuss eigenvalues of Ri, ui, and vi. By this we mean their eigenvalues

after C[Z3×Z3]
⊗
τ (n−1) is mapped to End(V ) for some finite dimensional vector spce V . To check

the possible eigenvalues of Ri, one must only plug in the three possible values for ui, vi, which are

1, ω, ω2 (this stems from ui, vi both having order 3, so any eigenvalue must also have that order).

Example 5.2.3. The solution αj,k = δj,k (where δ is the ) hasRi = 1+uivi+u2i v
2
i . However, upon

inspection, the only way that these Ri are invertible is if ui, vi are both mapped to the identity. This

however would then give us that Ri would just be a multiple of the identity. And therefore a fairly

frivolous representation.

Another reason we wish to avoid solutions like in Example 5.2.3 is the fact that it can be

seen as a subrepresentation, due to the fact that uivi generates a subalgebra of C[Z3 × Z3]
⊗
τ (n−1)

isomorphic to C[Z3]. In a similar vain the following two examples are unitary, however they are

either isomorphic to a representation of C[Z3]
⊗
τ (n−1) or the product of two such representations.
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Example 5.2.4. The solution Ri =
i√
3

(1 + ωui + u2i ) is unitary, with eigenvalues 1, ω.

Example 5.2.5. The solution Ri = −1

3
(1 + ωvi + v2i )(1 + ωui + u2i ) is unitary with eigenvalues

1, ω, ω2.

That being said, all unitary representations of the forms similar to Examples 5.2.4 and 5.2.5

have been expressed in Tables A.4 to A.10 as they may be of interest in some other manner.

Other solutions that are worth noting are solutions such as the one given in Example 5.2.6. This

solution has all real eigenvalues, and is not unitary. While these do not have a direct application to

TQC as their unitary counterparts, the solutions still warrant some attention.

Example 5.2.6. The solution Ri = 1 +
(
−7
2

+ 3
√
5

2

)
(ui + vi + u2i + v2i + u2i vi + uiv

2
i + u2i v

2
i ) is

not unitary, and has eigenvalues 1
2
(9− 3

√
5) and −27 + 12

√
5.

In fact, the Ri in Example 5.2.6 is a solution in not only the congruence class M5, but also

for M6,M7,M8, and M10. This is not the only solution that is non-unitary with possible real

eigenvalues. However those solutions are very messy and at the moment provide no further insight.

These solutions have been omitted in the tables in this document for that reason, but may appear

in future work.

5.2.1 Localizing C[Z3 × Z3]
⊗
τ (n−1)

Similar to Section 5.1, we wish to find Uu,Uv ∈ Aut(V ⊗2), for some finite dimensional vector

space V , where mapping ui → Uui and vi → Uvi gives an algebra homomorphism. Unlike the

previous section, we do not offer a complete classification of such Uu and Uv, instead we provide

a method for acquiring such automorphisms. First we let V ∼= C3. Since we are looking for

automorphisms on V ⊗ V , we can look for X, Y, J,K ∈ GL(V ) such that Uu = X ⊗ Y and

Uv = J⊗K. From this, we would have Uu1 = X⊗Y ⊗ IV , Uu2 = IV ⊗X⊗Y , Uv1 = J⊗K⊗ IV ,

and Uv2 = IV ⊗ J ⊗ K. On account of wanting a Uu1 ,Uu2 ,Uv1 , and Uv2 to satisfy the relations

from the algebra C[Z3 × Z3]
⊗
τ (n−1) (represented by some choice ofMi). Recalling that we let

[a, b] = aba−1b−1, it can be concluded that [Y,X] = q1, [Y, J ] = q2, [K,X] = q3, [K, J ] = q4, and
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[X, J ] ⊗ [Y,K] = 1. Notice that the last equation is saying [X, J ] = [Y,K]−1. While we do not

currently have a classification of all such ‘localizations’, we again highlight theM5 case. Define

two elements of Aut(V ⊗ V ) by

A :=


1 0 0

0 ω 0

0 0 ω2

 and P :=


0 0 1

1 0 0

0 1 0

 .

Hence defining Uu := (AP)−2 ⊗ (AP−1)2 and Uv := (A2(AP)−1) ⊗ (PA)−1, will satisfy the

relations for M5. Therefore, taking any of the αj,k solutions in Table A.6, the map ϕ : Bn →

End(V ⊗n), defined by σi 7→ Ri =

(2,2)∑
(j,k) 6=(0,0)

αj,k(Uui )j(Uvi )k, gives us a local representation of Bn.

The reason for picking such an A and P , is that they have eigenvalues 1, ω, and ω2. From

this, the current design is to find products of powers of A and P that satisfy the algebra relations

associated with the variousMi. While this will arrive at a local representation, it will not classify

all algebra homomorphisms from C[Z3×Z3]
⊗
τ (n−1) to End(V ). For example, it would not classify

any X ∈ Aut(V ⊗2) such that X does not decompose into X1 ⊗X2. Also, instead of A or P , one

could for instance consider powers of ωA or even something like Ā =


1 0 0

0 ω 0

0 0 ω

. Finding such

localizations, or at least a locallization for each case ofMi is one goal in a current project with

Paul Gustafson, Qing Zhang, and Dr Eric Rowell. Another goal is to extend this idea to Zp × Zp,

and to do that, one could consider similar A and P , except being p× p matricies with ω now being

a primitive pth root of unity.

Example 5.2.7. Let p ≥ 3 be a prime, Ap be the diagonal matrix with (1, ξ, ξ2, . . . , ξp−1) along

the diagonal, Pp the permutation matrix associated with the permutation (1, p, p − 1, . . . , 2), and

ξ = e2πi/p. Consider the algebra T np := C[Zp×Zp]
⊗

(n−1) with generators ui, vi (for 1 ≤ i ≤ n−q)

subject to relations: [ui, ui+1] = 1, [ui, vi+1] = ξ = [vi, ui+1], [vi, vi+1] = ξ−2, upi = vpi = 1, and

if |i − j| 6= 1, the generators with index i, j will commute. Defining X := Ap, Y := A−1p ,
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J := (ApPp)−1, K := ApP−1p , Uu = X ⊗ Y and Uv = J ⊗K, provides a localization of T np .

In the setting of p = 3, this corresponds to q = (1, ω, ω, ω), which is in the congruence

class ofM5. This localization is isomorphic to the previously stated Uu = (AP)−2 ⊗ (AP−1)2,

Uv = (A2(AP)−1)⊗ (PA)−1, by the appropriate change of basis.
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6. CONCLUSIONS AND FUTURE DIRECTIONS

To reiterate a few previously mentioned points, while there is a classification of theRi solutions

for all eight congruence classesMj , there currently is not a classification of localizations of the

algebra C[Z3 × Z3]
⊗

(n−1) with defining relations fromMj . It is believed that the idea described

in 5.2.1 (defining Uu = X ⊗ Y and Uv = J ⊗ K for some X, Y, J,K ∈ Aut(C3)) may not be

fruitful for every congruence classMj . In fact it is conjectured thatM7 has no such localization.

This does not mean that there exists no localization forM7, alternatively, one could find X ,Y ∈

Aut(V
⊗

2) such that (1) there does not exist X1, X2, Y1, Y2 ∈ Aut(V ) with X = X1 ⊗ X2 and

Y = Y1 ⊗ Y2, and (2) ui 7→ Uui = I
⊗(i−1)
V ⊗ X ⊗ I⊗(n−i−1)V , vi 7→ Uvi = I

⊗(i−1)
V ⊗ Y ⊗ I⊗(n−i−1)V

defines an algebra homomorphism from C[Z3 × Z3]
⊗
τ (n−1) to Aut(V ⊗n).

Other questions about C[Z3 × Z3]
⊗
τ (n−1) that are of interest include: What structure does

C[Z3 × Z3]
⊗
τ (n−1) admit under the differentMj congruence classes? Is the image of Bn, under

the natural map σi 7→ Ri, finite for all solutions? What group is the image of Bn under this

identification? Do these solutions extend to C[Zp × Zp]
⊗

(n−1) in a standard or natural way?

We briefly focus on the last idea and describe a method that is currently being pursued. The

idea is, for eachM`, find a complex valued function f `p such that in C[Zp × Zp]
⊗

(n−1), defining

R̄i =
m−1∑
j,k=0

f `p(j, k)ujiv
k
i will give rise to the natural homomorphism from Bn. These R̄i, for p = 3,

will correspond with one of the Ri in Proposition 5.2.2. This idea stems from not only wanting a

solution for general p, but also the original construction of the Gaussian representation, described

in 2.2.2.1, where they defined Ri =
∑m−1

j=0 gm(j)uji , with gm(j) = qj
2 (for the appropriate q).
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APPENDIX A

This appendix contains tables with a variety of classifications. They appear here, instead of the

main text, do to their unwieldy nature.

ρ(σ1) ρ(τ) restrictions(
a 1

a2 − ad+ d2 d

) (
−t2 0
0 t2

)
a 6= d

(
a 1

−a2 + ad− d2 d

)
±
(

1 0
0 i

)
,±
(
i 0
0 1

)
a 6= d, n = 2

(
a 1

−1
2

(a2 − ad+ d2) d

)
±
(
e±iπ/3 0

0 1

)
,±
(

1 0
0 e±iπ/3

)
, a 6= d, n = 3

±
(
e2iπ/3 0

0 eiπ/3

)
,±
(
eiπ/3 0

0 e2iπ/3

)

(
ωd 1
c d

)
±
(

1 0
0 e±2iπ/3

)
,±
(
e±2iπ/3 0

0 e∓2iπ/3

)
d 6= 0, c 6= ωd2, n = 3

Table A.1: Dimension 2 Irreducible Representations of NBn, for 2 ≤ n ≤ 4.
In this table, ω is a primitive 3rd root of unity.
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Mi Congruence Class

M1 :=

(
0 0
0 0

) (
0 0
0 0

)

M2 :=

(
0 0
0 1

) (
0 0
0 1

)
,

(
1 0
0 0

)
,

(
1 1
1 1

)
,

(
1 2
2 1

)

M3 :=

(
0 0
0 2

) (
0 0
0 2

)
,

(
2 0
0 0

)
,

(
2 2
2 2

)
,

(
2 1
1 2

)

M4 :=

(
0 0
1 0

) (
0 0
1 0

)
,

(
0 0
1 1

)
,

(
0 0
1 2

)
,

(
0 0
2 0

)
,

(
0 0
2 1

)
,

(
0 0
2 2

)
,

(
0 1
0 2

)
,

(
0 2
0 0

)
,

(
0 2
0 1

)
,

(
0 2
0 2

)
,

(
1 0
1 0

)
,

(
1 0
2 0

)
,

(
1 2
0 0

)
,

(
1 2
1 2

)
,

(
2 0
1 0

)
,

(
2 0
2 0

)
,

(
2 1
0 0

)
,

(
2 1
2 1

)
,

(
2 2
0 0

)
,

(
2 2
1 1

)
,

(
1 1
0 0

)
,

(
1 1
2 2

)
,

(
0 1
0 0

)
,

(
0 1
0 1

)

M5 :=

(
1 0
0 2

) (
1 0
0 2

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
0 1
1 2

)
,

(
0 2
2 0

)
,

(
0 2
2 1

)
,

(
0 2
2 2

)
,

(
1 1
1 0

)
,

(
1 2
2 0

)
,

(
2 0
0 1

)
,

(
2 1
1 0

)
,

(
2 2
2 0

)

Table A.2: The congruence classes in M2(F3) forM1 toM5.
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Mi Congruence Class

M6 :=

(
1 1
0 2

) (
1 1
0 2

)
,

(
1 0
1 2

)
,

(
1 0
2 2

)
,

(
1 1
2 1

)
,

(
1 2
0 2

)
,

(
1 2
1 1

)
,

(
2 0
1 1

)
,

(
2 0
2 1

)
,

(
2 1
0 1

)
,

(
2 1
2 2

)
,

(
2 2
0 1

)
,

(
2 2
1 2

)

M7 :=

(
0 1
2 0

) (
0 1
2 0

)
,

(
0 2
1 0

)

M8 :=

(
1 1
0 1

) (
1 1
0 1

)
,

(
1 2
0 1

)
,

(
1 2
1 0

)
,

(
0 1
2 1

)
,

(
0 2
1 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
1 1
2 0

)

M9 :=

(
2 2
0 2

) (
2 2
0 2

)
,

(
2 1
0 2

)
,

(
2 1
2 0

)
,

(
0 2
1 2

)
,

(
0 1
2 2

)
,

(
2 0
2 2

)
,

(
2 0
1 2

)
,

(
2 2
1 0

)

M10 :=

(
1 0
0 1

) (
1 0
0 1

)
,

(
1 1
1 2

)
,

(
1 2
2 2

)
,

(
2 0
0 2

)
,

(
2 1
1 1

)
,

(
2 2
2 1

)

Table A.3: The congruence classes in M2(F3) forM6 toM10
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Unitary Ri solutions scalar to
forM2 unitarize

{α1,0 = 0, α0,1 = ω, α2,0 = 0, α0,2 = 1, α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0} i√
3

{α1,0 = 0, α0,1 = ω, α2,0 = 0, α0,2 = ω, α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0} - i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = 1, α2,2 = 0 } i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = ω , α2,2 = 0} − i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = ω , α2,1 = 0, α1,2 = 0, α2,2 = 1} i√
3

Table A.4: Unitary solutions to Ri with relations given byM2.

Unitary Ri solutions scalar to
forM4 unitarize

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = ω , α2,1 = 0, α1,2 = 0, α2,2 = 1} i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = ω , α2,1 = 0, α1,2 = 0, α2,2 = ω } − i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = 1, α2,2 = 0} i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = ω , α2,2 = 0} − i√
3

Table A.5: Unitary solutions to Ri with relations given byM4.
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Unitary Ri solutions scalar to
forM5 unitarize

{α1,0 = ω , α0,1 = 0, α2,0 = 1, α0,2 = 0, α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0 } i√
3

{α1,0 = ω , α0,1 = 0, α2,0 = ω , α0,2 = 0, α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0 } − i√
3

{α1,0 = ω α0,1 = ω , α2,0 = 1, α0,2 = 1 , α1,1 = ω 2, α2,1 = ω, α1,2 = ω, α2,2 = 1 } -1
3

Factors into (1 + ωui + u2i )(1 + ωvi + v2i )

{α1,0 = ω 2, α0,1 = ω , α2,0 = ω 2, α0,2 = ω , α1,1 = 1, α2,1 = 1, α1,2 = 1, α2,2 = 1} 1
3

{α1,0 = 1, α0,1 = ω , α2,0 = ω 2, α0,2 = ω , α1,1 = ω , α2,1 = 1, α1,2 = ω , α2,2 = 1} −1
3

{α1,0 = 1, α0,1 = 1, α2,0 = ω 2, α0,2 = ω , α1,1 = 1, α2,1 = ω 2, α1,2 = ω , α2,2 = 1} 1
3

Table A.6: Unitary solutions to Ri with relations given byM5.
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Unitary Ri solutions scalar to
forM6 unitarize

{α1,0 = 0, α0,1 = ω , α2,0 = 0, α0,2 = 1, α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0} i√
3

{α1,0 = 0, α0,1 = ω , α2,0 = 0, α0,2 = ω , α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0} − i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = 1, α2,2 = 0} i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = ω , α2,2 = 0} − i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = ω , α2,1 = 0, α1,2 = 0, α2,2 = 1 } i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = ω , α2,1 = 0, α1,2 = 0, α2,2 = ω} − i√
3

Table A.7: Unitary solutions to Ri with relations given byM6.
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Unitary Ri solutions scalar to
forM7 unitarize

{α1,0 = ω , α0,1 = ω , α2,0 = 1, α0,2 = ω , α1,1 = ω , α2,1 = ω 2, α1,2 = 1, α2,2 = 1} −1
3

{α1,0 = 1, α0,1 = ω , α2,0 = ω , α0,2 = ω , α1,1 = ω 2, α2,1 = ω , α1,2 = 1, α2,2 = 1} −1
3

{α1,0 = ω, α0,1 = ω , α2,0 = 1 , α0,2 = 1 , α1,1 = ω 2, α2,1 = ω , α1,2 = ω, α2,2 = 1 } −1
3

Factors into (1 + ωui + u2i )(1 + ωvi + v2i )

{α1,0 = ω 2, α0,1 = 1, α2,0 = 1, α0,2 = ω , α1,1 = ω , α2,1 = ω , α1,2 = ω , α2,2 = 1} −1
3

{α1,0 = ω , α0,1 = 1, α2,0 = ω , α0,2 = ω , α1,1 = ω 2, α2,1 = 1, α1,2 = ω , α2,2 = 1} −1
3

{α1,0 = 1, α0,1 = ω , α2,0 = ω 2, α0,2 = ω , α1,1 = ω , α2,1 = 1, α1,2 = ω , α2,2 = 1} −1
3

Table A.8: Unitary solutions to Ri with relations given byM7

Unitary Ri solutions scalar to
forM8 unitarize

{α1,0 = 0, α0,1 = ω , α2,0 = 0, α0,2 = 1, α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0} i√
3

{α1,0 = 0, α0,1 = ω , α2,0 = 0, α0,2 = ω , α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0} − i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = 1, α2,2 = 0} i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = ω , α2,2 = 0} − i√
3

Table A.9: Unitary solutions to Ri with relations given byM8
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Unitary Ri solutions scalar to
forM10 unitarize

{α1,0 = ω , α0,1 = 0, α2,0 = 1, α0,2 = 0, α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0} i√
3

{α1,0 = ω , α0,1 = 0, α2,0 = ω , α0,2 = 0, α1,1 = 0, α2,1 = 0, α1,2 = 0, α2,2 = 0} − i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = 1, α2,2 = 0} i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = 0, α2,1 = ω , α1,2 = ω , α2,2 = 0} − i√
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = ω , α2,1 = 0, α1,2 = 0, α2,2 = 1, ω = ω } i√
3

{α1,0 = ω 2, α0,1 = 1, α2,0 = ω , α0,2 = 1, α1,1 = ω , α2,1 = ω 2, α1,2 = 1, α2,2 = 1} 1
3

{α1,0 = ω 2, α0,1 = ω , α2,0 = ω 2, α0,2 = ω , α1,1 = 1, α2,1 = 1, α1,2 = 1, α2,2 = 1} 1
3

{α1,0 = ω, α0,1 = ω , α2,0 = 1, α0,2 = 1 , α1,1 = ω 2, α2,1 = ω, α1,2 = ω, α2,2 = 1} −1
3

Factors to (1 + ωui + u2i )(1 + ωvi + v2i )

{α1,0 = 1, α0,1 = ω , α2,0 = ω 2, α0,2 = ω , α1,1 = ω , α2,1 = 1, α1,2 = ω , α2,2 = 1} −1
3

{α1,0 = 1, α0,1 = 1, α2,0 = ω 2, α0,2 = ω , α1,1 = 1, α2,1 = ω 2, α1,2 = ω , α2,2 = 1} 1
3

{α1,0 = 1, α0,1 = ω , α2,0 = 1, α0,2 = ω 2, α1,1 = ω 2, α2,1 = 1, α1,2 = ω , α2,2 = 1} 1
3

{α1,0 = 0, α0,1 = 0, α2,0 = 0, α0,2 = 0, α1,1 = ω , α2,1 = 0, α1,2 = 0, α2,2 = ω} − i√
3

Table A.10: Unitary solutions to Ri with relations given byM10
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