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ABSTRACT 

 

Multipoint statistics (MPS) provides an approach for pattern-based simulation of 

complex geologic objects from a training image (TI), which contains the general 

connectivity structures of complex patterns. While grid-based implementation of the 

MPS methods facilitates hard-data conditioning, conditioning the simulated facies on 

flow data poses a challenging problem. The main objective of this dissertation is to 

develop an inverse modeling framework for conditioning MPS-based facies simulation 

on dynamic flow data. The developed formulation is then extended to account for 

uncertainty in the geologic scenario. In the second part of the dissertation, an inverse 

modeling formulation is presented for estimating large-scale reservoir connectivity from 

low-resolution pressure data using.             

The first contribution of this dissertation is the formulation of a probability 

conditioning method (PCM). In the PCM approach, the flow data is first inverted to 

obtain a probabilistic description of facies distribution (a probability map).  The resulting 

probability map is then used to guide the MPS facies simulation from a specified TI. The 

proposed PCM approach can be used with different inversion algorithms. In this 

dissertation two alternative implementations are presented: 1) the ensemble Kalman 

filter (EnKF); 2) a stochastic optimization approach. An important practical limitation of 

the MPS modeling approach is the uncertainty in the prior TI. To address this problem, a 

Bayesian mixture modeling formulation is developed. In this approach, the posterior 

distribution of facies is partitioned into individual conditional densities of the TIs. 
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In the second part of the dissertation, a novel approach is developed estimating 

field-scale reservoir connectivity from dynamic data. This is accomplished by 

reconciling low-resolution dynamic field pressure data with high-resolution static 

geologic models. Since pressure variation represents a smooth function, a low-resolution 

(coarse-scale) grid system is adopted for reservoir simulation. To reconcile data and 

model resolutions, the grid system is generated using the Delaunay triangulation method. 

The reservoir properties are then scaled up from the fine-scale geological model to this 

coarse scale unstructured grid system to create an initial static simulation model. In the 

data integration stage, the EnKF is used to automatically adjust the global parameters of 

the field to match the static pressure. 
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1. INTRODUCTION  

 

1.1. History Matching Problem 

Subsurface systems pose some of the most challenging characterization and modeling 

problems in science with significant environmental, public health, and energy security 

implications. The main difficulties in understanding and modeling subsurface 

phenomena are related to inaccessibility and heterogeneity of geologic formations as 

well as complex interactions between fluids and rocks over a wide range of temporal and 

spatial scales. Consequently, significant uncertainty is introduced into predictions of the 

related flow and transport processes, thereby complicating the development of 

subsurface hydrological, energy, mineral, and environmental resources. 

The progress in numerical modeling of subsurface flow and transport processes 

within the past 50 years has played a significant role in managing hydrocarbon resources 

(Peaceman and Rachford 1955; Aziz and Settari 1979). While forward flow simulation is 

critical for prediction of multiphase fluid flow and transport behavior in geologic 

formations, the quality of such predictions ultimately depends on the accuracy and 

representativeness of the models used to generate them. Therefore, parallel to numerical 

forward modeling, integration of complex geologic models with diverse datasets using 

inverse modeling has been applied to calibrate numerical models of hydrocarbon 

reservoirs (e.g., Cooley 1979; Yeh and Yoon 1981; Hill and Tiedeman 2007; Oliver et 

al. 2008; Carrera et al. 2005; Hendricks-Franssen et al. 2009).  
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A particularly important aspect of inverse modeling is uncertainty quantification 

(e.g., Moore and Doherty 2005). Simplifying assumptions in forward modeling of 

physical processes in subsurface systems, together with inaccurate representations of 

heterogeneity in complex geologic formations and structural and parameter 

heterogeneity lead to significant uncertainty in developing underground water and 

energy resources (Blazkova and Beven, 2009; Gotzinger and Bardossy, 2008; 

Solomatine and Shrestha, 2009; Thyer et al., 2009; Tonkin and Doherty, 2009; Zhang et 

al., 2008).  

The main source of uncertainty in subsurface modeling and characterization is 

data scarcity which results from the high costs and technical difficulties in accessing and 

sampling from deep underground formations. Advances in data acquisition systems and 

remote sensing technologies are presenting promising prospects for alleviating data 

limitation issues (Yeh et al., 2008). At the same time, rapid growth in computational 

power and improved understanding of the dynamics of subsurface flow and transport 

systems is facilitating the construction of more complex and sophisticated predictive 

models. Progress in these areas is expected to lead to more accurate and better informed 

modeling exercises. However, building complex models without proper parameterization 

and rigorous calibration against pertinent sources of data with different scales, accuracy, 

and coverage can result in inaccurate representation of reality. In particular, failure to 

adequately account for the uncertainty in the spatial distribution of flow and transport 

related properties can lead to unreliable predictions of fluid displacement patterns, which 

adversely influence field development strategies. 
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The dynamic response of a reservoir to forced disturbances contains valuable 

information pertaining to both local trends in fluid flow properties as well as global 

geologic facies connectivity in the reservoir (Alcolea et al. 2010; Renard and Caers 

2008). Constraining subsurface flow models to dynamic measurements of pressure or 

phase flow rates is considerably more complicated than integration of static data. The 

nonlinear mapping of input model parameters (model space) onto dynamic reservoir 

responses (data space), and the integral (spatially averaged) and sparse nature of the 

available dynamic data are among the main contributors to the complexity of the 

resulting model calibration inverse problem. Over the last decade, considerable efforts 

have been devoted to developing numerical inverse modeling approaches for calibration 

of reservoir models and quantification of the uncertainty in model descriptions and the 

resulting flow predictions (e.g., Sun, 1994; de Marsily et al., 1999; Carrera et al., 2005, 

Yeh et al., 2007; Hill and Tiedeman 2007; Oliver et al. 2008). Various deterministic and 

probabilistic inversion techniques have been developed and applied to subsurface flow-

model calibration problems. 

Deterministic inverse methods minimize a user-defined cost function that usually 

penalizes discrepancies between predicted and observed dynamic and static data, as well 

as departure from direct and/or indirect prior information about the solution. The 

literature clearly establishes that inference of heterogeneous hydraulic rock properties 

such as spatial distribution of permeability from flow measurements typically leads to an 

ill-posed nonlinear dynamic inverse problem with several nonunique solutions. That is, 

different parameter combinations can reproduce the observed (past) response of a 
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reservoir equally well, yet provide different future predictions (Yeh, 1986; Carrera and 

Neumann, 1986a-c; Carrera, 1987; McLaughlin and Townley, 1996; de Marsily et al., 

1999; Carrera et al., 2005; Hill and Tiedeman, 2007; Oliver et al., 2008).  

The solution of ill-posed inverse problems is also hampered by numerical 

instabilities in solution algorithms. Two common methods for mitigating instability and 

nonuniqueness issues associated with the solution of ill-posed inverse problems are 

parameterization and regularization. Parameterization methods usually aim at reducing 

the number of unknown model parameters to formulate and solve a better posed inverse 

problem (e.g., Jacquard and Jain 1965, Jahns 1966; Shah et al. 1978; de Marsily et al. 

1984;Carrera and Neuman 1986a-c; Doherty 2003; Gavalas et al. 1976; Reynolds et al., 

1996; Jafarpour and McLaughlin 2009a; dos Santos Amorim et al., 2010). 

Regularization refers to incorporation of direct or indirect prior information into the 

solution algorithm, often in the form of constraints (e.g., Tikhonov and Arsenin 1977; 

Lawson and Hanson 1995; Weiss and Smith 1998; Doherty and Skahill 2006; Linden et 

al. 2005; Tonkin and Doherty 2005; Carrera and Neuman, 1986a-c; Moore and Doherty, 

2005; Hill and Tiedeman 2007; Oliver et al., 2008).  

Probabilistic methods, on the other hand, seek to characterize the solution of 

inverse problems in terms of a conditional probability distribution. The Bayesian 

inversion theory provides an elegant framework for characterization of the probability 

distribution of model parameters after conditioning on measurements. Variants of the 

Bayesian inversion aim at integrating a prior probability density function (PDF) with a 



 

5 

 

likelihood model that describes the probability of producing the data given a set of 

model parameters (Tarantola, 2004).  

Analytical solutions to the Bayesian inversion framework are limited to a very 

few special cases where, for example, the prior and posterior distributions are conjugate; 

that is, the likelihood function is such that the prior and posterior PDFs belong to the 

same family of distributions. Therefore, the main practical applications of the Bayesian 

inversion to large-scale nonlinear inverse problems include: estimating point statistics of 

the conditional PDF, such as its central tendency (mean, mode, or median) and a 

measure of dispersion (covariance); and approximating the conditional distribution by 

estimating a finite number of samples from it.  

The latter approach has become particularly popular in recent years, due 

primarily to availability of powerful and inexpensive computational resources and 

development of relatively simple ensemble model calibration techniques, making it 

possible to conduct systematic uncertainty quantification and risk assessment analysis 

(Sahuquillo et al., 1992; LaVenue et al., 1995; RamaRao et al., 1995; Gomez-Hernandez 

et al., 1997; Sambridge and Mosegaard, 2002; Lorentzen et al., 2003; Naevdal et al., 

2005; Chen and Zhang, 2006;Wen and Chen, 2006; Nowak, 2009).  

 

1.2. Preserving Large Scale Feature Continuity 

Many of the existing inversion techniques are suitable for calibrating flow models with 

spatially variable parameters that can be captured by up to second-order (two-point) 

statistical characterization. While conventional second-order geostatistics is widely 
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applied to represent the variability in spatial distribution of hydraulic properties in 

subsurface reservoir models, the connectivity structures in many geologic formations are 

far too complex to be amenable to second-order descriptions. The popularity of 

variogram-based modeling techniques is rooted more in their mathematical simplicity, 

computational efficiency, and implementation ease than in their geological interpretation 

and realism.  

While the spatial variability of hydraulic properties in certain geologic 

formations is amenable to second-order characterization, many complex geologic 

structures such as those containing discrete geologic objects with sharp discontinuities 

across facies boundaries cannot be described with two-point statistical techniques (e.g., 

Gomez-Hernandez and Wen, 1998; Deutsch and Journel 1998; Carle et al. 1998, 

Western et al. 2001; de Marsily et al. 2005; Zinn and Harvey 2003). Of particular 

importance in subsurface flow and transport are the extreme phenomena that induce 

preferential flow paths (such as channels) or flow barriers (such as thin shale layers) that 

can dominate the behavior of local and global flow regimes. These complex extreme 

features do not lend themselves to conventional second-order geostatistical modeling 

descriptions. In addition, stochastic processes with distinctly different probability 

distributions (or higher-order statistics) can sometimes be indistinguishable when only 

their second-order characterization is considered, indicating the importance of higher-

order statistics in describing geologic formation with complex spatial connectivity, such 

as discrete geologic objects (Strebelle, 2002; Caers et al., 2002).  
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Two common approaches for generating multiple realizations of geologic facies 

that honor a prior statistical characterization and various types of measured and 

interpreted data are pixel-based approaches such as sequential indicator simulation 

(Journel,1983; Isaaks,1990; Srivastava, 1992; Goovaerts, 1997; Chiles and Delfiner, 

1999), and object-based (Boolean) methods, e.g. marked point process, that are better 

able to describe the continuity in geologic objects with well-defined shapes (Haldorsen 

and Lake, 1984; Stoyan et al., 1987; Deutsch and Wang, 1996; Holden et al., 1998). 

Object-based methods lack the flexibility of grid-based simulation techniques. As a 

result, data integration becomes particularly cumbersome in an object-based modeling 

framework (Honarkhah et al., 2010).  

Multiple-point statistics (MPS) simulation methods (Guardiano and Srivastava, 

1993; Strebelle, 2002, Caers and Zhang, 2004) provide a pattern-imitating, flexible, grid-

based geostatistical simulation approach with the ability to reproduce complex 

geological patterns that cannot be modeled with variogram-based methods. Instead of 

using merely point-to-point statistics represented with a variogram model, MPS imitates 

the higher-order statistical patterns from a prior geologic model represented by a training 

image (TI).  

Because of its grid-based implementation, conditioning MPS realizations to hard 

(for example, from a well) and soft (such as 3D seismic) data is not difficult (Strebelle, 

2002, Journel, 2002, Remy et al., 2009). Nonetheless, the complexity in spatial 

variability of geologic facies, together with insufficient static data to adequately 

constrain simulated facies, can lead to significant uncertainties in describing facies 
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distributions in large models. Although recent progress in MPS has made it possible to 

describe complex non-Gaussian spatial structures, calibrating the output of MPS 

simulation against dynamic flow data remains an important research area.  

Dynamic data provide additional useful information that can be used to further 

constrain the spatial variability in MPS-simulated facies realizations. The nonlinear 

relation between hydraulic properties and dynamic flow data complicates the process of 

constraining MPS simulation results to reproduce flow measurements. Caers and 

Hoffman (2006) developed a probability perturbation method (PPM) that makes it 

possible to simulate facies realizations from a given TI, conditioned on nonlinear flow 

data. In the PPM approach, a parameterization is used to perturb the pre-posterior 

probabilities that are used to generate new facies realizations. During the history 

matching iterations, flow data conditioning is accomplished by generating a new facies 

realization and comparing its flow prediction performance with that obtained from the 

current (iteration) realization using a predefined distance function (such as a flow data 

misfit norm). Perturbation of the simulation probabilities is continued during the history 

matching iterations by changing a single perturbation parameter (the random seed). The 

process is repeated until the generated realization is able to reproduce the observed data 

(within a specified error threshold) or the maximum number of iteration is reached 

(Caers, 2002; Hoffman and Caers, 2005; Kashib and Srinivasan, 2006). At the end of the 

iterations, the facies realization with the smallest distance (data misfit) is selected as a 

conditional realization. One advantage of the PPM approach is that the solutions are 

constructed to be consistent with the prior information (the TI). However, since, in 
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generating new facies, the probability perturbations are carried out without any feedback 

information from the flow data, new (proposed) facies iterates from the TI are drawn 

without a guideline to increase the likelihood of their acceptance. In light of the high 

computational cost associated with flow simulations, implementing the sampling process 

in PPM can be very expensive. The efficiency of the method can be significantly 

improved if flow data is used to actively guide the sampling process and to speed up the 

convergence of the method. 

Alcolea and Renard (2010) present a block moving window algorithm for 

conditioning MPS simulations based on the block Markov Chain Monte Carlo method 

and use their method for integrating the pressure and connectivity data (Fu and Gomez-

Hernandez, 2009). Mariethoz et al. (2010) developed the iterative spatial resampling 

method as an alternative approach to guide the simulation of new realization to honor the 

observed data. Zhou et al. (2012) proposed a pattern searching inverse approach to infer 

static and dynamic state variables in an MPS approach using an ensemble of 

conductivity samples and their respective heads as training data. 

A standing challenge in MPS simulation and model calibration, however, 

remains: the uncertainty in the prior TI used to generate the conditional samples. This 

issue becomes particularly important considering the strict pattern-imitating nature of 

MPS simulation that limits the spatial variability of the resulting facies to the structural 

connectivity and existing patterns in the given TI. Fig. 1.1 shows a satellite view of a 

section of Mississippi River near Baton Rouge. The river structure, orientation, and 

thickness vary in different regions, implying that the distribution of naturally occurring 
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features, such as the fluvial systems, can be too complex to represent with a single 

stationary TI. As depicted in Fig 1.1, the consistent TI for the fluvial system inside the 

left box is different from that on the right, even though the two sections of the river are 

close to each other. Underground fluvial or turbidite systems portray a similar 

complexity.  

 

 

 

 
Fig. 1.1 – Sections of the Mississippi River as an example of naturally occurring 
fluvial systems with varying channel structure and orientation. Two sections of the 
river with (left) strong meandering features and (right) straight channels are 
highlighted. The corresponding conceptual models (TIs) are also shown next to 
each selected area. 
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Capturing discrete geological features is particularly important in predicting flow 

and transport processes because they strongly constrain fluid displacement patterns. 

Failure to correctly represent extreme geologic features can result in inaccurate 

predictions with serious field development and management consequences. One 

approach to deal with the uncertainty in describing the geologic continuity in a TI is to 

consider several TIs that capture the full range of geologic variability for a given 

formation. These TIs could be obtained based on different plausible geological 

scenarios, for example, from independent interpretations by different geologists or by 

stochastic treatment of parameters in a geologic modeling study that is used to identify 

possible connectivity patterns in the formation. Park et al (2013) rejected data-

inconsistent training images using production data and then they used regional PPM for 

history matching.   

In this dissertation, a novel approach was developed for conditioning MPS facies 

simulation on nonlinear dynamic flow data. The approach is general and can be 

implemented using various nonlinear inversion techniques. It uses the production data to 

infer the probability with which a particular facies type occurs at each grid block 

throughout the reservoir. It will then use this spatial probability map with the snesim 

algorithm to draw conditional facies realizations from a specified TI. The ensemble 

Kalman filter (EnKF), a recursive data assimilation technique, was used to integrate the 

flow data and infer facies probability maps.  

Beside the depositional facies, other features like fractures and faults control the 

fluid flow behaviors of reservoirs. In contrast to the depositional facies, which has static 
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properties over a long period of time, the properties of these features are changed with 

time more frequently. For example, open fractures in one direction could close because 

of the changes in the stress-strain field in the reservoir, and new set of fractures may 

open to flow. The rates obtained from injection and production wells may be used to 

determine interwell connectivities. 

The importance of interwell connectivity has prompted several studies in the 

literature. Heffer et al. (1997) estimated the connectivity of well pairs by using the 

Spearman rank correlation between the flow rates of injectors and producers. Refunjol 

and Lake (1999) used the same approach and maximized the rank correlation by 

considering a time lag that compensated for the effect of reservoir fluid compressibility. 

Soeriawinata and Kelkar (1999) developed an algorithm to include the superposition 

effect of multiple injectors on a producer. Panda and Chopra (1998) used an artificial 

neural network to identify interwell connectivity of injectors and producers. Demiroren 

(2007) transformed the injection/production measurements to the frequency domain to 

investigate the interwell connectivities. To analyze the injection/production 

measurements, Albertoni and Lake (2003) developed a model based on multivariate 

linear regression. In this model, the injection and total production rates are treated as 

input and output signals, respectively. They used this approach to predict the future 

production rates. Jensen et al. (2004) used the number of streamlines from an injection 

well to a production well to define a connectivity parameter. Dinh and Tiab (2008) used 

BHP data, measured under multi well pressure test similar to interference test, as the 

input and output signals. Yousef et al. (2006) developed the capacitance model (CM) for 



 

13 

 

estimating interwell connectivity, which was later applied to field data to estimate the 

permeability trend. The CM has also been used to estimate oil production rate and 

optimize water injection rate in a reservoir (Liang et al., 2007; Sayarpour et al., 2007). 

Webber et al. (2009) have provided some guidelines for applying the CM to large-scale 

field data.  

While very simple and practical, the CM is derived based on simplifying 

assumptions (Kaviani, 2009; Yousef, 2006; Yousef et al., 2006) which are: 

 The number of active producers must be constant during the time frame. 

 BHP must be known or assumed constant. 

 The productivity index of producers should be constant. 

 The rate and pressure measurement should be accurate. 

 The reservoir should be close to unit-mobility displacement and contain slightly 

compressible fluids. 

Violation of the above assumptions may lead to failure of the CM approach to 

estimate the connectivities. Kaviani et al. (2012) have provided segmented and 

compensated CMs to relax some of the limiting assumptions in the CM. An outstanding 

limitation of the CM include lack of geologic description and spatial information about 

reservoir properties. In addition, the requirement to have injection wells in the field 

limits the application of the method under primary depletion during early development 

stages or production under aquifer pressure support. 

Early detection of global reservoir connectivity is critical for improving field 

development strategies. Since the static pressure is not affected by local properties 
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around the well, static pressure, obtained from drilled or shut-in wells, provides valuable 

and useful information about large-scale reservoir continuity/discontinuity and strength 

of external sources like the aquifer. Analysis of this pressure data may be used to 

improve reservoir characterization and management, optimize oil recovery, and identify 

reservoir compartments. 

In the next sections, overview of MPS facies simulation and EnKF data 

assimilation approaches is presented. 

 

1.3. Multipoint Statistics 

While the proposed methods are general approaches that can be used with any TI-based 

simulation method (such as snesim (Strebelle 2002), filtersim (Zhang et al. 2006), and 

simpat (Arpat and Caers, 2007) algorithms), the application of approach with the snesim 

algorithm is disscussed. The snesim facies simulation algorithm is suitable for modeling 

geologic formations that contain predominantly discrete objects such as fluvial and 

turbidite channels (Strebelle 2002; Caers and Zhang, 2004). In the snesim algorithm, a 

stationary TI represents the conceptual geologic continuity model in a given formation 

and is used to simulate multiple facies realizations. This pattern-imitating simulation 

framework preserves the higher-order spatial statistics in the TI and goes beyond the 

traditional variogram-based (two-point) geostatistical simulation techniques. Compared 

to object-based modeling, the snesim is a pixel-based simulation method that provides 

more flexibility in conditioning facies simulation on hard and soft measurements. While 

the MPS presents several advantages over the two-point geostatistical simulation 
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methods and object-based modeling techniques, it requires a reliable qualitative 

description of the geologic continuity in the depositional environment (i.e., a TI). 

Moreover, the simulated facies inherit the important multipoint statistics that are 

conveyed by the TI (prior knowledge). This could be an advantage or liability depending 

on the quality of the TI. 

A basic implementation of the snesim begins by using a search template to scan 

the patterns in the TI and convert them into a search tree. The search tree starts at a root 

node with the marginal probability of a facies type. It stores the transition probabilities 

by moving from the root node and considering possible pattern configurations (Strebelle 

2002; Caers and Zhang, 2004). Once the TI is converted into a search tree, a random 

path is generated to sequentially visit and simulate facies types at un-sampled cells in the 

reservoir grid using the pattern probabilities stored in the search tree. The simulation 

proceeds by first obtaining the probability of a facies type at a simulation cell 

conditioned on the measured/simulated facies types in the neighboring cells from the 

search tree; it then uses the calculated probability to assign a facies type to the 

simulation node. Several options and facilities are included in the implementation of the 

snesim algorithm in order to account for various practical considerations and details 

during the simulation (Remy et al. 2009). In this dissertation, the snesim implementation 

in the Stanford Geological Modeling Software (SGeMS) was used (Remy et al. 2009). 

1.3.1. Conditioning Facies Simulation on Soft Data 

Conditioning MPS facies simulation on hard data is rather straightforward and is done 

by placing them in their corresponding simulation nodes and excluding them from the 
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random path of the simulation. However, the integration of soft data (e.g., three-

dimensional seismic data) is more involved. The complication arises from the integration 

of multiple sources of data that can, in general, be dependent. Journel (2002) presents a 

method based on the permanence of updating ratios (i.e., the relative contribution of any 

single data event is assumed to be independent of any combination of other data events) 

for soft data integration that has been implemented in the snesim algorithm. Denoting a 

particular facies occurrence at a given location as event   and the facies probabilities 

based on the TI and soft data as      and     , respectively, the conditional (or pre-

posterior) probabilities        and        represent the facies probabilities 

conditioned on the TI (i.e.,  ) and on the soft data (i.e.,  ), respectively. The basic 

assumption in Journel (2002) is that the incremental contribution of data event   to the 

occurrence of   is the same before and after   is known. Journel (2002) shows that 

deriving the posterior probability          from the permanence of updating ratios 

principle is a more robust method for satisfying probability limit conditions than the 

traditional conditional independence hypothesis. 

For the stated problem with two sources of data, the posterior probability is given 

by 

 

 
 

 

 
 (1.1) 
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The underlying assumption in Eq. 1.1 is equivalent to a form of independence (i.e., 

independence of relative incremental contributions) between data events   and   

(Journel 2002). Data dependence can be introduced into this formulation in order to 

generalize the estimation of posterior probability using the  -model (Journel 2002) as 

follows 

         
 

   
 with  

 
 (

 

 
)
      

 (1.3) 

The value of     is interpreted as the weight given to data type   relative to data type 

 . For     (    ), data type   is given more (less) weight than data type  . Here, 

when conditioning facies simulation on production data,   represents the TI data and   

to denote the probability map that is constructed using the production data. 

Fig. 1.2 shows examples of conditional and unconditional snesim simulation 

results using a sample soft data (probability map). The TI used for this example is Fig. 

1.2(a). The unconditional simulation uses a probability map, shown in Fig. 1.2(b), (left 

column); this map does not contain any information about the facies distribution, 

whereas for the conditional simulations shown in Fig 1.2(c), a probability map is used to 

constrain the spatial distribution of channel facies. It is clear that the information in the 

probability map strongly affects the spatial distribution of the simulated channel facies. 

In practice, the probability maps are usually obtained from the seismic data. In the 

proposed approaches, however, the probability maps were driven from the production 

data by using an inverse modeling approach. 
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(a) Horizontal TI (b) Unconditional MPS Simulation 

 

Prob. Map Samples 

  
(c) Conditional MPS Simulation 
Prob. Map Samples 

  
 

Fig. 1.2 – Conditional multipoint statistical facies simulation using soft data 
(probability maps). (a) A training image with mainly horizontal channels. (b) 
Uninformative probability map (left) and five unconditional samples of channels. 
(c) A sample probability map (left) and the resulting facies realizations 
conditioned on it. The simulation parameters (except for the probability maps) are 
identical in (b) and (c). 
 
 
 

 

1.4. Data Assimilation Methods 

In general, probabilistic interpretation of history matching problem leads to combining 

prior model parameter distribution,     , with the new measurement data,  , to 

interfere likelihood model        in the framework of Bayesian approach. Because the 

relationship between the model parameters,  , and the observations is through nonlinear 

set of fluid flow through porous media equations, the posteriori probability distribution 

may not be easy to describe. In practice, except for specific simplified cases, complete 

description of the conditional density        is not feasible (Tarantola, 2005). 

Therefore, it is common to estimate some representative statistics, like mean and 

variance, of that conditional distribution using statistical inference approaches.  
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In this section, the production data integration approach, the ensemble Kalman 

filter, is presented. 

1.4.1. Ensemble Kalman Filter (EnKF) 

In the case of linear system, the Kalman filter (Kalman, 1960) is a recursive 

approach to estimate the internal state of the system from series of noisy observations. In 

contrast to batch estimators, the history of observations and/or estimates is not required 

here. The state-space model for the time-evolution of a linear dynamical system 

(ignoring the control term) can be expressed as: 

             

           
(1.4) 

Here, the subscript   represents the current time step,   indicates the system state vector, 

  is the linear state transition matrix,   corresponds to the observation vector,   denotes 

the linear measurement model, and   and    stand for the modeling and measurement 

noises with covariances   and  , respectively. Eq. 1.4 could be used to obtain the mean 

and covariance of the state vectors in time according to the following assumptions: 

 [  ]   [  ]   [  ]    

   [     ]     [     ]     [     ]    

   [     ]                 [     ]                   [     ]       

(1.5) 

The Kalman filter has two steps: the state vector prediction until the next 

observation step and the state vector updating with respect to the current measurements. 

The forecast step is: 
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(1.6) 

Where,      and      refer to the estimate of the state vector and modeling noise 

covariance at time   conditioned on all observations up to and including time  . The 

update step includes the optimal linear combination of the forecast mean and 

measurements given by the following recursive equations. 

 ̂             (      ̂     ) 

 ̂             ̂      
(1.7) 

Where    is the Kalman gain and it is defined as 

    ̂       
 (   ̂       

    )
  

 (1.8) 

For large-scale nonlinear state-space problems (e.g. reservoir models), derivation 

of simple forecast equations for state mean and error covariance, like Eq. 1.6 for Kalman 

filter, is not trivial. Linearized versions of Kalman filter, such as the extended Kalman 

filter (EKF), have been used for small and medium scale problems with mild 

nonlinearities (Jazwinski, 1970). Because of the cost of linearization, the EKF methods 

are impractical for large scale and/or strong nonlinear problems.  

In contrast to the linear system, the dynamical model for fluid flow through 

porous medium is described by a nonlinear system of differential equations and 

appropriate boundary conditions. Let assume        represents the discretized 

approximation of the solution at time   depends on poorly known parameters      , 

need to be estimated. The dynamical model is: 
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  (1.9) 

with initial state       . Here,     and    represent the model error and all primary 

variables, e.g. pressure and saturations, in all grid blocks at time  , respectively. Also, 

the measurements at time            with nonlinear relationship to the state variables  

              
      (1.10) 

where    and       represent the measurement and forward model at time  , respectively 

and     stands for the measurement errors. 

In order to address the nonlinearity and dimensionality issues, Evensen (1994) 

provides a Monte Carlo approximation of Kalman filter as ensemble Kalman filter. Since 

then, the EnKF has been used widely in ensemble-based data assimilation problems 

(Houtekamer and Mitchell, 1998; Evensen, 1994; Reichle et al., 2002; Lorentzen et al., 

2003; Nævdal et al., 2005; Wen and Chen, 2006; Skjervheim et al., 2007; Jafarpour and 

McLaughlin, 2009; Jafarpour and Khodabakhshi, 2011, Khodabakhshi and Jafarpour, 

2013). In the EnKF, the probability density function (pdf) of the system state is 

represented using a collection of state vectors, called an ensemble. The covariance 

matrix of the Kalman filter is replaced by the sample covariance in the EnKF, and the 

Monte Carlo simulation is used to approximate the nonlinear time evolution of the 

states’ forecast density.  

In this dissertation, an augmented state vector containing reservoir parameters 

and simulated data is defined as, 

   {
 
  

}         (1.11) 
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Consequently, a linear relationship is established between the state vector and the data 

as: 

         
  (1.12) 

where, the matrix operator   extracts the simulated measurements from the full state 

vector. Let assume        represent the sequence (               ) and        denotes 

the sequence              . Let also assume that the measurements at different time are 

independent and the forward model solution at a measurement time only depends on the 

solution at the previous measurement time, i.e. the forward model is first-order Markov 

process. Using the Bayesian statistics, the filter solution (Evensen, 2007) can be 

expressed as: 

 (          )   (       ) (            ) (1.13) 

As a result, the model state and parameters with corresponding uncertainties are 

updated after each observation measurement. Finally, the ensemble-base version of Eq. 

1.7 for the state vector update is written as (Evensen, 2003) 

 ̂   
 

       
 

       
   (       

      )
  

(  
 
        

 
) (1.14) 

where the superscript   indicates ensemble approximation. It is important to mention that 

the EnKF updates individual samples instead of updating first and second order 

moments, like original Kalman filter. Therefore, it is possible to use the updated 

replicates to approximate any desired (updated) statistics. 

While EnKF has become increasingly popular for history matching continuous 

(and in particular, multi Gaussian) reservoir properties (Lorentzen et al. 2003; Nævdal et 
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al. 2005; Wen and Chen 2006; Skjervheim et al. 2007; Jafarpour and McLaughlin 

2009a), it does not provide a mechanism for constraining the estimation of uncertain 

parameters on higher-order prior statistics. In addition, EnKF is a continuous estimator 

that is not suitable for the direct estimation of categorical variables (like facies). 

Nonetheless, the reservoir engineering literature has shown that the EnKF updates 

effectively integrate the flow data and provide important information about the spatial 

distribution of facies. 

 

1.5. Research Objectives 

The motive of this research is to extend the current state of state of art in detection of the 

large scale feature continuity during the process of history matching. In addition to 

theoretical developments, an effort is placed on the proposed approaches that are 

applicable to the real history matching problems.  

The major parts of this research work are as follow. First in the Section 2, the 

probability conditioning method (PCM) for constraining multipoint statistical (MPS) 

facies simulation to nonlinear flow data is presented. The PCM implementation with the 

EnKF results in an improved performance of the filter updates, namely through the 

preservation of the facies correlation structure and the introduction of additional 

ensemble variability (spread) due to the resampling of facies from the TI after each 

update step. The important properties of the proposed PCM method are illustrated using 

several two-dimensional water flooding problems in reservoirs containing two and three 

facies types.  
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As an extension to Section 2, in Section 3, an adaptive strategy is proposed 

through a data feedback mechanism based on the predictive performance of the past 

realizations (i.e., sampling history) to improve the conditioning efficiency. The method 

is presented as a stochastic optimization algorithm and extended to the case where 

multiple training images are proposed as alternative plausible interpretation of the 

geologic scenarios for a given formation. Several numerical experiments from fluvial 

channel formations are used to demonstrate its applicability and performance in relation 

to non-adaptive conditioning techniques. 

In Section 4, a novel Bayesian mixture model for adaptive and efficient sampling 

of conditional facies from multiple uncertain TIs is developed. The posterior distribution 

of facies is partitioned into individual conditional densities of the TIs and the 

corresponding mixture weights from the likelihood function for each TI are estimated. 

To implement the conditional sampling, the ensemble Kalman filter (EnKF)-based 

probability conditioning method is applied, whereby EnKF is used to invert the flow 

data and obtain a facies probability map (soft data) to guide conditional facies simulation 

from each TI. The suitability of the proposed Bayesian mixture-modeling approach is 

demonstrated using several numerical experiments in fluvial formations with uncertain 

orientation and structural connectivity. 

In Section 5, a new workflow for integration of pressure data for estimating 

large-scale reservoir connectivity is proposed. According to the spatial resolution of the 

observations, the unstructured grid system is generated through Delaunay triangulation 

by using the location of the static pressure measurements as control points. The 
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important advantages of the proposed workflow for characterization of field-scale 

reservoir connectivity from pressure data include very fast connectivity estimation with a 

low-order model and effective parameterization to reduce the number of unknowns to a 

level commensurate with the available static pressure measurements. Successful 

application of the proposed approach to data from real fields illustrates its suitability and 

application to realistic reservoirs. The compatibility of the estimation results with the 

existing geological evidence demonstrates the performance of the proposed method.  

In Section 6, the proposed workflow in Section 5 is applied for a real field data 

set to infer the large scale feature continuity using the available pressure data. Then, the 

finding in coarse scale history matching is downscaled to fine scale model and the 

probability conditioning method is applied to conclude the locations of channelized 

fluvial. 

Section 7 summarizes this dissertation with the key finding in Section 2 to 6. 

Recommendations for future research are also presented. 
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2. PROBABILITY CONDITIONING METHOD (PCM)*  

 

2.1. Summary 

Probability conditioning method (PCM) is presented for constraining multipoint 

statistical (MPS) facies simulation to nonlinear flow data. MPS has recently been 

introduced for flexible grid-based simulation of spatial connectivity in formations 

containing discrete geologic objects (e.g., fluvial channels) that are not amenable to 

conventional two-point geostatistical modeling. Using the higher-order statistics in MPS, 

facies realizations are simulated from a conceptual geologic continuity model known as 

a training image (TI). As a result, the simulated realizations inherit the complex 

structural connectivity and multipoint spatial statistics conveyed by the TI. While 

conditioning multipoint simulation results on static hard (e.g., core) and soft (e.g., three-

dimensional seismic) measurements is relatively straightforward, conditioning the 

simulated facies on nonlinear flow data is a nontrivial task. On the other hand, inversion 

methods that directly update post-simulation facies distributions have difficulty in 

reproducing the spatial connectivity (or higher-order statistics) implied by a TI. Using 

the PCM approach, the flow data is inverted to obtain a probabilistic spatial description 

of facies distribution (i.e., a probability map) and the resulting facies probability map is 

used to guide MPS facies simulation from a specified TI. Since the probability map 

                                                 

* Part of this section is reprinted with permission from “A Probability Conditioning Method (PCM) for 
Nonlinear Flow Data Integration into Multipoint Statistical Facies Simulation” by Jafarpour, B. and 
Khodabakhshi, M., 2011. Journal of Mathematical Geosciences. 43, 133-164. Copyright 2011 by Springer. 
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contains important information about the flow measurements, the simulated facies 

distributions are more likely to reproduce the observed flow data. While the proposed 

PCM approach can be used with different inversion algorithms, the ensemble Kalman 

filter (EnKF) is used to extract facies distribution probabilities from flow data. This 

choice was made because (i) the ensemble form of the EnKF is less sensitive to 

discontinuity and nonuniqueness (randomness) introduced in conditioning facies 

simulation on a probability map, and (ii) the EnKF has been established as an effective 

subsurface data assimilation approach. 

The PCM implementation with the EnKF results in an improved performance of 

the filter updates, namely through the preservation of the facies correlation structure and 

the introduction of additional ensemble variability (spread) due to the resampling of 

facies from the TI after each update step. The important properties of the proposed PCM 

method are discussed and its effectiveness is illustrated using several two-dimensional 

water flooding problems in reservoirs containing two and three facies types. The 

conclusion is that PCM effectively combines the existing information in the flow data 

and the TI; it does so by using the former to infer probabilistic knowledge about inter-

well and near-well spatial connectivity and the latter to ensure consistent facies structure 

and connectivity, where the flow data are inconclusive (e.g., away from measurement 

locations). 
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2.2. Dynamic Data Interpretation with Facies Probability Map 

The uncertainty in the characterization and modeling of subsurface flow and transport 

properties presents a challenge in the modeling and design of a number of important 

environmental and energy applications, including groundwater flow and contaminant 

transport, energy recovery from geothermal and hydrocarbon reservoirs, and geologic 

storage of CO2 in deep underground formations. An important component of predictive 

modeling is the description of the spatial variability in subsurface flow properties. Data 

sparsity and uncertainty in geologic continuity model result in significant uncertainty in 

the description of prior model input parameters. When formations containing 

predominantly discrete geologic objects are considered, the main characteristics of the 

fluid displacement patterns and production behavior are often controlled by the 

geometrical attributes and connectivity of these objects. Therefore, the history matching 

problem should be primarily focused on reconstructing the spatial distribution and 

continuity of these features. 

 A review of persevering large scale feature continuity was presented in 

Subsection 1.2. In this section, a novel approach is presented for conditioning MPS 

facies simulation on nonlinear dynamic flow data. The proposed approach is general and 

can be implemented using various nonlinear inversion techniques. The production data is 

used to infer the probability with which a particular facies type occurs at each grid block 

throughout the reservoir. Then, this spatial probability map is combined with the snesim 

algorithm to draw conditional facies realizations from a specified TI. The ensemble 

Kalman filter (EnKF) integrates the flow data and infer facies probability maps. While 
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EnKF has become increasingly popular for history matching continuous (and in 

particular, multi Gaussian) reservoir properties (Lorentzen et al. 2003; Nævdal et al. 

2005; Wen and Chen 2006; Skjervheim et al. 2007; Jafarpour and McLaughlin 2009a), it 

does not provide a mechanism for constraining the estimation of uncertain parameters on 

higher-order prior statistics. In addition, EnKF is a continuous estimator that is not 

suitable for the direct estimation of categorical variables (e.g., facies). Nonetheless, it 

has been shown in the reservoir engineering literature that the EnKF updates effectively 

integrate the flow data and provide important information about the spatial distribution 

of facies. The EnKF estimates the mean of log-permeability from a prior ensemble and 

the flow data. To generate a facies probability map, the updated log-permeability mean 

is used with the snesim algorithm to simulate conditional facies realizations from a given 

TI. A review of MPS facies simulation and EnKF were presented in Subsections 1.3 and 

1.4, respectively. This section is continued by a presentation and discussion of the results 

of the application of the method to several two-dimensional synthetic history matching 

examples with channel facies. Some of the important properties of the proposed PCM 

approach are discussed before presenting the conclusions. 

 

2.3. PCM Implementation 

The implementation begins by generating an initial ensemble of facies with an 

uninformative constant probability value of  

 
 for   facies, which is equivalent to 

unconditional facies simulation from a prior TI. One probability map is generated for 

each facies type. After assigning permeability values to each facies, the facies ensemble 
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is used to predict the observed fluid flow quantities for the next time step. In the analysis 

step, the log-permeability realizations and the probability map are updated. The update 

equation requires up to the second-order statistics of the estimation parameters. The 

ensemble of log-permeability fields is used to derive the first- and second-order statistics 

required during the update step. The updated mean of the ensemble is then used to infer 

probabilistic information about facies distribution. The probability of each facies at a 

given grid block is assumed to be a function of the distance between the updated log-

permeability value at that grid block and the log-permeability value of each facies. The 

analysis equation is only used to estimate the log-permeability mean from the production 

data. The implementation steps are given below. 

2.3.1. Steps in Facies Conditioning 

1. Generate an unconditional ensemble of facies using the snesim algorithm. 

2. Start with an uninformative single probability map that assigns equal probability to 

each facies type (e.g., 0.5 for two facies). 

Repeat steps 3–5 until all observations are processed. 

3. Forecast step: assign permeability values to each facies in the model and run forward 

flow simulation, from initial time, to predict the states and measurements. 

4. Update step: 

a. With the EnKF analysis equation for the ensemble mean, update the log-

permeabilities using the new observations and find their mean map; 

b. Infer a new probability map from the updated log-permeability mean. 
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5. New facies generation: use the updated probability map with the snesim algorithm to 

generate a new ensemble of facies models. 

The following remarks about the details of the implementation are necessary. 

First, after each update, a new probability map is constructed and used to generate an 

ensemble of conditional facies realizations. The state (pressure and saturation) solutions 

are obtained by rerunning the forward simulation from the initial time-step using the new 

facies models. Second, the update applied to the log-permeability fields is expected to be 

locally (at the vicinity of the wells) accurate and relatively inconclusive (or even 

potentially spurious) away from the wells. A probabilistic interpretation of such update 

results has an important implication for generating conditional facies maps: at the 

vicinity of wells where there is more confidence about facies distribution (very high/low 

probability of a particular facies), generation of facies will be more strongly affected by 

the updated probability maps. On the other hand, at increased distances from the wells, 

the updated probability map is likely to be inconclusive. Since the updated facies are 

simulated from the TI, the TI becomes more dominant, and the simulated facies inherit 

the structural continuity of the TI at locations in which the probability map does not 

provide conclusive information about the facies type. The exception to the above 

statement occurs when the probability map indicates (strongly) a different connectivity 

from that of the TI. In that case, the simulated facies may depart from the typical 

connectivity structure in the TI. 
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2.4 Applications 

In order to motivate the proposed estimation approach, a two-dimensional water 

flooding example is used with a two-phase immiscible (oil/water) system and the EnKF 

is applied to infer the distribution of channel facies (resembling a fluvial environment) 

from production measurements. First, the EnKF directly updates log-permeability values 

in each grid block; this allows us to illustrate the inconsistency (with the prior) in 

applying the EnKF to discrete facies estimation and the degraded performance of the 

EnKF updates in time. The proposed PCM approach is applied to the same example. The 

discussion of the PCM method is continued with additional examples in order to 

evaluate its performance for the estimation of three facies and with TI uncertainty. This 

section is concluded by presenting more complex examples and by discussing the 

properties of the proposed approach. 

2.4.1. Experimental Setup 

In the examples presented in the following section, four 5-spot pattern derives are 

combined to form a general 13-spot reservoir domain configuration consisting of nine 

water injection wells and four oil production wells (Fig. 2.1(a)). In each case, two-

dimensional facies distributions are estimated from production measurements at well 

locations. Throughout, the only source of uncertainty is the facies distribution, so that all 

other model parameters are known. The reservoir is initially filled with oil at a constant 

uniform saturation of 0.90 (i.e., the connate water saturation is 0.10). The initial pressure 

in the reservoir was set at 6000 psi in all cells.  
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(a) Well configuration 

 
 

(b) Example 1: True facies and oil saturation 
 

log-perm  initial 3 months 6 months 18 months 36 months 

 
 

(c) Example 2: True facies and oil saturation 
 

log-perm  initial 3 months 6 months 18 months 36 months 

 
 

(d) Example 3: True facies and oil saturation 
 

log-perm  initial 3 months 6 months 18 months 36 months 
 

 
 

(e) Example 4: True facies and oil saturation 
 

log-perm  initial 3 months 6 months 18 months 36 months 
 

 
 

 
Fig. 2.1 – Field setup and the true saturation profiles. (a) A 13-spot reservoir 
configuration with nine injectors and four producers; (b) to (e) true log-
permeability (left) and corresponding snapshots of saturation profiles in time 
(second to last column) for Examples 1, 2, 3, and 4, respectively. Simulation 
parameters are reported in Table 2.1. 
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Table 2.1 – General simulation and assimilation information 
Simulation parameters 
Phases Two-phase (oil/water) Simulation time 12×3 months 
Grid-system 45×45×1 

 
Cell-dimensions 10 ×10×10       

 
Rock porosity 0.20 (constant) 

 
Initial oil saturation 0.90 (uniform) 

 
Initial pressure 6000 psi (uniform) 

 
Injection volume 1PV 

 
Number of injectors 9 Number of producers 4 
Inj. wells constraints Water flow rate 

 
Prod. wells constraints Pressure 

 
Facies type Fluvial formation 

 
Geostatistical simulation SNESIM 

Assimilation parameters 
Obs. at injection wells Pressure Measurement noise STD 20 psi 

 
Obs. at production wells Oil and water flow rate 

 
Measurement noise STD 20 sbpd 

Observation intervals 3 months   
 

 

The injection ports are constrained to inject, with a uniform rate, a total of one 

pore volume (1 PV) during the thirty six months of simulation time. The production 

ports operate under pressure control, with a constant pressure of 5950 psi specified for 

each well. Table 2.1 summarizes the general simulation and data integration parameters. 

Under these settings, the pressure at the injection ports, as well as the water and oil rates 

at the production ports, were measured, and used as the mean of observation distribution 

(Table 2.1), and assimilated. In each example, the measurements were obtained every 

three months by running a forward flow simulation with a specified (synthetic) true log-

permeability field. Log-permeability values of 10,000 mD and 500 mD were assigned to 

the channel and background facies, respectively. Fig. 2.1(b) to 2.1(e) show the synthetic 
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true log-permeability models (left) and snapshots of the true saturation plots for 

Examples 2.1 to 2.4, respectively. 

 

 

(a) Training images 
 

TI with two facies TI with three facies 

  
 

(b) Sample MPS log-permeability realizations 

 

 

 

 
 

 
Fig. 2.2 – Training images and sample unconditional facies realizations for 
examples with two (left) and three (right) facies: (a) a 470 × 470 two-facies training 
image with horizontal channel orientations (left) and a similar training image with 
three facies (right), and (b) four unconditional realizations generated from the 
corresponding training images in (a) using the snesim algorithm. 
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2.4.2. Example 2.1: Estimation of Two Facies 

2.4.2.1. Standard EnKF Solution 

A history matching example is presented in which the EnKF estimates log-permeability 

values that represent the facies distribution. The synthetic true facies model in Example 

2.1 is derived from the TI with two-facies (Fig. 2.2(a) (left)) and contains two horizontal 

channels that are connected in the middle of the domain. The TI is borrowed from 

(Mirowski et al. 2008). Four unconditional sample realizations from the same TI are 

shown in Fig. 2.2(b) (left). The simulated samples share the same statistics and general 

orientation (left to right) with the true model.  

In all experiments, an ensemble size of N = 300 is used. The estimation results 

for Example 2.1 are shown in Fig. 2.3. Fig. 2.3(a) shows the true model, while Fig. 

2.3(b) displays the initial sample log-permeabilities. Fig. 2.3(c) shows the history 

matching results obtained when the EnKF is used to update grid-block log-permeability 

values from flow data in thirteen observation locations. The log-permeability results 

after the first update show that the EnKF update equation treats the facies permeabilities 

as continuous random variables. Since the standard EnKF update equation does not 

provide any mechanism for the estimation of categorical variables, the estimated facies 

permeabilities do not preserve the categorical nature of the initial facies distributions. 

Examination of the results indicates that the marginal distribution of log-permeability at 

each grid block changes from a strictly bimodal (i.e., binary) to a Gaussian-looking 

distribution (not shown). It is clear from this example that the standard grid-based EnKF 

update may only be useful for local updating of facies distribution around the 
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observations. In general, the log-permeability results away from observation locations 

tend to be less informative about facies types. As the results in Fig. 2.3(c) suggest, 

applying the EnKF to update log-permeabilities at locations distant from the observed 

values can lead to spurious and inconsistent updates. In particular, when estimating 

categorical variables in which distinct features are to be reconstructed from limited 

observations, it is important to use an estimation approach that effectively combines 

local information conveyed by observations with global structural continuity (e.g., in the 

TI). The last row in Fig. 2.3(c) displays the changes in spatial distribution of the log-

permeability ensemble variance over time. As expected, the variance decreases in time 

and increases as a function of the distance from the observation locations. 

2.4.2.2. PCM Solution 

In the PCM approach the log-permeability ensemble and its means are updated. 

Then, the log-permeability mean is converted to a single probability map using the 

mapping function shown in Fig. 2.4 (left). Here, a simple linear mapping assigns each 

updated mean log-permeability value to a proportional facies probability value within 

the specified bounds. Fig. 2.3(d) shows the facies estimation results obtained after the 

first and last updates in Example 2.1, using the proposed PCM approach. The first row 

contains the updated probability maps and shows that the probability map reveals a 

stronger signature of the true facies distribution as observations are integrated in time. 

The final facies distribution after the integration of all measurements appears to capture 

the overall orientation and connectivity of the channel features in this example. 
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(a) True log-permeability 

 
 

 (b) Initial (c) Standard EnKF (d) PCM 
  3 months 36 months 3 months 36 months 
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Fig. 2.3 – Facies estimation results for standard EnKF and the PCM approach in 
Example 2.1. (a) True log-permeability field; (b) initial probability map (top), three 
sample log-permeabilities (second to fourth rows), and the full ensemble log-
permeability mean and variance (fifth and sixth rows, respectively); (c) three 
sample log-permeability replicates (corresponding to initial permeabilities 
realizations in (b)) after three months (left) and thirty six months (right) updated 
with standard EnKF (first to third rows); the updated log-permeability ensemble 
mean and variance are shown in the fourth and fifth rows; (d) the probability maps 
(first row) and the same three sample log-permeability replicates after 3 months 
(left) and 36 months (right) updated using PCM (second to fourth rows); the 
updated log-permeability ensemble mean and variance are shown in fifth and sixth 
rows. 
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Fig. 2.4 – Functions used to convert mean log-permeability fields to probability 
maps for the case with two (left) and three (right) facies. 
 

 

 

The results in Fig. 2.3(d) are clearly distinct from those in Fig. 2.3(c) in 

important ways. Firstly, throughout the assimilation the updated facies always follow a 

categorical distribution after conditioning on production data, which is consistent with 

the prior information. This consistency has important implications for the improvement 

of the sample statistics needed for future updates (discussed below). Secondly, the 

resampling of the facies ensemble from the TI after each update step introduces 

additional variability and spread to the ensemble. This helps to reduce the effect of 

variance underestimation or ensemble collapse. It is important to note that the level of 

variability in the generated ensemble can be controlled by either the limits specified for 

the probability map and/or by specifying the   value in Eq. 1.3. Here, the bounds 

[         ] on the probability map only allow for a     confidence on the updated 

results. Note that even with a relatively confident probability map, a reasonable amount 
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of variability and spread is introduced into the ensemble. Changing the bound to 

[     ], where      , can result in reduced ensemble variability. 

An interesting observation can be made from the results in Fig. 2.3(d): while the 

updated probability maps provide little connectivity at the early time steps, they tend to 

capture the facies connectivity at later assimilation time steps. Unlike the results in Fig. 

2.3(c), the connectivity in the probability map is preserved much better when facies are 

resampled from the TI. This result is mainly attributed to the more accurate and 

consistent conditional facies maps that are generated from the TI at each update step. In 

the standard EnKF for estimation of log-permeability, the original continuity structures 

break apart after the first update step and the resulting sample statistics quality decays. 

Hence, the sample covariances used for future updates are less accurate, which adversely 

affects the estimated log-permeabilities at later times. In contrast, when probability maps 

are used, the ensemble of facies maps are regenerated from the same TI using additional 

production information. Hence, the resulting covariances are more accurate than the 

initial covariance. As a result, the updated probability maps and resampled facies tend to 

improve with time. A key advantage of the proposed approach is the consistency of the 

forecast covariance in the representation of the channel-like structures. While second-

order statistics are not adequate for the representation of categorical facies, regenerating 

facies from the TI after each update step yields a more accurate approximation of the 

facies covariance matrix and hence improved updates over time. 

To highlight this important difference, Fig. 2.5 illustrates the initial covariance 

matrix (left) and its evolution after six and twelve updates at eighteen (middle) and thirty 
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six (right) months, respectively. These covariances are generated through row-wise 

vectorization (along channel directions) of the facies maps. The top       diagonal 

block sub-matrix therefore contains the covariance values between forty five gridblocks 

in the first row, while the next 45 × 45 diagonal block matrix represents the covariance 

between the grid-blocks in the second row, and so on. As such, the first off-diagonal 

      block matrix (that is, with indices (                    )) contains the 

covariance between the grid blocks in the first and second rows of the domain. 

Therefore, the number of off-diagonal red bands in Fig. 2.5 indicates the covariance 

across the width of the channel. The covariance update results are shown for both grid-

block log-permeability estimation (Fig. 2.5(a)) and facies estimation with probability 

map using the PCM approach (Fig. 2.5(b)). The comparison of the covariance matrices 

for the two cases makes it clear that the original correlation structure that captures the 

large-scale continuity is lost during the grid-based log-permeability update steps.  

A closer examination of the enlarged         top-left diagonal block 

covariances (corresponding to the second rows in Figs. 2.5(a) and 2.5(b)) clearly 

indicates that the covariance matrices generated from the conditional facies after update 

steps preserve the original continuity structure better. 

Another important difference between the two results lies in the estimated 

variance after the updates. A comparison between the last rows of Figs. 2.3(c) and 2.3(d) 

shows that a large portion of the variance in the conditional facies samples is 

concentrated around the edge of the channels and away from the observations. This is 

mainly because of the variability introduced by the TI-based sampling.  
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(a1) Initial and updated log-permeability covariances (grid based update Example 2.1) 
initial 18 months 36 months  

 
 

(a2) Zoomed in version of (a1) with the first       elements 
initial 18 months 36 months  

 
 

(b1) Initial and updated log-permeability covariances (prob map update Example 2.1) 
initial 18 months 36 months  

 
 

(b2) Zoomed in version of (b1) with the first       elements 
initial 18 months 36 months  

 
 
 
Fig. 2.5 – The initial and updated covariances in Example 2.1. (a1) and (a2) show 
the initial covariance (left) and the updated covariance after eighteen (middle) and 
thirty six (right) months when grid-block log-permeability values are updated; (a2) 
shows a zoomed-in version of the top-left 90×90 sub matrices. (b1) and (b2) show 
similar plots when the probability maps are updated and used in the snesim 
algorithm to generate conditional facies samples. 
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On the other hand, when log-permeability values are directly updated (Fig. 

2.3(c)), the variance increases with the distance from the observation locations. 

Moreover, less variability is associated with channel edges, which had disappeared after 

the updates. 

Fig. 2.6 provides the summary of the production plots for Example 2.1. The top 

row figures show the predicted oil rate, while the bottom row displays the water rate 

plots for the unconditional (dashed black lines), grid-based (solid blue lines), and 

probability map-based (solid green lines) facies estimation. While the true production 

plots are not covered by the initial ensemble of forecasts, the update results with PCM 

move the forecasts closer to the true reservoir responses. The estimation of the full 

ensemble response shows that, overall, the production forecast plots resulting from 

estimation with the standard EnKF tend to underestimate the uncertainty (variability) in 

the facies distribution, whereas more variance is observed in the production forecasts 

corresponding to facies estimated using the PCM implementation. 

Since the standard EnKF update equation is not constrained to honor the flow 

equations, the updated states and parameters do not satisfy the mass and momentum 

conservation principles represented by multiphase flow equations. Two general positions 

with regard to this issue have been taken in the literature. The first view suggests using 

the updated pressure and saturation states to initialize the forecast for the next time step. 

The underlying assumption in this approach is that the flow equations are imperfect 

because of the simplifying assumptions and errors introduced in deriving them. Hence, 
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violation of the conservation principles should be tolerated. The alternative view 

emphasizes the conservation principles by restarting the simulations from the initial time 

step and by using the updated parameter ensemble to derive a consistent ensemble of 

current states for initializing future forecasts. This step, while ensuring consistency, 

comes at the cost of additional simulation time. In our PCM implementation, the 

resampling step from the TI generates new facies realizations that are not consistent with 

the EnKF updated saturations and pressures. A restart step derives the pressure and 

saturation states from the updated facies distributions. 

 

 

 
 

 
Fig. 2.6 – Production forecasts for Example 2.1. Oil production rate (top) and water 
production rate (bottom) forecasts corresponding to the five sample log-
permeability fields (in Fig. 2.3) are shown for the initial (dashed lines), updated 
with standard EnKF (solid blue lines), updated using PCM (solid green lines) and 
the true (solid red line) log-permeability fields. 
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The overly good production forecasts (with lower ensemble spread) in the case of 

grid-based log-permeability estimation reveal an important fact about the non-

uniqueness of the inverse modeling solutions. Evidently, the estimated permeabilities are 

far from the true facies, yet the production forecasts reproduce the true production 

behavior very well. The implication of this observation is quite important in that it 

cautions against putting too much emphasis on just fitting the production data as a metric 

for estimation performance. This can be better appreciated by observing that the 

saturation profiles may show different sweeping trends from those of the true 

saturations. As a result, the production curves can be matched by a wide range of log-

permeability estimates that may not share the correct log-permeability structure and 

saturation distribution. Although accurate production forecast plays an important role in 

characterizing and controlling the input–output behavior of the reservoir, it does not 

provide information about the sweep efficiency of the water flood and the spatial 

distribution of fluids in the reservoir. The latter is critical for the planning of future 

reservoir development, activities such as drilling new infill wells and placing additional 

wells to produce any by-passed oil. 

An important element contributing to the relatively larger variance in the 

production plots of the proposed PCM approach is the randomness introduced during the 

snesim simulations. Samples drawn from the TI are usually more diverse than the 

updated samples in the regular EnKF implementation; this variability is particularly 

higher in areas away from observations where facies probabilities are inconclusive. As a 

result, the production forecasts from the PCM approach have a wider spread. The 
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variability introduced in the ensemble can improve ensemble collapse issues by having 

an effect similar to covariance inflation, which is a common practical measure for 

dealing with the EnKF ensemble collapse. On the other hand, the sampling variability 

can introduce a small fraction (about     in our case) of outlier samples that exhibit 

completely incorrect production behavior. These samples can be removed from the 

ensemble by using an importance sampling technique (Robert and Casella, 2005). 

2.4.3. Example 2.2: Estimation of Three Facies 

To investigate the applicability of the proposed PCM approach to the estimation of 

multiple facies distribution, an example with three facies is used. A low permeability 

facies is added to the first TI to generate a new TI with three facies, namely high 

permeability (sandstone channels), medium permeability (background), and low 

permeability (salt dome). The new TI is illustrated in Fig. 2.2(a) (right). The true facies 

model is obtained from the same TI. The true model (Fig. 2.1(c), left) and saturation 

profiles at the initial time step and after three, six, eighteenth, and thirty six months are 

presented in Fig. 2.1(c) (second to sixth columns, respectively). Four initial facies 

samples (out of the three hundred) are depicted in Fig. 2.2(b) (right). The permeability 

value of the new facies (salt dome) is 20mD. All other simulation and data integration 

parameters are the same as in the previous example. To convert the updated log-

permeability mean into the appropriate facies probability map, the simple functional 

relation illustrated in Fig. 2.4(b) is used. The limits for each probability map are set to 

[0.05, 0.9]. For the sake of comparison, the grid-block log-permeability values are 

updaed. The results obtained from both methods are shown in Fig. 2.7. 
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Fig. 2.7(c) illustrates the grid-block log-permeability estimation results obtained 

using the standard EnKF. Two initial facies replicates, as well as the corresponding 

updates after six and thirty six months (second and last updates) are displayed in the 

second and third rows. The fourth and fifth rows depict the mean and variance of the 

ensemble after each update. Fig. 2.7(d) shows the facies estimation results for the second 

example using the PCM approach. The second and third rows show the time evolution of 

the probability map for channel and salt dome facies, respectively, after the assimilation 

of the production data. The initial probability map is completely uninformative since it 

implies that the initial facies maps were generated using only the TI information. 

However, as flow data are integrated through the EnKF update steps, the probability 

maps begin to reveal signatures of the true facies distributions. The final facies 

distributions appear to capture the overall location, orientation, and connectivity of the 

true channel as well as the location and size of the salt dome. The fourth and fifth rows 

show two out of three hundred replicates drawn from the TI after conditioning on the 

updated probability maps. The last two rows display the mean and variance of the log-

permeability ensemble for the corresponding update step. 
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(a) True log-permeability 

 
 (b) Initial (c) Standard EnKF (d) PCM 
  3 months 36 months 3 months 36 months 
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Fig. 2.7 – Estimation results for Example 2.2 with three facies: (a) the true log-
permeability model; (b) initial probability maps for channel (second row) and salt 
dome (third row) facies, two sample log-permeabilities (fourth and fifth rows) and 
the full ensemble log-permeability mean and variance (sixth and seventh rows, 
respectively); (c) estimated log-permeability results with the standard EnKF and 
after three (left) and thirty six (right) months; two sample log-permeability 
replicates (corresponding to initial permeabilities realizations in (b)) after three 
(left) and thirty six (right) months (second and third rows) as well as the 
corresponding updated log-permeability ensemble mean and variance (fourth and 
fifth rows); and (d) updated probability maps for channel (second row) and salt 
dome (third row) facies after three (left) and thirty six (right) months using PCM; 
the updated sample log-permeabilities (fourth and fifth rows) and the ensemble log-
permeability mean and variance (sixth and seventh rows, respectively). 
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The results obtained from grid-block log-permeability updating Fig. 2.7(c) are 

markedly different from those obtained using the PCM approach (Fig. 2.7(d)). When 

log-permeability values are estimated, the connectivity and structure of the facies 

degrade after the first update. On the other hand, since the log-permeability realizations 

in the PCM approach are drawn from the TI, the updated facies are consistent with the 

prior information. Fig 2.7(d) shows that the main uncertainty is distributed along the 

edges of the salt dome and channel facies. This uncertainty is attributed to the 

resampling of the facies from the TI after each update step. The shape of these features 

acts as a contributing factor to the higher uncertainty in the estimation of the location 

and size of the salt dome. The channel facies connect the left and right ends of the 

reservoir domain and pass through more wells. As a result, they are easier to observe 

than the salt dome facies. Overall, the superior performance of the PCM approach in 

reconstructing the spatial facies distribution from the flow data is also evident in this 

example. The production forecasts for this example (not shown) were consistent with the 

discussion presented for Example 2.1. Next, the performance of the PCM method under 

uncertainty in the TI is considered. 

2.4.4. Uncertainty in Training Image 

2.4.4.1. Example 2.3: Consistent TI 

In previous examples, it was assumed that the TI provides a representative prior model 

for the synthetic true facies. The validity of this assumption for realistic facies estimation 

problems is open to question. Uncertainty in the TI is an important issue in the field 

application of multipoint geostatistical simulation. With the following two examples, the 
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effect of training-image uncertainty on the performance of the PCM algorithm is briefly 

discussed. A slightly more complex true facies model is used to motivate the discussion 

on the TI uncertainty. The true facies model in this example is derived from the same TI; 

however, the underlying feature in the simulated true channel is not commonly found in 

the TI. Fig. 2.8(b) shows the estimation results for this case. Since the TI is not a good 

prior model for representing the true facies distribution, the estimation problem becomes 

more challenging. Fig. 2.8(b) clearly shows that, although the approximate location of 

the channel features is detected, the estimated facies do not capture the exact shape of 

the true channels. The updated probability maps in this case are not as good as those in 

Example 2.1, mainly because the simulated facies (and the covariances generated from 

them) do not include the shape and geometric attributes of the true model. In spite of this 

fact, the probability map provides useful information about the location and approximate 

shape of the channel features. The inaccuracy in the training image seems to produce 

simulated facies that do not resemble the true model, and thereby contributes to the 

degradation of future updates.  

Note that, even though the TI fails to simulate facies that share the true features, 

the updated probability map tends to improve with time. In the standard EnKF, when 

process noise is not included, the lack of a representative prior model can lead to filter 

divergence. In these cases, the ensemble spread is rapidly reduced while the solution 

diverges from the true model (Brouwer and Jansen 2004; Jafarpour and McLaughlin 

2009a). Ensemble collapse does not seem to be a major issue in our implementation 

because ensemble variability is reintroduced into the forecast step through simulation of 
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new facies at each snesim sampling step. The results obtained in this example, however, 

point to the importance of a reliable prior TI for achieving successful performance in the 

related history matching problems. Even in the case where the TI and true model are 

statistically consistent, it appears that the lack of sufficient representative features in the 

TI can lead to degraded estimation performance. In some cases, the structural difference 

between the updated properties and the dominant features of the TI may provide useful 

guidelines for modifying the TI and repeating the inversion procedure. 

2.4.4.2. Example 2.4: Inconsistent TI 

Our final example in this section illustrates an extreme case of an inconsistent TI. The 

true model in this example is the clockwise rotated version of the true facies from 

Example 2.1. Fig. 2.9(a) shows the true facies model and the corresponding saturation 

profiles. The TI used to draw the ensemble of facies is the same as in Example 2.1, 

which is completely inconsistent with the true facies model. 

Not only are the grid log-permeability estimation results shown in Fig. 2.9(b) 

disconnected, they also fail to correct the inconsistent direction of the initial channels 

throughout the updates. Previous studies on the EnKF performance under incorrect 

(biased) initial geologic continuity (Jafarpour and McLaughlin 2009a; Jafarpour and 

Tarrahi 2010) have shown that EnKF can have difficulty in fixing an incorrect (biased) 

structural property in the initial ensemble.  
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Fig. 2.8 – Facies estimation results for Examples 2.3 and 2.4. (a) Initial probability 
map (top), three sample log-permeability samples (second to fourth rows), and the 
full ensemble log-permeability mean and variance (fifth and sixth rows, 
respectively). (b) Estimation results for Example 2.3 using the PCM approach; the 
top panel shows the true log-permeability, the first row of bottom panel displays 
the updated probability maps after three (left) and thirty six (right) months, the 
second to fourth rows of the bottom panel show three sample log-permeability 
replicates; the updated log-permeability ensemble mean and variance are shown in 
fifth and sixth rows. (c) Estimation results for Example 2.4 using the PCM 
approach; the top panel shows the true log-permeability, the first row of bottom 
panel displays the updated probability maps after three (left) and thirty six (right) 
months, while the second to fourth rows show three sample log-permeability 
replicates; the fifth and sixth rows show the updated log-permeability ensemble 
mean and variance. 
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(a) True log-permeability (left) and corresponding final oil saturation (right) 

 
(b) Standard EnKF (c) PCM 
Log-perm Oil sat Log-perm Oil sat 

  
 
 
Fig. 2.9 – Final log-permeability and oil saturation results for Example 2.4: (a) true 
log-permeability (left) and the corresponding final true saturation profile; (b) 
sample final log-permeability estimates for the standard EnKF (left) and their 
corresponding final oil saturation predictions (right); and (c) sample final log-
permeability estimates from the PCM approach (left) and their corresponding 
saturation forecasts (right). 
 

 

 

The resulting production forecasts for the sample permeabilities in Fig. 2.9(b) are 

shown in Fig. 2.10 (blue lines). Interestingly, despite the poor log-permeability 

estimation results, the production forecasts are very close to the data from the true 

model. While this may appear surprising, it can be explained by the ill-posed nature of 

the problem and by the existence of many non-unique solutions. It is relatively easy to 

history match production data if the only objective is to match the production history. 

However, the main goal of the history matching practice is to generate accurate 



 

54 

 

predictive models that honor all observations and prior geologic information. Fig. 2.9(b) 

shows the final saturation profiles corresponding to each sample log-permeability field. 

A comparison of the true saturation profile with those from the sample permeabilities 

reveals that the by-passed oil regions are in fact quite different. Unfortunately, the flow 

data from scattered wells alone do not seem to provide any indication of inconsistency in 

the prior ensemble. This is an issue that can be improved by incorporating additional 

data types with more extensive coverage (e.g., four-dimensional seismic). 

 

 

 
 

 
Fig. 2.10 – Production forecasts for Example 2.4. Oil production rate (top) and 
water production rate (bottom) predictions corresponding to the five sample log-
permeability fields are shown for the initial (dashed lines), updated with standard 
EnKF (solid blue lines), updated using PCM (solid green lines), and the true (solid 
red line) log-permeability fields. 
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The facies estimation results with the PCM approach are shown in Fig. 2.8(c). It 

can be clearly seen that the initial horizontal channel features tend to persist during the 

EnKF updates. The final facies ensemble consists of samples that are significantly 

different from the true facies. The effect of an incorrectly specified prior ensemble is 

evidently too strong to be corrected by the limited available observations in this 

example. The well flow response and saturation prediction results are also shown in 

Figs. 2.9(c) and 2.10. These figures clearly show that while the flow predictions provide 

reasonable matches to the observed data, the saturation results are not similar to the true 

saturation profile. The proposed PCM approach cannot correct the bias in an incorrect 

prior, an outcome that highlights the significance of a reliable TI in conditioning facies 

simulation.  

This example clearly shows that the uncertainty in the TI is an important and 

rather detrimental element in TI-based history matching problems and that it is one that 

deserves further investigation. The proposed approach can be implemented namely to 

address TI uncertainty by using several TIs that reflect alternative plausible geologic 

scenarios that might occur in the field. In that case, an effective sampling strategy should 

be incorporated to adaptively include more samples from the consistent TI. This is an 

issue that will be addressed in the next section. 

 

2.5 Conclusion 

A new probability conditioning method was presented for constraining TI-based facies 

simulation to reproduce dynamic flow measurements. While the EnKF update equation 
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was employed for production data integration, the PCM approach is quite general and 

can be implemented by means of alternative inverse modeling techniques. Since discrete 

geologic facies contain features that are more amenable to description with categorical 

random variables, a standard grid block property estimation with the EnKF can lead to 

inconsistent facies connectivity and spurious updates, especially at distant locations from 

observations. Although EnKF has been shown to be an effective history matching 

method, the continuous, second-order, and unconstrained nature of its update equation is 

poorly suited to the estimation of discrete geologic objects (e.g., fluvial channels) which 

can only be accurately described if higher-order statistical moments are included. The 

proposed probability conditioning method uses the EnKF to update the map of log-

permeability mean from the production data (and a prior ensemble of models). This is 

then used to infer a probabilistic description of facies distribution. The resulting 

probability map is incorporated into TI-based multipoint geostatistical simulation 

algorithms in order to generate conditional facies realizations. Facies resampling (from 

the TI) after each EnKF update step offers several advantages over the standard 

implementation of EnKF. Some of these advantages include the following: (i) 

consistency of the updated facies with the prior TI (geologic model) and preservation of 

higher-order statistics; (ii) probabilistic interpretation of the production data to reduce 

the effect of spurious EnKF updates; and (iii) improvement of the ensemble variance 

underestimation (and collapse) issues through the introduction of additional ensemble 

variability, which is done by resampling new facies from the TI after each update step. 
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The implementation of the proposed framework was presented and discussed, 

along with synthetic two-dimensional water flooding examples with different levels of 

TI representativeness. It was shown that the proposed framework could effectively 

incorporate the production data into conditional facies simulation using the snesim 

algorithm. The production forecasts that were obtained when the proposed approach was 

used provided wider ensemble spread than those obtained from the estimation of grid-

based log-permeability maps, mainly because of the variability and randomness 

introduced by resampling new facies from the TI. Occasionally, the randomness in the 

snesim facies simulation yielded a small number of obvious outliers that were likely to 

be rejected in an importance sampling study. 

An example with three facies types was used to evaluate the performance of the 

method for multi facies estimation with favorable outcomes. Additional examples with 

more complex channel features were used to evaluate the performance of the proposed 

approach under a less representative and completely inconsistent prior TI. When the true 

model contained features different from those commonly encountered in the TI, 

reasonable probability map updates were obtained. However, the method could not 

reproduce the correct facies orientation and structure when the TI was completely 

inconsistent with the true model. These examples highlight the importance of accounting 

for the uncertainty in the TI when solving the related MPS inverse problems. 

Furthermore, it is worth noting that, like all other inversion techniques, the proposed 

method relies on the information content in the data to resolve the features in the true 

solution. In cases where data resolution does not provide enough sensitivity to existing 
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features in the true model, the inversion approach would not be able to adequately 

constrain the simulated facies, even if a consistent training image was used. 

A critical issue in the estimation of facies distribution is that of maintaining a 

balance between the prior information (such as a TI) and the observations. On one hand, 

the prior model plays a central role in the stabilization of history matching inverse 

problems that are known to be intrinsically ill-posed. On the other hand, excessive 

emphasis on a prior model can become a serious liability when the prior uncertainty is 

not adequately represented. The experiments presented in this section suggest that with a 

reasonably good prior TI, even limited production data can produce many acceptable 

conditional facies samples using the proposed PCM approach. However, when prior TI 

is not representative of the true model and the uncertainty in it is disregarded, the 

performance of the data integration formulation is degraded. The examples in this 

section clearly show that scattered flow data is not hard to match, even when prior TIs 

that are inconsistent with the true model are use. While this outcome is certainly not 

unique to the facies estimation framework discussed in here, it highlights the importance 

of a reliable TI for history matching problems, an issue that is at the heart of multipoint 

statistical simulation techniques. 

In order to extend the application of PCM beyond the EnKF data integration 

technique, in the next section, an adaptive strategy is proposed through a data feedback 

mechanism based on the predictive performance of the past realizations (i.e., sampling 

history) to improve the conditioning efficiency. The method is presented as a stochastic 

optimization algorithm and extended to the case where multiple training images are 
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proposed as alternative plausible interpretation of the geologic scenarios for a given 

formation. Several numerical experiments from fluvial channel formations are used to 

demonstrate its applicability and performance in relation to non-adaptive conditioning 

techniques. 
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3. CONDITIONAL SAMPLING WITH PCM 

 

3.1. Summary 

Multiple-point statistics (MPS) provides a flexible grid-based approach for simulating 

complex geologic patterns with high-order statistics from a conceptual prior model 

known as a training image (TI). While MPS is quite powerful for describing complex 

geologic facies connectivity, the nonlinear and complex relation between the flow data 

and facies distribution makes flow data conditioning quite challenging. Here, an adaptive 

flow-conditioning method is proposed, through a data feedback mechanism, to simulate 

facies models from a prior TI. The adaptive conditioning uses a stochastic optimization 

algorithm with an initial exploration stage to identify the promising regions of the search 

space, followed by a more focused search in those regions in the second stage. To guide 

the search strategy, a facies probability map is constructed that summarizes the common 

features of the accepted models in previous iterations. The probability map provides 

additional conditioning information about facies occurrence in each grid block and is 

incorporated into the MPS algorithm as soft data to guide the facies simulation to 

generate a new candidate model. As the optimization iterations progress, the initial 

probability map is gradually updated based on the information about the facies 

distribution in the most recently accepted iteration. This conditioning process can be 

viewed as a stochastic optimization approach with memory where the new models are 

proposed based on the history of the successful iterations (with some randomness 

introduced during the MPS simulation process). The application of this adaptive 
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conditioning approach is extended to the case where multiple training images are 

proposed as alternative plausible interpretation of the geologic scenarios for a given 

formation. The advantages and limitations of the proposed adaptive conditioning scheme 

are discussed. Numerical experiments from fluvial channel formations are used to 

demonstrate its applicability and performance in relation to non-adaptive conditioning 

techniques. 

 

3.2. Data Conditioning as an Optimization Problem 

Subsurface environments consist of geological formations with complex spatial 

variability. Fluid flow in the heterogeneous porous media is controlled by the 

connectivity of the extreme (high/low) rock flow properties that are created by complex 

geological structures and lead to preferential flow paths/barriers. In many geological 

settings, the distribution of flow-related properties is primarily controlled by the location 

and distribution of distinct geologic facies.  These properties typically exhibit sharp 

contrasts across facies boundaries (Weber, 1990). Hence, the fluid flow in such 

environments is strongly constrained by the connectivity and geometric attributes of the 

facies. Under these circumstances, the within-facies variability is of second order 

importance and the primary focus is on characterization of facies distributions, their 

spatial connectivity, and the associated uncertainties. 

Multiple-point statistics (MPS), presented in detail in Subsection 1.3, was 

introduced as a flexible grid-based alternative method for simulation of complex 

geologic patterns. Conditioning the MPS simulation of facies to reproduce nonlinear 
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flow data poses a challenging inverse problem. Caers (2002) introduced the probability 

perturbation method (PPM), which is an iterative sampling approach where new 

proposal realizations are generated by parameterizing and perturbing the random seed 

number. The process is repeated until the generated realization is able to reproduce the 

observed data (within a specified error threshold) or the maximum number of iterations 

is reached (Caers, 2002; Hoffman and Caers, 2005; Kashib and Srinivasan, 2006). 

Alcolea and Renard (2010) present a block moving window algorithm for conditioning 

MPS simulations based on the block Markov Chain Monte Carlo method and use their 

method for integrating the pressure and connectivity data (Fu and Gomez-Hernandez, 

2009). Hasen et al. (2008, 2012) propose a sequential Gibbs sampling approach that 

allows the Metropolis algorithm to efficiently incorporate complex priors into the 

solution of an inverse problem, which can be applied to the case where no closed form 

description of the prior exists. Mariethoz et al. (2010a) also discuss a similar approach, 

called the iterative spatial resampling method, to guide the simulation of new 

realizations to honor the observed data. Zhou et al. (2012) proposed a pattern searching 

inverse approach to infer static and dynamic state variables in an MPS approach using an 

ensemble of conductivity realizations and their respective heads as training data. 

Monte-Carlo-based nonlinear inverse modeling methods pose the flow 

conditioning problem as either an iterative sampling problem or a post-simulation model 

updating step. The former approach attempts to sample the posterior distribution from 

the description of an explicit or implicit prior distribution and a likelihood model. 

Examples of this approach are Markov-Chain Monte-Carlo methods (Tarantola, 2005; 
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Gilks et al., 1996) and Particle Filters (Ristic et al., 2004), which are considered as 

theoretically rigorous but computationally prohibitive for large-scale problems. 

Theoretically rigorous conditional sampling methods such as the particle filter 

and the Markov-Chain Monte Carlo (MCMC) methods have been found to be of limited 

practical appeal due to their prohibitive computational requirements when used with 

large-scale numerical simulation of coupled nonlinear differential flow and transport 

equations. The main computational burden of these Bayesian conditioning methods lies 

in the exceedingly large number of flow simulations that are needed for quantifying the 

likelihood function for a large number of model realizations. Conditional simulation in 

the MPS context is not exempt from the exceedingly high computational cost associated 

with the large number of flow simulations that must be performed. Thus, developing 

efficient conditional sampling techniques is critical for practical application of the MPS 

simulation. 

In this section, adaptive conditional facies simulation is developed to speed up 

conditional simulation from a TI and the soft data conditioning approach in PCM (see 

Section 2 for more detail) is adopted. A main difference in the proposed approach with 

PCM is that, instead of using EnKF to generate the probability map, the facies 

probability maps is generated based on the common geologic patterns in a collection of 

accepted (conditioned) realizations. In the adapting conditional simulation approach, the 

generated realizations at early iteration have a relatively low chance of satisfying the 

observed data. However, as the iterations of the algorithm progresses the generated 

realizations become increasingly more likely to reproduce the observed flow data (within 
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the limits of observation noise), a property that significantly reduces the computational 

cost of facies conditioning. The algorithm begins by initially using a non-informative 

facies probability map to sequentially sample from a given TI. Each generated 

realization is used to predict the observed data and is either accepted or rejected based on 

a pre-defined probabilistic data mismatch threshold. As the sampling progresses, the 

accepted realizations and their statistical information are stored and used to update the 

spatial facies probability map to guide the simulation of new realizations. By using the 

updated facies probability map, this adaptive approach provides a feedback mechanism 

to indirectly incorporate the observed data into the sampling process and improves the 

computational cost of conditional MPS facies simulation. The application of the 

proposed method is extended to conditional facies simulation from multiple TIs that 

reflect the uncertainty in the geologic connectivity scenario. In the remainder of the 

section, the proposed method is presented in detail and several numerical experiments 

are used to discuss its performance and important properties. 

 

3.3. Implementation 

In the proposed method, using a feedback mechanism from the successful optimization 

iterations of the conditioning process, a facies probability map that contains information 

about the spatial distribution of discrete facies is inferred. This facies probability map is 

used as soft data (similar to the probability conditioning method) to guide conditional 

MPS simulation of facies within the SNESIM algorithm. As such, the facies probability 

map indirectly incorporates information about the flow data into the conditional MPS 
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simulation. In the following section, a simple non-adaptive formulation is presented 

followed by the implementation of the proposed adaptive approach. 

3.3.1. Non-Adaptive Conditioning 

To present the nonlinear inverse modeling for the flow and transport in porous media, 

     represents the observed flow variables (rates or pressures). The predicted form of 

the observed quantities is denoted as       , which characterizes a nonlinear mapping 

from model parameters to observed data. A deterministic inverse modeling formulation 

can be obtained by attempting to minimize the misfit between the predicted and 

observed response of the system. Assuming that the flow data is corrupted by a Gaussian 

noise with zero-mean and covariance    , that is         , where    (     ), a 

common choice for the cost function is the weighted second norm of the data misfit 

function ‖ 
 

            ‖
 

 

, which can be expressed as the following minimization 

problem 

                   
    

                             (3.1) 

where the weighting matrix   is assumed to be the inverse of the observation error 

covariance matrix, that is      
  . Acceptable solutions of the above optimization 

problem constitute conditional realizations from the given TI. Given the discrete and 

non-differentiable nature of the facies as inversion parameters, non-gradient-based 

optimization methods are more appropriate for finding a solution. In particular, 

stochastic optimization algorithms do not require gradient information and can be 

suitable solution approach. A major complication in the above optimization problem is 
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the TI constraint      which is used to ensure that solution must honor the higher 

order statistical patterns in the TI. Given this constraint, a simple solution strategy is to 

generate unconditional random realizations from the TI and examine their fitness by 

evaluating the above cost function. An example of such algorithm is given in Table 3.1. 

 

Table 3.1 – Non-adaptive conditioning algorithm 
 

  Initialize with a random realization     with objective function value          
          and           
 While         and           

    
o Draw a random unconditional realization    and compute           
o Perform acceptance test with a specified criteria, e.g.    [  

  

    
] 

 If    is accepted, then      ,  
 If               , then            and                
          

 Return         
 

 

 

For acceptance criteria, the typical Gaussian likelihood ration functions    and 

     for iterates    and      are, 

         ( 
 

 
     )     ( 

 

 
            

    
              ) (3.2) 

and use the likelihood ratios to accept or reject an iterate. Hence the ratio of the 

likelihood functions    and      for realizations    and      can be expressed as 

  

    
 

     

       
 

   ( 
 
 
     )

   ( 
 
 
       )

 

   ( 
 
 
            

    
              )

   ( 
 
 
              

    
                )

 (3.3) 
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With this definition, the acceptance criterion is     [  
  

    
 ], which means that a 

proposed iterate    with probability   is accepted if it provides a better data match than 

the previous iterate      or with probability   

    
   if the data match is not improved 

by the current. Fig. 3.1(a) depicts the non-adaptive facies conditioning workflow with a 

TI representing a simple fluvial channel system that will be discussed in the next section. 

A major limitation of the above algorithm is its computational inefficiency. In 

general, when the computation of the objective function is fast, one could set the number 

of iterations (    ) to be very large and randomly generate facies models to implement 

the steps in Table 3.1 to explore the search space and identify the model with the best 

data match. However, given the complexity of facies distribution in large models and the 

high computational cost of forward model simulation to evaluate the objection function 

for each proposed model (iterate), the above algorithm, while simple, offers an 

extremely inefficient and impractical procedure for generating conditional facies models. 

In general, stochastic optimization methods involve a large number of iterations to 

explore the search space to seek the global optimizer. They typically start with a broad 

search (exploration) of the parameter space to locate promising regions and then narrow 

the search to the proximity of the identified neighborhoods to find the optimal solution. 

The simple algorithm described in Table 3.1 does not follow this two-stage approach, 

which increases its computational complexity. An adaptive algorithm is proposed to 

improve the computational efficiency of the algorithm. 
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(a) Non-Adaptive conditioning method 

 
(b) Adaptive conditioning method 

 
 
 
Fig. 3.1 – Flowchart diagram showing the implementation steps of (a) non-adaptive 
and (b) adaptive conditioning methods. 
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3.3.2. Adaptive Conditioning with Facies Probability Maps 

To improve the efficiency of the proposed method, an adaptive strategy is proposed in 

which initially the algorithm explores the search space following the non-adaptive 

procedure in Table 3.1. This step is used to explore different regions of the search space 

and identify possible local solutions. The accepted models (iterates) are used to generate 

a facies probability map that will be included in the MPS simulation to guide the 

generation of a new proposal facies model. The intended purpose of the facies 

probability map is to improve the conditioning step of the algorithm by incorporating, 

probabilistically, the common connectivity patterns among the accepted models from 

previous iterations in the MPS simulation.  

To develop an adaptive approach, the accepted models are stored and used to 

improve the performance of the conditional facies simulation from the TI. Specifically, 

the algorithm uses the statistical information about the accepted models to generate a 

facies probability map. The facies probability map is then incorporated into the SNESIM 

algorithm as soft data to simulate facies models with higher acceptance probability. In 

this case, the conditioning process is not independent and has a memory. The facies 

probability map is initially uninformative and is updated after each successful iteration 

to reflect the new information provided by the accepted model. The updates applied to 

the facies probability map are very gradual to ensure that: (1) initially, when the 

probability map is uninformative, the facies models drawn mostly follow the variability 

in the TI with little constraining from the TI; and (2) at later stages, when the probability 
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map is more informative, relatively smaller update steps are introduced to primarily 

explore the neighborhood around the probability map. 

The implementation is begun by generating the first facies model with an 

uninformative constant probability value proportional to the ratio of different facies 

types (the marginal distribution of the facies). This will ensure consistency with the TI 

prior to data integration. After assigning permeability values to the facies, the reservoir 

model is used to predict the observations that are needed to calculate the fitness function 

for the new facies model. If a new model is accepted, it is used to update the facies 

probability map. The following equation is adopted to update the probability map after 

each successful conditioning iteration: 

    

{
  
 

  
 
(  

 

   
)         

 

   
 ∑     

    

     

   

     

∑     
    

     

   

     

 (3.4) 

where   is the iteration number,       is the number of accepted iterations,   is the 

weight given to accepted model at each iteration (proportional to its predictive 

performance),     is the number of burn-in iterations in which the effect of the initial 

(uninformative) probability map is more dominant for a broader exploration of the 

search space. High     values correspond to smaller corrections to the initial probability 

map (longer memory for the initial probability map) and extended exploration time; in 

the limit as       the behavior of the adaptive algorithm becomes similar to the non-

adaptive case. On the other hand, lower values for     result in strong (premature) 
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updates to the facies probability map, which is not desirable at the initial stage of the 

algorithm.         is used for the numerical experiments here. The implementation 

steps for the adaptive algorithm are summarized in Table 3.2. While in this 

implementation the maximum number of iterations and the value of the objective 

function are the stopping criteria of the optimization, the facies probability map may also 

be used to define a stopping criterion. For example, one could stop the optimization if 

the changes in the probability map in the last   iterations falls below a predefined 

threshold. 

 

Table 3.2 – Adaptive conditioning algorithm 
 

 Initialize with a realization     (and         ) and       
 Generate an uninformative probability map         
 Assign          and           and            
 While        and           

    
o Using     to draw a conditional realization    and compute       and     
o Perform acceptance test with a specified criteria, e.g.    [  

  

    
] 

 If    is accepted, then 
 update     using Eq. (3.4) 
       

o If              then 
          and              

o       
 Return       

 
 

 

The adaptive algorithm in Table 3.2 bears similarity to the simulated annealing 

algorithm, with the difference that instead of the temperature parameter that controls the 

temperature decrease rate (transition from exploration to focused search), it uses the 
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probability map to control the search. However, it is important to note that application of 

the stochastic search methods such as simulated annealing to MPS-based flow data 

conditioning is complicated by generating controlled perturbations that are consistent 

with TI statistics. The probability perturbation method (Caers, 2002) automatically 

satisfies the TI consistency constraint by introducing the perturbation to the 

parameterization of the random seed. The proposed adaptive approach based on the 

facies probability map can introduce perturbation that are consistent with the TI and, 

additionally, provide a flow-data feedback mechanism to guide the conditional MPS 

simulation outcome. The feedback mechanism through facies probability map is general 

and can be in included in other conditioning techniques such as the PPM. In addition, in 

the current implementation the marginal distribution of facies for each gridblock from 

the accepted iterations to is used define the conditioning facies probability map. 

Alternative implementations can be developed to incorporate higher-order statistical 

patterns from the accepted iterations into the conditioning process. 

Fig. 3.1(b) displays the adaptive conditioning workflow in contrast to the non-

adaptive cases shown in Fig. 3.1(a). The adaptation may be interpreted as a proposed 

search direction that is derived from the performance of the accepted models in previous 

iterations. The resampling or re-simulation approach (Hasen et al., 2008, 2012; 

Mariethoz et al. 2010a) take advantage of the accepted samples in generating a new 

proposal model (perturbation). In my case, the conditioning is guided by a probability 

map that represents the statistical information about the facies distribution from 

previously accepted iterates. Finally, after convergence when the changes to the 
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probability map becomes minimal the adaptive approach may be used to generate 

several facies models with the final probability map to explore the local variability 

around the obtained solution in the search space. 

3.3.3. Adaptive Conditional Facies Simulation from Multiple TIs  

The optimization algorithms described above can be extended to the case where multiple 

TIs are used to account for the uncertainty in the form and structure of facies 

connectivity that are presented as plausible geologic scenarios. The MPS simulation 

offers a pattern imitating replication of the connectivity information embedded in a TI. 

As such, it is able to preserve the higher order statistics of the TI patterns, which is very 

desirable if the TI adequately represents the reality. When the TI (i.e., the conceptual 

prior connectivity model) is not correctly specified, a persistent bias is introduced in the 

simulation results. To account for the uncertainty in the TI, one practical approach is to 

use multiple TIs that provide alternative interpretations, for example by different 

geologists, of the available data and geologic knowledge. The uncertainty in the TI may 

also be modeled through stochastic treatment of the input parameters in the process-

based modeling. In generating conditional samples from multiple TIs one is confronted 

with two problems: 1) identifying the relative importance (weight) of each TI and 2) 

conditioning on flow data. The resulting problem is clearly more complicated than 

conditional sampling from a single TI. Since the flow-data feedback mechanism in our 

adaptive conditioning approach provides information about the performance of each TI 

in matching the flow data, it can be used to address the two problems at once. 
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Here, the adaptive conditioning approach is extended to flow data conditioning 

under TI uncertainty. To this end, the algorithm is modified to generate a conditional 

model from multiple TIs each with a weight proportional to its predictive performance. 

Specifically, during the exploration time, each TI is given an equal weight (that sum to 

one) and the adaptive algorithm is initially run independently for each TI. The accepted 

iteration from each TI will be used to update the probability map for the corresponding 

TI. This results in a separate probability map for each TI. After the initial stage, the 

accepted iterations from all TIs are given both a normalized weight and a TI flag that 

shows from which TI they are simulated. The normalized weight    for each accepted 

model    
     is proportional to the function  (  ). The TI weights are calculated as the 

sum of the weights of the accepted models drawn from the corresponding TI. The 

accepted models from each TI are then used in Eq. (3.4) to generate a corresponding 

probability map for that TI. The next model is then proposed by first probabilistically 

selecting a TI (based on TI weights) and then simulating a facies model using the 

corresponding probability map. As the iterations proceed and the TI weights are updated, 

more (fewer) models are proposed (drawn) from the TIs with the larger (smaller) 

weights. In the next section, the application of the above adaptive conditioning 

algorithms with three numerical experiments is demonstrated.    
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(a) (b) (c) (d) 

 
Fig. 3.2 – Well configuration and true synthetic models for the two water flooding 
examples: (a) 13-spot well configuration in a 45×45 two-dimensional reservoir and 
(b) reference facies model for Example 3.1; (c) 9-spot well configuration in a 
100×100 two-dimensional reservoir and (d) reference meandering facies model for 
Example 3.2 and Example 3.3. 
 
 

 

 

3.4. Applications 

To investigate the efficiency of the proposed adaptive conditional simulation approach, 

the non-adaptive algorithm is applied to two water flooding examples to estimate the 

distribution of channel facies from production measurements. In the third example, three 

structurally different TIs are provided to account for the uncertainty in the prior channel 

connectivity model. For each example, the non-adaptive algorithm is used followed by 

the adaptive conditioning under identical conditions. This section is concluded with a 

discussion about the results and the properties of the proposed adaptive algorithm. 

3.4.1. Example 3.1: Straight Channels 

3.4.1.1. Experimental Setup 

In the first example, a 13-spot reservoir configuration consisting of four water injection 

wells and nine oil production wells is considered. The objective is to infer the two-
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dimensional facies distributions from the production observations in these wells. The 

facies permeability values are known while their spatial distribution is unknown. The 

channel and background facies permeability values are       and     , respectively.  

 

 

 

 
 

 
 

  

 
 

 
 

 
(a) (b) (c) (d) 

 
Fig. 3.3 – The training images and sample realizations for Examples 3.1 and 3.2; 
(a)-(b) The TI and sample facies realizations for Example 3.1; (c)-(d) the TI and 
sample facies realizations for Example 3.2. 
 
 

 

The initial oil saturation and pressure are      and        , respectively, and 

are distributed uniformly throughout the reservoir. The injection wells operate with the 

rate of         during the twelve years of simulation. The production wells operate 

under a constant pressure of        . Under these settings, the pressure at the injection 

wells as well as the water and oil rates at the production wells were measured every year 

and used for facies conditioning. The well configuration and reference permeability map 

for Example 3.1 are illustrated in Fig. 3.2(a) and 3.2(b), respectively. For the first 
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example, the performance of the method  is investigated under different data noise levels 

(signal-to-noise ratios) as discussed in the next section. 

3.4.1.2. Non-Adaptive Conditioning 

First, the non-adaptive algorithm is applied for the conditional facies sampling. The 

synthetic true facies model is derived from the TI in Fig. 3.3(a) and contains two 

intersecting channels. Three unconditional facies realizations from the same TI are 

depicted in Fig. 3.3(b). In this experiment, the optimization algorithm is run for 10,000 

iterations. The best models at select iterations are shown in Fig. 3.4(a). The first to the 

last columns of Fig. 3.4(a) show the best reservoir model (with the lowest data misfit) 

obtained at iterations 100, 500, 1000, 5000, 10000, respectively. Approximately        

(     out of       ) of the simulated realizations in this example were accepted. Note 

that acceptance of an iteration only implies that the current iterate improves the best 

available solution; clearly, initially the algorithm has a high acceptance rate since the 

initial model is generally far from the solution. This can be observed from the results in 

Fig. 3.4(a) that show the best model up to 1000th iteration is still far from the true model. 

The best reservoir model after 5000 iterations (Fourth column in Fig. 3.4(a)) begins to 

resemble the true synthetic model. 
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(a) Non-adaptive conditioning method 

 
 

(b) Adaptive conditioning method 

 
 
Fig. 3.4 – The best facies model (solution) after 100 (1st column), 500 (2nd column), 
1000 (3rd column), 5000 (4th column), and 10000 (last column) iterations, for the 
non-adaptive (a) and adaptive (b) conditioning methods in Example 3.1. 
 
 

 

3.4.1.3. Adaptive Conditioning 

The results of conditional facies simulation using the proposed adaptive conditioning 

approach for the first example are illustrated in Fig. 3.4(b). The columns in Fig. 3.4(b) 

show, from left to right, the best reservoir model (with the lowest data misfit) obtained at 

iterations 100, 500, 1000, 5000, 10000, respectively. The total number of accepted 

iterations in this case is 4809 (48.09%), which is 10% higher than that of the non-

adaptive case. While this shows an improvement over the non-adaptive approach, it does 

not highlight the convergence behavior of the adaptive method. The behavior in Fig. 

3.4(b) is clearly different from that in Fig. 3.4(a). In Fig. 3.4(b), the best reservoir 
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models that are generated after only 500 iterations have similar connectivity features to 

those in the true model, which indicates a much faster convergence behaviors. 

 

 

 
 

 
Fig. 3.5 – The updated probability map after 100 (1st column), 500 (2nd column), 
1000 (3rd column), 5000 (4th column), and 10000 (last column) iterations, for the 
adaptive conditioning method in Example 3.1. 
 
 

 

 Fig. 3.5 shows the evolution of the probability map with increasing number of 

iterations for the adaptive conditioning case. The main channel features in the reference 

model are clearly distinguishable in the probability map. This implies that the facies 

models generated with the adaptive approach gradually improve with increasing number 

of iterations. Hence, the simulated models tend to explore the facies distribution at the 

proximity of the connectivity pattern identified in the TI. These results clearly show the 

adaptive nature of the algorithm and the resulting increase in the efficiency of the 

conditioning approach. Fig. 3.6 shows the flow prediction performance of the two 

methods. The plots in Fig. 3.6 display the RMSE of the best reservoir model at different 

iterations for the non-adaptive (red curve) and adaptive (blue curve) algorithms. The 

lowest RMSE for adaptive and non-adaptive algorithms do not change significantly after 
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682 and 2461 iterations, respectively. Furthermore, the data match quality of the 

conditional model obtained from the adaptive approach is superior to the solution 

obtained from the non-adaptive case, implying that, in this example, the adaptive 

algorithm finds a better solution in less iteration. 

 

 

 
 

 
Fig. 3.6 – RMSE of the best facies model (solution) for the non-adaptive (red line) 
and adaptive (blue line) conditioning methods in Example 3.1. 
 

 

 

Also the performance of the adaptive algorithm is investigated under observation 

noise. Fig. 3.7 shows the final probability map that is obtained under different noise 

levels. The noise level is presented as the ratio (in percentage) of the zero-mean 

Gaussian noise standard deviation to the maximum range of variability in the 
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corresponding data values. While the conditioning performance degrades with increasing 

magnitude of the observation noise (decreasing signal-to-noise ratio), within a 

reasonable noise level, the results do not show significant deterioration. At a noise level 

of 30%, a major drop in the quality of the accepted models is observed where the lower 

channel begins to gradually disappear (Fig. 3.7(d)). 

 

 

    
(a) (b) (c) (d) 

 

 
Fig. 3.7 – Final probability maps in Example 3.1 with (a) 0% (original), (b) 10%, (c) 
20%, and (d) 30% added observation noise. The noise standard deviation is 
reported as the percentage of the maximum range of variability in the observed 
data. 
 

 

 

Fig. 3.8 displays the reservoir model with the lowest data misfit at iterations 100, 

500, 1000, 5000, 10000 for noise levels of 0%, 10%, 20%, and 30%, respectively. The 

algorithm does not seem to show significant sensitivity to the noise, at least at the 

moderate noise levels that were considered in this study. 
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 (a) Noise Free Observation 

 
 

(b) Observation with 10% Noise 

 
 

(c) Observation with 20% Noise 

 
 

(d) Observation with 30% Noise 

 
 

 
Fig. 3.8 – The best facies model (solution) after 100 (1st column), 500 (2nd column), 
1000 (3rd column), 5000 (4th column), and 10000 (last column) iterations  in 
Example 3.1: (a) no observation noise, (b) 10% observation noise, (c) 20% 
observation noise , and (d) 30% observation noise. 
 

 

 

3.4.2. Example 3.2: Meandering Channels 

3.4.2.1 Experimental Setup 

In the second example, a 9-spot reservoir configuration consisting of one water injection 

well and eight oil production wells is adopted. Similar assumptions to those in Example 
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3.1, including the well controls and their specified operational values, the initial oil 

saturation and pressure in the field as well as the measured production quantities, are 

assumed. The measurements were obtained every 90 days. The channel and background 

facies permeability values are       and     , respectively. The well configuration 

and the true synthetic permeability map are illustrated in Fig. 3.2(c) and 3.2(d), 

respectively. 

3.4.2.2 Non-Adaptive Conditioning 

The synthetic true permeability model in Example 3.2 is derived from the TI in Fig. 

3.3(c). This model contains a meandering channel with an overall east-west orientation. 

Three unconditional reservoir models are depicted in Fig. 3.3(d). Only the injection well 

and one of the production wells (located in the north of the reservoir) are drilled in the 

channel section of the reservoir. The simulation results with the non-adaptive algorithm 

are shown in Fig. 3.9(a). The columns, from left to right in Fig. 3.9(a) show the best 

reservoir model obtained at iterations 100, 500, 1000, 5000, 10000, respectively. While 

the obtained best model shows meandering patterns that are similar to those in the 

reference model (Fig. 3.2(d)), the feature in the lower part of the domain is not captured 

well. 
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(a) Non-adaptive conditioning method 

 
 

(b) Adaptive conditioning method 

 
 
Fig. 3.9 – The best facies model (solution) for the non-adaptive (a) and adaptive (b) 
conditioning methods in Example 3.2 after 100 (1st column), 500 (2nd column), 
1000 (3rd column), 5000 (4th column), and 10000 (last column) iterations. 
 
 

 

3.4.2.3. Adaptive Conditioning 

The results of facies conditioning for Example 3.2 using the proposed adaptive approach 

are shown in Figs. 3.9(b) and 3.10. The columns, from left to right, in Fig. 3.9(a) show 

the best reservoir model obtained at iterations 100, 500, 1000, 5000, 10000, respectively. 

In this case, the final solution for the adaptive case is slightly better. Fig. 3.10 contains 

the evolution of the channel probability map at different optimization iterations for the 

adaptive implementation. The columns, from left to right, in Fig. 3.10 display the 

updated probability map at iterations 100, 500, 1000, 5000, 10000, respectively, which 

show that as the iterations proceed the probability map continuously improves. However, 

the improvement at later iterations is less pronounced. This can be partly attributed to the 

larger size of the domain (increased variability), the fewer number of wells (data) and 
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the complexity of the meandering channel facies. In general, these factors can make the 

feedback mechanism less effective. Nonetheless, the results show that the probability 

map provides important information about facies connectivity.  

 

 

 
 

 
Fig. 3.10 – The updated probability map after 100 (1st column), 500 (2nd column), 
1000 (3rd column), 5000 (4th column), and 10000 (last column) iterations, for the 
adaptive conditioning method in Example 3.2. 
 

 

 

Finally, Fig. 3.11 plots the evolution of the RMSE value for the best model with 

increasing number of iterations for both the non-adaptive (red line) and adaptive (blue 

line) algorithms in Example 3.2. The RMSE of the best model obtained from the 

adaptive algorithm is lower than the one obtained from the non-adaptive approach, 

which is consistent with the results in Example 3.1. 
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Fig. 3.11 – RMSE of the best facies model (solution) for the non-adaptive (red line) 
and adaptive (blue line) conditioning methods in Example 3.2. 
 
 

 

3.4.3. Example 3.3: Multiple TIs  

3.4.3.1 Experimental Setup 

In the last example of this section, the application of the adaptive conditioning algorithm 

is considered when multiple TIs are used to represent the uncertainty in the prior model. 

The reservoir configuration and experimental conditions remain identical to those used 

in Example 3.2. However, as shown in Fig. 3.12, in this case we consider three 

alternative TIs with distinct connectivity patterns for describing the type of variability in 

the fluvial formation. 
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(a) (b) (c) (d) (e) (f) 

 

 
Fig. 3.12 – Three TIs with different structural connectivity each with three 
corresponding unconditional MPS realizations: (a) the TI with straight channels 
and (b) three corresponding realizations; (c) the TI with intersecting straight 
channels and (d) three corresponding MPS realizations; and (e) the TI with 
meandering channels and (f) three corresponding MPS realizations. 
 

 

 

Figs. 3.12(a), 3.12(c), and 3.12(e) show the three TIs that exhibit straight left-to-

right non-intersecting channels, predominantly left-to-right but intersecting channels, 

and meandering channels, respectively. Figs. 3.12(b), 3.12(d), and 3.12(f) show three 

facies models that are simulated from the corresponding TIs in Figs. 3.12(a), 3.12(c), 

and 3.12(e), respectively. The reference facies map belongs to the more complex 

meandering channel in Fig. 3.12(e). The reference model in this example is the same as 

that in Example 3.2 and belongs to the TI with the meandering channel. The objective is 

to implement the adaptive conditioning approach of Subsection 3.3.3 and evaluate its 

performance under TI uncertainty. 
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(a) (b) (c) (d) 

 

 
Fig. 3.13 – The results for adaptive facies conditioning from multiple TIs: (a) TI 
weights (%) for each training image in Fig. 3.12; (b)-(d) show final probability map 
for the TIs with straight, intersecting and meandering channels, respectively. 
 
 

 

3.4.3.2 Adaptive Conditioning 

In this example, initially each TI was given an equal weight of 1/3. As the iterations 

proceed beyond the burn-in stage, the TI weights are updated based on the data match 

performance of the accepted models from each TI (as described in Subsection 3.3.3). 

Fig. 3.13 summarizes the adaptive conditioning results. Fig. 3.13(a) displays the final TI 

weights in percentage while Figs. 3.13(b-d) show the probability map corresponding to 

each individual TI. The best solution at different stages (iterations 100, 500, 1000, 5000, 

and 10000) of the algorithm are shown in Fig. 3.14 and suggest that in all cases the best 

samples belong to the TI with the meandering channel. Finally, the RMSE of the data 

match is shown is Fig. 3.15. While the RMSE tend to decrease even beyond 4000th 

iteration, most of reduction in RMSE occurs within the initial stages. It is clear from the 

results that the TI with meandering channels has the dominant contribution to the 

conditional sampling process. However, the contributions from other TIs are non-zero, 
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indicating that a number of facies models from other TI were accepted. However, the 

results indicate that these samples were accepted at the early stages where the best model 

is still not close to the reference model, and hence, the acceptance probability is high.  

 

 

 
 

 
Fig. 3.14 – The best facies model (solution) after 100 (1st column), 500 (2nd 
column), 1000 (3rd column), 5000 (4th column), and 10000 (last column) iterations 
for Example 3.3 where adaptive facies conditioning from multiple TIs is used. 
 
 

 
 

 
 

 
Fig. 3.15 – The RMSE plot for the best facies model (solution) for the adaptive 
conditioning method in Example 3.3. 
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While the facies distribution resulting from the inconsistent TIs cannot capture 

the correct connectivity in the reference model, they seem to identify the local variability 

around the wells in the reference model. In general, non-zero contribution from 

inconsistent TIs is possible and could be explained by the ill-posed nature of the inverse 

problem where alternative geologic scenarios may be found to reproduce the limited 

observed data (albeit with lower probability). In this particular example where the 

contrast between consistent and inconsistent TIs is quite noticeable, incorporating a data-

feedback mechanism can effectively distinguish between consistent and inconsistent TIs. 

 

3.5. Conclusions 

A stochastic optimization framework is presented for adaptive conditioning of MPS-

based facies simulation from a TI to nonlinear flow data. This was achieved by learning 

a facies probability map that describes the likelihood of facies occurrence in each grid 

block from accepted facies models in previous iterations. The optimization is initialized 

with an uninformative probability map and an unconditional facies model. The 

optimization algorithm consists of two stages: (i) a burn-in time in which the update to 

the probability map is minimal to explore the parameter space and (ii) a focused search 

stage where the promising regions of the parameter space are extensively explored to 

find the optimal solution. The probability map is gradually updated by incorporating the 

information about the facies distribution from the chain of accepted iterates. Since the 

accepted facies models improve the data match the dominant facies connectivity in them 

(common features among the accepted models) are likely to represent some of the 
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existing trends in the solution. Hence, a collective representation of the common features 

in the accepted models is used to construct a facies probability map as a data-feedback 

mechanism to guide and accelerate the conditioning process.  

 The implementation of the proposed approach is illustrated its performance using 

numerical water-flooding experiments with a single given TI and where multiple TIs 

were used to reflect the uncertainty in the geologic scenario. The proposed adaptive 

algorithm was able to effectively condition facies simulation from a given TI to the 

observed flow data. The feedback from the observed data into the simulation process 

was performed through updated facies probability maps and provided an effective 

mechanism to guide the simulation of the new facies models and improve the efficiency 

of the conditioning algorithm. The proposed adaptive approach generates more 

representative facies models in less iteration. Thus, compared to non-adaptive methods, 

adaptive algorithms based on probability conditioning are expected to provide 

significant computational saving in practical applications. It is important to note that the 

feedback mechanism used in the adaptive algorithm is general and can be included in 

existing conditioning algorithms. Also, the proposed adaptive algorithm is extended to 

applications with multiple TIs. Application to a synthetic example indicated that the 

adaptive algorithm can distinguish between consistent and inconsistent TIs and adjust 

the weight of each TI according to their contribution to explaining the observed data.  

An important aspect of the proposed algorithm that requires further investigation 

is a sensitivity analysis with respect to different parameters of the algorithm and its 

ability to adequately explore the parameter space. While the probability map in these 
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examples converged to a pronounced connectivity features that were consistent with 

those in the reference model, this result cannot be generalized. In general, the adaptive 

algorithm results in a single probability map that may be sensitive to different 

initialization and/or random seed selection. The effect of multimodality (multiple local 

solutions) on the probability map is an important topic that was not considered in this 

research work. It is also important to allow for an extended exploration of the prior 

parameter space (the TI) especially in large scale problems with complex geologic 

connectivity where multiple local solutions with distinct connectivity patterns are likely 

to exist. Parallel implementation with different initialization may be useful for 

investigating the robustness of the algorithm against the initialization parameters 

(Romary, 2010). Furthermore, without proper implementation, the adaptation introduced 

by the feedback mechanism can limit the initial exploration of the parameter search 

space. This effect can be mitigated through several mechanisms such as dampening the 

update to the probability map by the accepted iterations, balancing the importance of the 

TI and the probability map, regionalizing the definition of the probability map to 

increase the diversity in areas with fewer or no observations, and adjusting the lower and 

upper bounds on the probability map to control its relative impact on facies simulation. 

Furthermore, implementation of the adaptive algorithm in parallel chains by initializing 

it from different points in the search space can provide additional insight into the 

convergence and robustness properties of the proposed method. 

In the next section, a novel Bayesian mixture model for adaptive and efficient 

sampling of conditional facies from multiple uncertain TIs is developed. The posterior 
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distribution of facies is partitioned into individual conditional densities of the TIs and the 

corresponding mixture weights are estimated from the likelihood function for each TI. 

The suitability of the proposed Bayesian mixture-modeling approach is demonstrated 

using several numerical experiments in fluvial formations with uncertain orientation and 

structural connectivity. 
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4. MIXTURE MODEL PROBABILITY CONDITIONING METHOD (MMPCM)*  

 

4.1. Summary 

Multiple-point statistics (MPS) provides a systematic approach for pattern-based 

simulation of complex discrete geologic objects from a conceptual training image (TI) as 

prior model. The TI contains the general shape, geometry, and connectivity structures of 

complex patterns and encodes the related higher-order spatial statistics of the expected 

features. Conditioning MPS simulated facies on flow data poses a challenging nonlinear 

inverse problem for estimating discrete parameter fields. Additionally, the pattern-

imitating nature of MPS simulation implies that the simulated facies inherit the spatial 

structure of the features in the TI. Since TIs are constructed from uncertain geologic 

information and imperfect assumptions, the resulting simulated facies may fail to predict 

the correct flow and transport behavior in the subsurface environment. It is, therefore, 

prudent to account for the full range of structural variability in describing the geologic 

facies distribution by considering multiple TIs. Here, a Bayesian mixture model is 

presented for adaptive and efficient sampling of conditional facies from multiple 

uncertain TIs. The posterior distribution of facies is partitioned into individual 

conditional densities of the TIs and the corresponding mixture weights are estimated 

from the likelihood function for each TI. To implement the conditional sampling, a 

                                                 

* Part of this section is reprinted with permission from “A Bayesian mixture-modeling approach for flow-
conditioned multiple-point statistical facies simulation from uncertain training images” by Khodabakhshi, 
M. and Jafarpour, B., 2013. Journal of WATER RESOURCES RESEARCH. 49, 1-15. Copyright 2012 by 
American Geophysical Union. 
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recently developed ensemble Kalman filter (EnKF)-based probability conditioning 

method is applied, whereby EnKF is used to invert the flow data and obtain a facies 

probability map (soft data) to guide conditional facies simulation from each TI. The 

suitability of the proposed Bayesian mixture-modeling approach is demonstrated using 

several numerical experiments in fluvial formations with uncertain orientation and 

structural connectivity.  

 

4.2. Training Image Uncertainty 

The main difficulties in understanding and modeling subsurface phenomena is related to 

inaccessibility and heterogeneity of geologic formations, together with the complex 

interactions between fluids and rocks over a wide range of temporal and spatial scales. 

Consequently, significant uncertainty is introduced into predictions of the related flow 

and transport processes, thereby complicating the development of subsurface 

hydrocarbon resources. 

Multiple-point statistics (MPS) presents a grid-based pattern-imitating simulation 

method to model complex geological connectivity that is not amenable to variogram-

based modeling techniques. A review of MPS sampling was presented in Subsection 1.3. 

However, a standing challenge in MPS-based model calibration is the uncertainty in the 

prior training image (TI). This issue becomes particularly important considering the 

strict pattern-imitating nature of MPS simulation that restricts the spatial variability of 

the resulting facies to the structural connectivity and encoded patterns in the given TI. 

Specifically, realization of facies maps from TIs with different structural connectivities 
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can exhibit distinctly different flow and transport prediction, which can be detrimental 

for development planning. 

The main objective in this section is to develop an adaptive sampling strategy 

when multiple TIs are used to acknowledge the uncertainty in the geologic continuity 

model. A key question to address is how to identify and sample from relevant TIs in a 

list of candidate prior TIs. A Bayesian mixture-modeling algorithm is introduced for 

generating conditional facies realizations from multiple uncertain TIs. Data scarcity and 

low resolution, together with errors in geologic modeling and imperfect assumptions can 

leave significant uncertainty in interpretation of the existing patterns in a prior TI model. 

One approach to deal with the uncertainty in describing the geologic continuity 

in a TI is to consider several TIs that capture the full range of geologic variability for a 

given formation. These TIs could be obtained based on different plausible geological 

scenarios, for example, from independent interpretations by different geologist or by 

stochastic treatment of parameters in a geologic modeling study that is used to identify 

possible connectivity patterns in the formation. 

One way to apply the EnKF-based PCM to conditional facies simulation under 

several TIs is to randomly draw an ensemble of facies realizations from different TIs to 

account for the full range of variability in geologic continuity. Jafarpour and 

McLaughlin (2009b) applied the regular EnKF with an ensemble derived from fluvial 

channel TIs with different channel widths and showed that an ensemble composed of a 

mixture samples from different TIs may still be able to retrieve the overall continuity 

structure from flow data. A similar experiment can be set up using the PCM approach.  
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In Subsection 2.4.4.2, the effect of using an incorrect prior TI on the performance 

of regular EnKF and the PCM implementation was shown. In the next subsection, it is 

shown that uniform sampling from multiple TIs with different structural connectivity 

does not provide an effective solution to account for TI uncertainty. As an effective 

alternative method, a Bayesian mixture-model formulation is introduced for adaptive 

sampling from multiple prior TIs. 

4.2.1. Example 4.1: Uniform Sampling from Multiple TIs 

In the first example, numerical experiment in two-dimensional two-phase (oil-water) 

system is used. The model includes a nine-spot well configuration with one water 

injection well in the center and eight symmetrically located oil producers on reservoir 

boundaries. The initial oil saturation is      everywhere in the reservoir, whereas the 

initial pressure is         everywhere. A total of     pore volume of water is injected 

during    months of simulation. The production ports operate with a constant pressure 

of         for wells inside the high-permeability (channel) facies in the reference 

model and         for wells completed in the non-channel facies. Under these 

conditions, the injection pressure and water and oil production rates were measured and 

used as calibration data.  
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(a) (b) (c) (d) (e) (f) 

 

 
Fig. 4.1 – Three TIs with different structural connectivities and three 
corresponding unconditional MPS realizations from them: (a) the TI with straight 
channels and (b) corresponding realizations; (c) the TI with intersecting straight 
channels and (d) corresponding MPS realizations; and (e) the TI with meandering 
channels and (f) corresponding MPS realizations. 
 

 

 

The measurements were obtained every   months by running the forward 

simulation with a specified reference permeability field. The channel and background 

facies are assigned permeability values of       and     , respectively. The TIs for 

all the experiments in this section are shown in Fig. 4.1. Fig. 4.2(a,b) shows the 

reference model and well configurations used in the example 4.1. 

One approach to incorporate the uncertainty in the prior TI in the above model 

calibration problem is to combine multiple TIs. That is, one could include more diverse 

features in one TI to capture a wide range of variability. This approach may require a 

very large TI if the stationarity assumption is to be preserved. In addition, in some 

geologic formations it may be hard to justify combining several alternative geologic 

patterns into a single TI. Therefore, except for investigating small variabilities in the 

conceptual model, combining multiple TIs with different structures into one does not 

provide a rigorous solution. 
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(a) Reference model (log-perm) (b) Well setup 

 
 Sample Mean BHP (psi) Oil Rate (STBD) Water Rate (STBD) 

(c
) 
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F 
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Fig. 4.2 – Facies estimation results for standard EnKF and PCM facies model 
calibration in Example 4.1: (a) true log-permeability field and (b) well configuration; 
The results for (c) EnKF and (d) PCM  when an equal number of samples are used 
from each TI. One final facies sample (first column), the mean of final facies 
ensemble (second column), and the production forecast with final replicates (third to 
fifth column) are shown where the red circles show the observed response of the 
reference model; the forecasts with each log-permeability realizations are shown with 
thin gray lines, whereas the mean forecast is displayed with thick black lines. 
 

 

 

As an alternative approach, to represent TI uncertainty it is possible to sample 

facies realizations from multiple TIs. In this case, it is critical to design an effective 

sampling strategy so that the number of samples drawn from each TI is proportional to 

the overall flow prediction performance of the samples taken from it which is achieved 

through an adaptive sampling mechanism, described in the next section. To show the 



 

100 

 

importance of an adaptive sampling strategy, three TIs (Figs. 4.1(a), 4.1(c), and 4.1(e)) 

are used and the EnKF and PCM calibration are applied by taking equal number of 

facies samples (   ) from each TI. Note that the TI in Fig. 4.1(e) is the same TI from 

which the reference model is simulated. 

 

 

Table 4.1 – RMSE and Spread for production forecast in Example 4.1. 

 
BHP Oil prod rate Water prod rate 

RMSE Spread RMSE Spread RMSE Spread 
Initial 0.124 0.0794 0.3294 0.1797 0.7225 0.3673 
EnKF 0.0209 0.0178 0.1052 0.055 0.1365 0.07 
PCM 0.1158 0.0776 0.3207 0.1811 0.6747 0.3754 

 

 

 

Fig. 4.2(c) has the results for the standard EnKF when     samples from each TI 

are used for model calibration. Although the estimated results are not discrete random 

fields, they contain important information about the location of channel facies. This 

observation is consistent with the results reported by Jafarpour and McLaughlin (2009b). 

Note that even though the updated log-permeability distribution does not share the 

discrete nature of the reference model, it contains important information about facies 

distribution, which is taken advantage of in the PCM approach (see Section 2). In 

addition, as shown in Table 4.1, the ensemble Spread and RMSE are both reduced after 

data assimilation despite the poor geologic reconstruction of the reference model. 

Fig. 4.2(d) illustrates the calibration results using PCM with the same three TIs 

and by taking     samples from each TI. In this case, the majority of final facies 
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samples (2/3 of all samples) are taken from the incorrect TI. As expected, the forecasts 

with final replicates from three TIs with different structures exhibit wide variability. In 

this case, the forecast ensemble envelopes the observed data. The log-permeability 

ensemble mean also shows a slight trace of the meandering trend in the field. Clearly, 

when the three TIs have very different structures, only one (if any) of the TIs can be 

relevant; therefore, the uniform sampling strategy employed in this example becomes 

ineffective.  

A Bayesian mixture model is combined with the probability conditioning method 

(PCM) for adaptive conditional sampling from multiple TIs. A detail review of PCM 

was presented in Section 2. The adaptive conditional sampling is accomplished by 

initially generating unconditional facies realizations from multiple TIs using an initially 

equal weight for each. The TI weights are then updated based on their predictive 

performance (likelihood function). For conditional sampling, the dynamic flow data is 

converted into a facies probability map using the PCM. The generated probability map is 

incorporated as input into MPS simulation to draw new conditional facies samples from 

each TI according to the weights assigned to each TI based on their likelihood to match 

the observed data. This leads to an adaptive facies sampling technique where fewer 

(more) realizations are generated from the TIs with inconsistent (consistent) geologic 

continuity. In the next section, an adaptive sampling strategy is proposed to address this 

issue. 
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4.3. Bayesian Mixture Modeling (BMM) 

A Bayesian mixture-model formulation is presented for estimating TI importance 

weights, which will subsequently be used for adaptive sampling from the TIs. To this 

end, the mixture weights  (       ) are considered such that ∑  (       )
 
      and 

   (  |    )   . To compute the desired posterior density          , the individual 

posterior densities  ( |       ) for each TI    and the corresponding mixture 

weights  (  |    ) must be calculated. Assuming that the facies model   is a mixture 

model of   different density functions (TIs here), the posterior density           is 

          ∑  (         ) (  |    )
 

   
 (4.1) 

In this ensemble formulation, the mixture weights determine the sampling weights for 

each TI and refer to the relative number of realizations taken from each TI. The 

individual posterior densities for a given TI can be expressed as 

 (         )   (              )  
               (           )

 (            )
 (4.2) 

where the equality  (  |           )                 is used. The first and second 

terms of the numerator in equation (4.2) can be computed from the observation model 

and the posterior at the previous time step, respectively. The denominator in equation 

(4.2) is a normalization constant and is not trivial to calculate. In this ensemble 

framework, I am interested in drawing samples from the above posterior density function 

for each given    according to the mixture weights. The mixture weights  (       ) for 

each TI can be computed by invoking the Bayes rule as follow: 
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 (       )  
 (       ) (  )

       
 (4.3) 

where         is independent of    and can be treated as constant, and  (       ) is the 

likelihood of observing the data under TI   , which is hard to compute unless 

simplifying approximations are applied. For example, under Gaussian posterior 

approximation,  (       ), may be computed in closed form using equation (4.2). Since 

the posterior is not Gaussian in these examples, an alternative approximation approach 

using Monte Carlo simulation is used. 

For sequential conditioning in time, the likelihood can be computed at each time 

step using the sequential form 

 (       )  ∏ (            )

 

   

 (4.4) 

which after substituting in equation (4.3) leads to 

 (       )       ∏ (            )

 

   

 (4.5) 

To compute the mixture weights, the individual likelihood functions in equation (4.5) 

must be obtained. These likelihood densities can be calculated through integration over 

 , i.e., 

 (            )  ∫                ( |         )  

 

 (4.5) 

For most realistic problems, finding the exact solution of the integration in equation (4.5) 

is not feasible. However, Monte Carlo approximations can be used to find samples from 
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 (            ). This approach is followed in this section. The steps involved in 

sampling from the TIs using the PCM approach are outlined in the next subsection. 

 

4.4. Implementation of BMM with Multiple TIs as Prior 

The implementation begins by assigning equal weight  (  )      to each component 

of the mixture model, i.e., TI (initial weight can be different if existing knowledge 

suggests so). 

For time steps        

A. Prediction step 

 Draw      realizations from the TIs based on the current TI weights 

(initially    ) and probability map (initially homogeneous) and assign 

permeability values to each facies type. 

 Solve multiphase flow equations for each realization of the permeability 

ensemble from the initial time step to predict the observed measurements 

at current time. 

B. Update mixture weights and probability map 

 Compute the sample weights for each realization of permeability 

according to the following proportionality: 

  
   

  (  |  )      ( 
 

 
(  ( 

   )    
   )

 
  

  (  ( 
   )    

   )) (4.6) 

These weights will be used for adaptive sampling from the TIs for the 

next time step. 
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 Using the EnKF analysis equation, update the mean of permeability 

realizations by integrating the observations at the current time step. 

 Use the mean permeability map in previous step to construct an updated 

probability map (following the procedure shown in Fig 4.3.). 

 

 

 
 

 
Fig. 4.3 – Schematic of steps involved in the proposed workflow for mixture-model 
formulation of conditional sampling from uncertain TIs. 
 

 

 

Since the EnKF update equation requires parameter covariance and cross-covariance 

between parameters and predicted responses, the log-permeability ensemble is used to 

derive these statistics. The updated log-permeability ensemble mean is then used to 

obtain probabilistic information about spatial facies distribution. To do this, the 

probability of each facies is considered at a grid block to be linearly related to the 
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difference between the updated permeability and the value of permeability assigned to 

each facies. Hence, the update equation is only used to condition the permeability mean 

on flow data and the updated permeability mean is used to infer a probabilistic 

description for the facies distribution (a probability map). The updated probability map 

is used to select an updated ensemble of facies models to perform the sequence of EnKF 

forecast and update for the next time step.  

Note that, following each update step, a new probability map is generated and 

used to draw an updated ensemble of conditional facies models from the available TIs. 

For parameter estimation, the states (pressures and saturations) are derived by rerunning 

the forward simulations from the initial time step using the updated facies models. This 

eliminates the loss of conservation principles (at the cost of a computational overhead) 

that is widely known for joint state and parameter estimation with EnKF. It is also 

worthwhile to note that the permeability updates are expected to be more accurate at the 

proximity of the wells and somewhat inconclusive away from the wells. The PCM 

approach is designed to combine the flow data with a prior TI model such that the 

former is used to deduce the local trends around the observation points (where flow data 

are more informative) and the latter to describe the facies connectivity away from 

observation points, where the data tend to be less conclusive (Section 2). When multiple 

TIs are used, the simulated facies samples tend to be similar around the well locations 

and become more dissimilar with increasing distance from the wells. 

In the next section, the performance of the mixture-model PCM approach is 

demonstrated under TI uncertainty using three numerical experiments for adaptive 
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conditional sampling. Finally, note that EnKF is only used to update the facies 

probability map, whereas the likelihood function is used to update the TI consistency 

weights. 

 

 

Table 4.2 – General Simulation/Assimilation Information 
Parameter Special value/condition 

Simulation parameters 
Phases Two-phase (oil/water) 
Cell dimensions                 
Rock porosity     (uniform) 
Initial oil saturation     (uniform) 
Initial pressure     psi 
Injection well constraints Water flow rate 
Production well constraints Bottom hole pressure 
Facies type Fluvial formation 
Geostatistical simulation Snesim 

 

Assimilation information 
Observation at the injection wells Bottom hole pressure 
Observation at production wells Oil and water flow rate 

 
 

 

 

4.5. Application 

In this section, three examples are presented to investigate the uncertainty in structure 

and direction of channel facies in a fluvial formation. In the first two-dimensional 

example, the structural connectivity of the TI is uncertainly not known, whereas, in the 

second two-dimensional example, channel orientation for a given structural connectivity 

is considered unknown. In the third example, 5 layers of SPE10 benchmark are used as 

true synthetic model and the structural connectivity is uncertainly unknown. An adaptive 
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sampling strategy is used to identify the correct structural connectivity in Examples 4.2. 

and 4.4. and the consistent channel direction in Example 4.3. The MPS simulations in 

the following examples are carried out using the snesim implementation in the Stanford 

Geological Modeling Software (Remy et al.; 2009). The general simulation and data 

integration parameters used for all the experiments are summarized in Table 4.2. 

4.5.1. Example 4.2: Channel Structure Uncertainty 

Example 4.1 is repeated with uncertain structural connectivity. Three TIs (Figs. 4.1(a), 

4.1(c), and 4.1(e)) are considered to reflect the uncertainty in the prior connectivity 

models. In the proposed mixture-model method, an ensemble with       realizations 

is used. Similar to the examples in Section 2, a simple linear mapping is applied to 

convert the mean log-permeability to a facies probability map (Fig. 2.4a). The lower and 

upper bounds      and      determine the level of confidence that is placed in the flow 

data (i.e., via the probability map).           and          are chosen for the 

examples that follow. 

The results of estimating the meandering channel facies using the mixture-model 

PCM approach are shown in Fig. 4.4. Figs 4.4(a) and 4.4(b) show the reference facies 

map and the field setup. Fig 4.4(c) illustrates the changes in TI consistency weights with 

each EnKF analysis step. The weight associated with the correct TI (with meandering 

channels) is shown with a solid blue line. Within about five EnKF updates, the 

consistent TI is correctly estimated, and almost all facies realizations are taken from the 

consistent meandering TI. Comparing the results from the mixture model approach (Fig. 

4.4(f)) with those from the EnKF and PCM updates in Fig. 4.2 reveals that the 
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probability map estimated by the mixture-model approach better represents the 

meandering feature in the true facies map. The level of variability in the simulated facies 

ensemble can be adjusted by the bounds specified for the probability map and/or by 

changing the   value in equation (1.3). 

Without adaptive sampling, the standard PCM approach uses a large number of 

samples from the two inconsistent TIs. As a result, the sample covariance that is used in 

the EnKF update becomes inaccurate and degrades the quality of the update (Fig. 4.2). 

However, by updating a weight that represents the TI consistency in reproducing the 

flow data, the proposed approach can continuously improve the EnKF analysis, since the 

updated covariance matrix after adaptively conditional resampling from the TIs better 

represents the spatial connectivity and correlation in the field. It only takes about four 

updates in this example to identify the correct TI.  

However, even with after identifying the correct TI, some uncertainty, mainly 

about channel boundaries, still remains in the calibrated ensemble of facies models (see 

Fig. 4.4, last row). This uncertainty may be attributed in part to the scattered nature of 

the data and the weak sensitivity of available flow and pressure data to the exact location 

of the channel boundaries. 
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(a)  True model (b) Well setup (c) TI consistency weights 

 
 

(d) Initial (e) 6 months (f) 72 months 
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Fig. 4.4 – Facies estimation results for mixture-model-based PCM approach in 
Example 4.2: (a) true log-permeability field, (b) its corresponding well 
configuration, and (c) evolution of the TI consistency weights throughout data 
integration steps. (d)–(f) The probability map (first row), three sample log 
permeabilities (second to fourth rows), and the mean and variance of ensemble log 
permeability (fifth and sixth rows, respectively) are shown for the initial time, after 
6 months, and 72 months of data assimilation, respectively. 
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The production forecast performance is measured using normalized ensemble-

based root-mean-square error (RMSE) and normalized ensemble spread defined as 

follows: 
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where       is the total number of observation times,       is the total number of wells, 

and   is the ensemble size. The spread and RMSE values become very similar when the 

estimated forecasts become unbiased (forecast mean approaches the true forecast). 

Fig. 4.5 summarizes the results from predicting the reservoir dynamic response. 

The results are also presented in terms of spread and RMSE performance measure in 

Table 4.3. It shows that before calibration the flow response of the initial ensemble 

deviates from the observed measurements, whereas the forecast with the calibrated 

ensemble better follows the observed trend in the data. Compared with Fig. 4.2(c), the 

proposed approach does not underestimate the ensemble spread. This is attributed 

mainly to the resampling step after each data integration step to generate new facies 

models. 

 

 

 



 

112 

 

 BHP (psi) Oil rate (STBD) Water rate (STBD) 
In

iti
al

 

   

Fi
na

l 

   
 

 
Fig. 4.5 – (top) Initial and (bottom) final production forecasts in Example 1. The 
first column (left) shows the injection bottom hole pressure, and the second and 
third columns display field oil and water production rates, respectively. 
Observations are displayed using red circles, while the forecasts for individual 
realizations and their mean are shown with thin gray and thick black lines, 
respectively. 
 

 

 

It is also important to recognize that, similar to other probabilistic sampling 

techniques, PCM may generate conditional facies realizations that do not reproduce the 

observed flow response (Section 2). From Table 4.3, it can be confirmed that, after data 

assimilation, the RMSE of the flow predictions is significantly improved, whereas the 

spread is also slightly reduced. Interestingly, the reduction in spread is not as significant. 

A comparison between the RMSE and spread after data assimilation shows that the two 

measures become very similar, implying that the forecast estimates after calibration are 

less biased. Assigning higher   values in the MPS simulation or changing the bounds 
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(     and     ) in the probability map to increase the similarity between the generated 

samples are mechanism that can be used to improve the sampling results and reduce the 

ensemble spread. 

 

 

Table 4.3 – RMSE and Spread for production forecast in Example 4.2. 

 
BHP Oil prod rate Water prod rate 

RMSE Spread RMSE Spread RMSE Spread 
Initial 0.124 0.0794 0.3294 0.1797 0.7225 0.3673 
Final 0.0935 0.0896 0.2172 0.1728 0.3925 0.3367 

 

 

 

4.5.2. Example 4.3: Channel Orientation Uncertainty 

The proposed method is applied in a separate example to identify channel orientation in 

a fluvial system. For this example, the channel facies structures are drawn from the TI 

shown in Fig. 4.1(c) but assume that channel direction is unknown. This was done by 

using the same TI and specifying a rotation angle for the simulated facies realizations in 

the snesim algorithm. The channel direction was allowed to vary in the 

range [         ], which covers all possible channel orientations.  

The reference model and well configuration for this test case are depicted in Fig. 

4.6(a) and 4.6(b), respectively. The channel direction in the correct TI changes between 

     and    , based on a histogram obtained from      samples. Based on the 

directional variability in the TI, five specific directions,     ,     ,   ,    , and 

    are used to cover the entire range of channel directions. With this specification, the 
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problem is reduced to adaptively sampling from the TI using the five rotation angles 

mentioned above. The total simulation time is 36 months. The simulation and model 

calibration parameters are kept the same as in previous example. 

The results of applying the mixture-model PCM to this problem are given in Fig. 

4.6. Fig. 4.6(c) shows the evolution of the TI directional consistency weight after each 

data integration step. The weight for the correct (horizontal) direction consistently 

increases with each update. The red line in the third row of Fig. 4.6(c) indicates the main 

continuity direction for the reference model (   ). After eight steps of assimilation, only 

the consistent TI has significant contribution. The final results (Fig 4.6(f)) show that the 

mixture-model PCM identifies the correct directionality and provides an estimate for the 

probability map that is consistent with the features in the reference model. The fourth 

and fifth rows in Figs. 4.6(c)–4.6(e) show two samples (out of    ) facies at different 

time steps. The improvement in the directionality of these facies samples is quite 

evident. Some (about    ) of the sample facies at the final step do not have the correct 

structure in the reference model. One explanation for this variability, beside the 

randomness introduced during snesim sampling, is the small number of observations in 

space (five locations). Note that since the samples are conditioned on hard data, the 

variance at the well location is zero. The final variance map shows that the main 

uncertainty is associated with channel edges and at locations far from the observation 

points. 
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(a) True model (b) Well setup (c) TI consistency weights 

 
 

(d) Initial (e) 18 months (f) 36 months 

 
 

Fig. 4.6 – Facies estimation results for mixture-model-based PCM approach in 
Example 4.3: (a) reference log-permeability field; (b) its corresponding well 
configuration; and (c) evolution of TI consistency weights throughout data 
integration steps. (d)–(f), The probability map (first row), histogram of channel 
directions (second row) with the reference direction indicated with the red line, two 
sample log permeabilities (third and fourth rows), and the ensemble log-
permeability mean and variance (fifth and sixth rows, respectively) are shown for 
the initial step, after 6, and 12 data assimilation steps, respectively. 



 

116 

 

In the above examples, the reference model belongs to one of the prior TIs. Since 

the TIs had different features in them, the correct TI is identified as a single consistent 

TI. In some cases, the reference features in the solution may be adequately captured with 

more than one of the prior TIs or, in a more pessimistic but possible case, with none of 

the TIs. In such cases, the TI consistency weights and the probability map may be used 

as useful pieces of information for designing a new TI based on preliminary calibration 

results. When neither of the TIs provides an adequate representation of reality, existence 

of a large bias in the forecast ensemble may hint at a fundamental problem in the data 

integration process and the prior model used. In a more problematic situation, the ill-

posed nature of the problem may result in incorrect geologic models that explain the 

sparse data reasonably well. In such cases, additional data are required to diagnose 

possible errors in the solution. Ultimately, the quality of any inversion method is 

impacted by the validity of the prior model used. This becomes even more important 

when the solution is constrained to preserve the higher-order statistics of the prior. 

4.5.3. Example 4.4: SPE10 Five-Layer Model 

The mixture model PCM is applied with a two-phase three-dimensional model to 

investigate the efficiency of the proposed model in 3D system. Five layers of SPE10 

benchmark are used as true synthetic model. The model includes a five-spot well 

configuration with one water injection well in the center and four symmetrically located 

oil producers on the corner of the reservoir. The initial oil saturation is    , everywhere. 

The initial pressure at         (the datum of the reservoir) is        . The injector and 

producers operate with a constant injection rate of          and production pressure 



 

117 

 

of        , respectively. Under these conditions, the injection pressure and water and 

oil production rates were measured annually months for 4 years and used as calibration 

data. The five layers of the true synthetic model are illustrated in Fig. 4.7(a). 

 

 

(a) True model (log-perm) (b) EnKF (ens. mean) (c) MMPCM (prob. map) 

   
  

 

 
Fig. 4.7 – Facies estimation results for standard EnKF and the mixture model PCM 
approach in Example 4.4. (a) True log-permeability field (all five layers obtained 
from SPE10 benchmark),  (b) final mean of log-permeability ensemble updated 
with standard EnKF, (c) final probability map of channelized facies updated using 
mixture model PCM. 
 

 

 

Two TIs (Figs. 4.1(c) and 4.1(e)) where considered to reflect the uncertainty in 

the prior model. As illustrated in Fig. 4.7(a), the synthetic model has facies structure 

which is locally meandering (like Fig. 4.1(e)) and globally connected channels (like Fig. 
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4.1(c)). Fig. 4.7(b) has the results for the standard EnKF when     samples from each 

TI are used for model calibration. Similar to previous examples in this section and 

Section 2, the estimated results are not discrete random field. Fig. 4.7(a) illustrates the 

calibration results using mixture model PCM with the same two TIs and by taking     

samples from each TI at the first step.  

 

 

 
 
Fig. 4.8 – Evolution of TI consistency weights throughout data integration steps 
using mixture model PCM for Example 4.4. 
 

 

 

Fig. 4.8 shows the evolution of the TI consistency weight after each data 

integration step. Even though neither of those TIs is perfectly consistent with the 

underlying features in true synthetic model, MMPCM provides higher consistency 

weight for TI with connected channel which globally more consistent with true model. 

To investigate the effect of incorporating geological information during the history 

matching process, the rate optimization is performed using the true model, the best 
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model updated using standard EnKF, and the best updated using mixture model PCM. 

Then, forecast for the next 6 years is obtained using true model and optimized 

production/injection rate controls obtained from each model.  

 

 

 
 
Fig. 4.9 – NPV in time using optimized rate control obtained using true synthetic 
model (blue line), best EnKF model (red line), and best MMPCM model (green 
line) for Example 4.4. 
 

 

 

Fig. 4.9 illustrates the net present value (NPV) with time for these three models. 

As depicted in Fig 4.9, the NPV obtained from optimizing the rate using the best model 

updated by mixture model PCM has similar trend as the NPV obtained from true 

synthetic model. At the same time, optimizing rate controls using the best model updated 

by standard EnKF provides significantly smaller NPV in time. The ratio of          
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              is equal to 0.98 at the end of forecast time (6 years), while         

              is equal to 0.88. In other words, using final replicates updated by 

MMPCM approach for rate optimization provides 10% more NPV in compare to using 

final reservoir models updated by EnKF for the rate control optimization. 

Fig. 4.10 shows the final oil saturation for a selected layer (the third layer) at the 

end of 10 years of production for true synthetic model, best EnKF model, and best 

MMPCM model. The well controls are set to the optimized controls obtained for each 

individual model. As depicted in Fig. 4.10(top), there is an unswept area in the east of 

the true model which could be a good candidate for further field development. The final 

saturation map for the best MMPCM model shows the same unswept area while the best 

EnKF model fails to predict the correct oil saturation map. 
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Fig. 4.10 – Final oil saturation map calculated using (top) true model, (middle) best 
MMPCM model, and (bottom) best EnKF model for Example 4.4. The rate controls 
are set to the estimated optimized rate controls for each individual model.  
 

 

 

 

4.6 Conclusions 

A Bayesian mixture model is presented for adaptively conditioning the simulation of 

geologic facies from multiple TIs to nonlinear pressure and flow measurements. The 

mixture model approach uses the PCM data integration algorithm that is described in 

Section 2 to adaptively draw conditional facies realizations from multiple TIs. The PCM 

is applied to convert dynamic pressure and flow data into facies probability map, which, 
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in turn, was used to guide facies simulation from prior TIs. At each sampling stage, the 

TI weights were estimated based on the likelihood function for the individual prior TIs 

and determined the number of samples drawn from each. After presenting the 

implementation details of the proposed approach, its performance is examined under 

several prior assumptions, including uncertainty in formation connectivity (2D and 3D 

model) and channel direction (orientation) for a given TI in fluvial systems. When 

channel direction was uncertain (Example 4.3), more update steps were needed for the 

algorithm to identify the correct directionality in compare to the number of steps 

necessary to detect the correct structure in the Example 4.2. This can be attributed to at 

least two main differences between these problems. First, in the example with structural 

uncertainty, the TIs had the same global directionality (horizontal), unlike in the 

example with unknown channel direction. Hence, the sample covariance calculated in 

the latter included structural correlations from all directions, resulting in a more 

pronounced degradation of covariance. The second major difference between the two 

problems is related to the location of the channel features in the reference model relative 

to the well configuration. In Example 4.3, the channel feature is less directly observable 

from the data as it is intersected by fewer wells. In all cases, however, the method was 

eventually able to identify, and accordingly sample from, the correct TI. In the last 

example of this section, the efficiency of the proposed approach is investigated for a 

two-phase three-dimensional problem under structural uncertainty. The optimized well 

controls estimated using the best MMPCM model and true synthetic model provide 

similar NPVs, while optimized control estimated using the best standard EnKF results in 
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10% less NPV. More importantly, the similar unswept area in the oil saturation maps 

obtained from the best MMPCM and true synthetic model offer a good candidate for 

infill drilling. This unswept area is missing in the saturation prediction using the best 

EnKF model.  

Although the pattern-imitating nature of MPS simulation from prior TIs presents 

an opportunity to model more complex geologic phenomena, it also poses an important 

risk when the prior TI fails to represent the correct facies connectivity. Since the 

resulting facies models often dominate fluid displacement behavior, it is important to 

take into consideration the TI uncertainty in MPS simulation. Conditioning the MPS 

simulation results on nonlinear dynamic data remains an important topic in application 

of this method to modeling complex subsurface systems. The complexity of conditional 

simulation problem increases when the uncertainty in the TI model has to be 

acknowledged and incorporated. When prior knowledge about the structural connectivity 

is not adequate to overwhelmingly support the use of a single TI, it is prudent to consider 

a wider range of possible structural connectivity models (TIs) and rely on the dynamic 

flow data to distinguish between alternative TI candidates and adaptively sample from 

them based on their predictive performance (likelihood to reproduce the observed data). 

Up to this point, the data integration is discussed using fine scale model. In the 

next section, a new workflow for integration of pressure data for estimating large-scale 

reservoir connectivity is proposed. According to the spatial resolution of the 

observations, the unstructured grid system is generated through Delaunay triangulation 

by using the location of the static pressure measurements as control points. The 
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important advantages of the proposed workflow for characterization of field-scale 

reservoir connectivity from pressure data include very fast connectivity estimation with a 

low-order model and effective parameterization to reduce the number of unknowns to a 

level commensurate with the available static pressure measurements. Successful 

application of the proposed approach to data from real fields illustrates its suitability and 

application to realistic reservoirs. The compatibility of the estimation results with the 

existing geological evidence verifies the performance of the proposed method. 

  



 

125 

 

5. MULTISCALE MULTI PHYSICS HISTORY MATCHING 

 

5.1. Summary 

Reliable early characterization of global reservoir connectivity is critical for 

improving field development plans. A main difficulty in identification of field-scale 

reservoir connectivity is the discrepancy between the low resolution of available field-

scale pressure data and the high resolution of geologic models. In this section, a 

workflow is proposed for integration of pressure data for estimating large-scale reservoir 

connectivity. Since pressure variation represents a smooth function, an extremely low-

resolution (coarse scale) grid system is adopted for reservoir simulation. The grid system 

is generated through Delaunay triangulation by using the location of the static pressure 

measurements as control points and the unstructured grid blocks are distributed 

according to the spatial resolution of the observations. Using flow-based upscaling, the 

initial coarse-scale static simulation model is created from the fine-scale geological 

model. Then the ensemble Kalman filter (EnKF) is used to automatically adjust the 

global parameters such as aquifer strength, global continuity/discontinuity of reservoir 

properties, and fault transmissibilities to match the static pressure. The important 

advantages of the proposed workflow for characterization of field-scale reservoir 

connectivity from pressure data include very fast connectivity estimation with a low-

order model and effective parameterization to reduce the number of unknowns to a level 

commensurate with the available static pressure measurements. This framework is 

successfully applied for data from real fields to illustrate its suitability and application to 
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realistic reservoirs. The compatibility of the estimation results with the existing 

geological evidence verifies the performance of the proposed method. 

 

5.2 Introduction and Significance 

Interwell connectivity evaluation provides valuable information about the reservoir 

characteristics, which is useful in infill drilling and reservoir management optimization. 

For instance, a low estimate for interwell connectivity could be an indication of a barrier 

to flow like a sealing fault. On the other hand, large interwell connectivity values may be 

used as an evidence for fluvial channels or open fractures. In waterflooding, the 

observed injection and production rates can be used to estimate the connectivity between 

injectors and producers. A review of previous interwell connectivity estimation 

approaches was presented in Subsection 1.2. 

In general, the resolution of the available data is not on par with the geologic 

model. In addition, the information content of each data type may correspond to a 

different scale or resolution of the model parameters. For example, pressure variation is 

a much smoother function of location than fluid front. To capture the fluid front, a fine-

resolution grid system must be generated. In contrast, pressure distribution could be 

estimated using coarser grid blocks. The static pressure is usually not affected by local 

properties around the well. Hence, the pressure obtained from shut-in and/or new drilled 

wells provides valuable and useful information about large-scale reservoir 

continuity/discontinuity and the strength of external sources such as an aquifer. Analysis 
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of the pressure data can be used to characterize field-scale reservoir connectivity and 

compartmentalization for improved field development and management. 

In this section, a novel approach is proposed for estimating field-scale reservoir 

connectivity by reconciling low-resolution field pressure data and high-resolution 

geologic models. The smooth pressure variation in the field lends itself to low-resolution 

(coarse-scale) grid representations and fast reservoir simulation for pressure prediction. 

To reconcile data and model resolutions, Delaunay triangulation is used to generate the 

grid system by taking the location of the static pressure measurements as control points 

and distributing the unstructured grid blocks according to the spatial resolution of 

observations. An initial static simulation model is generated by upscaling the high-

resolution geological model to this coarse-scale unstructured grid system. The upscaled 

description in the unstructured grid system is used with an efficient data integration 

framework to delineate the reservoir connectivity. The ensemble Kalman filter is applied 

to match the static pressure by automatically adjusting the global parameters such as 

aquifer strength, global continuity/discontinuity of reservoir properties, and fault 

transmissibilities. The important advantages of the proposed workflow for 

characterization of field-scale reservoir connectivity from pressure data include very fast 

connectivity estimation with a low-order model, effective parameterization to reduce the 

number of unknowns to a level commensurate with the available static pressure 

measurements, and a multiscale implementation based on the resolution of (global 

versus local) production data. 
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To verify the performance of the proposed method, the proposed approach is 

applied for field data from naturally fractured reservoirs. The reservoirs are below the 

saturation pressure, so the reservoir fluid is considered compressible. In addition, the 

reservoirs are produced primarily under drainage with partial support from an adjacent 

aquifer. I demonstrate the compatibility of the estimation results with the existing 

geological evidences. This section begins with a presentation of the proposed method 

followed by a few examples to illustrate the application of the method and discuss its 

main properties. 

 

5.3. Methodology and implementation 

The global reservoir connectivity estimation from static pressure data is implemented in 

two steps. First, an unstructured coarse-scale grid system is generated to describe the 

connectivity in the fine-scale prior geological model at a scale consistent with the 

resolution of the available data. In the second step, the EnKF algorithm is used to 

estimate, from static pressure data, the parameters of the coarse-scale model reservoir 

that represent the flow connectivity in the reservoir. 

 

 

Table 5.1 – General parameters used for the synthetic model 
Parameter Value/Condition Parameter Value/Condition 

Phases Oil and water Simulation time    months 
Fine grid system         Coarse grid system   
Cell size (fine)             Rock porosity      
Initial oil saturation     Initial pressure         
Injector constrain Water flow rate Producer constrain Total fluid rate 
# producers   # injector   
# shut-in pressure      
    



 

129 

 

5.3.1. Static Pressure Forecast 

This section begins by describing the coarse-scale grid generation. A simple 2D test case 

with a 5-spot well pattern (one injection in the center and four producers in the corners 

of the model) is used to illustrate the coarse grid generation concept. This simple model 

simulates a waterflooding example with a two-phase immiscible (oil/water) system (Fig. 

5.1(a)). The static pressures are estimated using the coarse-scale model and compared 

with those obtained from the fine-scale simulation. The initial oil saturation is uniformly 

distributed in the reservoir with a value of 0.80. The initial reservoir pressure is set at 

         in all cells. Each producer operates under total rate control with the target rate 

of         .  

 

 

     
(a) (b) (c) (d) (e) 

 
Fig. 5.1 – (a) Five-spot well configuration with one injector in the middle and four 
producers at the corners, (b) true log-permeability distribution, (c) Delaunay 
triangulation of the given well configuration in the first example, (d) unstructured 
grid blocks generated by connecting the center of the triangles to the middle point 
of each edge. Each color represents one grid block. (e) Active (green) and inactive 
(blue) fine-scale grid cells use to calculate transmissibility between coarse scale 
grids. 
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After each    days, one of the producers is randomly selected and shut-in for    

days. The shut-in pressure measurement is obtained by measuring the bottomhole 

pressure (BHP) at the end of the shut-in period. The 120-day cycle is repeated 12 times. 

Also, two shut-in periods are set for the injector during the shut-in period of producers. 

Similarly, the BHP of the injector is obtained at the end of the shut-in period. The 

injector is constrained to inject the total production target rate of the producers. The 

main continuity in the permeability field is in the southwest-northeast direction (Fig 

5.1(b)). The range of permeability values is 22md to 299md. Table 5.1 summarizes the 

simulation parameters. 

5.3.1.1. Coarse Scale Grid Generation 

Reservoir connectivity is estimated from field pressure data. Since pressure varies 

smoothly in space, a coarse grid system is adopted for reservoir simulation. The grid 

system is proposed to reconcile the data and model resolutions. The Delaunay 

triangulation approach is adopted to generate the coarse grid. The locations of the static 

pressure measurements are used as control points and the unstructured grid blocks are 

distributed according to the spatial observation resolution. The Delaunay triangulation 

for a set of control points is a triangulation such that every circumcircle of a triangle is 

an empty set of the control points (Okabe et al. 1992). Since this triangulation approach 

maximize the minimum angles of all triangles, the generated triangles tend to avoid 

skinny triangles. Also, the method guarantees that the triangles are not overlapping, and 

every edge is shared by at most two triangles. However, in these cases a Delaunay 

triangulation is not guaranteed to exist or be unique. Delaunay triangulation is usually 
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adopted to generate meshes for space-discretized solvers such as the finite-element and 

the finite-volume methods. In this approach, the locations of static pressure data are the 

set of control points. The Delaunay triangulation of this well configuration is illustrated 

in Fig 5.1(c). Unstructured grids are generated by connecting the center of each triangle 

to the middle point of each edge. Fig. 5.1(d) depicts the unstructured grid blocks 

associated with this example. Each color represents one grid block. Using the proposed 

methodology, the grid blocks are distributed according to the spatial resolution of the 

available measurements. 

The volumetric average of porosity of the fine-scale grids located inside each 

coarse grid block is used to upscale porosity from the fine-scale grid to the coarse-scale 

grid system. Using the volumetric average guarantees that the coarse-scale and fine-scale 

grid systems have the same pore volume.  

However, permeability upscaling is more involved than porosity upscaling and it 

has been an active area of research (Wen and Gomez-Hernandez, 1996; Renard and de 

Marsily, 1997; Farmer, 2002; Durlofsky, 2005; Gerritsen and Durlofsky, 2005). Methods 

may be categorized as permeability or transmissibility upscaling approaches. 

Permeability upscaling methods provide equivalent permeability tensors for each coarse-

scale grid block. Therefore, the interface transmissibilities between adjacent grid blocks 

are internally calculated by numerical simulators using the equivalent permeabilities of 

coarse grid blocks. In contrast, transmissibility upscaling techniques are involved in 

determination of coarse-scale transmissibility at the interface using upscaling 
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procedures. Transmissibility upscaling has provided more accurate coarse-scale models 

than permeability upscaling (Chen et al., 2003; Romeu and Noetinger, 1995) 

In the proposed approach, flow-based transmissibility upscaling is used to 

transfer flow properties of the fine-scale to a coarse-scale reservoir model. To calculate 

the transmissibility between each pair of adjacent coarse-scale grid blocks, a flow-based 

upscaling approach is adopted. The entire fine-scale grid blocks except the ones located 

inside the two adjacent coarse grid blocks are inactivated. For example, to calculate the 

transmissibility between the coarse grid blocks associated with the injector and the 

bottom-left-corner producer, the fine grid blocks within these two coarse grid blocks 

remain active and the rest of the fine-scale grid blocks are inactivated; the corresponding 

active cells of the fine-scale grid systems are shown in the green regions in Fig. 5.1(e). 

The injector and producer are then set to a specified rate constraint. The volumetric 

average pressure inside each coarse scale grid is obtained by running forward 

simulations with the fine-scale system. The transmissibility between these adjacent grid 

blocks can be obtained from Darcy’s law from the average pressure and flow rate. By 

repeating the same process, the transmissibility between each adjacent pair of coarse-

scale grid blocks is obtained. This procedure yields the static properties for the coarse-

scale grid system. 

5.3.1.2. Forward Simulation Using both Fine- and Coarse-Scale Grid Systems 

Forward simulation is performed using the fine-scale grid system described in Section 

5.3.1.1 as the base case. The BHP values obtained for the injector and each producer are 

depicted as red dots in Fig. 5.2(a-e). The shut-in period could be detected as the big 
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jump up (or down) in producer/injector BHP. The small jumps in the injector BHP are 

related to the change in the injection rate. The red dots in Fig. 5.2(f) illustrate all the 

shut-in pressures in time obtained from forward simulation of the fine-scale model. 

To perform the forward simulation for the coarse-scale model, the ECLIPSE 

commercial reservoir simulator provided by Schlumberger is used. Since the 

transmissibilities between each pair of the coarse grid blocks is known, a one 

dimensional model is defined and each pair is connected using non-neighbor connection 

(NNC) capability in ECLIPSE. The injector and producers controls are set in the coarse 

model as the total fluid rate constraints. The forecast BHP values for injector and 

producers are depicted with the blue line in Fig 5.2(a-e). Even though the flow BHP of 

the two systems behaves differently, the values of static pressure obtained from the two 

models are similar. All the static pressures estimated using the coarse-scale model are 

illustrated in Fig. 5.2(f) (blue line). The RMSE between the base case (fine-scale model) 

and the coarse-scale static pressure estimation is           . This result shows that the 

coarse-scale model can estimate a static pressure trend similar to the fine model using a 

small number of grid blocks. In this example, the upscaling factor is 1620 (90×90/5).  
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Fig. 5.2 – (a-e) Bottomhole pressure (BHP) of fine-scale (red dot) and coarse-scale 
model (blue line) of injector (a) and all producers (b-e) with time. (f) All static 
pressure with time for fine-scale (red dot) and coarse-scale model (blue line). 
 

 

 

EnKF is used as a data assimilation approach. (The review of EnKF was 

presented in Subsection 1.4.1.) A major consideration in practical application of EnKF to 

large-scale problems with computationally demanding forward models is ensemble size. 

In general, a large number of realizations are needed to represent the variability in the 

forecast states and to approximate the required sample statistics to perform the EnKF 

analysis. However, for computationally demanding forward models, the ensemble size 

cannot be large, which often results in sampling errors and introduction of non-physical 

covariances. Since the proposed workflow uses very coarse grid blocks with fast 

forward-simulation runs, EnKF can be combined with the algorithm rather efficiently. 
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In the next section, the reservoir continuity for two field cases are resolved by 

combining the described coarsening approach with the EnKF data assimilation 

algorithm. The assimilated data is the static pressure measurements. 

 

5.4. Field-Scale Applications 

To motivate the proposed approach, two naturally fractured reservoirs are used and the 

proposed approach is applied to infer the global reservoir continuity/discontinuity, 

fracture density distribution, and aquifer strength. First, using the method described in 

the previous section, I generate coarse-scale simulation models. The EnKF analysis is 

used to automatically adjust the global parameters such as aquifer strength, global 

continuity and/or discontinuity of reservoir properties, and fault transmissibilities to 

match the static pressure. Finally, the performance of the method is examined by 

comparing the estimation results with the existing geological evidence. 

5.4.1. Field Descriptions of Reservoirs A and B 

In this section, a dataset obtained from a naturally fractured porcelanite oil reservoir is 

used. Reservoir A has produced for over three decades. This reservoir consists of 

multiple units over a vertical interval of approximately           and contains layers of 

shale. The production history, average reservoir pressure in time, and well counts are 

depicted in Fig. 5.3. As depicted in Fig. 5.3(a), gas production rate (and also production 

gas oil ratio) has a jump in time when the reservoir pressure went below some critical 

pressure.  
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(a) (b) 

 
Fig. 5.3 – (a) Field production history and (b) average reservoir pressure and well 
counts with time for the reservoir used for Multiscale Multi-Resolution history 
matching (Reservoir A). 
 

 

 

Since the reservoir contains layers of shale, one of the possibilities for this 

behavior could be gas desorption below some critical pressure value. The available 

methane adsorption isotherms also duplicate the same behavior in the reservoir. In this 

example, the goal is finding the global properties over four units of that reservoir using 

the proposed methodology. The key parameters that control the global fluid flow 

behavior in the reservoir are reservoir compartments, aquifer strength, amount of shale 

gas contributing to the production, and the fracture intensity distributions. Reservoir B is 

in the same geological environment as Reservoir A but the current reservoir pressure is 

higher. The goal of history matching for this reservoir is finding the reservoir 

compartments, aquifer strength, and the fracture intensity distributions over one of the 

reservoir units. 

5.4.2. Large-Scale Connectivity Estimation (Reservoir A) 

The coarse-scale reservoir model in this example has four layers with each layer having 

95 cells. The original geological model contained 49,633,080 grid blocks with 

41,222,720 active cells. The facies map for this reservoir is depicted in Fig. 5.4(a). 58 
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RFT pressure data were found for this reservoir and the fine model were up-scaled using 

the method described in Section 5.3 (Fig. 5.4(b)).  

 

 

  
(a) (b) 

 
Fig. 5.4 – (a) Facies map of all layers of Reservoir A, (b) up-scaled model for 
pressure matching step, colors represent grid index. 
 

 

 

This coarse model provides a 3- to 4-order-of-magnitude decrease in reservoir 

simulation CPU time. Since flow-based upscaling is used to transfer the transmissibility 

from fine to coarse models, the resulting coarse model provides a good approximation to 

the pressure behavior in the fine model. More importantly, including many unknowns in 

the history matching problem leads to a severely ill-posed inverse problem. Hence, many 

possible solutions can be found that match the production history but provide distinct 

production forecasts. Since in the proposed method the control points are the same as the 

locations of available RFT data, higher grid resolution are located where the spatial 
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concentration of static pressure measurements is higher. Since the simulation CPU time 

for the coarse grid block system is about 15 to 20 seconds, a large number of samples are 

used for EnKF implementation to integrate the pressure data into the coarse-scale 

reservoir model. For the initial models, the transmissibility between the coarse grid 

blocks is calculated using the fine-scale geological model. Then, during the history 

matching process, the transmissibility multipliers and the aquifer strength are updated.  

 

 

 
 
 
Fig. 5.5 – Final pressure forecast obtained from all the tuned coarse scale reservoir 
models. 
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Another problem for simulation of this reservoir is considering the gas desorption 

process. To account for gas desorption, one extra grid to each layer is added and 

connected to all the grids in that layer. The transmissibility between the added grids and 

their pore volumes provided additional history matching parameters. In the Petrel model, 

the reservoir has no fractures or flow barriers. Static pressure data is used to determine 

the higher/lower capability to flow inside the reservoir. The final result of pressure 

history matching is illustrated in Fig. 5.5.  

To separate fractured, matrix dominated, and flow barriers, thresholds are applied 

on the final updated transmissibility multipliers. The transmissibility multipliers greater 

than 5 and less than 0.1 are assumed to represent fractured and flow barriers. The 

transmissibility multipliers between 0.1 and 5 are considered as matrix-dominated areas. 

The initial model does not have fracture and/or fault information; therefore, the initial 

model is matrix-dominated everywhere. Applying the threshold to the updated 

transmissibility multiplier ensemble generates a discrete distribution for transmissibility 

multipliers. Fig. 5.6(a) shows the mode of the discrete transmissibility multiplier 

distribution at each point.  

In this figure, the fracture and matrix dominated regions as well as flow barriers 

are illustrated with green, blue, and red lines, respectively. Also, Fig. 5.6(b) illustrates 

the confidence map for the final transmissibility multipliers. The confidence map in Fig. 

5.6(b) shows high confidence in the location of the fracture and two flow barriers in the 

northeast and southeast of the model. The final results don’t show much confidence in 

the blue area in the west region of the transmissibility map (Fig. 5.6(a)). The low 
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transmissibility areas (red lines) in the final transmissibility multiplier map have good 

correlation with the fault tracks in the old Petrel model (Fig. 5.6(c)). Also, the high 

fracture intensity areas (green lines) show good correlation with high Gaussian curvature 

areas in Fig. 5.6(d).  

 

  
(a) (b) 

  
(c) (d) 

 
 
Fig 5.6 – (a) Final transmissibility multiplier map for one layer, (b) confidence map 
for final transmissibility multiplier map obtained from EnKF, (c) final 
transmissibility multiplier map for one layer on top of available fault traces in old 
Petrel model, (d) final transmissibility multiplier map for one layer on top of 
Gaussian curvature map. 
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Geologists have been using curvature analysis in the petroleum industry for four 

decades to identify the areas with greater density of fractures (Murray, 1965; Lisle, 

1994; Ouenes et al. 1994; Ouenes et al. 1995; Blumentritt et al. 2006). Other tuning 

parameters to match the static pressure observations are aquifer pore volume and 

transmissibility multipliers associated with gas desorption process. 

 

  
(a) (b) 

  
(c) (d) 

 
 
Fig 5.7 – (a) Final aquifer multiplier map for one layer, (b) confidence map 
associated with final aquifer multiplier map obtained from final ensemble (hotter 
values indicate higher confidence), (c) final transmissibility multiplier map and (d) 
confidence map associated with desorbed gas process. 
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Fig. 5.7(a) shows the areal map of the aquifer pore volume multipliers. It 

illustrates that the aquifer has higher strength on the northern part of the reservoir than 

any other area. The dark blue area in the center of the map shows the regions initially 

above the water/oil contact; no aquifer grid blocks were considered for that section of 

the reservoir.  

The confidence map, Fig. 5.7(b), shows relatively good confidence in the final 

aquifer multiplier values. Fig. 5.7(c) depicts the transmissibility multiplier map between 

each coarse grid block and the added grid block related to the simulation of gas 

desorption process. As illustrated in Fig. 5.7(c), high transmissibility multiplier areas 

have good correlation with high fracture intensity areas in Fig. 5.6(a). This result is 

consistent with the existing geological evidence. The third layer of the reservoir consists 

of shale and the desorbed gas could come from this layer. In high-fracture-intensity 

areas, reservoir layers have a higher chance of being connected to the shale layer. 

5.4.3. Large-Scale Connectivity Estimation (Reservoir B) 

The coarse-scale reservoir model in this example has one layer with 19 cells. The 

original geological model contained 3,902,892 active cells. The facies map for this 

reservoir is depicted in Fig. 5.8(a). 11 RFT pressure data are found for this reservoir and 

upscaled the fine model using the method described in Section 5.3 (Fig. 5.8(b)). For the 

initial models, the transmissibility between the coarse grid blocks is calculated using the 

fine-scale geological model. Then, during the history matching process, the 

transmissibility multipliers and the aquifer strength are updated. As in the previous field 

study, no fractures or flow barriers are assumed in the initial reservoir model. The final 



 

143 

 

result of pressure history matching is illustrated in Fig. 5.8(c). The similar thresholds as 

previous example are used to separate fractured, matrix-dominated, and flow barrier 

areas. In Fig. 5.8(c), the fracture and matrix-dominated regions as well as flow barriers 

are illustrated with green, blue, and red lines, respectively. 

 

 

 
  

(a) (b) (c) 

 
Fig. 5.8 – (a) Facies map of reservoir B, (b) upscaled model for pressure matching 
step (colors represent grid index), (c) final transmissibility multiplier map and 
location of RFT measurements (yellow circles). 
 

 

 

 Based on the pressure history matching results, two compartments are detectable 

in the reservoir. In the primary dataset, all the RFT measurements are located in the 

north compartment. More investigation reveals that two more RFTs are available for the 

south part of the reservoir. The estimated pressure difference between the north and 

south parts of the reservoir, based on all RFT measurements, is close to           which 

is an indication of an actual flow barrier between these two compartments. Also, similar 
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to the previous example, the high fracture intensity areas (green lines) show good 

correlation with the high Gaussian curvature areas of the reservoir. 

 

5.5. Conclusions 

In this section, a novel approach is proposed for identification of field-scale reservoir 

connectivity by reconciling the low resolution of dynamic field pressure data and high 

resolution of geologic models. The proposed workflow is developed to convert high-

resolution initial geologic models to low resolution (coarse-scale) grid systems for 

reservoir simulation. To reconcile data and model resolution, the grid system is 

generated using Delaunay triangulation by considering the location of the static pressure 

measurements as control points and distributing the unstructured grid blocks according 

to the spatial resolution of observations. The reservoir properties are upscaled from the 

fine-scale geological model to this coarse-scale unstructured grid system to create an 

initial static simulation model. The EnKF is applied to integrate the available data and 

automatically adjust the global model parameters including aquifer strength, global 

continuity/discontinuity of reservoir properties, and fault transmissibilities to match the 

static pressure.  

After generating the coarse grid system, its performance to predict the static 

pressure measurement is evaluated using the fine-scale model. Then the proposed 

approach is combined with the EnKF to estimate important global parameters for two 

real naturally fractured reservoirs. The proposed approach provides promising history 

matching results upon application to the real field data. It provides a better 
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understanding of the overall continuity/discontinuity inside the reservoir model and 

identifies the high-fracture-intensity areas. Finally, comparison of the results with the 

existing geological evidence is used to support the validity of the estimation outcomes. 

In the next section, the proposed workflow is applied in this section for another 

real field data set to infer the large scale fluvial channel continuity using the available 

pressure data. Then the finding in coarse scale history matching is downscaled to fine 

scale model and probability conditioning method is applied to conclude the locations of 

channelized fluvial. 
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6. WORKFLOW APPLICATION TO A FIELD CASE STUDY 

 

6.1. Summary 

A multi scale multi physics history matching approach is applied as the first step of a 

history matching workflow to infer the global reservoir continuity of an actual field. 

Since pressure variation represents a smooth function, an extremely low resolution 

(coarse scale) grid system is adopted for reservoir simulation. The grid system is 

generated through Delaunay triangulation by using the location of the static pressure 

measurements as control points and the unstructured grid blocks are distributed 

according to the spatial resolution of the observations. The global parameters such as 

aquifer strength and global continuity/discontinuity of reservoir properties are adjusted 

to match the static pressure. In the second step of the workflow, a fine-scale probabilistic 

interpretation of facies distribution is inferred using coarse-scale history matching 

results. In the final step, the probability condition method (PCM)-assisted ensemble 

Kalman filter (EnKF) approach is adopted to invert the flow data to update probabilistic 

spatial description of facies distribution (a probability map) and the resulting facies 

probability map is used to guide multipoint statistical (MPS) facies simulation from a 

specified training image (TI). 

The field case data is obtained from an offshore turbidite reservoir. The fine-

scale simulation model has almost 200,000 grid blocks. The reservoir has seven 

producers with two water injectors and over 5 years of production history including 

three-phase production history and static pressure data. The multi scale multi physics 
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effectively detect the aquifer strength and overall continuity/discontinuity inside the 

reservoir using static pressure data. The coarse-scale history matching results are refined 

to provide the probabilistic interpretation about the location of channelized features. 

Using the PCM approach, geological continuities are preserved while history matched 

reservoir models are generated. 

 

6.2. Reservoir Descriptions 

The reservoir structure is characterized as a sand-filled depositional channel system and 

associated overbank in the presence of structural and stratigraphic traps. The reservoir 

forms a gentle anticline toward the southwest. A major fault elongates from east to west 

and provides a northern sealing boundary for the reservoir. The initial reservoir pressure 

is above saturation pressure, and the reservoir contains oil with dissolved gas. Fig. 6.1(a) 

illustrates the structural view of the reservoir along with the well locations. Seven 

production wells (       ,   , and   ) produce oil and associated gas from this 

reservoir while water is injected in two injectors (   and   ). Because of the asphaltene 

precipitation below the bubble point, the pressure maintenance was started almost a year 

after first day of production. Also, the annual static pressure data are available for almost 

all the producers along with the monthly production and injection rate measurement for 

over 5 years of operation. 

The plot of log-permeability vs. porosity obtained from core data provides two 

distinguishable clusters. One cluster has low-permeability/low-porosity values, which 

represent shale facies, and the other one has high-permeability/high-porosity values, 
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which characterize by sand facies. Porosity ranges from 14% to 34%. Permeability 

shows a wide range, from 0.1 to 3000 md, and has a strong facies control. The average 

permeability for shale and sand facies are 0.4 and 700 md, respectively. Also, the 

reservoir contains levee facies with permeability of 200 md. 

 

 

 

  
(a) (b) 

 

 
Fig. 6.1 – (a) Structural view of the investigated reservoir with the production wells 
(A1-A5, A8, and A9) and injection wells (A6 and A7). (b) Training image contains 
meandering features used for sample generation. 
 

 

 

Since the reservoir contains meandering channelized features, Fig. 6.1(a) is 

assumed to be the possible training image for the reservoir. 50 samples are generated 

from that training image. Fig. 6.2 illustrates the forecast of static pressure and field water 

cut using initial samples. The red dots represent the actual measurements. The simulated 

pressure falls rapidly and the simulated field water cut is lower than the field 

measurements. 
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(a) (b) 

 
Fig. 6.2 – Actual observation (red dots) and quantile plot of (a) field average 
reservoir pressure and (b) field water cut using initial 50 samples. 
 
 

 

6.3. Global Reservoir Connectivity Parameters 

The fine-scale simulation model was generated using available seismic and log data. The 

fine-scale model has 194,250 grid blocks with 95 static pressure data gathered during the 

first 5 years of production. The upscaled reservoir model using the approach described in 

Section 5.3 is depicted in Fig. 6.3. The coarse scale model has 38 grid blocks. Since 

flow-based upscaling was used to transfer the transmissibility from the fine to the coarse 

model, the resulting coarse model provides a good approximation to the pressure 

behavior in the fine model. More importantly, including many unknowns in the history 

matching problem leads to a severely ill-posed inverse problem. Hence, many possible 

solutions can be found that match the production history but provide distinct production 

forecasts. Since in the proposed method the control points are the same as the locations 

of available static pressure data, higher grid resolution is located where the spatial 

concentration of static pressure measurements is higher. 
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Fig. 6.3 – Coarse-scale reservoir model according to the well locations. 
 
 

 

 

 
 

(a) (b) 
 

  
(c) (d) 

 
 
Fig. 6.4 – Final history matched maps of (a) transmissibility multipliers and (b) 
pore volume multipliers. The confidence maps of (c) transmissibility multipliers 
and (d) pore volume multipliers. 
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In the first step of data assimilation, the transmissibility between the coarse grid 

blocks is calculated using the fine-scale geological model. Then, during the coarse-scale 

static pressure history matching process, the transmissibility multipliers and the pore 

volume multipliers are updated. The history matched pore volume of those grid blocks 

located below the water/oil contact represent the energy support by the aquifer. The 

results of static pressure history matching are illustrated in Fig. 6.4. 

As illustrated in Fig. 6.4(a), there is good connectivity between the wells and 

some discontinuities on the east, west, and south of the reservoir. Fig. 6.4(b) illustrates 

the log-pore volume multiplier map. The pore volume map demonstrates that the aquifer 

has more strength on the south side of the reservoir. Also, Fig. 6.4(c) and (d) show 

higher confidence near the wells and less confidence away from the wells. 

 

6.4. Downscale Pressure History Matched Model 

After history matching the coarse-scale model, the learning from the first step of 

proposed workflow must be downscaled to fine-scale and then tuned for the water-cut 

history matching. The concept of soft data integration, Subsection 1.3.1, is used to 

transfer the information from the coarse-scale to the fine-scale. Before presenting the 

results of downscaling for the investigated field, the procedure using a synthetic model is 

presented. 

The 2D model in Fig. 6.5(a) is used as the true synthetic model. The model 

contains channelized features which connect in the middle of the model. The training 

image that is consistent with the synthetic model is depicted in Fig. 6.5(b). I assigned 
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zero and one to the channel and background facies, respectively.    ,    , and 

      upscaling schemes are used to upscale assigned values. Arithmetic averaging is 

used as the upscaling approach. The upscaled 2D maps are presented in Fig 6.5(c). Then, 

100 samples are generated using a Snesim algorithm and condition on the upscaled 

maps. Also, for comparison, 100 samples are generated without conditioning on any soft 

data. The mean of the 100 samples using different soft data along with one sample from 

each set is presented in Fig. 6.5(d) and (e). In Fig. 6.5, the second row illustrates 

sampling without conditioning on any soft data; the mean is clearly different from other 

cases. As the resolution of the upscaled map decreased, the similarity of the generated 

samples to the original model decreased.  

Even though the least amount of information is carried on the probability map 

using the       upscaling scheme, still the generated samples show the main features 

of the original model. More importantly, the sharp edges of probability maps are 

removed by MPS sampling. In the actual field problem, the upscaled field description is 

obtained from static pressure history matching. 

Fig. 6.6(a) shows the probability map obtained from the results of static pressure 

history matching. 50 samples are drawn from the designed training image (Fig. 6.1(a)) 

and conditioned on the estimated probability map from the first step of history matching 

using the Snesim algorithm. The generated fine-scale models were used as the initial 

model for the water-cut history matching step. The mean of the initial fine-scale model is 

depicted in Fig. 6.6(b). 

 



 

153 

 

  

 

(a) (b)  
 (c) Upscaled Map (d) Mean (e) Sample  

 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 
 

 
 

 

 

 

 
 
Fig. 6.5 – (a) True synthetic model and (b) training image used for transfer 
learning example from coarse model to fine model. (c) Upscaled map obtained 
from different upscaling schemes, (d) mean of 100 samples, and (e) one sample 
using the Snesim approach and conditioned on the probability map. 
 

 



 

154 

 

  
(a) (b) 

 
 
Fig. 6.6 – (a) Probability map generated from static pressure history matching and 
(b) mean of 50 samples generated from the training image in Fig. 6.1(a) and 
conditioned on the probability map in (a). 
 

 

 

 
(a) (b) 

 
 
Fig. 6.7 – Actual observation (red dots) and quantile plot of (a) field average 
reservoir pressure and (b) field water cut using initial fine-scale reservoir models. 
 

 

 

Forecast is obtained using the initial fine models. The field average pressure and 

field water-cut forecast are illustrated in Fig. 6.7. The field average pressure prediction 

(Fig. 6.7(a)) is improved in comparison with the forecast obtained from initial samples 
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generated from the training image (Fig. 6.2(a)). Even though matching the water cut is 

not the target for the first step of history matching, the field water cut (Fig. 6.7(b)) shows 

improvement, too. The simulation models provide less water production in the later 

time; therefore, the goal in the second step of history matching is matching the field 

water cut. 

 

6.5. Fine-Scale Water-Cut History Matching 

To match the field water cut, the PCM, which is presented in Section 2, is applied. The 

initial ensemble of facies generated in the previous subsection is used as the initial 

models for fine-scale history matching. Also, the probability maps obtained from coarse-

scale history matching were used as the initial probability maps. After assigning 

permeability values to each facies, the facies ensemble is used to predict the observed 

fluid flow quantities for the next time step. In the analysis step, the log-permeability 

realizations that were used to find the log-permeability mean and the probability map are 

updated. The update equation requires up to the second-order statistics of the estimation 

parameters. The ensemble of log-permeability fields is used to derive the first- and 

second-order statistics required during the update step.  

The updated mean of the ensemble was then used to infer probabilistic 

information about facies distribution. I assumed that the probability of each facies at a 

given grid block is a function of the distance between the updated log-permeability value 

at that grid block and the log-permeability value of each facies. Only the analysis 

equation is used to estimate the log-permeability mean from the production data. 
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(a) (b) (c) 
 
 
Fig. 6.8 – (a) Final probability map obtained from fine-scale history matching and 
actual observation (red dots) and quantile plot of (b) field average reservoir 
pressure and (c) field water cut using final fine-scale reservoir models. 
 

 

 

The final updated channel probability map along with the final field average 

pressure and field water cut are depicted in Fig 6.8. Even though the initial and updated 

probability maps (Fig. 6.8(a)) show similar trends around the well locations, the main 

improvement in the final probability happened in the south part of the reservoir. The 

final probability map shows channel connectivity from the aquifer to the well location 

which is not significant in the initial probability map. The final field water cut (Fig. 

6.8(b)) forecast confirms the same behavior. Also, the final forecasts of average field 

pressure (Fig. 6.8(c)) are slightly improved in comparison with the previous step. 

4D seismic is another source of information available for the investigated field. 

The actual water flow paths from the aquifer to the reservoir are depicted in Fig. 6.9(a). 

To make a comparison, the best history matched reservoir model is combined with 

streamline simulation to predict the flow paths inside the reservoir. The time of flights 
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depicted in Fig. 6.9(b) obtained from the streamline simulation show a similar trend to 

the actual flow paths inside the reservoir.  

 

 

  
(a) (b) 

 
Fig. 6.9 – (a) Actual and (b) predicted flow paths for the investigated reservoir. 
 
 

 

 

6.6. Conclusions 

In this section, the proposed workflow is used to integrate static pressure and water cut 

measurement into the reservoir models for an actual field in deepwater Gulf of Mexico. 

The novel approach described in Section 5 is used to identify the field-scale reservoir 

connectivity from static pressure measurements. The coarse scale grid system is 

generated from the well locations. By tuning the coarse grid transmissibility multipliers 

and aquifer size, the actual average field pressure measurements are predicted. Also, the 

field water-cut prediction is improved. In the second step, the learning from the coarse-
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scale history matching is transferred to the fine-scale reservoir model through the 

probability map. Finally, the probability conditioning method (PCM), which is presented 

in Section 2, is applied to match the water cut by updating the probability of existing 

features inside the reservoir. The final history matched reservoir model can correctly 

predict the field’s average pressure behavior and water cut. Also, the time of flights 

obtained from the streamline simulation and available 4D seismic map show similar 

water flow paths. 
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7. DISSERTATION CONTRIBUTION AND FINAL CONCLUSIONS 

 

In this dissertation, three new techniques are described to preserve and identify large-

scale geological features in reservoirs during history matching. In Section 2, a 

probability conditioning method (PCM) was developed for constraining multipoint 

statistical (MPS) facies simulation to nonlinear flow data. Implementing the PCM with 

the ensemble Kalman filter (EnKF) results in an improved performance of the filter 

updates through the preservation of the facies correlation structure and the introduction 

of additional ensemble variability (spread) due to the resampling of facies from the 

training image (TI) after each update step.  

As an extension to Section 2, in Section 3 an adaptive strategy is presented 

through a data feedback mechanism based on the predictive performance of the past 

realizations (sampling history) to improve the conditioning efficiency. The method is 

presented as a stochastic optimization algorithm and extended to the case where multiple 

training images are used as alternative plausible interpretations of the geologic scenarios 

for a given formation.  

In Section 4, a novel Bayesian mixture model for adaptive and efficient sampling 

of conditional facies from multiple uncertain TIs was developed. The posterior 

distribution of facies is partitioned into individual conditional densities of the TIs and the 

corresponding mixture weight from the likelihood function for each TI is estimated. To 

implement the conditional sampling, a recently developed EnKF-based probability 

conditioning method is adopted, whereby EnKF is used to invert the flow data and 
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obtain a facies probability map (soft data) to guide conditional facies simulation from 

each TI. 

In Section 5, a new workflow for integration of pressure data for estimating 

large-scale reservoir connectivity was described. According to the spatial resolution of 

the observations, the unstructured grid system is generated through Delaunay 

triangulation by using the location of the static pressure measurements as control points. 

The important advantages of this workflow for characterization of field-scale reservoir 

connectivity from pressure data include very fast connectivity estimation with a low-

order model and effective parameterization to reduce the number of unknowns to a level 

commensurate with the available static pressure measurements.  

At the end of Section 5 and in Section 6, the workflow from Section 5 is applied 

to three real field data sets to infer the large-scale feature continuity using the available 

pressure data. Then, in Section 6, the findings from coarse-scale history matching is 

downscaled to a fine-scale model and applied a probability conditioning method to 

conclude the locations of fluvial channels. 

The main results and findings from Sections 2 to 6 are summarized in Subsection 

7.1. Subsection 7.2 concludes with the description of future work within the context of 

preserving the large-scale feature continuity during reservoir history matching. 

 

7.1. Dissertation Contributions and Conclusions 

The dissertation starts with presenting a new probability conditioning method (PCM) for 

constraining TI-based facies simulation to reproduce dynamic flow measurements. 
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While the EnKF update equation was employed for production data integration, the 

PCM approach is quite general and can be implemented by means of alternative inverse 

modeling techniques. Since discrete geologic facies contain features that are more 

amenable to description with categorical random variables, standard grid block property 

estimation with the EnKF can lead to inconsistent facies connectivity and spurious 

updates, especially at distant locations from observations. Although EnKF has been 

shown to be an effective history matching method, the continuous, second-order, and 

unconstrained nature of its update equation is poorly suited to the estimation of discrete 

geologic objects (such as fluvial channels) which can only be accurately described if 

higher-order statistical moments are included. The proposed probability conditioning 

method uses the EnKF to update the map of the log-permeability mean from the 

production data (and a prior ensemble of models). This is then used to infer a 

probabilistic description of facies distribution. The resulting probability map is 

incorporated into TI-based multipoint geostatistical simulation algorithms to generate 

conditional facies realizations.  

Facies resampling (from the TI) after each EnKF update step offers several 

advantages over the standard implementation of EnKF. Some of these advantages 

include the following: (1) consistency of the updated facies with the prior TI (geologic 

model) and preservation of higher-order statistics; (2) probabilistic interpretation of the 

production data to reduce the effect of spurious EnKF updates; and (3) improvement of 

the ensemble variance underestimation (and collapse) issues through the introduction of 
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additional ensemble variability, which is done by resampling new facies from the TI 

after each update step. 

In Section 2, the implementation of the proposed framework was presented and 

discussed, along with synthetic two-dimensional waterflooding examples with different 

levels of TI representation. This showed that the proposed framework could effectively 

incorporate the production data into conditional facies simulation using the Snesim 

algorithm. The production forecasts that were obtained when the proposed approach was 

used provided wider ensemble spread than those obtained from the estimation of grid-

based log-permeability maps, mainly because of the variability and randomness 

introduced by resampling new facies from the TI. Additional complex examples reveal 

that the method could not reproduce the correct facies orientation and structure when the 

TI was completely inconsistent with the true model. 

An adaptive sampling approach for conditioning MPS-based facies simulation 

from a TI to nonlinear flow data is presented in Section 3. This is achieved by storing 

and using previously accepted realizations to construct a probability map that describes 

the likelihood of facies occurrence in each grid block. To increase the sampling 

efficiency, an initially uninformative probability map is gradually updated by 

incorporating the information about the facies distribution in the chain of accepted 

realizations. Since the spatial facies patterns in the accepted realizations reproduce the 

observed data (in a probabilistic sense), the dominant facies connectivity in them 

(common features among the accepted realizations) are likely to represent some of the 

existing trends in the solution. Hence, a collective probabilistic representation of the 
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common features in the accepted realizations is used to guide and accelerate the 

sampling process.  

The implementation of the proposed approach is illustrated its performance using 

two set of numerical waterflooding experiments, one using a single given TI and the 

other using multiple uncertain TIs. The proposed algorithm was able to effectively 

sample from the given TIs as conceptual prior models while incorporating the observed 

data through the statistical information contained in the accepted realizations. Feeding 

the observed data back into the simulation process through a facies probability map 

provided an effective mechanism to guide the simulation of the new facies realizations 

and improved the sampling efficiency.  

Conventional metrics of performance, such as computation and accuracy, 

obtained from the non-adaptive algorithm and adaptive implementation demonstrate that 

the adaptive method offers considerable improvements over the non-adaptive sampling. 

The proposed adaptive approach generates more representative realizations in fewer 

iterations and leads to significant computational savings in practical applications. A 

version of the proposed algorithm for application under multiple Tis is presented. The 

extension of the adaptive algorithm for use under TI uncertainty could distinguish 

between consistent and inconsistent TIs. 

Bayesian mixture model is presented for adaptively conditioning the simulation 

of geologic facies from multiple TIs to nonlinear pressure and flow measurements in 

Section 4. The mixture model approach uses the PCM data integration algorithm to 

adaptively draw conditional facies realizations from multiple TIs. The PCM was applied 
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to convert dynamic pressure and flow data into facies probability map, which, in turn, 

was used to guide facies simulation from prior TIs. At each sampling stage, the TI 

weights were estimated based on the likelihood function for the individual prior TIs and 

determined the number of samples drawn from each.  

After presenting the implementation details of the proposed approach, its 

performance is examined under several prior assumptions, including uncertainty in 

formation connectivity (2D and 3D models) and channel direction (orientation) for a 

given TI in fluvial systems. In all cases, the method was eventually able to identify, and 

accordingly sample from, the correct TI. Also, the efficiency of the proposed approach is 

investigated for a two-phase 3D problem under structural uncertainty. The optimized 

well controls estimated using the best MMPCM model and true synthetic model provide 

similar net present values (NPVs), while optimized control estimated using the best 

standard EnKF results in 10% less NPV. More importantly, the similar unswept area in 

the oil saturation maps obtained from the best MMPCM and true synthetic model offer a 

good candidate for infill drilling. This unswept area is missing in the saturation 

prediction using the best EnKF model.  

Although the pattern-imitating nature of MPS simulation from prior TIs presents 

an opportunity to model more complex geologic phenomena, it also poses an important 

risk when the prior TI fails to represent the correct facies connectivity. Since the 

resulting facies models often dominate fluid displacement behavior, the TI uncertainty 

must be taken into consideration in MPS simulation. Conditioning the MPS simulation 
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results on nonlinear dynamic data remains an important topic in application of this 

method to modeling complex subsurface systems.  

The complexity of the conditional simulation problem increases when the 

uncertainty in the TI model has to be acknowledged and incorporated. When prior 

knowledge about the structural connectivity is not adequate to overwhelmingly support 

the use of a single TI, a wider range of possible structural connectivity models (TIs) 

should be considered. Evaluations should also rely on the dynamic flow data to 

distinguish between alternative TI candidates and adaptively sample from them based on 

their predictive performance (likelihood to reproduce the observed data). 

In Section 5, a novel approach for identification of field-scale reservoir 

connectivity by reconciling the low resolution of dynamic field pressure data with the 

high resolution of geologic models is described. In the proposed workflow, an approach 

is developed to convert high-resolution initial geologic models to low-resolution (coarse-

scale) grid systems for reservoir simulation.  

To reconcile data and model resolution, the grid system is generated using 

Delaunay triangulation by considering the location of the static pressure measurements 

as control points and the unstructured grid blocks are distributed according to the spatial 

resolution of observations. The reservoir properties are upscaled from the fine-scale 

geological model to this coarse-scale unstructured grid system to create an initial static 

simulation model. The EnKF is applied to integrate the available data and it 

automatically adjusts the global model parameters including aquifer strength, global 
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continuity/discontinuity of reservoir properties, and fault transmissibilities to match the 

static pressure.  

After generating the coarse grid system, its performance to predict the static 

pressure measurement is evaluated using the fine-scale model. The proposed approach is 

combined with the EnKF to estimate important global parameters for two real naturally 

fractured reservoirs. The proposed approach provides promising history matching results 

upon application to the real field data. It provides a better understanding of the overall 

continuity/discontinuity inside the reservoir model and identifies the high-fracture-

intensity areas. Finally, comparison of the results with the existing geological evidence 

was used to support the validity of the estimation outcomes. 

In the last section, a workflow is proposed to integrate static pressure and water-

cut measurement into the reservoir models for an actual field in deepwater Gulf of 

Mexico. The novel approach described in Section 5 is applied to identify the field-scale 

reservoir connectivity from static pressure measurements. By tuning the coarse-grid 

transmissibility multipliers and aquifer size, the actual average field pressure 

measurements are predicted. Also, the field water-cut prediction is improved.  

In the second step, the learning from the coarse-scale history matching is 

transferred to the fine-scale reservoir model through the probability map. Finally, the 

PCM is applied to match the water cut by updating the probability of existing features 

inside the reservoir. The final history matched reservoir model can correctly predict the 

field average pressure behavior and field water cut. Also, the time of flight obtained 
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from the streamline simulation and available 4D seismic map show similar water flow 

paths. 

 

7.2. Future Research Directions 

This subsection discusses the future potential for research direction. Even though the 

PCM and MMPCM approaches are successfully applied using EnKF and Snesim 

algorithms, many other data integration and MPS sampling methods can be used with 

the suggested algorithms. Each data integration and MPS sampling approach has its own 

pros and cons, and the PCM and MMPCM approaches might need to be modified. For 

example, a useful application could be combination of PCM and Markov chain Monte 

Carlo (MCMC) and Snesim algorithm. To perform this task, the major modification 

could happen in the software using the Snesim method. Since the current software that 

generates samples using the Snesim algorithm does not provide the probability of each 

generated sample, it is impossible to accurately calculate the transition distribution 

between two generated samples.  

Another modification in the PCM approach could be linking the variance map 

obtained from EnKF and a tau value. In current implementation, the tau value is uniform 

for every grid block. The main reason for choosing a uniform tau value is the software 

limitation. In the pressure matching step using coarse-scale unstructured grid blocks, the 

number of unknowns was reduced to decrease the ill-posedness of the inverse problem. 

However, the large-scale geological continuity could elongate beyond the interwell 

distances. In this situation, unstructured parameterizations like the grid connectivity 
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transform (GCT) are useful to even further reduction of unknown parameters and the ill-

posedness of the inverse problem.  
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