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ABSTRACT

Theoretical models are constructed for various nonlocal nonlinear optical processes in graphene.

Specifically, difference frequency generation of surface plasmon-polaritons in Landau quantized

graphene; the generation of entangled surface plasmon-polariton-photon states and laser-driven

paramatric instability via stimulated parametric down-converstion are explored. Difference gener-

ation and parametric down-conversion are three-wave mixing processes that are mediated by the

nonlocal nonlinear (second-order) in-plane susceptibility.

Systematic theoretical studies of both the bulk and surface electromagnetic eigenmodes, or po-

laritons, in Weyl semimetals are developed. The tensors of the bulk and surface conductivity are

presented. Information about the electronic structure of Weyl semimetals, such as position and

separation of Weyl nodes, Fermi energy, and Fermi arc surface states, can be extracted from mea-

surements of the dispersion, transmission, reflection, and polarization of electromagnetic waves.
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1. INTRODUCTION

Theoretical models for various nonlocal nonlinear optical processes in graphene with a focus

on plasmonics are constructed. The study of difference frequency generation (DFG) of surface

plasmon-polariton (SPP) in Landau quantized graphene is presented. The graphene monolayer

serves as a nonlinear optical component of a monolithic photonic chip. It interacts with two input

pump fields; through the process of nonlinear frequency mixing, DFG is achieved. It will be shown

that surface plasmon-polaritons are generated at the difference frequency of the input pump beams.

Laser-driven parametric instability and generation of photon-plasmon entangled state in graphene

are explored. The in-plane second-order nonlinear response of graphene to an obliquely incident

strong pump field gives rise to parametric instability. The pump field, by way of parametric down-

conversion, decays into two lower frequency fields: a photon and surface plasmon-polariton. The

generated modes are entangled. A theoretical model is developed to explore the optics of Weyl

semimetals (with broken time-reversal symmetry). Tensors of the bulk and surface conductivities

are derived. Bulk and surface electromagnetic eigenmodes are investigated. Measurements of the

dispersion, transmission, reflection, and polarization of electromagnetic waves serve as a diagnos-

tic tool for the electronic structure of Weyl semimetals (such as position and separation of Weyl

nodes, Fermi energy, and Fermi arc surface states).

1.1 Tools of the Trade

The topics addressed in this section serve as a prerequisite for a good portion of this disser-

tation. Of particular utility, is the von Neumann equation which is used to find the elements of

the density matrix, and the Kubo-Greenwood formula for conductivity. In addition, a short intro-

duction to three-wave mixing processes with a focus on difference frequency generation (DFG) is

presented. My derivations for the density matrix equation and the three-wave mixing process will
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follow Boyd’s [1].

1.1.1 Density Matrix Equation

The density matrix formulation is used when the exact state of a quantum mechanical system

is not known. A system may start out in a known state but events, such as collisions, may modify

the initial state. The lack of knowledge regarding the exact state of the system is taken into account

by the density matrix formulation. Specifically, a classical probability p(s) is introduced to find

the probability of the system being in a state s. For a system in a state s with corresponding wave

function ψs(r, t) the wave function can be expanded in terms of the energy eigenfunctions un(r)

ψs(r, t) =
∑
n

csn(t)un(r). (1.1)

The Hamiltonian considered in this section will be of the form

H = H0 +H int(t) (1.2)

where

H0un(r) = Enun(r), (1.3)

and En is the energy value of the n-th eigenstate un. The expectation value of an operator O is

〈O〉 =

∫
ψ∗s(r, t)Oψs(r, t) d

3r =
∑
m,n

cs∗m(t)csn(t)

∫
u∗m(r)Oun(r) d3r (1.4)

〈O〉 =
∑
m,n

ρnmOmn = tr(ρO). (1.5)
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Here ρnm = cs∗m(t)csn(t) is the density matrix; clearly, one knows that the system is in state s. If the

state of the system is modified such that it is not known exactly then the expectation value 〈O〉 is

〈O〉 =
∑
s

∑
m,n

p(s)cs∗m(t)csn(t)

∫
u∗m(r)Oun(r) d3r (1.6)

〈O〉 =
∑
m,n

ρnmOmn = tr(ρO). (1.7)

Here the density matrix is given by

ρnm =
∑
s

p(s)cs∗m(t)csn(t). (1.8)

The time-evolution of the density matrix is

ρ̇nm =
∑
s

[(∂tp(s))c
s∗
mc

s
n + p(s)(∂tc

s∗
m)csn + p(s)cs∗m(∂tc

s
n)] (1.9)

where ∂tcs∗m and ∂tcsn can be found using Schrödinger’s equation

i~∂tψs = Hψs =⇒ i~∂t
∑
n

csn(t)un(r) = H
∑
n

csn(t)un(r) (1.10)

=⇒ i~∂tcsm(t) =
∑
n

Hmnc
s
n(t). (1.11)

The orthonormality of the energy eigenstates was used, i.e.

∫
u∗m(r)un(r) d3r = δmn.

Using Eq. (1.11), and the fact that the Hamiltonian is Hermitian (a requirement for real observ-

ables) Eq. (1.9) becomes

ρ̇nm = − i
~

[H, ρ]nm − γnm(ρnm − ρ(eq)
nm ) (1.12)
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where the term
∑

s ∂tp(s)c
s∗
mcn is accounted for (in the simplest way) through the phenomeno-

logical damping term −γnm(ρnm − ρ(eq)
nm ). γnm is the phenomenological decay rate at which ρnm

relaxes to its equilibrium value ρ(eq)
nm . Note that γnm = γmn. The calculation of γnm is far from

trivial since γnm includes impurity and disorder scattering, electron-phonon scattering, electron-

electron scattering, etc. Further complications arise when the pump fields create a high number of

nonequilibrium carriers. In this case, one would need to incorporate scattering rates for nonequi-

librium carriers directly into the density matrix equations coupled with Maxwell’s equations for all

interacting fields. However, I will assume that the Rabi frequencies of the pump fields are smaller

than the carrier relaxation rate, so that the optical population transfer is not important. I will also

assume that scattering from impurity is the dominant mechanism for relaxation (especially for pris-

tine graphene or graphene encapsulated by hexagonal boron nitride). Note ρ(eq)
nm = 0 for n 6= m,

since the incoherent process of thermal excitation cannot produce any coherent superpositions of

atomic states.

The density matrix equation can be solved perturbatively, wherein

ρnm →
∑
N=0

λNρ(N)
nm (1.13)

H int → λH int. (1.14)

λ is a parameter that varies between zero and one. When Eqs. (1.13) and (1.14) are substituted into

in Eq. (1.12) each power of λ holds separately, resulting in the set of equations

ρ̇(N)
nm = −i(ωnm − iγnm)ρ(N)

nm −
i

~
[
H int, ρ(N−1)

]
nm

(1.15)

where ~ωnm = En − Em. Eqs. (1.15) can be integrated directly. Before doing so, note that the

zeroth-order term describes the free evolution of the system, where no perturbation is present

(H int = 0). For example, if H int(t) corresponds to perturbation by an optical field, then the

zeroth-order term corresponds to the density matrix element in the absence of the external field.
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The steady state solution of the zeroth-order density matrix equation results in ρ(0)
nm = ρ

(eq)
nm . Keep

in mind that ρ(eq)
nm has no off-diagonal terms. Equipped with the zeroth-order term enables one to

proceed in finding the N -th order term. Suppose

ρ(N)
nm (t) = S(N)

nm (t)e−i(ωnm−iγnm)t (1.16)

then substituting Eq. (1.16) into Eq. (1.15) gives

Ṡ(N)
nm (t) = − i

~
[
H int, ρ(N−1)

]
nm
ei(ωnm−iγnm)t (1.17)

=⇒ S(N)
nm (t) = − i

~

∫ t

−∞

[
H int, ρ(N−1)

]
nm
ei(ωnm−iγnm)t′ dt′. (1.18)

Upon inserting Eq. (1.18) into Eq. (1.16) one obtains an iterative solution for the density matrix

ρ(N)
nm = − i

~

∫ t

−∞

[
H int, ρ(N−1)

]
nm
ei(ωnm−iγnm)(t′−t) dt′. (1.19)

By an iterative solution, I mean that first one would solve for ρ(1)
nm in terms of ρ(0)

nm, then solve for

ρ
(2)
nm in terms of ρ(1)

nm, and so on until the N -term is obtained.

1.1.2 Kubo-Greenwood Conductivity

Below I will derive the Kubo-Greenwood formula for conductivity in the semi-classical ap-

proach. Semi-classical, meaning the dielectric medium is quantized while the incident optical field

is assumed to be classical. An alternative derivation can be found in Marder’s Condensed Matter

Physics [2] or in Kubo’s paper [3].

I will begin by introducing the expectation value of the current density operator

〈j〉 = tr(ρj) =
∑
nm

ρnm

(
− e
V
v
)
mn

= − e
V

∑
nm

ρnmvmn (1.20)

where V is the volume vmn is the matrix element of the velocity operator and ρnm is the element

of the density matrix.
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The linear optical conductivity will be obtained using ρnm → ρ
(1)
nm. ρ

(1)
nm will be found by

making use of Eq. (1.19). For interaction of a dielectric with an optical field the Hamiltonian is

given by H = H0 +H int(t) where

H int(t) = −d · Ẽ(t). (1.21)

d is the electric dipole moment operator (induced in the atom by interaction with an external field)

given by

d = −er. (1.22)

r is the position operator. Ẽ(t) is the electric field of the incident electromagnetic (EM) wave

Ẽ(t) = Re[ERe
−iωt] = Re[Eeik·r−iωt]. (1.23)

Note that Ẽ(t) is a classical field and not an operator. In the electric-dipole approximation, which

is used when the wavelength of the incident optical field is much longer than the lattice spacing of

the medium, eik·r → 1. This means that the spatial dispersion of the field is neglected. The field is

now Ẽ(t)→ Re[Ee−iωt]. Note that Re[Ee−iωt] = Ee−iωt + c.c. and E = (1/2)E0.

I will now proceed to solve for the density matrix element ρ(1)
nm using Eq. (1.19) and the inter-

action Hamiltonian given by Eq. (1.21) in the electric-dipole approximation

ρ(1)
nm = − i

~

∫ t

−∞

[
−d · (Ee−iωt′ + c.c.), ρ(0)

]
nm
ei(ωnm−iγnm)(t′−t) dt′. (1.24)

Since Ee−iωt′ + c.c. is not an operator it can be taken out of the commutator leaving

[d, ρ(0)]nm =
∑
l

(
dnlρ

(0)
lm − ρ

(0)
nl dlm

)
. (1.25)

As explained in Sec. 1.1.1, ρ(0) = ρ(eq) and ρ(eq) only has diagonal elements. Also, the matrix

element of the dipole moment is off-diagonal for states with definite parity; that is 〈n|r|n〉 = 0
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and 〈m|r|m〉 = 0. The operation of parity takes r → −r, which is spatial inversion. So the

parity of a function tells if it is odd or even where an even function is defined as f(−r) = f(r)

and an odd function as f(−r) = −f(r). I will give a not-so-rigorous argument as to why the

diagonal matrix elements of the dipole moment is zero. Consider the matrix element 〈n|r|n〉 = 0,

while examining whether each term involved is odd or even under spatial inversion. This procedure

gives parity(n)×parity(r)×parity(n) = odd. Here, parity(n) means parity of the state |n〉 (or its

wavefunction 〈r|n〉). Since parity(n)×parity(n) = even (for parity(n) odd or even and assuming

definite parity) and parity(r) = odd, parity(n)×parity(r)×parity(n) = even×odd = odd. In

evaluating 〈n|r|n〉 or 〈m|r|m〉, one integrates an odd function over symmetric limits. Such an

integral is equal to zero. Using the arguments presented in this paragraph, the commutator becomes

[d, ρ(0)]nm =
(
ρ(0)
mm − ρ(0)

nn

)
dnm. (1.26)

The density matrix element is then

ρ(1)
nm =

i

~
(
ρ(0)
mm − ρ(0)

nn

)
dnm ·Eei(ωnm−iγnm)t

∫ t

−∞
(e−iωt

′
+ c.c.)ei(ωnm−iγnm)t′ dt′

ρ(1)
nm =

i

~
(
ρ(0)
mm − ρ(0)

nn

)
dnm ·E

(
e−iωt

i (ωnm − ω − iγnm)
+

eiωt

i (ωnm + ω − iγnm)

)
. (1.27)

In the rotating wave approximation the term ∝ ωnm + ω is dropped, leaving

ρ(1)
nm(t) =

(
ρ

(0)
mm − ρ(0)

nn

)
dnm ·Ee−iωt

~ (ωnm − ω − iγnm)
. (1.28)

The rotating wave approximation will be upheld throughout the dissertation unless the contrary is

explicitly stated.
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One can express rnm in terms of vnm using the Heisenberg equation

i~ṙnm = [r, H]nm =
[
r, H0 +H int

]
nm

=
[
r, H0

]
nm

+
[
r,−d · Ẽ

]
nm︸ ︷︷ ︸

=0

(1.29)

i~ṙnm = i~vnm = 〈n|
(
rH0 −H0r

)
|m〉 = (Em − En)rnm (1.30)

=⇒ rnm =
i~

Em − En
vnm. (1.31)

Observe that d = −er =⇒ dnm = (−i~evnm)/(Em − En) which can be used to replace dnm in

Eq. (1.28)

ρ(1)
nm(t) = i~e

ρ
(0)
nn − ρ(0)

mm

Em − En
vnm ·Ee−iωt

~ (ωnm − ω − iγnm)
. (1.32)

The expectation value of the current density given by Eq. (1.20) for ρ(1)
nm given by Eq. (1.32) is

〈j〉 = −i~e
2

V

∑
m,n

ρ
(0)
nn − ρ(0)

mm

Em − En
vmnvnm ·Ee−iωt

~ (ωnm − ω − iγnm)
. (1.33)

The conductivity tensor can be extracted from Eq. (1.33) using j(ω) = σ(ω)E(ω)

σrl(ω) = −i~e
2

V

∑
m,n

ρ
(0)
nn − ρ(0)

mm

Em − En
vrmnv

l
nm

~ (ωnm − ω − iγnm)
. (1.34)

One can extract the linear susceptibility from the linear conductivity by using the the continuity

equation. Assuming harmonic dependence ∝ eik·r−iωt for relevant quantities, the conservation of

charge

− ∂tρ = ∇ · j =⇒ iωρ = ik · j (1.35)

along with ρ = −∇ · P = −ik · P , P = χE and j = σE gives the relationship between the

linear conductivity and susceptibility

χrl(ω) = iω−1σrl(ω). (1.36)
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1.1.3 Three-Wave Mixing: DFG

Strong pump fields incident upon a material with nonlinear response results in new frequency

components in the polarization of the medium [1]. The new frequency components in the polar-

ization act as a driving, or source, term in the wave equation. They drive (or act as sources of) new

frequency components of EM fields. [1].

From Maxwell’s equations:

∇(∇ · Ẽ)−∇2Ẽ − 1

c2
∂2
t D̃ = 0, (1.37)

where

D̃ = Ẽ + 4πP̃ . (1.38)

Nonlinear terms are included in P̃ by expanding in powers of the electric field

P̃i =
∑
j

χ
(1)
ij Ẽj +

∑
j,k

χ
(2)
ijkẼjẼk + . . . (1.39)

P̃ = P̃ (1) + P̃ (2) + . . . , (1.40)

for the series to converge χ(1) > χ(2) > . . .. The wave equation, Eq. (1.37), can be written in a

form where it is obvious that the nonlinear polarization is a source term

∇2Ẽ − 1

c2
∂2
t D̃

(1) =
4π

c2
∂2
t P̃

(NL) (1.41)

where D̃ = D̃(1) + 4πP̃ (NL), D̃(1) = (1 + 4πχ(1))Ẽ ≡ ε(1)Ẽ, P̃ (NL)
i =

∑
j,k χ

(2)
ijkẼjẼk + . . .,

and ∇(∇ · Ẽ) = 0 was used. Note that one can expand Ẽ, D̃ P̃ in terms of their frequency
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components. Let F̃ represent Ẽ, D̃, P̃ then

F̃ (r, t) =
∑
n

F̃n(r, t), (1.42)

F̃n(r, t) = Re[Fn(r)e−iωnt] =
1

2
Fn(r)e−iωnt + c.c., (1.43)

and Fn(r) = (Fox, Foy, Foz)e
iqn·r. (1.44)

n runs over positive frequency terms only. When the relations Eqs. (1.42), (1.43) and (1.44) are

taken into consideration, Eq. (1.41) will hold for each frequency component, i.e.

∇2Ẽn −
ε(1)(ωn)

c2
∂2
t Ẽn =

4π

c2
∂2
t P̃

(NL)
n . (1.45)

In this dissertation I only consider three-wave mixing processes, in particular, DFG and para-

metric down-conversion (the latter will not be addressed in this section.) Therefore, I only need

to expand P̃ to second-order in Ẽ, and the nonlinear polarization will be of second-order only.

Suppose a two-color optical field

Ẽ =
1

2

[
E1e

−iω1t +E2e
iω2t + c.c.

]
(1.46)

is incident upon medium that possesses a non-zero second-order response. The nonlinear polariza-

tion is given by

P̃ (NL) = χ(2)ẼẼ =⇒ P̃
(NL)
i =

∑
j,k

χ
(2)
ijkẼjẼk. (1.47)

There are 16 terms in the product ẼjẼk in Eq. (1.47) for Ẽ given by Eq. (1.46). However, the num-

ber of terms can be reduced by invoking intrinsic permutation symmetry (see pg. 35 of [1]), that is,

the second-order susceptibility χ(2)
ijk remains invariant under interchange of the indices j, k. This

argument is made on the grounds that, physically, it does not matter which field (Ej or Ek) comes

first so χ(2)
ijkEjEk = χ

(2)
ikjEkEj . If the second-order susceptibility is invariant under interchange of
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j and k then so is P̃ (NL)
i . Thus,

P̃
(NL)
i =

1

4

∑
j,k

(χ
(2)
ijk(ω3;ω1, ω1)E1jE1ke

−2iω1t + χ
(2)
ijk(ω3;−ω1,−ω1)E∗1jE

∗
1ke

2iω1t

+ χ
(2)
ijk(ω3;ω2, ω2)E2jE2ke

−2iω2t + χ
(2)
ijk(ω3;−ω2,−ω2)E∗2jE

∗
2ke

2iω2t

+ 2χ
(2)
ijk(ω3;ω1, ω2)E1jE2ke

−i(ω1+ω2)t + 2χ
(2)
ijk(ω3;−ω1,−ω2)E∗1jE

∗
2ke

+i(ω1+ω2)t

+ 2χ
(2)
ijk(ω3;ω1,−ω2)E1jE

∗
2ke
−i(ω1−ω2)t + 2χ

(2)
ijk(ω3;−ω1, ω2)E∗1jE2ke

i(ω1−ω2)t

+ 2χ
(2)
ijk(ω3;ω1,−ω1)E1jE

∗
1j + 2χ

(2)
ijk(ω3;ω2,−ω2)E2jE

∗
2j). (1.48)

The frequency ω3 depends on the frequencies ω1 and ω2, for example, ωc in χ(2)
ijk(ωc;ωa, ωb) is

defined as ωc = sgn(a)ωa + sgn(b)ωb. sgn(a) and sgn(b) takes values ±1 depending on the sign

of frequency ωa,b. Furthermore, since the polarization is an observable, it must be purely real (see

Eq. (1.43)), so terms such as χ(2)
ijk(ωc = −ωa− ωb;−ωa− ωb) = χ

(2)∗
ijk (ωc = ωa + ωb;ωa + ωb). By

Eqs. (1.42) and (1.43) P̃ (NL)
i can be expressed as

P̃
(NL)
i =

1

2

∑
n

Pi(ωn)e−iωnt. (1.49)

where I used a more compact notation for Eqs. (1.42) and (1.43). This is achieved by P̃in →

P̃i(ωn), and include both positive and negative frequency values for n. Note ω−n = −ωn and

Pin(ω−n) = Pin(−ωn) = P ∗in(ωn). Comparing Eqs. (1.48) and (1.49) one obtains the different
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frequency components of a three-wave mixing processes:

SHG: Pi(ω3 = 2ω1,2) =
1

2

∑
j,k

χ
(2)
ijk(ω3;ω1,2, ω1,2)E(1,2)jE(1,2)k (1.50)

SFG: Pi(ω3 = ω1 + ω2) =
∑
j,k

χ
(2)
ijk(ω3;ω1, ω2)E1jE2k (1.51)

DFG: Pi(ω3 = ω1 − ω2) =
∑
j,k

χ
(2)
ijk(ω3;ω1,−ω2)E1jE

∗
2k (1.52)

OR: Pi(ω3 = 0) =
∑
j,k

[
χ

(2)
ijk(ω3;ω1,−ω1)E1jE

∗
1k + χ

(2)
ijk(ω3;ω2,−ω2)E2jE

∗
2k

]
. (1.53)

SHG is second-harmonic generation. SFG is sum frequency generation. DFG is difference fre-

quency generation. OR is optical rectification. There are also complex conjugate terms corre-

sponding to −ω3 to the equations above (except for the last one).

Even though the three-wave mixing processes of SHG, SFG, DFG and OR are possible, they

do not occur simultaneously in an efficient way. Typically, one needs to satisfy the phase matching

condition to achieve efficient three-wave mixing at a particular frequency. I will examine the phase

matching condition for DFG. For simplicity I will assume that two monochromatic, collimated,

continuous pumps interact with a lossless nonlinear medium. The frequencies of the input pump

beams are ω1 and ω2. The pump beams are assumed to be normally incident upon the medium. In

addition, both pump beams are assumed to be travelling in the positive x-direction and the length

of the medium in this direction is L. I will also assume that the amplitudes A1 and A2 of the pump

fields are undepelted as the pumps travel the length L; therefore, they can be taken as constants.

Since Eq. (1.45) holds for each frequency component of the field then it must hold at a particular

frequency, say ω3. The homogeneous (source term is absent) solution of Eq. (1.45) is

Ẽ3(x, t) =
1

2
A3e

ik3x−iω3t + c.c. (1.54)

where

k3 =
n3ω3

c
, n2

3 = ε(1)(ω3), (1.55)
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and A3 is constant. Eq. (1.45) is inhomogeneous (has a source or driving term). Here source term

is taken as

P̃3(x, t) = P3e
−iω3t + c.c. (1.56)

where P3 → P (ω3) and P (ω3) is given in Eqs. (1.50)-(1.53). For DFG P (ω3) = P (ω1 − ω2) =

χ(2)′(ω1 − ω2)E1E
∗
2 = χ(2)′(ω1 − ω2)A1A

∗
2e
i(k1−k2)x, and χ(2)′ is defined for some polarization

where one may write it as a scalar. One can take Eq. (1.54) as a trial solution for Eq. (1.45) if A3

is no longer constant but A3 → A3(x). A1 and A2 should also be functions of x but I assume that

only a small percent of the incident fields are converted to the DFG field. Then I can treat A1,2 as

constants. With these considerations Eq. (1.45) becomes

[
d2A3

dx2
+ 2ik3

dA3

dx
− k2

3A3 +
ε(1)(ω3)ω2

3

c2
A3

]
eik3x−iω3t + c.c.

= −4πω2
3χ

(2)′

c2
A1A

∗
2e
i(k1−k2)x−iω3t + c.c. (1.57)

The complex conjugate terms can be dropped and the equality will still hold. Assuming

∣∣∣∣d2A3

dx2

∣∣∣∣� ∣∣∣∣k3
dA3

dx

∣∣∣∣ , (1.58)

leads to
dA3

dx
=
i2πω2

3χ
(2)′

k3c2
A1A

∗
2e
i∆kx (1.59)

where the the relation given in Eq. (1.58) is called the slowly-varying amplitude approximation

and

∆k ≡ k1 − k2 − k3 (1.60)

is called the phase mismatch. The phase matching condition is defined as ∆k = 0. Note that

different wave-mixing processes will have a different ∆k, for example, for SHG ∆k = k1+k2−k3.

I will now show that DFG is most efficient when the phase matching condition, ∆k = 0, is

13



satisfied. Assuming A1,2 are constants, the solution to Eq. (1.59) when ∆k = 0 is

A3(x) =
i2πω2

3χ
(2)′

k3c2
A1A

∗
2x (1.61)

with boundary condition A3(0) = 0. One sees that inside the medium, the amplitude of the DFG

field varies linearly with x. Because the intensity is proportional to the modulus of the amplitude

squared (I ∝ |A3|2), it varies quadratically with x. Simply put, when the conversion of the input

pump fields to DFG is low, the intensity of the DFG field grows quadratically inside the medium.

When the phase matching condition is not satisfied, i.e. when ∆k 6= 0 the DFG field intensity

is less than when ∆k = 0. To see this one solves Eq. (1.59) while keeping in mind that the sample

is in the range 0 ≤ x ≤ L

A3(x) =
i2πω2

3χ
(2)′

k3c2
A1A

∗
2

∫ L

0

ei∆kx dx

=⇒ A3(x) =
i2πω2

3χ
(2)′

k3c2
A1A

∗
2

[
ei∆kL − 1

i∆k

]
(1.62)

=⇒ I ∝ L2

[
sin(∆kL/2)

∆kL/2

]2

. (1.63)

The function
sin(∆kL/2)

∆kL/2
is 1 when ∆k = 0 and < 1 otherwise. Clearly, the conversion of the

input pump fields to the DFG field is optimized when the ∆k = 0, i.e. k3 = k1 − k2.

If I now suppose the pump field of amplitude A1 is strong and the pump field of amplitude A2

is significantly weaker, then A1 can be treated as undepleted and A2 can be treated in the slowly-

varying amplitude approximation. With these conditions, the DFG process now has two coupled

equations: Eq. (1.59) and
dA2

dx
=
i2πω2

2χ
(2)′

k2c2
A1A

∗
3e
i∆kx. (1.64)

If perfect phase matching is assumed, taking the derivative of Eq. (1.59) with respect to x leads to
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an expression that depends on the complex conjugate of Eq. (1.64), giving

d2A3

dx2
=

4π2ω2
2ω

2
3|χ(2)′|2

k2k3c4
|A1|2A3. (1.65)

Eq. (1.65) has a solution

A3(x) = a cosh(gx) + b sinh(gx), (1.66)

where

g2 ≡ 4π2ω2
2ω

2
3|χ(2)′|2

k2k3c4
|A1|2 (1.67)

a, b depends on the boundary conditions. In particular, A3(x = 0) = 0 =⇒ a = 0 so A3 =

b sinh(gx). b can be found by solving Eq. (1.59), assuming ∆k = 0, and usingA1(x = 0) = A1(0),

where A1(0) is arbitrary. One finds that b = iA∗2(0)
√
k2ω2

3/k3ω2
2(A1/|A1|) thus,

A2(x) = A2(0) cosh(gx), and

A3(x) = i

√
k2ω2

3

k3ω2
2

A1

|A1|
A∗2(0) sinh(gx). (1.68)

For gx� 1, field amplitudes |A2,3| experience exponential growth.

1.2 Graphene

Graphite, the dark grey substance commonly found in pencils, is an allotrope of carbon. Graph-

ite is composed of weakly bonded layers that are as thick as a carbon atom. The bonds between

layers are so weak that just a bit of pressure, for example by pressing pencil to paper, is enough

to break the interlayer bond and exfoliate graphite onto the paper. In contrast, the bonds between

carbon atoms within each sheet are relatively strong. Since the thickness of a sheet is on the atomic

scale (roughly the size of a carbon atom) it is considered two-dimensional (2D). The 2D sheets are

called graphene.

An isolated carbon atom has 6 electrons which are configurated as 1s22s22p2. When carbon

atoms form bonds with each other, their electronic wavefunctions overlap. In the case of graphene,
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(a) σ bonds among sp2 orbitals represented
by bright green ellipses. pz orbitals are
represented by dark blue ellipses; π bonds
among these orbitals are not shown.

  

(b) The three sp2-hybridized orbitals are
coplanar and 120 o apart. The 2pz orbitals
are orthogonal to the sp2 orbitals.

Figure 1.1: Sketch of carbon-carbon bonding in graphene. Adapted from [5].

enough energy is gained in the bonding process to promote an electron from the 2s orbital to the 2p

orbital - consult [4] for further details. This leads to a hybridization of the 2s and 2p states, dubbed

sp2-hybridization. Specifically, three of the four electrons in the 2s2 and 2p2 states participate in

sp2-hybridization. The remaining electron is in an unhybridized 2pz state.

The unhybridized 2pz electrons form π bonds whereas, the hybridized electrons form σ bonds,

see Fig. 1.1a. The σ bonded electrons lie in the same plane and are 120 o apart, leading to

graphene’s trigonal planar structure [5], see Fig. 1.1b and its honeycomb lattice. However, the

honeycomb lattice is not a Bravais lattice. In fact, graphene has two ineqivalent traingular Bravais

sublattices denoted by A and B, see Fig. 1.2a.

Graphene was first considered theoretically by Wallace [6] in 1947. But it did not gain promi-

nence until it was isolated by Novoselov and Geim [7] in 2004. Wallace studied nearest-neighbor

(nn) hopping among pz electrons in the tight-binding approximation and showed that the energy

dispersion is linear. Below I will use the same considerations as Wallace since the properties of

interest stem from the low-energy excitations of the pz electrons. In addition, I will follow the
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(a) Both yellow and blue dots are carbon
atoms. They are colored differently to indi-
cate sublattices. Nearest-neighbor distance
a = 0.142 nm, a1,2 are basis vectors for
sublattice A.

  

(b) Nearest-neighbor distances given by δ.
Sublattice A has nearest-neighbor on sub-
latticeB and vice-versa. Adapted from [5].

Figure 1.2: Honeycomb lattice in graphene.

derivations given in [8, 9].

1.2.1 Tight-Binding Model

In Sec. 1.2 it was mentioned that the honeycomb lattice is not a Bravais. However, graphene’s

honeycomb lattice can be viewed as a triangular lattice with a two atom basis. In this case, the unit

cell has two atoms. A trial wavefunction can be written as [8]

Ψk(r) = akψ
(A)
k (r) + bkψ

(B)
k (r), (1.69)

where ak and bk are complex functions of the Bloch wavevector k. The Bloch wavevector gives

the quasimomentum p = ~k. ψ(j)
k (r) are Bloch functions given by

ψ
(j)
k (r) =

1√
N

∑
Rl

eik·Rlφ(j)(r + dj −Rl). (1.70)

N is the number of unit cells. The index j take values A or B (which labels the sublattices).

φ(j)(r + dj −Rl) are the 2pz orbitals and are eigenstates of a bound state atomic Hamiltonian

Haφ(j)(r + dj −Rl) = E (j)φ(j)(r + dj −Rl), (1.71)
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where E (j) are the (energy) eigenvalues, sometimes called eigenenergy, of the j orbital. Ha is given

by

Ha = − ~2

2m
∇2 + V (r + dj −Rl). (1.72)

Rl = mja1 + nja2 is a Bravais lattice vector and nj, mj are integers; a1,2 are primitive vectors.

They can be found by examining Fig. 1.2a which reveals that the y component of a1 is a1y =

a sin 60 = (
√

3/2)a and the x component is a1x = a+ a cos 60 = (3/2)a. Thus,

a1 =
a

2
(3,
√

3), (1.73)

a2 =
a

2
(3,−

√
3). (1.74)

In Eq. (1.70) dj is the vector which connects the sites of the underlying Bravais lattice with the site

of the j atom within the unit cell. Following [8], I will choose sublattice A to coincide with the

Bravais lattice, thus dA = (0, 0) and dB = dAB = δ3 = (−a, 0), see Fig. 1.2b. For definiteness, I

have chosen the origin to coincide with the point labeled A in Fig. 1.2b.

The trial wavefunction given in Eq. (1.69) satisfies the eigenvalue equation

HΨk(r) = EkΨk(r), (1.75)

where the Hamiltonian is

H = − ~2

2m
∇2 +

N∑
Rl

V (r + dj −Rl). (1.76)

Using Eq. (1.72) one can write Eq. (1.76) as

H = Ha + ∆V, (1.77)

∆V =
N∑

Rm 6=Rl

V (r + dj −Rm), (1.78)
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where ∆V given in Eq. (1.78) is the contribution to the potential energy from all other ions at

sites Rm 6=l. The potential energy at Rm=l is accounted for in Ha. The expectation value of the

Hamiltonian H is:

〈Ψk(r)|H|Ψk(r)〉 = Ek 〈Ψk(r)|Ψk(r)〉 , (1.79)

which can be rewritten as

(
a∗k b∗k

)H(AA)
k H(AB)

k

H(BA)
k H(BB)

k


ak
bk

 = Ek

(
a∗k b∗k

)S(AA)
k S(AB)

k

S(BA)
k S(BB)

k


ak
bk

; (1.80)

whereH(ij)
k and S(ij)

k are the elements of Hermitian matricesHk and Sk. The matrix elements are:

H(ij)
k =

〈
ψ

(i)∗
k (r)

∣∣∣H∣∣∣ψ(j)
k (r)

〉
, (1.81)

S(ij)
k =

〈
ψ

(i)∗
k (r)

∣∣∣ψ(j)
k (r)

〉
. (1.82)

Substituting Eq. (1.70) into Eq. (1.81), one finds

H(ij)
k =

1

N

∑
Rm,Rn

eik·(Rn−Rm)

∫
dr φ(i)∗(r + di −Rm)Hφ(j)(r + dj −Rn), (1.83)

let x = r+di−Rm so r = x−di+Rm and r+dj−Rn = x−di+Rm+dj−Rn = x+dij−Rl;

dij = dj − di andRl = Rn −Rm then

H(ij)
k =

∑
Rl

eik·Rl
∫
dxφ(i)∗(x)Hφ(j)(x+ dij −Rl). (1.84)

∑
Rn,Rm

→ N
∑
Rl

was used. Making use of Eq. (1.77) yields
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H(ij)
k =

∑
Rl

eik·Rl
∫
dxφ(i)∗(x)(Ha + ∆V )φ(j)(x+ dij −Rl), (1.85)

H(ij)
k = E (j)S

(ij)
k + t

(ij)
k , (1.86)

where

S
(ij)
k =

∑
Rl

eik·Rl
∫
dxφ(i)∗(x)φ(j)(x+ dij −Rl), (1.87)

t
(ij)
k =

∑
Rl

eik·Rl
∫
dxφ(i)∗∆V φ(j)(x+ dij −Rl). (1.88)

One can write Eq. (1.80) in component form

∑
i, j

c∗i cjH
(ij)
k = Ek

∑
i, j

c∗i cjS
(ij)
k , (1.89)

=⇒ Ek =

∑
i, j c

∗
iH

(ij)
k cj∑

i, j c
∗
iS

(ij)
k cj

, (1.90)

where i, j runs from A to B, cA = ak, and cB = bk.

Using the variational principle, one can minimize the energy with respect to the parameter c∗n

i.e.
∂Ek
∂c∗n

= 0 =
∂

∂c∗n

(∑
i, j c

∗
iH

(ij)
k cj∑

i, j c
∗
iS

(ij)
k cj

)
(1.91)
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=⇒ 0 =
1∑

i, j c
∗
iS

(ij)
k cj

∂

∂c∗n

∑
i, j

c∗iH
(ij)
k cj −

∑
i, j c

∗
iH

(ij)
k cj

(
∑

i, j c
∗
iS

(ij)
k cj)2

∂

∂c∗n

∑
i, j

c∗iS
(ij)
k cj

=⇒ 0 =
∂

∂c∗n

∑
i, j

c∗iH
(ij)
k cj −

Ek
∑

i, j c
∗
iS

(ij)
k cj∑

i, j c
∗
iS

(ij)
k cj

∂

∂c∗n

∑
i, j

c∗iS
(ij)
k cj

=⇒
∑
i, j

δin(H(ij)
k cj − EkS(ij)

k cj) = 0

=⇒
∑
j

(H(ij)
k − EkS(ij)

k )cj = 0. (1.92)

Eq. (1.92) has non-trivial solutions when

det[H(ij)
k − EkS(ij)

k ] = 0. (1.93)

With the help of Eq. (1.86), Eq. (1.93) may be rewritten as

det[t
(ij)
k − (Ek − E (0))S(ij)

k ] = 0. (1.94)

In the last equation E (j) → E (0) since the onsite energy is the same for both sublattices. This term

can be dropped since it corresponds to a constant shift in energy bands [9]. If one neglects the

overlap corrections then S(ij)
k = δij . With these considerations Eq. (1.94) becomes

det[t
(ij)
k − Ekδij] = 0. (1.95)

If only hopping between nearest-neighbors is considered, which is called the nearest-neighbor (nn)

approximation, then the hopping matrix t(ij)k becomes

t
(ij)
k = tf(k). (1.96)
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With the help of Eq. (1.96) the HamiltonianHk can be written as

Hk =

 0 tf(k)

tf ∗(k) 0

 (1.97)

where

t =

∫
φ(A)∗(x)∆V φ(B)(x+ δ3) d2x ≈ −3eV, (1.98)

t is the nn hopping amplitude and f(k) is

f(k) =
∑
Rl∈nn

eik·Rl . (1.99)

The nns are depicted in Fig. 1.2b where one sees that the nn of an electron in sublattice A is

on sublattice B and vice-versa. Therefore, t(ij)k is off-diagonal in the nn approximation (diagonal

terms correspond to next-nearest-neighbor hopping). For a site on sublattice A one can obtain the

equivalent site on sublattice B by the displacement dAB = δ3. The nn vectors can be obtained by

examining Fig. 1.2b:

δ1 =
a

2
(1,
√

3), (1.100)

δ2 =
a

2
(1,−

√
3), (1.101)

δ3 = (−a, 0). (1.102)

One uses the equation δl = dAB +Rl = δ3 +Rl for l = 1, 2, 3 to find the Rl which satisfy the

nn vectors given in Eqs. (1.100), (1.101), (1.102). One finds that δ3 corresponds toRl = R3 = 0,

δ2 corresponds to Rl = R2 = a2, and δ1 corresponds to Rl = R1 = a1. Using these values for

Rl in Eq. (1.99) results in

f(k) = 1 + eik·a1 + eik·a2 . (1.103)
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Eqs. (1.103), and (1.96) are used in solving the secular equation, i.e. Eq. (1.95), for the energy:

∣∣∣∣∣∣∣
−Ek tf(k)

tf ∗(k) −Ek

∣∣∣∣∣∣∣ = 0 (1.104)

=⇒ Eλ(k) = λt|f(k)|. (1.105)

λ = ±1; +1 corresponds to the conduction band while −1 corresponds to the valence band. The

energy is zero when |f(k)| is zero. There may be some wavevector k̃ such that |f(k̃)| = 0. k̃ can

be found by solving:

Re[f(k̃)] = 0 = 1 + cos

(
k̃x3a

2
+
k̃y
√

3a

2

)
+ cos

(
k̃x3a

2
− k̃y

√
3a

2

)
, (1.106)

Im[f(k̃)] = 0 = sin

(
k̃x3a

2
+
k̃y
√

3a

2

)
+ sin

(
k̃x3a

2
− k̃y

√
3a

2

)
. (1.107)

Let α = k̃x3a/2 and β = k̃y
√

3a/2, using cos(α± β) = cos(α) cos(β) ∓ sinα sin(β) and

sin(α± β) = sin(α) cos(β)± sin(β) cos(α), Eqs. (1.106) and (1.107) becomes

1 + 2 cos(α) cos(β) = 0, (1.108)

2 sin(α) cos(β) = 0. (1.109)

Of course, these equations must be satisfied simultaneously. The equations above are satisfied

when

α = 2πn =⇒ k̃x3a

2
= 2πn, cos(β) = −1

2
=⇒ cos

(
k̃y
√

3a

2

)
= −1

2
(1.110)

or α = (2n+ 1)π =⇒ k̃x3a

2
= (2n+ 1)π, cos(β) = +

1

2
=⇒ cos

(
k̃y
√

3a

2

)
= +

1

2
,

(1.111)

where n is an integer. n = 0 gives two solutions k̃ = (0,+4π/(3
√

3a) and k̃′ = (0,−4π/(3
√

3a).
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Figure 1.3: FBZ given by green hexagon. Reciprocal lattice vectors b1 and b1. Corners of the FBZ
given byK andK ′.

(These are not the only solutions.) k̃ and k̃′ correspond to the crystallographic points K and

K ′ which are two corners of the first Brillouin zone (FBZ) in graphene, see Fig. 1.3. There are 6

corners in graphene’s FBZ. But only two (K andK ′) are inequivalent since the rest can be reached

by a reciprocal lattice vector. Using ai · bj = 2πδij one finds reciprocal lattice vectors b1, b2 :

b1 =
2π

3a
(1,
√

3), (1.112)

b2 =
2π

3a
(1,−

√
3). (1.113)

Suppose f ′(k) = eiϑkf(k) then |f ′(k)| = |f(k)|. Since the eigenvalue Eλ ∝ |f(k)| it remains

unchanged if f(k) is multiplied by a phase factor eiϑk provided that the function ϑk is real and

non-singular. Let ϑk = k · δ3 + π/2 then

f(k)→ ei(k·δ3+π/2)f(k) = eiπ/2
3∑
i=1

eik·δi . (1.114)
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Having worked through the problem before hand, I found that the phase factor of eiπ/2 gives the

desired result (shortly, one will see what I mean by “desired result"). The phase factor eik·δ3 allows

one to write f(k) in a more symmetric fashion, leading to an expression which is convenient for

series expansion [8].

The low-energy excitations are found by series expansion of f(k) in the equation above near

K or K ′. I will expand around K so k = K + q. Here |q| is small compared to |K| ∼ 1/a, i.e.

|q|a� 1. Using k = K + q in Eq. (1.114) results in

f(q) = eiπ/2
3∑
j=1

eiK·δjeiq·δj

= eiπ/2
[
ei2π/3eiq·δ1 + e−i2π/3eiq·δ2 + eiq·δ3

]
= eiπ/2

[
ei2π/3(1 + iq · δ1) + e−i2π/3(1 + iq · δ2) + (1 + iq · δ3) +O((|q|a)2)

]
≈ eiπ/2

[
ei2π/3(1 + i

a

2
qx + i

√
3a

2
qy) + e−i2π/3(1 + i

a

2
qx − i

√
3a

2
qy) + (1− iaqx)

]

= eiπ/2
[
1 + 2 cos

(
2π

3

)
+ iaqx

(
cos

(
2π

3

)
− 1

)
−
√

3aqy sin

(
2π

3

)]
= eiπ/2

[
−i3a

2
(qx − iqy)

]
=

3a

2
(qx − iqy). (1.115)

where terms of order 2 and greater contained in O((|q|a)2) were dropped and the phase eiπ/2 was

used to get rid of −i.

In the low-energy limit f(k) is given by Eq. (1.115) and Hamiltonian in Eq. (1.97) is

HKq =
3|t|a

2

 0 qx − iqy

qx + iqy 0

 = ~vFq · σ, (1.116)
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where vF = 3|t|a/(2~) ≈ c/300 is the Fermi velocity, c is the speed of light in vacuum, and

σ = exσx + eyσy (1.117)

σx =

0 1

1 0

, σy =

0 −i

i 0

. (1.118)

σx, y are Pauli matrices, ex, y are unit vectors along the x and y directions, respectively. Eq. (1.116)

resembles the Dirac equation for massless fermions, therefore the low-energy pz electrons in

graphene behave like massless Dirac fermions. However, they move with a velocity vF instead

of c.

One could carry out the expansion around K ′ and obtain a similar expression. According to

[8] the two expansions can be combined into one Hamiltonian

Hς
q = ς~vF (qxσx + qyσy) = ~vF τz ⊗ q · σ, (1.119)

ς = ±1 is the valley pseudospin which is +1 forK and −1 forK ′,

τz =

1 0

0 −1

, τz ⊗ σ =

σ 0

0 −σ

. (1.120)

Basically, there are two copies of the Dirac equation, one corresponding to the K point and the

other corresponding to K ′. Since the electrons near the K and K ′ points are massless Dirac

fermions, these points are sometimes given the moniker Dirac points.

The energy eigenvalue corresponding to the Hamiltonian in Eq. (1.119) is

Eλ
q, ς=± = λ~vF |q|. (1.121)

It is independent of valley pseudospin ς therefore, it has a two-fold valley degeneracy. The eigen-
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states are four-spinors

Ψς=+
q, λ =

1√
2



1

λeiφq

0

0


, Ψς=−

q, λ =
1√
2



0

0

1

−λeiφq


, (1.122)

where φq = arctan(qy/qx).

The eigenstates may equivalently be written as

Ψς=+
q, λ =

1√
2A

eiq·r



λ

eiφq

0

0


, Ψς=−

q, λ =
1√
2A

eiq·r



0

0

−λ

eiφq


, (1.123)

where q = (qx, qy), r = (x, y), and A is the area of the graphene monolayer.

1.2.2 Magnetic Field

In this section I will derive the Hamiltonian, eigenenergy and eigenstates for graphene in a

constant magnetic field. Here and in all the sections (concerning graphene) that follows I will only

deal with the case where the valley pseudospin ς = +1 or equivalently, consider the low-energy

expansion near K. This is justified because the energy is independent of valley pseudospin. My

derivation will follow [8, 10, 11].

Electrons in a lattice subjected to a magnetic fieldB = ∇×A(r) can be described by making

the Peierls substitution, that is, replacing the canonical momentum p by the gauge-invariant kinetic

momentum π

p→ π = p+
e

c
A(r). (1.124)

A(r) is the vector potential, e is the elementary charge, p = ~q is the quasimomentum. The

Peierls substitution is valid as long as the lattice spacing is much smaller than
√
~c/(eB). Under
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p→ π the Hamiltonian in Eq. (1.116) becomes

HB = vF

 0 πx − iπy

πx + iπy 0

 = vFσ · π. (1.125)

It is convenient to express the Hamiltonian in Eq. (1.125) in terms of ladder operators â and â†.

To this end, one first finds the commutator

[πm, πn] = [pm + (e/c)Am, pn + (e/c)An] (1.126)

= [pm, pn]︸ ︷︷ ︸
=0

+(e/c) [pm, An]︸ ︷︷ ︸
(a)

+(e/c) [Am, pn]︸ ︷︷ ︸
(b)

+(e/c)2 [Am, An]︸ ︷︷ ︸
=0

.

Note that

(a). [pm, An] = −i~[∂m, An] = −i~∂mAn, (1.127)

(b). [Am, pn] = +i~[∂n, Am] = +i~∂nAm, (1.128)

so Eq. (1.126) is then

[πm, πn] = −i~e
c
(∂mAn − ∂nAm)

= −i~2 e

~c
∑
m,n

εkmn∂mAn = −i~2 e

~c
(∇×A)k = −i~2 eBk

~c
. (1.129)

εkmn is the Levi-Civita symbol, ∂n = ∂/∂xn; n = 1, 2, 3 and x1 = x, x2 = y, x3 = z. For a

magnetic field along the z-directionB = ezB

[πx, πy] = −i~
2

l2B
, (1.130)

lB =

√
~c
eB

(1.131)
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lB is called the magnetic length. Here the graphene sheet is in the xy-plane.

With the commutator of the conjugate pair πx and πy, one is able to introduce ladder operators

â =
lB√
2~

(πx − iπy), â† =
lB√
2~

(πx + iπy). (1.132)

This definition of the ladder operators ensures

[
â, â†

]
= 1. (1.133)

One can immediately write the Hamiltonian given in Eq. (1.125) in terms of the ladder operators

given in Eq. (1.132)

HB = ~ωc

 0 â

â† 0

, (1.134)

where ωc =
√

2vF/lB. The eigenvalues and eigenstates are found by solving

HBψn = Enψn, ψn =

un
vn

, (1.135)

which gives

~ωcâvn = Enun, and ~ωcâ†un = Envn (1.136)

=⇒ â†âvn =

(
En
~ωc

)2

vn. (1.137)

Note that â†â is the number operator which satisfies:

â†âhn(r) = nhn(r) (1.138)
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where [10]

hn(r) =
(â†)n√
n
h0(r). (1.139)

In addition, the following holds true

âh0(r) = 0, (1.140)

âhn(r) =
√
nhn−1(r), (1.141)

â†hn(r) =
√
n+ 1hn+1(r). (1.142)

If one identifies the spinor component vn as the number state hn(r) and then compare Eqs. (1.137)

and (1.138) one sees that

En = sgn(n)~ωc
√
|n|, (1.143)

where

sgn(n) =


+1 n > 0,

0 n = 0,

−1 n < 0.

sgn(n) = 0 corresponds to the zeroth Landau level, sgn(n) = +1 corresponds to the conduction

band, whereas, sgn(n) = −1 corresponds to the valence band. n = 0,±1,±2, . . . indexes the

Landau levels (LLs) with energy En.

For a constant magnetic field along the z directionB = ezB, there is some freedom in selecting

the vector potential A since, in general, it is not unique. In fact, for Ax = cxyB, Ay = cyxB, and

Az = 0, any real constants cx, cy satisfying cy − cx = 1 will give B = ezB. I will select

cy = 0 =⇒ cx = −1 =⇒ A = −exyB. For this choice of the vector potential, the ladder

operators in Eq. (1.132) becomes

â =
lB√

2

[
−i∂x −

(
∂y +

y

l2B

)]
, â† =

lB√
2

[
−i∂x +

(
∂y −

y

l2B

)]
. (1.144)
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To find the state h0(r) one solves Eq. (1.140) using â given in Eq. (1.144) and separation of

variables h0(r) = X(x)φ(y). Once h0(r) is found one normalizes it and then finds hn(r) using

Eq. (1.139) and â† given in Eq. (1.144). Performing these steps and keeping in mind that un ∝

âvn = âhn =
√
nhn−1 yields the wavefunction [11]

ψnk(r) =
Cn√
L
eikx

sgn(n)i|n|−1φ|n|−1,k(y)

i|n|φ|n|,k(y)

, (1.145)

where

φ|n|,k(y) =
H|n|((y − kl2B)/lB)√

2|n||n|!
√
πlB

exp

[
−1

2

(
y − kl2B
lB

)2
]
, (1.146)

and

Cn =


1 n = 0

1√
2

n 6= 0.

(1.147)

Hn(y) is the Hermite polynomial. The energy eigenstates given in Eq. (1.145) are orthonormal and

forms a complete set in area S (of the graphene monolayer)

〈α′|α〉 = δα′α,
∑
α∈n,k

|α〉 〈α| = 1. (1.148)

Here |α〉 ≡ |n, k〉 (n is the LL index and k is the Bloch wavevector) and ψnk(r) = 〈r|α〉. Since

the energy eigenstates are complete and orthonormal, one is able to expand a function as a linear

combination of the energy eigenstates

Ψ(r) =
∑
α

cαψα(r). (1.149)

I will calculate the Landau level degeneracy, that is, the number of quantized cyclotron orbits

in the area S = LxLy of the graphene monolayer. If one assumes periodic boundary conditions in
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the x-direction then eikx in Eq. (1.145) at the boundaries x = 0 and x = Lx gives

eik0 = eikLx =⇒ k =
2π

Lx
m, (1.150)

where m = 0, 1, 2, . . . In Eq. (1.146) one may write the numerator of the argument of the Hermite

polynomial and the exponential as y − y0 where y0 = kl2B. Note that 0 < y0 < Ly since, in the

y-direction, the graphene monolayer is assumed to span the length between y = 0 and y = Ly.

Thus,

0 < kl2B < Ly =⇒ 0 < k <
Ly
l2B
. (1.151)

Using Eqs. (1.150) and (1.151) one finds

0 < m <
LxLy
2πl2B

. (1.152)

The total LL degeneracy is

κ = gsgν
LxLy
2πl2B

= 2
LxLy
πl2B

, (1.153)

where gs = 2, gν = 2 is the spin and valley degeneracy, respectively. It is convenient (for my

purposes) to write the steps above in another way, i.e. as the sum over k states [12]:

∑
k

→ gsgν

∫ kmax

0

dk
2π
Lx

= gsgν
Lxkmax

2π
= 2

LxLy
πl2B

= κ. (1.154)

The limits of integration follow from Eq. (1.151) so kmax is the upper bound of k given in this

equation.
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2. DIFFERENCE FREQUENCY GENERATION OF SURFACE PLASMON-POLARITONS

IN LANDAU QUANTIZED GRAPHENE*

2.1 Opening Remarks

This chapter is based on a publication of the same title that I coauthored [13]. Parts of the pub-

lication may appear verbatim in the sections that follow. I was the lead author of this publication.

As for my contributions: I contributed to aspects of the theory, carried out all simulations,

created all illustrative figures and plots and was involved in the writing process (as lead author).

This project was done in collaboration with A. Belyanin, M.D. Tokman, Y. Wang.

2.2 Introduction

In Sec. 1.2.1 I showed that the low-energy excitations of graphene are massless Dirac fermions.

These massless Dirac fermions are responsible for many of the unique transport, thermal, and op-

tical properties of graphene [5]. Graphene was shown to support highly-confined surface plasmon

modes [14, 15]; it has relatively long-lived plasmon-polariton modes due to large intrinsic car-

rier mobilities and doping tunability [16, 17, 18], excellent electro-optic tunability [19], and large

third-order and second-order optical nonlinearity [20, 21, 22, 23, 24]. The latter is surprising since

graphene is a centrosymmetric medium for low-energy in-plane excitations. For centrosymmet-

ric materials the second order-response should be zero [1] in the electric-dipole approximation.

However, one may circumvent this apparent problem if one is able to induce in-plane anisotropy.

In-plane anisotropy can be induced by obliquely incident, or in-plane EM waves with non-zero

wavevector in the graphene plane [25, 21, 22, 23, 24]. In particular, the effects of spatial disper-

sion, or in real space, nonlocal effects beyond the electric dipole approximation is responsible for

induced in-plane anisotropy.

While any surface has anisotropy between its in-plane and out-of-plane excitations, it was

*Reprinted with permission from “Difference Frequency Generaration of Surface Plasmon-Polaritons in Landau
Quantized Graphene” by A. Ryan Kutayiah, Mikhail Tokman, Yongrui Wang, and Alexey Belyanin, 2018. Phys. Rev.
B, 98, 115410, Copyright 2018 by The American Physical Society.
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shown [26] that the second-order response due to out-of-plane anisotropy is small. As such, it

will be neglected. In contrast, second-order in-plane nonlinearity is actually quite large [25, 23,

24, 27, 28]. A particularly large value of χ(2) ∼ 10−3 m/V [24] is reached at low frequencies,

for the processes of frequency down-conversion such as difference frequency generation (DFG)

[23, 24, 29, 30, 31] or parametric down-conversion [27]. Further enhancement of the nonlinear

generation efficiency is possible when the DFG signal is frequency- and phase-matched to surface

plasmon-polaritons in graphene [23].

Here, I consider a graphene monolayer that acts as a nonlinear medium and is integrated in a

monolithic photonic chip. The photonic chip provides confinement of the electromagnetic (EM)

modes and thus allow for maximizing the overlap of the in-plane amplitude of the pump fields

with the graphene monolayer. Furthermore, graphene is placed in a uniform magnetic field along

the z-direction and the monolayer is assumed to reside in the xy-plane. The magnetic field results

in Laudau levels (see Sec. 1.2.2), which in turn allows for resonant transitions by electromagnetic

fields, leading to an enhancement in the second-order response χ(2). In addition, Landau level

degeneracy enhances the density of states which also enhances χ(2). I will show that for a magnetic

field in the range of 1 − 10 T, the power conversion efficiency is on the order of tens µW/W2 for

waveguide structures of 10-100 µm.

2.3 Optical Fields in a Waveguide

In order to elicit a second-order response from graphene, two transverse electric (TE) polarized

counter-propagating optical fields of frequency ω1 and ω2 are fed into a photonic chip at opposite

ends, see Fig. 2.1. TE polarization is chosen as opposed to transverse magnetic (TM) polarization

because there are two components σ(2)
xyy and σ(2)

yyx of the second-order conductivity tensor for TE

and only one component σ(2)
xxx for TM [24]. Furthermore, |σ(2)

xyy| > |σ(2)
xxx| [24]. Regarding the latter

two statements, Ref. [24] considered DFG in graphene where the input pump fields were in the

mid-infrared range and scattering losses for pristine graphene.

The pump field of frequency ω1 is assumed to be propagating in the +x-directions, while the

field of frequency ω2 is assumed to be traveling in the opposite direction, see Fig. 2.1. In addition,
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Figure 2.1: Two counter-propagating pump fields incident on a waveguide with graphene at the
interface of dielectrics ε2 and ε3.

the fields are assumed to have no variation in the y-direction.

The waveguide structure is such that interfaces are located in the plane z = d/2 and z = −d/2,

where d is the thickness of the core layer, see Figs. 2.2a and 2.2b. The dielectric constants of the

waveguide along z is then:

εj =


ε1 z > d/2,

ε2 −d/2 < z < d/2,

ε3 z < −d/2.

(2.1)

I will consider two locations for graphene, one where graphene is located at the interface of

the core layer (with dielectric constant ε2) and the bottom cladding (with dielectric constant ε3);

this case is depicted in Fig. 2.2a. The other instance is where graphene is located in the middle

of the core layer as depicted in Fig. 2.2b. In both cases the graphene monolayer is assumed to

be encapsulated in hexagonal boron nitride (hBN). This is done to prevent disorder arising from

lattice mismatch between graphene and the adjacent dielectric layers of the waveguide. Such

disorder would be detrimental for carrier mobility and optical linewidth transition in graphene.
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(a) Graphene is located at the interface of
dielectrics ε2 and ε3 which is the plane z =
−d/2.

  

(b) Graphene is located in the middle of the
waveguide core ε2 which is the plane z =
0.

Figure 2.2: Waveguide configurations. Adapted with permission from [13].

The contribution of graphene and hBN to the pump distribution in the waveguide will be neglected

since they are both thin; graphene is on the Angstrum scale while the hBN layers are assumed

to be of nanometer thickness. There may be a concern that using a hBN substrate could possibly

open up a gap in graphene, as indicated by an early theoretical work [32]; however, subsequent

experiments have not found any gap [33, 34].

There are two waveguide configurations that I considered: the asymmetric waveguide given

by ε1 6= ε2 6= ε3 and the symmetric waveguide given by ε1 = ε3 6= ε2. For numerical examples

(concerning this project) the dielectrics ε1, ε2, ε3 are chosen as air, GaAs, Alas or air, Si, SiO2 for

the asymmetric waveguide. For the symmetric waveguide the top and bottom cladding are both

chosen to be air. Furthermore, I will assume that the dimensions of the waveguide in the x- and

y-directions coincide with that of the graphene monolayer.

Finding the distribution of an optical field in a slab waveguide is a standard textbook problem,

see [35] for example . But for the sake of completeness, I will derive the conditions required to

confine an optical field to the core of the waveguide and find its z-distribution.

I will assume plane waves for both TE polarized pump fields:

E(l)(x, z, t) = Re[(0, E(l)
y (z), 0)ei(sgn(l)qlx−ωlt)], (2.2)
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where l = 1, 2 indexes the pump fields, sgn(l) = +1 for l = 1, and −1 for l = 2. One solves the

wave equation to find the modes that are confined to the core region of the waveguide

(∇2 − εj
c2
∂2
t )E

(l)(x, z, t) = 0, (2.3)

=⇒ d2E
(l)
y (z)

dz2
= λjlE

(l)
y (z), (2.4)

λjl =


κ2

1l z > d/2,

κ2
2l −d/2 < z < d/2,

κ2
3l z < −d/2.

(2.5)

εj is given by Eq. (2.1). The waveguide is assumed to be asymmetric since it is more general than

the symmetric case. One can consider the symmetric waveguide as a special case of the asymmetric

waveguide. I have neglected any effects that the graphene monolayer may have on the distribution

of the pump fields in the waveguide. In other words, I will solve for the EM modes in a waveguide

as if the graphene monolayer is absent.

For confinement of an EM mode to the core of the waveguide one expects the wave to oscillate

in the region −d/2 < z < d/2 and exponentially decay otherwise. These conditions are satisfied

when κ(1,3)l are real and κ2l is complex, where κjl are defined as

κ(1,3)l =

√
q2
l − ε1,3

ω2
l

c2
, (2.6)

κ2l = iαl, αl ≡
√
ε2
ω2
l

c2
− q2

l . (2.7)

Sometimes the confinement condition is written as (ω/c)2ε1,3 < q2
l < (ωl/c)

2ε2; for low losses

(neglecting the imaginary part of the index of refraction) εj ≈ n2
j so the confinement condition
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becomes n1,3 < neff,l < n2 where neff,l = (c/ωl)ql. Solving Eq. (2.4) results in

E(l)(x, z, t) = ey Re[ei(sgn(l)qlx−ωlt)]


ale
−κ1l(z−d/2) z > d/2

bl cos(αlz − φl) −d/2 < z < d/2

cle
κ3l(z+d/2) z < −d/2.

(2.8)

Integrating ∇ × E(l) = −c−1∂tB
(l) over the differential area dA and using Stokes’ theorem

one finds that the tangential component of the electric field is continuous at the boundaries. Using

the continuity of the tangential component of E at the boundaries z = ±d/2, one finds that

al = bl cos(αld/2− φl) and cl = bl cos(αld/2 + φl). Only one undetermined coefficient remains,

bl, which I will relabel as Al. Thus, Eq. (2.8) can be written as

E(l)(x, z, t) = ey Re[ei(sgn(l)qlx−ωlt)]Alfjl(z), (2.9)

where

fjl(z) =


cos(αld/2− φl)e−κ1l(z−d/2) z > d/2

cos(αlz − φl) −d/2 < z < d/2

cos(αld/2 + φl)e
κ3l(z+d/2) z < −d/2.

(2.10)

The coefficientAl can be found by normalizing the Poynting flux. The Poynting vector is given by

S(l) =
c

4π
(E(l) ×B(l)) (2.11)

S(l) =
c

4π

(
1

2
Re[E

(l)
R ×B

(l)∗
R ] +

1

2
Re[(E

(l)
R ×B

(l)
R )e−2iωt]

)
(2.12)

where I have usedF = Re[FRe
−iωt] = (1/2)FRe

−iωt+(1/2)F ∗Re
iωt andF represent the real fields

E,B; FR = (Fx, Fy, Fz)e
ik·r. The time average of the Poynting vector is 〈S〉 = T−1

∫ T
0
S dt or

〈
S(l)
〉

=
c

8π
Re[E

(l)
R ×B

(l)∗
R ]; (2.13)
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I used the fact that the second term in Eq. (2.12) averages to zero over the period T = 2π/ω. The

average Poynting flux is then 〈
Φ

(l)
S

〉
=

∫ 〈
S(l)
〉
· dA(l). (2.14)

Since the pump fields are propagating in the ±x-directions the Poynting vector for TE polarized

fields are given by S(l) = exS
(l)
x = ex(c/8π)E

(l)
yR(x, z)B

(l)∗
zR (x, z), dA(l) = exsgn(l)dydz, but I

assumed there is no variation in the y-direction, therefore any integration over dy simply results in

multiplying by Ly. Equivalently, dy can directly be replaced by Ly. Thus, dA(l) = exsgn(l)Lydz.

For a TE polarized pump fields one finds from ∇ × E(l) = −c−1∂tB
(l) that B(l)∗

zR (x, z) =

sgn(l)(qlc/ωl)E
(l)∗
yR (x, z). The average Poynting flux is then

〈
Φ

(l)
S

〉
= (sgn(l))2 c

2qlLy
8πωl

|Al|2
∫ +∞

−∞
|fjl(z)|2 dz. (2.15)

Note that the integral is to be evaluated in a piecewise manner since fjl is a piecewise function.

Obviously, (sgn(l))2 = 1 since sgn(l) = ±1. If the average Poynting flux is normalized to the

input pump power Po (where I have assumed for simplicity that both pumps have initial power Po

but one can assume different powers Pol) then Al is

Al =

√
8πωlPo
Lyc2qlFl

, (2.16)

where Fl =
∫ +∞
−∞ |fjl(z)|2 dz.

To calculate Fl one needs to know the phase φl given in Eq. (2.10). From∇×E(l) = c−1∂t one

finds B(l)
x = icω−1

l ∂zE
(l)
y . Integrating ∇ ×B(l) = εjc

−1∂tE
(l) over dA = eydxdz one finds that

B
(l)
x is continuous; therefore, ∂zE

(l)
y is continuous. Using the continuity of ∂zE

(l)
y at the boundaries

z = ±d/2 gives

2φl = mπ − tan−1(κ1l/αl) + tan−1(κ3l/αl) (2.17)

αld = mπ + tan−1(κ1l/αl) + tan−1(κ3l/αl), (2.18)
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where m is the mode number. I will select the zeroth mode for all calculations. The transcendental

equation, Eq. (2.18) gives the dependence of the parameters αl, κ(1,3)l (which should really be

written as αm,l, κm,(1,3)l) on the core thickness d.

2.4 Optical Selection Rules

In this section I will derive the selection rules for an optical field interacting with Landau

quantized graphene. From the selection rules one will see that resonant coupling occurs between

EM fields and LLs in magnetized graphene. To begin I will find the interaction Hamiltonian.

If one extends the vector potential A in Eq. (1.124) to include an optical field, i.e. A →

AB +Aopt(t) then the Hamiltonian given in Eq. (1.125) can be written as

H = vFσ · π = vFσ · (~k +
e

c
[AB +Aopt(t)]) = HB +H int(t) (2.19)

where I have added a subscriptB to the vector potentialA (of the external magnetic field) to distin-

guish it from the vector potential of the optical field, Aopt. In Eq. (2.19) the term HB corresponds

to graphene in a magnetic field as given by Eq. (1.125), with one exception, I relabeled q as k

since I am using ql as the wavevector for the pump fields. H int, the interaction Hamiltonian, gives

the interaction between graphene and an optical field; in particular

H int(t) =
vF e

c
σ ·Aopt(t). (2.20)

If the optical field oscillates with a term ∝ e−iωlt, using E(l) = −c−1∂tA
(l)
opt one finds

A
(l)
opt(t) =

c

iωl
E(l)(t) (2.21)

and the interaction Hamiltonian becomes

H int(t) =
vF e

iωl
σ ·E(l)(t). (2.22)
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Consider a linearly polarized optical field E(l) = Re[E
(l)
R e
−iωlt], E(l)

R = (exEx + eyEy)e
ql·r.

A change of basis

e± =
ex ± iey√

2
, (2.23)

or ex =

√
2

2
(e+ + e−), (2.24)

and ey =

√
2

2i
(e+ − e−), (2.25)

results in transforming the polarization from linear to circular, thus E(l)
R → Ẽ

(l)
R = (e+Ẽ

(l)
+ +

e−Ẽ
(l)
− )eql·r and

Ẽ
(l)
± =

√
2

2
(E(l)

x ∓ iE(l)
y ). (2.26)

Note that for a TE polarized field E(l)
x = 0 so Ẽ(l)

± = ±i
√

2E
(l)
y /2. To connect with Sec. 2.3

the E field field given in Eq. (2.9) can be written as E(l) = Re[Ẽ
(l)
R e

iωlt] = Re[(e+Ẽ
(l)
+ +

e−Ẽ
(l)
− )ei(sgn(l)qlx−ωlt)] where

Ẽ
(l)
± = ∓i

√
2

2
Alfjl(z). (2.27)

Since the interaction Hamiltonian contains the dot product of the vector of Pauli matrices σ

and the optical fieldE it is convenient to express σ in the circular basis σ = e+σ
+ + e−σ

− where

σ+ =

 0 0
√

2 0

, and σ− =

0
√

2

0 0

. (2.28)

The following dot products will be useful

e± · e∓ = 1, and e± · e± = 0. (2.29)
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Using Eqs. (2.28), (2.29) and E(l)(t) in the circular basis, the interaction Hamiltonian becomes

H int(t) = vF (e+σ
− + e−σ

+) ·
[(

e

2iωl
e+Ẽ

(l)
+ + e−Ẽ

(l)
−

)
eiql·r−iωlt + c.c

]
=
evF
iωl

(σ−E
(l)
+ + σ+E

(l)
− )eiql·r−iωlt + . . . , (2.30)

where E(l)
± = (1/2)Ẽ

(l)
± . Henceforth, in Eq. (2.30) I will drop the terms contained in + . . ..

The selection rules are obtained by taking the matrix element of the interaction Hamiltonian.

Let |β〉 = |m, k′〉 where m is the Landau level index and k′ is the Bloch wavevector of pz electrons

in magnetized graphene then the wavefunction is given by 〈r|m, k′〉 = ψm,k′(r) (see Eq. (1.145)).

The matrix elements of the interaction Hamiltonian, in the electric-dipole approximation (ql → 0),

is

〈n, k|H int|m, k′〉 =
evF
iωl

( 〈n, k|σ−|m, k′〉︸ ︷︷ ︸
(a)

E
(l)
+ + 〈n, k|σ+|m, k′〉︸ ︷︷ ︸

(b)

E
(l)
− )e−iωlt. (2.31)

The matrix elements of σ±, given by (a) and (b) in Eq. (2.31), are evaluated below:

(a). 〈n, k|σ−|m, k′〉 ≡ σ−αβ =
C∗nCm
L

∫
ei(k

′−k)x dx

×
∫ (

sgn(n)i1−|n|φ∗|n|−1,k(y) i−|n|φ∗|n|,k(y)

)0
√

2

0 0


×

sgn(m)i|m|−1φ|m|−1,k′(y)

i|m|φ|m|,k′(y)

dy
=⇒ σ−αβ =

√
2CnCmsgn(n)δkk′δ|n|−1,|m|; (2.32)

similarly, (2.33)

(b). σ+
αβ =

√
2CnCmsgn(m)δkk′δ|n|+1,|m|. (2.34)

In the derivations above I used the fact that Cn is real, φ|m|,k′(y) is orthonormal and

∫
ei(k

′−k)x dx = Lδkk′ . (2.35)
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Using Eqs. (2.32) and (2.34), Eq. (2.31), the matrix element of the interaction Hamiltonian, be-

comes

H int
αβ (t) =

√
2CnCnevF
iωl

δkk′(sgn(n)δ|n|−1,|m|E
(l)
+ + sgn(m)δ|n|+1,|m|E

(l)
− )e−iωlt. (2.36)

It is instructive to look at the matrix elements of dipole moment dαβ = −erαβ . Following [22],

I will use the Heisenberg equation of motion to find rαβ

i~ṙ = [r, H] + ∂tr = [r, HB] + [r, H int] + ∂tr︸︷︷︸
=0

=⇒ i~ṙ = [r, HB] +
e

c
[r,Aopt(r)]︸ ︷︷ ︸

=0

e−iωlt

=⇒ i~vαβ = (Eβ − Eα)rαβ =⇒ rαβ = − i~
Eα − Eβ

vαβ. (2.37)

Now it remains to find vαβ . Note that the velocity operator for graphene near the Dirac point is

v = vFσ [22]. Therefore, the matrix elements of the velocity operator depends on the matrix

elements of σ which was already found in Eqs. (2.32) and (2.34); thus

dαβ ·E(l) =
i~evF
Eα − Eβ

√
2CnCmδkk′(sgn(n)δ|n|−1,|m|E

(l)
+ +sgn(m)δ|n|+1,|m|E

(l)
− )e−iωlt+ . . . (2.38)

where the electric-dipole approximation was used.

Comparing Eqs. (2.36) and (2.38), one sees that H int
αβ = dαβ · E(l) when the + . . . terms are

dropped in Eq. (2.38) and when Eα − Eβ ≡ ~ωαβ = ~ωl (recall Em = ~(sgn(m)ωc
√
|m|) =⇒

ωm = sgn(m)ωc
√
|m|). To be clear, dαβ is defined as the dipole moment at exact resonance with

the optical field of frequency ωl. Thus, for an optical field of frequency ωl, the E(l)
+ component

couples to a transition |m| → |n| = |m| + 1 provided that the energy of this transition is resonant

with the energy of the photon, i.e. E|m|+1 − Em = ~(ω|m|+1 − ωm) ≈ ~ωl. A similar argument

holds for the E(l)
− component which couples to the transition |m| → |n| = |m| − 1. Note that |m|

is the initial state and |n| is the final state. The selection rules for allowed optical transitions in the
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Figure 2.3: Sketch of LLs and resonant coupling of particular components and frequencies of the
pump fields to LLs. Adapted with permission from [13].

electric-dipole approximation are

|n| − |m| ≡ ∆|m| = ±1. (2.39)

Recall that the index l = 1, 2 denotes the pump fields. For definiteness I will select the pump

fields such that the field with frequency ω1 is resonant with the transition |m| → |m| + 1 and

the field with frequency ω2 is resonant with |m| → |m| − 1, where I have chosen m < 0. For

convenience I will label the states as follows m → |1〉, |m| − 1 → |2〉 and |m| + 1 → |3〉. As

such, E(1)
+ couples to the transition |1〉 → |3〉 and E(2)

− couples to |1〉 → |2〉, see Fig. 2.3. The

assumptions in this paragraph will be upheld throughout this chapter.

2.5 Linear Optical Conductivity

The linear optical conductivity can be obtained by the Kubo-Greenwood formula as given by

Eq. (1.34). Keep in mind that the dipole moment is defined at exact resonance as stated in Sec. 2.4.
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The linear optical conductivity is

j(l)(t) =
ie2

S~ωl

∑
α,β

vβα(vαβ ·E(l)
R )(fα − fβ)

ωαβ − ωl − iγαβ
e−iωlt (2.40)

using j(l)(t) = j(ωl)e
−iωlt, j(ωl) = σcon(ωl)E

(l)
R , and Eq. (2.40) one finds components of the

conductivity tensor σcon(ωl)

σprcon(ωl) =
ie2v2

F

S~ωl

∑
α,β,r 6=p

(fα − fβ)σpβασ
r
αβ

ωαβ − ωl − iγαβ
. (2.41)

where p, r takes values + or − since they index the circular basis. The sum
∑

r 6=p comes from

using the circular basis vectors. Note that Eq. (2.41) is the Kubo-Greenwood formula for the

optical conductivity of graphene in the electric-dipole approximation.

There are only two non-zero components of the conductivity tensor: σ−+
con and σ+−

con . The other

components, σ++
con and σ−−con , are both zero since p = r in this case. A more rigorous way to see that

they are zero is to take the sum over α and β of σ+
βασ

+
αβ . When this is done one should see that the

delta functions contained in the matrix elements of σ++
con cannot be simultaneously satisfied since

σ++
con ∝

∑
αβ σ

+
βασ

+
αβ ∝

∑
m,n δ|n|−1,|m|δ|n|+1,|m| = 0. Where σ+

αβ is obtained from Eq. (2.34) and

σ+
βα is found by interchanging m and n. Similarly, one finds that σ−−con ∝

∑
αβ σ

−
βασ

−
αβ = 0.

2.6 Surface Charge Density

The EM pump fields incident upon the Landau quantized graphene monolayer displaces its

electrons from equilibrium. The cumulative displacement of the electrons leads to a polarization

P = P (L) + P (NL) (2.42)

where P (L) is the linear polarization (same as P̃ (1) in Sec. 1.1.3) and P (NL) is the nonlinear

polarization (same as P̃ (NL) in Sec. 1.1.3). The polarization is related to the charge density by

ρ(r) = −∇ · P (r). (2.43)
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The surface charge density of Landau quantized graphene is given by

ρ(r) = −eΨ∗(r)Ψ(r) = −e
∑
α,β

c∗βcαψ
∗
β(r)ψα(r) (2.44)

=⇒ ρ(r) = −e
∑
α,β

ραβψ
∗
β(r)ψα(r) (2.45)

where ραβ is the density matrix (see Sec. 2.5) and ψα is the energy eigenstate of graphene in a

magnetic field (see Eq. (1.145)).

Next, I will consider the spatial Fourier transform of the charge density ρ(r)

ρ(r) =
∑
q

ρqe
iq·r, and ρq =

1

S

∫
ρ(r)e−iq·r d2r (2.46)

q and r are both in the plane of the graphene monolayer. Inserting Eq. (2.45) into the second of

Eqs. (2.46) results in

ρq = − e
S

∑
α,β

ραβ

∫
ψ∗β(r)e−iq·rψα(r) d2r. (2.47)

The expression above can be written in a more compact way

ρq = − e
S

∑
α,β

Fβα(−q)ραβ (2.48)

where Fβα(−q) =
∫
ψ∗β(r)e−iq·rψα(r) d2r = 〈m, k′|e−iq·r|n, k〉. Note that F ∗βα(−q) = Fαβ(q).
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Assuming q = exq one obtains

Fαβ(q) = Fnkmk′(q) = 〈n, k|eiqx|m, k′〉 =
CnCm
L

∫
dx ei(k

′−(k−q))x

×
∫
dy
(
sgn(n)i−|n|+1φ|n|−1,k(y), i−|n|φ|n|,k(y)

)sgn(m)i|m|−1φ|m|−1,k′(y)

i|m|φ|m|,k′(y)


=
CnCm
L

Lδk′,k−qi
|m|−|n|

∫
dy [sgn(n)sgn(m)φ|n|−1,k(y)φ|m|−1,k−q(y) + φ|n|,k(y)φ|m|,k−q(y)]

Fnkmk′(q) = CnCmi
|m|−|n|δk′,k−q[sgn(n)sgn(m)

〈
φ|n|−1,k

∣∣φ|m|−1,k−q
〉

+
〈
φ|n|,k

∣∣φ|m|,k−q〉].
(2.49)

Introducing the notation

Fnkmk′ = F̃nkmδk′,k−q (2.50)

and comparing equations (2.49) and (2.50) one sees that

F̃nkm = CnCmi
|m|−|n|[sgn(n)sgn(m)

〈
φ|n|−1,k

∣∣φ|m|−1,k−q
〉

+
〈
φ|n|,k

∣∣φ|m|,k−q〉]; (2.51)

where

sgn(n)sgn(m) =


+1 intraband transitions

−1 interband transitions
. (2.52)

Eqs. (2.49) and (2.52) holds for m, n 6= 0. If n → |m| + 1 and m → |m| − 1 (i.e. an intraband

dipole-forbidden transition) then

Fnkmk′(q) = δk′,k−qF̃nkm(q)→ δk′k−qF̃|m|+1,k,|m|−1(q). (2.53)

Using Eq. (2.51) to find F̃|m|+1,k,|m|−1 gives

F̃|m|+1,k,|m|−1(q) = C|m|+1C|m|−1i
|m|−1−(|m|+1)[

〈
φ|m|,k

∣∣φ|m|−2,k−q
〉

+
〈
φ|m|+1,k

∣∣φ|m|−1,k−q
〉
]

F̃|m|+1,k,|m|−1(q) = −1

2
[
〈
φ|m|,k

∣∣φ|m|−2,k−q
〉

+
〈
φ|m|+1,k

∣∣φ|m|−1,k−q
〉
]. (2.54)
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It is straightforward to write down the matrix element F|m|+1,k,|m|−1,k′(q)

F|m|+1,k,|m|−1,k′(q) = −1

2
[
〈
φ|m|,k

∣∣φ|m|−2,k−q
〉

+
〈
φ|m|+1,k

∣∣φ|m|−1,k−q
〉
]δk′,k−q. (2.55)

To give a concrete example I will assume that the initial state has a LL index m = −3 then

F̃4k2(q) = −

[
24(2 +

√
2)− 4(4 +

√
2)l2Bq

2 + l4Bq
4

128
√

3

]
× l2Bq2e−(l2Bq

2/4)

F̃4k2(q) ≈ −

[
24(2 +

√
2)

128
√

3

]
l2Bq

2 (2.56)

where the approximation lBq � 1 was used. This is always a good approximation since q scales

as (vF/c)(1/lB) times a number of the order of 10, if the LL numbers involved in the DFG process

are not too high: around 2–4.

For Fαβ(q) given by Eq. (2.50), the Fourier component of the charge density ρq given in

Eq. (2.48) becomes

ρq = − e
S

∑
nkmk′

Fmk′nk(−q)ρnkmk′ = − e
S

∑
nkmk′

F̃mk′n(−q)δk,k′+qρnkmk′

ρq = − e
S

∑
nkm

F̃mk′n(−q)ρnkmk′

∣∣∣∣∣
k′=k−q

(2.57)

where Fmk′nk(−q) = F ∗nkmk′(q) = F̃mk′n(−q)δk,k′+q and F̃mk′n(−q) = F̃ ∗nkm(q) was used.

F̃nkm(q) is given in Eq. (2.51).

2.7 Surface Plasmon-Polaritions

The nonlinear polarization in Eq. (2.42) is responsible for three-wave mixing processes. As

shown in Sec. 1.1.3, DFG is one of these three-wave mixing processes which occurs at the fre-

quency ω3 = ω1−ω2. Furthermore, the nonlinear polarization with frequency component ω3 is the

source for an EM field of the same frequency. In other words, the nonlinear polarization generates

an EM field at ω3. I will relabel ω3 as ωd where ωd = ω1 − ω2 is the difference frequency. The
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Figure 2.4: Sketch of DFG scheme and resonant coupling of all EM modes to LLs. EF is the Fermi
level. Reprinted with permission from [13].

pump fields are chosen such that the field of frequency ω1 is resonant with the LL transition of fre-

quency ω31 and the field of frequency ω2 is resonant with LL transition ω21 (see Sec. 2.4). Note that

ω31 − ω21 = ω32 and the left-hand side is ≈ ωd thus the difference frequency ωd is resonant with

the LL transition |m+ 1〉 → |m− 1〉. The resonant DFG scheme is shown in Fig. 2.4. This transi-

tion is dipole-forbidden because it does not obey the selection rules obtained in the electric-dipole

approximation, see Eq. (2.39). Therefore a mode excited by the difference frequency process must

be treated beyond the electric-dipole approximation.

Note that the type of EM field generated by the nonlinear polarization could be a radiative mode

(photon) or a bound mode (surface plasmon-polariton). Polaritons are quasi-particles composed of

an EM wave coupled to an excitation of a medium. Surface plasmons are longitudinal oscillations

of the surface charge density of a medium (an excitation). Thus, surface plasmon-polaritons are

longitudinal oscillations in the charge density coupled to an EM wave. Another example of a

polariton is the phonon-polariton which are lattice vibrations coupled to an EM wave. Conversion

efficiency is higher for a surface plasmon because it has greater overlap with graphene due to tight

confinement and its amplitude is enhanced at plasmon resonance [23]. Therefore, I will select the
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generated EM field to be a mode localized at the surface of the graphene layer (the plane z = −d/2)

and propagating in the x-direction. By definition, the localized mode decays exponentially away

from the plane to which it is confined; it is evanescent. As such, one seeks the homogeneous

solution to Eq. (1.45) for an evanescent wave.

Before doing so one should note the following. Recall that the graphene monolayer is inte-

grated into a waveguide, as described in Sec. 2.3, where the monolayer is assumed to be either at

the interface of the waveguide core with dielectric constant ε2 and the bottom cladding with dielec-

tric constant ε3 or in the middle of the core layer. I will assume graphene is located at the interface

of dielectrics ε2 and ε3. I will also assume that the generated EM wave is transverse magnetic (TM)

polarized.

For a TM polarized wave propagating in the x−direction (assuming no variation in the y direc-

tion)

E = (Ex(z), 0, Ez(z))eiqx−iωqt (2.58)

B = (0, By(z), 0)eiqx−iωqt. (2.59)

I have chosen the frequency of the SPP field to be ωq. It will be shown that ωq ≈ ωd.

One solves the homogeneous wave equation for the longitudinal component which, in this case,

is Ex. Assuming graphene is located at z = −d/2, solutions are sought in the regions z > −d/2

and z < −d/2 which give

(
d2

dz2
− q2 + εj

ω2
q

c2

)
Ejx(z)eiqx−iωqt, (2.60)

where j = 2 for z > −d/2 and j = 3 for z < −d/2. Let

pj =

√
q2 − εj

ω2
q

c2
(2.61)
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then the solution to Eq. (2.60) for an evanescent wave is

Ejx(z) =


E2x(z) = A2xe

−p2(z+d/2) z > −d/2

E3x(z) = A3xe
+p3(z+d/2) z < −d/2

(2.62)

Ejx is continuous at the boundary z = −d/2 since it is the tangential component of the TM

polarized field; therefore, A2x = A3x ≡ Eox(−d/2). Eox(−d/2) is the amplitude of the SPP field

taken at the location of the graphene monolayer. The equation above can be written in a shortened

way

Ejx(z) = Eoxe
sgn(j)pj(z+d/2) (2.63)

where

sgn(j) ≡


−1 z > −d/2

+1 z < −d/2.
(2.64)

If the monolayer was located at z = 0 then the solution for an evanescent wave localized on this

plane can be obtained by simply setting−d/2→ 0 in the equations above. Also the SPP amplitude

on the monolayer would be given by Eox(0) and d3 → d2.

The dispersion relation for SPP in graphene is obtained from integrating∇·D = 4πρ3D, where

ρ3D = ρ(r)δ(z + d/2) and ρ(r) is given by Eqs. (2.45) and (2.47)

D2z(−d/2)−D3z(−d/2) = 4πρ (2.65)

ε2E2z(−d/2)− ε3E3z(−d/2) = 4πρ. (2.66)

Ejz can be expressed in terms ofEjx using∇·E = 0 =⇒ ∂zEz(x, z, t) = −∂xEx(x, z, t) (which
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holds in each region z > −d/2 and z < −d/2)

Ejz(z) = −iqEox(−d/2)

∫
esgn(j)pj(z+d/2) dz (2.67)

=⇒ Ejz(z) = − iq

sgn(j)pj
Eoxe

sgn(j)pj(z+d/2) = − iq

sgn(j)pj
Ejx(z). (2.68)

Using Eqs. (2.58), (2.63) and (2.68) the SPP field can be expressed as

E(x, z, t) =

(
ex − sgn(j)

iq

pj
ez

)
Eoxe

sgn(j)pj(z−d/2)eiqx−iωqt. (2.69)

Inserting Eq. (2.68) into Eq. (2.66) and using ρ = −∇·P (L) = −∇·(χ‖E) = −iqχ‖Ex(−d/2)

yields (
ε2
p2

+
ε3
p3

)
iqEox(−d/2) = −iq4πχ‖Eox(−d/2) (2.70)

or
ε2
p2

+
ε3
p3

+ 4πχ‖ = 0. (2.71)

where χ‖(q, ωq) is the surface linear susceptibility.

In the quasielectrostatic approximation, that is, when the dispersion relation is far from the light

line one has ωq � cq. In this regime, the time derivative of the magnetic field is negligible. This

can be seen from the following ∇×E = −c−1∂tB =⇒ iq ×E = iωq
c
B =⇒ eq ×E = ωq

cq
B.

Using ωq � cq gives eq ×E ≈ 0 or equivalently ∇×E ≈ 0. Thus, one may express the electric

field in terms of the gradient of a scalar

E = −∇Φ. (2.72)

Recall that the amplitude of the SPP field in the plane of the monolayer is given by the tangential

component of the electric field Eox(−d/2), in light of Eq. (2.72), one may write

Eox(−d/2) = −iqφq (2.73)
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where Φ = φqe
iqx−iωt.

In the quasielectrostatic approximation, not only does Eox → −iqφq but pj → q as well, which

allows one to write Eq. (2.70) as

(ε2 + ε3)qφq = 4πρq. (2.74)

Note that

ρq = −χ‖q2φq. (2.75)

With the help of Eq. (2.75) Eq. (2.74) can be rearranged as

1 +
4πq

ε2 + ε3
χ‖(q, ωq) = 0 (2.76)

D(q, ωq) ≡ 1 +
4πq

ε2 + ε3
χ‖(q, ωq). (2.77)

To find the surface linear susceptibility one uses Eqs. (2.48) and (2.75)

− e

S

∑
α,β

Fβα(−q)ραβ = −χ‖(q, ωq)q2φq

=⇒ χ‖(q, ωq) =
e

q2φqS

∑
α,β

Fβα(−q)ραβ(ωq). (2.78)

Evidently, one needs to find the density matrix element ραβ . The procedure for finding the density

matrix element is given in Sec. 1.1.1; see Eq. (1.19). However, in the present section the electric

dipole approximation will not be used because spatial dispersion (dependence on the wavevector)

or nonlocal effects needs to be taken into account. The von Neumann equation for the matrix

element ραβ for an interaction Hamiltonian for a dipole-forbidden transition is given by

H int
αβ (t) =

[
−eφqeiqx−iωqt

]
αβ

= −eφq
[
eiqx
]
αβ
e−iωqt = −eφqFαβ(q)e−iωqt. (2.79)

Using Eq. (1.19) one finds

ραβ(ωq) =
−eFαβ(q)(fα − fβ)φq
~(ωαβ − ωq − iγαβ)

(2.80)
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where γαβ is the phenomenological decay rate between LL |α〉 and |β〉. The scattering rates for

Landau-quantized graphene were calculated, e.g., in [36, 37, 38]. I assume that the Rabi frequen-

cies of the pump fields are smaller than the carrier relaxation rate, so the optical population transfer

is not important. As such, one can neglect the scattering effects (like Auger scattering) that arises

from high concentrations of nonequilibrium carriers.

Inserting Eq. (2.80) into Eq. (2.78) gives the surface linear susceptibility

χ‖(q, ωq) = − e2

~q2S

∑
α,β

|Fαβ(q)|2(fα − fβ)

ωαβ − ωq − iγαβ
. (2.81)

The dispersion relation given by Eq. (2.77) for χ‖ given in Eq. (2.81) becomes

D(q, ωq) = 1− 4πe2

(ε2 + ε3)Sq

∑
α,β

(fα − fβ)|Fαβ(q)|2

Eα − Eβ − ~ωq − i~γαβ
. (2.82)

In proceeding, I will assume that the initial state (|1〉) involved in the resonant DFG process

has the LL with index m = −3. Furthermore, I will assume that the Fermi level is between states

|2〉 and |3〉 with LL numbers |m| − 1 = 2 and |m| + 1 = 4 (respectively) but separated by more

than kBT . Since states |1〉 and |2〉 are below the Fermi level they are both occupied while state

|3〉 is above the Fermi level so it is unoccupied. With these considerations the dispersion relation

given by Eq. (2.82) may be written as

D(ωq, q) = 1 +
ωo(q)

ω32 − ωq − iγ32

= 0 (2.83)

where

ωo(q) =
4πe2(NF/S)ξ(q)

(ε2 + ε2)~q
, ξ(q) =

∑
k |F̃3k2(q)|2

κ
(2.84)

where κ = 2S/πl2B is the Landau level degeneracy, NF = fFκ is the number of particles in a

completely filled Landau level, f3k = 0 since it is above the Fermi level and fF = f2k′ . It follows
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from Eq. (2.83) that

Re[ωq] = ω32 + ωo(q), Im[ωq] = −γ32. (2.85)

Examining the term ξ(q) one finds

ξ(q) =

∑
k |F̃3k2(q)|2

κ
∝ q4l4B (2.86)

recall that here F̃3k2(q) corresponds to F̃|m|+1,k,|m|−1 since state |3〉 = ||m|+ 1〉 and

|2〉 = ||m| − 1〉. For initial state |1〉 = |m = −3〉 F̃3k2(q) → F̃4k2(q) ≈ l2Bq
2, see Eq. (2.56). In

approximating ξ(q) I used the fact that F̃4k2(q) is independent of k so it can be taken out of the

sum and
∑

k = κ (see Eq. (1.154)). I also used lB =
√

~c/(eB) as given in Eq. (1.131).

2.8 Difference Frequency Generation of Surface Plasmon-Polaritions

As mentioned in the previous section, the nonlinear polarization due to the pump fields gen-

erated a new frequency component, namely the difference frequency. This frequency gives rise to

the SPP. In order to connect the SPP with its nonlinear roots I will expand the charge density in

Eq. (2.74) to include the nonlinear part, i.e.

ρq = ρ(L)
q + ρ(NL)

q (2.87)

where the linear part of the charge density is ρ(L)
q = −χ‖q2φq.

Next, I will substitute Eq. (2.87) into Eq. (2.74) and solve for the SPP amplitude in terms of

the nonlinear charge density

(ε2 + ε3)qφq = 4π(−q2χ‖φq + ρ(NL)
q )

=⇒ φq =
4πρ

(NL)
q

(ε2 + ε3)qD(q, ωq)
. (2.88)

At the plasmon resonance frequency, Re[ωq] = ω32 + ωo(q) (see Eq.2.85), Re[D(q, ωq)] = 0

which leads to an enhancement in the SPP amplitude φq. One needs to find the Fourier component
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ρ
(NL)
q of the nonlinear charge density by expressing it in terms of its matrix elements as done

in Eq. (2.57) and then solve for the corresponding density matrix element. The density matrix

equation corresponding to the nonlinear charge density (generated by the dipole-allowed pump

fields) is given by

ρ̇3k2k′ + γ32ρ3k2k′ = − i
~

[H0 +H int, ρ]3k2k′

ρ̇3k2k′ + γ32ρ3k2k′ = − i
~
∑
l,k′′

[
(H0 +H int)3klk′′ρlk′′2k′ − ρ3klk′′(H

0 +H int)lk′′2k′
]

(2.89)

k′ in the density matrix elements is evaluated according to Eq. (2.57) as prescribed by [39]. In

order to solve the density matrix equation one should keep in mind that states f1k and f2k are

fully occupied (below the Fermi level) so there are no transitions between states |1〉 and |2〉. Note

also that ρ3k1k′ is zero unless k′ = k − q1 since transitions between states |1〉 and |3〉 are driven

by the pump field with in-plane wavevector q1 and frequency ω1; similarly, ρ2k1k′ is zero unless

k′ = k − q2. ρ3k2k′ is zero unless k′ = k − q where q = q1 + q2. As mentioned previously, f3 ≈ 0

since it is above the Fermi level. With these considerations Eq. (2.89) becomes

ρ̇3k2(k−q) + iω32ρ3k2(k−q) + γ32ρ3k2(k−q) = −id
∗
21E

(2)∗
− (−d/2)eiω2t

~
ρ3k1(k−q1). (2.90)

Here and in all equations below the pump fields E(1)
+ , E

(2)∗
− are taken on the graphene monolayer

located at z = −d/2. Therefore, below I will omit the argument −d/2 in the pump fields.

Observe that the density matrix equation for |3〉 → |2〉 transition depends on the linear pertur-

bation of the density matrix element for the |3〉 → |1〉 transition. That being the case, one needs to

solve for the density matrix element ρ3k1(k−q1). A solution within the electric dipole approximation

is readily obtained by following the procedure given in Sec. 1.1.2 and using the dipole moment
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(defined at exact resonance) described in Sec. 2.4

ρ̇3k1(k−q1) + iω31ρ3k1(k−q1) + γ31ρ3k1(k−q1) = i
d31E

(1)
+ e−iω1t

~
fF , (2.91)

=⇒ ρ3k1(k−q1)(t) =
e−iω1tfF

ω31 − ω1 − iγ31

d31E
(1)
+

~
. (2.92)

Substituting Eq. (2.92) into Eq. (2.90) and solving for ρ3k2(k−q) yields

ρ3k2(k−q)(t) = − e−i(ω1−ω2)tfF
(ω32 − (ω1 − ω2)− iγ32)(ω31 − ω1 − iγ31)

d31d
∗
21E

(1)
+ E

(2)∗
−

~2
. (2.93)

Recall that ωd ≡ ω1 − ω2 is the difference frequency. The Fourier harmonic of nonlinear charge

density obtained by using Eqs. (2.57) and (2.93) is

ρ(NL)
q (ωd) =

(NF/S)ζ(q)e−iωdt

(ω32 − ωd − iγ32)(ω31 − ω1 − iγ31)

ed31d
∗
21E

(1)
+ E

(2)∗
−

~2
. (2.94)

Where

ζ(q) =
1

κ
∑
k

F̃2k′3 ∝ l2Bq
2, and

NF

S
ζ(q) = 2.235q2. (2.95)

ζ(q) is obtained in a similar fashion as ξ(q) (see Sec. 2.7).

The second-order nonlinear susceptibility χ(2)(q, ωd) can be extracted from nonlinear charge

density Eq. (2.94) using ρ(NL)
q = −iqχ(2)E

(1)
+ E

(2)∗
−

χ(2)(q, ωd) =
i

q

(NF/S)ζ(q)

(ω32 − ωd − iγ32)(ω31 − ω1 − iγ31)

ed31d
∗
21

~2
. (2.96)

The magnitude of χ(2) scales linearly with q. For a range of q corresponding to DFG of THz

plasmons by mid-infrared pumps, and for B = 1 T, |χ(2)| ∼ 2 × 10−7 in CGS units. Just for

the sake of comparison with nonlinear crystals, one can divide by graphene monolayer thickness

(∼ 0.1-0.3 nm, see [40]) to get the “bulk” magnitude of |χ(2)
3D| ∼ 3 × 10−3 m/V, which is a very

large number. Of course, the resulting DFG power efficiency depends on the magnitude of the

surface (2D) χ(2), as well as the overlap of modes with graphene and the sample size.
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The Fourier harmonic of the SPP amplitude given by Eq.(2.88) can be expressed as

φq =
4π

(ε2 + ε3)qD(ωq, q)

ed31d
∗
21E

(1)
+ E

(2)∗
− (NF/S)ζ(q)

~2(ω32 − ωd − iγ32)(ω31 − ω1 − iγ31)
. (2.97)

where Eq (2.94) was used. On substitutingD(ωq, q) from Eq. (2.83) into Eq. (2.97) one finds (after

a bit of rearranging)

φq =
4πe(NF/S)ζ(q)

(ε2 + ε3)q

(d31d
∗
21E

(1)
+ E

(2)∗
− )/~2

(ω32 + ω0(q)︸ ︷︷ ︸
Re[ωq ]

− (ω1 − ω2)︸ ︷︷ ︸
ωd

−iγ32)(ω31 − ω1 − γ31)
. (2.98)

As is obvious from Eq. (2.98), the excitation of the SPP mode at frequency ωq given by Eq. (2.83)

is most efficient when the difference frequency ωd = ω1 − ω2 of the two-color pump field is in

resonance with ωq, i.e., ωd = ωq.

2.9 Poynting Flux in a SPP Mode

In the quasielectrostatic approximation the time derivative of the magnetic field of the elec-

tromagnetic wave is negligible. In order to calculate the Poynting flux of the transverse magnetic

(TM) SPP mode, one needs to go beyond the quasielectrostatic approximation. In Sec. 2.7 I gave

the amplitude of the SPP on the graphene plane (see Eq. (2.73))

Ex(z = −d/2) ≡ Eox = −iqφq.

In the same section, I also found the electric field components of the TM polarized SPP field,

Ex(x, z, t) and Ez(x, z, t), given by Eqs. (2.58), (2.63), and (2.68). They are restated below for

convenience

Ex(x, z, t) = Eoxe
sgn(j)pj(z−d/2)+iqx−iωqt (2.99)

Ez(x, z, t) = −sgn(j)
iq

pj
Ex(x, z, t). (2.100)
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However, in that section I did not find the associated magnetic fieldBy(x, z, t). In order to calculate

the Poynting flux, one needs the magnetic field. The y-component ofB can be derived from the z

component of∇×B = c−1∂tD:

By(x, z, t) = −ωqεj
qc

Ez(x, z, t), (2.101)

The Poynting vector and flux was introduced in Sec. (2.3). The (average) Poynting vector for

a TM mode is

〈S〉 =
c

8π
Re[E ×B∗] = −ex

c

8π
Re[EzB

∗
y ] = −ex

c

8π
Re

[
Ez

(
−ωqεj

qc
Ez

)∗]
= ex

qωq
8π

εj
p2
j

|EoxE∗ox|esgn(j)2pj(z−d/2) = ex
q3ωq
8π
|φq|2

εj
p2
j

esgn(j)2pj(z−d/2) (2.102)

Upon integrating the average Poynting vector over the area element dA = exdydz → exLydz

(assuming no variation in the y-direction) one obtains the average Poynting flux (the power of the

DFG mode)

PDFG =
Lyωqq

3|φq|2

16π

(
ε2
p3

2

+
ε3
p3

3

)
. (2.103)

In the approximation q � ωq/c one can write p2,3 ≈ q, q3(ε2/p
3
2 + ε3/p

3
3) ≈ ε2 + ε3. Using this

approximation along with Eq. (2.98) gives the final expression for the SPP power:

PDFG =
πLyωq
ε2 + ε3

[
e(NF/S)

q

]2
∣∣∣∣∣ (d31d

∗
21E

(1)
+ E

(2)∗
− /~2)ζ(q)

(Re[ωq]− ωd − iγ32)(ω31 − ω1 − iγ31)

∣∣∣∣∣
2

. (2.104)

This expression was derived for the graphene monolayer at the interface of the dielectric waveguide

core and cladding. Similar formulas can be obtained for any other location of graphene.

Figures 2.6-2.8 illustrate the dependence of the DFG power in Eq. (2.104) on various parame-

ters for different waveguide compositions and locations of the graphene monolayer. The structure

width Ly is chosen to be 100 µm. The power scales linearly with Ly. For the plots I chose the ini-

tial state |1〉 in Fig. 2.4 to have the Landau level index n = −3. Then the states |2〉 and |3〉 coupled
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Figure 2.5: The DFG frequency resonant to the transition between Landau-level numbers 2 and 4
as a function of the magnetic field strength. Reprinted with permission from [13].

  

Figure 2.6: DFG power per 1 W of a pump power as a function of the waveguide core thickness
for the magnetic field strength 1T. In the legend of the plot “middle” means that graphene is in
the middle of the core dielectric ε2; “interface” means that graphene is located at the interface
of dielectrics ε2 and ε3. “1T" and “3T" stands for 1 and 3 Tesla magnetic field. Reprinted with
permission from [13].
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Figure 2.7: DFG power per 1 W of a pump power as a function of core thickness for the magnetic
field strength 3 T. A higher magnetic field is chosen to avoid THz absorption in Si. Reprinted with
permission from [13].

  

Figure 2.8: The DFG power per 1 W of a pump power as a function of the magnetic field for several
waveguide structures and geometries. In the legend of the plot “middle” means that graphene is in
the middle of the core dielectric ε2; “interface” means that graphene is located at the interface of
dielectrics ε2 and ε3. Reprinted with permission from [13].
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to state |1〉 by electric dipole-allowed pump transitions have Landau level numbers |n|−1 = 2 and

|n|+ 1 = 4, respectively (as discussed in Sec. 2.7).

The DFG frequency corresponding to the transition between these states is in the THz range;

see Fig. 2.5. The pump wavelengths are in the mid-infrared; for example, at B = 1 T they are 9.1

µm and 10.9 µm. All frequencies scale as
√
B. The pump powers are assumed to be 1 W in the

figures, so that the plots actually show DFG power conversion efficiency in µW/W2.

Figures 2.6 and 2.7 show the dependence of the DFG power on the thickness of the waveguide

core for different positions of the graphene sheet and different waveguide materials at a fixed

magnetic field. The DFG power depends on the magnitude of the in-plane components of the

pump fields on graphene and the localization of the optical pump power. There is an optimal

waveguide thickness which maximizes the DFG power for a given total power in the pump fields.

For wider waveguide cores the in-plane component of the pump field amplitude on graphene gets

smaller, whereas for narrower waveguides the pump field mode gets delocalized. Figs. 2.6 and 2.7

also indicate that it is beneficial to place graphene in the middle of the waveguide core.

With increasing magnetic field the peak DFG power in Eq. (2.104) scales as
√
B, provided

the pump wavelengths are tuned in resonance with corresponding transitions. This dependence is

illustrated in Fig. 2.8 for a particular choice of waveguide structures and geometries. Note that the

choice of particular pump and DFG transitions for a given magnetic field is strongly influenced

by absorption in the waveguide materials. For example, one should obviously avoid reststrahlen

bands in all waveguide layers.

The DFG power can be further enhanced by stacking several monolayers together. However,

there is a trade-off between the nonlinear conversion efficiency and absorption in graphene. I will

calculate the absorption of both pump and difference frequency modes in the next section.
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2.10 Absorption by Graphene

Absorption of the EM modes by graphene is unavoidable. I will calculate the absorption length.

The absorption coefficient (for weak absorption) is given by [41]

a(ωr) ≈ (4π/c)Re[σ3D(ωr)]Γ, (2.105)

where σ3D(ωr) = σ2D(ωr)/∆z, ∆z is the mononayer thickness 0.1-0.3 nm [40], σ2D(ωr) is the

conductivity of graphene which is determined by Eq. (2.41) for the pump fields and σ2D(ωq) =

−iωqχ‖(q, ωq) for the DFG field. χ‖(q, ωq) is given in Eq. (2.81). Γ is the overlap factor defined as

Γ =
〈Φr

S(zg)〉
〈Φr

S(z)〉
=

∆zLy 〈Srx(zg)〉
Ly
∫∞
−∞ 〈Srx(z)〉 dz

(2.106)

where zg is the location of the graphene monolayer, 〈Φr
S〉 is the average Poynting flux (one would

use TE polarized fields for the Poynting flux of the pump fields and a TM polarized field for the

Poynting flux of the SPP mode). Utilizing Eqs. (2.105) and (2.106) one arrives at

a(ωr) =
4πRe[σ2D(ωr)] 〈Srx(zg)〉

c
∫∞
−∞ 〈Srx(z)〉 dz

. (2.107)

The Poynting vector and flux (power) for the TE pump fields were calculated in Sec. 2.3 whereas

the Poynting vector and flux for the TM SPP mode was calculated in Sec. 2.9. The absorption

length is defined as the reciprocal of the absorption coefficient

la(ωr) = a(ωr)
−1 =

[
4πRe[σ2D(ωr)] 〈Srx(zg)〉

c
∫∞
−∞ 〈Srx(z)〉 dz

]−1

. (2.108)

For pump fields I will calculate the conductivity only keeping the resonant terms in the con-

ductivity tensor given by Eq. (2.41). The pump field oscillating at frequency ω1 is resonant with

the |1〉 → |3〉 transition which corresponds to a transition from a state with LL −|m| to a state

|m| + 1. Furthermore, this transition only couples to the E+ component of the field, see Fig. 2.4.
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Figure 2.9: Absorption length for pump field intensity and DFG plasmon-polaritons as a function
of core thickness for a symmetric GaAs waveguide with graphene at the interface. The magnetic
field is 1T. Reprinted with permission from [13].

Using these states in Eq. (2.41) gives

σ+−
con(ωl) = −i e

2v2
F

S~ωl

∑
α

∑
β

(fα − fβ)σ+
βασ

−
αβ

(ωl − ωαβ + iγαβ)

= −ie
2v2
F

~ωl
1

πl2B

∑
m

f|m|+1 − fm
ωl − ω|m|+1,m + iγ|m|+1,m

(2.109)

σ+−
con(ω1) = −ie

2v2
F

~ω1

1

πl2B

f4 − f−3

ω1 − ω4,−3 + iγ4,−3

. (2.110)

In going from the second-to-last line to the last line, I kept only the resonant terms so that the the

sum over m can be dropped.

Similarly, the field at frequency ω2 couples only to the |2〉 → |1〉 transition. Furthermore, only

the E− component couples to this transition and this transition is between LL with indices −|m|
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Figure 2.10: Absorption length for pump field intensity and DFG plasmon-polaritons as a function
of the magnetic field for a symmetric GaAs waveguide with graphene at the interface. The core
thickness is 0.06λ1. Reprinted with permission from [13].

and |m| − 1.

σ−+
con(ωl) = −i e

2v2
F

S~ωl

∑
α

∑
β

(fα − fβ)σ−βασ
+
αβ

(ωl − ωαβ + iγαβ)

= −ie
2v2
F

~ωl
1

πl2B

∑
m

f|m|−1 − fm
ωl − ω|m|−1,m + iγ|m|−1,m

(2.111)

σ−+
con(ω2) = −ie

2v2
F

~ω2

1

πl2B

f2 − f−3

ω2 − ω2,−3 + iγ2,−3

. (2.112)

Note that f2−f−3 ≈ 0 since both states are assumed to be below the Fermi level and thus occupied.

Among the two pump fields, the strongest absorption is experienced by the one at frequency ω1

resonant with transition |1〉 → |3〉, because state |1〉 is below the Fermi level whereas state |3〉 is

above the Fermi level.

The dependence of the absorption length on the magnetic field and the waveguide core thick-

ness is shown in Figs. 2.9 and 2.10, assuming exact resonance with corresponding LL transitions

and the linewidth of 1012 s−1. This is a rather small linewidth corresponding to a high-quality
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graphene encapsulated in hBN. Therefore the absorption rate for most samples is probably over-

estimated and the actual absorption length is longer. In any case, for structures longer than the

absorption length the pump field mode should be excited by a beam coupled from the top rather

than from the facet, in order to reduce the propagation length.

2.11 Summary

In summary, I investigated an electric-dipole-forbidden process of THz difference frequency

generation in Landau-quantized graphene. The second-order susceptibility turned out to be sur-

prisingly high, equivalent to the bulk magnitude of about 3×10−3 m/V. In particular the difference

frequency generation of THz surface plasmon-polaritons in graphene integrated into a dielectric

waveguide or cavity with strong vertical confinement of the optical pump modes was studied. The

DFG power conversion efficiency of the order of tens µW/W2 was predicted for structures of size

around 100 µm. Analytic expressions for the DFG power were obtained and the results were

presented for different structure geometries, composition, and magnetic field strengths.
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3. LASER-DRIVEN PARAMETRIC INSTABILITY AND GENERATION OF ENTANGLED

PHOTON-PLASMON STATES IN GRAPHENE*

3.1 Opening Remarks

This chapter is based on a publication of the same title that I coauthored [27]. A significant por-

tion of the publication will appear verbatim in the sections that follow. However, I will supplement

some sections with derivations that were not present in the published work.

As for my contributions; I was not the lead for this project. I contributed to derivations arising

in the theory proposed by A. Belyanin and M. Tokman, carried out simulations, created illustrative

figures and plots and was involved in the writing process. This project was done in collaboration

with A. Belyanin, I. Oladyshkin, M. D. Tokman (lead author), and Y. Wang.

3.2 Introduction

In the previous section I dealt with magnetized graphene, in this section I will consider graphene

without the presence of a magnetic field. The energy eigenstates and energy eigenfunctions for

graphene were introduced in Ch. 1.2.1. Here I will investigate the process of parametric down-

conversion in graphene. Parametric down-conversion is a second-order nonlinear process, as such

the in-plane second-order susceptibility should be zero (since graphene is centrosymmetric). How-

ever, it was shown in Ch. 2 and by others [23, 25, 42] that in-plane second-order susceptibility is

non-zero when its dependence on the in-plane wavevectors of the photons are taken into account,

i.e. through spatial dispersion or nonlocal effects in real space. The effects of spatial dispersion on

the the nonlinear susceptibility χ(2) can be quite large because the Fermi velocity vF in graphene

is large. An additional enhancement of χ(2) occurs at resonance between the pump frequency and

twice the Fermi energy: ωp = 2εF/~.

The nonlinear process of parametric down-conversion entails the decay of a pump laser pho-

*Reprinted with permission from “Laser-Driven Parametric Instability and Generation of Entangled Photon-
Plasmon States in Graphene” by Mikhail Tokman, Yongrui Wang, Ivan Oladyshkin, A. Ryan Kutayiah, and Alexey
Belyanin, 2016. Phys. Rev. B, 93, 235422, Copyright 2016 by The American Physical Society.
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ton into two lower-frequency photons (usually called “signal" and “idler"). It is perhaps the most

popular method of generating entangled photon states [43]. At higher pump intensities, the para-

metric process can experience gain which leads to the instability and exponential amplification of

coupled signal and idler fields. Stimulated parametric decay enables optical parametric amplifiers

and oscillators as popular tunable sources of long-wavelength radiation from near- to far-infrared

[44]. The phase-matching conditions for frequencies and wavevectors of the fields participating in

a three-wave mixing interaction is:

ωs = ωp − ωi; ks = kp − ki, . (3.1)

The efficiency of parametric down-conversion is enhanced when one of the generated fields is

not a photon but a surface plasmon mode supported by a massless 2D electron layer. A non-zero

value of the nonlocal in-plane χ(2) and plasmon enhancement of the nonlinear signal were pointed

out before for second-harmonic generation [25, 42] (which only included intraband transitions in

a free-carrier model) and for difference-frequency generation [23].

Here the theory of the parametric decay in graphene is developed. It includes a fully quantum

description of the nonlinear response and quantization of all fields. The same formalism can be

applied to other systems of massless Dirac fermions, for example surface states in 3D topological

insulators such as Bi2Se3. The theory is cast in the Heisenberg-Langevin approach. It is therefore

sensible to present the basic ideas. This is done in the next section.

The schematic of the nonlinear process is shown in Fig. 3.1a and 3.1b. An obliquely incident

pump photon decays into an “idler" photon and a “signal" plasmon of a much lower frequency

ωs = ωp − ωi � ωp,i but a comparable wavevector qs ∼ qp. The second of phase matching

conditions in Eqs. (3.1) is replaced by its in-plane projection qs = qp − qi. In addition, the

signal frequency should match the real part of surface plasmon dispersion ω(q) shown in Fig. 3.1b:

ωs = ω(qs). Note that both positive and negative projections of the idler wavevector qi are possible,

where the positive direction is assumed to the right. In particular, negative values of qi give access
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detector

(a) Schematic of the parametric decay of
the pump photon into an idler photon and
a surface plasmon, which satisfies in-plane
component of momentum.
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(b) Shows matching of the signal frequency
to the real part of surface plasmon fre-
quency obtained by solving Eq. (3.1). En-
ergy conservation is satisfied.

Figure 3.1: Schematic of the parametric decay process. Reprinted with permission from [27].

to larger plasmon wavevectors qs = qp − qi = |qp|+ |qi| and frequencies.

3.2.1 Heisenberg-Langevin Equation

I will consider a simple model of a single harmonic oscillator mode interacting with a reservoir

composed of many harmonic oscillator modes. The basic notions of fluctuation and dissipation

can be understood through this model. My derivation will follow Scully’s and Zubairy’s Quantum

Optics [45]. Consider the Hamiltonian of a system given by

Ĥ = Ĥ0 + Ĥint (3.2)

Ĥ0 = ~ωâ†â+
∑
k

~ωkb̂†kb̂k (3.3)

Ĥint = ~
∑
k

gk(b̂
†
ka+ â†b̂k). (3.4)

The Hamiltonian Ĥ describes a single mode field of frequency ω and number operator â†(t)â(t)

that interacts with a reservoir of closely spaced frequencies ωk and number operators b̂†k(t)b̂k(t).

Ĥ0 gives the energy of the free field and the reservoir while Ĥint gives the interaction between the

harmonic oscillator mode of frequency ω and the reservoir composed of many harmonic oscillator

modes with frequencies ωk. Assume for a given time t the operator of the single mode commutes
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with the operators of the reservoir and that different modes of the reservoir also commute, i.e.

[â, â†] = 1, [â, â] = [â†, â†] = 0, (3.5)

[b̂k, b̂
†
k′ ] = δkk′ , [b̂k, b̂k′ ] = [b̂†k, b̂

†
k′ ] = 0, (3.6)

[â, b̂†k] = 0, [â, b̂k] = 0, [â†, b̂k] = 0, [â†, b̂†k] = 0. (3.7)

The equation of motion for the operators are given by the Heisenberg equation

˙̂a =
i

~
[Ĥ, â] =

i

~

[
~ωâ†â+

∑
k

~ωkb̂†kb̂k + ~
∑
k

gk(b̂
†
ka+ â†b̂k), â

]

= −iωâ− i
∑
k

gkb̂k. (3.8)

Similarly, one finds for ˙̂
b

˙̂
bk = −iωkb̂k − igkâ. (3.9)

A solution can be obtained by assuming b̂k(t) = B̂k(t)e
−iωkt and B̂k(0) = b̂k(0).

b̂k(t) = b̂k(0)e−iωkt − igk
∫ t

0

â(t′)e−iωk(t−t′) dt′. (3.10)

Substituting Eq. (3.10) into Eq. (3.8) yields

˙̂a = −iωâ−
∑
k

g2
k

∫ t

0

â(t′)e−iωk(t−t′) dt′ + f̂a(t) (3.11)

f̂a(t) = −i
∑
k

gkb̂k(0)e−iωkt (3.12)

f̂a(t) is the noise operator since it depends on the reservoir operators b̂k(0). Note that the ex-

pectation value of the mode of interest â will depend on the fluctuations in the reservoir since its

equation of motion contains the reservoir-dependent noise operator. The presence of all reservoir

frequencies causes the noise operator to vary rapidly. One can remove the rapid oscillations in the
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mode of interest by transforming to the slowly varying annihilation operator

âs(t) = â(t)eiωt. (3.13)

This transformation preserves the commutation relation

[âs, â
†
s] = eiωte−iωt[â, â†] = 1. (3.14)

Written in terms of the transformed operator âs, Eq. (3.11) becomes

˙̂as = −
∑
k

g2
k

∫ t

0

âs(t
′)e−i(ωk−ω)(t−t′) dt′ + F̂as(t), (3.15)

F̂as(t) = eiωtf̂a(t) = −i
∑
k

gkb̂k(0)e−i(ωk−ω)t. (3.16)

In order to proceed, one needs to evaluate the integral (also addressed in [45] and [46])

∑
k

g2
k

∫ t

0

âs(t
′)e−i(ωk−ω)(t−t′) dt′. (3.17)

Under the assumption that the frequencies ωk are closely spaced one can expand the summation

over k in by an integral:

∑
k

→ 2

∫ 2π

0

dφ

∫ π

0

sin θ dθ

∫ ∞
0

k2 dk(
2π
L

)3 . (3.18)

The factor of 2 accounts for polarization of the photons, L3 = V the quantization volume, the

integrals over the angles can be readily evaluated to give 4π. For a photon, one has ωk = ck =⇒

k2dk → (1/c)3ω2
kdωk. So the sum becomes

∑
k

→ V

π2c3

∫ ∞
0

ω2
k dωk. (3.19)
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Utilizing the results of Eq. (3.19) in Eq. (3.17) leads to

∑
k

g2
k

∫ t

0

âs(t
′)e−i(ωk−ω)(t−t′) dt′ → V

π2c3
g2
k=ω/c

∫ ∞
0

ω2
k dωk

∫ t

0

âs(t
′)e−i(ωk−ω)(t−t′) dt′. (3.20)

Assuming ωk varies only a little around the frequency ω then ωk can be replaced by ω and taken

out of the integral. In addition, the lower limit of integration can be taken as −∞. Also let

gk=ω/c ≡ g(ω) then:

V

π2c3
g2(ω)

∫ ∞
0

ω2
k dωk

∫ t

0

âs(t
′)e−i(ωk−ω)(t−t′) dt′

→V ω2

π2c3
g2(ω)

∫ ∞
−∞

dωk

∫ t

0

âs(t
′)e−i(ωk−ω)(t−t′) dt′ (3.21)

If one carries out the integration over ωk first while keeping in mind that integral

∫ ∞
−∞

dωke
−i(ωk−ω)(t−t′) = 2πδ(t− t′) (3.22)

then one obtains ∑
k

g2
k

∫ t

0

âs(t
′)e−i(ωk−ω)(t−t′) dt′ ≈ 1

2
γsâs(t) (3.23)

where

γs = 2π[g(ω)]2D(ω) (3.24)

and D(ω) = ω2V/(c3π2) is the density of states. Finally, by using results of Eq. (3.23) one obtains

for Eq. (3.15)

˙̂as(t) = −1

2
γsâs(t) + F̂as(t), . (3.25)

Eq. (3.25) resembles the Langevin equation as such the operator F̂as called is the Langevin noise

operator and the equation above is the called the Heisenberg-Langevin equation. The presence of

the noise term along with the dissipation term is a manifestation of the Fluctuation-Dissipation.

Dissipation is accompanied by fluctuations. If one were to set the fluctuation to zero, i.e. F̂as → 0
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in Eq. (3.25) and solve for âs, one finds

âs(t) = âs(0)e−γst/2. (3.26)

Upon evaluating the commutator of âs and â†s one finds

[âs(t), â
†
s(t)] = [âs(0), â†s(0)]e−γst = e−γst. (3.27)

One sees the equal-time commutation relation [âs(t), â
†
s(t)] = 1 is not preserved. Now I will show

that the equal-time commutation relation is preserved when the noise term is present. The solution

to Eq. (3.25), in the presence of noise, is

âs(t) = âs(0)e−γst/2 +

∫ t

0

F̂as(t
′)e−γs(t−t

′)/2 dt′. (3.28)

I will evaluate the equal-time commutator by making use of the commutation relations given in the

last line of Eqs. (3.7) which implies that the annihilation operator âs(0) and the creation operator

âs(0) commutes with the operators of Langevin noise F̂as and F̂ †as in any combination. This is ob-

vious when one takes into account that the noise operators are composed of the reservoir operators

at t = 0, i.e. b̂k(0) and b̂†k(0) according to Eq. (3.16)

[âs(t), â
†
s(t)] =

[
âs(0)e−γst/2 +

∫ t

0

F̂as(t
′)e−γs(t−t

′)/2 dt′, â†s(0)e−γst/2

+

∫ t

0

F̂ †as(t
′′)e−γs(t−t

′′)/2 dt′′
]

(3.29)

= e−γst +

∫ t

0

dt′
∫ t

0

dt′′e−γs(t−t
′)/2e−γs(t−t

′′)/2
[
F̂as(t

′), F̂ †as(t
′′)
]

(3.30)
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By way of Eq. (3.16)

[
F̂as(t

′), F̂ †as(t
′′)
]

=
∑
k,k′

gkg
†
k′e
−i(ωk−ω)t′e+i(ωk′−ω)t′′ [b̂k(0), b̂†k′(0)]︸ ︷︷ ︸

δkk′

(3.31)

=
∑
k

|gk|2e−i(ωk−ω)(t′−t′′) (3.32)

= γsδ(t
′ − t′′) (3.33)

The steps to go from the summation over k to an integral in dωk, as outlined in Eqs. (3.18)-(3.24),

were used in going from Eq. (3.32) to Eq. (3.33). Inserting Eq. (3.32) into Eq. (3.30) gives

[âs(t), â
†
s(t)] = e−γst +

∫ t

0

dt′
∫ t

0

dt′′e−γs(t−t
′)/2e−γs(t−t

′′)/2γsδ(t
′ − t′′) (3.34)

= e−γst + γs

∫ t

0

dt′e−γs(t−t
′) = e−γst + γs

[
e−γs(t−t

′)

γs

]∣∣∣∣t
0

= 1. (3.35)

Thus, the equal-time commutation relation is preserved when dissipation is accompanied by fluctu-

ations. I showed earlier that if fluctuations are neglected while dissipation is present, the equal-time

commutation relation is violated.

Before moving on the the main items in this project I will give the thermal averages of the

reservoir operators which will be used to derive some useful correlation functions of the noise

operator. Suppose the reservoir of harmonic oscillators is in thermal equilibrium then

〈
b̂k(0)

〉
R

=
〈
b̂†k′(0)

〉
R

= 0, (3.36)〈
b̂†k(0)b̂k′(0)

〉
R

= δkk′nk, (3.37)〈
b̂k(0)b̂†k′(0)

〉
R

=
〈
b̂†k(0)b̂k′(0) + 1

〉
R

= δkk′(nk + 1), (3.38)〈
b̂k(0)b̂k′(0)

〉
R

=
〈
b̂†k(0)b̂†k′(0)

〉
R

= 0 (3.39)

Recall that the Langevin noise operators F̂as(t) are given in terms of the reservoir operators b̂k(0),

see Eq. (3.16). The correlation functions for the noise operator is considered below for a reservoir
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in thermal equilibrium. 〈
F̂as(t)

〉
R

=
〈
F̂ †as(t)

〉
R

= 0 (3.40)

where Eqs. (3.36) were used.

〈
F̂ †as(t)F̂as(t

′)
〉
R

=
∑
k,k′

gkgk′
〈
b̂†k(0)b̂k′(0)

〉
R
ei(ωk−ω)te−i(ωk′−ω)t′ (3.41)

=
∑
k

g2
knke

i(ωk−ω)(t−t′) (3.42)

= γsNT δ(t− t′). (3.43)

In going from the second-to-last line to the last line in the equation above I used changed the sum

to an integral as done earlier in this section. NT = n(ωk) is the Bose-Einstein distribution given

by

NT (ωk) =
[
e~ωk/(kBT ) − 1

]−1
. (3.44)

Similarly, one finds for
〈
F̂as(t)F̂

†
as(t

′)
〉
R〈

F̂as(t)F̂
†
as(t

′)
〉
R

= γs(NT + 1)δ(t− t′). (3.45)

3.3 Quantized SPP Field in Graphene

Consider the geometry of Fig. 3.1a, i.e. a 2D layer of massless Dirac electrons in z = 0 plane

between two media with dielectric constants ε1 and ε2. The plasmon frequency ωs and in-plane

wavevector qs are related through the dispersion relation for a TM-polarized surface mode, see

Eq. (2.71) and also [23]:

4πχs +
ε1
p1

+
ε2
p2

= 0, (3.46)

where p1,2 =
√
q2
s − ε1,2

ω2
s

c2
. At THz frequencies smaller than twice the Fermi energy 2εF/~ one

needs only to take into account the intraband contributions to the linear 2D susceptibility χs(ωs, qs),
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which in the limit of strong degeneracy is given by [23]

χs(ωs, qs) =
2e2εF
π~2ωs

(ωs + iγs)

(vF qs)2

[
1− ωs + iγs

ωs + iγs + vF qs

√
1 +

2vF qs
ωs + iγs − vF qs

]
. (3.47)

Where εF is the Fermi energy and γs is the decay rate of the fermion momentum at the surface

plasmon frequency.

The z-distribution of the field Es(z) can be obtained from Eq. (2.69) while keeping in mind

that graphene is on the z = 0 plane (at the interface of two dielectrics ε1 and ε2):

Es(z) =

(
ex ± ez

iqs
p1,2

)
Es0e

∓p1,2z, (3.48)

where the upper and lower signs correspond to z > 0, and z < 0, respectively.

The quantization for the plasmon field in the limit of weak dissipation ωs � γs consists of two

steps. First, a standard quantization procedure is applied neglecting any dissipation [39, 45, 47,

48]. Second, Heisenberg equations of motion for the field operators are formulated which include

interaction with a dissipative reservoir and the effects of external and nonlinear currents. The first

step leads to

Ê =
∑
qs

Es(z)âse
iqsr‖−iωst + H.c., (3.49)

where r‖ = (x, y) and âs, â†s are annihilation and creation operators of surface plasmon modes.

Similar to the case of propagating fields [45, 49], the energy of the plasmon field inside a volume

V can be written as

Ĥ =
1

8π

∑
s

(â†sâs + âsâ
†
s)

∫
V

(
E∗s

∂(ωε̃)

∂ω
Es +BsB

∗
s

)
d3r, (3.50)

where ε̃ is the dielectric permittivity tensor.

The normalization constant Es0 can be chosen so that the Hamiltonian for the plasmon field
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takes the standard form: Ĥs =
∑
qs
~ωs(qs)

(
â†sâs + 1/2

)
. This is achieved if the following nor-

malization condition is assumed, (which is similar to the case of a photon field [49, 50]):

Ĥs =

∫
V

(
E∗s

∂(ωε̃)

∂ω
Es +BsB

∗
s

)
d3r = 4π~ωs. (3.51)

Here ε̃ is the dielectric permittivity tensor; the volume V is formed by a closed cylindrical surface

that crosses the (x, y) plane along the boundary of the area A = 1.

One can show that when the flux of the complex vector Es × B∗s through the surface of the

quantized volume is equal to zero (which is the case, for example, for periodic boundary conditions

or in a resonator), then
∫
V
d3rBsB

∗
s =

∫
V
d3rEsε̃E

∗
s . This condition allows one to transform the

volume integral in Eq. (3.51) in the following way:

∫
V

(
E∗s

∂(ωε̃)

∂ω
Es +BsB

∗
s

)
d3r

=

∫
V

E∗s
∂(ω2ε̃)

ω∂ω
Esd

3r =

∫ +∞

−∞
E∗s

∂(ω2ε̃)

ω∂ω
Esdz. (3.52)

Next, one substitutes into Eq. (3.52) the z-dependence of the dielectric permittivity which follows

from the geometry of the system:

εxy = εyx = εxz = εzx = εyz = εzy = 0,

εxx = εyy =


ε1 for z > 0

1 + 4πχsδ(z) for z = 0

ε2 for z < 0,

εzz =


ε1 for z > 0

1 for z = 0

ε2 for z < 0,
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and use Eqs. (3.51) and (3.52) with Eq. (3.48) to arrive at

|Es0|2
[(

q2
s

p2
1

− 1

)
ε1
p1

+

(
q2
s

p2
2

− 1

)
ε2
p2

+4πωsRe

(
∂χs
∂ω

)]
= 4π~ωs. (3.53)

In the quasielectrostatic approximation p2
1,2 → q2

s and Eq. (3.53) reduces to

|Es0|2 = ~ (Re(∂χs/∂ω))−1 . (3.54)

The effect of dissipation of a plasmon field (within ωs � γs) and its nonlinear interaction with

other fields can be taken into account within the Heisenberg-Langevin approach [45]. For quasi-

monochromatic wave fields, it is convenient to consider a wave packet of surface plasmon modes

with frequencies and wavevectors concentrated in a narrow spectral range ∆ω � ωs, ∆q � qs

near a central component ∝ eiqsr‖−iωst [39, 51, 47, 48]. Within this approach one can introduce

the annihilation and creation operators âs(r‖, t) and â†s(r‖, t) that are slowly varying in time and

space relative to ωs and qs. Their commutator is equal to the number of quantized modes per unit

area S = Lx × Ly = 1 within the spectral interval ∆ω, i.e.

[âs, â
†
s] =

∆Z

S

where ∆Z = (Lx/2π)∆k is the number of propagating modes (in the x-direction). Note that

∆k ∼ (∂k/∂ω)∆ω = (1/vs)∆ω. Thus,

[âs, â
†
s] =

∆ω

2πLyvs
(3.55)

where vs is the group velocity of a surface plasmon which determines its spectral density of states

and Ly is the aperture size of the beam. The commutation relations for the Fourier components of

the creation and annihilation operators of the plasmon field envelope âs =
∫
dω âsωe

−i(ω−ωs)t and
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â†s =
∫
dω â†sωe

i(ω−ωs)t have the form

[
âsω, â

†
sω′

]
=
δ(ω − ω′)
2πLyvs

. (3.56)

Eq. (3.49) for the field operator remains valid for a wave packet after one replaces constant opera-

tors âs and â†s with slowly varying operator amplitudes and remove the summation over wavevec-

tors.

Equations for a slowly varying field amplitude of a surface plasmon wave packet can be ob-

tained in the same way as for the propagating optical fields; see e.g. [39, 47, 48]:

∂âs
∂t

+ vs
∂âs
∂x

+ γsâs =
i

~
P̂ (2)
s E∗s0 + F̂s, (3.57)

where γs = ~−1(Im[χs])|E2
s0|, F̂s(t) is the operator of the Langevin noise, and

P̂
(2)
s = x0P̂

(2)
s eiqsx−iωst+ H.c. is the second-order nonlinear component of the polarization opera-

tor.

The Langevin noise source ensures a correct expression for the commutator of the plasmon

field in the presence of its interaction with a dissipative reservoir as was seen in Sec. 3.2.1. It is

convenient to define the properties of the noise source in terms of its spectral components F̂s =∫
F̂sωe

−iωt dω and F̂ †sω = F̂s;−ω. Assuming a dissipative reservoir in thermal equilibrium and

adjusting Eqs. (3.43) and (3.45) for the 2D geometry and taking position into account, one can

write [39, 45]

〈
F̂ †
ω′

(x′)F̂ω(x)
〉

=
γsNT (ωs)

πLy
δ(ω − ω′)δ(x− x′), (3.58)〈

F̂ω(x)F̂ †
ω′

(x′)
〉

=
γs(NT (ωs) + 1)

πLy
δ(ω − ω′)δ(x− x′),

where 〈...〉 means averaging over both an initial quantum state in the Heisenberg picture and the

statistics of the dissipative reservoir, NT (ωs) =
(
e~ωs/(kBT ) − 1

)−1, see Eq. (3.44).
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In the absence of the nonlinear polarization, the solution of Eqs. (3.57), (3.58) in the limit

γsx/vs →∞ corresponds to thermal equilibrium:

〈
â†sâs

〉
→
〈
â†sâs

〉
T

=
NT (ωs)∆ω

2πLyvs
. (3.59)

Eq. (3.59) satisfies a general property of the thermal emission: its power ≈ Lyvs~ωs
〈
â†sâs

〉
T

received by a matched antenna does not depend on the size and shape of the aperture [52].

3.4 Parametric Instability in Graphene

Generation of surface plasmons in graphene is possible with both transverse magnetic or P-

polarized (see [23]) and transverse electric or S-polarized optical pumping. The theory is developed

in the same way for both polarizations. The difference is that in the case of P-polarized photons

only the χ(2)
xxx component of the second-order susceptibility is involved, whereas for S-polarized

pumping both xyy and yyx components contribute to the parametric process. S-polarized radia-

tion maximizes the in-plane projection of the electric field. In addition, theory predicts a larger

magnitude of the xyy component compared to the xxx component. Therefore, I will consider only

the case of S-polarization, assuming an S-polarized bichromatic pump+idler field incident from

the z > 0 half-space:

Ê =
∑
j=p,i

Êj; Êj = eyEj0ĉje
−ikjz+iqjx−iωjt + H.c.,

where the normalization fields |Ej0|2 = 2π~ωj/n2
1 are defined for a unit quantization volume, ĉj

are Heisenberg operators of slowly varying amplitudes corresponding to a finite spectral width ∆ω

[39, 47, 48, 50]. The nonlinear 2D polarization at frequencies ωp,i,s generated in the graphene
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plane z = 0 is given by

P̂ (2)
s = exχ

(s,2)
xyy Ê

†
i Êp + H.c.,

P̂
(2)
i = eyχ

(i,2)
yyx E

∗
s0â
†
sÊpe−iqsx+iωst + H.c.,

P̂ (2)
p = eyχ

(p,2)
yyx Es0âsÊieiqsx−iωst + H.c., (3.60)

where Êp,i are the ∝ exp(−iωt) parts of the electric field operators at the pump and idler frequen-

cies ωp,i in the graphene plane. The second-order susceptibilities at corresponding frequencies are

χ
(s,2)
xyy = χ

(2)
xyy(ωs = ωp − ωi), χ(i,2)

yyx = χ
(2)
yyx(ωi = ωp − ωs), χ(p,2)

yyx = χ
(2)
yyx(ωp = ωi + ωs). Index α

in χ(2)
αβγ(ω = ω′ ∓ ω′′) corresponds to the polarization of the field at the mixing frequency ω, and

the index β corresponds to the polarization of the field at a larger of the two frequencies ω′, ω′′.

Now I will consider the boundary conditions connecting the fields on both sides of the graphene

layer. Besides the continuity of the electric field, I will use the relationships for magnetic field

components:

B̂(i,p)
z (z = +0) = B̂(i,p)

z (z = −0),

B̂(i,p)
x (z = +0)− B̂(i,p)

x (z = −0) = −4π
iωi,pP̂

(2)
i,p

c
,

where B̂(i,p)
z,x are operators of the magnetic field components that are related to the electric field

operators by standard Maxwell’s equations.

Using the nonlinear polarizations and boundary conditions for the fields, Eq. (3.57) becomes

∂âs
∂t

+ vs
∂âs
∂x

+ (γs − Ĝ) · âs = Ĵ + F̂s, (3.61)
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where

Ĵ = Γχ(s,2)
xyy ĉ

†
i ĉp, Γ = i

2π
√
ωiωp

n2
1

TiTpE
∗
s0,

Ĝ = |Γ|2n1

c

(
χ

(s,2)
xyy χ

(i,2)∗
yyx ĉ†pĉp

Ti cos θ1i

− χ
(s,2)
xyy χ

(p,2)
yyx ĉ

†
i ĉi

Tp cos θ1p

)
.

Here Tp,i = 2n1 cos θ1p,i/(n1 cos θ1p,i + n2 cos θ2p,i) are Fresnel transmission coefficients for S-

polarized pump and idler fields with incidence angles θ1p,i and refraction angles θ2p,i. Eq. (3.61)

was derived neglecting the terms of the order α|χ(2)|2 and |χ(2)|3 where α = e2/~c.

The terms Ĵ and Ĝ in Eq. (3.61) include all possible three-wave mixing processes. The term Ĵ

describes difference frequency generation of surface plasmons in graphene by a bichromatic quan-

tum field. For classical fields this process has been predicted in [23] and observed in [53]. The

operator Ĝ describes the creation of plasmons by a parametric decay of the pump photons.

When solving operator-valued equations, in addition to the fields incident from z > 0 one

also needs to specify operators of noise fields incident from z < 0 [50]. This allows one to take

into account the current fluctuations in a graphene layer caused by zero-point and thermal fluc-

tuations of the field in the region z < 0. It is easy to show that in this case one should replace

ĉp,i → ĉp,i + ĉ
(−)
p,i , ĉ†p,i → ĉ†p,i + ĉ

†(−)
p,i in Eq. (3.61), where creation and annihilation operators ĉ(−)

p,i

and ĉ†(−)
p,i correspond to the waves incident on a graphene layer from z < 0 at angles θ2(p,i). The

corresponding terms can be treated as a modification of the Langevin source term in Eq. (3.61).

However, under the condition ~ωs � kBT � ~ωp the effect of this modification on the plas-

mon field correlator
〈
â†sâs

〉
is negligible compared to the standard Langevin fluctuations given by

Eq. (3.58).
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The operator-valued Eq. (3.61) has a stationary solution given by

âs = exp

(
Ĝ− γs
vs

x

)
(3.62)

×

âs(0) +

∫ x

0

[
exp

(
Ĝ− γs
vs

x′

)]−1 (
Ĵ + F̂s

) dx′
vs

 ,

where âs(0) is the corresponding boundary condition,
[
exp

(
Ĝ−γs
vs

x
)]−1

is the operator inverse to

exp
(
Ĝ−γs
vs

x
)

.

Below I will assume that the pump field at frequency ωp is a coherent classical field whereas

the field at the idler frequency ωi is present only as a quantum and/or thermal noise.

Whenever the contribution of electromagnetic noise incident from the half-space z < 0 can

be neglected, one can also neglect the term Ĵ compared to the Langevin noise term. For a coherent

pumping, the operator Ĝ can be replaced by a c-number:

G ≈ |Γ|2n1

c

χ
(s,2)
xyy χ

(i,2)∗
yyx

〈
ĉ†pĉp

〉
Ti cos θ1i

. (3.63)

Taking the thermal noise as a boundary condition and taking into account Eqs. (3.58) and (3.62)

one can get

â†sâs = exp

[
2

Re[G]− γs
vs

x

]
(â†sâs)T (3.64)

×
[
1 +

γs
Re[G]− γs

(
1− exp

[
−2

Re[G]− γs
vs

x

])]
,

where the operator (â†sâs)T corresponds to the thermal field and has an average value given by

Eq. (3.59). Note that there is a 1/vs dependence in the gain factor in Eq. (3.64) which describes

the enhancement in the gain for slowly moving plasmons compared to photons.
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From Eq. (3.64) one can obtain an important result, namely the criterion for parametric in-

stability:

Re(χ(s,2)
xyy χ

(i,2)∗
yyx ) > 0, (3.65)

Re[G] ≈ |Γ|2
Re
[
χ

(s,2)
xyy χ

(i,2)∗
yyx

]
Ip

c2~ωp
n2

1

Ti cos θ1i

> γs, (3.66)

where Ip is the incident pump intensity.

3.5 A Coupled Oscillators Model for Parametric Gain

The instability condition Eqs. (3.65), (3.66) can be easily interpreted and understood within

the classical model of two parametrically coupled oscillators. Consider a classical pump beam of

amplitude Ep and ωp incident on a nonlinear 2D layer in vacuum. The pump field decays into a

surface plasmon field within a unit area As = 1 and an idler photon field at frequency ωi within

a volume of a cylinder of length l oriented at an angle θi with respect to the normal to area As.

In this mean-field zero-dimensional (0D) model, one can derive the following coupled differential

equations for the complex amplitudes of the plasmon and idler fields:

∂Es
∂t

+ γsEs = iζsEpE
∗
i , (3.67)

∂E∗i
∂t

+ γiE
∗
i = −iζ∗i E∗pEs, (3.68)

where

ζs =
1

2
χ(s,2)
xyy

[
Re

(
∂χs
∂ω

)]−1

, ζi =
π

l cos θi
ωiχ

(i,2)∗
yyx ,

γi = c/l is the effective decay rate of the idler field in the 0D model. Equations (3.67) and (3.68)

have an exponentially growing solution for both parametrically coupled waves [44] if

Re(ζsζ
∗
i )|Ep|2 > γsγi, which coincides with Eqs. (3.65), (3.66) if one uses Eq. (3.54) and assume

84



n2 = n1 = 1.

3.6 The Spectrum and Magnitude of Parametric Gain

To calculate the magnitude of the parametric gain one needs to substitute the components of the

second-order susceptibility tensor. Their derivation is straightforward but cumbersome, see [27]

for details. Their salient feature is the presence of resonances when one of the three frequencies

involved in three-wave mixing is close to 2εF = 2~vFkF . This is a weaker resonance than the one

that exists in coupled quantum wells [54] where χ(2) would scale as a product of two Lorentzians.

Still, it enhances the value of χ(2) by a factor of ω/γ where γ is the decay rate of the optical polar-

ization. A similar resonance exists in the third-order nonlinear response of graphene [55].

Far from resonance, when |ωp − 2vFkF | � γ, one can neglect dissipation. In this case, all

components of the nonlinear susceptibility tensor satisfy symmetry properties

χ(s,2)
xyy = χ(i,2)

yyx = χ(p,2)∗
yyx (3.69)

which ensure Manley-Rowe relationships [56, 57].

Close to resonance one has to include the imaginary part of the frequency which describes

the decay rate of the optical or plasmon polarization. If dissipation is included, Eqs. (3.69) can be

violated. In this case one has to use a more general procedure outlined in [27]. From the derivation

in [27] one can obtain that if the resonance condition is satisfied for the idler photon frequency,

|ωi − 2vFkF | < γ, then χ(s,2)
xyy = −χ(i,2)∗

yyx . In this case the inequality in Eq. (3.65) is violated, i.e.

the parametric instability is impossible. At the same time, when the resonance exists for the pump

frequency, |ωp − 2vFkF | < γ, one obtains

χ(s,2)
xyy = χ(i,2)∗

yyx ≈
3e3v2

F

8π~2

qp
ωiω2

sγ
, (3.70)
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which satisfies Eq. (3.65). Therefore, I will assume that the frequency of the pump field is close

to 2vFkF . The χ(2)
xxx component of the nonlinear susceptibility tensor was evaluated (see [27]) and

found that its value is 3 times lower at resonance compared to Eq. (3.70). This means that the

parametric gain for a P-polarized pump is more than an order of magnitude lower as compared to

a S-polarized pump (if one takes into account a smaller in-plane projection of the electric field and

the |χ(2)|2 scaling of the gain). If one assumes ωp,i � ωs � γs and considers strongly degenerate

graphene then one gets a resonant enhancement of the nonlinearity. In addition to a resonant en-

hancement of the nonlinearity, the former assumptions allow one to eliminate interband absorption

losses for the plasmons and reduces electron scattering.
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Figure 3.2: Gain Re[G] (solid blue line) and the plasmon frequency corresponding to phase match-
ing conditions (green dashed line) as a function of the angle θ1i between the direction of the idler
wavevector in medium 1 and the normal. Reprinted with permission from [27].

Figure 3.2 shows the gain (left-hand side of Eq. (3.66)) and the plasmon frequency correspond-

ing to phase matching conditions as a function of the emission angle of the idler field θ1i. Negative

angles correspond to negative projections of qi. For the plot I took n1 = 1 and n2 = 2, γp,i = 1012

s−1, the pump beam at a 10-µm wavelength and incidence angle of π/4. The pumping intensity
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Figure 3.3: Pumping intensity Ip needed to reach the parametric instability threshold, Re[G] = γs
in Eq. (3.66), as a function of the plasmon decay rate γs. Reprinted with permission from [27].

was assumed to be Ip = 100 MW/cm2, which is 10 times lower than the intensities in the exper-

iment [53]. The gain is only weakly dependent on the idler emission angle except for a narrow

range around θ1i = π/4 where qp ' qi and therefore qs, ωs → 0. In this range the gain becomes

negative; however, the approximation ωs � γs becomes invalid, so this case requires a separate

investigation.

Fig. 3.3 shows the pumping intensity Ip needed to reach the parametric instability threshold,

Re[G] = γs, as a function of plasmon decay rate γs, for the same numerical parameters as in

Fig. 3.2 and for the idler emitted at θ1i = 20 degrees. In this case the phase matching condition is

satisfied when the plasmon frequency ωs/2π is equal to 1 THz (see Fig. 3.2). The magnitude of

the gain can be further increased by non-Bernal stacking of multiple graphene layers, which will

reduce the threshold intensity.

Low-energy surface states of a 3D topological insulator Bi2Se3 are massless 2D Dirac fermions

described by the effective Hamiltonian H = vF (~σ × ~p)z [58], where vF is two times smaller than

in graphene. The states have different chirality compared to those in graphene but the same matrix

elements of the interaction Hamiltonian and the same structure of the optical response. Repeating

the same derivation, one can show that the parametric gain for a Bi2Se3 film (i.e. two uncoupled

surfaces) will have a magnitude lower by a factor of ∼ 26 due to a two times lower vF and two

times lower degeneracy.
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3.7 Generated Idler Field Flux

The outgoing flux of idler photons generated as a result of parametric decay of the pump carries

information on the intensity of generated surface plasmon field, the surface nonlinearity, and even

the quantum state of plasmons. Therefore, the detection of idler photons is a valuable diagnostic

tool, especially in the experiments where the direct detection of surface plasmons is problematic.

To calculate the operator of the idler field generated by the nonlinear current ∂tP̂
(2)
i , one uses

Eqs. (3.60) and standard boundary conditions from the previous section, arriving at

δÊi = y0Ei0ĉ
(2)
i eikiz+iqix−iωit + H.c., ĉ

(2)
i =

n1Γχ
(i,2)
yyx

c cos θ1i

â†sĉp.

If one only needs to know the average flux of the idler photons on the detector of transverse area

AD,
〈

Π̂
(2)
i

〉
=

〈
cAD
n1

ĉ†i ĉi

〉
, it is enough to calculate the average value of the plasmon quanta〈

â†sâs
〉

generated from length Lx. Using Eq. (3.64) one obtains

〈
â†sâs

〉
=

1

Lx

∫ x

0

〈
â†sâs

〉
dx ≈

〈
â†sâs

〉
T

eΞ − 1

Ξ
, (3.71)

Ξ = 2
Re[G]− γs

vs
Lx.

The resulting average flux of the idler photons on the detector is given by

〈
Π̂

(2)
i

〉
=
n2

1|Γ|2|χ
(i,2)
yyx |2IpLx∆ω

2πc2vs~ωp cos θ1i

(
eΞ − 1

Ξ
NT (ωs) + 1

)
.

Close to the parametric instability threshold, when
eΞ − 1

Ξ
∼ 1, the idler photon flux is

〈
Π̂

(2)
i

〉
∼ ∆ωγsLx

2πvs
NT (ωs), (3.72)

i.e. it is of the order of the thermal flux at a much lower surface plasmon frequency, NT (ωs) �

NT (ωp), collected from the length equal to the plasmon decay length, Lx ∼ vs/γs. Far above
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threshold, both idler and surface plasmon fluxes increase exponentially, ∝ eΞ.

3.8 Plasmon-Photon Entanglement

The total idler field propagating away from the graphene layer to the detector consists of the

reflected and transmitted noise field and the generated parametric field calculated above:

ĉr ≈ Riĉi +
√

1−R2
i ĉ

(−)
i +

n1Γχ
(i,2)
yyx

c cos θ1i

â†sĉp, (3.73)

where Ri =
n1 cos θ1i − n2 cos θ2i

n1 cos θ1i + n2 cos θ2i

is the Fresnel reflection coefficient for the S-polarized field.

Here I neglected absorption in monolayer graphene ∼ πα. It could be easily included by redefin-

ing Ri. Calculating quantum-mechanical averages of the quantities quadratic with respect to the

reflected field, it is easy to see that Eq. (3.73) corresponds to an entangled plasmon-photon state

(see also [39]).

In general, the calculations of quantum-mechanical averages of any physical quantities are

much easier to perform in the Heisenberg picture using Eq. (3.73) for Heisenberg operators, with-

out converting to the Schrödinger picture. In particular, it is obvious from Eq. (3.73) that for a

given spectrum of the pump field any physical observable for a surface plasmon field can be re-

lated to a corresponding observable for the idler field at frequency ωi. For example, if the pump

field spectrum is much narrower than the spectrum of the plasmon fluctuations, then the spectrum

of surface plasmons is related to the spectrum of idler photons. However, to demonstrate how the

entangled state is formed, the Schrödinger picture be will discussed as well, with certain simplifi-

cations. Namely, consider the equation of motion Eq. (3.57) for the plasmon field in the particular

case of single-mode fields, classical pumping, and neglecting dissipation. This means that one can

take Ep to be a c-number, ∂x → 0, γ, F̂s → 0, and χ(s,2)
xyy = χ

(i,2)
yyx = χ(2). I will also assume for

simplicity that the media on both sides of the graphene sheet have dielectric constants equal to 1.

In this case Eqs. (3.57) and (3.60) yield

˙̂as =
i

~
χ(2)EpE∗s0E∗i0ĉ

†
i , (3.74)
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and the Hermitian-conjugate equation

˙̂a†s =
i

~
χ(2)E∗pEs0Ei0ĉi. (3.75)

For single-mode fields, the normalizations I chose correspond to [âs, â
†
s] = [ĉs, ĉ

†
s] = 1,

Eqs. (3.74) and (3.75) can be interpreted as Heisenberg equations in the interaction representa-

tion:

˙̂as =
i

~

[
V̂ , âs

]
, ˙̂a†s =

i

~

[
V̂ , â†s

]
. (3.76)

Here the interaction Hamiltonian is

V̂ = −ξâ†sĉ
†
i − ξ∗âsĉi, (3.77)

where ξ = χ(2)EpE∗s0E∗i0.

Solving the Schrödinger equation in the interaction representation gives:

i~Ψ̇ = V̂Ψ. (3.78)

Starting for simplicity with the initial condition in the form Ψ(t = 0) = |0〉s|0〉i, the solution to

Eq. (3.78) can be written as

Ψ =
∞∑
n=0

Cn|n〉s|n〉i, (3.79)

where the coefficients Cn can be found from equations

Ċ0 +
i

~
ξ∗C1 = 0,

Ċn 6=0 −
i

~
ξnCn−1 +

i

~
ξ∗(n+ 1)Cn+1 = 0, (3.80)
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with initial conditions C0(t = 0) = 1, Cn6=0 = 0. It is clear that at t > 0 the solution (3.79) is

entangled, i.e. it cannot be factorized as Ψ = (
∑∞

n=0 An|n〉s) × (
∑∞

n=0Bn|n〉i). In particular,

within the perturbation theory, the solution can be expressed via Bell states

Φ± = (1/
√

2) (|0〉s|0〉i ± |1〉s|1〉i):

Ψ ≈ |0〉s|0〉i + C̃|1〉s|1〉i√
1 + |C̃|2

=
1 + C̃√
1 + |C̃|2

Φ+√
2

+
1− C̃√
1 + |C̃|2

Φ−√
2
, (3.81)

where C̃ = i
~ξt� 1.

3.9 Summary

In summary, the feasibility of observing both spontaneous and stimulated parametric decay of

photons of a strong laser pump obliquely incident on graphene was shown. The flux of surface

plasmons and idler photons generated by parametric decay of the pump was calculated, and the en-

tanglement of these modes was demonstrated. A rigorous quantum theory of the process including

quantization of all fields and fluctuations has been developed.
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4. OPTICAL PROPERTIES AND ELECTROMAGNETIC MODES OF WEYL

SEMIMETALS*

4.1 Opening Remarks

This chapter is based on a publication of the same title that I coauthored [59]. Most of the pub-

lication will appear verbatim in the sections that follow with some additions and rearrangements.

As for my contributions: I was not the lead but second author for this project. I contributed

to derivations arising from the theory, carried out simulations, created figures and plots and was

involved in the writing process. I will include a couple of figures below that were not in the

published work. This project was done in collaboration with Q. Chen (lead author), A. Belyanin,

I. Oladyshkin and M. D. Tokman.

4.2 Introduction

Weyl semimetals (WSMs) have attracted a lot of interest as a new class of gapless three-

dimensional topological materials. Their Brillouin zone contains an even number of band-touching

points, or Weyl nodes. The Weyl nodes can be described by topological invariants which are de-

fined as integrals over the two-dimensional Fermi surface. For each pair of Weyl nodes, these in-

variants can be viewed as topological chiral charges of opposite signs [60] (the signs are determined

by the chirality). The electron dispersion near each Weyl node corresponds to three-dimensional

massless Weyl fermions. For crystals with broken time-reversal or inversion symmetry (or both),

the Weyl nodes of opposite chirality are separated in momentum space. The separation makes

them stable against small perturbations and also gives rise to surface states with Fermi arcs. For

reviews of WSMs discovered so far and their properties, see [61, 62, 63, 64, 65, 66].

Hitherto, much of the research has been focused on measuring and modeling the electronic

structure of WSMs and topological signatures in electron transport. However, it is becoming in-

*Reprinted with permission from “Optical Properties and Electromagnetic Modes of Weyl Semimetals” by Qianfan
Chen, A. Ryan Kutayiah, Ivan Oladyshkin, Mikhail Tokman, and Alexey Belyanin, 2019. Phys. Rev. B, 99, 075137,
Copyright 2019 by The American Physical Society.
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creasingly clear that optical studies in the terahertz to mid-infrared spectral regions (e.g. [67])

can provide a sensitive and sometimes more selective probe into the unique properties of these

materials as compared to other methods. For a WSM in a magnetic field several proposals ex-

plored the signatures of the chiral anomaly in the interband optical absorption and plasmon mode

properties; see e.g. the calculations of the magnetooptical conductivity in the quasiclassical limit

[68, 69, 70, 71, 72, 73, 74] and the quantum-mechanical theory in a strong magnetic field [75, 76].

Note that these studies did not include finite separation of Weyl nodes in a microscopic Hamilto-

nian.

Here, the study of the electromagnetic eigenmodes of WSMs in the presence of finite separation

between Weyl nodes in momentum space and without an external magnetic field is considered. To

calculate the optical response, one needs to determine a realistic low-energy Hamiltonian that cap-

tures the essential topological structure of WSMs. While many WSMs discovered in experiments

have a complicated arrangement of several pairs of Weyl nodes, it is sufficient to consider a model

with only two Weyl nodes separated in momentum space. Such a model adequately captures the

essential physics and electronic properties of WSMs. These models serve as a usual starting point

for theoretical studies of transport and optical phenomena. Perhaps the simplest approach (to con-

struct one such model) is to add a Zeeman-like constant shift term to the Hamiltonian for a Dirac

semimetal, which preserves the linear form of the Hamiltonian with respect to momentum opera-

tors [77]. The bulk optical conductivity for this model was calculated in [78]. In another approach,

developed in [79] and used in many optical response studies to date, a phenomenological axion

θ-term is introduced in the action for the electromagnetic field. This gives rise to the gyrotropic

terms in the dielectric permittivity tensor and associated effects of Faraday and Kerr rotation, linear

dichroism, modification of surface plasmon dispersion etc.; see e.g. [80, 81, 82, 66].

In yet another approach, Okugawa and Murakami [83] derived a minimal 2x2 Hamiltonian

(one conduction and one valence band). Their Hamiltonian contains one parameter which de-

scribes the phase transition from a normal insulator to a WSM (with two Weyl nodes separated in

momentum space) and eventually to a topological insulator in the bulk. In the WSM phase, this
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Hamiltonian allows for surface state solutions with Fermi arcs. The beauty of this theory is that a

single microscopic Hamiltonian can be used to describe optical transitions between the bulk states,

the surface states, and the surface-to-bulk states. As a result, both bulk and surface tensors of the

optical conductivity can be derived. The Hamiltonian of [83] has been recently used to develop a

quantum-mechanical theory of surface plasmons (Fermi arc plasmons) and their dissipation [84].

Here, a slightly more general Hamiltonian is used. It is free of certain surface state pathologies

to perform quantum-mechanical derivation of the tensors of both bulk and surface conductivity. All

possible combinations of transitions between bulk and surface electron states are considered. Once

this is done, one is able to then determine the properties of bulk and surface electromagnetic eigen-

modes, or polaritons. It will be shown that information about the electronic structure of WSMs,

such as position and separation of Weyl nodes, Fermi energy, surface states, Fermi arcs, etc. can be

extracted from the transmission, dispersion, reflection, and polarization of electromagnetic modes.

The most sensitive optical signatures of the electronic properties of WSMs are identified and the

potential use of WSM thin films for optoelectronic applications is discussed.

4.2.1 Weyl Fermions

The low-energy excitations of Weyl semimetals are Weyl fermions much like the low-energy

excitations of graphene are massless Dirac fermions. In the previous chapters, I dealt with graphene

using the tight-binding model in the nearest-neighbor approximation to show that in the low-energy

limit the Hamiltonian for graphene resembles the two-dimensional massless Dirac equation (where

the speed of light is replaced by the Fermi velocity).

In this section, I will start by directly writing down the Dirac equation, then introduce Weyl’s

simplification to the Dirac equation; the Weyl equation. I will show that the Weyl equation admits

chiral fermions as its solution. The contents of this section is primarily based on the following

papers [85, 86, 64]. For an introduction to the Dirac equation (and quantum field theory) see [87]

and/or [88]. The Dirac equation is given by

(i~cγµ∂µ −mc2)ψ = 0 (4.1)
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where ∂µ = (∂0,∇), ∂0 = c−1∂t. γµ are 4 × 4 matrices called the gamma-matrices and obey the

Clifford algebra

{γµ, γν} = 2ηµν1, (4.2)

where ηµν is the metric tensor; its off diagonal elements are zero whereas, η00 = 1 and ηjj = −1; 1

is the identity matrix. From the anticommutation relation one finds that (γ0)2 = 1 and (γj)2 = −1.

In addition, the γ-matrices satisfy

(γµ)† = γ0γµγ0. (4.3)

The γ-matrices are not unique. It is to possible show that a similarity transformation preserves

the anticommutation relation of the gamma-matrices. Let

γ̃µ = SγµS−1 (4.4)

then

{γ̃µ, γ̃ν} = SγµS−1SγνS−1 + SγνS−1SγµS−1 = S {γµ, γν}︸ ︷︷ ︸
2ηµν1

S−1 = 2ηµν1. (4.5)

The similarity transformation does not change the metric tensor. According to [89] the matrix

S involved in the similarity transformation should be unitary S−1 → S† in order to preserve

the hermicity condition (γµ)† = γ0γµγ0, see Eq. (4.3). Thus, to the transformation between

representations is given by

γ̃µ = SγµS†. (4.6)

This does not change the anticommutation relation and indeed it preserves hermicity

(γ̃µ)† = (SγµS†)† = S(γµ)†S† = Sγ0γµγ0S† = Sγ0S†SγµS†Sγ0S† = γ̃0γ̃µγ̃0. (4.7)

Now comes Weyl’s contribution: Weyl considered the case where m = 0 and noted that in odd
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spatial dimensions d = 2k + 1 one can define a matrix

γ5 = ikγ0γ1 . . . γd (4.8)

where γ5 is Hermitian and anticommutes with the gamma matrices γµ. I will restrict the spatial

dimension to three since it is relevant for discussion on Weyl semimetals. In 3D it is easy to show

that γ5 is Hermitian and that it anticommutes with the γµ matrices.

γ†5 = (iγ0γ1γ2γ3)† = −i(γ3)†(γ2)†(γ1)†(γ0)† = −i(γ0γ3γ0)(γ0γ2γ0)(γ0γ1γ0)(γ0γ0γ0)

= −iγ0γ3γ2γ1 = iγ0γ1γ2γ3 = γ5 (4.9)

where I have made use of Eq. (4.3), (γ0)2 = 1 and Eq. (4.2), in that order. To prove that γ5

anticommutes with γµ, I will show that γ5 anticommutes with γ0 and γj

{γ5, γ0} = iη00

{
γ0γ1γ2γ3, γ0

}
= i(γ0γ1γ2γ3γ0 + γ0γ0γ1γ2γ3)

= i[(−1)3γ0γ0γ1γ2γ3) + γ0γ0γ1γ2γ3)] = 0, (4.10)

similarly (for j = 1),

{γ5, γ1} = iη11

{
γ0γ1γ2γ3, γ1

}
= −i(γ0γ1γ2γ3γ1 + γ1γ0γ1γ2γ3)

= −i[(−1)2γ0γ1γ1γ2γ3) + (−1)γ0γ1γ1γ2γ3)] = 0. (4.11)

Using the same method above one finds that for j = 2, 3 γj anticommutes with γ5. Below I

will consider the Weyl or chiral representation of the γ-matrices but one can go to some other

representation (Dirac, Majorana, etc...) by an appropriate transformation, see Eq. (4.6).
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The γ-matrices in the Weyl or chiral representation is given by

γ0 =

0 1

1 0

 , γj =

 0 σj

−σj 0

 (4.12)

where σj are the usual Pauli matrices, σ1,2,3 → σx,y,z. Note that the matrices in Eqs. (4.12) are

4× 4 matrices, for example

0 1

1 0

→


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


. (4.13)

The chirality operator γ5 it is given by

γ5 = iγ0γ1γ2γ3. (4.14)

In the Weyl basis γ5 is diagonal (as opposed to the Dirac basis where γ0 is diagonal). Below γ5 is

given in the Weyl basis

γ5 =

−1 0

0 1

 . (4.15)

Below I will state some properties of γ5 and then show how one decomposes a Dirac spinor into

right- and left-chiral spinors:

{γµ, γ5} = 0, (γ5)† = γ5, (γ5)2 = 1. (4.16)

I have shown the first two but not the last. The last property is easy to show especially if one

utilizes the second-to-last property i.e.

(γ5)2 = γ5γ5 = γ5γ
†
5 = (iγ0γ1γ2γ3)(−i)(γ3)†(γ2)†(γ1)†(γ0)† = 1 (4.17)
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The last property allows one to write [86]

1 =
1

2
(1− γ5)︸ ︷︷ ︸
PL

+
1

2
(1 + γ5)︸ ︷︷ ︸
PR

. (4.18)

PR,L are the right-chiral and left-chiral projection operators, explicitly given by

PL =
1

2
(1− γ5) =

1 0

0 0

 , PR =
1

2
(1 + γ5) =

0 0

0 1

 . (4.19)

One may write a spinor as

ψ =
1

2
(1− γ5)ψ︸ ︷︷ ︸

ψL

+
1

2
(1 + γ5)ψ︸ ︷︷ ︸

ψR

. (4.20)

Note that PR and PL are orthogonal, i.e. PRPL = 0, thus

PRψ = ψR, and PLψ = ψL (4.21)

where ψR,L are two-component spinors. The subscript R ,L denotes the right- and left-chiral

components. The four-component Dirac spinor ψ is composed of two two-component spinors ψR

and ψL. In the case of the massless Dirac equation ψR,L are Weyl spinors. The eigenvalues of γ5

acting on the right- and left-chiral spinors as given by Eq. (4.21) are

γ5ψR = γ5PRψ = γ5

(
1 + γ5

2

)
ψ =

(
γ5 + 1

2

)
ψ = PRψ = +ψR (4.22)

γ5ψL = γ5PLψ = γ5

(
1− γ5

2

)
ψ =

(
γ5 − 1

2

)
ψ = −PLψ = −ψL. (4.23)

One can therefore distinguish between left- and right- chiral fermions by the eigenvalues of γ5. In

particular, a right-chiral fermion has eigenvalue +1 and a left-chiral fermion has eigenvalue −1

when the spinor is acted upon by γ5. The eigenvalues of γ5 are called the chirality.

For the massive Dirac equation the mass term mixes the left and right chiral fermion fields as
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can be seen in the Lagrangian [88]

L = ψ̄(i~cγµ∂µ −mc2)ψ = ψ̄Li~cγµ∂µψL + ψ̄Ri~cγµ∂µψR −mc2(ψ̄LψR + ψ̄RψL). (4.24)

However, for the massless case, which corresponds to the Weyl equation right- and left-chiral

spinors are not mixed. A right-chiral fermion will maintain its chirality when acted upon by the

kinetic energy term i~cγµ∂µ, likewise a left-chiral fermion will maintain its chirality. I will show

this below

γ5i~cγµ∂µψ = 0, (4.25)

using {γµ, γ5} = 0 one finds

− i~cγµ∂µ(γ5ψ) = 0

or i~γ0∂t(γ5ψ) = cγj (−i~∂j)︸ ︷︷ ︸
pj

(γ5ψ).

(4.26)

Using the Weyl representation of the gamma matrices gives

 0 i~∂t

i~∂t 0


−ψL

+ψR

 =

 0 +cσ̂ · p̂

−cσ̂ · p̂ 0


−ψL

+ψR

 (4.27)

or

i~∂tψR,L = ĤψR,L (4.28)

where

Ĥ = ±cσ̂ · p̂. (4.29)

The top sign corresponds to ψR and the bottom sign corresponds to ψL. In the case of a Weyl

semimetal, the speed of light c is replaced with the Fermi velocity vF and the Hamiltonian is
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written as

Ĥ = ±vF σ̂ · p̂. (4.30)

For materials with Hamiltonians similar to the one above, the low-energy excitations will be Weyl

fermions which are massless and chiral.

4.2.2 Berry Phase

The Berry phase plays an important role in helping to identify the topological aspects of con-

densed matter physics. In the specific case of Weyl semimetals the band touching points, or Weyl

nodes, are associated with a quantized Berry flux through a surface enclosing the nodes [90, 64].

It will be shown that the Weyl nodes acts as topological chiral charges (when one considers the

Berry flux through a 2D surface in the Brillouin zone). To this end I will derive the Berry phase.

My derivation will follow [64, 90, 91, 92].

Consider a time-dependent Hamiltonian Ĥ(t) satisfying the eigenvalue equation

Ĥ(t)ψn(t) = En(t)ψn(t) (4.31)

where the eigenfunctions ψn(t) are complete and orthonormal at equal times, i.e.

〈ψn(t)|ψm(t)〉 = δnm. (4.32)

The general solution to the time-dependent Schrödinger equation,

i~∂tΨ(t) = Ĥ(t)Ψ(t), (4.33)

can be expressed as a linear combination of the eigenfunctions

Ψ(t) =
∑
n

c̄n(t)ψn(t). (4.34)
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Upon inserting the wave function Eq. (4.34) into the Schrödinger equation Eq. (4.33) one obtains

i~
∑
n

( ˙̄cnψn + c̄nψ̇n) =
∑
n

c̄nEnψn. (4.35)

Exploiting the orthonormality of the eigenfunctions (by taking the inner product with ψm) results

in

˙̄cm +
∑
n

c̄n

〈
ψm

∣∣∣ψ̇n〉 = − i
~
c̄mEm. (4.36)

Let

c̄n(t) = cn(t)eiθn(t) (4.37)

then

ċme
iθm + iθ̇mcme

iθm +
∑
n

cne
iθn
〈
ψm

∣∣∣ψ̇n〉 = − i
~
cme

iθmEm

ċm +
∑
n

cne
i(θn−θm)

〈
ψm

∣∣∣ψ̇n〉 = − i
~

(~θ̇m + Em)cm. (4.38)

Setting

θ̇m(t) = −1

~
Em(t)

=⇒ θm(t) = −1

~

∫ t

0

Em(t′) dt′. (4.39)

Thus,

ċm = −
∑
n

cne
i(θn−θm)

〈
ψm

∣∣∣ψ̇n〉
or ċm = −cm

〈
ψm

∣∣∣ψ̇m〉−∑
n6=m

cne
i(θn−θm)

〈
ψm

∣∣∣ψ̇n〉 (4.40)

where I have explicitly separated the n = m and n 6= m terms in going from the first line to the

second line in Eq. (4.40). In order to find an alternative expression for
〈
ψm

∣∣∣ψ̇n〉, one differentiates
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Eq. (4.31) with respect to time

˙̂
Hψn + Ĥψ̇n = Ėnψn + Enψ̇n. (4.41)

Once again, making use of the orthonormality of the eigenfunctions gives

〈ψm| ˙̂
H|ψn〉+

〈
ψm

∣∣∣Ĥ∣∣∣ψ̇n〉 = Ėnδnm + En

〈
ψm

∣∣∣ψ̇n〉 . (4.42)

Utilizing the hermicity of Ĥ and selecting only the n 6= m terms leads to

〈
ψm

∣∣∣ψ̇n〉 =
〈ψm| ˙̂

H|ψn〉
En − Em

(4.43)

Substituting the right-hand side of Eq. (4.43) for
〈
ψm

∣∣∣ψ̇n〉 in Eq. (4.40) gives

ċm = −cm
〈
ψm

∣∣∣ψ̇m〉−∑
n6=m

cn
〈ψm| ˙̂

H|ψn〉
En − Em

e(−i/~)
∫ t
0 [En(t′)−Em(t′)]dt′ . (4.44)

In the adiabatic approximation, one assumes that ˙̂
H is sufficiently small such that one may

drop the second term in Eq. (4.44). According to [91] a rigorous proof of the previous statement is

not trivial, however a justification can be found in [93]. Eq. (4.44) is now

ċm(t) = −cm
〈
ψm

∣∣∣ψ̇m〉 . (4.45)

A solution can be readily obtained by direct integration

cm(t) = cm(0)exp

[
i

(
i

∫ t

0

〈ψm(t′)|∂t′ψm(t′)〉 dt′
)]

. (4.46)

Let

γm(t) ≡ i

∫ t

0

〈ψm(t′)|∂t′ψm(t′)〉 dt′ (4.47)
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then

cm(t) = cm(0)eiγm(t). (4.48)

Note that γm is real since

d

dt
〈ψm|ψm〉︸ ︷︷ ︸

1

=
〈
ψ̇m

∣∣∣ψm〉+
〈
ψm

∣∣∣ψ̇m〉︸ ︷︷ ︸
2 Re[〈ψm| ˙ψm〉]

=⇒ 0 = 2 Re[
〈
ψm

∣∣∣ψ̇m〉], (4.49)

in other words
〈
ψm

∣∣∣ψ̇m〉 is imaginary (since its real part is zero) and γm is real since γm ∝

i
〈
ψm

∣∣∣ψ̇m〉 ∝ i Im[
〈
ψm

∣∣∣ψ̇m〉].

Since cm(t) given in Eq. (4.48) changes by, at most, a phase under time evolution while re-

maining in the eigenstate m the wave function given by Eq. (4.34) becomes

Ψm(t) = eiθm(t)eiγm(t)ψm(t). (4.50)

In other words, if the particle is in an initial eigenstate m where cm(0) = 1 and cn = 0 for m 6= n,

and it is then acted upon by a Hamiltonian, the particle remains in the mth eigenstate but changes

by the phase factor ei[θm(t)+γm(t)]. Of course, this all happens under the assumption that adiabatic

approximation holds.

Now suppose the system gains time dependence through a set of N parameters (which I will

write as a vector) R(t) ≡ (R1(t), R2(t), . . . , RN(t)). Assume the parameters change slowly over

time so that the adiabatic approximation is valid then Eq (4.47) can be written as

γn(t) = i

∫ t

0

〈ψn|∇Rψn〉 ·
dR

dt′
dt′ = i

∫ Rf

Ri

〈ψn|∇Rψn〉 · dR (4.51)

If the Hamiltonian returns to itself after time-evolution say from time t = 0 to t = T thenR(0) =
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R(T ) (where I have identifiedRi withR(0) andRf withR(T )) and

γn(T ) = i

∮
C
〈ψn|∇Rψn〉 · dR, (4.52)

where C is a closed path in parameter-space. Eq (4.52) is called the Berry phase [94]. Defining a

vector-valued function called the Berry connection

An(R) = i 〈ψn|∇Rψn〉 (4.53)

allows one to write

γn =

∮
C
An(R) · dR. (4.54)

An is a gauge-dependent quantity. To see this, make a gauge transformation of the form

ψn(R)→ eiζ(R)ψn(R) (4.55)

where ζ(R) is smooth and single-valued. With this gauge transformation the Berry connection

becomes

An(R)→ An(R)−∇Rζ(R). (4.56)

Taking the inner product of Eq. (4.55) with itself but atR(0) andR(T ) gives

〈ψn(R(0))|ψn(R(T ))〉 → ei[ζ(R(T ))−ζ(R(0))] 〈ψn(R(0))|ψn(R(T ))〉 . (4.57)

For a closed pathR(0) = R(T ) which leads to

1 = ei[ζ(R(T ))−ζ(R(0))]

=⇒ ζ(R(T ))− ζ(R(0)) = 2πN (4.58)

where N is an integer. Therefore, for a closed path, the Berry phase given by Eq. (4.54) is gauge
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invariant.

Using Stokes’ theorem one may recast the Berry phase equation as

γn =

∮
C
An(R) · dR −→︸︷︷︸

Stokes

∫
S
(∇R ×An) · dS. (4.59)

Eq. (4.54) looks rather familiar; it should bring to mind the flux of a magnetic field through a

surface S bounded by the curve C. Continuing with the analogy, one may define

Bn = ∇R ×An = i∇R × 〈ψn|∇Rψn〉 (4.60)

where B is called the Berry curvature. It can be thought of as a “magnetic" field in parameter

space; in the same spirit, the Berry phase can be thought of as a “magnetic flux." Note that B is

allowed to have magnetic monopoles whereas, the actual magnetic fieldB does not.

I will now focus on applying the Berry phase in the context of a crystal lattice. The Berry

connection is defined in momentum space and parametrized by the quasimomentum k of the lattice.

The eigenfunctions are Bloch functions u(k). The eigenvalue equation for such a system can be

written as

Ĥ(k)u(k) = E(k)u(k) (4.61)

the Berry curvature Eq. (4.60) written in the context of a crystal lattice is

B(k) = ∇k ×A(k). (4.62)

The generic Hamiltonian for a Weyl semimetal near the Weyl node is given by Eq (4.30), I will

rewrite it below in k-space (p→ ~k) for convenience

Ĥ(k) = ±~vF σ̂ · k. (4.63)
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The eigenstates of the Hamiltonian for chirality +1 is given by the spinor [95]

|uR(k, θ, φ)〉 =

 sin θ
2

−eiφ cos θ
2

 (4.64)

where cos θ ≡ kz/k and k =
√
k2
x + k2

y + k2
z . In order to find the Berry connection, one needs the

gradient of the eigenstate given above. In spherical coordinates, one has

∇k |uR(k, θ, φ)〉 = (ek∂k + eθk
−1∂θ + eφ(k sin θ)−1∂φ)

 sin θ
2

−eiφ cos θ
2


= ek

0

0

+ eθ
1

k

 1
2

cos θ
2

1
2
eiφ sin θ

2

+ eφ
1

k sin θ

 0

−ieiφ cos θ
2

 (4.65)

The Berry connection, given byA = i 〈uR|∇kuR〉, is

A = (Ak, Aθ, Aφ) =

(
0, 0,−

cos2 θ
2

k sin θ

)
(4.66)

and the Berry curvature, B = ∇k ×A, is

B = ek(k sin θ)−1[∂θ(Aφ sin θ)]− eθk−1∂k(kAφ) =
1

2k2
ek. (4.67)

Choosing a spherical surface to enclose the Weyl node one finds that the Berry phase or flux is

γ =

∫ 2π

0

dφ

∫ π

0

k2 sin θ
1

2k2
= 2π. (4.68)

The Churn number is defined as

Cn =
1

2π

∫
d2kek⊥ ·B =

γ

2π
(4.69)
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where d2k is a Fermi surface, ek⊥ is the unit vector normal to the Fermi surface and B is the Berry

curvature. For the case of the Weyl semimetal, the Churn number associated with the right-handed

chiral spinor is

Cn = +1 (4.70)

Since the flux through the Fermi surface enclosing the Weyl node is nonzero, by Gauss’ law one

may interpret the Weyl node as a monopole charge. Equivalently, the Churn number can be re-

garded as a topological charge of the Weyl node where the sign of the charge is determined by the

chirality. Indeed for the case of the right-handed chiral spinor with chirality +1 the Churn number

is +1 (when the Fermi surface encloses the Weyl node). Carrying out a similar analysis on the

left-handed chiral state where the Hamiltonian is given by −~vF σ̂ · k with eigenspinor

|uL(k, θ, φ)〉 =

 cos θ
2

eiφ sin θ
2

 (4.71)

one finds the Berry curvature to be B = −ek(1/2k) and the corresponding Churn number is

Cn = −1.

In summary, when the flux of the Berry curvature through a 2D Fermi surface is nonzero

then there is a point (monopole) source or sink of the Berry curvature [65]. The Churn number

associated with Berry curvature defines a topological charge.

4.3 Effective Hamiltonian

This section deals with the family of Hamiltonians that serve as a microscopic basis in this

study. From these Hamiltonians one can derive properties of bulk and surface electron states and

use them to calculate the optical conductivity. Consider a family of Hamiltonians of the type

Ĥ = vF

(
Q̂2 − ~2m(z)

2~b
σ̂x + p̂yσ̂y + p̂zσ̂z

)
, (4.72)
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where the function m(z) takes into account that the system may be nonuniform along z and, in

particular, has boundaries. Here σ̂x,y,z are Pauli matrices and the operator Q̂2 is defined by one of

the following three expressions:

(1) Q̂2 = p̂2
x

(2) Q̂2 = p̂2
x + p̂2

y

(3) Q̂2 = p̂2
x + p̂2

y + p̂2
z

The first option is the original Hamiltonian in [83].

The derivation of surface states can be made more convenient [83], if one applies the unitary

transformation Ĥ → Ŝ−1ĤŜ to Eq. (4.72), where Ŝ = 1√
2

(1− iσ̂x) . This gives

Ĥ = vF

(
Q̂2 − ~2m(z)

2~b
σ̂x + p̂zσ̂y − p̂yσ̂z

)
. (4.73)

One can check that this Hamiltonian violates time-reversal symmetry due to the term proportional

to σ̂x. The gyrotropy axis is the x-axis. In k-representation the Hamiltonian of Eq. (4.73) becomes

Ĥk = ~vF (Kx(k)σ̂x + kzσ̂y − kyσ̂z) , (4.74)

where Kx(k) for the same three Hamiltonians is given by

(1) Kx =
k2
x −m

2b

(2) Kx =
k2
x + k2

y −m
2b

(3) Kx =
k2
x + k2

y + k2
z −m

2b
.

108



In all three cases, the Weyl nodes are located at the points (kx, ky, kz) = (±
√
m, 0, 0) assuming

that m > 0.

4.3.1 Hamiltonians 1 and 2

4.3.1.1 Bulk States

The stationary spinor eigenstate of the Hamiltonian in Eq. (4.74) is

|Ψk〉 =

Ψ1

Ψ2

 eikr−i
E
~ t, (4.75)

where the components are determined from

 −ky − E
~vF

Kx(k)− ikz

Kx(k) + ikz ky − E
~vF


Ψ1

Ψ2

 = 0. (4.76)

From Eq. (4.76) one obtains the eigenenergy of the bulk states E(k)

E = s~vF
√
K2
x + k2

y + k2
z , (4.77)

and corresponding components of the spinor eigenstate in Eq. (4.75):

Ψ1

Ψ2

 =
1√
2V

√1− s cos θke
−iφk

s
√

1 + s cos θk

 , (4.78)

where cos θk = ky√
K2
x+k2y+k2z

, eiφk = Kx+ikz√
K2
x+k2z

; s = ±1 denotes the conduction and valence bands,

and V is the quantization volume.

To visualize the dispersion of electron states, let m = b2 for simplicity . The 3D plot for one

projection of 3D dispersion of the Hamiltonian 2 is shown in Fig. 4.1. For small energies | E~vF | �

b, the constant energy surface consists of two disconnected spheres, each of them enclosing a

corresponding Weyl point; see Fig. 4.2. At | E~vF | =
b
2

a separatrix isoenergy surface is a 3D “figure
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of eight”. For | E~vF | >
b
2

the constant energy surface is simply connected and encloses both Weyl

points. Figures 4.2a and 4.2b show contours of constant energy surfaces on the plane kz = 0 for

the Hamiltonians 2 and 1, respectively. The electron dispersion is strongly anisotropic. This will

result in different values for the diagonal elements of the bulk dielectric permittivity tensor, as in

two-axial crystals. The dotted circle in Fig. 4.2a is the boundary of a region that contains surface

states. For Hamiltonian 1 in Fig. 4.2b the surface states exist between the dotted lines.

Figure 4.1: Bulk energy dispersion for Hamiltonian 2 on the surface kz = 0. Here the energy is
normalized by ~vF b and kx,y are normalized by b. Reprinted with permission from [59].
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4.3.1.2 Reflection from the Boundary: Surface States and Fermi Arcs

Following [83], one can define the boundary as a jump in the parameter m, so that m = b2

inside the WSM and m = −m∞ outside. Then Eqs. (4.74) and (4.76) will contain the parameter

m as a function of the coordinate rj orthogonal to the boundary, and the corresponding component

of the quasimomentum kj is replaced by kj → −i ∂
∂rj

.

For the boundary parallel to the gyrotropy axis x, I will assume that it coincides with the surface

z = 0 and the WSM fills the halfspace z < 0. In this case, m = b2 for z < 0 whereas, for z > 0,

m = −m∞ where m∞ →∞.

For Hamiltonian 3, the Schrödinger equation given by Eq. (4.76) is a fourth-order differ-

ential equation, since its matrix elements contain ∂2
z . For Hamiltonians 1 and 2, one gets a

second-order set of equations. The velocity operator v̂z = (i/~) [H, z] for Hamiltonian 3 is

v̂z = (−ivF/b)σ̂x∂z + vF σ̂y, i.e. it depends on the coordinate derivative. In contrast, the ve-

locity operator v̂z = vF σ̂y for Hamiltonians 1 and 2 does not depend on the coordinate derivative.

Therefore for Hamiltonian 3 at z = 0, the continuity of both the eigenstate and its derivative are

required, whereas one only needs the continuity of the eigenstates for Hamiltonians 1 and 2.

Using Eq. (4.76) one finds that the eigenstate of Hamiltonians 1 and 2 in the region z > 0

at m∞ → ∞ is |Ψ∞〉 ∝

1

0

 eikxx+ikyy−m∞2b z. In the region z < 0 one takes the eigenstate

|ΨB〉 which is given by Eq. (4.78). Stitching together these two eigenstates |Ψ∞〉 and |ΨB〉 at the

boundary, yields the following expression for the bulk state:

|ΨB〉 =
eikxx+ikyy

2
√
V


√1− s cos θke

−iφk

s
√

1 + s cos θk

 eikzz −

√1− s cos θke
iφk

s
√

1 + s cos θk

 e−ikzz

 , (4.79)

where the quantization volume is limited from one side by the z = 0 plane. The eigenenergy is

still given by Eq. (4.77), and the angles θk and φk are defined below Eq. (4.78).

If E2

~2v2F
< k2

y +K2
x the value of kz in Eq. (4.77) is imaginary: kz = ±iκ. In order to connect the
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eigenstate |Ψ∞〉 ∝

1

0

 in z > 0 with the eigenstate localized at z < 0 which is eκz, the localized

eigenstate should be also a spinor

1

0

. After replacing kz → −iκ in Eq. (4.76), one obtains the

following eigenenergies and eigenvectors for surface states in the limit m∞ →∞:

E

~vF
= −ky, |ΨS〉 =

√
2κ

S

1

0

Θ(−z)eκz+ikxx+ikyy, (4.80)

where Θ is a step function, S is the quantization area, κ = −Kx > 0. For Hamiltonian 2 the

surface states exist inside a dashed circle b2 > k2
x + k2

y in Fig. 4.2a. For Hamiltonian 1 the surface

states exist in the region b2 > k2
x in Fig. 4.2b.

If a WSM occupies the region z > 0, instead of Eqs. (4.80) one obtains

E

~vF
= +ky, |ΨS〉 =

√
2κ

S

0

1

Θ(z)e−|κ|z+ikxx+ikyy, (4.81)

where κ = +Kx < 0. Equations (4.80),(4.81) can be easily generalized to the case where a

parameter m(z) varies continuously between the values b2 and −m∞ [83]. For example, instead

of Eqs. (4.80) one gets

E

~vF
= −ky, |ΨS〉 = N

1

0

 eikxx+ikyy


e
∫ z
0

m(z)−k2x
2b

dz for Hamiltonian 1

e
∫ z
0

m(z)−k2x−k
2
y

2b
dz for Hamiltonian 2

(4.82)

where N is a normalization factor.

Note that the constant surface energy lines ky = const are tangent to the points where the bulk-

state constant energy surface intersects the boundary of the surface states, shown as dotted lines in

Fig. 4.2a and 4.2b. The union of these ky = const lines and the bulk-state constant energy surface

is a set of bulk and surface energy states with the same energy. In particular, at the energy equal to
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the Fermi energy EF the ky = EF/(~vF ) line forms a Fermi arc.

4.3.2 Hamiltonian 3

For a fourth-order set of differential equations the construction of electron states including their

interaction with a boundary is more complicated.

First, one uses Eq. (4.77) to find the value of kz for given kx,y and E. Consider the parameter

range m ≤ b2, including both positive and negative values of m. If E2

~2v2F
> k2

y +
(k2x+k2y−m)

2

4b2
, one

always has two real solutions kz1 = −kz2 > 0 together with two imaginary solutions corresponding

to evanescent states: kz3,4 = iκ3,4, where 0 < κ3 = −κ4 . If E2

~2v2F
< k2

y +
(k2x+k2y−m)

2

4b2
, all four

solutions are imaginary and correspond to evanescent states: kz1,2,3,4 = iκ1,2,3,4, where 0 < κ1 =

−κ3, 0 < κ2 = −κ4. In the region z > 0 (i.e. outside the sample, where m = −m∞) it is

reasonable to take the solution as a superposition of two localized modes e−|κ3,4|z. In this case for

z < 0, i.e. inside the sample where m = b2, there could be two options:

(i) A superposition of two counterpropagating waves with quasimomenta kz1 = −kz2 together

with a localized wave eκ3z. The localized solution cannot be discarded, since without it the number

of constants becomes smaller than the number of the boundary conditions.

(ii) A superposition of two localized waves i.e. the surface state. In this option the number of

constants is always smaller than the number of the boundary conditions, so such a state can exist

only at certain values of energy.

The procedure of stitching the spinor components and their derivatives is simplified if m∞ →

∞ since in this limit the continuity of the derivative is equivalent to setting both components of a

spinor Ψ1,2 equal to zero in the cross section z = 0.
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4.3.2.1 Bulk States Near the Boundary

In case (i) one obtains

|ΨB〉 ≈
eikxx+ikyy

2
√
V

×


√1− s cos θke

−iφk

s
√

1 + s cos θk

 eikzz + r

√1− s cos θke
iφk

s
√

1 + s cos θk

 e−ikzz + l

√1− s cos θke
ακ

−s
√

1 + s cos θk

 eκz


(4.83)

where

kz =

√√√√2b

√
E2

~2v2
F

+ k2
x −

(
k2
x + k2

y + b2
)
, κ =

√√√√2b

√
E2

~2v2
F

+ k2
x +

(
k2
x + k2

y + b2
)
,

r = −e
ακ + e−iφk

eακ + eiφk
, sinhακ =

κ√
E2

~2v2F
− k2

y

, l = 2i
sinφk

eακ + eiφk
.

Clearly, |r|2 = 1, which corresponds, as expected, to the total reflection from the boundary. The

quantization volume in Eq. (4.83) is chosen in such a way that its length along the z axis is much

larger than k−1
z > κ−1. Therefore, the last term in the brackets in Eq. (4.83) is unimportant in a

sense that it does not affect the eigenstate normalization or the matrix elements.

4.3.2.2 Surface States

To construct the surface states (option (ii)) it is convenient to to go back to Eq. (4.76), use

m = b2, and make the substitution kz = −iκ:

 −ky − E
~vF

k2x+k2y−κ2−b2

2b
− κ

k2x+k2y−κ2−b2

2b
+ κ ky − E

~vF


Ψ1

Ψ2

 = 0 (4.84)

Consider the solution of Eq. (4.84), corresponding to different positive values of κ1,2 but the
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same spinor constant

a
b

. One can build a nontrivial localized solution

|ΨS〉 ∝

a
b

Θ(−z) (eκ1z − eκ2z), which corresponds to the null boundary conditions at the sur-

face z = 0. Such a solution of Eq. (4.84) is possible under the following conditions:

−ky − E
~vF

=
k2x+k2y−κ2−b2

2b
+ κ = 0, or ky − E

~vF
=

k2x+k2y−κ2−b2

2b
− κ = 0, or ky − E

~vF
=

k2x+k2y−κ2−b2

2b
− κ = 0, where

a
b

 =

1

0

 or

a
b

 =

0

1

 respectively. It is easy to see that the

first option corresponds to the surface state when the WSM occupies the halfspace z < 0, whereas

the second option corresponds to the WSM in the region z > 0, since in this case the values of κ1,2

are negative. The resulting states are as follows.

(i) WSM in z < 0:

E

~vF
= −ky, |ΨS〉 =

√√√√ 2

S
(

1
κ1

+ 1
κ2
− 4

κ1+κ2

)
1

0

Θ(−z) (eκ1z − eκ2z) · eikxx+ikyy; (4.85)

(ii) WSM in z > 0:

E

~vF
= ky, |ΨS〉 =

√√√√ 2

S
(

1
κ1

+ 1
κ2
− 4

κ1+κ2

)
1

0

Θ(z)
(
e−κ1z − e−κ2z

)
· eikxx+ikyy. (4.86)

Here κ1,2 = b∓
√
k2
x + k2

y .

In the region b2 < k2
x+k2

y there is only one localized evanescent solution for any fixed value of

energy, which is not enough to satisfy the boundary conditions. Therefore, the region b2 > k2
x+k2

y ,

where the surface states exist, is the same in the models described by the Hamiltonian 2 and

Hamiltonian 3 (see the dotted circle in Fig. 2a).

Taking into account a finite value ofm∞ modifies the above expression, but their general struc-
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ture remains the same. For example, when a WSM fills the halfspace z < 0, then the eigenstate in

Eq. (4.85) is replaced by

|ΨS;z<0〉 ∝

1

0

 (eκ1z − ζeκ2z) eikxx+ikyy,

|PsiS;z>0〉 ∝

1

0

 κ2 − κ1

κ2 +
√
m∞

e−
√
m∞zeikxx+ikyy, (4.87)

where ζ =
κ1 +

√
m∞

κ2 +
√
m∞

.

4.3.3 The Boundary Orthogonal to the Gyrotropy Axis

Any Hamiltonian, 1, 2, or 3, contains the second derivative ∂2
x. Therefore, the analysis of the

bulk and surface states near the boundary orthogonal to the gyrotropy axis is similar to the one for

the boundary parallel to the gyrotropy axis when the Hamiltonian contains the second derivative

∂2
z . Repeating the same arguments as in the previous section, one obtains that the orthogonal

boundary is trivial and does not contain surface states.

4.3.4 Comparison of Hamiltonians 1, 2, and 3

The only principal difference between the eigenstates of the effective Hamiltonians considered

above is the region where the surface states exist. Such a region is determined by the inequality

b >
√
k2
x + k2

y for Hamiltonians 2 and 3, and the inequality b > |kx| for Hamiltonian 1. The latter

condition leads to an infinite density of surface states, which is unphysical and would have to be

restricted artificially. Therefore, it is better to work with Hamiltonian 2 or 3. Hamiltonian 2 leads to

a simpler z-component of the velocity operator: v̂z = vF σ̂y instead of v̂z = (−ivF/b)σ̂x∂z + vF σ̂y,

which corresponds to Hamiltonian 3. The velocity operator of Hamiltonian 2 makes calculations

of the surface current easier without losing any essential physics. Therefore, Hamiltonian 2 will

be used for subsequent calculations of the optical properties.
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Figure 4.2: (a) Contours of constant energy surfaces for Hamiltonian 2 on the surface kz = 0. The
dotted circle is the boundary of a region k2

x + k2
y ≤ b2 where surface states exist. (b) Contours

of constant energy surfaces for Hamiltonian 1 on the surface kz = 0. Here x, y = kx,y/b. The
dotted lines indicate the boundary of a region k2

x ≤ b2 where surface states exist. Reprinted with
permission from [59].
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4.4 Optical Transitions and the Tensors of Bulk and Surface Conductivity

In the presence of external fields one should replace p̂→ p̂− e
c
A, and also add the electrostatic

potential Ĥ → Ĥ + eϕ1 in Eq. (4.73). Particles are assumed to have charge e where −e is the

magnitude of the electron charge. If the potential has a coordinate dependence A(r) one assumes

symmetrized operators

(
p̂x,y,z −

e

c
Ax,y,z

)2

→ p̂2
x,y,z +

e2

c2
A2
x,y,z −

e

c
(p̂x,y,zAx,y,z + Ax,y,zp̂x,y,z) ,

and in the expressions for the velocity operator one needs to replace

−i∂x,y,z → −i∂x,y,z −
e

c~
Ax,y,z.

Throughout this work, I will consider the potentials corresponding to a monochromatic elec-

tromagnetic field propagating in the arbitrary direction r with angular frequency ω and wavevector

q, i.e.

φ =
1

2
φ(ω)e−iωt+iq·r + c.c., (4.88)

A =
1

2
[exAx(ω) + eyAy(ω) + ezAz(ω)]e−iωt+iq·r + c.c. (4.89)

Bulk-to-bulk and surface-to-surface transitions contribute to the bulk and surface conductivity

tensors, respectively. Surface-to-bulk transitions contribute to the surface conductivity tensor only.

They have to be handled with more care, as briefly described below.

Generally, the electron and current densities expressed in terms of the density matrix are given

by

n(r) =
∑
αβ

nβα(r)ραβ, j(r) =
∑
αβ

jβα(r)ραβ, (4.90)

nβα = Ψ∗βΨα, jβα =
1

2

[
Ψ∗β

(
ĵΨα

)
+
(
ĵ∗Ψ∗β

)
Ψα

]
, (4.91)
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where ĵ = ev̂.

The Fourier harmonics of the the electron and current densities are

j(r) =
1

2

∑
q

j(q)eiqr + c.c., n(r) =
1

2

∑
q

n(q)eiqr + c.c.,

where
1

2
j(q) =

1

V

∫
V

j(r)e−iqrd3r,
1

2
n(q) =

1

V

∫
V

n(q)e−iqrd3r.

For their matrix elements one has

j(q) =
∑
αβ

j
(q)
βα ραβ, n(q) =

∑
αβ

n
(q)
βαραβ, (4.92)

where

j
(q)
βα = 2 〈β|e−iqrĵ|α〉 , n

(q)
βα = 2 〈β|e−iqr|α〉 (4.93)

To find the current without the effect of a boundary one can use the states given by Eq. (4.78).

Now consider the states near the surface. Let the bulk states be denoted by Latin indices

and surface states by Greek ones. For convenience I will rewrite them, having in mind an upper

boundary z = 0 with the WSM located at z < 0 :

|Ψm〉 =
eikxx+ikyy

2
√
V



√

1 + s cos θk‖e
−iθk⊥

s
√

1− s cos θk‖

 eikzz −


√

1− s cos θk‖e
iθk⊥

s
√

1 + s cos θk‖

 e−ikzz

 ,
(4.94)

where Em = s~vF

√(
k2x+k2y−b2

2b

)2

+ k2
y + k2

z is the eigenenergy, s = ±1 is the band index, the

values kx,y can be of either sign whereas kz > 0; cos θk‖ =
kz

|E|/(~vF )
.

|Ψα〉 =

√
2κ

S

1

0

Θ(−z)eikxx+ikyy+κz, (4.95)
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where S is the area; the energy of the state is Eα = −~vFky, κ =
b2 − k2

x − k2
y

2b
,
√
k2
x + k2

y < b.

Let us limit the surface states by the condition κ > κmin, where the latter could be a typical

scattering length ∼ κ−1
min. It is assumed that κ−1

min is much smaller than L, which enters the quan-

tization volume V = SL in Eq. (4.94). The matrix elements of the interaction Hamiltonian in

the von Neumann equation, the matrix elements V (int)
mn ,V (int)

αβ and V (int)
mα have no peculiarities: the

integration is carried out over the whole volume. However, when calculating the matrix elements

of the density and current, and if at least one of the indices belongs to the surface state, one should

perform the integration over dz as:

nβα =

∫ 0

−∞
Ψ∗βΨαdz, nmα =

∫ 0

−∞
Ψ∗mΨαdz, (4.96)

jβα =
1

2

∫ 0

−∞

[
Ψ∗β

(
ĵΨα

)
+
(
ĵ∗Ψ∗β

)
Ψα

]
dz, jmα =

1

2

∫ 0

−∞

[
Ψ∗m

(
ĵΨα

)
+
(
ĵ∗Ψ∗m

)
Ψα

]
dz.

(4.97)

These quantities will depend only on x and y, and therefore determine the surface current and

density.

The following current component is nontrivial:
∑

αβ(jz)βαραβ+
∑

mα(jz)mαραm. It determines

the polarization of a thin double layer:

∂tpz(x, y) =
∑
αβ

(jz)βαραβ +
∑
mα

(jz)mαραm, (4.98)

This layer radiates, but not normally to the layer, and it cannot affect the surface density of carriers.

With properly defined matrix elements of the current and density, the continuity equation is

satisfied automatically, so one can consider the volume current flowing toward the boundary

(
∑

mn(jz)nmρmn)z=0 as a source in the surface continuity equation.

4.4.1 Evaluation of Tensors of the Bulk and Surface Conductivity

The matrix elements of the Fourier components of the current density operator are evaluated

below. After evaluating them, one uses the Kubo-Greenwood formula to calculate the bulk and
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surface conductivity tensors, respectively; e.g.

σαβ(ω) = g
i~
V

∑
mn

(
fn − fm
Em − En

)
〈n|ĵα|m〉 〈m|ĵβ|n〉

~(ω + iγ) + (En − Em)
, (4.99)

for the bulk conductivity, where g = 2 is the spin degeneracy factor and α, β denote Cartesian co-

ordinate components. The surface conductivity tensor has a similar structure, but the contribution

is summed over surface-to-surface and surface-to-bulk transitions, and the normalization is over

the surface area S instead of a volume V . Both interband and intraband transitions are included.

Three-dimensional integrals over electron momenta that arise in the Kubo-Greenwood formula

cannot be evaluated analytically, except in the limiting cases of small frequencies or small b. As

such, integrals were calculated numerically (at zero temperature) for all plots below.

4.4.1.1 The Matrix Elements of the Current Density Operator

Recall that everywhere the bulk states are denoted by Latin letters, and the surface states by

Greek letters, i.e. |n〉 = |B〉 , |µ〉 = |S〉. This section deals with the evaluation of the matrix

elements of the current density operator that enter Eq. (4.99) for the components of bulk and

surface conductivity tensors. The current density operator is calculated by using

ĵ = ev̂ (4.100)

v̂ =
dr̂

dt
= − i

~
[r̂, Ĥ] (4.101)
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(jx)nm = 〈n|ĵx|m〉

=
evF
~b

∫
d3rΨB†

kn,sn
(r) (−i~∂x) σ̂xΨB

km,sm(r)

=
evF
2b

knxδkn,km

×
[
sm
√

(1 + sm cos θkn) (1− sn cos θkn)eiφkn + sn
√

(1 + sn cos θkn) (1− sm cos θkn)e−iφkn
]

(4.102)

(jx)µν = 〈µ|ĵx|ν〉 =
evF
~b

∫
d3rΨS†

kµ
(r) (−i~∂x) σ̂xΨS

kν (r) = 0, (4.103)

(jx)µm = 〈µ|ĵx|m〉 =
evF
~b

∫
d3rΨS†

kµ
(r) (−i~∂x) σ̂xΨB

km,sm(r)

=
2evF smkmxkmz
ib(κ2

m + k2
mz)

√
κm (1 + sm cos θkm)

Lz
δkmx,kµxδkmy ,kµy (4.104)

(jy)nm =
evF
~b

∫
d3rΨB†

kn,sn
(r) [(−i~∂y)σ̂x − ~bσ̂z] ΨB

km,sm(r)

=
evF
2b

knyδkn,km

×
[
sm
√

(1 + sm cos θkn) (1− sn cos θkn)eiφkn + sn
√

(1 + sn cos θkn) (1− sm cos θkn)e−iφkn
]

+
evF
2
δkn,km

[
snsm

√
(1 + sn cos θkn) (1 + sm cos θkn)−

√
(1− sn cos θkn) (1− sm cos θkn)

]
(4.105)

(jy)µν =
evF
~b

∫
d3rΨS†

kµ
(r) [(−i~∂y)σ̂x − ~bσ̂z] ΨS

kν (r) = −evF δkµx,kνxδkµy ,kνy (4.106)
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(jy)µm =
evF
~b

∫
d3rΨS†

kµ
(r) [(−i~∂y)σ̂x − ~bσ̂z] ΨB

km,sm(r)

=
2evF smkmykmz
ib(κ2

m + k2
mz)

√
κm (1 + sm cos θkm)

Lz
δkmx,kµxδkmy ,kµy ; (4.107)

(jz)nm = evF

∫
d3rΨB†

kn,sn
(r)σ̂yΨ

B
km,sm(r) = i

evF
2
δkn,km

×
[
sn
√

(1 + sn cos θkn) (1− sm cos θkn)e−iφkn − sm
√

(1 + sm cos θkn) (1− sn cos θkn)eiφkn
]

(4.108)

(jz)µν = evF

∫
d3rΨS†

kµ
(r)σ̂yΨ

S
kν (r) = 0, (4.109)

(jz)µm = evF

∫
d3rΨS†

kµ
(r)σ̂yΨ

B
km,sm(r)

= −2evF smkmz
κ2
m + k2

mz

√
κm (1 + sm cos θkm)

Lz
δkmx,kµxδkmy ,kµy , (4.110)

where κ =
b2−(k2x+k2y)

2b
was used.

4.4.1.2 The Bulk Optical Conductivity Tensor

The 3D integrals over electron momenta cannot be evaluated analytically in most cases, even

in the zero temperature limit. Whenever the integrals remain in the final expression, they were

evaluated numerically for the plots.

(i) Contribution of Intraband Transitions (s = +1→ s = +1)
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In this case the matrix elements j(q)
nm of the current density operator reduce to

(jx)nn = evF sn
knx
b
|sin θkn| cosφkn , (4.111)

(jy)nn = evF sn

(
kny
b
|sin θkn| cosφkn + cos θkn

)
, (4.112)

(jz)nn = evF sn |sin θkn| sinφkn . (4.113)

Therefore, from the Kubo formula one obtains for the conductivity

σintraxx (ω) = g
i~
V

∑
mn

(
fn − fm
Em − En

) ∣∣∣ 〈n|ĵx|m〉∣∣∣2
~(ω + iγ) + (En − Em)

=
ige2v2

F

b2(ω + iγ)

1

V

∑
n

(
− ∂fn
∂En

)
k2
nx sin2 θkn cos2 φkn

=
ige2v2

F

b2(ω + iγ)

∫
∞

d3k

(2π)3 δ(EB − EF )k2
x sin2 θk cos2 φk

=
ige2vF

4π3b2kF~(ω + iγ)

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
k2
xK

2
xΘ
(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

) (4.114)

Here Θ(k) is the step function and cos θk =
ky√

K2
x + k2

y + k2
z

, eiφk =
Kx + ikz√
K2
x + k2

z

, Kx ≡(
k2
x + k2

y

)
− b2

2b
, and kF ≡ [EF/(~vF )] were used.

Similarly,

σintrayy (ω) =
ige2vF

4π3b2kF~(ω + iγ)

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
k2
y (Kx + b)2 Θ

(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

) (4.115)
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σintrazz (ω) =
ige2vF

4π3kF~(ω + iγ)

∫ ∞
−∞

dkx

∫ ∞
−∞

dkyΘ
(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

)
(4.116)

σintraxy (ω) = σintraxz (ω) = σintrayz (ω) = 0. (4.117)

(ii) Contribution of Interband Transitions (s→ −s)

In this case, i.e. sm = −sn = ±1, n 6= m, the matrix elements j(q)
nm of the current density

operator reduce to

(jx)nm = evF snδkn,km
knx
b

(sn cos θkn cosφkn − i sinφkn) , (4.118)

(jy)nm = evF snδkn,km

[
kny
b

(sn cos θkn cosφkn − i sinφkn)− sn |sin θkn|
]
, (4.119)

(jz)nm = evF snδkn,km (i cosφkn + sn cos θkn sinφkn) , (4.120)

where n 6= m. Therefore, one obtains
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σinterxx (ω) = g
i~
V

∑
s=±1

∑
mn

(
fn,−s − fm,s
Em,s − En,−s

) ∣∣∣ 〈−s, n|ĵx|s,m〉∣∣∣2
~(ω + iγ) + (En,−s − Em,s)

= i~g
∑
s=±1

∫
∞

d3k

(2π)3

(
fk,−s − fk,s
Ek,s − Ek,−s

)
e2v2

Fk
2
x

(
cos2 θk cos2 φk + sin2 φk

)
b2 [~(ω + iγ) + (Ek,−s − Ek,s)]

=
ige2 (ω + iγ)

8π3b2~vF

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

[
Θ
(
kF −

√
K2
x + k2

y

)

×2k2
x


K2
x

√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
k2F−K2

x−k2y

kF

√
4(K2

x+k2y)−
(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2


−Θ

(
K −

√
K2
x + k2

y

)

×2k2
x


K2
x

√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2y

K

√
4(K2

x+k2y)−
(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2




(4.121)

where Kx ≡
(
k2
x + k2

y

)
− b2

2b
= −κ, cos θk (−kx) = cos θk (kx), sin θk (−kx) = sin θk (kx)

, cosφk (−kx) = cosφk (kx), and sinφk (−kx) = sinφk (kx) were used.
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Similarly,

σinteryy (ω) =
ige2(ω + iγ)

4π3b2~vF

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

[
Θ
(
kF −

√
K2
x + k2

y

)
×

(
(b+Kx)

2k2
y

√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

)

+

[(
ω+iγ
vF

)2 (
b2 + k2

y

)
− 4 (b+Kx)

2 k2
y

]
arctan

 (
ω+iγ
vF

)√
k2F−K2

x−k2y

kF

√
4(K2

x+k2y)−
(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2

)

−Θ
(
K −

√
K2
x + k2

y

)((b+Kx)
2 k2

y

√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

)

+

[(
ω+iγ
vF

)2 (
b2 + k2

y

)
− 4 (b+Kx)

2 k2
y

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2y

K

√
4(K2

x+k2y)−
(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2

)]
(4.122)

σinterzz (ω) =
ige2 (ω + iγ)

8π3~vF

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
(
K2
x + k2

y

) [
Θ
(
K −

√
K2
x + k2

y

)

×


2
√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

) −
8

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2y

K

√
4(K2

x+k2y)−
(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2


−Θ

(
kF −

√
K2
x + k2

y

)

×


2
√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

) −
8

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
k2F−K2

x−k2y

kF

√
4(K2

x+k2y)−
(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2



 .

(4.123)
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The only nonzero off-diagonal element is σinterzy (ω) = −σinteryz (ω):

σinteryz (ω) =
−ge2

4π3b~

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
(
k2
y − bKx

)

×

Θ
(
kF −

√
K2
x + k2

y

) 2 arctan

 (
ω+iγ
vF

)√
k2F−K2

x−k2y

kF

√
4(K2

x+k2y)−
(
ω+iγ
vF

)2


(
ω+iγ
vF

)√
4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2

−Θ
(
K −

√
K2
x + k2

y

) 2 arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2y

K

√
4(K2

x+k2y)−
(
ω+iγ
vF

)2


(
ω+iγ
vF

)√
4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2

 (4.124)

Here, a cutoff at k = K in the integration over electron momenta was introduced in order to

regularize the divergent integral
∫

d3k

(2π)3 which comes from
1

V

∑
n

→
∫

d3k

(2π)3 . The divergence

is an artifact of the effective Hamiltonian Eq. (4.72) which has a “bottomless” valence band with

electrons occupying all states to k → ∞. The regularization makes the valence band bounded

from below. The cutoff is chosen at the momentum corresponding to the energy of 2 eV, i.e. much

higher than the range of interest to us near the Weyl nodes. In the numerical examples in the paper

the value of half-separation between Weyl nodes ~vF b is chosen to be 100 meV. It was verified that

an exact value of the cutoff has a negligible effect on the low-energy optical response below 350

meV, as long as K is large enough.

4.4.1.3 The Surface Conductivity Tensor

(i) Surface-to-Surface States Intraband Transitions
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σintrayy (ω) = g
i~
S

∑
µν

(
fµ − fν
Eν − Eµ

) ∣∣∣ 〈µ|ĵy|ν〉∣∣∣2
~(ω + iγ) + (Eµ − Eν)

=
ig~e2v2

F

S

∑
µ

(
− ∂fµ
∂Eµ

)
1

~(ω + iγ)
= Θ (b− kF )

ige2vF
√
b2 − k2

F

2π2~ (ω + iγ)
. (4.125)

All other tensor components are equal to zero.

(ii) Surface-to-Bulk States Transitions

σinterxx (ω) = g
i~
S

∑
s=±1

∑
mµ

(
fµ − fm,s
Em,s − Eµ

) ∣∣∣ 〈µ|ĵx|m, s〉∣∣∣2
~(ω + iγ) + (Eµ − Em,s)

=
i4ge2v2

F~
b2

∑
s=±1

∫
∞

d3k

(2π)3 Θ
[
b2 −

(
k2
x + k2

y

)]
Θ (kz)

×
(
fSk − fk(s)

Ek(s) − ES
k

)
k2
xk

2
zκ (1 + s cos θk)

(κ2 + k2
z)

2
[
~(ω + iγ) + (ES

k − Ek(s))
]

=
ige2

h

∫ ∞
0

dkz

∫ ∞
−∞

dkx

∫ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zk

2
xKx

π2(K2
x + k2

z)
2b2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 (4.126)

Similarly,

σinteryy (ω) =
ige2

h

∫ ∞
0

dkz

∫ ∞
−∞

dkx

∫ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zk

2
yKx

π2(K2
x + k2

z)
2b2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 (4.127)

129



σinterzz (ω) =
ige2

h

∫ ∞
0

dkz

∫ ∞
−∞

dkx

∫ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zKx

π2(K2
x + k2

z)
2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 . (4.128)

The only nonzero off-diagonal element is

σinteryz (ω) =
−ge2

h

∫ ∞
0

dkz

∫ ∞
−∞

dkx

∫ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zkyKx

π2(K2
x + k2

z)
2b

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 . (4.129)

In Eqs. (4.126)-(4.129) the integral over kz can be carried out analytically in terms of elemen-

tary functions. Such expressions are very lengthy and will not be addressed here. The remaining

integration was carried out numerically. All integrals are finite, i.e. no cutoff is necessary.

4.4.1.4 Drude-like Low-Frequency Limit

In the limit when the frequency and the Fermi energy are much smaller than ~vF b, only the elec-

tron momenta close to the corresponding Weyl point kx = ±bmatter. Therefore, one can introduce

δkx = kx−b for electron states near one Weyl point and replace the degeneracy factor by 2×g to ac-

count for the contribution from the second Weyl point. In this case,Kx ∼
(kx − b) (kx + b)

2b
≈ δkx,

kx = b+ δkx and all diagonal intraband components have the same Drude form:

σintraxx (ω) = σintrayy (ω) = σintrazz (ω) =
ge2vFk

2
F

3π2~(−iω + γ)
. (4.130)
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All off-diagonal conductivity elements are zero in this limit.

4.4.1.5 Small b Expansion

In the limit b� 1, one can expand the conductivity in powers of b to the leading order: b� 1,

1
b
� 1, Kx =

(
k2
x + k2

y

)
− b2

2b
∼
(
k2
x + k2

y

)
2b

∼
(
k2
x + k2

y + k2
z

)
2b

� kx,y,z,
ω

vF
for kx,y,z 6= 0. Then

one obtains

σByz (ω) ≈ −ge2

3
√

2π2~
b3/2

k
1/2
F

(4.131)

σBxx (ω) ≈ ge2k2
FvF

3π2~(−iω + γ)
+

2
√

2ge2(−iω + γ)

45π2~vF
b3/2

k
3/2
F

(4.132)

σByy (ω) ≈ ge2k2
FvF

3π2~(−iω + γ)
+

7
√

2ge2(−iω + γ)

360π2~vF
b3/2

k
3/2
F

(4.133)

σBzz (ω) ≈ ge2k2
FvF

3π2~(−iω + γ)
+
ge2(−iω + γ)

6
√

2π2~vF
b3/2

k
3/2
F

(4.134)

σSxx (ω) = σSyy (ω) = σSzz (ω) ≈ ge2vF

2
√

2kFπ3~(−iω + γ)
b

3
2 . (4.135)

All off-diagonal surface terms are zero.
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4.4.2 Discussion of the Conductivities

The bulk (3D) conductivity tensor due to low-energy electrons near Weyl points is

σBij (ω) =


σBxx 0 0

0 σByy σByz

0 σBzy σBzz

 (4.136)

where σBzy = −σByz. The surface conductivity tensor at z = 0 has a similar structure, with super-

script B replaced by S and σSzy = −σSyz.

The background bulk dielectric tensor in the most general form which corresponds to the one

for a two-axial nongyrotropic crystal is

ε
(0)
ij (ω) =


ε

(0)
xx 0 0

0 ε
(0)
yy 0

0 0 ε
(0)
zz

 (4.137)

so that the total dielectric permittivity tensor is

εij(ω) = ε
(0)
ij (ω) + i

4πσBij (ω)

ω
=


εxx 0 0

0 εyy ig

0 −ig εzz

 (4.138)

where

g =
4πσByz
ω

. (4.139)

Note that for Hamiltonian 3 one would have σByy = σBzz, whereas for Hamiltonian 2 (used in

all calculations of the conductivity tensors in this paper) one has σByy 6= σBzz. Therefore, even

if the background dielectric tensor is isotropic, the contribution of massless Weyl electrons will

create a two-axial anisotropy. In the numerical plots below I will consider an isotropic background

dielectric tensor and neglect its frequency dependence at low frequencies, ε(0)
xx = ε

(0)
yy = ε

(0)
zz = 10,
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so that all nontrivial effects of anisotropy and gyrotropy are due to Weyl fermions.

The salient feature of both bulk and surface conductivity tensor is the presence of nonzero

off-diagonal (gyrotropic) components due to time-reversal symmetry breaking in the Hamiltonian.

These terms originate from the finite separation of the Weyl nodes in momentum space and the

existence of surface states (Fermi arcs). The gyrotropic effects in the propagation, reflection, and

transmission of bulk and surface modes can serve as a definitive diagnostic of Weyl nodes, surface

states, and Fermi surface. They could also find applications in optoelectronic devices such as

Faraday isolators, modulators etc.

Figures 4.3-4.6 show spectra of εxx(ω), εyy(ω), εzz(ω), and g(ω) for several values of the

Fermi momentum kF (at zero temperature), when the Weyl node separation 2~vF b = 200 meV.

The characteristic feature in all plots is strong absorption and dispersion at the onset of interband

transitions, when ω = 2vFkF . Another common feature is a Drude-like increase in the absolute

value of all tensor components at low frequencies. Indeed, as shown in Sec. 4.4.1.4, in the limit

ω � vFkF � vF b when only the intraband transitions in the vicinity of each Weyl point are im-

portant, the off-diagonal components are equal to zero and the diagonal conductivity components

are reduced to the same Drude form:

σintraxx (ω) = σintrayy (ω) = σintrazz (ω) =
ge2vFk

2
F

3π2~(−iω + γ)
. (4.140)

Note an absorption peak at ω = 100 meV at low Fermi momenta, which corresponds to a

Van Hove singularity at the interband transitions between saddle points of conduction and valence

bands at k = 0, i.e. in the middle between the Weyl points.

Note also that diagonal and off-diagonal parts of the conductivity tensor are of the same order

at low frequencies comparable to the Weyl node separation, which indicates that gyrotropic effects

should be quite prominent.

All figures in this paper are plotted for a relatively high dephasing rate γ = 10 meV, which

smoothes out all spectral features and introduces strong losses for electromagnetic eigenmodes
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Figure 4.3: Real and imaginary parts of the εxx component of the dielectric tensor as a function
of frequency for ~vF b = 100 meV, dephasing rate γ = 10 meV, and ε(0)

xx = 10. Reprinted with
permission from [59].

even below the interband transition edge. The dephasing rate originates from electron scattering

and obviously depends on the temperature and material quality in realistic materials. Its derivation

is beyond the scope of the present paper.
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Figure 4.4: Real and imaginary parts of the εyy component of the dielectric tensor as a function
of frequency for ~vF b = 100 meV, dephasing rate γ = 10 meV, and ε(0)

yy = 10. Reprinted with
permission from [59].
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Figure 4.5: Real and imaginary parts of the εzz component of the dielectric tensor as a function
of frequency for ~vF b = 100 meV, dephasing rate γ = 10 meV, and ε(0)

zz = 10. Reprinted with
permission from [59].
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Figure 4.6: Real and imaginary parts of g =
4πσByz
ω

as a function of frequency for ~vF b = 100 meV
and dephasing rate γ = 10 meV.
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4.5 Bulk Polaritons in Weyl Semimetals

Consider first the propagation of plane monochromatic waves in a bulk Weyl semimetal. For

complex amplitudes of the electric and induction fields, (D,E)eikr−iωt, where D = ε̂E and ε̂ is

a bulk dielectric tensor, Maxwell’s equations give n ·D = 0, where n = ck/ω. The resulting

dispersion equations are

(ninj − n2δij + εij)Ej = 0, (4.141)

or 
εxx − n2 + n2

x nxny nxnz

nynx εyy − n2 + n2
y ig + nynz

nznx −ig + nzny εzz − n2 + n2
z



Ex

Ey

Ez

 = 0; (4.142)

n2 = n2
x + n2

y + n2
z. The structure of these equations indicate strongly anisotropic and gyrotropic

properties of bulk polaritons. The dispersion is drastically different for normal modes propagating

perpendicular to the x-axis and to the y-axis. For each direction, there are furthermore two normal

modes with different refractive indices. Each case will be considered separately.

4.5.1 Propagation Perpendicular to the Anisotropy Axis

The anisotropy axis is the x axis. For propagation perpendicular to the x axis one has nx = 0,

n2 = n2
y + n2

z, nz = n cos θ, ny = n sin θ, where θ is the angle between the wave vector and

z-axis. From Eqs. (4.142) one obtains two normal modes that can be called an ordinary (O) and

extraordinary (X) wave. An O-wave has an electric field along x and the refractive index

n2
O = εxx. (4.143)

Therefore, its dispersion and absorption are completely described by the spectrum of εxx(ω). As

shown in Fig. 4.7, at low frequencies the O-mode experiences strong metallic absorption and at

ω = 2EF = 160 meV there is an onset of interband transitions.
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Figure 4.7: Real and imaginary parts of the refractive index nO of an O-wave as a function of
frequency for EF = 80 meV, ~vF b = 100 meV, and dephasing rate γ = 10 meV. Reprinted with
permission from [59].

An X-wave have an electric field in the (y, z) plane and the refractive index showing strong

θ-dependence and resonances:

n2
X =

εyyεzz − g2

cos2 θεzz + sin2 θεyy
. (4.144)

For normal incidence θ = 0,

n2
X = εyy −

g2

εzz
. (4.145)
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It is obvious from Eq. (4.144) that the refractive index for an X-wave is strongly enhanced (i.e.

singular in the absence of losses) when

cos2 θεzz + sin2 θεyy = 0 (4.146)

which corresponds to the bulk plasmon excitation. Indeed, from Maxwell’s equations in the

Coulomb gauge one can show that |1
c

∂A

∂t
|/|∇ϕ| ∼ | ω2

ω2 − c2k2
||j⊥
j‖
|, where j = j⊥+j‖,∇×j‖ =

0, ∇ · j⊥ = 0. Therefore, if |j⊥| ∼ |j‖|, which corresponds to a general oblique propagation in

an anisotropic medium, the wave is quasi-electrostatic at n2 � 1. Eq. (4.146) corresponds to the

condition n ·D = 0 forE = −∇ϕ ‖ n . If εyy = εzz = ε⊥ the dispersion equation for a plasmon

propagating in the plane orthogonal to the x-axis has a simple form ε⊥ = 0.

Figure 4.8 shows the real and imaginary parts of the refractive index nX of an X-wave as

a function of frequency for different values of the propagation angle θ. Near the bulk plasmon

resonance, i.e. around 100 meV for normal incidence, the value of n2
X becomes negative in the

absence of losses according to Eq. (4.145). This corresponds to a non-propagating photonic gap.

Since significant loss rate γ = 10 meV is included in all simulations, the real part of nX does not

go all the way to zero, but there is a strong absorption peak in the imaginary part of nX . It will be

shown later that this spectral region leads to a telltale change of phase in reflection. The second

feature in all plots is an onset of interband transitions at 2EF = 160 meV.

The real part of the bulk plasmon resonance frequency at normal incidence as a function of

the Fermi energy is shown in Fig. 4.9. Note that according to Eq. (4.145) the magnitude of the

refractive index at frequencies around plasmon resonance is determined by the value of the off-

diagonal component of the dielectric tensor g. Therefore, measurements of the transmission and

reflection provide a sensitive measure of the Weyl node separation.

The same is true about the polarization effects. From the third row of Eqs. (4.142) one can get
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Figure 4.8: Real and imaginary parts of the refractive index nX of an X-wave as a function of
frequency for different values of the propagation angle θ. Other parameters are EF = 80 meV,
~vF b = 100 meV, and dephasing rate γ = 10 meV. Reprinted with permission from [59].

the expression for the polarization coefficient:

KX =
Ez
Ey

=
ig − n2

X sin θ cos θ

εzz − n2
X sin2 θ

. (4.147)

Substituting Eq. (4.144) into Eq. (4.147) one gets

KX =
ig
(
cos2 θεzz + sin2 θεyy

)
− (εyyεzz − g2) sin θ cos θ

εzz
(
cos2 θεzz + sin2 θεyy

)
− (εyyεzz − g2) sin2 θ

. (4.148)

At the resonant plasmon frequency defined by cos2 θεzz+sin2 θεyy = 0 one obtainsKX = 1
tan θ

,
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Figure 4.9: Real part of the bulk plasmon resonance frequency at normal incidence θ = 0 as a
function of the Fermi energy. Reprinted with permission from [59].

which is expected. If one sets θ = 0, which corresponds to normal incidence, KX =
ig

εzz
, i.e. again

proportional to g. In this case, the plasmon frequency is given by εzz = 0, and KX → ∞ in the

absence of losses. If εyy = εzz = ε⊥, Eq. (4.148) gives

KX =
igε⊥ − (ε2

⊥ − g2) sin θ cos θ

ε2
⊥ cos2 θ + g2 sin2 θ

. (4.149)

For an isotropic medium, when g2 = 0, the last expression gives KX = − tan θ, as it should

be for a transverse wave in an isotropic medium.

4.5.2 Propagation Perpendicular to the y Axis

For propagation transverse to the y axis ny = 0, n2 = n2
x + n2

z, nx = n cosφ, nz = n sinφ;


εxx − n2

z 0 nxnz

0 εyy − n2 ig

nznx −ig εzz − n2
x



Ex

Ey

Ez

 = 0 (4.150)
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(
sin2 φεzz + cos2 φεxx

)
n4 − n2

[
εxxεzz + εyy

(
sin2 φεzz + cos2 φεxx

)
− sin2 φg2

]
+εxx

(
εyyεzz − g2

)
= 0. (4.151)

Note that the solution of Eq. (4.151) at φ = π
2

corresponds to the normal incidence propagation

along z and therefore should coincide with Eqs. (4.143), (4.144) at θ = 0. Indeed, from Eq. (4.151)

for φ = π
2

one obtains

(
n2 − εxx

) [
n2 −

(
εyy −

g2

εzz

)]
= 0; (4.152)

from which n2
O = εxx, n2

X = εyy −
g2

εzz
, as expected.

The case n2 →∞ in the absence of losses, when

sin2 φεzz + cos2 φεxx = 0 (4.153)

corresponds to the condition n ·D = 0 where E = −∇ϕ ‖ n. From Eq. (4.151) one obtains

n2
O,X =

εxxεzz+εyy
(
sin2 φεzz+cos2 φεxx

)
−sin2 φg2

2
(
sin2 φεzz+cos2 φεxx

) ±√[
εxxεzz+εyy

(
sin2 φεzz+cos2 φεxx

)
−sin2 φg2

]2−4
(
sin2 φεzz+cos2 φεxx

)
εxx (εyyεzz−g2)

2
(
sin2 φεzz+cos2 φεxx

)
(4.154)

In Eq. (4.154) the signs ± are chosen for n2
O,X according to the limiting case φ = π

2
.

For the propagation along the x-axis of anisotropy, when φ = 0, Eq. (4.151) gives

n2
O,X =

εzz + εyy
2

±

√(
εzz − εyy

2

)2

+ g2 (4.155)

Note that the x-axis is also a gyrotropy axis related to the Weyl node separation along x. There-

fore, the propagation along x is similar to the Faraday geometry in a magnetic field. In our case the
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Figure 4.10: Spectra of real and imaginary parts of the polarization coefficient KX = Ez/Ey
for an incident wave linearly polarized in y-direction after traversing a 1-µm film in x-direction.
Reprinted with permission from [59].

normal modes are elliptically polarized. So an incident linearly polarized wave experiences Fara-

day rotation and gains ellipticity after traversing a sample in x-direction. To quantify the effect,

Fig. 4.10 shows the polarization coefficient KX = Ez/Ey after traversing a 1-µm thick film for a

wave initially linearly polarized in y-direction. The real part ofKX is a measure of the polarization

rotation whereas its imaginary part is a measure of ellipticity. Clearly, a rotation by ∼ π/2 by very

thin (0.5-1 µm) Weyl semimetal films is possible at frequencies near the interband absorption edge.

This is a giant Faraday rotation, comparable to the one observed at THz frequencies in narrow-gap

semiconductors in the vicinity of a cyclotron resonance in Tesla-strength magnetic fields; see e.g.

[96] for the review. Note that in our case no magnetic field is needed and the effect is controlled by
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the Weyl node separation and by the Fermi level. Previously Faraday rotation and nonreciprocity

in light propagation associated with it was studied in [66, 80] using the model with an axion θ-term

in the electromagnetic field action.

4.5.3 Oblique Propagation of Bulk Polaritons

In the general case the direction of the wave vector is determined by two angles θ and φ:

nx = n cosφ , nz = n sinφ cos θ , ny = n sinφ sin θ.

The general expression for n2
O,X is quite cumbersome. At the same time, in the particular case of

εyy = εzz = ε⊥, the result should not depend on the angle θ and should coincide with the one for

a magnetized plasma:

n2
O,X =

ε⊥
[
εxx (1 + cos2 φ) + sin2 φε⊥

]
− sin2 φg2

2
(
sin2 φε⊥ + cos2 φεxx

) ±√(
ε⊥
[
εxx (1 + cos2 φ) + sin2 φε⊥

]
− sin2 φg2

)2 − 4εxx
(
sin2 φε⊥ + cos2 φεxx

)
(ε2
⊥ − g2)

2
(
sin2 φε⊥ + cos2 φεxx

)
(4.156)

The condition n ·D = 0 at E = −∇ϕ ‖ n in the case of an oblique propagation gives

εxx cos2 φ+ sin2 φ
(
sin2 θεyy + cos2 θεzz

)
= 0. (4.157)

Therefore, Eq. (4.157) determines the frequencies of bulk plasmons in the general case. Under the

condition εyy = εzz = ε⊥ the plasmon dispersion equation takes a form similar to plasmons in a

magnetized plasma:

εxx cos2 φ+ sin2 φε⊥ = 0. (4.158)
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4.6 Boundary Conditions

So far I considered propagation and transmission of electromagnetic waves in bulk samples.

Now I will turn to effects of reflection and surface wave propagation that are equally sensitive to

the electronic structure of WSMs. Moreover, in many situations they are easier to observe than

bulk propagation effects.

I will start with the derivation of the boundary conditions at z = 0 surface. Assume that there

is an isotropic dielectric medium with dielectric constant n2
up = εup above a WSM. The boundary

conditions include:

(i) Gauss’ law for the normal components of the electric induction vector:

εupEz (z = +0)−Dz (z = −0) = 4πρS = −i4π
ω

(
∂xj

S
x + ∂yj

S
y

)
(4.159)

where ρS , jSx and jSy are the surface charge and components of the surface current that are connected

by the continuity equation. For the wave field one has ∂x, ∂y → ikx,y.

(ii) Equations for the magnetic field components:

Bz (z = −0) = Bz (z = +0) , (4.160)

By (z = +0)−By (z = −0) = −4π

c
jSx , (4.161)

Bx (z = +0)−Bx (z = −0) =
4π

c
jSy . (4.162)

Due to the presence of the components of the surface conductivity σSzz and σSzy = −σSyz a surface

dipole layer is formed at the boundary between the two media. Its dipole moment is

d = Re
[
ezdze

−iωt+ikxx+ikyy
]
,

dz =
i

ω

[
σSzyEy (z = −0) + σSzzEz (z = −0)

]
. (4.163)

Note that when dealing with a surface response, the fields are always chosen at z = −0 in
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Eq. (4.163) and similar relationships. The presence of the dipole layer changes the boundary

conditions for the tangential field components of E. Consider Maxwell’s equations

∂Ez
∂y
− ∂Ey

∂z
= i

ω

c
Bx,

∂Ex
∂z
− ∂Ez

∂x
= i

ω

c
By.

For convenience, assume that the dipole layer has a small but finite thickness L:

|kx,y|L� 1 and
ω

c
L� 1.

Using ∂x, ∂y → ikx,y and integrating
∫ L

2

−L
2

. . . dz, one obtains

ikx,y

∫ L
2

−L
2

Ez dz = Ex,y

(
z =

L

2

)
− Ex,y

(
z = −L

2

)
(4.164)

The integral over the magnetic field components were neglected assuming that ω
c
L → 0. Next if

one uses Gauss’ law under the condition |kx,y|L→ 0, it will yield in the region of the dipole layer:

∂Ez
∂z

= 4πρ (z) , ρ (z) = −
(
∂Pz
∂z

+
∂pz
∂z

)
.

Here Pz is a component of the volume polarization whereas pz describes the distribution of the

polarization in the dipole layer, so that

∫ L
2

−L
2

∂pz
∂z

dz = 0 and
∫ L

2

−L
2

pz dz = dz.

SubstitutingEz = −4π (Pz + pz) into Eq. (4.164) and integrating over dz at |kx,y|L→ 0 and finite

Pz, one obtains

Ex,y

(
z =

L

2

)
− Ex,y

(
z = −L

2

)
= −i4πkx,ydz (4.165)

The boundary condition Eq. (4.165) looks unusual but it can be easily deduced from the radiation
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field of an individual dipole.

Figures 4.11-4.14 show spectra of the surface conductivity components for different values of

the Fermi momentum. Note that the surface conductivity in Gaussian units has a dimension of

velocity and its value is normalized by e2/(2π~) ' 3.5 × 107 cm/s in all plots. In contrast with

the bulk conductivity, the surface conductivity had a Drude-like behavior at low frequencies only

for the yy-component because of the surface state dispersion E = −~vFky. The surface optical

response decreases with increasing Fermi energy and vanishes when all surface states within k2
x +

k2
y < b2 are occupied.
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Figure 4.11: Spectra of the real and imaginary parts of the xx component of the surface conduc-
tivity at several values of the Fermi momentum for ~vF b = 100 meV and dephasing rate γ = 10
meV. Reprinted with permission from [59].
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Figure 4.12: Spectra of the real and imaginary parts of the yy component of the surface conduc-
tivity at several values of the Fermi momentum for ~vF b = 100 meV and dephasing rate γ = 10
meV. Reprinted with permission from [59].
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Figure 4.13: Spectra of the real and imaginary parts of the zz component of the surface conduc-
tivity at several values of the Fermi momentum for ~vF b = 100 meV and dephasing rate γ = 10
meV. Reprinted with permission from [59].
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Figure 4.14: Spectra of the real and imaginary parts of the yz component of the surface conduc-
tivity at several values of the Fermi momentum for ~vF b = 100 meV and dephasing rate γ = 10
meV. Reprinted with permission from [59].
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4.7 Reflection from the Surface of a Weyl Semimetal

Consider radiation incident from a medium with refractive index nup on a WSM at an angle

θ between the wavevector of the wave and the normal to a WSM. For simplicity consider the

propagation transverse to the x-axis. The reflection spectra provide information about both bulk

and surface conductivity components. Here I will pay particular attention to the case when the

contribution of the surface states becomes significant or dominant, thus allowing one to probe

surface states by optical means.

4.7.1 Reflection with Excitation of an O-mode

In this geometry, the complex amplitudes of the electric field of the incident E1, reflected E2,

and transmitted EO wave are parallel to the x-axis. The refractive index of the transmitted wave is

n2
O = εxx = ε(0)

xx + i
4π

ω
σBxx (see Eq. (4.143)).

Applying Maxwell’s equations with standard boundary conditions including the surface cur-

rent, one arrives at

R =
E2

E1

= −
cos θO

√
ε

(0)
xx + i4π

ω
σBxx + 4π

c
σSxx − cos θnup

cos θO

√
ε

(0)
xx + i4π

ω
σBxx + 4π

c
σSxx + cos θnup

(4.166)

where nup sin θ = nO sin θO. Assuming σSxx = 0 one obtains R =
E2

E1

=
cos θnup − cos θOnO
cos θOnO + cos θnup

,

which is a standard Fresnel formula.

For the same magnitude of σSxx, the relative contribution of surface states to the reflected field

depends on the parameter
|ε(0)
xx |

4π|σBxx|/ω
. If

ω|ε(0)
xx |

4π|σBxx|
� 1, the relative contribution of surface states

is determined by the expression:
2ω|σSxx|/c
|σBxx|/|ε

(0)
xx |

. If
ω|ε(0)

xx |
4π|σBxx|

� 1, one needs to evaluate the ratio

2
√
πσSxx/c√
σBxx/ω

.
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4.7.2 Reflection with Excitation of an X-mode

In this geometry, the complex Fourier harmonics for the incident and reflected waves are

(ey ∓ ez tan θ)E1,2e
∓iω

c
nup cos θz−iω

c
nup sin θy−iωt.

The transmitted wave is

(ey + ezKX)EXe
−iω

c
nX cos θXz−iωc nX sin θXy−iωt,

where n2
X and KX are given by Eqs. (4.144) and (4.147), in which one should substitute θ →

θX . The corresponding complex amplitudes of the magnetic field are B1x =
nup

cos θ
E1, B2x =

− nup
cos θ

E2, B(X)x = nX (cos θX − sin θXKX)EX .

At the plasmon frequency, when KX =
1

tan θX
, the last equation gives B(X)x = 0, as should

be expected. For an isotropic medium, when KX = − tan θX , one obtains B(X)x =
nX

cos θX
EX

which is also expected for a transverse wave (note that EX is an amplitude of the y-component of

the extraordinary (X-)mode).

I will use the boundary conditions

E1 + E2 − EX = iω
4π

c
nup sin θdz, dz =

i

ω

(
σSzy + σSzzKX

)
EX (4.167)

nup
cos θ

(E1 − E2)− nX (cos θX − sin θXKX)EX =
4π

c
jSy , jSy =

(
σSyy + σSyzKX

)
EX (4.168)

to obtain

R =
E2

E1

=
nup

[
1− 4πnup sin θ

c

(
σSzy+σSzzKX

)]
−nX cos θ (cos θX−sin θXKX)+ 4π cos2 θ

c

(
σSyy+σSyzKX

)
nX cos θ (cos θX−sin θXKX)+ 4π cos2

c

(
σSyy+σSyzKX

)
+nup

[
1− 4πnup sin θ

c

(
σSzy+σSzzKX

)]
(4.169)
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where nup sin θ = nX sin θX . In the limit of an isotropic medium, where KX = − tan θX , σSij = 0,

one obtains R =
E2

E1

=
nup cos θX − nX cos θ

nX cos θ + nup cos θX
which is a standard Fresnel equation.

For the normal incidence the expressions are simplified:

n2
X = εyy −

g2

εzz
= ε(0)

yy + i
4π

ω
σByy −

(
4πσByz
ω

)2

ε
(0)
zz + i4π

ω
σBzz

, KX =
ig

εzz
= i

4πσByz
ω

ε
(0)
zz + i4π

ω
σBzz

,

which gives

R =
nup − nX + 4π

c

(
σSyy + iσSyz

g
εzz

)
nup + nX + 4π

c

(
σSyy + iσSyz

g
εzz

) (4.170)

The contribution of surface states is less trivial for X-mode excitation as compared to the exci-

tation of an O-mode. For normal incidence (see Eq. (4.170)) one can see that at the plasmon reso-

nance frequency, when εzz → 0 in the absence of losses, the contribution of the surface conductiv-

ity can become dominant. Indeed, in Eq. (4.170) the term σSyz
g

εzz
diverges as

1

εzz
, whereas the re-

fractive index nX diverges weaker, as
1
√
εzz

. When σSij = 0 while nX � nup one hasR = −1 (tak-

ing into account that the magnitude of nX is large at the plasmon frequency). In the opposite case,

when the contribution of the surface conductivity dominates, i.e.
4π

c
|σSyz

g

εzz
| � |nX | ≈

g√
|εzz|

,

one obtains R = +1 , i.e. the phase of the reflected field is rotated by 180 degrees.

The enhanced contribution of the surface conductivity at normal incidence in the vicinity of

the bulk plasmon resonance is expected. Indeed, at plasmon resonance the z-component Ez of

the field in the medium becomes very large, which leads to a dominant contribution of the surface

current jSy = σSyzEz.

For oblique incidence θ 6= 0 and small losses the calculations of the reflection in the vicinity of

plasmon resonance have a technical subtlety, related to the presence of the term

nX cos θ (cos θX − sin θXKX) in Eq. (4.169). Indeed, at the plasmon frequency nX →∞ as losses

γ → 0; however, for a plasmon one also has KX →
1

tan θX
, i.e. (cos θX − sin θXKX) → 0. One

needs to treat the resulting uncertainty of the product with caution. The details are presented below

.
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4.7.2.1 Reflection in The Vicinity of Plasmon Resonance

For oblique incidence θ 6= 0 and small losses the calculations of the reflection in the vicinity of

plasmon resonance have a technical subtlety, related to the presence of the term

nX cos θ (cos θX − sin θXKX) in Eq. (4.169). Indeed, at the plasmon frequency nX →∞ as losses

γ → 0; however, for a plasmon one also has KX →
1

tan θX
, i.e. (cos θX − sin θXKX) → 0. One

needs to treat the resulting uncertainty of the product with caution.

Substituting the relationship sin θX =
nup sin θ

nX
into the expression for the refractive index of

an extraordinary wave gives:

n2
X =

εyyεzz − g2

cos2 θXεzz + sin2 θXεyy
=

εyyεzz − g2

εzz − sin2 θ
(
nup
nX

)2

(εzz − εyy)
,

which gives

n2
X = εyy −

g2

εzz
+ sin2 θn2

up

(
1− εyy

εzz

)
(4.171)

In the case εyy = εzz = ε⊥, Eq. (4.171) for an arbitrary angle θ leads to the familiar expression

n2
X = ε⊥ − g2

ε⊥
. Next I will use Eq. (4.147):

KX =
ig − n2

X sin θX cos θX
εzz − n2

X sin2 θX
=
ig − nup sin θnX

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up

.
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Consider the expression nX cos θ (cos θX − sin θXKX):

nX cos θ (cos θX − sin θXKX)

= nX cos θ

cos θX −
ig sin θX − sin θXnup sin θnX

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up



= nX cos θ


√

1−
(

sin θnup
nX

)2

−
ig sin θnup

nX
− sin2 θn2

up

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up

 .

The condition nX
nup
� 1, which is satisfied at the plasmon frequency, allows one to simplify the

above expressions for any angle of incidence θ

KX =
ig − n2

X sin θX cos θX
εzz − n2

X sin2 θX
≈ ig − nXnup sin θ

εzz − sin2 θn2
up

(4.172)

nXcosθ (cos θX − sin θXKX) ≈ nX cos θ

(
1−

ig sin θnup
nX

− sin2 θn2
up

εzz − sin2 θn2
up

)
(4.173)

Since for nX
nup
� 1 one always has sin θX � 1, the plasmon frequency always corresponds to

|εzz| � 1 (at normal incidence, εzz = 0 exactly). Taking into account Eq. (4.171), one obtains

1� |εzz| ∼ n−2
X .

Now consider the range of incidence angles close to normal incidence, when sin2 θ � 1. Two

cases need to be treated separately: |εzz| � sin2 θn2
up � 1 and sin2 θn2

up � |εzz| � 1.

(i) |εzz| � sin2θn2
up � 1

In this case

n2
X ≈ εyy −

g2

εzz
, KX ≈

nX
nupsinθ

(4.174)

nX cos θ

(
1−

ig sin θnup
nX

− sin2 θn2
up

εzz − sin2 θn2
up

)
≈ ig

sinθnup
(4.175)
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where g =
4πσByz
ω

,

R ≈
n2
up sin θ − i4πσByz

ω
+ 4π

c
σSyznX

n2
up sin θ + i

4πσByz
ω

+ 4π
c
σSyznX

. (4.176)

For real σ(B,S)
yz one has |R| = 1; however, the phase of the reflected field depends on the contri-

bution of surface states. Since in the vicinity of plasmon resonance nX ∼
1√
|εzz|

� 1, at these

frequencies the contribution of surface states may become important. This is especially clear in

the limit of small enough angles, when n2
upsinθ � |

4πσByz
ω
|. In this case

R ≈
−i4πσByz

ω
+ 4π

c
σSyznX

+i
4πσByz
ω

+ 4π
c
σSyznX

. (4.177)

When the bulk contribution dominates one has R = −1, whereas if the surface contribution

dominates one obtains R = +1, i.e. the phase of the reflected field flips.

The relative contribution of surface states is determined by the ratio
|σSyznX |
c
ω
|σByz|

. Taking into ac-

count that |nX | ≈
|g|√
|εzz|

and |g| =
4π|σByz|
ω

, the above ratio can be reduced to
4π|σSyz |

c√
|εzz|

.

(ii) sin2 θn2
up � |εzz| � 1

This case is similar to the one at θ = 0. Indeed, for this range of parameters one obtains

n2
X ≈ εyy −

g2

εzz
, KX ≈

ig

εzz
(4.178)

nXcosθ

(
1−

ig sinθnup
nX

− sin2θn2
up

εzz

)
≈ nX . (4.179)

R ≈
−nX + 4π

c
σSyz

ig
εzz

nX + 4π
c
σSyz

ig
εzz

(4.180)

Eqs. (4.178), (4.179) are the same as for the normal incidence. Eq. (4.180) can be obtained from

the normal incidence formula Eq. (4.170) if |σSyy| � |σSyz
g

εzz
| and nX � nup; the latter inequalities
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are valid near the plasmon resonance, where nX ∼
1√
|εzz|

→ ∞.

For real values of σ(S)
yz one has |R| = 1, but the phase of the reflected field depends on the

contribution of surface states. Again, when the bulk contribution dominates one has R = −1,

whereas if the surface contribution dominates one obtains R = +1; see Figs. 4.15 and 4.16.
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Figure 4.15: Real part reflection obtained from equation Eq. (4.180) for nup = 1, ~vF b = 100
meV and two values of the electron Fermi momentum kF = 0.2b and 0.5b.

The relative contribution of surface states is determined by the ratio
4π
c
|σSyz

g
εzz
|

|nX |
. Again taking
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Figure 4.16: Real part reflection obtained from equation Eq. (4.180) for nup = 1, ~vF b = 100
meV and two values of the electron Fermi momentum kF = 0.8b and 1.0b.

into account |nX | ≈
|g|√
|εzz|

and |g| =
4π|σByz|
ω

one obtains that the above ratio is reduced to

exactly the same expression as before:
4π|σSyz|/c√
|εzz|

.

To summarize, the effect of surface states on the reflected wave is determined by the ratio

|σSyz|
c
√
|εzz|/4π

and therefore becomes significant or dominant at the plasmon resonance frequency, when εzz =
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ε(0)
zz + i

4π

ω
σBzz → 0.

The main result is that the contribution of surface states to the reflected wave is determined by

the ratio
|σSyz|

c
√
|εzz|/4π

and therefore becomes significant or dominant at the plasmon resonance frequency, when εzz =

ε(0)
zz + i

4π

ω
σBzz → 0. When the bulk contribution dominates the reflection coefficient R is close to

−1. When the surface contribution dominates, R is close to +1 i.e. the phase of the reflected field

flips.

4.8 Surface Plasmon-Polaritons

Surface plasmon-polaritons can be supported by both bulk and surface electron states. Here I

will derive dispersion relations for surface waves including both bulk and surface conductivity for

several specific cases. Emphasis is placed on the situations where the dispersion is significantly

affected or dominated by surface states and can therefore be used for diagnostics of surface states

and Fermi arcs. Previously, surface plasmons in WSMs have been considered in the low-frequency

limit within a semiclassical description of particle motion with added ad hoc anomalous Hall term

[97] and with a quantum-mechanical description [84] based on the Hamiltonian in [83]. Both

studies indicated strong anisotropy and dispersion of surface plasmons.

4.8.1 Quasielectrostatic Approximation

Within the quasielectrostatic approximation the electric field can be defined through the scalar

potential:

E = Re
[
E (z) eikxx+ikyy−iωt

]
= −∇F , F = Re

[
Φ (z) eikxx+ikyy−iωt

]
.

Using the electric induction vectorD = Re
[
D (z) eikxx+ikyy−iωt

]
= ε̂E and Gauss’ law for each

halfspace gives :

∇ ·D = 0. (4.181)
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In general, there can be an electric dipole layer at the boundary between the two media. The

dipole layer has a jump in the scalar potential Φ (z),

Φ (z = +0)− Φ (z = −0) = 4πdz, (4.182)

where dz is determined by Eqs. (4.163).

Next, I define the scalar potential Φ (z) for the surface mode as

Φ (z > 0) = Φupe
−κupz, Φ (z < 0) = ΦW e

+κW z.

Using Eq. (4.181) in each halfspace, one obtains

k2
x + k2

y − κ2
up = 0, (4.183)

k2
xεxx + k2

yεyy − κ2
W εzz = 0. (4.184)

Using the boundary condition Eq. (4.159) one gets

n2
upκupΦup − [εzz (−κWΦW ) + εzy (−ikyΦW )] = −i4π

ω

(
∂

∂x
jSx +

∂

∂y
jSy

)

which gives

n2
upκupΦup +

[
κW

(
εzz +

4π

ω
kyσ

S
yz

)
+ gky + i

4π

ω

(
k2
xσ

S
xx + k2

yσ
S
yy

)]
ΦW = 0 (4.185)

where εyz = −εzy = ig = i
4πσByz
ω

. Using also the boundary condition Eq. (4.182) together with

Eqs. (4.163), one obtains

Φup +

(
i
4π

ω
κWσ

S
zz −

4π

ω
kyσ

S
zy − 1

)
ΦW = 0 (4.186)

From these relationships one can get the dispersion equation for surface waves. Note that the
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confinement constants κW and κup are generally complex-valued. Their imaginary parts give rise

to a Poynting flux away from the surface which contributes to surface wave attenuation.

4.8.1.1 Neglecting Surface States

First, I neglect the surface conductivity to consider surface plasmons supported by bulk carriers

only. In this case from Eqs. (4.183), (4.186) one gets κup =
√
k2
x + k2

y , Φup = ΦW . Denoting

k2
x + k2

y = k2, kx = k cosφ, ky = k sinφ, one obtains from Eq. (4.184)

κW = k

√
cos2 φεxx + sin2 φεyy

εzz
. (4.187)

Furthermore, from Eq. (4.185) for κup = k and Φup = ΦW one has

n2
upk + κW εzz + gk sinφ = 0, (4.188)

where εyz = ig = i
4πσByz
ω

. Substituting Eq. (4.187) into Eq. (4.188), one obtains the dispersion

relation

D (ω, φ) = n2
up + εzz

√
cos2 φεxx + sin2 φεyy

εzz
+ g sinφ = 0. (4.189)

The dispersion equation Eq. (4.189) gives the dependence ω (φ), but does not have any depen-

dence on the magnitude of k. This situation is similar to the dispersion relation for bulk plasmons in

the quasielectrostatic approximation, Eq. (4.157). It is also similar to waves in classical magnetized

plasmas. Of course the range of values of k is constrained by the validity of the quasielectrostatic

approximation.
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4.8.1.2 Including Surface States

If one now include the surface conductivity, Eqs. (4.183)-(4.186) give

D (ω, φ)− 4π

ω
k

[√
cos2 φεxx + sin2 φεyy

εzz

(
in2
upσ

S
zz − sinφσSyz

)
− n2

up sinφσSyz − i
(
cos2 φσSxx + sin2 φσSyy

) ]
= 0 (4.190)

where the function D (ω, φ) is determined by Eq. (4.189). Taking the surface conductivity into

account brings the dependence on the magnitude of the wave vector k into the dispersion relation.

Therefore, measuring the frequency dispersion of the surface plasmon resonance provides a direct

characterization of surface states.

Figure 4.17 shows the surface plasmon dispersion for propagation along y, i.e. transverse to

the gyrotropy x-axis, for two values of the Fermi momentum. The real part of the surface plasmon

frequency ignoring the contribution of the surface conductivity is shown as a dashed horizontal line

for each value of kF . Clearly, the contribution of surface electron states is important everywhere,

except maybe in a narrow region of small wavenumbers k where the quasistatic approximation

breaks down. The plot has a horizontal axis ck in units of meV in order to directly compare with

frequencies. The inequality ck � ω is satisfied almost everywhere.

The fact that the contribution of the surface current is so important, can be understood from

the structure of Eq. (4.190). Clearly, the relative contribution of the bulk and surface terms can

be estimated by comparing the magnitudes of |σB| and |kσS| where σB and σS are appropriate

components of bulk and surface conductivity tensors and k is a wavenumber of a given electro-

magnetic mode. This is true not only for surface modes but also for other electromagnetic wave

processes at the boundary such as reflection. In the mid/far-infrared spectral region of interest to us,

|kσS| � |σB| for vacuum wavelengths ck ∼ ω. However, for large surface plasmon wavenumbers

shown in Fig. 4.17 the opposite condition |kσS| ≥ |σB| is satisfied.

Note the dispersion in Fig. 4.17 is stronger (the slope is steeper) at frequencies corresponding
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to Re[εzz] ≈ 0, i.e. near the resonance for bulk plasmons propagating along z. This follows

from Eq. (4.190) where the surface terms contain a factor 1/
√
εzz. Physically, this is expected:

as already mentioned, at the plasmon resonance the z-component Ez of the field in the medium

becomes very large, which leads to an enhanced contribution of the surface current jSy = σSyzEz.

4.8.2 Surface Waves Beyond the Quasielectrostatic Approximation

For small wavenumbers the quasielectrostatic approximation is no longer valid. On the other

hand, in this case one can neglect the surface conductivity as pointed out in the previous paragraph.

This is not an interesting limit as far as the spectroscopy of surface states is concerned, but resulting

dispersion relation will still be derived for completeness. For the electric field of a surface mode

in the upper halfspace with the refractive index nup,

Eup = Re
[
Eupe

ikxx+ikyy−κupz−iωt
]
,

the Maxwell’s equation for∇× E gives

kyEz − iκupEy =
ω

c
Bx, kxEz − iκupEx = −ω

c
By, kxEy − kyEx =

ω

c
Bz. (4.191)

For the field in the Weyl semimetal,

EW = Re
[
EW e

ikxx+ikyy+κW z−iωt]
the same equation gives, after replacing κup → −κW in Eq. (4.191),

kyEz + iκWEy =
ω

c
Bx, kxEz + iκWEx = −ω

c
By, kxEy − kyEx =

ω

c
Bz. (4.192)

The inverse decay length for the field in the upper halfspace is given by κ2
up = k2 − n2

up

ω2

c2
.
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In a WSM one can use a version of Eq. (4.142) after replacing kz → −iκW :


ω2

c2
εxx − k2

y + κ2
W kxky −ikxκW

kykx
ω2

c2
εyy − k2

x + κ2
W iω

2

c2
g − ikyκW

−ikxκW −iω2

c2
g − ikyκW ω2

c2
εzz − k2



Ex

Ey

Ez

 = 0, (4.193)

where k2 = k2
x + k2

y .

Consider again a surface wave propagating transverse to the anisotropy axis (kx = 0). In this

case, there are two solutions to the dispersion equation Eq. (4.193), an O-wave and an X-wave.

However, one can show that an O-wave with Ex 6= 0 does not exist as a surface wave. Moreover,

this statement remains true even with the surface current taken into account. Only the X-wave with

Ey,z 6= 0 can exist as a surface wave. Its inverse confinement length in the Weyl semimetal is given

by

κ2
W =

εyy
εzz

(
k2 − n2

X

ω2

c2

)
(4.194)

where

n2
X = εzz −

g2

εyy

is the refractive index of an extraordinary wave propagating in the volume in the y-direction (see

Eq. (4.144) for θ = π
2
). The polarization of an extraordinary wave is determined by

i

(
ω2

c2
g + kκW

)
Ey =

(
ω2

c2
εzz − k2

)
EzW (4.195)

which follows from Eq. (4.193). After some straightforward algebra, one obtains the dispersion

relation for a surface wave:

(
k2 − ω2

c2
n2
up

)(
gk + εzz

√
εyy
εzz

√
k2 − ω2

c2
n2
X

)
+

√
k2 − ω2

c2
n2
up

(
k2 − ω2

c2
εzz

)
n2
up = 0.

(4.196)

In the limit of large wavenumbers k this equation becomes the quasielectrostatic dispersion relation
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Eq. (4.189) at φ = π
2
.

For the propagation in x-direction, one can repeat the above analysis for the case ky = 0 and

obtain that there are no surface wave solutions when the surface conductivity is neglected.

One interesting solution of the dispersion equation Eq. (4.196) is a strongly nonelectrostatic

case when the surface mode is weakly localized in a medium above the WSM surface, e.g. in the

air. The energy of this wave is mostly contained in an ambient medium above the WSM surface

where there is no absorption. Therefore, such surface waves can have a long propagation length;

see e.g. [98, 99, 100].

To find this solution I assume n2
up = 1 and introduce the notation ω

c
= k0. A weak localization

outside a WSM means that |κup| � k0. Then, assuming k ' k0 + δk, where k0 � |δk|, one

obtains κup '
√

2k0δk. From Eqs. (4.196) and (4.194) in the first order with respect to

√
δk

k0

one

gets

δk ' k0

2

(εzz − 1)2[
g +

√
εzzεyy

(
1− εzz + g2

εyy

)]2 , (4.197)

Reκ2
W ' Re

[
k2

0

εyy
εzz

(
1− εzz +

g2

εyy

)]
. (4.198)

This solution describes surface waves if Re[κW ] > 0 and Re[κup] > 0. In addition, |δk| �

k0 has to be satisfied. It was checked that all three inequalities are satisfied for the numerical

parameters chosen to calculate the conductivity tensor. As an example, Fig. 4.18 shows normalized

confinement constants Re[κW ]/k0 and Re[κup]/k0 ' Re[
√

2δk/k0] as functions of frequency,

for the Fermi momentum kF = 0.5b. Clearly, the solution describes a surface wave which is

weakly confined in the air and strongly confined in the WSM. The spectra remain qualitatively

the same with increasing Fermi momentum, but the oscillating feature moves to higher energies,

roughly following the spectral region where the real parts of εzz and εyy cross zero. Note again

that the confinement constants κW and κup are complex-valued. Their imaginary parts give rise to

a Poynting flux away from the surface which contributes to surface wave attenuation.
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Figure 4.17: Real part of the surface plasmon frequency as a function of real plasmon wavenumber
obtained as a solution to the dispersion equation Eq. (4.190) for φ = π/2, ~vF b = 100 meV and
two values of the electron Fermi momentum kF = 0.5b and 0.8b. The surface plasmon frequency
neglecting surface conductivity contribution is shown as a dashed line. Reprinted with permission
from [59].
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Figure 4.18: Normalized confinement constants (a) Re[κup]/k0 ' Re[
√

2δk/k0] and (b)
Re[κW ]/k0 as functions of frequency, for the Fermi momentum kF = 0.5b. Other parameters
are ~vF b = 100 meV and γ = 10 meV. Reprinted with permission from [59].
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4.9 Summary

Starting with a microscopic Hamiltonian for a time-reversal breaking Weyl semimetal the ten-

sors of the bulk and surface conductivities were derived. The properties of the conductivities

are determined, in part, by the Weyl nodes and the surface states of the WSM. Since there is an

interplay between an optical field and the conductivities of the WSM one may use reflection, trans-

mission and polarization of an EM mode as a probe of the WSMs electronic properties. Moreover,

the frequency dispersion of surface plasmon-polariton modes, and strong anisotropy of surface

plasmon-polaritons with respect to their propagation direction and polarization serves as a sensitive

diagnostic tool for the WSMs surface states. WSMs may find potential optoelectronic applications

such as a Faraday rotator or even in the field of plasmonics since it demonstrated tight confinement

of SPPs.
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5. CONCLUSION

In conclusion, I investigated an electric-dipole-forbidden process of THz difference frequency

generation in Landau-quantized graphene. The second-order susceptibility turned out to be sur-

prisingly high, equivalent to the bulk magnitude of about 3 × 10−3 m/V. I applied the formalism

to the DFG of THz surface plasmon-polaritons in graphene integrated into a dielectric waveguide

or cavity with strong vertical confinement of the optical pump modes. The DFG power conversion

efficiency of the order of tens µW/W2 is predicted for structures of size around 100 µm. Analytic

expressions for the DFG power were obtained and the results were presented for different structure

geometries, composition, and magnetic field strengths.

The feasibility of observing both spontaneous and stimulated parametric decay of photons of a

strong laser pump obliquely incident on graphene was demonstrated. The flux of surface plasmons

and idler photons generated by parametric decay of the pump was calculated and it was shown that

these modes are entangled.

Systematic studies of the optical properties and electromagnetic modes of Weyl semimetals

were presented. Both bulk and surface conductivity tensors were derived from a single micro-

scopic Hamiltonian. The presence of separated Weyl nodes and associated surface states give rise

to distinct signatures in the transmission, reflection, and polarization of bulk and surface electro-

magnetic waves. These signatures can be used for quantitative characterization of electronic struc-

ture of Weyl semimetals. Particularly sensitive spectroscopic probes of bulk electronic properties

include strong anisotropy in propagation of both bulk and surface modes, birefringent dispersion

and absorption spectra of ordinary and extraordinary normal modes, the frequency of bulk plas-

mon resonance as a function of incidence angle and doping level, and the polarization rotation and

ellipticity for incident linearly polarized light. The sensitive characterization of surface electronic

states can be achieved by measuring the phase change of the reflection coefficient of incident plane

waves, the frequency dispersion of surface plasmon-polariton modes, and strong anisotropy of sur-

face plasmon-polaritons with respect to their propagation direction and polarization. In the mid-
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infrared and THz spectral regions WSMs (studied here) displayed strong anisotropy, gyrotropy,

birefringence, giant polarization rotation (for propagation along axis of gyrotropy), and strong lo-

calization of surface plasmon-polariton modes. These effects are tunable by doping. The field of

optoelectronics could find applications of WSMs as Faraday isolators, rotators, etc.
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