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ABSTRACT 

 

The correct description of multiphase flow mechanism in porous media is an 

important aspect of research in fluid mechanics, water resources and petroleum 

engineering. The thorough understanding of these mechanisms is important for many 

applications such as waterflood, CO2 sequestration, and enhanced oil recovery. Being 

different from single phase flow that is well described by Darcy’s law and well understood 

for over 160 years, the multiphase flow mechanism requires more mathematical 

involvement with more complex fluid interaction which inevitably will incorporate 

relative permeability and capillary pressure into its description.  

For typical two-phase flow problems, especially at the conventional reservoir scale, 

the Buckley-Leverett flow equations are normally applied with negligible capillarity to 

capture the flow behavior. However, as we extend our studies to higher resolution using 

multiscale calculations, or evaluate tighter or higher contrast heterogeneous reservoirs, 

capillarity becomes increasingly important. Also, for situations such as spontaneous 

imbibition that wetting fluid is displaced by non-wetting invading fluid, it is possible that 

capillary force becomes the dominating driving force with negligible viscous and gravity 

contributions. To better characterize the multiphase flow mechanism with capillarity, in 

this research, a detailed investigation is carried out in pursuit of more rigorous 

mathematical description and broader applicability. 

The numerical simulation analysis of the described problem has long been a 

subject of interest with numerous publications addressing it. Being different from the 
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traditional methods where numerical simulation is used, we pursue the analytical 

description of the flow behavior using Lagrangian approach which is better in describing 

these frontal propagation problems. Also, the analytical solution tends to give more insight 

into the underlying physical characteristics of the problem itself. As one of the most 

important outcomes, the methodology derives a new dimensionless capillary group that 

characterizes the relative strength of capillarity at the continuum scale based on the 

analytical solution. Knowledge of this can be used for stability analyses, with future 

potential application in the design of computational grids to properly resolve the capillary 

physics. 



 

iv 

 

DEDICATION 

 

To my beloved parents, Jianmin Deng and Min Yang, who have always loved me 

unconditionally and taught me to work hard for the things I aspire to achieve. 

To my beloved wife, Bo Li, who has been a constant source of support and 

encouragement. 

To my advisor and committee members for their valuable guidance for me to 

successfully conduct the research. 

And to all my friends who shared my happiness and sorrow during my graduate 

life and study. 



 

v 

 

ACKNOWLEDGMENTS 

 

First, I would like to thank my committee chair, Dr. Michael J. King, for being an 

amazing advisor during my overall Ph.D. research journey.  

I would also like to extend my sincere gratitude to the other committee members, 

Dr. Akhil Datta-Gupta, Dr. Eduardo Gildin and Dr. Art Donovan. I want to thank them 

for their support during my research. 

My gratitude also goes to my colleagues and the petroleum engineering department 

faculty and staff for making my Ph.D. life easy and colorful. 

Finally, thanks to my parents and my wife for their continuous support and 

encouragement. 

  



 

vi 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

Part 1, faculty committee recognition 

This work was supervised by a dissertation committee consisting of Professor 

Michael King, Akhil Datta-Gupta and Eduardo Gildin of the Department of Petroleum 

Engineering and Professor Art Donovan of the Department of Geology.  

Part 2, student/collaborator contributions 

 All other work conducted for the dissertation was completed by the student 

independently.  

Funding Sources 

Graduate study was supported by a fellowship from Texas A&M University and a 

graduate research assistantship from Energi Simulation (formerly Foundation CMG). 



 

vii 

 

NOMENCLATURE 

 

A   Cross-sectional area 

openA   Cross-sectional area open for imbibition 

c   Buckley-Leverett frontal speed 

ImC   Imbibition proportionality constant – linear flow 

Im,radialC   Imbibition proportionality constant – radial flow 

D   Downward unit vector 

fracD   Fracture aperture 

iF   Fractional phase mobility ( : water / oil / gasi w o g= = = ) 

wf   Water fractional flow (normalized to total flux) 

Im

wf   Normalized water flux (normalized to inlet water flux) 

Im

wf   Average normalized water flux (normalized to inlet water flux) 

g   Acceleration due to gravity 

G   Dimensionless capillary mobility function 

h   Thickness 

frach   Fracture height 

( )H S   Inner saturation function 

J   Leverett J-function 
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cJ   Pre-factor for Leverett J-function 

k   Absolute permeability 

rik   Relative permeability ( : water / oil / gasi w o g= = = ) 

rgk   Apparent gas phase relative permeability 

l   Total length 

L   Rescaled total length or frontal location 

m   Exponent for relative permeability model 

M   Mobility ratio 

( )M S   Inner saturation mass function 

n   Exponent for relative permeability model 

p   Pressure 

cp   Capillary pressure 

q   Total flow rate 

Q   Imbibed water volume 

wq   Water flow rate 

0wq   Water flow rate at the inlet 

*

0wq   Target water injection rate 

R   Ratio of total flow rate and inlet water flow rate 

S   Mobile saturation fraction 
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1S   Inner saturation at the foot of profile 

2S   Inner saturation at the inlet 

wS   Water saturation 

0wS   Free water saturation 

wirrS   Irreducible water saturation 

wiS   Initial water saturation 

orwS   Residual oil saturation 

*S   Buckley-Leverett shock saturation 

CS   Composite saturation 

OS   Outer saturation 

IS   Inner saturation 

mS   Matched saturation 

C

inletS   Composite saturation at the inlet 

I

inletS   Inner saturation at the inlet 

O

inletS   Outer saturation at the inlet 

O

footS   Outer saturation at the foot of profile 

t   Time 

T   Rescaled time – total volume injected 
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ImT   Rescaled time – water volume imbibed 

iu   Darcy velocity ( : water / oil / gas / totali w o g t= = = = ) 

Imu   Darcy velocity for spontaneous imbibition 

fracV   Fracture bulk volume 

x   Distance 

fx   Fracture half-length 

X   Rescaled distance – mobile pore volume 

ImX   Rescaled distance – pore volume 

   Exponent for capillary pressure function 

c   Exponent for capillary pressure function 

i   Exponents for relative permeability ( : water / oili w o= = ) 

   Combined parameter for gravity term 

   Density difference 

   Small parameter for capillary dispersion 

D   Dimensionless capillary group – viscous dominated  

Im

D   Dimensionless capillary group – capillary dominated 

   Heaviside function 

D   Dimensionless mobility 

i   Mobility ( : water / oil / gas / totali w o g t= = = = ) 
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i   Phase viscosity ( : water / oil / gasi w o g= = = ) 

   Rescaled distance inner spatial variable 

Im   Dimensionless rescaled parameter for saturation profile 

   Interfacial tension 

   Porosity 

frac   Fracture porosity 
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CHAPTER I  

INTRODUCTION 

1 Equation Chapter (Next) Section 1 

1.1 Motivation and Objectives 

  

 Immiscible displacement of oil by water or gas is a fundamental reservoir recovery 

mechanism which has been discussed in numerous publications, and the application of it 

extends to multiple scales such as lab scale and reservoir scale. At the reservoir scale, 

multiphase fluid flow is well characterized by the Buckley-Leverett (Buckley and Leverett 

1942) flow equations and is usually treated by neglecting capillarity. This is because at 

this scale the viscosity/mobility ratio is the key factor that controls the efficiency and 

stability of the displacement, especially after the breakthrough of the injected fluid 

(Chuoke et al. 1959; Dake 1983; Welge 1952). However, as we extend the studies in 

higher resolutions using multiscale calculations, or evaluate tighter or higher contrast 

heterogeneous or fractured reservoirs, capillarity becomes increasingly important. Also, 

in some reservoir engineering contexts such as naturally fractured carbonate reservoirs or 

hydraulic fractured unconventional reservoirs, capillarity may become the primary driving 

force for the recovery. 

 Due to the complexity of the nature of the nonlinear immiscible displacement 

partial differential equations including capillarity, universal analytic solutions have 

remained unavailable. Numerical solutions have been investigated as well (McEven 1959; 

Fayers and Sheldon 1959), but analytic solutions, due to the nature of the Lagrangian 



 

2 

 

approach, are better in characterizing these frontal propagation problems. Numerous 

attempts have been given in the literature about the construction of analytic solution for 

this type of problems, but most of them require additional and nonessential assumptions 

which will further limit the applicability. Like Yortsos and Fokas (1983) derived an 

analytic solution which required specific functional forms for the relative permeability and 

capillary pressure with respect to saturation. Similar assumptions have continued to be 

studied in the literature (Desai et al. 2015; Wu and Pan 2003). Some other literature may 

place other constraints like McWhorter and Sunada (1990) have derived a self-similar 

solution that doesn’t depend upon specific functional forms of the inputs. But their 

solution requires the injection rate to scale inversely proportional to one over the square 

root of time. The main purpose of this research is to derive a general solution to the 

immiscible displacement with as fewer constraints as possible and in accordance with 

physically achievable boundary conditions. 

 Another important aspect of this research is to distinguish between different 

boundary conditions as they will represent totally different mechanisms. For instance, 

drainage, spontaneous imbibition and forced imbibition are totally different mechanisms. 

The main difference between drainage and imbibition processes depends on the wettability 

of the system, and forced imbibition is still viscous dominated mechanism while 

spontaneous imbibition is mainly capillary dominated. Mathematically, the change of flow 

conditions will result in a change of boundary conditions to be solved, and in turn, will 

result in different solutions. 
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 In this research, the first problem addressed is the derivation of the analytic 

solution for viscous dominated flow condition, or Buckley-Leverett type problems 

(Buckley and Leverett 1942), where the flux is imposed at the inlet or the inlet boundary 

condition is fractional flow equals one. In this section, we have treated capillarity as a 

correction to the original Buckley-Leverett equations and the system is solved using 

matched asymptotic expansions. The analytic solution has been benchmarked using 

numerical simulation and is applied to two lab scale problems. One is for the estimation 

of capillary pressure and relative permeability from displacement saturation profiles, and 

the other is for the capillary end effect during displacement experiments. The capillary 

end effect result is further extended for the estimation of relative permeability information 

from unsteady state experiments as well. 

 Secondly, the research also analyzed the spontaneous and forced imbibition 

processes. Recent research has proved that the original work by McWhorter and Sunada 

(1990) represents the actual boundary conditions of spontaneous imbibition (Schmid and 

Geiger 2012). But in this research, we will show that the presented methodology by 

McWhorter and Sunada (1990) has one major assumption that limits its application for 

physical boundary conditions except for purely counter-current flow conditions. In turn, a 

new semi-analytic solution is presented to analyze the transient imbibition problem with 

physical boundary conditions. Also, the impact of imbibition in unconventional reservoirs 

will be part of the study to analyze the water invasion during hydraulic fracturing and shut-

in period, as well as a potential application of a new IOR technique. 
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1.2 Introduction and Literature Review 

 

1.2.1 Capillary Corrections to Buckley-Leverett Flow 

 The first section of the research project is aimed to derive a general solution for 

viscous dominated immiscible displacement flow equations. The work extended the 

analytic solution of the Buckley-Leverett equations to include capillarity for the co-current 

flow condition. Specifically, we have solved the incompressible waterflood flow equations 

along a streamtube or streamline with an arbitrary cross-section for a heterogeneous 

porous media with variable injection water rate, including capillarity. The methodology is 

an application of a singular perturbation expansion with matched asymptotic solutions. 

This solution is presented in the context where the co-current flow is present where we 

will show that capillarity can be treated as a correction (Deng and King 2015). Also, the 

resulting analytic solution is benchmarked with high-resolution numerical simulation. One 

major advantage comparing with existing methodology is the independence of functional 

forms for capillary pressure and viscous forces, and the solution has also been extended 

to multiple scales like linear flow, radio flow, and streamtubes. The representation of the 

analytic solution in streamtubes allows future application in field level waterflood 

management in terms of representing inter-well connections using streamtubes. 

 The driving force of the solution is the application of the theory of matched 

asymptotic expansions and is due to the nature of the resulting singularly perturbed 

differential equation where the solution changes rapidly in a narrow region. This theory 

has been used previously to find approximate solutions in which we obtain multi-scale 
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solutions in either space or in time (Farajzadeh et al. 2013; Wallach 1998; Zazovskii 1985). 

In our application, the rapid change occurs at the location of the Buckley-Leverett shock. 

We separate the two-scale problem into an “outer” solution which is valid away from the 

shock and an “inner” solution which is valid in the vicinity of the shock. The outer solution 

is identical to the continuous portion of the Buckley-Leverett saturation profile while the 

inner solution is the stabilized front solution first noted by Terwilliger experimentally 

(Terwilliger et al. 1951). The two solutions match at the Buckley-Leverett shock saturation 

and all solutions can be expressed in a closed form. This composite solution is valid at 

both scales. A preliminary result of this method is presented by King and Dunayevsky 

(1989) when analyzing the stability of waterflood, but the equations were not fully 

satisfied at that time. In this research, in order to close all the equation (i.e. to place the 

inner solution at the right location), a mass balance relationship is used for the moving 

boundary layer problem (before water breakthrough). 

 Based on the solution, the length scale of the saturation profile in the vicinity of 

the shock and its change with time are characterized by a small parameter ε and its 

dimensionless form εD. This parameter is part of the capillary dispersion coefficient which 

will be obtained as part of the solution. The results imply that the dimensionless group 

scales inversely with injected volume for linear flow and thus the composite solution 

reduces to the Buckley-Leverett solution at the late time, irrespective of the strength of 

capillarity. For linear flow at the early time, the dimensionless group will increase beyond 

the range for which the capillary correction is possible, indicating capillary dominance. In 

contrast, for radial flow, the dimensionless group does not depend upon time and the 
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impact of capillarity does not change with time. Unlike the capillary number which 

describes the relative magnitude of the capillary and viscous forces at the pore scale 

(Steigemeir 1977), our dimensionless group describes this quantity at the continuum scale. 

This dimensionless quantity is universal and widely applicable as we will show the 

applicability of it in the capillary end effect section and its comparison with Rapoport and 

Leas scaling group (Rapoport and Leas 1953). It will also be discussed in a later section 

on spontaneous imbibition. 

 With the methodology provided, the first application of the results is on capillary 

pressure function calibration. As the shape of the composite saturation profile around the 

shock front depends upon the capillary pressure function, in principle we can calibrate the 

capillary pressure function if the saturation profile is determined experimentally. The 

measurement can be done using electrical resistivity measurements (Terwilliger et al. 

1951), gamma attenuation measurements or X-Ray CT (Nicholls and Heaviside 1988; 

Wellington and Vinegar 1987). As a demonstration, we will analyze Terwilliger’s 

published experimental data to infer the capillary pressure function and compare it with 

the conventionally measure capillary pressure curve report in the original paper. This 

analysis will also help infer the characteristics of the relative permeability by capturing 

the concave envelope of the fractional flow. One thing to mention is that the original 

experiment is strictly vertical with downwards flow at a fixed rate. In this case, the outer 

solution will have a self-similar solution based upon a fractional gas flow which includes 

the effect of gravity. 
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 Another problem in which capillary corrections arise is at the outlet of a laboratory 

coreflood (Heaviside and Black 1983). The physical discontinuity at the core outlet or at 

the wellbore has led to the discontinuity in capillary pressure at the outlet-face, and it 

further caused a capillary force to persist in the porous-media system. This phenomenon 

tends to build up a saturation bank for the preferentially wetting phase at the efflux end 

(Hadley and Handy 1956). The outlet boundary condition, capillary pressure equals zero, 

here follows from phase pressure continuity for each of the two phases. With the inclusion 

of capillarity in the description, we changed the previously moving boundary layer 

problem into a stationary boundary layer problem at a finite length. Unlike the moving 

boundary layer problem, there is no need for a mass balance constraint to close the 

equations. We can evaluate the impact the end effect on the lab determination of relative 

permeability using the unsteady state JBN method (Johnson et al. 1959). There are 

variations of the JBN method, and one of the alternatives is a graphical interpretation of 

the unsteady state experiments’ data proposed by Jones and Roszelle (1978). However, 

both the original JBN calculation and its variations neglect the existence of capillary 

pressure, or in this context, capillary end effect. Our analysis indicates that the end effect 

has no impact on the outlet fractional flow itself, but as the outlet saturation is determined 

from the average saturation, it does include the impact of capillarity. The mobility function 

is determined from the outlet pressure gradient which itself is determined from the total 

pressure drop across the core, and is impacted by capillarity. Based on the asymptotic 

analysis, we expect the error introduced into the inferred outlet pressure gradient to be 
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larger than that introduced into the outlet saturation, leading to an overall suppression of 

the total mobility. 

 As we have already discussed the limitation of the JBN method in determining 

relative permeability information which is based on the Buckley-Leverett theory without 

capillarity, we have extended the application of the derived analytic solution to improve 

the estimation of relative permeability from laboratory displacement experiments. The 

main disadvantage of applying the traditional JBN method is the requirement of high flow 

rate, which in turn would require the experiments to be conducted at flow rates higher than 

the true reservoir conditions. These high flow rates might also cause instability in the 

displacement as well as fines migration problems (Chuoke et al. 1959; Qadeer et al. 1988). 

In the literature, many attempts have been made to address this issue. Sigmund and 

McCaffery (1979) have used non-linear regression to match experimental data using 

power-law modeled relative permeability. Similar work has been done by Batycky et al. 

(1981), Kerig and Watson (1986) and Richmond and Watsons (1990). 

 We have used the derived analytic model to calculate accurate relative 

permeability by matching experimental pressure drop and production responses. (Deng 

and King 2016). The data used is cited from Richmond and Watsons (1990) and the 

comparison between our analytic inversion and the original numerical simulation-based 

inversion results is presented.  
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1.2.2 Spontaneous Imbibition 

 Spontaneous imbibition is a very important recovery mechanism that was widely 

discussed in the fractured carbonate reservoir literature. Unlike forced imbibition where 

the injection flow rate is imposed, for spontaneous imbibition, the injection rate is a 

consequence of the physical properties of the medium. The spontaneous imbibition is a 

mechanism that is more capillary dominated while the forced imbibition is more viscous 

dominated. As we have introduced, the work by McWhorter and Sunada (1990) and the 

references therein have provided an exact solution to a fractional flow boundary value 

problem in the form of an iterative integral equation, and this derivation has become a 

benchmark in the literature to analytically calculate the self-similar solution to two-phase 

spontaneous imbibition. The later work by Schmid and Geiger (2012) has proved that the 

problem solved by McWhorter and Sunada satisfies the correct boundary conditions for 

spontaneous imbibition. 

 However, the assumption inherent in the self-similar solution that the ratio between 

the outlet hydrocarbon flux and the total inlet flux must remain constant has placed another 

constraint on the applicability. This constraint is not natural unless the system is infinite 

or only one end of the system is open to flow. This drawback of not being able to properly 

characterize the behavior of transient imbibition process is first discussed by Nooruddin 

and Blunt (2016) where they considered a finite length problem. But their derivation still 

uses the self-similar solution as the basis, making the solution and assumption being 

contradictory. In this part of the research, we first introduced an average normalized water 

flux to present the analytic solution to the transient problem without any unnecessary 
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constraints. Later, we introduced the application of the transient solution to constant outlet 

flux boundary condition. Furthermore, we have extended the transient imbibition solution 

to the Two-Ends-Open (TEO) free spontaneous imbibition, which is the same 

experimental configuration as discussed by Nooruddin and Blunt (Deng and King 2018c).  

 Two-Ends-Open (TEO) free spontaneous imbibition, is a laboratory scale 

experiment from which, in principle, capillary pressure and relative permeability 

information may be obtained. It is essentially a one-dimensional flow experiment in which 

one end face of a core is exposed to the wetting phase and the other end exposed to the 

non-wetting phase. This leads to a system with non-wetting phase produced both co-

currently and counter-currently. This spontaneous imbibition test configuration has been 

used in the literature to infer capillary pressure and relative permeability. However, most 

techniques require either unnecessary assumptions for the analytic solution such as piston-

like displacement (Haugen et al. 2014; Ferno et al. 2015), or require numerical simulation 

to predict the flow behavior (Ruth et al. 2015). The experiments also allow the 

interpretation of capillary back pressure at the water-wetted face which caused the 

cessation of counter-current oil flow at later period of the experiment (Haugen et al. 2014). 

However, the capillary back pressure is not within the scope of this study. 

 The solution strategy is a back-ward finite differencing technique that is similar to 

the approach proposed by Schmid et al. (2016). The difference in our research is that we 

have used an improved finite difference scenario that changed from the previous finite 

difference of one PDEs to a set of finite difference for three linear ODEs. This application 

will reveal more fundamentals about the underlying physics behind the solution itself and 
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will help explain the instability the previous researchers have experienced. Some other 

techniques originally developed to be applied for the McWhorter and Sunada equations 

include the original iterative approximation or its improved form (Fucik et al. 2007), the 

pseudospectral approach (Bjornara and Mathias 2013), etc. The finite difference approach 

is a lot more straightforward and easier to implement. 

 We have also introduced another target injection rate at the inlet to study the 

transition from spontaneous to forced imbibition. As the earlier stage, the water imbibition 

rate is infinite, and water will be sucked into the core at a rate a lot higher than the target 

rate. During this stage, it is the capillary pressure that prevails and spontaneous imbibition 

dominates. But as the imbibition rate drops, the water flux at the inlet will drop to the 

target rate and then the viscous pressure drop will dominate and keep the inlet water flux 

constant. Thus, the overall flow mechanism enters forced imbibition by a prescribed flux.  

 The main output of this part is a stability envelope outside which the flow is not 

stable. For any point above the formed envelope, the flow is unstable due to capillarity 

and will be pushed back onto the envelope. For all points on the envelope, it is at 

spontaneous imbibition state. And for all points below the envelope, it is stable and at 

forced imbibition state. This envelope is universal as it does not depend on the prescribed 

outlet flux. Also, the vertical axis of the stability envelope is the dimensionless parameter 

D  which we have already discussed in the previous work. Here our method has again 

shown that this parameter is a result of the intrinsic properties of the rock and fluid system, 

and it is applicable in both capillary dominated and viscous dominated flow conditions. 

(Deng and King 2018a). 
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1.2.3 Application in Unconventional Reservoirs 

 Spontaneous imbibition is not only important for fractured reservoirs. As for 

unconventional reservoirs like shale oil or shale gas, the decreasing permeability has made 

the capillarity more and more important, spontaneous imbibition is also important. In this 

part of the research, the application of the spontaneous and forced imbibition in 

unconventional reservoirs will be studied. Specifically, the process of hydraulic fracturing 

and the shut-in time thereafter until production will be analyzed (Deng and King 2018b). 

 One specific context for the analysis is the “water blocking” effect. During a 

hydraulic fracturing process, a great amount of fracturing fluid is injected to create 

fractures so that the contact area of the wellbore with the reservoir can be significantly 

increased (Cheng 2012). However, after the fracturing process, only small amount of the 

fracturing fluid is recovered as flowback and a significant amount of the injected fluid is 

lost to the formation (Longoria et al. 2017). With the water left inside the formation, 

mainly literature has studied the damage caused for hydrocarbon production. These 

concerns include but not limited to permeability damage and relative permeability damage 

caused by water invasion and gathering in the vicinity of the fracture surface (Tannich 

1975; Holditch 1979; Abrams and Vinegar 1985; Bostrom et al 2014; Das et al. 2014). 

Our focus in this part of the research is going to be focused on the water blocking effect 

in terms of hydrocarbon relative permeability reduction and its impact on production. 

 From the relative permeability point of view, minimizing the water invasion into 

the matrix is very desirable as higher water saturation would lead to lower relative 
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permeability for the hydrocarbon phase (Longoria et al. 2015). However, in many cases 

with little fracturing fluid flowing back, the production seems to be not affected or even 

enhanced with long shut-in well soaking for up to months, especially for gas shale plays 

like Marcellus (Shaoul et al 2011; Cheng 2012; Dutta et al. 2012; Bertoncello et al. 2014). 

Thus, there lies a direct contradiction between the mobility reduction theory and the field 

observations. In this research, we would like to investigate the water invasion mechanisms 

and to reconcile the contradiction between water blocking theory and well soaking 

operations for shale gas reservoirs. 

 On the mechanisms controlling water loss after the fracturing process, some 

studies suggest trapping of water in unconnected secondary fractures (Fan et al. 2010), 

incomplete drainage in induced fractures due to adverse mobility ratio and gravity 

segregation (Kuru et al. 2013; Parmar et al. 2014) or liquid loading in the lower part of the 

propped fracture (Agrawal and Sharma 2013). But there are more researches focused on 

the imbibition theory associated with capillary pressure and its role in sucking the water 

into the matrix and causing a large amount of water leaking into the formation 

(Roychaudhuri et al. 2011; Odusina et al. 2011; Makhanov et al. 2014). One important 

upside of the imbibition is the counter-current gas flow it will create and the associated 

release of gas from the tight pores (Dehghanpour et al. 2012; Agrawal and Sharma 2013). 

Most spontaneous imbibition theory predicts high initial flow rate at the early period of 

time, and the ultralow permeability in these shale gas reservoirs would even have longer 

and faster early flow rate due to high capillarity. This is important as if the counter-current 

gas flow is really more impactful comparing with the water blocking damage the imbibed 
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water is generating, then maybe the imbibition mechanism could be treated as a production 

mechanism instead of a blocking mechanism. 

 To properly model the fluid exchange between the matrix and the fracture during 

the soaking period, we have extended our previous methodology of the analytic solution 

for spontaneous imbibition to include two more controlling factors. The first added 

component to the self-similar McWhorter and Sunada’s solution is the water adsorption 

effect for sub-irreducible initial water saturation conditions. Some researchers report in 

some gas shales like Marcellus and Haynesville, the water saturation is well below 

irreducible (Bennion and Thomas 2005; Wang and Reed 2009; McWhorter 2017). At the 

interval between initial water saturation and irreducible water saturation, the water is 

theoretically not able to flow but is being controlled by adsorption due to the presence of 

clay minerals. In this research, we try to combine the spontaneous imbibition and water 

adsorption below irreducible water saturation together at the continuum scale to extend 

the analytic solution’s applicability. The second component is the gravity segregation 

inside the fracture (Cheng 2012; Agrawal and Sharma 2013). The gravity segregation and 

resulting flowing area reduction in the fracture will cause the higher decline of the 

imbibition rate compared with a 1D self-similar solution. In the current scope of this 

research, the gravity effect is considered to be instantaneous to obtain the analytic solution 

of the coupled phenomenon. 
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CHAPTER II  

CAPILLARY CORRECTIONS TO BUCKLEY-LEVERETT FLOW*† 

2 Equation Chapter (Next) Section 1 

2.1 Introduction 

 

 At the reservoir scale, multiphase fluid flow is well characterized by the Buckley-

Leverett flow equations, neglecting capillarity. However, as we extend our studies in 

higher resolution using multiscale calculations, or evaluate tighter or higher contrast 

heterogeneous or fractured reservoirs, capillarity becomes increasingly important. To 

improve the understanding of these situations, we have extended the analytic solution of 

the Buckley-Leverett equations to include capillarity for the forced imbibition co-current 

flow case. Specifically, we have solved the incompressible waterflood flow equations 

along a streamtube or streamline with an arbitrary cross-section for a heterogeneous 

porous media with variable injection water rate, including capillarity. The methodology is 

an application of a singular perturbation expansion with matched asymptotic solutions. 

The outer solution is identical to the continuous portion of the Buckley-Leverett saturation 

profile while the inner solution is the stabilized front solution first noted by Terwilliger 

experimentally. The two solutions match at the Buckley-Leverett shock saturation and all 

                                                 

* Part of this chapter is reprinted with permission from “Capillary Corrections to Buckley-Leverett Flow” by Deng and 

King, 2015. Paper SPE-175150-MS presented at the SPE Annual Technical Conference and Exhibition, Houston, 28-

30 September. Copyright 2015, Society of Petroleum Engineers. Further reproduction prohibited without permission. 
†  Part of this chapter is reprinted with permission from “Estimation of Relative Permeability from Laboratory 

Displacement Experiments Application of the Analytic Solution with Capillary Corrections” by Deng and King, 2016. 

Paper SPE-183139-MS presented at the SPE Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 

7-10 November. Copyright 2016, Society of Petroleum Engineers. Further reproduction prohibited without permission. 
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solutions can be expressed in a closed form. This solution is presented in the context where 

the co-current flow is present where we will show that capillarity can be treated as a 

correction. The result of this analytical solution is tested against high-resolution flow 

simulation to verify its validity. This analysis is also applied to the calculation of capillary 

end effects in laboratory core floods, where the length scale of the saturation correction 

can be predicted. We also demonstrate, as the shape of the saturation profile near the front 

depends upon the capillary pressure function, that this analytical solution can be used to 

interpret experimental data and derive and calibrate the capillary pressure function. To be 

noted, due to specific boundary condition we are analyzing in this chapter, the solution 

applies to the cases where the flow is still viscous dominated (i.e. drainage or forced 

imbibition). This means the capillarity is, to some extent, small and can be treated as a 

correction to the viscous flow. The flow condition where the capillarity dominates will be 

examined in the next chapter. 

 

2.2 Methodology 

 

 We will begin the discussion of the analytic solution with a description of 

incompressible fractional flow theory. This will allow us to review its application along 

streamlines, which are equivalent to streamtubes with variable flow geometry, and to 

define notations for the analytic solutions. 

 For incompressible waterflood in three dimensions: 
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 Here, wF  and oF  are the fractional mobility functions for water and oil phases 

respectively, and D  is the dimensionless total mobility (normalized to the mobility of the 

oil phase). 
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 A permeability tensor is used to express any permeability anisotropy. We may 

determine the effective cross-sectional area along a streamline in terms of the steady state 

flux, q , and the local velocity, ( )u x . 

( ) ( )u x x q A x=  (2.5) 

 Here x  is the distance coordinate along the streamline. This allows us to express 

the three-dimensional waterflood equation as a one-dimensional equation along the 

streamline. 
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 The total flux, ( )q t x u=  , may now vary with time. In three-dimensional 

streamline simulation, flux coupling between streamlines is included using operator 

splitting techniques. These cross-flux terms are neglected in the current treatment, but the 

use of an equivalent one-dimensional streamtube model with an arbitrary cross-sectional 

area allows us to treat various geometries (linear, radial, radial line source, etc.) in a 

consistent fashion. The permeability tensor can be expressed along the direction of the 

streamline and in terms of a dip angle. 

zk x k x x k D k x D= • • • • = •  (2.8) 

 We may define the fractional flow as the flux of water normalized to the total flux. 
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 It is convenient to introduce the cumulative mobile pore volume along the 

streamtube as a spatial variable and the cumulative volume injected as a time variable. 

( ) ( ) ( ) ( )
0

1 orw wirrX x S S A x x dx= − −   (2.10) 

( )
0

( )T t q t dt=   (2.11) 

 Finally, we obtain the waterflood equations in terms of the fractional flow. 



 

19 

 

0wfS

T X


+ =

 
 (2.12) 

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )o

C
w w w D z

o

A x p
f F S F S F S S k x k x gx D x

q t x
 



 
= + +  • 

 
 (2.13) 

 Here we utilize the normalized water saturation, ( ) ( )1w wiirr orw wirrS S S S S= − − −  . 

The capillary pressure function will be assumed to follow a Leverett J-function. 

( )

( )
( )c

x
p J S

k x


=  (2.14) 

 The functional dependence of each term is shown to emphasize the reservoir 

heterogeneity (functions of x ) and the non-linear functions of saturation, wS . 

 With the inclusion of capillarity, the resulting equation is a degenerate parabolic 

differential equation, for which the solutions must be continuous and differentiable. The 

exceptions are at the specific saturation 0,1S = , where 0w oF F = , and where the 

saturation must be uniform and continuous, but not necessarily the slope, S
x




. All of the 

solutions being considered have the initial saturation equal to the irreducible water 

saturation for which wF  vanishes: 0S = , (0) 0wF = . We define the “foot” as the location 

at which 0S =  and 0wf = . We will show that the foot may be at infinity or at a finite 

location, depending upon the scaling of w cF dp

S dS
 as 0S → . In the absence of capillarity, 

these equations support weak solutions with discontinuities that propagate with a shock 

speed given by    wf S . Here   left rightQ Q Q= −  signifies the discontinuity of a property, 
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Q , across the shock. For instance, for the Buckley-Leverett solution, the shock location 

is at the foot of the saturation profile. 

 An analysis of the continuity requirements of these equations is important to 

understand the impact of heterogeneity and to correctly specify the boundary conditions. 

For instance, if the porosity or permeability were discontinuous, as may arise when abutted 

several cores in a laboratory core flood, Eq (2.9) implies that the capillary pressure must 

be continuous at the discontinuity. In other words, the saturation, governed by the J-

function, will be discontinuous, but in such a way as to maintain capillary continuity. If 

phase pressures are continuous on the boundary of the system in a laboratory, then 

capillary pressure continuity requires that 0cp =  on the boundary, and the saturation is 

fixed. This gives rise to the capillary end effect seen in laboratory core floods. 

 

2.2.1 Buckley-Leverett Solution Review 

 Let us now consider the solution to Eq (2.7) for waterflood in a horizontal system 

in the absence of capillarity, and with a uniform initial saturation at the irreducible water 

saturation, 0S = . This equation has a well-known continuous solution which describes a 

saturation profile for saturations above a shock saturation, *S S . 

( ) ( )w
w w

S

dFX
F S or X T F S

T dS

 
 = = =  

 
 (2.15) 

 The differential equation also supports discontinuous (“weak”) solutions. 

Consistency with the continuous solution determines the shock saturation, *S , and shock 

speed, ( )*c S . 
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 In addition to this shock construction, there is an Entropy condition which selects 

among multiple possible shock solutions (Bell and Shubin 1985; Osher 1984). In our 

context, both constructions are equivalent to obtaining the shock saturation *S , which 

maximizes the shock speed, ( )*c S . This result may also be summarized as a concave 

envelope fractional flow relationship. 

( )

*

*w

w

cS S S
f

F S S S

 
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
 (2.17) 

 This is Welge’s graphical construction and the self-similar Buckley-Leverett 

solution. The solution satisfies the flux boundary condition at the water injector, 1wf = , 

and the initial condition, 0S = . 

 Still neglecting capillarity, if we consider the fractional flow relationship with 

gravity, we find that the fractional flow needs no longer be simply a function of saturation, 

as it has an additional term given by 
( )

( )

z
w o D

o

kA x
F F gx D

q t
 


  . Even for a homogeneous 

medium, the dip angle, x D , and the cross-sectional area, ( )A x , may depend upon 

location, and the flux may depend upon time. In this case, the Buckley-Leverett equations 

may still be formulated and solved, but there will not be a self-similar solution which 

depends solely upon the dimensionless ratio ( ) ( )X x T t . The exception is for strictly 

vertical or horizontal geometries that may arise in laboratory measurements or in 
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mechanistic models, in which case the solution technique is identical to the above but with 

a modified fractional flow. In the next sections of the capillary corrections methodology 

part, we will neglect gravity and focus on capillarity. 

 

2.2.2 Capillary Corrections Solution with Matched Asymptotic Expansions 

 Following the solution of King and Dunayevsky (1989), we will now analyze the 

flow equations using the methodology of matched asymptotic expansions. The resulting 

solutions are as general as the Buckley-Leverett solutions in their treatment of flow rate, 

geometry, and heterogeneity. We can formally obtain the Buckley-Leverett equations 

from the fractional flow, Eq (2.12) and Eq (2.13), in the limit of small capillarity, 0 → . 

However, when we do so, we reduce the order of the differential equation from second 

order to first, in what is known as a singular perturbation. In our application, the rapid 

change occurs at the location of the Buckley-Leverett shock. We separate the two scale 

problem into an “outer” solution which is valid away from the shock and an “inner” 

solution which is valid in the vicinity of the shock. The two are combined into a composite 

solution which is valid at both scales using the approach of matched asymptotic 

expansions.  

 The following figures show the workflow steps in the construction of the 

composite saturation profile, and the inner, outer, and composite saturation profiles from 

an example calculation. 
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Figure 2.1 Workflow steps for calculating the composite saturation profile 

 

 

Figure 2.2 Example composite saturation profile from matched asymptotic 

 

 The outer solution is identical to the continuous portion of the Buckley-Leverett 

solution, without the shock. The inner solution is the stabilized front solution first 

observed by Terwilliger. The match of these two asymptotic solutions will occur at the 

Buckley-Leverett shock saturation. Some authors have commented that although the 
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method of matched asymptotic expansions is a standard approach for solving multi-scale 

problems, that the physical origin of the integrals in the solutions is hard to interpret 

(Babchin et al. 2008). In our case, we find a clear relationship between these mathematical 

solutions and previously developed self-similar solutions. As noted by Chen (1988), and 

attributed to Barenblatt (1952), it is expected that physically complex and complete 

solutions often have a relationship to self-similar solutions, and we will see that this is the 

case here. Although the composite solution is not itself self-similar, both the inner and 

outer solutions are individually self-similar solutions. 

 For the outer solution, we can formally obtain the outer equations from the 

fractional flow, Eq (2.12) and Eq (2.13), in the limit of small capillarity, 0 → , 

( )w wf F S→ . This is recognized as being identical to the Buckley-Leverett equation, with 

the solution given by Eq (2.15). 

( )O

wX T F S=   (2.18) 

 This is the outer solution, OS , which is a function of X T , and is shown in Figure 

2.2. It satisfies the inlet boundary condition: ( ) 1O

w wf F S= =  at 1OS = . Unlike the 

Buckley-Leverett solution, the outer solution has no shock. Instead, the initial saturation 

will be reached through the inner solution. 

 As for the inner solution, we can consistently neglect the capillary pressure terms 

in Eq (2.13) to obtain the Buckley-Leverett solution except at the shock itself. Irrespective 

of the strength (or weakness) of capillarity, at the shock, S x  → − , and the capillary 
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contributions to the fractional flow become significant. From the expression of the 

capillary pressure in terms of the Leverett J-function, we have: 

ln ( ) ( ) ( ) ( )cp d S S dX S
J S J S J S J S

x k dx k x k x k dx X

   
  

     
  = +  =         

 (2.19) 

 We have assumed that the heterogeneity in the porosity and permeability is 

sufficiently smooth that the saturation gradients dominate in this derivative, at least in the 

vicinity of the shock. (If not, then the problem needs to be divided into two domains with 

continuous capillary pressure across the jump in the porosity-permeability.) This allows 

us to express the fractional flow as a non-linear convection-diffusion problem: 

( )
( )

( )
( )w w

x S
f F S G S

q t X

 
= −


 (2.20) 

( ) ( ) ( ) ( ) ( )
o

dX
x A x x k x x

dx


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
=  (2.21) 

( ) ( ) ( ) ( ) ( )oD wG S S F S F S J S = −  (2.22) 

 Here, ( ) ( )x q t  is a characteristic volume, which is small in a sense to be 

determined as part of the solution of these equations as 0 → , and ( )G S  is a 

dimensionless non-linear diffusion coefficient. This flux expression is very general as it 

includes variations in flow rate, heterogeneity in porosity and permeability, and the 

variation of cross-sectional area. As special cases, it includes linear flow A Const= , radial 

flow ( ) 2A x xh= , or with a finite wellbore radius, ( ) ( )2 wA x x r h= + . 
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 We are interested in solutions to these equations for capillary corrections, in which 

the impact of capillarity is, in some sense, local. In the absence of capillarity, these 

fractional flow solutions will have a saturation shock. Away from the shock, capillarity 

may be neglected in a consistent fashion. However, at the shock, where S X  → −  and 

hence cp X  → , the capillary pressure is not negligible. Eq (2.20) is in the form where 

the highest order spatial derivative has a small coefficient, and can be neglected except 

within the vicinity of a shock. This kind of singularly perturbed differential equations have 

solutions that change rapidly in a narrow region and can be analyzed using the method of 

matched asymptotic expansions. 

 To obtain the governing equations in the vicinity of the shock, we expand the 

length scale through the following change of variables, ( ) ( ), ,x t T→  where: 

( )X L T




−
=  (2.23) 

 The function ( )L T  is to be determined. The functions ( )X x  and ( )T t  were 

defined as part of the Buckley-Leverett construction. In these moving coordinates the 

space and time derivatives are as follows: 

1

X  

 
=

 
 (2.24) 

1 1dL dL
q q q

t T dT dT   

   
= − → −

   
 (2.25) 

 Here we have taken the limit 0 → . Eqs (2.6) and (2.20) may now be expressed 

in this limit. 
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0
I

Iw
w

fdL S dL
S f

dT dT  

   
= − + = − + 

    
 (2.26) 

( )
( )( )

( )
( ) ( )

( )( )
( )

( )
1 I I

I I I I

w w w

x t x tS S
f F S G S F S G S

q t q t X

 

 

 
= − = −

 
 (2.27) 

 The fractional flow is now expressed in terms of the inner saturation. The spatial 

dependence of ( )x  has become a function of time since ( ) ( )X x L T=  in the limit 

0 → . The convection-diffusion equation, Eq (2.26), is in the form where we may take 

a first integral, and utilize the boundary condition at the foot of the inner solution, 0wf =  

at 0S = . For convenience, we define ( )c T dL dT= . 

( )
( )( )
( )

( )
I

I I I

w w

x t S
cS f F S G S

q t X

 
= = −


 (2.28) 

 We see that the water flux increases linearly with saturation for the inner solution, 

just as in the concave envelope of Welge’s graphical construction. We will also show that 

this linear increase will lead to the steady state saturation profile first noted experimentally 

by Terwilliger. 

 This equation can be integrated to obtain the inner saturation profile, which is also 

shown in Figure 2.2. 

( )
( )( )
( )

( )

( )
( )

( )( )
( )

( )0 0
0

IS
I

S
w

x t x tG S
X X t dS X t H S

q t cS F S q t

 

=
= − = −

−  (2.29) 

 We have defined an implicit function for the inner solution, ( )IH S , in terms of 

the integral in Eq (2.29). We recognize this as Terwilliger’s stabilized front solution. The 
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constant of integration, ( )0X t , is approximately at the location ( ) ( )X x L T= , so this 

solution is moving with the Buckley-Leverett shock. Away from the shock, 0X X , the 

integrand in ( )H S  must diverge and so the inner saturation approaches a constant for 

which ( )I I

wc F S S= . 

 We have implicitly assumed that the integral converges as 0S →  and that the foot 

of the profile will be at a finite location. This will be the case for all of the examples in the 

current study. The location for the foot and ( )0X t , will be obtained by a mass balance 

closure relationship based upon the composite solution. 

 The match saturation relates the inner and outer solutions. We have seen that the 

outer solution satisfies the inlet boundary condition, but not the saturation foot boundary 

condition. In contrast, the inner solution satisfies the saturation boundary condition at the 

foot, but not the inlet. These two profiles are related through the match saturation. At the 

matched asymptotes, the inner limit of the outer solution ( )( )0, , O mX L T S S → → →  

must match the outer limit of the inner solution ( )0, , I mS S → →− → . 

( )
( ) lim ( , ) lim ( , )m O I

x L T
S T S X T S T




→ →−
= =  (2.30) 

 From Eq (2.18) we may take the inner limit of the outer solution 

( )( )0, X L T → →  to obtain: 
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( ) ( )m

wL T T F S=   (2.31) 

 The outer limit of the inner solution ( )0, → →−  can only be achieved if the 

integrand in Eq (2.29) diverges. 

( )m

w

m

F SdL
c

dT S
= =  (2.32) 

 Combining these two equations gives the match saturation as a function of T : 

( ) ( )m m m

w wF S S F S a T− = . Since this function of mS  is bounded, the constant a  must 

vanish for the match at early time. As a result, the match saturation is the Buckley-Leverett 

shock saturation, *mS S= . Here, c  is the shock speed and, ( )L T cT=  is the shock 

location. 

 Knowing the match saturation, we may now construct the composite solution, 

Figure 2.2. 

*( , ) ( , ) ( , )C O IS X T S X T S T S= + −  (2.33) 

 The composite solution is continuous and does not itself experiences a shock. 

Away from the shock, *IS S→  and the composite solution approaches the outer solution. 

Near the shock, *OS S→  and the composite solution follows the inner solution. The 

composite solution smoothly interpolates between the two. We can also express the 

fractional flow as a composite. Away from the shock, ( )O

w wf F S→ , while near the shock, 

I

wf cS→ . We have recovered Welge’s construction, Eq (2.17), in the limit 0 → . For 



 

30 

 

finite capillarity, a more accurate result is obtained from Eq (2.20), in terms of the 

composite saturation. 

 Also, as mentioned before, to complete the construction of the composite 

saturation profile, a mass balance relationship is required to close all the equations. The 

detailed derivation about the mass balance closure is discussed in Appendix A. 

 One important parameter derived from this methodology is the dimensionless 

variable D  which represents the strength of capillarity. 

D
qT


 =  (2.34) 

 The above parameter not only provides the characteristics of the strength of 

capillarity for a specific system, it also controls the validity of the perturbation expansion, 

which is further discussed in Appendix A as well. 

 

2.2.3 Model Validation 

 In order to verify the validity of our analytical model, we compare the results of 

our model to high-resolution finite difference flow simulation. The high-resolution 1-D 

simulation was performed using Eclipse and the input parameters listed in Table 2.1. The 

total length of the system is 100 ft. 
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M   3 cJ   1 ( )w cp   0.5 

( )o cp   2 ( )/dync cm   20 orwS   0 

wiS   0    0.2 ( )2A ft   1 

( )k mD   200 cS   1   

Table 2.1 Input parameters for capillary corrections to B-L flow example 

calculations 

 

 The following functional forms are used for the relative permeability and capillary 

pressure (Leverett J-function) for all example calculations in this section: 

2(1 )ro

o o

k S

 

−
=  (2.35) 

2

rw

w o

k MS

 
=  (2.36) 

lnc

c

S
J J

S

 
= −  

 
 (2.37) 

 As indicated in the above three equations, the relative permeability is represented 

using a quadratic function and the capillary pressure relationship is characterized by a 

logarithmic Leverett-J function as functions of the normalized mobile water saturation 

fraction. In the analytical model both the capillary pressure function and relative 

permeability function are included within the derivation thus all derivatives and integrals 

can be performed analytically. For the finite difference simulator, these functions are 
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expressed in a tabulated form. Relative permeability and capillary pressure curves are 

shown in Figure 2.3a and Figure 2.3b. 

 

Figure 2.3 (a)-Model input of relative permeability; (b)-model input of capillary 

pressure 

 

 Both the analytical model and the flow simulation were tested under two different 

constant flow rates 0.3 /q RB day=  and 1 /q RB day= . Figure 2.4 and Figure 2.5 show 

the comparison results. The simulation results were obtained for N=10,000 grid blocks. 

 

Figure 2.4 Analytical model and simulation (N=10,000) results comparison for q=1 

RB/day 
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Figure 2.5 Analytical model and simulation (N=10,000) results comparison for q=0.3 

RB/day 

 

 From the above graphs, it’s clear that the results from the analytical model are in 

excellent agreement with the results from flow simulation. This verifies the validity of the 

analytical model. Another observation that can be made from the above comparison is that 

at the front of the saturation profile, the simulation results have a slight incremental spread 

compared to the analytical results. This is due to the numerical dispersion of the finite 

difference equation. One case of early time flow is shown as the purple curve in Figure 

2.5, without an analytic solution. This corresponds to the case when the analytic solution 

would exceed the solution limits, as it is capillary dominated at early time. For this early 

time, the value of the dimensionless group is larger than the maximum value required in 

order to construct the asymptotic solutions. The details regarding the mass balance closure 

and monotonicity requirement are shown in Appendix A. 
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 The above results with 10,000 grids have shown excellent agreement between the 

analytical solution and the numerical simulation. To better understand the accuracy of the 

analytical solution, we have performed a convergence calculation and compared the 

solution against coarser simulation models. Figure 2.6a shows the saturation profiles from 

different simulation grid sizes for the 2-day case in Figure 2.4, as well as our analytic 

solution and the B-L solution without capillarity. Figure 2.6b shows the corresponding 

convergence results represented by the root mean square of the error, with the reference 

case being the finest simulation result with 100,000 grid blocks. The results show first-

order convergence for the simulation results. The RMS error shows that the matched 

asymptotic expansions solution has comparable accuracy to a simulation with slightly in 

excess of 1000 grid blocks. The error analysis also shows the improved accuracy 

compared to the B-L solution without capillarity. 

 

Figure 2.6 (a)-Comparison of the results from numerical simulations with different 

grid sizes with the result from the analytic solution and B-L solution; (b)-RMS error 

convergence result 
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2.3 Discussion 

 

 In this section, we will show some example calculations using our approach for 

simple geometries of linear and radial flow. The results from the example calculations as 

well as the related discussion will illustrate the subtlety of our approach, the dimensionless 

variable D , and the corresponding physics behind them. The input parameters are the 

same as shown in Table 2.1. 

 

2.3.1 Linear Flow Results 

 The first example we show is for linear flow. Figure 2.7a and Figure 2.7b show 

the resulting composite saturation profile and fractional flow relationships as functions of 

time. Table 2.2 summarizes the corresponding D  and   calculations as functions of time 

(or T ). 

 

Figure 2.7 (a)-Composite saturation profile for linear flow; (b)-fractional flow plot 

for linear flow 
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 T  1 2 3 10 100 

Linear 

Flow 
D  0.7796 0.3898 0.2599 0.0780 0.0078 

  0.7796 0.7796 0.7796 0.7796 0.7796 

Table 2.2 Parameters calculated from the linear flow examples 

 

 We can see that for linear flow case with simple geometry, homogeneous 

properties, and fixed flow rate, that   is independent of time, and the width of the 

capillary transition at the front remains constant. However, the dimensionless group 

( )( )
D

x t

qT


 =  will decrease with time, implying that the saturation profile will 

approach the Buckley-Leverett solution at large time, irrespective of the strength of 

capillarity. This is also apparent in the fractional flow plot, where the concave envelope is 

obtained in the large time limit. We will return to this point after examining the radial flow 

solution. 

 

2.3.2 Radial Flow Results 

 We now perform the identical calculation to the radial flow case. Figure 2.8a and 

Figure 2.8b show the resulting composite saturation profile and fractional flow 

relationships for radial flow test case at increasing times, again at a fixed injection rate. 

Table 2.3 summarizes the corresponding D  and   calculations as functions of time (or 

T ) for the radial flow case. 
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Figure 2.8 (a)-Composite saturation profile for radial flow; (b)-fractional flow plot 

for radial flow 

 

 T  1 2 3 10 100 

Radial 

Flow 
D  0.2589 0.2589 0.2589 0.2589 0.2589 

  0.2589 0.5178 0.7767 2.5890 25.8898 

Table 2.3 Parameters calculated from the radial flow examples 

 

 In contrast from the result of linear flow, in the radial flow cases,   increases 

linearly with X  but the dimensionless group D  is now independent of T  and the width 

of the capillary transition zone increases with time. Additionally, the fractional flow does 

not change with time, i.e., it does not converge to the concave envelope at large time. 

 

2.3.3 Dimensionless Capillary Group 

 Notice that, for both cases shown above, the composite saturation profile now 

experiences a smooth transition at the front compared to the shock front constructed from 

the traditional Buckley-Leverett method. The length scale of the solution in the vicinity of 

the shock and its change with time is characterized by the small parameter   or its 
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dimensionless form D . The change of these two parameters along with time for both 

linear and radial flows are shown in Table 2.2 and Table 2.3.  

 The results imply that the dimensionless group D , scales inversely with injected 

volume for linear flow and thus the composite solution reduces to the Buckley-Leverett 

solution at late time, irrespective of the strength of capillarity. For linear flow at early time, 

the dimensionless group will increase beyond the range for which the capillary correction 

solution is possible, indicating capillary dominance. In contrast, for radial flow, the 

dimensionless group does not depend upon time and the impact of capillarity does not 

change with time. Figure 2.9 shows the relationship of the composite saturation profile vs. 

X T  for both linear flow cases and radial flow cases. 

 

Figure 2.9 (a)-Composite saturation profile vs. X/T plots for linear flow; (b)-

composite saturation profile vs. X/T plots for radial flow 

 

 The saturation profiles from Fig. 7 display the impact of the dimensionless group 

D . For linear flow the dimensionless group scales inversely with injected volume so the 

saturation front shrinks when T  increases. On the contrary, for radial flow, D  does not 

depend on the volume injected and thus the saturation profile does not change with time. 
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 Unlike the capillary number which describes the relative magnitude of these forces 

at the pore scale (Steigemeir 1977), our dimensionless group describes this quantity at the 

field scale. We will return to the use of an identical dimensionless group when discussing 

spontaneous imbibition. Another well-known scaling group is given by Rapoport and Leas 

(1953). They defined a scaling group of T wlu   where l  denotes the total length of the 

system. Thus, this is more related to the negligibility of capillary end effect when we are 

performing unsteady state experiments. The comparison with Rapoport and Leas scaling 

group will be further discussed in the capillary end effect section. 

 

2.4 Application 

 

2.4.1 Capillary End Effect 

 Another problem in which capillary corrections arise is at the outlet of a laboratory 

coreflood (Heaviside and Black 1983). The outlet boundary condition, ( ) 0cp S = , follows 

from phase pressure continuity for each of the two phases. If capillarity is neglected, then 

no additional boundary condition arises. However, with the inclusion of capillarity in the 

description, the outlet saturation is fixed to a value cS S=  for which ( ) 0c cp S = . Instead 

of a moving shock, we now have a stationary boundary layer at the outlet, X L= . 

X L




−
=  (2.38) 

 The development of the solution is similar to the above, although simplified now 

since 0c = . The inner limit of the outer solution is the Buckley-Leverett saturation at the 
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outlet: ( )m

wL T F S=  , so now the match saturation is a function of T . The first integral 

of the inner solution must match the water phase influx. 

( ) ( ) ( ) ( ) ( )
I I

I I I I m

w w w w

S S
f F S G S F S G S F S

q q X

 

 

 
= − = − =

 
 (2.39) 

( )
( ) ( )

( )

I

c

S

m

S w w

l G S
L X dS

q F S F S

 
− =  

− 
  (2.40) 

 Unlike the moving boundary layer problem, there is no need for a mass balance 

constraint to close the equations. 

 

Figure 2.10 (a)-Capillary end effect for flow rate of 1PV/day; (b)-capillary end effect 

for flow rate of 10PV/day 

 

 The results are shown in Figure 2.10 for two different flow rates. The input 

parameters are the same as we have in Table 2.1, with the exception that 0.9cS = . For 

reference, the Buckley-Leverett solution at the time of water breakthrough is shown. In 

both cases, a water bank arises at the core outlet. As the Buckley-Leverett outlet saturation 

increases, it will match and eventually exceed the outlet saturation. At high saturations, an 
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oil bank is retained within the core. The relative magnitudes of these two banks depend 

upon the wettability of the core. 

 The integrand of Eq (2.40) has a simple pole at mS S=  which leads to a 

logarithmic saturation solution. Inverted as a profile this indicates that the inner saturation 

correction decays exponentially with distance away from the outlet, with a length scale 

inversely proportional to the flow rate. This is apparent when contrasting the solutions in 

Figure 2.10a and Figure 2.10b. If we apply this analysis at the field scale near a producing 

well, the flow rate is large over a small cross-sectional area, leading to a small 

dimensionless capillary parameter. Although there may be a saturation “bank” due to the 

reservoir wettability, the length over which this bank will form will be negligible. The 

mass balance integrand corresponding to Eq (2.40) has no pole, which indicates that the 

correction to the average saturation is O
qL

 
 
 

, instead of the larger correction of 

lnO
qT qT

  
 
 

 when the shock is still within the core. 

 We can evaluate the impact of the end effect on the laboratory determination of 

relative permeability using the unsteady state JBN method (Johnson et al. 1959). This 

analysis determines the relative permeabilities using the fractional flow, the saturation, 

and the pressure gradient, all referenced to the core outlet. Our analysis indicates that the 

end effect has no impact on the outlet fractional flow itself since ( )m

w wf F S=  for the 

inner solution. However, the outlet saturation is determined from the average saturation, 

which does include the impact of capillarity. The mobility function is determined from the 
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outlet pressure gradient which itself is determined from the total pressure drop across the 

core, and is impacted by capillarity. Based on the asymptotic analysis, we expect the error 

introduced into the inferred outlet pressure gradient to be larger than that introduced into 

the outlet saturation, leading to an overall suppression of the total mobility. 

 The neglect of the capillary end effect has placed limitations on the displacement 

experiments’ configurations. One major limitation is the requirement of high flow rates 

during the experiment. This means that in order to use the JBN method, the displacement 

experiments, more than likely, have to be conducted at flow rates higher than the true 

reservoir conditions. These high flow rates might also cause instability in the displacement 

itself as well as fines migration problems (Chuoke et al. 1959; Qadeer et al. 1988). 

Unsteady state laboratory procedures often involve a “high speed bump” at the end of a 

laboratory test to reduce the length of the core which is impacted by capillarity, where an 

increase in flow rate by a factor of 10 decreases the length scale of the capillary correction 

by a corresponding amount. 

 To quantify this limitation, Rapoport and Leas (1953), as well as Kyte and 

Rapoport (1958), have used a scaling coefficient T wlu   to develop criteria for neglecting 

capillary end effect. This scaling group is the quantity required to reach stabilized flooding 

behavior. But they also indicated that a more general scaling factor should be the 

dimensionless group T

T w

kp
lu 

, where Tp  is the pre-factor 
k

  in the Leverett-J 

function. So, their general dimensionless group is very close to 
( )l

qL


 in our approach, 

except for the representation of the viscosity term. This means the overall analysis is 
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consistent with each other. We consider the critical value of the scaling coefficient T wlu   

to be around 0.5 to 3.5 
2cm cp / min  according to the values reported by Rapoport and 

Leas (1953) and the parameters in Table 2.1 being used. This corresponds 
( )

D

l
qL


 =  

equals 0.17 to 1.19. Further consider the dimensionless parameter 
( ) ( )*l G S

qL


, the 

critical values for it would be in the range of 0.06 to 0.45. One important difference lies 

in the time-dependence of the capillarity’s impact. If we consider the moving boundary 

problem, the time-dependence lies in ( )( )L T , thus the current dimensionless parameter 

captures variations in rate. This is shown in the analysis of the dimensionless parameter 

above. For the stationary boundary problem (capillary end effect), the time-dependence 

lies in the integral of Eq (2.40) which is actually the matched saturation’s change with 

time. 

 To further investigate the application of the derived analytical solution with 

capillary end effect, we have applied the method to interpret relative permeability curves 

from unsteady state experiment data. The determination of relative permeability is down 

through matching the production and pressure data from the experiment with the analytic 

model’s prediction. The information of capillarity is assumed to be known, as the 

determination of capillary pressure is not within the scope of this research. The experiment 

data of the unsteady state experiment used here was cited from Richmond and Watsons 

(1990). The experiment is water displacing oil in an oil-wet core sample, thus it is a 

drainage process. The core is 7.13 cm in length and the cross-sectional area is 11.3 cm2. 
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The porosity is 26.2% with a permeability of 9.6 mD. All other parameters associated with 

the experiment can be found in the original paper. The actual experimental data of pressure 

drop and production were provided from the lab and the original paper had used numerical 

simulation and inversion to calculate the capillary pressure and relative permeability 

simultaneously. As the first step of our analysis, we have used the Leverett-J function as 

shown in the following to match the capillary pressure data given in the paper. The 

resulting parameter values for the Leverett-J function is shown in Eq (2.42) and Figure 

2.11 shows the match between the modeled capillary pressure and the data provided. 

*cp J
k


=  (2.41) 

0.02544*exp(4.011 ) 0.02544J S= − +  (2.42) 

 

Figure 2.11 Capillary pressure match between the analytic model and the data 

 

 After getting the functional form for the capillary pressure, we would then assume 

the functional form for the relative permeability that will be applied to the analytic solution. 
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The equations for both the oil and water phases are shown in the following two equations, 

respectively. 

(1 )m

ro

o o

k S

 

−
=  (2.43) 

n

rw

w o

k MS

 
=  (2.44) 

 The initial guesses for M, n and m are all 2 and the match of pressure and 

production data is done through non-linear regression. The objective function for the 

regression is shown as the following: 

norm( ) norm( )
min      

std( ) std( )

predict data predict data

data data

p p N N
O

p N

− −
= +  (2.45) 

 The converged M, n and m values are 2.5159, 3.9746 and 2.8501, respectively. 

Figure 2.12a and Figure 2.12b show the results after the regression for the pressure and 

production match between model prediction and the data. From the two figures of the 

matching results we can see that the overall match is pretty good for both the pressure 

drop and oil production. 
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Figure 2.12 (a)-Pressure drop match between the model prediction after inversion 

and the data provided;(b)-production match between the model prediction after 

inversion and the data provided 

 

 By plugging in the M, n and m values into the corresponding defined functional 

forms, we will get the resulting relative permeability curves from the inversion. These 

curves are compared against the traditional calculation from JBN method as well as the 

data provided in the original paper as shown in Figure 2.13. The results showed that the 

relative permeability calculated from the inversion of our analytic model is in close 

agreement with the numerical inversion result given in the paper. The result also showed 

that the relative permeability calculated from JBN method deviated from the “actual” 

value. This is obvious if we focus on the water phase relative permeability as the JBN 

calculation is lower than both the analytic model’s inversion and numerical inversion from 

the paper. 
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Figure 2.13 Relative permeability comparison between analytic inversion, JBN 

calculation and data given (numerical inversion) 

 

 To better show the comparison result, we have plotted the total mobility from the 

analytic solution’s inversion with the JBN calculation, as shown in Figure 2.14a. From 

Figure 2.14a, we observe an overall compression of the total mobility due to the existence 

of capillary end effect. Also, in Figure 2.14b, we have shown the outlet fractional flow 

calculated using JBN method along with the fractional water mobility. It shows that in the 

context of ignoring capillarity, the JBN methods gives a different representation of the 

water phase fractional flow. Again, in this case study, we have used a pre-determined 

functional form of relative permeability, but it is not required to use this specific form. 
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Figure 2.14 (a)-Total mobility comparison between analytic inversion and JBN 

calculation; (b)-comparison of fractional flow calculated from JBN method with 

fractional water mobility 

 

2.4.2 Capillary Pressure and Relative Permeability Calibration before Water 

Breakthrough 

 Another application of the methodology is the estimation of capillary pressure and 

relative permeability information from saturation profiles before water breakthrough. The 

shape of the composite saturation profile around the shock front depends upon the 

capillary pressure function, so in principle we can calibrate the capillary pressure function 

if the saturation profile is determined experimentally. We have already cited the early 

work by Terwilliger et al. (1951) in which electrical resistivity measurements were used 

to determine the saturation profile in a sand column for gas displacing brine. More recent 

researchers have introduced other core flood saturation monitoring techniques, most 

notably gamma attenuation measurements and X-Ray CT (Nicholls and Heaviside 1988; 

Wellington and Vinegar 1987). 

 As a demonstration, we will analyze Terwilliger’s published experimental data to 

infer the capillary pressure and relative permeability functions and compare them with the 
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data reported by Terwilliger. Some of the key parameters for these experiments are 

summarized in the following table: 

(cp)w   0.826 (mD)k   2700    0.33 
3(g/cm )w   1.006 giS  0 wrgS   0.18 

Table 2.4 Input parameters for capillary pressure function calibration (following 

Terwilliger et.al. 1951) 

 

 The flow direction in the experiment of Terwilliger is strictly vertical with 

downwards flow at a fixed flow rate. In this case the outer solution will have a self-similar 

solution based upon a fractional gas flow which includes the effect of gravity. 

( )
g g w

g

T T

A g
F S

q

  

 


= −  (2.46) 

 In this application, the ultimate goal for the calibration is to match the composite 

saturation profiles with the experimental data. However, since the matched asymptotic 

expansion method was used, and saturation correction at the inlet was introduced to obtain 

the mass balance closure, there may exist some deviation of the saturation profile away 

from the shock comparing with its original B-L solution. In order to capture both the 

behavior of composite saturation profile (combined impact from capillary pressure and 

relative permeability) and B-L profile away from the shock (impact from relative 

permeability), we would like to use a Pareto-based approach for multiobjective 

optimization. In this typical case, we have chosen to use multiobjective genetic algorithm 

as the tool for optimization. 

The outer solution determines the bulk of the saturation profile away from the 

saturation shock and is controlled by gravity and viscous forces. The capillary force only 
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impacts the solution in the vicinity of the saturation shock, and leads to a steady state 

solution. Thus, a time-lapse saturation profile, or equivalently the speed of saturation 

evolution, would essentially be represented by the concave envelope of the fractional flow 

curve. So we will construct our first objective to be the mismatch between time-lapse 

model prediction and the time-lapse saturation profile data from the experiment. Due to 

the steady state behavior of the inner solution in the vicinity of the shock, the time-lapse 

calculation will essentially exclude the impact from capillarity and can be totally 

represented by the outer solution. 

And the second objective here will be the mismatch between model predicted 

composite saturation profile and one recorded saturation data. This objective function is 

controlled by both capillary pressure and relative permeability, but is subject to the inlet 

saturation correction we have introduced with our analytic solution. And the chosen 

saturation profile data is the one with larger injection time due to the limit of the analytic 

solutions’ applicability for small capillary effect. 

For this calculation, we will utilize simple relative permeability and capillary 

pressure functions with a few parameters. 
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( )1
n

rw

w w

Sk

 

−
=  (2.47) 

m
rg

g w

k MS

 
=  (2.48) 

( ) (1 )c c

dJ
p J S and J S

k dS


= = −  (2.49) 

 In the above equations, the unknowns that are subject to change during the 

matching process include exponents n  and m  for the relative permeability function and 

cJ  and   for capillary pressure derivatives. The two-phase mobility ratio M  is kept as a 

constant as normally we would know this value from the experiments. The M  value is 

inferred from the experimental data to be 23.58 according to the viscosity ratio of the two 

phases as well as the end-point characteristics of the relative permeability. So, we will be 

using 23.58M =  for our analysis here. 

We will use one set of experimental data from Terwilliger’s paper to demonstrate 

the application of this analytic model. The data we chose has a liquid flow rate of 

31.538 cm / min . This is the largest flow rate reported in the original paper where the 

stabilized zone can be seen within the length of the experimental core. For a gravity-stable 

displacement, the shock saturations are normally high and there is relatively little Buckley-

Leverett transition, which further reduces the sensitivity compared to horizontal flow. And 

this effect becomes larger when the flow rate is smaller. And this is the reason why we 

chose the largest flow rate case in our analysis. 
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 Before going into the analysis, one other piece of information we need is the 

effective injected time. As only the relative times and injected volumes are provided in 

Terwilliger et.al (1951), and so a mass balance closure has been used to infer the volumes 

of fluid injected and the effective injected time to be used in our analysis. The resulting 

values are 
1 4.8894 hrefft =  and 

2 8.2987 hrefft = . 

 To initialize the multiobjective genetic algorithm, we are using Latin Hypercube 

Sampling method to sample the initial population. The ranges for the four tuning 

parameters are shown in the following table. The population size we used here is 100, and 

the maximum generation number is 30. 

Parameters n  m  
cJ      

Minimum 1.5 1 0.00001 -1 

Maximum 5 10 1 -10 

Table 2.5 Parameters’ range used for calibration 

 

After 30 generations of multiobjective genetic algorithm, the last population’s 

scores as well as the rank 1 to rank 3 Pareto front points are shown in the following figure. 
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Figure 2.15 Calculated objective functions’ values and Pareto front points 

 

 From the above figure, we could calculate the Pareto front points as shown in red, 

magnet and green based on different ranks. For the rank 1 to rank 3 Pareto front points, 

they could be grouped into three different groups as circled with different colors shown in 

the above figure as well. The point circled in magnet, to be referred to as Category 1, is 

the case where there exists the least misfit in the time-lapse profile matching. The points 

circled in green, to be referred to as Category 2, represents the optimal trade-off points 

between the two objective functions. The points circled in red, to be referred to as Category 

3, are the ones with least misfit in composite profile matching. In the following part, we 

will show a detailed discussion about each one of these three categories. 

 We are using the blue dot as shown in the following figure as an example for the 

Category 1 Pareto front point (from rank 2). 
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Figure 2.16 Example Pareto front point – Category 1 

 

 The tuning parameters associated with this Pareto front point are 3.0309n = , 

7.9794m = , 0.4050cJ =  and 6.0418 = − . The following figures show both the 

composite saturation profile and time-lapse saturation profile given by the analytic 

solution by using this parameters combination. 

 

Figure 2.17 (a)-Composite saturation profile match using selected Category 1 

parameter combinations; (b)-time-lapse saturation profile match using selected 

Category 1 parameter combinations 
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 As we can see from the above figure, the time-lapse saturation profile has been 

fitted nicely, but the composite saturation profile still has a large mismatch comparing 

with the experimental data. We can further compare the 
gF  given by the relative 

permeability and capillary pressure, its corresponding concave envelope, and the 
gF  

concave envelope given by the experimental data. 

 

Figure 2.18 Fractional flow, its concave envelope and data derived concave envelope 

match using parameter combinations from Category 1  

 

 As a result of the good match between the time-lapsed model prediction and data, 

the 
gF  envelope is nicely captured. For this category of Pareto front points, the 

information from fractional flow envelope is nicely captured through the time-lapse match. 

However, since the composite saturation profile is not matched, the capillary pressure 

information is not very well represented, and it will, in turn, affect the interpreted relative 
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permeability information as they interact with each other. And also, this type of solutions 

will not show if we were focused only on the objective function of the composite saturation 

profile match. 

 The next category we are analyzing here is Category 2. We are using the blue dot 

showing in the following figure as an example for the Category 2 Pareto front points (from 

rank 1). 

 

Figure 2.19 Example Pareto front point – Category 2 

 

 The tuning parameters associated with this Pareto front point are 2.8417n = , 

2.6979m = , 0.0498cJ =  and 1.5585 = − . The following figures show both the 

composite saturation profile and time-lapse saturation profile given by the analytic 

solution by using this parameters combination. 
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Figure 2.20 (a)-Composite saturation profile match using selected Category 2 

parameter combinations; (b)-time-lapse saturation profile match using selected 

Category 2 parameter combinations 

 

 From the above Figure 2.20, we can observe that both composite saturation profile 

and time-lapse saturation profile are relatively nicely captured by the analytic model’s 

prediction. And the following figure will also show that the concave envelope of the 

fractional flow is relatively well represented. 
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Figure 2.21 Fractional flow, its concave envelope and data derived concave envelope 

match using parameter combinations from Category 2 

 

 For this Category 2 Pareto front points, as both the fractional flow concave 

envelope and the shape of the saturation profile in the vicinity of the shock are well 

represented, the resulting combination of relative permeability and capillary pressure 

information should be closer to the actual displacement condition. 

 The last type of Pareto front points is Category 3. The example Pareto front point 

chosen for illustration is shown in the following figure (from rank 3). 
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Figure 2.22 Example Pareto front point – Category 3 

 

 The tuning parameters associated with this Pareto front point are 1.8805n = , 

4.7353m = , 0.0388cJ =  and 3.2703 = − . 

 

Figure 2.23 (a)-Composite saturation profile match using selected Category 3 

parameter combinations; (b)-time-lapse saturation profile match using selected 

Category 3 parameter combinations 
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 The above figure shows both composite saturation profile match and time-lapsed 

profile match from the Category 3 Pareto front point. We noticed that the parameters from 

this category, although stilling giving us a good match on the composite saturation profile, 

is not capturing the time-lapsed saturation profile’s behavior. As a result of the bad match 

between the time-lapse model prediction and data, the fractional flow envelope is not 

captured at all. 

 

Figure 2.24 Fractional flow, its concave envelope and data derived concave envelope 

match using parameter combinations from Category 3 

 

 From the above results, we find that if we only use and calibrate from the 

composite saturation profiles, we may get results as shown in Category 3 where the 

fractional flow is off, and so will be the capillary pressure curves. The reason behind 

Category 3 is that the inlet saturation correction we are making for the mass balance 

closure. This will shift the portion of composite saturation profile away from the shock 
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down from the original B-L solution, and it will be severe once the dimensionless capillary 

group is larger. However, Category 1 will not show up as results as the composite 

saturation profiles are not matched. So, depending upon initial guesses, we may end up 

with a solution either in Category 2 or Category 3. But Category 2 is closer to the true 

solution respect to relative permeability and capillary pressure calibration. The following 

figure shows the comparison of capillary pressure from the Pareto front points’ models 

and experimental data provided by Terwilliger et al. (1951). To be noted, since our analytic 

model only uses the derivative of capillary pressure when calculating the saturation 

profiles, all capillary pressure shown here are normalized such that the endpoint has zero 

capillary pressure. 

 

Figure 2.25 Capillary pressure comparison between different categories of Pareto 

front points and data provided by Terwilliger 

 

 As we can see from the above figure, the Category 2 Pareto front points result in a 

large range for the capillary pressure curves. But they did cover the capillary pressure data 
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provided in the original paper. For the other two categories, the capillary pressure 

calibration results seem to be a little far away from the given data points. We could further 

see the resulting relative permeability models given by the calibration process: 

 

Figure 2.26 Relative permeability comparison between different categories of Pareto 

front points 

 

 From the above figure, we can still see that the calibration, even based only on 

Category 2, yields large uncertainty for the calibration results. 

 The last discussion for the Pareto-based optimization part is for the performance 

assessment of the multiobjective optimizers. The performance metric we are showing here 

is the dominated space which is a measure of how much of the objective space is weakly 

dominated by a given non-dominated set A (Lee et al. 2005). The following figure 

illustrates the calculation of dominated space: 
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Figure 2.27 Dominated space (colored in orange) by a given Pareto set when two 

objectives are minimized (reprinted from Lee et al., 2005). 

 

 Basically, the dominated space should increase with increasing generation number 

as the algorithm exploring more Pareto spaces. The maxI and maxII shown in the above 

figure represent the reasonable maximum value for each objective. In our application, we 

have used the maximum values ever shown in all Pareto front points in all generations for 

each axis as the corresponding reference point. And the following figure shows the 

dominated space’s change with respect to generations for our case. 
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Figure 2.28 Dominated space behavior for multiobjective genetic algorithm 

 

As we can see from the above result, the dominated space value stays fairly flat 

after the 6th generation. Thus, we argue that the 30 generation number is enough to 

quantify the correct Pareto front points, and the results from the last generation is a 

converged result considering the algorithm we are using here. 

 Instead of the above Pareto based approach, an alternative approach of calibrating 

the relative permeability and capillary pressure information is through a two-step 

calibration method. In this approach, we will first use the time-lapse saturation profile and 

the outer solution only to calibrate for the relative permeability information, and then use 

the calibrated relative permeability to match the composite saturation profiles by 

perturbing the parameters associated with capillary pressure. In the following section, we 

will show the example of this approach with the same dataset as we have just described. 
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 First, we will perform the time-lapse saturation profile match. The following figure 

shows the root mean square error between the model predicted time-lapse saturation and 

the recorded data for the range of n  and m  values. 

 

Figure 2.29 log10(RMS Error) plot between time-lapse model prediction and data 

for a range of m and n values 

 

 In the above figure, the lower the value represents the closer the fit is between the 

model prediction and data provided for a specific combination of n  and m  values. We 

can see that there are multiple combinations of the exponents that would yield identical 

time lapse saturation profile or Buckley-Leverett speed. We set the cutoff or tolerance 

value for the root mean square error at one standard deviation of the data 

( )( )10log std 3.8258dataX = − . For all possible combinations of parameters that have an 

error less than this value, the m  value is always less or equal to 12. So in the following 

analysis, we sampled 12 best-fit parameters for m  from 1 to 12. The values of the 
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corresponding n  and m  values, time lapse saturation profile match and the fractional 

flow match plots are shown in Figure 2.30. 

 

Figure 2.30 (a)-Time-lapse saturation profile match; (b)-fractional flow match 

 

 From the above figure, we can see that the time-lapse analysis here is to match the 

concave down envelope of the fractional flow curve and the resulting time-lapse profiles 

are very identical. 

 After determining the possible outer solutions from the time-lapse analysis, the 

inner solution including the effects of capillarity is used to determine the capillary pressure 

function by matching the experimental saturation profile with our composite solution. 

Here only the cJ  and   parameters are the unknown variables since all other parameters 

are given by the experimental settings. We have first used a relatively wider range of  cJ  

and   values and paired them with the previously determined relative permeability 

parameters and calculated the root mean square error as we did in the previous section. 

This results in 1188 different combinations and the following figure shows the root mean 

square contours. 
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Figure 2.31 log10(RMS Error) plot between composite saturation model prediction 

and experimental data 

 

 The cut off value is again set up by examining the standard deviation of the data 

itself. The standard deviation is 3.8578E-4, thus the based ten log of this value is -3.4137. 

For all 1188 combinations, only 3 pairs of parameters meet this criterion and they are 

listed in the following table. 
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   m   n   cJ   

-1.0 3 2.714720 0.10 

-1.5 1 2.685244 0.05 

-1.5 2 2.698449 0.05 

Table 2.6 Combinations of parameters yielding acceptable root mean square error 

 

 As these values are too sparse to represent the estimated range of the capillary 

pressure, the next step is to fine tuning on the existing parameter range. As our focus here 

is for the capillary pressure calibration, we will only tune in on the capillary pressure 

parameters cJ  and  . But before going into the fine-tuning part, one thing we noticed 

here is that the composite saturation match actually back constrained the suitable 

parameters’ range for relative permeability. From Figure 2.31, it is shown that no matter 

how the parameters from capillary pressure change, the only pairs of parameters from 

relative permeability (fractional flow) that yield acceptable errors are the ones with m  

value less than 4. This means that there is additional information for relative permeability 

from the saturation profiles that is not reflected in the time-lapse data. This is readily 

explained through our previous Pareto based approach as this additional piece of 

information would come from ruling out the points from Category 1 Pareto front points. 

Although we didn’t test all the possible parameters with 4m  , it is still reasonable to 

argue that this is a good estimate range combined with Figure 2.29. Figure 2.32a is 

showing the range of parameters that combined both time-lapse data analysis and 

composite match analysis. And Figure 2.32b is showing the resulting range for the 

fractional flow curves. 
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Figure 2.32 (a)-Range for relative permeability parameters constrained by both 

time-lapse data and composite saturation; (b)-corresponding fractional flow curves’ 

range 

 

 We now expand the resolution for 1.6 1−   −  and 0.01 0.15cJ  . And we 

use only the relative permeability parameter pairs with 4m   to calculate the root mean 

square again. The results are shown in the following figure. 
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Figure 2.33 log10(RMS Error) plot between composite saturation model prediction 

and experimental data (finer resolution) 

 

 Now there are 47 pairs of parameters that meet the standard deviation criterion. 

Figure 2.34 shows the saturation profiles predicted using these parameters as well as the 

resulting capillary pressure curves. 
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Figure 2.34 (a)-Composite saturation profiles predicted and experimental data; (b)-

resulting capillary pressure curves 

 

 The above results show that the calibration of the capillary pressure curve is 

successful with a reasonable error bar. 

 Overall, the above results show that the analytical model is capable of calibrating 

the capillary pressure function as well as the concave envelope of the fractional flow from 

experimental saturation profiles.  

 

2.5 Conclusions 

 

 We have provided an extension of the Buckley-Leverett solution for multiphase 

co-current forced imbibition or drainage flow to include capillary pressure corrections. It 

is within the context that the capillary pressure is relatively small thus the overall flow is 

still viscous dominated. The form of the solution is expressed in terms of pore volume 

coordinates which captures linear, radial or more general flow geometries. The solution is 

expressed as a composite of outer and inner solutions. The outer solution consists of the 
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smooth portion of the Buckley-Leverett profile while the inner solution consists of the 

“stabilized zone” steady state solution of Terwilliger. The two solutions match at the 

Buckley-Leverett shock saturation. The composite solution is a continuous solution which 

smoothly transitions across the Buckley-Leverett shock. The solution has been validated 

using numerical finite difference simulation. 

 As part of the analysis, we have introduced a new dimensionless group that 

describes the relative magnitude of capillary and viscous forces at the macroscopic scale. 

It differs from the capillary number which describes the relative magnitude of these forces 

at the pore scale (Steigemeir 1977) and is more akin to field scale dimensionless groups 

studied by other authors (Rashid et al. 2012). It is interesting to note that the current 

treatment which describes capillarity as a correction to viscous dominated flow cannot be 

implemented if the capillary number is too large. The range of solutions for which 

capillarity can be treated as a correction requires that ( ) 0O

w footF S  , where O

footS  is the 

outer solution at the foot of the saturation profile. In a reservoir context, this is usually the 

case, with the notable exception of counter-current flow in fractured reservoirs, where this 

dimensionless group can be quite large due to small total velocities. 

 The methodology has also been applied to two laboratory-scale examples. The first 

has been to the prediction and analysis of the capillary end effect as seen in core flood 

measurements. It was further extended to estimate the relative permeability information 

from unsteady state experiments. The second has been to the use of the experimental 

saturation profile data to infer capillary pressure and fractional flow (relative permeability) 

information before water breakthrough. 
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CHAPTER III  

SPONTANEOUS IMBIBITION‡ 

3 Equation Chapter (Next) Section 1 

3.1 Introduction 

 

Spontaneous imbibition is another important multiphase flow mechanism in 

porous media, and it is dominated by capillary pressure. Unlike the drainage or forced 

imbibition phenomenon discussed in the previous chapter where flow rates are imposed 

while the overall flow is viscous dominated, the flow rate from spontaneous imbibition is 

a natural consequence of the intrinsic properties of the fluid and rock system. 

The spontaneous imbibition is recognized as important recovery mechanisms in 

naturally fractured reservoirs as the capillary force controls the movement of the fluid 

between the matrix and the fracture. For unconventional reservoirs, imbibition is also 

important as the capillary pressure is more dominant in these tighter formations. The 

theoretical understanding of the flow mechanism for the imbibition process will benefit 

the understanding of important multiphase flow phenomenon like water blocking. 

In this chapter, a thorough theoretical investigation of the spontaneous imbibition 

mechanism is carried out, with the focus on the development of the semi-analytic solution 

for the transient spontaneous imbibition process. Unlike the self-similar solutions studied 

                                                 

‡ Part of this chapter is reprinted with permission from “Theoretical Investigation of the Transition from Spontaneous 

to Forced Imbibition” by Deng and King, 2018. SPE Journal, 24(01), 215-229. Copyright 2019, Society of Petroleum 

Engineers. Further reproduction prohibited without permission. 
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in the literature, the transient imbibition solution has yet been developed using the 

Lagrangian approach. However, the transient imbibition process represents more physical 

configurations such as constant flux at the outlet or ambient pressure at the outlet, while 

the only physically achievable condition with the self-similar solution is pure counter-

current flow. The developed solution has been applied to both conditions to solve for the 

normalized water flux as well as the saturation profile. 

Also, from the developed methodology, a novel stability envelope for spontaneous 

imbibition is also proposed to study the transition from spontaneous to forced imbibition 

by imposing a target injection rate at the inlet. Initially, the counter-current spontaneous 

imbibition at the inlet dominates, especially when the displacement front has only 

advanced a short distance. As flow front propagates, co-current flow gradually prevails 

and forced imbibition is achieved when the imbibition rate drops to the target injection 

rate. 

 

3.2 Methodology 

 

The methodology part will again start with the introduction of the mathematical 

formulation and some fundamentals of this two-phase flow problem. In all of the 

subsequent derivations in this section, the two phases are oil and water. The flow is 

assumed to be immiscible, incompressible, and the mass balance to both phases will hold. 

Following the derivation shown in the early part of the previous chapter, Eq (2.6) and Eq 
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(2.7) will still hold. To simplify the subsequent derivation, now we consider only one-

dimensional problem. Thus, Eq (2.7) could be expressed as: 

c
w w D w o

o

pAk
q qF F F

x





= +


 (3.1) 

 Eq (2.6) and Eq (3.1) combined still represents the governing equation for this 

two-phase flow problem. The solution strategy used in this chapter is an analog to the 

Buckley-Leverett problem where the fractional flow concept is still applied. However, in 

the Buckley-Leverett problem which is uni-directional, the largest positive flux is the total 

flux q . Thus, the fractional flow is normalized to this value in those types of problems. In 

the spontaneous imbibition literature, as counter-current flow is often happening, and 

sometimes even dominating, the largest flux is the water flux at the inlet 0wq . So, the 

fractional flow, which we are referring to as normalized water flux 
Im

wf , should really be 

normalized to this water inlet flux to remain finite. For example, in the purely counter-

current flow case, the traditional fractional flow will be infinite as total flux is zero, while 

the normalized water flux will always remain less than or equal to one. By applying the 

normalized water flux concept, Eq (3.1) could be rearranged as: 

Im

0 0 0

w c w
w w D w o

w w w o w

q dp Sq Ak
f F F F

q q q dS x





 = +


 (3.2) 

 The spatial and temporal variable can also be re-written for the porous media 

where 
Im

0
X A dx=  , representing pore volume along the streamtube, and 

Im

0
0

wT q dt=  , 

representing the total imbibed water volume. Since in this chapter, the water saturation is 

not normalized to the mobile fraction, the rescaled spatial variable is slightly different 
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from what we had in the previous chapter. Also, here the rescaled temporal variable is 

with respect to inlet water flux, which is in consistency with the water flux normalization. 

Including some other variable changes such as 
0w

q
R

q
=  and 

Im Im ImX T = , Eq (3.2) 

could be further reduced to the following equation: 

Im Im

Im
( ) w

w w D w

S
f RF G S




= −


 (3.3) 

 In the above equation, the term ( )Im

D wG S  is simply another form of the capillary 

dispersion coefficient. The dimensionless non-linear diffusion coefficient G  has the same 

definition as shown in Eq (2.22) after representing the capillary pressure using Leverett J-

function: ( )c wp J S
k

= . However, for the capillary dimensionless group, the 

normalization is again with respect to the inlet water flux: Im
Im

0
D

wq T
 = . The term   

follows the definition as shown in Eq (2.21). And for the one-dimensional case, we have: 

3 2 Im

Im

0

  and  D

o w

k A
q T

 
  


= =  (3.4) 

 As we will be showing some calculated results to illustrate the methodology, the 

following table listed all parameters used in this methodology part as input parameters. 
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Rock Properties 

Water Relative 

Permeability and 

Fluid Properties 

Oil Relative 

Permeability and 

Fluid Properties 

Capillary Pressure 

k  
1.97E-13 

m2 

(200 mD) 
w   2 o   2 c   1 

   0.2 wirrS   0.2 orwS   0.2 cJ   1 

wiS   0.2 w   
0.001 

Pa S   o   
0.003 

Pa S  0wS   0.7 

  
max

rwk  0.6445 
max

rok  1 

*

cp  / k   

    0.05 N/m 

Table 3.1 Model input parameters for example calculations of spontaneous 

imbibition 

 

 The 0wS  is the saturation where capillary pressure equals zero. The relative 

permeability and capillary pressure (Leverett J-function) functional forms used in this 

methodology part are shown in the following three equations. The 
max

rwk  in our model is 

chosen such that ( ) ( )1 0rw w ro wk S k S= = = . For the relative permeability models, both the 

w  and o  needs to be greater or equal to 1. As for the J-function, c  should be greater 

or equal to zero. When c  equals zero, it gives the logarithmic form of the capillary 

pressure curve. All of these functional forms are continuous in the whole saturation range 

and differentiable. One thing to mention is that although here we have specified the 

functional forms, the methodology itself doesn’t have the requirement of any specific 

functional form to be applicable. 
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 −      
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  −   −   
 − −     

 (3.7) 

 The following figure shows the outcome relative permeability and Leverett J-

function curves based on the above table parameters. One key information is that for this 

intermediate wet case, the capillary pressure curve has portions in both positive and 

negative value ranges. The 0wS  is the saturation where capillary pressure equals zero, and 

the end-point saturation of the relative permeability curves is 1 orwS−  which is larger than 

0wS . The irreducible water saturation wirrS  is consistent in both curves and is assumed to 

be the same as initial water saturation. This assumption is also in consistency with all 

previous analytical attempts in its class. 
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Figure 3.1 Relative permeability and capillary pressure (J-function) curves used for 

spontaneous imbibition methodology part 

 

 The above figure shows the relative permeability and Leverett J-function for the 

water saturation range between 0 and 1. For the saturation range below irreducible water 

saturation, the water relative permeability is constantly zero while oil phase relative 

permeability is gradually increasing with decreasing water saturation. For the saturation 

range above 1 orwS− , the oil relative permeability stays zero while the water relative 

permeability increases with increasing water saturation. The saturation endpoints where 

phase relative permeability just turns zero should match the saturation at which the 

capillary pressure curve diverges (as shown in Figure 3.1). For the continuum scale two-
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phase flow problems, normally we only consider the water saturation between wirrS  and 

1 orwS− , however, the above type of relative permeability curve has also been studied in 

the literature from percolation theory (Helba et al. 1992) or used to illustrate phase 

trapping problems where initial water saturation is below irreducible water saturation 

(Bennion and Thomas 2005). The extension to fluid flow below irreducible water 

saturation or above residual oil saturation is not within the scope of this chapter, but will 

be discussed in the next chapter. 

 For the study of imbibition mechanisms, it is important to distinguish between 0wS  

and end-point water saturation 1 orwS− , and the underlying different boundary conditions 

due to different mechanisms. At the spontaneous imbibition phase, as the inlet boundary 

condition has capillary equal zero, only the part of the relative permeability and capillary 

pressure curves below 0wS  will contribute. This phenomenon has fixed the inlet water 

saturation at a constant value 0wS  and all saturation within the porous media afterward 

will not exceed this value. On the other hand, during the forced imbibition or drainage 

process, the inlet boundary is controlled by a determined fractional flow. Thus, there will 

be no constraint on the inlet saturation anymore and the portion above 0wS  could very well 

be contributing. 

 In all our subsequent analysis, the major assumption is that the flow is immiscible 

and incompressible. We are also using only one set of relative permeability and capillary 

pressure curves in the derivation. Although the relative permeability and capillary pressure 

hysteresis will kick in when the saturation changes are in different directions, and it is easy 



 

81 

 

to happen when both co-current and counter-current flows are happening, it is not 

happening in the current scope as the water saturation is constantly increasing for the 

conditions we are studying here.  

 Also, the system is assumed to have constant initial water saturation that is the 

same as irreducible water saturation, and constant residual oil saturation to start with. This 

assumption is in consistency with the assumptions in all other analytical solution in this 

class. If we have a non-uniform distribution of initial saturation, there will be two different 

situations. The first one is when the initial water saturation distribution, although non-

uniform, is consistently lower than the irreducible water saturation. This case will happen 

in some gas shales like Marcellus or Haynesville (Bennion and Thomas 2005; Wang and 

Reed 2009). At such condition, the water is not able to flow but is being controlled by 

adsorption due to the presence of clay minerals. The incorporation of this situation is 

analyzed in the next chapter. The second condition is the initial water saturation is above 

irreducible water saturation and non-uniformly distributed. For this situation, due to the 

existence of capillarity, the water saturation within the porous media is not at its 

equilibrium and will continue redistributing.  

 The above description and statements summarized the fundamentals of the 

spontaneous imbibition two-phase flow problem we are analyzing here. Now, we will start 

reviewing the self-similar solution and providing the details regarding the construction of 

the analytic solution for transient imbibition. 
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3.2.1 Self-similar Solution Review 

 According to the temporal and spatial variable change description provided at the 

beginning of this chapter, Eq (2.6) could be written as: 

Im

Im Im
0w wS f

T X

 
+ =

 
 (3.8) 

 In order to construct the self-similar solution where both the saturation profile and 

the normalized water flux are only a function of 
Im , the term 

Im  becomes the similarity 

variable and the following relationship will hold. 

Im Im

Im Im Im Im Im

Im ImIm
Im

Im Im Im Im Im Im

1
0

1 1

w w w w

w w w w w

w w

S f dS df

T X d d T

dS df dS dS df

d T dS d T T d dS

 




  

 
= + = − +
 

  
= − + = − +  

  

 (3.9) 

 For the above equation to hold in the most general case, we will further have: 

Im
Im w

w

df

dS
 =  (3.10) 

 We could also re-write Eq (3.3) as: 

( )Im
Im Im

Im Im
( )  or 

D ww
w w D w

w w w

G SdS d
f RF G S

d dS f RF






−
= − =

−
 (3.11) 

 By combining Eq (3.10) with Eq (3.11), we arrive at the governing equation for 

the self-similar solution. For a self-similar solution, each term within the definition of the 

normalized water flux may depend upon wS , 
Im  and derivatives, but they may not 

depend upon time. This imposes two constraints: 



 

83 

 

0

1
w

q
R

q
   (3.12) 

Im Im Im

0

2 2
.wq T T dT

Const
A A dt

= =  (3.13) 

 From the second equation above, we arrive at the key observations for the self-

similarity where: 

Im
Im Im Im

0

Im,

0

Linear Flow: , 2  for some 

Radial Flow: 

w

radial

w

AC
q T AC t C

t

q C

= =

=

 (3.14) 

 In the original derivation by McWhorter and Sunada, the inlet water flux being 

proportional to the inverse of the square root of time was treated as a boundary condition, 

and the self-similar solution is derived under such condition. Here we have proved that 

the 
0 1wq t  condition is a natural consequence of the self-similarity, not the other way 

around. Also, the ImC  and Im,radialC  factors are constants based on specific rock and fluid 

systems and cannot be chosen arbitrarily. 

 As we have introduced before, in the previous literature, the above described self-

similar solution has been solved using different techniques. We have found that the finite 

difference method originally proposed by Schmid et al. (2016) is easy to implement. 

However, as they were only solving for the normalized water flux using a second order 

finite difference scheme, some of the fundamental physics behind the solution are hidden. 

In our approach, we have used an improved finite difference scheme to solve two first-

order ODEs simultaneously, and we can actually see the behavior of both the normalized 

water flux and saturation profile as the same time. Once we discretize Eq (3.10) and Eq 
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(3.11) with respect to water saturation, we arrive at the following two discretized equations 

where i  denotes the steps in water saturation: 

( )
1

Im Im Im

1 1i iw w w wi i i
f f S S 

−− −
     = + −       (3.15) 

( ) ( )
1

Im

Im Im

Im1

i i i

i

w w D w

i i
w wi

S S G S

f RF


  −

−

−
   = −      − 

 (3.16) 

 The solution strategy is more akin to a shooting process for this two-point 

boundary value problem. At the inlet, we have the inlet boundary condition as 
Im

0
1wf  =  , 

Im

0
0  =   and 

0 0w wS S= . Since R  is a known constant, the only unknown is 
Im

D . The 

value of 
Im

D  is perturbed during the shooting process to converge to the correct foot 

boundary condition where 
Im 0w end

f  =  , 
Im

end
finite  =   and 

endw wirrS S= .  

 

Figure 3.2 (a)-Normalized water flux behavior during shooting process for self-

similar solution; (b)-saturation profile behavior during shooting process for self-

similar solution 
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 The above two figures graphically explain the shooting process for the self-similar 

solution to obtain the correct 
Im

D  value. If 
Im

D  is smaller than the correct value, the 

normalized water flux will terminate at ( )Im 0w wirrf S  , which is not physical. As the same 

time, the saturation profile will have an ill-posed mass balance. If the 
Im

D  is large, the 

normalized water flux will intersect with wRF  curve and cause the equations to diverge. 

Also, the saturation profile will be shooting for infinity at the saturation where the equation 

diverged. There exists only one correct 
Im

D  value that will match the correct foot 

boundary condition as shown in the purple curve above. And this 
Im

D  value will help 

determine the ImC  value which is the pre-factor for the imbibition rate. 

 And also, as we change the value of R , there will be different calculated 
Im

D  

values. The relationship between 
Im

D  and R  is a natural consequence of the system itself 

and is also very important as it determines the correct imbibition rates. The following 

figure shows one typical example of the 
Im

D  and R  relationship from the self-similar 

solution: 
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Figure 3.3 
Im

D  vs. R  relationship example from self-similar solution 

  

 As the unique 
Im

D  value will in turn determine the imbibition rate, the above 

curve also will represent the difference between a stable and an unstable imbibition 

process. If at any predetermined R , the 
Im

D  value is too large will mean that the 

imbibition rate is too small. This situation is physically not achievable as the capillary 

pressure by itself will increase the rate to the rata prescribed by the above relationship. 

However, if the 
Im

D  value is too small, the imbibition rate will be large than what is 

achievable from capillarity only. Thus, additional viscous pressure drop is needed to 

increase the imbibition rate. This is what we will refer to as forced imbibition. The details 

about the interaction between spontaneous and forced imbibition will be discussed in a 

later section of this chapter. 
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To be noted, all these self-similar solutions are possible mathematical solutions, 

however the relationship is not physically (energetically) feasible for a finite system unless 

0q = , i.e., pure counter-current flow. All the laboratory experiments that exhibit self-

similar behavior are of this nature. Alternatively, the solutions will not be purely self-

similar, as in the current investigation. 

 

3.2.2 Transient Solution 

 As for the transient imbibition problems, the main difference comparing with the 

self-similar solution is that the terms within the definition of the normalized water flux 

could now vary with time, i.e. ( )( )Im Im,wS T t , ( )( )Im Im,w wf S T t , ( )( )Im Im

D T t  and 

( )( )ImR T t . We now start with the Eulerian form of the flow equations, Eq (2.6), and 

transform them into the Lagrangian form used in the solution of the spontaneous and 

transient imbibition problem. In the Eulerian formulation, the unknown functions ( ),wS x t  

and ( ),wq x t  are expressed as functions of position and time as the independent variables. 

For the Lagrangian formulation, we instead determine the solutions as functions of 

saturation and time. This changes the interpretation of the time derivative to a co-moving 

derivative, as shown in the following. As part of this transformation we also introduce the 

rescaled position and time variables defined in terms of cumulative pore volume calculated 

from the inlet and the cumulative water imbibed. 

 We now introduce the change of independent variable from ( ),x t  to ( )Im,wS T : 
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Im

Im

Im
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w
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       
=  +      

         

          
=  +        

           

 (3.17) 

 Manipulating these relationships gives: 

Im

Im

Im

0

1

w

w

w wS T

qX

T q S

   
=   

    
 (3.18) 

 Here, both ImX  and t  are functions of wS  and ImT . In these expressions and for 

clarity, the variable kept fixed in the partial derivative is stated explicitly. For instance 

xt

 
 
 

 is the time derivative at fixed position while 
Im

wST

 
 
 

 is the time derivative at 

fixed saturation. The latter is also known as the co-moving time derivative. 

 Two dimensionless variables naturally arise. The first is the normalized water flux, 

Im

0w w wf q q . The second is the dimensionless ratio of ImX  and ImT , 
Im Im ImX T = . 

From Eq (3.1) we have their relationship: 

1
2 Im

Im

Im

0 0

1 c
w w D w o

w w o w w

dpq A k d
f F F F

q q T dS dS

 




−

 
= +  

  
 (3.19) 

 This is what the literature has explored as the self-similar solution and we have in 

detailed reviewed it in previous chapters. If we now focus on the investigation of transient 

imbibition with the use of average normalized water flux Im

wf , Eq (3.18) could now be 

expressed as: 
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Im

ImIm

Im

w

w

wS T

fX

T S

   
=   

    
 (3.20) 

 The time dependent terms in the normalized water flux are ( )0wq q  and 

( )Im

01 wq T . They must be obtained as part of the solution of the equations. 

 Eq (3.20) and Eq (3.3) together represent the governing equation to the transient 

imbibition problem. We will re-write Eq. (3.3) into the following form: 

ImIm

Im

( )D w

w w w

G S

S f RF

 −
=

 −
 (3.21) 

 Unlike the self-similar case, there now exists a lack of connection between the 

normalized water flux and its change with respect to time. Thus, we have introduced an 

average normalized water flux to establish the connection. 

Im Im Im Im

w wf dT T f=   (3.22) 

( )Im Im

Im

Im

w

w

d T f
f

dT


=  (3.23) 

 Now, the original similarity variable, or equivalently the rescaled saturation profile 

could be written as: 

ImIm
Im

Im

w

w

fX

T S



 =


 (3.24) 

 Eq (3.24), Eq (3.23) and Eq (3.21) combined is the complete governing equation 

to the transient imbibition problem. The solution strategy is identical to what we have 

analyzed in the self-similar condition, with the change of including one more equation to 

be discretized. Because of the time dependence, the shooting process is accomplished at 
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every temporal step. Once the shooting processes are done for all temporal steps, the 

solution gives us the relationship between R , 
Im

D , saturation profiles and normalized 

water flux. Thus, the overall solution is also determined. 

 For each shooting process to calculate the correct 
Im

D  at every time step, the inlet 

boundary condition is still capillary pressure equals zero, which will force the inlet 

saturation to be constant 0wS . Also, at the inlet, 
Im 1wf = , Im 1wf =  and 

Im 0 = . At the 

foot of the saturation profile (the saturation front), the boundary conditions are w wirrS S= , 

Im 0wf = , Im 0wf =  and 
Im  remains finite. And to initialize the solution at the first time 

step, the 0R =  self-similar solution is used as Im Im

w wf f=  for the first timestep. 

 As a consequence of the time dependence, the discretization needs to be done in 

both wS  and ImT . 

Im

Im Im Im Im0 : , ,
n end

TT
n N T n T T N T   = =  =      (3.25) 

( )0 00: , ,
w i wS w w w w wirr w Si N S S i S S S S N= = +   = −  (3.26) 

 Here i  is used to describe the saturation discretization and n  is used for the 

temporal step notation. With the discretization scheme, Eq (3.24), Eq (3.23) and Eq (3.21) 

could be discretized as: 
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1 Im
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n n w D w

ni i n

w wi

S G S

f R F


 

−

       = +   
  −  

 (3.29) 

 From the equations, we need another relationship between 
Im

n

D    and nR  to 

close all the equations. According to Eq (3.4), we will have: 

Im

Im Im

0

n
n

D n n

w

R

q T q T

 
  = = 

      

 (3.30) 

 From the above equation, the additional boundary condition needed for the extra 

unknown could be resolved by either knowing nR  directly or knowing q . This additional 

relationship is derived from the outlet boundary condition of a given system. Once we 

obtain the additional boundary condition, the only unknown remains is still 
Im

n

D    and 

we will again perturb it to match the foot boundary condition. It is accomplished by 

minimizing the objective function as shown in the following equation and a typical 

shooting example is shown in Figure 3.4. 
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( ) ( )
2

2
Immin  

term
term

w wirr wO S S f = − +    (3.31) 

 

Figure 3.4 (a)-Average normalized water flux behavior for transient solution; (b)-

Instantaneous normalized water flux behavior for transient solution; 

 

 The terms 
term

wS  and 
Im

term

wf    represent the terminating values for water 

saturation and instantaneous normalized water flux during the shooting algorithm. The 

objective function represents the square of the length between the terminating point to the 

origin as shown in Figure 3.4b. As an initial guess for 
Im

D , it can be any value specified. 

 If the 
Im

D  is a lot smaller than the correct value, as shown in the magnet line in 

Figure 3.4b, we will be terminating the shooting of 
Im

wf  at 1. Thus, the 
term

wS  will be 

larger than wirrS  and 
Im

term

wf    will be 1. As the value of 
Im

D  increases, before the 

terminating normalized water flux becomes always smaller than 1, the 
Im

term

wf    will not 
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change while the 
term

wS  will be closer to the irreducible water saturation. Thus, the value 

of the objective function is always decreasing in this case. When the terminating 

normalized water flux stays below 1 (as shown in the blue curve), the 
term

wS  will equal to 

wirrS  and 
Im

term

wf    will decrease until 0 with increasing 
Im

D . Thus, for all 
Im

D  below 

the correct value, the objective function value will always decrease with increasing 
Im

D . 

 If the 
Im

D  is larger than the correct value, the shooting trajectory of normalized 

water flux will terminate at 
Im

term

w wf R F  =   . Again, as we can infer from monotonicity 

of the water fractional mobility curve as shown in black in Figure 3.4b, the 
term

wS  will be 

converging to wirrS  and the 
Im

term

wf    will be converging to 0 with decreasing 
Im

D . Thus, 

the objective function is constantly decreasing with decreasing 
Im

D  as well. 

 The above description concludes that there exists a unique 
Im

D  at every time step 

for the solution of normalized water flux, and objective function has a unique global 

solution with a smooth and concave shape. Thus, any type of optimization algorithm could 

be applied to solve this problem. 

 Also in Figure 3.4a, it is shown that when the estimated 
Im

D  is too small, the 

average normalized water flux at wirrS  will terminate at a value larger than zero. This 

means the normalized water flux is non-zero while the ( )wG S  is zero, and this situation 

is not physical. Also, we will observe an invalid mass balance. When 
Im

D  is too large, 
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the governing equation will diverge at some saturation when 
Im

term

w wf R F  =    and 

causing the denominator to approach zero (shown in Figure 3.4b at the crossing of the red 

dash line and black solid line). This is also shown in Figure 3.5 where we can see the 

saturation at which the equation diverges will be shooting for infinity. 

 

Figure 3.5 Saturation vs. ξ plot for transient imbibition problem 

 

 The convergence of our finite difference calculation for the transient imbibition 

problem is discussed in Appendix C. 

 This concludes the general derivation and solution strategies for the transient 

imbibition problem. However, until now, all derivation is done using ImT  as the 

independent variable. To obtain the relationship between all solutions and the physical 

time, the following relationship is used: 
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Im

0

0

wT q dt=   (3.32) 

Im Im
Im Im

00 0

1 D

w

T
t dT dT

q




= =   (3.33) 

 

3.3 Application 

 

3.3.1 Application of Analytic Solution with Physical Boundary Conditions 

 We will consider three physical configurations for this study and start to analyze 

the corresponding application of the analytic solutions to them.  

 

3.3.1.1 Purely Counter-current Flow 

 If the porous media is semi-infinite or it only has one end open to flow, the R  ratio 

will become zero as there will be no flux at the outlet. Thus, the overall flow condition 

becomes purely counter-current. Under such circumstance, the solution is reduced to the 

self-similar solution and the relationship of ( )Im

D R  is simplified to a single point. As the 

self-similar solution is well documented in the literature, the detailed example calculation 

will not be illustrated here. 

 

3.3.1.2 Constant Outlet Flux 

 The second physical condition is when the system has both ends open to flow. The 

inlet is constantly in contact with water, and oil is being produced at a constant rate at the 
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outlet. The system could still be semi-infinite, or the solution is only valid before the water 

breakthrough at the outlet for a finite length system. As the oil production at the outlet is 

a constant, and it will be equal to q  under incompressible constraint, the additional 

boundary condition is directly given. The following figure shows the example calculation 

under such flow configuration. 

 

Figure 3.6 (a)-total imbibed volume, co-current and counter-current oil production 

volume changing with time for constant outlet flux transient imbibition; (b)-

saturation profile at one time step for constant outlet flux transient imbibition 

 

 In Figure 3.6a, we can see the co-current oil production is increasing linearly with 

time, and this is in accordance with our model set-up, i.e. outlet boundary condition. From 

the comparison of the total imbibed volume, co-current and counter-current oil production, 

we can see that at early time, counter-current spontaneous imbibition is dominating, and 

it is driven by the capillary force. Until later time, the production is mainly due to the 

constant outlet oil withdrawal. 
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 We further validated our analytic solution result with numerical simulation results. 

Traditional commercial simulators are built for well boundary conditions and are not 

designed to handle this type of capillary pressure boundary condition. Thus, an in-house 

simulator is built for this 1-D problem. The construction of the simulator is identical to 

the methods provided by Karimaie et al (2004), with the change on the outlet boundary 

condition to be a constant production rate. For the algorithm used in the simulator, IMPES 

method is applied. 

 For the numerical simulation, we have tested the simulator under five different cell 

sizes. The total length of the system is 1.6 meters, and it is divided into 20, 50, 200, 500 

and 2000 cells, leading to cell sizes of 0.08, 0.032, 0.008, 0.0032 and 0.0008 meters per 

grid. The following figure shows the saturation profiles from both the analytic result as 

well as all five numerical simulations. 

 

Figure 3.7 Saturation comparison between semi-analytic result and multiple 

numerical simulations for constant outlet flux transient imbibition 
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 As we can see from the above figure, the semi-analytic result is in good agreement 

with numerical simulation results and is closer once the cell size is smaller in the 

simulation. This has validated our semi-analytic approach. We also computed the root 

mean square error (RMS error) using the most refined simulation result as the basis, and 

the convergence test result is shown in the next figure. 

 

Figure 3.8 Semi-analytic solution and numerical simulation convergence analysis for 

constant outlet flux transient imbibition 

 

 From the convergence test comparing with simulation results, the simulation result 

shows a convergence rate close to 1.3. The semi-analytic result’s accuracy is 

approximately about 200 cells for a 1.6-meter-long system, which is about 0.008 meters 

per cell. To be noted, this accuracy could be further improved once we increase the 

resolution when solving the semi-analytic solution using finite difference approach. 
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3.3.1.3 Two-Ends-Open (TEO) Free Spontaneous Imbibition 

 The Two-Ends-Open (TEO) free spontaneous imbibition, is a one-dimensional 

experimental configuration where the inlet of the core is in contact with water and the 

outlet is in contact with oil. The experimental configuration is shown in Figure 3.9. On 

both ends of the core, the two reservoirs containing water and oil are both at constant 

ambient pressure. Originally the water wet core is filled with oil that has the same property 

as the oil in the outlet reservoir. At the inlet, we have a capillary end effect that will set 

the capillary pressure to zero. At the core outlet, the pressure will also be at the ambient 

pressure due to the contact with the oil reservoir. Under such a configuration, the oil will 

be produced both co-currently (produced at the outlet) and counter-currently (produced at 

the inlet), and the strength of them will be constantly changing. 

 

 

Figure 3.9 Illustration of Two-Ends-Open (TEO) free spontaneous imbibition 

configuration 

 

 To apply the transient solution for the TEO free spontaneous imbibition, we will 

have to take the physical boundary condition into consideration. The boundary condition 
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for this problem is the oil phase pressure on both ends being equal to ambient pressure as 

shown in the following figure. 

 

Figure 3.10 Oil phase pressure distribution for TEO free boundary condition 

 

 To obtain this boundary condition mathematically, we start with the Darcy’s 

equation for the oil phase: 

ro o
o

o

k k p
q

x

 
= −


 (3.34) 

 Thus, the oil phase pressure as a function of distance could be expressed as: 

( ) ( )
( )

( )

( )

( )0 0
0

l l
o wo o

o o

ro ro

q x q q x
p l p dx dx

k k x k k x

  −
− = − = −   (3.35) 

 Also, as we know 0wR q q  and 
Im

0w w wq f q=  , and they are both not a function 

of distance, the above equation could be further expressed as: 

( ) ( )
( )

( )

Im

0

0
0

l
wo w

o o

ro

R f xq
p l p dx

k k x

 −
− = −   (3.36) 

 To include the boundary conditions where ( ) ( )0o op l p= , the mathematical 

expression for the outlet boundary condition should be: 
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( )

( )

Im

0
0

l
w

ro

R f x
dx

k x

−
=  (3.37) 

( )
( ) ( )

Im

0 0

1l l
w

ro ro

f x
R dx dx

k x k x
=    (3.38) 

 The above equation gives a direct relationship between R  value and the 

corresponding saturation profile. In order to apply the above boundary condition with the 

transient imbibition solution, we would use a strategy of using explicit R  from the 

previous time step for the calculation of the saturation profile at the current time step. This 

would have removed the necessity of using iterative methods to calculate nR  implicitly. 

And furthermore, it will save a lot of computational time. Mathematically, Eq (3.29) will 

be changed to: 

( )Im

Im Im

1 Im 1

i

i

n

n n w D w

ni i n

w wi

S G S

f R F


 

− −

       = +   
  −  

 (3.39) 

And furthermore, nR  is calculated through Eq (3.38) using numerical integration 

techniques along with the 
Im

n

    and 
Im

n

wf    results from Eq (3.39). The calculated 

value will be used in the next time step to calculate the saturation profile. 

 We will show the calculation results using the model parameters as shown in Table 

3.1. The results presented are at Im 30.2 mT =  and is validated with numerical simulation. 

Again, the bespoke simulator is used for the validation. 

 For the numerical simulation, we have tested the simulation under different 

scenarios with different cell sizes. The total length of the system is 20 meters, and has 
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been divided into 20, 50, 200, 500, 1000 cells, leading to cell sizes of 1, 0.4, 0.1, 0.04 and 

0.02 meters per cell. The following figure shows the saturation profile from different 

simulations as well as the analytic solution: 

 

Figure 3.11 Saturation profile comparison between analytic solution and multiple 

numerical simulations for TEO free transient imbibition 

 

 As we can see from Figure 3.11, the analytic solution is in close agreement with 

the numerical simulation result at sufficiently high resolution. This has validated our 

analytical approach as the saturation profile is the final comprehensive result of the 

analytical evaluation. To show further validation of our methodology, the following figure 

shows the comparison of the pressure profile across the core between numerical simulation 

and the analytic solution: 
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Figure 3.12 Oil phase pressure profile comparison between analytic solution and 

multiple numerical simulations for TEO free transient imbibition 

 

 From the above figure, it is also clear that both the numerical simulation and 

analytic solution have satisfied the boundary condition of the TEO free spontaneous 

imbibition experiment. The analytic solution’s pressure profile is again in close agreement 

with the high-resolution simulation result. The vertical dotted line represents the location 

of the saturation front. As there is no mobile water to the right of this dotted line, the flow 

will be single phase oil flow between this location and the end of the core system, and the 

pressure profile will be a straight line. 

 To understand the actual comparison among different results, we have calculated 

the error (L1 norm) of all solutions between the imbibed volume given by the saturation 

profile and the true imbibed volume prescribed as an input. As we know the cumulative 

imbibed water volume is 0.2 cubic meters as an input, then we can estimate the imbibed 

volume from each saturation profile through numerical integration. The absolute 
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difference between these two values will give the error between each scenario and the true 

solution. The convergence test result is shown in the next figure: 

 

Figure 3.13 Analytic solution and numerical simulation results convergence analysis 

for TEO free transient imbibition 

 

 It can be observed from the above figure that the numerical simulation shows a 

first-order convergence rate. The analytic solution’s accuracy, in this case, is 

approximately 450 cells for the 20-meter system, which is about 0.044 meter per cell. 

Ideally, this accuracy could be further improved once we increase the resolution when 

solving the analytic solution. The current analytic solution, which depends on finite 

difference method, has been discretized in ImT  for 50 intervals and in wS  for 500 intervals. 

 

3.3.2 Transition from Spontaneous to Forced Imbibition and Spontaneous Imbibition 

Stability Envelope 

 Another important application of the study of spontaneous imbibition is to analyze 

the transition from spontaneous to forced imbibition. To better understand the transition 
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process, we can consider an illustrative core flood configuration as shown in the following 

figure: 

 

Figure 3.14 Illustration of core flood configuration to study the transition from 

spontaneous to forced imbibition 

 

 In this core flood example, we have a water-wet core that is constantly in contact 

with water at the inlet. To the left of the water reservoir at the inlet, water is also injected 

at a target rate 
*

0wq . At the outlet, the boundary condition could be different based on the 

experimental set-up. Typical physical boundary conditions are discussed in the previous 

section. Based on the study of the imbibition solution, we know that initially the water 

imbibition rate is infinite. Thus, at the earlier stage, water will be sucked into the core at a 

rate higher than the target rate. During this state, it is the capillary pressure that prevails 

and mathematically the inlet boundary condition is capillary pressure equals zero. But as 

the imbibition rate drops, the water flux at the inlet will drop to the target rate and then the 

viscous pressure drop will dominate to keep the inlet water flux at the target injection rate. 

This process marks the transition from spontaneous to forced imbibition. This 

configuration describes a system where both the capillary and viscous forces are present 

and are constantly changing. 
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 One important and universal relationship that applies to all spontaneous imbibition 

problem is the relationship between 
Im

D  and R . For the self-similar solution, for every 

R  value, there exists only one corresponding 
Im

D  that matches all boundary conditions. 

For the transient solution, 
Im

D  and R  relationship arises as a natural consequence of the 

boundary conditions of the system. This characteristic relationship could be used to 

illustrate the behavior of the transition from spontaneous to forced imbibition. The 

following figure shows a typical 
Im

D  vs. R  relationship from the constant outlet flux 

transient imbibition problem, and it also illustrates the transition process on top of this 

relationship. As the value of 
Im

D  is a natural consequence of the intrinsic properties and 

boundary conditions, the relationship also forms a stability envelope for spontaneous 

imbibition. 

 

Figure 3.15 
Im

D  vs. R  relationship (stability envelope) for constant outlet flux 

transient imbibition 
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 At the initial state when we try to impose the target injection rate to the system, R  

will start at some finite value while 
Im

D  will start with infinity as initially ImT  is very 

close to zero. However, this state is not stable as the capillary pressure is so high that will 

cause the imbibition water rate to be close to infinity, which is the same initial state as the 

conventional self-similar solutions. So, the 
Im

D  will be pushed to some finite value that 

is determined by the rock and fluid system, and the R  at the initial state will be zero due 

to an infinite 0wq . This part is represented by the first purple arrow in Figure 3.15. Then 

the flow will track the 
Im

D  vs. R  envelope due to spontaneous imbibition until the target 

injection rate 
*

0wq  is reached, represented by the second purple arrow in the above figure. 

After that the flow will be switched from spontaneous imbibition to forced imbibition once 

it deviates down from the 
Im

D  vs. R  envelope. During forced imbibition from the 

constant outlet flux transient imbibition case, R  will be kept as a constant, meaning the 

flow is entering a steady state. But ImT  will continue increase, causing 
Im

D  to decrease. 

This last forced imbibition state is represented by the third purple arrow in Figure 3.15. 

 As the above figure is only for the constant outlet flux condition, the following 

figure shows the comparison of the stability envelope between the three situations with 

physical boundary conditions as we have discussed before. 
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Figure 3.16 Comparison of 
Im

D  vs. R  relationship between constant outlet flux 

transient imbibition, TEO free transient imbibition and self-similar spontaneous 

imbibition solutions 

 

For the TEO free spontaneous imbibition case, the initial analysis will remain the 

same. Once the target injection rate is reached, the forced imbibition relationship will not 

stay at a constant *R . Instead, the R  value will gradually increase until 1. 

 As for the purely counter-current flow situation, the stability envelope reduces to 

a single point as we can see in Figure 3.16. For this single point, R  value will remain as 

zero.  

 Another observation from Figure 3.16 is that the shape of stability envelope from 

all three different solutions remain identical. The stability envelope based upon the self-

similar solution is a very good approximation to the more exact transient solutions. This 

again reminds us the statement that self-similar solution often include the essence of the 

more complete solutions. 
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 Overall, in the 
Im

D  vs. R  relationship, any point above the formed envelope is 

unstable due to capillarity and will be pushed back onto the envelope. For all points on the 

envelope, it is at spontaneous imbibition state where the overall flow is capillary 

dominated. During this state, the solution to the system, including but not limited to the 

saturation profile calculation, can be obtained using the method described in this research. 

For all points below the envelope, it is stable and at forced imbibition state where the 

viscous force is more dominating. Mathematically, the major difference between the 

spontaneous and forced imbibition solutions lies in the inlet boundary condition. As we 

can see, the spontaneous imbibition has an inlet boundary condition that capillary pressure 

equals zero, leading to a constant saturation at the inlet. But for the forced imbibition, the 

closest analog would be conventional Buckley-Leverett analysis which will be achieved 

when 1R =  and the inlet boundary condition will be fractional flow equals one. 

 

3.3.3 Vertical Counter-current Spontaneous Imbibition – Analytic Solution with Gravity 

Effect 

 One of the terms we have consistently omitted in the analysis is the gravity term. 

Here in this section, we would like to investigate the impact of gravity for the developed 

analytic solution. More specifically, we will restrain our focus on the counter-current 

spontaneous imbibition that is performed vertically with water being imbibed from the 

bottom to the top. The following figure shows the illustrative configuration of the system 

we are going to analyze. 
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Figure 3.17 Configuration of vertical counter-current spontaneous imbibition  

 

 The above system has been reported and analyzed in the literature (Cai et al. 2012). 

If we consider the above system, the governing equation shown in Eq (3.3) will be changed 

to the following: 

Im Im

Im

0

( ) w D w o
w w D w

o w

S gA F F
f RF G S

q

 


 

 
= − +


 (3.40) 

 For simplicity, we further represent the pre-factor of the gravity term with a new 

changed variable: 

D w o

o

gA F F 


 


=  (3.41) 

 Thus, Eq (3.40) could be turned into: 
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Im Im Im Im

Im
( ) w

w w D w D

S
f RF G S T 




= − +


 (3.42) 

 From the above equation, we can see that even when R  is constant (such as the 

purely counter-current flow case that we are going to analyze), the solution is not self-

similar, and the normalized water flux will change with time. However, if we follow the 

strategy for the transient solution in discretizing the governing equations with respect to 

both ImT  and saturation, the solution is still well defined by finding the correct 
Im

D  for 

the two-point boundary value problem. 

 Here, we are going to show some calculation results of the purely counter-current 

flow case with the same parameters shown in Table 3.1. As for the gravity terms, 

3200 kg/m = − . 

 

Figure 3.18 (a)-Normalized water flux comparison between the cases with and 

without gravity; (b)-
Im  comparison between the cases with and without gravity 

 

 The above two figures show the normalized water flux and dimensionless 

saturation profile at different time steps (dotted black line), and their comparison with the 
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results from self-similar solution neglecting gravity. Here, as   is negative and R  is zero, 

the denominator of the governing equation will not go to zero. So, there exists no issue 

with convergence in this case. 

 And furthermore, we are showing the saturation profiles from the cases with and 

without gravity at the same physical time: 

 

Figure 3.19 Saturation Profile comparison between the cases with and without 

gravity 

 

 As expected, the water imbibition will be slowed and retarded due to the 

gravitational force which is pointing at the opposite direction of the x axis. And we can 

also expect that not only the saturation profile, the produced volume and flux will all be 

slowed in the case with gravity. The following figure shows the comparison as well: 
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Figure 3.20 (a)-Cumulative counter-current production volume comparison between 

the cases with and without gravity; (b)-counter-current flux volume comparison 

between the cases with and without gravity 

 

3.4 Conclusions 

 

 In this part of the research, we have reviewed the self-similar solution to 

spontaneous imbibition and presented a semi-analytic approach to solve the transient 

imbibition flow problem. The methodology of transient imbibition is the analog to the 

existing self-similar solution for spontaneous imbibition but is more general with less 

constraints and is applicable to more physical conditions. While for the self-similar 

solution, it only applies to the purely counter-current flow condition where either the 

system is semi-infinite, or the system only has one end open to flow. 

On top of the analysis for the imbibition solution, by imposing a target injection 

rate on the inlet, the model set up made it possible to study the transition from spontaneous 

to forced imbibition. At initial state when capillary pressure dominates, the actual water 



 

114 

 

imbibition rate is higher than the imposed target injection rate. When the imbibition rate 

decreases to the target rate, the flow will enter a forced imbibition condition where the 

viscous pressure drop dominates. The methodology also provides a novel stability analysis 

to describe the transition from spontaneous to forced imbibition. The stability envelope 

provides a direct relationship between flow measurements and relative magnitude of 

capillary and viscous forces represented by a dimensionless parameter 
Im

D . This 

parameter is important in both viscous dominated and capillary dominated flow conditions 

and is a representation of the intrinsic properties of the system as well. 
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CHAPTER IV  

SPONTANEOUS IMBIBITION IN UNCONVENTIONAL RESERVOIRS 

4 Equation Chapter (Next) Section 1 

4.1 Introduction 

 

 In the previous chapter, we have systematically studied the analytic solution to the 

spontaneous imbibition problems. In this chapter, we would like to apply and extend the 

solution we have reviewed in the previous chapter to the unconventional reservoirs with 

extremely low permeability. 

 In unconventional reservoirs, hydraulic fracturing will create a large cross-

sectional area between the fracture and matrix. If the wettability is in favor of water 

imbibition, then the amount of water being imbibed is significant as a result of the large 

cross-sectional area. The following figure shows two planar hydraulic fractures and the 

matrix in between. 

 

Figure 4.1 Illustration of two planar hydraulic fractures and matrix in between 
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 If the system is homogeneous, and the two hydraulic fractures have identical 

properties, then the water imbibition from the fracture into the matrix will be symmetric. 

This phenomenon will result in a no-flow boundary at the half-length of the fracture 

spacing. Furthermore, the two ends will both have purely counter-current spontaneous 

imbibition, which is represented by the self-similar solution described in the previous 

chapter.  

 We applied the self-similar solution with some typical reservoir properties’ values 

from a dry gas shale reservoir, and the parameters are showing in the following table. The 

relative permeability and Leverett J-function still follow the functional forms shown in Eq 

(3.5), Eq (3.6) and Eq (3.7). 

Rock Properties 

Water Relative 

Permeability and 

Fluid Properties 

Gas Relative 

Permeability and 

Fluid Properties 

Capillary Pressure 

k  
1.97E-19 

m2 

(200 nD) 
w   2 g   2 c   1 

   0.1 wirrS   0.2 grwS   0.25 cJ   1 

wiS   0.2 w   
0.001 

Pa S   g   
1.5E-5

Pa S  0wS   0.7 

  
max

rwk  0.6445 
max

rok  1 

*

cp  / k   

    0.05 N/m 

Table 4.1 Model input parameters for example calculations of spontaneous 

imbibition in unconventional reservoirs 

 

 As for the hydraulic fracture’s design and geometry, the following table 

summarizes all the input parameters’ values. 
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frac  0.6 frach   
60.96 m 

(200 ft) 

fx   
152.4 m 

(500 ft) fracD   
152.4 m 

(500 ft) 

fracd   
0.0610 m 

(0.2 ft) 
  

Table 4.2 Input parameters for hydraulic fractures’ design and geometry. 

 

 In the above table, frac  denotes the fracture porosity, frach  denotes the fracture 

height, fx  denotes the fracture half-length, fracD  denotes fracture spacing and fracd  

denotes the fracture aperture. If we assume one-dimensional counter-current spontaneous 

imbibition happens at the fracture-matrix interface, with the above illustrated properties, 

we can obtain the production result and water imbibition profile as shown in the following 

figure. 

 

Figure 4.2 Example calculation of hydrocarbon production and water imbibition 

profile for unconventional reservoirs 

 

 When comparing the gas production rate and gas production rate per unit area in 

the above figure, our previous statement that the counter-current production rate is 
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significant due to the larger cross-sectional area is proved. And due to the low permeability 

for these unconventional reservoirs, such counter-current flow rate is much higher 

compared with what is achievable from viscous pressure drop, especially at the early time. 

Also, the saturation profile at 30 days is shown in the above figure as well. This figure 

shows that the water invasion is not significant as the water front only advanced 0.15 ft, 

which is less than 0.1% of the fracture spacing.  

 The above illustrative calculation has shown that the counter-current flow due to 

spontaneous imbibition in unconventional reservoirs may be beneficial for hydrocarbon 

production at the early time. And for the traditional “water blocking” concept, which states 

that the invaded water will lower the hydrocarbon phase mobility, it may not be significant 

considering the short water front distance. This has led us to think about the contradiction 

between the “water blocking” theory and the field operation convention where operators 

tend to soak their wells after hydraulic fracturing for better initial gas production. In the 

next section, we will theoretically analyze this problem and provide a quantitative 

evaluation of this trade-off. 

 

4.2 Spontaneous Imbibition and Water Adsorption – Sub-irreducible Initial Water 

Saturation Condition 

 

Before going into the detail about the investigation of “water blocking” effect, we 

noticed that there was literature discussing shale reservoirs exhibiting sub-irreducible 

initial water saturation conditions. At the interval between initial water saturation and 
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irreducible water saturation, the water is theoretically not able to flow but is being 

controlled by adsorption due to the presence of clay minerals. In this section, we would 

like to first try to combine the spontaneous imbibition and water adsorption below 

irreducible water saturation together at the continuum scale to extend the analytic 

solution’s applicability. 

 In between the region between initial water saturation and irreducible water 

saturation, the water relative permeability remains zero and the gas relative permeability 

is still finite. From Eq (3.11), for the water saturation range 0wirr w wS S S  , the 

differential equation is degenerate parabolic. While in the range wi w wirrS S S  , the 

equation turns into hyperbolic with ( )wG S  being constantly zero. This form of the 

equation supports the saturation shocks. 

The system still has the original boundary conditions where 0w wS S= , 
Im 0 =  and 

Im 1wf =  for a specified 0wS  at which the capillary pressure goes to zero at the inlet. At 

the foot of the saturation profile, we have w wiS S= , 
Im 0wf =  at a location where 

Im c = . 

The main change for the sub-irreducible initial saturation condition is that there exists 

another shock saturation 
*

wS  which will satisfy the continuity condition. Consider a 

discontinuity in the solution at ( )x l t=  and the speed of this location is the same as the 

frontal speed c  because of the shock construction. We can express the solution in terms 

of “left” and “right” solutions using the Heaviside function  . 
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( ) ( )( ) ( )( )* , left right

w w wS x t S l t x S x l t=  − +  −  (4.1) 

( ) ( )( ) ( )( ), left right

w w wq x t q l t x q x l t=  − +  −  (4.2) 

 The weak continuity condition is obtained at ( )x l t= : 

    0w wc S q− + =  (4.3) 

 Here the difference between the normalized water flux to the right and left of the 

discontinuity is Im Im, Im,right left

w w wf f f  = −  . If   0wS →  and 
 

 
 0

lim
w

w

S
w

q
c

S


→
= . The 

entropy condition states that if there are multiple possible shock solutions, the one with 

the fastest speed arises physically. In the current case with the capillary dominated flow, 

we will have the following differential equation as the continuity condition: 

( ) ( )* *

* *

w w w w

w wi w

q S q Sx
c

t S S S
 


= = =

 − 
 (4.4) 

 

Im Im
Imw w

w w

f df

S dS


   = =  (4.5) 

 The above equation is indicating that straight line slope to the left of the shock 

saturation should be the same as the slope to the right of the shock saturation on the 

normalized water flux plot. The solution to the differential equation (in Lagrangian form) 

has 
Im

0
w

d
dS

 =  and 
2 Im

2 0w

w

d f

dS
=  below irreducible water saturation. Thus, the 

normalized water flux trajectory for the range of wi w wirrS S S   will be a straight line and 

the slopes will be given by the value of 
Im  at irreducible water saturation. 
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 As the solution used here is the 0R =  self-similar solution for the representation 

of the purely counter-current flow condition, the solution strategy is still the shooting 

method for the two-point boundary value problem. The governing equations in their 

discretized form are shown in Eq (3.15) and Eq (3.16). The following figure shows the 

typical cases that will happen during the shooting process. In this example calculation, all 

input parameters are the same as shown in Table 4.1 except that 0.15wiS = , and this 

change applies to all subsequent illustrative calculations. 

 

Figure 4.3 Normalized water flux shooting results with sub-irreducible initial water 

saturation 
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 As we can see from the above figure, there are typically four types of outcome 

from the shooting algorithm for the normalized water flux. Only the blue curve with the 

correct 
Im

D  value will satisfy the foot boundary condition. When 
Im

D  is smaller than the 

correct value, the 
Im

wf  trajectory will end at a value higher than zero at the initial water 

saturation, and it is not physically possible as this condition indicates water movement at 

the initial water saturation. When 
Im

D  is slightly larger, but still satisfy the condition 

where 
Im

w wf RF , the trajectory will terminate at the saturation higher than wiS . Finally, 

if the tested 
Im

D  is too large, the normalized water flux trajectory will intersect with the 

wR F  curve, causing 
Im 0w wf R F−  =  and the differential equation to diverge. The three 

dash lines represent the shock construction for wi w wirrS S S   region for the 

corresponding three 
Im

wf  trajectories. It is clear that only the blue curve has both a 

continuous normalized water flux and continuous shock speed. 

 Another observation from the above figure is that for the cases where 
Im

D  is too 

large, there still exists a shock saturation greater than the irreducible water saturation that 

will also form a concave envelope. We elaborate this behavior using the following figure: 
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Figure 4.4 Normalized water flux shooting results with correct and large 
Im

D  values, 

and corresponding concave envelope of the normalized water flux 

 

 In the above figure, the red and green dash line represents the straight-line portion 

for the concave envelope of the normalized water flux for large 
Im

D  values. For these 

trajectories, the calculated concave envelope shock solution is at a value larger than wirrS . 

But compared with the blue 
Im

wf  curve that is implicitly concave down and 
*

w wirrS S= , 

these two shock speeds are both smaller. This brings up the importance of the uniqueness 

of the entropy condition where the fastest speed shock solution will exist physically. Thus, 

the blue curve is the resulting solution for the spontaneous imbibition problem with initial 
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saturation being sub-irreducible. This completes our analytic solution for spontaneous 

imbibition with water adsorption for sub-irreducible flow, and it could certainly be 

extended to the transient imbibition solution as well. 

 

4.3 Gravity Segregation in Hydraulic Fractures 

 

 The other constraint we are imposing for the analysis of the “water blocking” effect 

is the gravity segregation happening inside the fracture. In the above methodology for 

spontaneous imbibition, one major assumption is that the inlet is always constantly in 

contact with water. But in the case of fracturing fluid being imbibed into the rock matrix, 

the counter-currently produced hydrocarbon will take a portion of the volume of the 

fracture at the top, leading to the cessation of spontaneous imbibition at the top of the 

fracture face. This is illustrated in the following figure: 

 

Figure 4.5 Illustration of the impact from gravity segregation on water invasion from 

fracture to matrix 
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 As normally the fracture with proppant will have high conductivity, even in the 

vertical direction, we are assuming instantaneous segregation within the fracture. Thus, 

the following relationship applies to the volume change within the fracture: 

Im2 open

dQ
u A

dt
=    (4.6) 

 In the above equation, the term Q  denotes the counter-current produced volume 

of gas going inside the fracture or the water suction volume from the fracture into the 

matrix. The Imu  is the Darcy velocity of the imbibition rate, and according to the self-

similar solution, the value is determined by 
ImC t  where ImC  is an intrinsic constant. 

The openA  is the fracture surface area that is currently open for imbibition (the area that is 

still in contact with water). The pre-factor 2 represents the counter-current hydrocarbon 

flow from both sides of the fracture surface. According to the volume conservation of the 

pore volume within the fracture: 

2
2

frac

frac frac f frac frac frac

open f frac

frac frac frac frac frac

V Q

x h D Q Q
A x h

D D D

  

 

−
−

= = = −  (4.7) 

 In the above equation, the term fracV  represents the fracture bulk volume. By 

combining Eq (4.6) with Eq (4.7), we have: 
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Im
Im 2

2 2 2f frac f frac

frac frac frac frac

dQ Q C Q
u x h x h

dt D Dt 

   
=   − = −      

   
 (4.8) 

Im
Im

Im

2
ln 4 2

2

frac frac

f frac

frac frac

D C
C x h Q t

C D






 
− − = +  

 
 (4.9) 

 From Eq (4.9), if t → , we have the part inside the natural logarithm being equal 

to zero. This, in turn, determines the limit of Q  at infinite time would be equal to 

2 f frac frac fracx h D  , which is the pore volume of the fracture. Thus, the asymptote of the 

cumulative production curve would be the pore volume of the fracture during soaking. 

 The other problem is the calculation of the constant value   in Eq (4.9). As there 

might have been some leak off before the shut-in period, for example during the fracturing 

process when water is continuously pumped into the formation while imbibition is 

happening simultaneously, the starting time of this calculation *t  at which 0Q =  may not 

be exactly 0t = . For the sake of simplicity, we will assume the *t  time is right after the 

hydraulic fracturing process is finished and shut-in period happens thereafter, thus we can 

calculate the constant’s value in Eq (4.9): 

( )Im *

Im
ln 4 2

2

frac frac

f frac

D
C x h t

C


 = − −  (4.10) 

 For these water-wet systems, we will consider only spontaneous water imbibition 

and adsorption during the fracturing process, and the forced imbibition is not present. The 

reason is that the spontaneous imbibition and adsorption induced water flux will be much 

larger than the flux a viscous pressure drop could have achieved at the early time, and for 

unconventional shale systems with ultra-low permeability this phenomenon is more 
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obvious. The detailed explanation on this matter could be found in one of our previous 

research papers (Deng and King 2018). Finally, we will have the expression for the 

counter-currently produced hydrocarbon volume as a function time: 

( )
Im

Im * Im

Im Im

2
ln 4 2 2 ln 4

2 2

frac frac frac frac

f frac f frac

frac frac

D DC
C x h Q t t C x h

C D C

 



 
− − = − −  

 

 (4.11) 

( ) ( )
Im

* Im

Im

4
2 exp ln 4

2

frac frac

f frac frac frac f frac

frac frac

D C
Q x D h t t C x h

C D






 
= − − + 

  
 (4.12) 

 From Eq (4.12), the actual counter-current imbibition rate with gravity segregation 

in fracture could easily be calculated by taking the derivative of Q  with respect to time. 

And also, based on the interpretation from Figure 4.5, it is trivial that the upper part of the 

matrix should have less water invasion and the lower portion should have more invasion. 

 

Figure 4.6 (a)- Water saturation profile with gravity segregation; (b)-water 

saturation profile without gravity segregation 
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 From the above figures, we can see the difference between the cases with and 

without gravity segregation on the water invasion / water saturation profile. The main 

difference, as explained, is that the water invasion in the upper portion of the matrix is 

smaller than the water invasion at the bottom where the fracture surface is still in contact 

with water. With this saturation profile, we could evaluate the impact of water invasion. 

 To quantitatively evaluate the water invasion’s impact, we would like to evaluate 

the apparent mobility of the gas phase and its change with time. With any saturation profile 

calculated as shown in Figure 4.6a, we can calculate have the following equation for the 

gas production rate: 

/2
1 1

0

2

1
j frac

n n
j rg

g g D
j j g frac

g
rg

x
j

kA p kk A p
q q

D
dx

k




= =

=

 
= = =

 
 
  

 



 (4.13) 

 In the above equation, the term j  represents the discretization in the vertical 

direction. And the summation of the flow rates from each vertical incremental cross-

sectional area would give us the total flow rate. Thus, we can have the representation of 

the apparent gas phase relative permeability with water invasion: 

/2
1

0

/ 2

1
frac

n
j frac

rg D
j

rg
x

j

A D
k

A dx
k

=

=

=
 
 
  





 (4.14) 

 The above equation would give us the indication about the apparent average 

relative permeability rgk  or its corresponding mobility for the gas phase. This value will 

be used to evaluate the damage that the invaded water has brought to the flow of the gas 
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phase. It is obvious that as the water invades deeper into the matrix, the rgk  will become 

smaller and smaller. And for a strongly water-wet system where the gas relative 

permeability value is close to zero at the inlet saturation, the apparent relative permeability 

or mobility will be equivalently zero as well. 

 

4.4 “Water Blocking” due to Spontaneous Imbibition and Water Adsorption 

 

 As we have shown in the previous section that the water invasion will cause the 

mobility to the gas phase to drop, but the field operation observations are stating that the 

water invasion into the matrix will benefit the gas production. We believe the trade-off 

lies in the difference between the counter-current gas flow rate due to spontaneous 

imbibition and adsorption and the achievable viscous gas production rate. Or in other 

words, is the water invasion caused by spontaneous imbibition and water adsorption really 

a production mechanism or a blocking mechanism? 

 As the spontaneous imbibition and adsorption mechanism will have a counter-

current flow rate starting at infinity, at early stage the gas flow rate caused by this 

phenomenon will be higher than the achievable production rate supported by the viscous 

pressure drop. Thus, as a short-term criterion, the guideline for the length of the soaking 

period should really depend upon which flow rate controlled by the above two 

mechanisms would yield a higher production. Also, in the long-term, longer soaking 

should really be beneficial to have more gas and less water residing inside the fracture, 

and this will be the main driver to have higher initial gas production rate after the soaking 
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period. The other benefits would be to reduce the liquid loading in the fracture, to reduce 

the relative permeability effect inside the fracture and so on. In this following section, we 

will use the parameters showing in Table 4.1 and Table 4.2 as a test case to show both the 

short-term and long-term impact from well soaking. The changes here is still that 

0.15wi wirrS S=  to show the effect from water adsorption. Also, according to the normal 

single stage hydraulic fracturing operation convention, we chose the *t  value to be two 

hours. The calculation period for this case is 6 months. The following figure shows the 

calculation results of the effective height reduction along with time. It also shows the 

comparison of the cumulative counter-current production volume between the one-

dimensional self-similar solution and the case with gravity segregation in the fracture. 

 

Figure 4.7 (a)- Effective height in contact with water decreasing with soaking time; 

(b)-cumulative counter-currently produced volume predicted by purely self-similar 

solution and the solution with gravity segregation 

 

 As we can see from Figure 4.7a that as soaking time increases, the effective portion 

of fracture height that opens for imbibition and adsorption is decreasing. This leads to the 
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result shown in Figure 4.7b where the production with gravity segregation will be smaller 

compared with the pure self-similar solution. As we have introduced, the limit of counter-

current flow volume in the gravity segregation case will be the pore volume inside the 

fracture. 

Also, according to the estimation of the water blocking side, we can estimate the 

apparent average gas relative permeability and its decline with respect to time. 

 

Figure 4.8 Apparent average gas phase relative permeability decreasing with 

increasing soaking time 

 

 In the above figure, we can see that in the current setting the water blocking is 

increasing along with time. If we compare the resulting apparent gas relative permeability 

between the cases with and without gravity segregation, as expected, the case without 

gravity segregation will yield a faster gas phase mobility decline as shown in the above 

figure. Another point to mention is that the initial apparent relative permeability is not 1 
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in Figure 4.8 is due to the fact that the leak off during the fracturing process itself, although 

a very short period, would have already caused some damage on the gas phase mobility. 

With the calculation result from Figure 4.8, the achievable viscous production rate could 

be estimated by applying a pressure drop. The pressure drop here is with respect to the gas 

phase pressure drop and the value we used, in this case, is 1000 psi. Then if we compare 

this production rate with the corresponding production rate from Figure 4.7b, we will have 

the following plot: 

 

Figure 4.9 Calculation of cross-over time for well soaking 

 

 From the above figure, we can see the counter-current gas flow rate assisted by 

spontaneous imbibition and water adsorption will be a lot higher in the early period of 

time. But it is also dropping very fast, especially when compared with the achievable 

viscous flow rate reduction due to mobility-related water blocking effect. In other words, 
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the water blocking effect seems not strong compared with the imbibition and water 

adsorption rate. Also, the time where these two flow rates cross should be the best time 

interval for the well soaking period. For any soaking time before this time, the counter-

current imbibition and water adsorption associated production will be higher than what 

we can achieve by lowering the BHP. Hence, for the interval before the cross-over time, 

the imbibition and adsorption of water should be considered as a production mechanism. 

However, after the cross-over time, any more water invasion will not be giving more gas 

flow rate contribution and the water is now acting as a blockage in the matrix. For this 

base case we are studying here, the cross-over time is about 859 hours, which is close to 

36 days. 

 The above criterion is only for short-term well soaking management purpose. In a 

long-term sense, the water blocking effect caused by the apparent gas mobility reduction, 

although small, is still present. Then we can evaluate the long-term effect from well 

soaking by evaluating the ratio between total volume produced by counter-current 

imbibition and adsorption assisted flow during the soaking and the flow rate reduction 

caused by water blocking. And this ratio is the compensation time that could be used to 

represent the counter-current flow’s long-term contribution to compensate the penalty 

caused by the water invasion. 
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Figure 4.10 Illustration of the concept for calculating the compensation time 

 

 In this particular case, the compensation time is around 2637 days, which is about 

7.2 years. This again proves that the initial high counter-current flow rate caused by 

spontaneous imbibition and water adsorption could really benefit the overall well 

performance, compared with the damage that water invasion could have caused. And this 

is the reason why we could see higher initial gas production after soaking as there has been 

more gas being expelled into the fracture during the soaking period. 

 To better understand the impact of the “water blocking” effect as well as the 

soaking process itself, we are performing more sensitivity analysis to investigate the 

impact from certain key parameters in order to further understand the applicability of the 

above analysis. The key parameters that are included in the sensitivity analysis are the 

matrix absolute permeability, matrix porosity, fracture spacing, fracture porosity, fracture 
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width, pressure drop during production phase and the cJ  value which represents the 

strength of the capillary pressure. Using the values provided in Table 4.1 and Table 4.2 as 

the base case, the sensitivity analysis will perturb the parameter’s value by plus/minus 

fifty percent individually and compare the cross-over time and compensation time results. 

 

Figure 4.11 Sensitivity analysis of cross-over time 

 

 The above figure shows the sensitivity analysis of the different parameters on the 

cross-over time. The dominating parameters are the matrix permeability and the pressure 

drop during the production phase. Both two parameters are directly related to the 

achievable viscous flow rate. The matrix permeability, to some extent, is also related to 

the strength of capillary pressure as defined in Leverett-J function. The fracture width and 

fracture porosity are also very important as they control the total pore volume within the 

fracture, which further impacts the closure of the cross-sectional area open for imbibition. 
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Figure 4.12 Sensitivity analysis of compensation time 

 

 The above figure shows the sensitivity analysis of the different parameters on the 

compensation time. The main difference for the compensation time calculation is that it 

already includes the carried-on sensitivity from the cross-over time. The compensation 

time is calculated until the cross-over time for each individual case. 

 There are also other types of sensitivity analysis that are more related to the 

qualitative description of the rock and fluid system itself. These include the wettability of 

the system as well as the hydrocarbon type of being gas or oil. In this section, in order to 

simplify the problem, we are using the 0wS  value to represent the change in wettability. 

When the value of 0wS  is closer to one minus the residual hydrocarbon saturation, the 

system is generally more water wet. In the base case, the system could be considered as a 



 

137 

 

relatively strongly water-wet case, and we would like to compare the results with a case 

that is less water-wet. In this case, the new value of 0wS  is 0.5.  

 

Figure 4.13 Counter-current and achievable viscous flow rates comparison between 

stronger and weaker water-wet cases 

 

 The above figure shows the comparison between these two cases. The difference 

in cross-over time is because when the system is less strong in terms of water wet, the 

imbibition and adsorption rate will be slower comparing with the strongly wet case. Then 

the weaker water wet case will approach the viscous achievable rate faster than the 

strongly water wet case. On the other hand, as the relative permeability of the gas phase 

at the free water saturation will be much higher in the weaker water case system, the 

mobility damage caused by water invasion is eased. Thus the damage to the viscous flow 

rate caused by water invasion until the cross-over time will be a lot smaller also in the 
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weaker water wet case. This leads to a higher compensation time comparing with the 

strongly water wet case. 

 We are also comparing the cases between the oil and gas reservoirs. As for both 

cases we are assuming immiscible flow, and there is few literatures discussing the physical 

properties such as relative permeability and capillary pressure values for unconventional 

reservoirs directly, we are only changing the magnitude of the hydrocarbon phase’s 

viscosity for the current study. In the base case, the hydrocarbon phase is considered to be 

gas, and the viscosity is 1.5E-5 PaS. As for the synthetic oil reservoir case, we will be 

using 0.0015 PaS for the hydrocarbon phase. 

 

Figure 4.14 Counter-current and achievable viscous flow rates comparison between 

gas and oil reservoirs cases 

 

 From the above comparison, we can clearly see that for the higher viscosity (oil 

reservoir) case, the cross-over time is much larger. This is mainly because of the heavily 
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reduced achievable viscous flow rate using our current calculation method. This means 

that maybe soaking is even more beneficial for shale oil reservoirs, given the capillary 

pressure is still higher and the reservoir is still strongly water-wet. But normally the shale 

oil reservoirs will not be so strongly water-wet, leading to the trade-off on the benefits 

obtained from spontaneous imbibition and water adsorption. 

 

4.5 Conclusions 

 

 In this chapter, we have first illustrated the impact of spontaneous imbibition in 

unconventional reservoirs. With the planar fracture assumption, the self-similar solution 

for the purely counter-current flow is applied to analyze the imbibition process between 

the matrix and the fracture. The results indicate that for these ultra-low permeability 

formations, although the imbibition velocity may not seem to be significant, the overall 

production rate is large due to the large contact area. Also, comparing with viscous flow 

by applying a pressure drop, the imbibition mechanism will yield higher production, 

especially at early time.  

 This has led us to revisit the explanation for increased production after soaking a 

well for some of the dry gas shale reservoirs. The mechanisms studied reconcile the 

apparent contradiction between current operational observations and the conventional 

multiphase flow theory on mobility reduction. It demonstrates that the water blocking 

effect is less severe compared with traditional imbibition models.  
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For the systems with sub-irreducible initial water saturation, the water adsorption 

effect is also taken into consideration in the analytic solution at the continuum scale. This 

presented self-similar solution is an extension of the imbibition solution studied in the 

previous chapter and is further extended to incorporate the gravity segregation inside the 

fracture to calculate the water invasion into the matrix during the soaking period. These 

calculations give the possibility to evaluate the damage caused by water blocking in the 

vicinity of the fracture surface by calculating the apparent relative permeability for the gas 

phase inside the matrix. 

Although the invaded water will cause some mobility loss for the gas phase, the 

counter-currently produced hydrocarbon will also be beneficial to the production later. 

Thus, we have compared the viscous achievable gas flow rate with the counter-current gas 

rate by spontaneous imbibition and water adsorption and defined the cross of these two 

flow rates as the cross-over time. Theoretically, this cross-over time should act as the 

benchmark for the soaking time management to balance the trade-off between damage and 

additional production. Before this time, the imbibition and adsorption should really be 

considered as a production mechanism. But after this time, further soaking would probably 

damage the matrix. Also, the long-term impact caused by well soaking is quantified by 

another compensation time for the production loss due to water blocking. 
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CHAPTER V  

CONCLUSIONS AND FUTURE WORK 

5 Equation Chapter (Next) Section 1 

5.1 Summary and Conclusions 

 

 This work studied the fundamental behavior of two-phase flow mechanisms in 

porous media. More specifically, both the Buckley-Leverett type viscous dominated flow 

with capillary corrections and the capillary dominated spontaneous imbibition are studied 

along with analytic solution being provided. This work is important because the analytic 

solutions, in their Lagrangian forms, are better comparing with numerical simulations in 

capturing the behavior of frontal advances. As in the spontaneous imbibition case, the 

numerical simulation will also have a hard time representing the actual boundary condition. 

 In the first study considering the capillary corrections to Buckley-Leverett flow: 

1) We provided an extension of the Buckley-Leverett solution for multiphase 

flow to include capillary pressure corrections. The analytic solution is given 

by matched asymptotic expansions and the composite solution is a continuous 

solution which smoothly transitions across the Buckley-Leverett shock. The 

solution has been validated using numerical finite difference simulation. 

2) A new dimensionless group has been introduced to describe the relative 

magnitude of capillary and viscous forces at the continuum scale. This 

dimensionless parameter is natural 
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3) The methodology has been applied to two laboratory-scale examples. The first 

has been to the prediction and analysis of the capillary end effect seen in core 

flood measurements. The second has been to use the experimental saturation 

profile to calibrate capillary pressure function. 

In the above first part, our scope was restrained to viscous dominated flow as we 

are treating the capillarity as a correction only. In the second part of this study, we have 

moved from the viscous dominated flow condition to capillary dominated flow condition 

to complete our investigation. 

1) The analytic solution for spontaneous imbibition originally developed by other 

authors in the literature has been studied, and more exact transient solutions 

have been developed. The solution strategy is a shooting algorithm as the 

problem in nature is a two-point boundary value problem. 

2) Applied the transient solution to situations with physical outlet boundary 

conditions and validated with bespoke numerical simulation. There are mainly 

two transient problems analyzed, one is the constant outlet flux boundary 

condition, and the other is the outlet pressure boundary condition which is 

represented by the TEO free spontaneous imbibition experiment. 

3) The outcome stability envelope is a new result to predict the rate of 

spontaneous water imbibition and counter-current oil production. And 

according to the predicted imbibition rate, the envelope could help differentiate 

stable and unstable situations during any imbibition process. 
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In the last part, we have applied the spontaneous imbibition solution to the 

unconventional reservoirs to quantitatively evaluate the impact from capillarity on 

hydraulically fractured shale reservoirs. 

1) The production rate by imbibition in unconventional reservoirs is higher than 

what is achievable under normal viscous pressure drop. And also, due to the 

large cross-sectional area open for flow after hydraulic fracturing, higher 

volume is being produced due to imbibition as well. 

2) We have extended self-similar analytical solution for quantitative evaluation 

of combined spontaneous imbibition and water adsorption at the continuum 

scale. We have also incorporated gravity segregation in hydraulic fractures 

during soaking period. 

3) We have evaluated the mobility loss for the hydrocarbon phase and its trade-

off in the presence of spontaneous imbibition counter-current flow. We 

proposed cross-over time for soaking time management, and we also proposed 

compensation time for long-term comparison between water invasion related 

damage and additional gain. 

 

5.2 Suggestions for Future Work 

 

 Our work has proved that the spontaneous imbibition in unconventional reservoirs 

is beneficial for the initial production. This theory has provided further insight into the 

application of IOR techniques in tight formations. The counter-current flow rates are 



 

144 

 

extremely high at the early time. Even though the flow rate is decreasing rapidly due to 

combined effect from decreasing imbibition velocity and closing imbibition cross-

sectional area, there still exists a long period where the flow rate by spontaneous 

imbibition is much higher than what is achievable under viscous pressure drops. Thus, we 

are trying to investigate one IOR technique that could possibly benefit the shale gas 

production, which is through water huff-n-puff. 

 At the initial condition of soaking after fracturing, water will be spontaneously 

imbibed from the fracture into the matrix due to capillary force. In the case where the 

initial water saturation is sub-irreducible, the water leak-off is controlled by adsorption in 

the presence of clay minerals. The counter-current imbibition rate drops rapidly from 

infinity and the fracture will be filled with counter-currently produced hydrocarbon 

progressively. Once the flow rate drops to a prescribed value or the fracture is fully 

occupied by hydrocarbon to cause the cessation of imbibition, the soaking of this cycle 

should be stopped for better huff-n-puff management. Following the production of 

hydrocarbon from fracture, water is re-injected to re-establish the imbibition condition at 

the fracture/matrix interface for the next cycle with higher initial water saturation inside 

the matrix. 

 Due to the high flow rate at the beginning of each cycle, the soaking is essential 

for the matrix to charge the fracture with hydrocarbon. The soaking time for each cycle 

may be increased in early period due to slower counter-current imbibition rate while still 

controlled by fracture pore volume. With the imbibition rate being even smaller, the 

soaking time should decrease due to faster decline to the target rate. 
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 We believe that this IOR technique will indeed help higher bring higher production 

from unconventional reservoirs. One key future step for this proposed study is to 

investigate the possible paths to simulate the imbibition process through a commercial 

simulator or build a three-dimensional simulator. The analytic solution is good for 

constant initial saturation, however why we start to analyze different imbibition cycles, 

the capillary equilibrium and redistribution will happen after soaking and the saturation 

profile inside the matrix for the start of the next cycle will not be uniform. This situation 

is not easily tackled using analytic solution. Once the simulator is properly set up, the 

study could be carried on by finding the optimized huff-n-puff scenario. 
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APPENDIX A: 

MASS BALANCE CLOSURE FOR BUCKLEY-LEVERETT SOLUTION WITH 

CAPILLARY CORRECTIONS 

 

To complete the solution, the function ( )0X t  must be obtained for the inner solution, Eq 

(2.29). It will be obtained by a mass balance closure of the composite solution from the 

inlet ( )0, 1wX f= =  to the unknown location of the foot of the profile 

( )( ), 0C

footX X T S= = . We express the unknowns in terms of the inner saturation at the 

foot 1S , and at the inlet 2S . 

 For the equations involved in the mass balance closure, at the foot of the saturation 

profile, we have ( )footX T , 
*

1

O

footS S S= − , 1

I

footS S=  and 0C

footS = . On the other hand, at 

the inlet of the system, we have 0X = , 1O

inletS = , 2

I

inletS S=  and ( )*

21C

inletS S S= − − . 

 First, we express the equations for the foot in terms of both the outer and the inner 

solutions. 

( ) ( )0 1

O

foot w footX T F S X H S
q


=  = −  (A.1) 

 This determines 0X  within the expression for the inner solution. Since 
*O

footS S , 

the position of the foot is advanced beyond the Buckley-Leverett shock location. However, 

to maintain monotonicity, we must have ( ) 0O

w footF S  , which places a constraint on these 

closure equations. 
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( ) ( ) ( ) 1

O I

w footX T F S H S H S
q


=  − −  (A.2) 

 This expression may be evaluated at the inlet to determine 2S . 

( ) ( ) ( ) 2 1

O

w footT F S H S H S
q


 = −  (A.3) 

 The overall mass balance follows from Eq (2.12). 

( )*
Foot Foot Foot

C O I

Inlet Inlet Inlet
T S dX S dX S S dX= = − −    (A.4) 

 From the outer solution we have: 

( ) ( ) 1
Foot

O O O O

foot w foot w foot
Inlet

S dX T S F S F S=  +  −  (A.5) 

 From the inner solution we have: 

( ) ( ) ( )  ( )
( ) ( )

( )

*

*

2 1
0

IFoot S
I I

Inlet
w

S S G S
S S dX M S M S where M S dS

q cS F S

 −
− = − =

− 

 (A.6) 

 Combining these equations, and substituting for 
O

footS , we have: 

( ) ( )

( )
( ) ( )

( ) ( )
2 1 2 1 *

1

O

footO O O O

w foot foot w foot w foot

H S H S M S M SqT
where S S S

F S S F S F S

− −
= = = −

  −
 (A.7) 

 If we treat 
I

footS  as the independent variable, then we have two relations in terms 

of 1S . First, we have an equation for the inner saturation at the inlet 2

I

inletS S= . Second, we 

also determine the strength of capillarity through the dimensionless variable D . 
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 An example of this construction is shown in Figure A.1. In Figure A.1a, for a 

specific value of 1S , the functions within Eq (A.7) are each plotted as functions of 
*

2S S− . 

Where they cross determines 2S  and also D . This construction is repeated for a range of 

values of 1S , to generate Figure A.1b. As discussed earlier, monotonicity requires that 

( ) 0O

w footF S  , 
*

1

O

footS S S= − , which places a constraint on the maximum possible value 

for 1S . This requirement is graphically shown in Figure A.2a and Figure A.2b. 

 

 

Figure A.1 (a)-Mass balance closure integral functions plotted vs S*-S2; (b)-inner 

solution saturation at inlet and foot as a function of the dimensionless capillary group 
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Figure A.2 (a)-Graphical interpretation of monotonicity requirement from fractional 

flow curve; (b)-Graphical interpretation of monotonicity requirement from 

saturation profile 

 

 The small D  behavior of the ( )H S  and ( )M S  functions can be determined 

analytically as the integrand in each is singular as *S S→ . We can expand the denominator 

in a power series at the shock saturation: 

( ) ( )  ( ) ( )  ( ) ( ) 
2

* * * * * *1
2

...w w w wcS F S cS F S S S c F S S S F S − = − + − − + − − +

 (A.8) 

 The constant and linear terms both vanish because of the properties of the shock 

saturation. Hence, we may approximate each of the functions. 
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( )
( )

( )

( )

( ) ( )

( )
( )

0

* *

2 * **0 * *

2 2 1 1

S
w

S
ww

G S
H S dS

cS F S

G S G S
dS

S S SF SS S F S

=

=

=
−

 
 − = − − 

−  −





 (A.9) 

( )
( ) ( )

( )

( )
( ) ( )

( )
( )

*

0

* * *

** * *0

2 2
ln

S
w

S
w w

S S G S
M S dS

cS F S

G S G S S S
dS

SS S F S F S

=

=

−
=

−

 −
 − = −  

 −  





 (A.10) 

 We may apply the expression for ( )H S , to Eq (A.3) to obtain 2S  to leading order. 

Because of the double pole in this integrand, ( )*

2 DS S Order − = . A similar analysis from 

the mass balance relationship shows that ( )1 lnD DS Order  = . The dimensionless group, 

D , is the small parameter which controls the validity of our perturbative expansion. 

 With the above derivation, all terms required for the composite solution for the 

capillary corrections to Buckley-Leverett flow equation are determined. 



 

164 

 

APPENDIX B: 

CONVERGENCE ANALYSIS OF THE ANALYTIC SOLUTION FOR TRANSIENT 

IMBIBITION USING FINITE DIFFERENCE APPROACH 

 

In this section, we will show the convergence analysis of finite difference method we used 

for the transient imbibition solution. Since we have two parts of discretization here, both 

in wS  and in ImT , we performed the truncation analysis with different levels of 

discretization on both parameters, and have determined the convergence rate for the 

dimensionless capillary parameter 
Im

D . The following truncation analysis is done using 

the input parameters and model configuration from TEO free spontaneous imbibition 

discussed in the previous chapter. 

 The analysis is performed by fitting the equation: 

( ) Im

Im Im,
w w

b d

D T S D STtrue
N N a N c N  − − = +  +  

 (B.1) 

 The left-hand side of the above equation represents the calculated value of 
Im

D  at 

different levels of discretization. We utilize these calculated values and their 

corresponding discretization refinements to fit the above equation by changing the 

Im

D true
   , a , b , c  and d  values. The parameters b  and d  will give us the apparent 

convergence rates for our finite difference approach. In this analysis, we have used 25 

different choices of discretization to perform the convergence analysis. ImT
N  values used 
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are 10, 20, 30, 40 and 50 intervals, and 
wSN  values are 100, 200, 300, 400 and 500 

intervals, as shown in the following table: 

Im

D   
ImT

N   

10 20 30 40 50 

wSN   

100 10.70331 10.69111 10.68734 10.68551 10.68443 

200 10.72746 10.71532 10.71157 10.70975 10.70867 

300 10.7365 10.72438 10.72064 10.71882 10.71775 

400 10.74134 10.72923 10.72549 10.72368 10.7226 

500 10.74439 10.73228 10.72855 10.72673 10.72566 

Table B.1 Data used for the finite difference convergence analysis from TEO free 

transient imbibition 

 

 The convergence test result is shown in the following figure: 

 

Figure B.1 Convergence solution for the finite difference convergence analysis from 

TEO free transient imbibition 
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 According to the curve fitting result, the best fit equation is: 

( ) Im

Im 1.117 0.8009, 10.74 0.2943 2.273
w wD T S ST

N N N N − −= +  +   (B.2) 

 The R square value of the above fit is 1.0000, which indicates it is a very good fit. 

Through the outcome of the curve fitting for our convergence test, the solution is seen to 

be consistent with first order convergence on both the temporal variable and the water 

saturation. Other discretization scheme such as discretization in R  instead of ImT  and its 

corresponding convergence is discussed in Deng and King (2018d). 

 


