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ABSTRACT 

 

  The tested annular seals were smooth with a length-to-diameter ratio of 0.50, a 

diameter of 102.0064 mm (4.016 inches), and a nominal radial clearance of 0.2032 mm (0.008 

inches). The tests were conducted for angular shaft speeds, ω, of 2, 4, 6, and 8 krpm, axial 

pressure drops, ∆𝑃, of 2.1, 4.13, 6.21, and 8.27 bar (30, 60, 90, and 120 psi), eccentricity ratios, 

𝜖0, of 0.00, 0.27, 0.53, and 0.8, with three pre-swirl inserts to target zero, medium, and high (0.0, 

0.4, and 0.8) pre-swirl ratios for a set of pre-determined operating conditions with ISO VG 2 oil 

at 46.1°C (115°F). Circumferential fluid velocity components were measured at single locations 

upstream and downstream from the seal’s inlet and exit. Most of the data presented in this thesis 

takes place in the transitional regime.  

The static performance of the seals was evaluated by measuring volumetric leakage rate, 

�̇�, inlet and exit circumferential fluid velocity, and the rotor’s eccentric position. Comparisons 

are made between measured values and predictions. The measured vector Reynolds number 

ranged from ~1180 to ~4350, with only occasional points in the laminar and turbulent regimes. 

Pitot tubes were used to measure the average circumferential velocity at the inlet and outlet of 

the seal were used to calculate pre-swirl ratio, PSR, and post-swirl ratio, OSR, respectively. The 

PSR tended to converge to a value of ~0.4-0.5 as ω increased for all tested pre-swirl inserts. 

There was little correlation between the inlet pre-swirl ratio and post-swirl ratio, OSR. This is the 

first known attempt to measure OSR.  

Rotordynamic coefficients analyzed include direct and cross-coupled: stiffness, damping, 

and virtual mass. The rotordynamic coefficients were generally unaffected by changing 𝜖0 ∈ 
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[0.00, 0.53]. When 𝜖0 = 0.80, the measured 𝐾𝑥𝑥 values were generally negative, while 𝐾𝑦𝑦 

increased in magnitude by a factor of ~1.5 from the measured values at 𝜖0 = 0.53. The results 

indicated that when higher PSRs were experienced by the seal, the seal was more destabilizing.  

The direct damping values, 𝐶𝑥𝑥 and 𝐶𝑦𝑦, were normally positive, and equal. When 𝜖0 = 0.80 the 

measured cross-coupled damping, 𝐶𝑥𝑦 and 𝐶𝑦𝑥, decreased by a factor of 5, causing both to 

become negative; changing the damping from gyroscopic to dissipative.  

The whirl frequency ratio, WFR, indicated that the cross-coupled virtual mass terms were 

too small in magnitude to affect overall rotordynamic stability. WFR was generally within ~0.3-

0.6 and was unaffected by changing either 𝜖0 or ∆𝑃 except at ω = 2 krpm. When ω = 2 krpm for 

the zero pre-swirl insert, WFR increased in magnitude by a factor of ~4 when 𝜖0 increased from 

0.00 to 0.80. The effective damping results showed that of the tested seals, the most stable seal 

configuration was ω = 2 krpm for the zero pre-swirl insert particularly at high ∆𝑃’s. Both the 

WFR and effective damping showed that as ω increases, the effect of the pre-swirl insert 

diminishes. For the zero pre-swirl insert, the seals were generally less stable than predicted with 

a few exceptions.  
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NOMENCLATURE 

𝐶𝑖𝑗 Damping Coefficient   [FT/L] 

𝐶𝑟 Radial Clearance   [L] 

𝐶𝑟/𝑅 Clearance to Radius Ratio    [-] 

𝐷 Rotor Diameter   [L] 

𝐷𝑖 Inner Diameter of Seal   [L] 

𝐷𝑜  Outer Diameter of Seal   [L] 

𝑒0 Static Eccentricity   [L] 

𝐹𝑠 Applied Static Load   [F] 

𝑓𝑤 Whirl Frequency Ratio as defined in Eq. (24)   [-] 

𝐹𝑥, 𝐹𝑦 Excitation Forces in x and y axes   [F] 

𝐾𝑖𝑗 Stiffness Coefficient   [F/L] 

𝐿 Axial Seal Length   [L] 

𝑀𝑖𝑗 Virtual Mass Coefficients   [M] 

�̇� Volumetric Flow Rate   [L3/T] 

R Rotor Radius   [L] 

Greek Symbols 

𝜖0 = 𝑒0/𝐶𝑟 Static Eccentricity Ratio   [-] 

∆𝑃 Axial Pressure Drop   [F/L2] 

𝜇 Fluid Dynamic Viscosity   [FT/L2] 

𝜌 Fluid Density   [M/L3] 

𝜐𝑖𝑛𝑙𝑒𝑡, 𝜐𝑜𝑢𝑡𝑙𝑒𝑡 Measured Inlet and Outlet Circumferential Fluid Velocity [L/T] 

ω Angular Shaft Speed   [1/T] 

Subscripts 

𝑖 Direction of System Response (x or y axes) 

𝑗  Direction of System Perturbation (x or y axes) 

Abbreviations 

OSR Post-swirl Ratio as defined in Eq. (4)   [-] 

PSR Pre-swirl Ratio as defined in Eq. (3)   [-] 
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1. INTRODUCTION 

Annular seals are mechanical devices in rotating machinery that restrict leakage flow 

from areas of differing pressures. To do this, seals inhibit flow from high pressure areas to low 

pressure areas, similar to the function of a restrictive orifice. Common applications for annular 

seals in centrifugal pumps are case wear rings, interstage seals, and balance-pistons as illustrated 

in Fig. 1. Annular seals can be a primary contributor to the overall pump vibration characteristics 

due to the large reaction forces they produce. 

 

 

Figure 1. Pump cross-section of representative seal locations in an electrical submersible pump. Adapted from Childs [1]. 

One of the driving factors of seal rotordynamic performance is the axial development of 

the circumferential fluid velocity of the lubricant as it approaches the annular seal. This inlet 

circumferential velocity depends on the upstream flow conditions and rotor speed, ω. The inlet 

swirl velocity affects the overall rotordynamic performance of a pump across common operating 

parameters by reducing the dynamic instability characteristics of the annular seals. While studies 

have previously shown that oil inlet swirl velocities in the direction of shaft rotation are a source 

of instability, few annular seal test rigs are designed to impose and measure pre- and post-swirl.  
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For most applications, annular seals experience fully-developed turbulent flow due to the 

typical ∆𝑃, clearances, and the fluid being pumped. The typical clearance-to-radius ratio in an 

annular seal is 0.002-0.004. In some process flows, the abrasive particulates can cause the 

clearance between the seal surfaces to enlarge. Enlarged clearances between these surfaces 

markedly increase leakage rates and reduces the seal’s centering forces.  

As first discussed by Black [2], seals have a significant effect on the rotordynamic 

performance of a pump. To analyze the rotordynamic performance of an annular seal, the 

position of the rotor and the rotordynamic coefficients need to be identified. The position of the 

rotor or the static eccentricity ratio is defined as, 

𝜖0 = 𝑒0/𝐶𝑟 , (1) 

 

where 𝑒0 is the static eccentricity, and 𝐶𝑟 is the radial clearance between the rotor and the seal. 

The model for eccentrically operating seals developed by Nelson and Nguyen [3, 4] is, 

− {
𝑓𝑠𝑥
𝑓𝑠𝑦
} =  [

𝐾𝑥𝑥(𝜖0) 𝐾𝑥𝑦(𝜖0)

𝐾𝑦𝑥(𝜖0) 𝐾𝑦𝑦(𝜖0)
] {
∆𝑥
∆𝑦
} + [

𝐶𝑥𝑥(𝜖0) 𝐶𝑥𝑦(𝜖0)

𝐶𝑦𝑥(𝜖0) 𝐶𝑦𝑦(𝜖0)
] {
∆�̇�
∆�̇�
} 

+[
𝑀𝑥𝑥(𝜖0) 𝑀𝑥𝑦(𝜖0)

𝑀𝑦𝑥(𝜖0) 𝑀𝑦𝑦(𝜖0)
] {
∆�̈�
∆�̈�
}, (2) 

 

where 𝑓𝑠𝑥 and 𝑓𝑠𝑦 are the seal reaction force components, and 𝐾𝑖𝑗, 𝐶𝑖𝑗, and 𝑀𝑖𝑗 are the stiffness, 

damping, and virtual mass matrix entries, respectively. Direct coefficients can be identified by 

the xx or yy subscripts, while the cross-coupled coefficients can be identified by the xy or yx 

subscripts. The terms ∆𝑥, ∆𝑦, ∆�̇�, ∆�̇�, ∆�̈�, and ∆�̈� are components of the relative displacement, 

velocity, and acceleration vectors between the rotor and the stator, respectively.  

Liquid annular seals generate a centering force in the following two ways [2]: (1) 

hydrodynamic pressure distributions due to the shaft rotation, and (2) the Lomakin effect. As 
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shown in Fig. 2, the hydrodynamic pressure develops for an eccentrically positioned rotor when 

shearing forces from the rotation of the rotor drag the lubricant into converging and diverging 

wedges; labeled in Fig. 2 as “+” and “-“, respectively. In a bearing, flow in the converging region 

develops a local increase in pressure. In the diverging wedge of a bearing, cavitation eliminates 

the negative pressures, and provides the restoring forces [5]. In an annular seal, the elevated local 

pressure suppresses cavitation, and the seal must be displaced eccentrically to develop a 

hydrodynamic centering force.  

 

Figure 2. Pressure distribution for a displaced rotor in a fluid-filled annulus for counter-clockwise rotation. Adapted from 

Childs [6]. 

Unlike hydrodynamic bearings, annular seals see significant axial ∆𝑃𝑠 and flow rates, �̇�. 

These two factors give rise to the phenomenon known as the Lomakin Effect [7]. The relatively 

large ∆𝑃 causes the fluid to accelerate when it enters the seal causing an abrupt reduction in 

pressure near the inlet. As the lubricant flows through the seal, the fluid friction at the seal walls 

cause the axial pressure to drop further. When the rotor is eccentrically positioned, as shown by 

the dotted rotor in Fig. 3, there is a smaller radial clearance at the top and a larger clearance on 
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the bottom of the rotor. This reduction in clearance at the top causes a drop in the axial Reynolds 

number and an increase in wall friction which generates the restoring force, 𝐹𝑟 shown in Fig. 3; 

whereas the reverse is true for the enlarged clearance at the bottom.  

 

 

Figure 3. Depiction of Lomakin Effect centering forces. Adapted from Moreland [8]. 

Similar to a journal bearing, a less stable seal is likely to have large 𝐾𝑥𝑦  and 

𝐾𝑦𝑥 coefficient values with opposing signs [9]. The destabilizing  𝐾𝑥𝑦 and 𝐾𝑦𝑥 coefficients 

increase with increasing average circumferential fluid velocity,  𝜈𝑖𝑛𝑙𝑒𝑡. Thus, if 𝜈𝑖𝑛𝑙𝑒𝑡 can be 

decreased, then the destabilizing forces can also be reduced.  

 The pre-swirl ratio is defined [10] as, 

 𝑃𝑆𝑅 =  
𝜈𝑖𝑛𝑙𝑒𝑡

ω𝑅
 (3) 

Iwatsubo et al. [11] used a seal rig with water to vary and measure pre-swirl velocities using a 

pitot tube. Their tests did not cover the same range of ω and 𝜖0 as detailed here. 

The post-swirl ratio is similarly defined as, 
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  𝑂𝑆𝑅 =  
𝜈𝑜𝑢𝑡

ω𝑅
 (4) 

where 𝜈𝑜𝑢𝑡 is the average circumferential fluid velocity downstream of the seal outlet. The only 

published measurements of the post-swirl in liquid annular seals are those taken using the current 

test rig by Moreland [8] and Torres [12].  

1.1 Theoretical Literature 

Numerous authors have published work on the static and dynamic rotordynamic 

characteristics of turbulent-flow liquid annular seals. In 1970 Jenssen [13] used a “short-seal” 

approach to develop theoretical predictions of the reactive forces for the experimental tests he 

conducted on smooth, annular seals. In 1983 Childs [14] performed a dynamic analysis based on 

Hirs lubrication equation and developed finite length solutions for rotordynamic coefficients of 

turbulent annular seals for small motion about a centered orbit. In 1988 Nelson and Nguyen [3,4] 

used a turbulent bulk-flow model for plain annular seals for non-centered seals and compared 

their simulated results to the measured results of Jenssen [13] and Falco et al [15]. Nelson and 

Nguyen calculated the rotordynamic coefficients of Eq. (2) for turbulent-flow seals for: for 0.1 < 

𝜖0 <  0.7, ω < 7 krpm, and ∆𝑃 < 17.2 bar (250 psi). In 1996 Zirkelback and San Andrés [16] 

developed a bulk-flow model for the transition to a turbulent flow-regime for annular pressure 

seals. Despite all of the turbulent flow data, there has not been a substantial body of data 

published in the transitional regime to verify the model. 

1.2 Experimental Literature 

In 1984 Kanki et al. [17] tested smooth, annular water-lubricated seals. Kanki’s tests 

were conducted for 0 < 𝜖0 < 0.9, ω < 2 krpm, and ∆𝑃 < 14.7 bar (203 psi). In 1986 Falco et al 

[15] tested short, water-lubricated seals for 0 < 𝜖0 < 0.7 for ω = 4 krpm and ∆𝑃 = 10 bar. Jenssen 
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[13] tested the load-carrying capacities for smooth, annular, water-lubricated seals. Using a test 

rig similar to the one used for this investigation, in 1997 Marquette et al. [18] tested smooth, 

water-lubricated annular seals for 𝜖0 < 0.5, ω = 10.2 - 24.6 krpm, and ∆𝑃 < 41.4 bar (600 psi). 

Marquette et al. studied the effects of 𝜖0 on the rotordynamic coefficients of seals. Marquette 

recognized that a major drawback of the study was the lack of control and measurement of the 

inlet pre-swirl. In 2015 Salas [19] measured both static and dynamic characteristic behaviors for 

laminar-flow, smooth annular seals for 0 < 𝜖0 < 0.8. 

Despite the large volume of research performed, at the time of writing, this author 

believes that the only published experimental studies that examine the rotordynamic effects of 

imposed pre-swirl in an oil-lubricated annular seal for the testing conditions discussed in the 

scope of work are those by Moreland [8] in 2016 and Torres [12] in 2016. And at the time of 

writing, there has been no published data to validate the accuracy of the XLAnSeal [16] model 

predictions in the transitional regime. 
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2. STATEMENT OF WORK 

Based on current published literature, there is a large gap of knowledge on the effects of 

pre-swirl on rotordynamic coefficients over a full range of eccentricity ratios, 𝜖0 and the effect of 

the transitional regime on the prediction of rotordynamic coefficients. This thesis seeks to 

establish a measured data base for analysis of the static and rotordynamic parameters of seals 

when a range of pre-swirls are imposed.  

Most of the available literature on the impact of PSR on seal rotordynamic performance 

employ water as the test fluid for 𝜖0 less than 0.5. Furthermore, other studies that discuss the 

rotordynamic of smooth seals in relation to PSR did not test a large range of running speeds, ω, 

and 𝜖0. The only studies available presenting measured outlet swirl ratio, OSR, are those by 

Moreland [8] and Torres [12] for a smooth seal-grooved rotor and grooved seal-smooth rotor, 

respectively, taken from the present test rig.  All of the test data available for plain annular seals 

is either comfortably turbulent, or laminar. The author is unaware of any published test data that 

provides a substantial body of data in the transitional regime.  

The plain annular seals tested were based on the characteristic dimensions of a typical 

electrical submersible pump, ESP: 𝐿 = 50.8 mm (2.00 inches), 𝐷𝑖 = 102 mm (4.016 inches), and 

𝐶𝑟 = 0.203 mm (0.008 inches). Target test conditions as outlined in Table 1 were imposed for 

each level of pre-swirl (zero, medium, and high) using ISO VG 2 oil at 46.1°C (115°F). The 

target test conditions were selected based on common operating conditions found in ESPs. 

Measured static data from these tests include: volumetric leakage rate (�̇�), inlet and exit 

circumferential fluid velocity, and rotor position. The rotordynamic coefficients identified from 

these tests include direct and cross-coupled: stiffness, damping, and virtual mass. The test 
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conditions discussed in the scope of work were selected based on the most common operating 

conditions of electrical submersible pumps. The test rig is a modified version of the test rig 

design by Kaul [20] based on the “floating stator” concept developed by Glienicke [21]. 

Table 1. Test matrix for each of the three PSR inserts 

 

 

The results from these imposed conditions will be compared to predictions from 

XLAnseal of the XLTRC2 software suite based on Zirkelback and San Andrés model [16] and 

will seek to show the effects of the imposed testing conditions on the rotordynamic coefficients 

for smooth annular seals.  

 

  

ω
[krpm]

ΔP
[bar] [-]

ω
[krpm]

ΔP
[bar] [-]

ω
[krpm]

ΔP
[bar] [-]

ω
[krpm]

ΔP
[bar] [-]

0.00 0.00 0.00 0.00

0.27 0.27 0.27 0.27

0.53 0.53 0.53 0.53

0.80 0.80 0.80 0.80

0.00 0.00 0.00 0.00

0.27 0.27 0.27 0.27

0.53 0.53 0.53 0.53

0.80 0.80 0.80 0.80

0.00 0.00 0.00 0.00

0.27 0.27 0.27 0.27

0.53 0.53 0.53 0.53

0.80 0.80 0.80 0.80

0.00 0.00 0.00 0.00

0.27 0.27 0.27 0.27

0.53 0.53 0.53 0.53

0.80 0.80 0.80 0.80
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4.14
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4.14

6.21

8.27

2.07

4.14

6.21

8.27

2.07

4.14
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3. TEST APPARATUS 

The most recent tests performed using the test rig involved various types of journal and 

tilt-pad bearings. Hence, the rig had to be modified to test annular seals.  A cutaway of the test 

rig can be seen in Fig. 4. The test rig consists of the following major components: driver, rotor, 

stator, loading system, instrumentation, oil system. Each of the following sections will detail the 

major changes that the test rig experienced after the setup used by Salas [17] and before the setup 

used by Moreland and Torres [8, 12]. As shown in Fig. 4, there are two pedestals bases 

supporting the rotor that are rigidly mounted to a large bed plate. The bearings are contained 

between a lower and upper pedestal mount. The upper pedestal has hydraulic shakers rigidly 

mounted that attach to the stator. The ceramic ball bearings have oil mist lubrication.  

 

 

Figure 4. Test Rig Components. Adapted from Moreland [8]. 
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Figure 5 provides a side view of the test rig showing how the static loader attaches to the 

stator. A-A shows the yoke attachment to the stator and B-B is the plane the where the oil inlet 

ports are located. A connection exists from the static loader to the stator through a yoke and 

heavy gauge steel cabling which allows it to apply force in the negative Y-direction.   

 

 

Figure 5. Non-drive end view of test rig showing the static loader. Adapted from and modified from Kulhanek [22]. 

Except for the flow meter, the instrumentation used in this experiment is cited in Fig. 6. 

The flowmeter used is described in further detail in Section 3.5. 
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Figure 6. Cross-section of the stator with the attached instrumentation. Adapted and modified from Torres [12]. 

3.1 Driver 

The driver for the test rig was originally a 33 kW (45 hp) air turbine, but due to 

inadequate speed control, the driver was replaced with an electric motor with a variable-

frequency driver. The electric motor is a 133 Hz (8 krpm), 30 kW (40 hp) Baldor design, 

complemented by a Schneider Electric Altivar M-Flex 71 variable frequency drive. The motor 

allows for a control accuracy of ±0.025 Hz (±0.0015 krpm) compared to an accuracy of ±0.83 Hz 

(0.050 krpm) with the air turbine. The coupling was replaced by a custom (R+W LP300) 

coupling. An adaptor was developed to accomodate greater misalignment and the ability to 

disconnect and reconnect the coupling quickly. The coupling uses a keyed, slip-fit on the motor 

side and a hydraulic press fit on the rotor side. 

Item Description

1 Pressure Transducer

2 Load Cell

3 Accelerometer

4 Dynamic Shaker

5 Proximity Probe

6 Oil Inlet

7 Static Loader

8 Thermocouple

9 Pitot Tube
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3.2 Rotor 

The rotor is made of 4140 Stainless Steel and has a test section diameter of 101.6 ±0.005 

mm (4.000 ± 0.0002 in) and is supported by a pair of ceramic angular ball bearings contained 

within two bearing cartridges mounted at both ends. The surface finish was ~0.41 µm (16 µin). 

The test rotor is shown in Fig. 7. 

 

Figure 7. Smooth test rotor. All dimensions are in millimeters. Adapted and modified from Moreland [8]. 

3.3 Stator Assembly 

As shown in Fig. 8, the stator assembly is composed of two opposing test seals, a pre-

swirl insert, a central test housing, and two seal-holder end caps. The stator is assembled on a 

precision ground mandrel to ensure that both the drive end and non-drive end seals are 

concentric. The nominal mandrel-to-seal clearance is 25.4 µm (0.001 inches). The assembly is 

held together using bolts that are carefully torqued in a star pattern during assembly.  

During testing, the oil enters the stator from two ports located along the horizontal plane 

180° apart. The oil then enters the test section of the stator, passes through the pre-swirl insert, 

and then enters the seal. When it exits the seal, the oil collects in the seal holder cavity where it is 

then drained back to the reservoir at atmospheric pressure. The seal-holder end caps also contain 

a labyrinth tooth at the oil exit to maintain a back pressure and prevent air intrusion.  
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The stator assembly is the key to the entire test section; it contains instrumentation, aligns 

the seals, allows oil to enter the test section, and holds the pre-swirl insert. The stator and end 

caps have bolt holes and unique cutaways that minimize misalignment or mis-installation of the 

seals.  The pitch stabilizers shown in Fig. 4 are threaded into the stator and connect it to the 

pedestals. When tensioned down properly, the pitch stabilizers remove the pitch and yaw from 

the system. This is verified by observing the alignment-agreement of the two sets of Lion 

proximity probes, which measure displacement in both the X- and Y- planes on the drive and 

non-drive ends of the test section. These proximity probes measure the relative dynamic 

movement of the stator and have a repeatability of ±0.009%. 

 

Figure 8. Cross-section of the test rig showing the zero pre-swirl insert. Adapted and modified from Torres [12] 
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3.3.1 Test Seals 

The test seals were made from 660 Bronze with a nominal diameter of 101.6 mm (4 

inches) with a nominal-radial clearance of 203.2 µm (0.008 inches) and a length of 50.8 mm (2 

inches). They were designed with a line-to-line fit with the end caps so that when they are press-

fitted into the end caps there is no plastic deformation of the components. The face-to-face length 

of the seal is 50.8 mm (2.0 in), which gave a length to diameter ratio, L/D, of 0.5. A 3-D 

representation of the seal is shown in Fig. 9. 

 

Figure 9. Front and back views of the annular seal used in the experiment. Adapted from an internal memo. 

3.3.2 Pre-swirl Inserts 

The stator has two radial injection ports that are located along the horizontal plane 180° 

apart along the B-B line in Fig. 5. The fluid exits the inlet ports and flows through the pre-swirl 

insert and enters the seal inlet cavity. The inlet and outlet oil pressures are measured by three 

Kulite XTM-190 transducers; the transducers have an upper range of 17.2 bar (250 psi) with a 

repeatability of ±1%. The pressure transducer on the stator measures the inlet pressure just 
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behind the pre-swirl insert, while the outlet pressure is measured on both the drive and non-drive 

side end caps. The oil temperature is measured upstream and downstream of the seal by Omega 

thermocouples that have an upper range of 200°C (392°F) with a repeatability of ±2.2°C 

(±3.96°F). 

Three different pre-swirl inserts were manufactured out of 7075-T6 Aluminum. The 

inserts were designed to achieve 0.0, 0.4, and 0.8 (zero, medium, and high) PSR at 3.6 krpm for 

the specified operating conditions in Table 2 by changing the number, angle and diameter of the 

oil injection nozzles. 

Table 2. Specified conditions for the pre-swirl insert design. 

Parameter Metric Units English Units 

ΔP 2.41 – 3.1 bar 35-45 psig 

𝐶𝑟 0.381 mm 0.015 in. 

ω 3.6 krpm 

Lubricant ISO VG 2 

 

Figure 10 shows the cross-sections for the zero, medium, and high pre-swirl inserts. The 

nozzle diameters were varied from 4.978 mm (0.1960 in) for the zero and medium pre-swirl 

insert to 4.039 mm (0.1590) for the high pre-swirl conditions. The angle of attack, 𝛼, of the 

nozzles of the medium and high pre-swirl inserts is 55.7°. The fluid velocity leaving the pre-

swirl insert can be defined as,  

 𝑣𝑖𝑛𝑠𝑒𝑟𝑡 = 
�̇�

12𝜋𝑟𝑛𝑜𝑧𝑧𝑙𝑒𝑠
2   (5) 

where 𝑟𝑛𝑜𝑧𝑧𝑙𝑒𝑠 is the radius of each nozzle in the pre-swirl insert. 
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Figure 10. Pre-swirl inserts. (a) Zero pre-swirl. (b) Medium pre-swirl. (c) High pre-swirl. Adapted and modified from 

Moreland [8]. 

Figure 11 shows the cross-section of the stator assembly and the placement of the pitot 

tubes in relation to the pre-swirl injection ports. As shown in Fig. 11, the pre-swirl pitot tube is 

installed in the stator assembly at a point where the flow will be as developed as nearly as 

possible just before the fluid enters the drive-end seal. The pitot tube is located orthogonal to the 

direction of the static load.  The OSR pitot tube is installed on the drive side end cap as close as 

possible to the fluid exit of the seal. The static and dynamic pressures from the pitot tube are 

measured using a Rosemont differential pressure transmitter with an accuracy of ±0.14% of 

span. 



 

17 

 

 

 

Figure 11. Cross-section of the stator showing (a) axial and (b) radial position of the pitot tubes. All dimensions are in 

millimeters. Adapted from Moreland [8]. 

 Figure 12 shows the overall shape and dimensions of the pitot tube.  

 

Figure 12. Pitot tube dimensions. 

Figure 13 shows the installed radial position of the pre- and post-swirl pitot tubes. Both 

the pre- and post-swirl pitot tube radial distance from the rotor is equal to 𝐶𝑟 or 0.2032 mm.  
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Figure 13. Radial position of the (a) pre-swirl and (b) post-swirl pitot tube. Note: figure is not drawn to scale. Adapted 

from Najeeb. [23] 

3.4 Static and Dynamic Loading 

Figure 14 shows a simplified view of stator-stinger connection locations and the relative 

position of the applied static load from the non-drive end. The shakers are driven by two 

hydraulic pumping units manufactured by Zonic. Each stinger is attached to an exciter head and 

a dual loop master controller in the x-y planes. A load cell is connected to the stator so that each 

Zonic can control the load being transmitted to the stator assembly. The Zonic shakers can 

provide both static and dynamic loads. The hydraulic shakers can apply dynamic loads at 

frequencies up to 1 kHz. To measure the acceleration of the stator at high frequencies, a pair of 

PCB accelerometers with repeatability of ±5.0% of the measured value were connected via NPT 

fittings on the stator itself providing a solid connection between the measuring device and the 

test section. The y-axis shaker can provide up to 4500 N (1000 lbf) of tensile and 9000 N (2000 

lbf) of compressive static forces. The x-axis shaker can provide up to 4500 N (1000 lbf) in 

compressive and tensile static forces. When using the Zonic shakers to provide static loads, the 

amount of static load had to be restricted such that the hydraulic pressure had enough capacity to 

provide adequate dynamic loading capability. When the static load exceeded the capabilities of 
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the Zonic shakers, a pneumatic piston, or static loader, connected via an extension spring was 

used to apply the necessary force, 𝐹𝑠, to move the stator into the desired eccentric position.  

 

 

Figure 14. Drive end view of the stator-stinger connection locations. Adapted and modified from Kluitenberg [24]. 

3.5 Oil System 

Based on preliminary simulations, the flow required for the test seals was much higher 

than the previous test rig could deliver, Salas [17]. To accommodate the required flow 

requirements with a low viscosity fluid, a pair of Viking spur gear pumps were installed to 

provide flow capabilities up to ~265 liters per minute (70 gpm). The oil reservoir for the oil 

system consists of two tanks, a 950 liter (250 gallon) main tank and a 380 liter (100 gallon) 

return tank. The pumps are connected via a series of pneumatic control valves controlled with a 

PID temperature controller that allows the lubricant to be pumped to the test section at a 
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relatively constant 46°C (115°F) ±1.11°C (±2°F). The temperature of the system is measured at 

both the inlet and outlets of the test section, and the oil flow rate to the test rig is measured by an 

FTI turbine flow meter ~4.6 meters (15 ft.) upstream from the test section with a range of 0-265 

liters per minute (0-70 gpm) and a repeatability of ±0.05% of the reading. A schematic of the oil 

system is shown in Fig. 15. 

 

Figure 15. Schematic of oil supply and control system. Adapted from Kaul [20]. 

The viscosity and density of the system oil were separately measured to ensure accurate 

Reynolds number calculations. These measurements were taken using a Brookfield Viscometer 

with a repeatability of ±0.2% of the measured value. The viscosity and density data gathered are 

shown in Fig. 16. 
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Figure 16. ISO VG 2 oil (a) viscosity and (b) density vs. temperature. 
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4. STATIC RESULTS 

4.1 Cold-Clearance Measurement 

After the test section is assembled and prior to the introduction of any liquid, a “cold” 

clearance is taken. The cold clearance measurement is performed by using the hydraulic shakers 

to first push the stator into the stationary rotor and then precess the stator around the rotor. The 

measurements from separate sets of proximity probes at both ends of the stator are averaged to 

obtain the diametral clearance of the seals at room temperature.  

4.2 Hot-Clearance 

ISO VG-2 is used to bring the system up to steady-state conditions using the heater and oil 

pumps. When the system reaches 46.1°C (115°F), the pumps are shut off, and the clearance 

measurement is immediately repeated; this "hot" clearance is used for predictions. The hot 

clearance taken on each testing day is a key indicator that the rig is ready for testing and that the 

instrumentation is properly set. The radial clearance averaged 185.3µm (0.00729 in.) over the 

three days required for testing. Representative clearance figures from each configuration are 

shown in Fig. 17. The discrepancy between the nominal radial seal clearance 203.2 µm (0.008 

in.) and the average measured value is due to machining tolerances and the thermal expansion 

that the seals experienced during testing.  
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Figure 17.  Representative hot-clearance for the (a) zero (b) medium, and (c) high pre-swirl insert. 

4.3 Leakage 

Figure 18 shows a representative relationship of the test data and the predictions between 

�̇� and ∆𝑃 for each of the tested 𝜖0 values using the zero pre-swirl insert. As can be seen, �̇� is 

largely unaffected by increasing 𝜖0, but is strongly affected by differential pressure. As ∆𝑃 

increases, �̇� increases by a factor of almost 4. The measured results and the XLAnseal 

predictions are also shown. For the zero pre-swirl insert and low ω, there is good agreement 

between the measured results and XLAnseal. (Note: The full �̇� data set are provided in 

Appendix A: Tabulated Results) 
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Figure 18. �̇� vs. ∆𝑷 at ω = 2 krpm for the zero pre-swirl insert for ϵ0 = (a)  .   , (b)  . 𝟐𝟕 (c)  . 𝟓𝟑, and (d)  . 𝟖 . 

Figure 19 shows a representative relationship between �̇� and ∆𝑃 at ω = 6 krpm. 

Comparing Fig. 18 and Fig. 19, show that as ω increases, �̇� decreases, and the predicted leakage 

rates from XLAnseal start to diverge from measured values. These relationships hold true for all 

of the pre-swirl inserts. 
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Figure 19. 𝑸 ̇ vs. ∆𝑷 at ω = 6 krpm for the zero pre-swirl insert for ϵ0 = (a)  .   , (b)  . 𝟐𝟕 (c)  . 𝟓𝟑, and (d)  . 𝟖 . 

Figure 20 shows a representative relationship between �̇� and ω for 𝜖0 = 0.53. As  𝜔 

increases, �̇� gradually decreases. When ∆𝑃 increases from 2.1 bar to 8.27 bar, �̇� increases 

approximately 300%. At high ω and low ∆𝑃, the XLAnseal predictions diverge from the 

measured experimental values. For ω = 2krpm, the predictions over-predict the experimental 

results by ~10 LPM. As ω and ∆𝑃 increases, the predictions and the experimental results 

converge. 
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Figure 20. �̇� vs. ω for the zero pre-swirl insert at ϵ0 = 0.53 for ∆𝑷 = (a) 2.1, (b) 4.13, (c) 6.21, and (d) 8.27 bar. 

Overall, measured �̇� ranged from 9.73 LPM ( 2.57 gpm) with the medium pre-swirl 

insert at ω = 8 krpm, ∆𝑃 = 2.07 bar, and 𝜖0 = 0.00 to 69.27 LPM (18.3 gpm) with the zero pre-

swirl insert at ω = 2 krpm, ∆𝑃 = 8.27 bar, and 𝜖0 = 0.80. �̇� was generally unaffected by 

increasing pre-swirl.  
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4.4 Reynolds Number 

The Reynolds number used for flow-regime calculations is the Euclidean norm of the 

axial and circumferential Reynolds numbers. Axial Reynolds number is defined as, 

 𝑅𝑒𝑧 =
�̇�𝐶𝑟𝜌

𝐴𝜇
, (6) 

where A is the annular clearance area defined as, 

 𝐴 = 2𝜋𝑅𝐶𝑟 + 𝜋𝐶𝑟
2 (7) 

Circumferential Reynolds number is defined as,  

 𝑅𝑒𝜃 =
𝑅ω𝐶𝑟𝜌

2𝜇
, (8) 

Following Zirkelback and San Andrés [16], 𝐶𝑟 is used as the hydraulic radius. The total 

Reynolds number is therefore defined as, 

 𝑅𝑒 = √𝑅𝑒𝑧2 + 𝑅𝑒𝜃
2, (9) 

Following San Andrés [16], flow regimes will be defined as shown in Table 2, 

Table 3. Flow-regime categorizations  

Flow-Regime Reynolds Number 

Laminar Re < 1000 

Transitional 1000 < Re < 3000 

Turbulent 3000 < Re 

 

Figure 21a shows that 𝑅𝑒𝑧 generally decreases as ω increases. There is a strong, positive 

correlation between 𝑅𝑒𝑧 and ∆𝑃; as ∆𝑃 increases, 𝑅𝑒𝑧 also increases. Figure 21b shows the 

linear relationship between ω and 𝑅𝑒𝜃; it also shows that there is no relative relationship between 

∆𝑃 and 𝑅𝑒𝜃. These relationships are evident in Fig. 21c; as ω and ∆𝑃 increase, 𝑅𝑒 also increases. 

At higher ω, 𝑅𝑒 tends to converge regardless of the imposed ∆𝑃. In general, the choice of 
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imposed pre-swirl insert did not affect 𝑅𝑒. The range of Reynolds numbers covers the 

transitional and turbulent regimes. 

 

 

Figure 21. (a) 𝑹𝒆𝒛, (b) 𝑹𝒆𝜽, and (c) 𝑹𝒆 vs. ω for the zero pre-swirl insert at ϵ0 = 0.00. 

Figure 22 shows the relatively small effect that changing 𝜖0 has on 𝑅𝑒 relative to the 

effects of ω. For every 2 krpm increase in ω, there is an increase of approximately 500 in 𝑅𝑒. 
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Figure 22. (a)Rez, (b) 𝑹𝒆𝜽, and (c) 𝑹𝒆 vs. ϵ0 for the zero pre-swirl insert at ∆𝑷 = 4.13 bar. 

XLAnseal predicted that the flow would range the transitional, and turbulent regimes as 

defined in Table 3. Tests showed that the flow was mostly transitional, with occasional test 

points in the laminar and transitional regimes. Measured 𝑅𝑒 ranged between 437 and 4340. A 

plot representative of the 𝑅𝑒 experienced by the seals is given below in Fig. 23. At low 𝜖0 for all 

ω, XLAnSeal struggles to accurately predict the expected Reynolds numbers. As 𝜖0 increases, 

the predictions from XLAnseal match the measured results more closely. 
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Figure 23. Re vs. ϵ0 at ω = 6 krpm for the zero pre-swirl insert for ∆P = (a) 2.1, (b) 4.13, (c) 6.21, and (d) 8.27 bar. 

4.5 Pre-swirl Ratio 

Measured circumferential fluid velocity is used to calculate PSR and OSR and is defined 

as,  

 𝑣𝑖𝑛𝑙𝑒𝑡 𝑜𝑟 𝑜𝑢𝑡𝑙𝑒𝑡 = √
2∆𝑃𝑣

𝜌
, (10) 

where ∆𝑃𝑣 is the differential pressure experienced by the pitot tube, and 𝜌 is the fluid density at 

the operating temperature. The predictions shown in Section 6 use the measured values of pre-

swirl ratio. 
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Figure 24a shows that for the zero pre-swirl insert, 𝑣𝑖𝑛𝑙𝑒𝑡 increases as 𝜔 increases and ∆𝑃 

decreases; i.e., due to the decrease in inlet flow rate, the fluid is able to obtain more injection 

circumferential fluid velocity. Figure 24b and Fig. 24c shows that 𝑣𝑖𝑛𝑙𝑒𝑡 is relatively unaffected 

by increasing 𝜔, but generally increases for increasing ∆𝑃. As expected, the medium and high 

pre-swirl inserts significantly increase 𝑣𝑖𝑛𝑙𝑒𝑡 at low speeds. At higher speeds, 𝑣𝑖𝑛𝑙𝑒𝑡 is relatively 

unaffected by moving to higher pre-swirl inserts. 

 

Figure 24. vinlet vs.ω at ϵ0 =0.53 for the (a) zero, (b) medium, and (c) high pre-swirl insert. 

Recall the definition of pre-swirl ratio from Eq. (3). Figure 25 shows a representative 

correlation of the PSR data collected. Clearly PSR is a strong function of ω and ∆𝑃. Figure 25a 

shows for the zero pre-swirl insert, as ∆𝑃 increases, PSR decreases due to increased �̇�. For the 

high pre-swirl insert in Fig. 25b, as ∆𝑃 increases, PSR increases due to the enhanced 

circumferential flow from the insert. As ω increases, the PSRs tend to converge to ~0.4.  
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Figure 25. PSR vs. ω at ϵ0 = 0.53 for the (a) zero and (b) high pre-swirl insert. 

Table 3 shows the maximum and minimum PSRs achieved for each ω. As expected from Eq. (3), 

the maximum PSR decreases as ω increases, appearing to converge to ~0.4. 

Table 4. Minimum and maximum PSR values for each ω. 

 

Note that the circumferential velocity is measured at one location only and may not be 

entirely representative of the average inlet circumferential velocity to the seals. 

4.6 Post-swirl Ratio 

Recall the definition of post-swirl ratio given in Eq. (4). For a smooth, long seal the OSR 

is expected to be ~0.5 when the fluid exits the seal irrespective of the pre-swirl ratio. However, 

as was shown in Fig. 11, the exit circumferential velocity measurement is made downstream 

from the seal exit at a single point and is not necessarily a measure of the average exit 

Running Speed

[krpm]

Minimum Pre-swirl 

Ratio

[-]

Maximum Pre-swirl 

Ratio

[-]

2 0 1.41

4 0 0.66

6 0.12 0.47

8 0.16 0.43
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circumferential velocity. The OSR ranged between 0.10 and 0.45. Figure 26a shows OSR 

increasing with a increasing 𝜖0 when 𝜔 = 2 krpm. There is a relatively weak, positive correlation 

between OSR and 𝜖0 at low ω.  At ω above 2 krpm, there is no clear correlation between 𝜖0 and 

OSR. Figure 26a shows that as ∆𝑃 increases, OSR only slightly increases. Figure 26b shows that 

for high ∆𝑃, OSR is relatively unaffected by increasing 𝜖0. 

 

Figure 26. OSR vs. ϵ0 for ω = (a) 2 krpm and (b) 8 krpm. 

Figure 27 shows a representative relationship of OSR vs. ω for 𝜖0 = 0.00. As running 

speed increases, OSR tends to generally decrease, particularly for ∆𝑃 = 2.07 bar. There is no 

clear or consistent relationship between OSR and ∆𝑃. The pressure at the seal outlet was 

relatively constant across all inlet pressure drops. The trends for the medium and high pre-swirl 

insert were similar to those for the zero pre-swirl insert. At low ∆𝑃, the OSR unexpectedly 

dropped when ω = 6 krpm and ω = 8 krpm. The author believes this to be due in part to the 

placement of the post-swirl pitot tube. 
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Figure 27. OSR vs. ω for the zero pre-swirl insert at ϵ0 = 0.00. 

4.7 Static Load Displacement 

The static eccentricity, 𝑒0, is the distance between the center of the seal and the center of the 

shaft. Figure 28 shows the coordinate system used for this test program and the relative position 

of the shaft center, 𝑂𝑗, located at (𝜖0𝑥, 𝜖0𝑦) to the relative position of the seal center, 𝑂𝑠 located at 

(𝑂𝑆𝑥, 𝑂𝑆𝑦). The eccentricity ratio is defined as, 

 𝜖0 = √𝜖0𝑥2 + 𝜖0𝑦2 (11)  

where  

 

 𝜖0𝑥 = 
𝑒0𝑥−𝑂𝑆𝑥

𝐶𝑟
, 𝜖0𝑦 = 

𝑒0𝑌−𝑂𝑆𝑦

𝐶𝑟
 (12)  

The attitude angle 𝜙, is defined as the angle between 𝑒0 and the static load vector, 

 𝜙 =  tan−1 (
𝜖0𝑥

𝜖0𝑦
) (13) 
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Figure 28. (a) NDE view of rig coordinate system. (b) Presented coordinate system. Adapted and modified from  

Moreland [8]. 

Note that 𝜖0 = 0.00 represents a perfectly centered seal, and 𝜖0 = 1.00 represents contact 

between the rotor and seal. 

4.8 Eccentricity Loci 

Figure 29 shows the load-eccentricity-vector loci for the tested seals with the zero pre-

swirl injection at 2, 4, and 8 krpm. Recall that 𝐹𝑠 is applied in the –y direction. As can be readily 

seen, as ω increases the attitude angle begins to approach 90° meaning that the hydrodynamic 

effect begins to dominate the Lomakin effect. As Salas [17] noted, with a constant ω, as ∆𝑃 

increases the attitude angle generally decreases. The other tests performed with imposed pre-

swirl follow the same trends shown here with the same general magnitude of attitude angle. The 

complete data set for 𝜙 and 𝜖0 are available in Appendix A. 
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Figure 29. Clearance loci for the zero pre-swirl insert at ω =  (a) 2 krpm (b) 4 krpm and (c) 8 krpm. 

Note that for lower values of ω, the 0.00 eccentricity point is not actually in the center. During 

the tests due to the fact that 𝐾𝑥𝑥 and 𝐾𝑦𝑦 < 0 at 𝜖0 = 0.00, the seals experience strong 

decentering forces, forcing the rotor to 𝜖0 = ~0.05-0.10 when “in the centered position". At 

higher ω, the seal decentering reaction force decreased and the seal operated closer to 𝜖0 = 0.00. 
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5. DYNAMIC RESULTS 

5.1 Dynamic Testing and Data Reduction 

The method detailed by Childs and Hale [25] is used to calculate the rotordynamic 

coefficients. Starting with the equation of motion for the stator-system, 

 𝑀𝑠 {
∆�̈�
∆�̈�
} = {

𝑓𝑥
𝑓𝑦
} + {

𝑓𝑠𝑥
𝑓𝑠𝑦
} (14) 

where 𝑀𝑠 is the mass of the stator, 𝑓𝑥 and 𝑓𝑦 are the applied dynamic forces imparted by the 

shaker system, and 𝑓𝑠𝑥 and 𝑓𝑠𝑦 are the fluid film reaction-force components. Substituting the 

fluid-film reaction forces from Eq. (2) into Eq. (14) yields, 

  {
𝑓𝑥
𝑓𝑦
} − 𝑀𝑠 {

𝑥�̈�
𝑦�̈�
} = [

𝐾𝑥𝑥 𝐾𝑥𝑦
𝐾𝑦𝑥 𝐾𝑦𝑦

] {
∆𝑥
∆𝑦
} + [

𝐶𝑥𝑥 𝐶𝑥𝑦
𝐶𝑦𝑥 𝐶𝑦𝑦

] {
∆�̇�
∆�̇�
} + [

𝑀𝑥𝑥 𝑀𝑥𝑦

𝑀𝑦𝑥 𝑀𝑦𝑦
] {
∆�̈�
∆�̈�
} (15) 

 

The dynamic data are measured in the time domain and converted into the frequency 

domain using a Fast Fourier Transform (FFT). The new frequency-domain sets are written as 

follows: displacement (𝑫𝑥, 𝑫𝑦), acceleration (𝑨𝑥, 𝑨𝑦), and excitation forces (𝑭𝑥, 𝑭𝑦). The 

equation of motion from Eq. (15) can now be written as, 

  {
𝑭𝑥 −𝑀𝑠𝑨𝑥
𝑭𝑦 −𝑀𝑠𝑨𝑦

} = − [
𝑯𝑥𝑥 𝑯𝑥𝑦

𝑯𝑦𝑥 𝑯𝑦𝑦
] {
𝑫𝑥

𝑫𝑦
} (16) 

 

The dynamic-stiffness coefficient, 𝑯𝑖𝑗, is related to the rotordynamic coefficients by, 

 𝑯𝑖𝑗 = (𝐾𝑖𝑗 − Ω2𝑀𝑖𝑗) + 𝒋(Ω𝐶𝑖𝑗), (17) 

where Ω is the excitation frequency and 𝒋 is √−1. Separately shaking in two orthogonal 

directions, the system can be expressed as,  

  [
𝑭𝑥𝑥 −𝑀𝑠𝑨𝑥𝑥 𝑭𝑥𝑦 −𝑀𝑠𝑨𝑥𝑦
𝑭𝑦𝑥 −𝑀𝑠𝑨𝑦𝑥 𝑭𝑦𝑦 −𝑀𝑠𝑨𝑦𝑦

] = − [
𝑯𝑥𝑥 𝑯𝑥𝑦

𝑯𝑦𝑥 𝑯𝑦𝑦
] [
𝑫𝑥𝑥 𝑫𝑥𝑦

𝑫𝑦𝑥 𝑫𝑦𝑦
] (18) 
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There are now four equations with four unknown dynamic stiffness coefficients, 𝑯𝑖𝑗. 

Taking Eq. (17) and separating the 𝑯𝒊𝒋 into real and imaginary parts gives, 

   𝑅𝑒(𝑯𝒊𝒋) = 𝐾𝑖𝑗 − Ω2𝑀𝑖𝑗 = 𝐾𝑖𝑗 − 𝛬𝑀𝑖𝑗 (19) 

   𝐼𝑚(𝑯𝒊𝒋) = Ω𝐶𝑖𝑗 (20) 

 Using Eq. (17) to extract the rotordynamic coefficients, a least-squares regression curve 

fit is applied to the dynamic stiffness values. The stiffness and virtual mass coefficients are the 

Y-intercept and slope of the curve fit of the real part of 𝑯𝒊𝒋 versus Λ = Ω2, respectively. The 

damping coefficients are the slope of the curve fit for the imaginary part of 𝑯𝒊𝒋.  

Following Beckwith [26], we can obtain the rotordynamic coefficients by calculating the 

slope and Y-intercept. Looking at a simplified linear representation of the above equations,  

    𝑦(𝑥𝑖) = 𝑎 + 𝑏𝑥𝑖 , (21) 

the Y-intercept and slope can be calculated by, 

 𝑎 =
∑𝑦𝑖∑𝑥𝑖

2−∑𝑥𝑖∑𝑥𝑖𝑦𝑖

𝑛∑𝑥𝑖
2−(∑𝑥𝑖)

2
, (22) 

and 

 𝑏 =
𝑛∑𝑥𝑖𝑦𝑖−∑𝑥𝑖 ∑𝑦𝑖

𝑛∑𝑥𝑖
2−(∑𝑥𝑖)

2
, (23) 

respectively. This method is applied for frequencies up to 200 Hz (12 krpm), or 150% of the 

maximum tested ω of 133.33 Hz (8 krpm). 

To isolate the dynamic stiffness for the seals alone (no fluid in the seals), the baseline 

dynamic stiffness is subtracted from the calculated dynamic stiffness. Because there are two 

seals, the resultant dynamic stiffness is halved to represent the reaction force of a single seal. The 

time domain data are averaged together, and repeatability is calculated as outlined in Appendix 
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B. The stator is excited at each of the test frequencies multiple times to establish the necessary 

dynamic baselines.  

Figure 30a and Fig. 30b show (a) Re 𝐻𝐼𝐼 and (b) Re 𝐻𝐼𝐽 as functions of excitation 

frequency. Figure 30a, shows that direct dynamic stiffness decreases with increasing excitation 

frequency, but overall provide a good fit to Eq. (19). The y-intercept and curvature of Fig. 30a 

produce the direct stiffness and direct virtual mass coefficients, respectively. The y-intercept and 

curvature of Fig. 30b produce the cross-coupled stiffness and cross-coupled virtual mass 

coefficients, respectively. Figure 30b shows that the cross-coupled stiffness has relatively little 

dependence on the excitation frequency implying that |𝑀𝑥𝑦|  ≅  |𝑀𝑦𝑥| ≅ 0.  

These figures are representative of the relationship for the entire data set. The calculated 

dynamic stiffness shows good agreement with the model from Eq. (17) with the exception of a 

few outliers that appear at excitation frequencies above 160 Hz for a few of the data points. The 

maximum running speed was ω = 8 krpm (133 Hz), therefore the curve fit works well for 

excitation frequencies through the tested running speeds. 

 

Figure 30. Real component of the (a) direct and (b) cross-coupled stiffness for the zero pre-swirl insert vs. excitation 

frequency, Ω, for ω = 4 krpm, ΔP = 4.13 bar, and for ϵ0 = 0.27. 
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Figure 31a and Fig. 31b show (a) Im 𝐻𝐼𝐼 and (b)  Im 𝐻𝐼𝐽 as functions of excitation 

frequency. Figure 31a shows that 𝐼𝑚(𝐻𝑥𝑥) = Ω𝐶𝑥𝑥. Therefore the slope of Fig. 31a produces the 

direct damping coefficient. 

As shown in Fig. 31b, as excitation frequency increases, the imaginary cross-coupled 

dynamic stiffness components are approximately equal and opposite implying that 𝐶𝑥𝑦  ≅  −𝐶𝑦𝑥. 

The slopes of Fig. 31b produce the cross-coupled damping coefficients.  

 

Figure 31. Imaginary component of the (a) direct and (b) cross-coupled stiffness for the zero pre-swirl insert vs. excitation 

frequency, Ω, for ω = 4 krpm, ΔP = 4.13 bar, and for ϵ0 = 0.27. 

 

5.2 Rotordynamic Stiffness Coefficients 

5.2.1 Direct Stiffness Coefficients 

For the zero pre-swirl insert, Fig. 32 shows a representative relationship between 𝐾𝑥𝑥 and 

𝐾𝑦𝑦, and 𝜖0. Figure 32a shows the weak correlation between 𝜖0 and 𝐾𝑦𝑦 until 𝜖0 > 0.5 at which 

point 𝐾𝑦𝑦 increases significantly. 𝐾𝑦𝑦 remains positive for all values of 𝜔 and 𝜖0. Figure 32a also 

shows that 𝐾𝑦𝑦> 0 for most of the measured values of 𝐾𝑦𝑦. Figure 32b shows the lack of 

relationship between 𝐾𝑥𝑥 and 𝜖0. 𝐾𝑥𝑥 is clearly independent of 𝜖0 until 0.5. At 𝜖0 = 0.8, and ω < 

8 krpm, 𝐾𝑥𝑥 is negative. For low values of 𝜖0, 𝐾𝑥𝑥 ≈ 𝐾𝑦𝑦, but for large values of 𝜖0,  𝐾𝑦𝑦 > 𝐾𝑥𝑥.  
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Figure 32. (a) Kyy and (b) Kxx vs. ϵ0 for the zero pre-swirl insert at ∆P = 8.27 bar. 

For the high pre-swirl insert, Fig. 33 shows a representative relationship between 𝐾𝑥𝑥 and 

𝐾𝑦𝑦, and 𝜖0. Figure 33a shows that 𝐾𝑦𝑦 generally follows the same trend for both the zero and 

high pre-swirl insert. Comparing Fig. 32b and Fig. 33b, 𝐾𝑥𝑥 is independent of the imposed pre-

swirl condition. 𝐾𝑥𝑥 and 𝐾𝑦𝑦 shown in Fig. 33 are slightly lower when compared to those shown 

in Fig. 32. Overall, the pre-swirl inserts had very little effect on 𝐾𝑥𝑥 and 𝐾𝑦𝑦.  

 

Figure 33. (a) Kyy and (b) Kxx vs. ϵ0 for the high pre-swirl insert at ∆P = 8.27 bar. 

Figure 34 shows representative relationships between ∆𝑃 and the direct stiffness. For low 

∆𝑃, 𝐾𝑥𝑥 and 𝐾𝑦𝑦 are negative for ω > 2krpm. These negative values of direct stiffness indicate 

that a pump supported by the seals would have a lower natural frequency at this operating point, 
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which would tend to destabilize the pump rotor. Figure 34 shows that as ∆𝑃 increases, the direct 

stiffness generally increases except for ω = 2 krpm where the stiffness dramatically decreases 

between ∆𝑃 = 4.13 bar and ∆𝑃 = 6.21 bar.  

 

Figure 34. (a) Kyy and (b) Kxx vs. ∆P for the zero pre-swirl insert at ϵ0 = 0.00. 

Figure 35 shows 𝐾𝑦𝑦, 𝐾𝑥𝑥, and Re versus ∆𝑃 at the centered position. The Reynolds 

number is mostly transitional for this data set. The significant drop in 𝐾𝑥𝑥, and 𝐾𝑦𝑦, occurs as the 

Reynolds number traverses the transitional regime. As the Reynolds number continues to 

increase towards the turbulent regime, the rotordynamic stiffness begins increasing with 

increasing ∆𝑃. 



 

43 

 

 

 

Figure 35. Kyy and Kxx vs. ∆P for ω = 2 krpm and ϵ0 = 0.00 for the data set from Fig. 33 overlaid with Reynolds Numbers. 

5.2.2 Cross-coupled Stiffness Coefficients 

For the zero pre-swirl insert, Fig. 36 shows a representative relationship between 𝐾𝑥𝑦 and 

𝐾𝑦𝑥, and 𝜖0. Figure 36a shows that 𝐾𝑥𝑦 is generally unaffected by increasing values of 𝜖0.  

Figure 36b shows that 𝐾𝑦𝑥 is unaffected by increasing values of 𝜖0 until 𝜖0 = 0.80 where 𝐾𝑦𝑥 

rapidly increases in magnitude. Figure 36 shows that for 𝜖0 < 0.80, 𝐾𝑥𝑦 and 𝐾𝑦𝑥 diverge, and 

increase in magnitude. Figure 36 shows that as 𝜔 increases, |𝐾𝑥𝑦 − 𝐾𝑦𝑥| increases in magnitude; 

hence recalling the earlier discussion, the seal forces become increasingly destabilizing. Except 

for ω = 2 krpm, 𝐾𝑥𝑦 and 𝐾𝑦𝑥 have opposite signs throughout the entire data range.  
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Figure 36. (a) Kxy and (b) Kyx vs. ϵ0 for the zero pre-swirl insert at ∆P = 8.27 bar. 

For the high pre-swirl insert, Fig. 37 shows representative relationships between 𝐾𝑥𝑦 and 

𝐾𝑦𝑥 and 𝜖0. The data for the high pre-swirl insert in Fig. 37 follows the same trends as Fig. 36 

for the zero pre-swirl insert. For 𝜖0 < 0.80, the cross-coupled stiffnesses diverge, increase in 

magnitude, and 𝐾𝑥𝑦  ≅  −𝐾𝑦𝑥. At 𝜖0 = 0.80, 𝐾𝑥𝑦 and 𝐾𝑦𝑥 diverge for 𝜔 = 6 krpm and 8 krpm.   

At low values of 𝜖0, |𝐾𝑥𝑦| and |𝐾𝑦𝑥| are noticeably larger in magnitude for the high pre-swirl 

insert data shown in Fig. 37 than the zero pre-swirl insert data shown in Fig. 36. 

 

Figure 37. (a) Kxy and (b) Kyx vs. ϵ0 for the high pre-swirl insert at ∆P = 8.27 bar. 

Figure 38 shows representative relationships between 𝐾𝑥𝑦 and 𝐾𝑦𝑥, and ∆𝑃. Figure 38a 

shows that, as speed increases, 𝐾𝑥𝑦 increases in magnitude. Figure 38b shows that as speed 
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increases, |𝐾𝑦𝑥| also increases in magnitude. Figure 38 shows that there is relatively little 

relation between cross-coupled stiffness and ∆𝑃, and that 𝐾𝑥𝑦 = |−𝐾𝑦𝑥|. 

 

Figure 38. (a) Kxy and (b) Kyx vs. ∆P for the zero pre-swirl insert at ϵ0 = 0.00. 

5.2.3 Pre-swirl Effects on Stiffness Coefficients 

Figure 39 shows 𝐾𝑥𝑥,, 𝐾𝑦𝑦, 𝐾𝑥𝑦, and 𝐾𝑦𝑥 versus PSR for 𝜔 = 6 krpm, ∆𝑃 = 8.27 bar, and 

𝜖0 = 0.53. Each connected point in Fig. 39 is for a different pre-swirl insert for the same test 

conditions. (i.e. the left most point is for the zero pre-swirl insert, the middle point is the medium 

pre-swirl insert, and the far right data point is the high pre-swirl insert.)   

As PSR increases, 𝐾𝑦𝑦 generally increases and 𝐾𝑥𝑥 generally decreases. For low values 

of PSR, 𝐾𝑦𝑦 ≈ 𝐾𝑥𝑥, but as PSR increases, 𝐾𝑦𝑦 > 𝐾𝑥𝑥. For most test points, the direct stiffness 

does not show a clear increasing trend until the PSR is greater than 0.3. As PSR increases,  

|𝐾𝑥𝑦 − 𝐾𝑦𝑥| increases, creating more seal destabilizing reaction forces.  
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Figure 39. Kxx, Kxy, Kyx, and Kyy vs. PSR for three pre-swirl inserts at ω = 6 krpm, ΔP = 8.27 bar, and ϵ0 = 0.53. 

 

5.3 Rotordynamic Damping Coefficients 

5.3.1. Direct Damping Coefficients 

For the zero pre-swirl insert, Fig. 40 shows a representative relationship between 𝐶𝑥𝑥, 

𝐶𝑦𝑦, and 𝜖0, for 𝜖0 > 0.53, Fig. 40a shows that 𝐶𝑥𝑥 increases with increasing ω. Contrary to 𝐶𝑥𝑥 

in Fig. 40a,  𝐶𝑦𝑦 in Fig. 40b decreases with increasing ω. For the data shown in Fig. 40, the 

direct damping values are largely unaffected by increasing 𝜖0 until 𝜖0 > 0.53 at which point they 

increase significantly. Until this change at 𝜖0 > 0.53, 𝐶𝑥𝑥  ≈ 𝐶𝑦𝑦. 
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Figure 40. (a) Cxx and (b) Cyy vs. ϵ0 for the zero pre-swirl insert at ∆P = 8.27 bar. 

Figure 41 shows the same data range for the high pre-swirl insert as Fig. 40 for the zero 

pre-swirl insert. 𝐶𝑥𝑥 values shown in Fig. 41a for the high pre-swirl insert are approximately 

equal to that of the zero pre-swirl insert shown in Fig. 40a. 𝐶𝑦𝑦 shown in Fig. 41b is lower for 

the high pre-swirl insert than the comparable values in Fig. 40b , particularly at higher values of 

𝜖0 and low values of ω. Overall the trends for Fig. 41 are very similar to those of the zero pre-

swirl insert in Fig. 40. Figure 41 also shows that for the high pre-swirl insert, 𝐶𝑥𝑥 and 𝐶𝑦𝑦 are 

less dependent on ω than the zero pre-swirl insert. 

 

Figure 41. (a) Cxx and (b) Cyy vs. ϵ0 for the high pre-swirl insert at ∆P = 8.27 bar. 
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For the zero pre-swirl insert, Fig. 42 shows a representative relationship between 𝐶𝑥𝑥, 

𝐶𝑦𝑦, and ∆𝑃. As ∆𝑃 increases, the direct damping increases in magnitude. In general, 𝐶𝑥𝑥 = 𝐶𝑦𝑦, 

and there is no clear trend between 𝜔 and direct damping. 

 

Figure 42. (a) Cxx and (b) Cyy vs. ∆P for the zero pre-swirl insert at ϵ0 = 0.00. 

 

5.3.2. Cross-coupled Damping Coefficients 

Figure 43 shows that for low 𝜖0,  𝐶𝑥𝑦  ≅ |𝐶𝑦𝑥| particularly for low 𝜔. Overall, the cross-

coupled damping increases in magnitude with increasing 𝜖0.  When 𝐶𝑥𝑦 and 𝐶𝑦𝑥 have opposite 

signs, the cross-coupled damping acts as gyroscopic terms and do not dissipate energy. When 

𝜖0 > ~0.6  𝐶𝑥𝑦, 𝐶𝑦𝑥 have the same sign, and hence dissipate energy. The cross-coupled damping 

was approximately equal for the zero, medium and high pre-swirl inserts. 
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Figure 43. (a) Cxy and (b) Cyx vs. ϵ0 for the zero pre-swirl insert at ∆P = 8.27 bar. 

Figure 44a shows that as 𝜔 increases, 𝐶𝑥𝑦 increases in magnitude. Figure 44b shows that 

as 𝜔 increases, |𝐶𝑦𝑥| also increases in magnitude. Figure 44 shows that there is relatively little 

correlation between cross-coupled damping and ∆𝑃, and that 𝐶𝑥𝑦 = |−𝐶𝑦𝑥|. As before, when 𝐶𝑥𝑦 

and 𝐶𝑦𝑥 have opposite signs, the cross-coupled damping acts as gyroscopic terms and do not 

dissipate energy.  

 

Figure 44. (a) Cxy and (b) Cyx vs. ∆P for the zero pre-swirl insert at ϵ0 = 0.00. 
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5.3.3. Pre-swirl Effects on Damping Coefficients 

Figure 45 shows 𝐶𝑥𝑥,, 𝐶𝑦𝑦, 𝐶𝑥𝑦, and 𝐶𝑦𝑥 versus PSR for ω = 6 krpm, ∆𝑃 = 8.27 bar, and 

𝜖0 = 0.53. Each connected data point in Fig. 45 is for a different pre-swirl insert for the same test 

conditions. (i.e. the left most point is for the zero pre-swirl insert, the middle point is the medium 

pre-swirl insert, and the far right data point is the high pre-swirl insert.)  As PSR increases,  𝐶𝑥𝑥 

and 𝐶𝑦𝑦 diverge slightly, but stay relatively equal. Figure 45 also shows that as PSR increases,  

𝐶𝑥𝑦 and 𝐶𝑦𝑥 diverge slightly but are approximately equal in magnitude. Overall the rotordynamic 

damping coefficients appear to be largely unaffected by increasing PSR. 

 

Figure 45. Cxx, Cxy, Cyx, and Cyy vs. PSR for three pre-swirl inserts at ω = 6 krpm, ΔP = 8.27 bar, and ϵ0 = 0.53. 

5.4 Rotordynamic Virtual Mass Coefficients 

5.4.1. Direct Virtual Mass Coefficients 

Figure 46a shows that for the zero pre-swirl insert, there is relatively little change in 𝑀𝑥𝑥 

until 𝜖0 > 0.53, at which point 𝑀𝑥𝑥 increases by a factor of ~1.5. Figure 46b shows that for ω < 8 
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krpm, there is relatively little change in  𝑀𝑦𝑦 until 𝜖0 > 0.53. When comparing Fig. 46a and Fig. 

46b 𝑀𝑦𝑦 >  𝑀𝑥𝑥 for 𝜖0 > 0.5 and 𝑀𝑥𝑥 ≅ 𝑀𝑦𝑦 for 𝜖0 < 0.5, Fig. 46 also shows that generally, 

𝑀𝑥𝑥 increases and 𝑀𝑦𝑦 decreases with increasing ω. 

 

Figure 46. (a) Mxx and (b) Myy vs. ϵ0 for the zero pre-swirl insert at ∆P = 8.27 bar. 

The values of 𝑀𝑥𝑥 presented in Fig. 47a for the high pre-swirl insert have a similar trend 

and are approximately equal in magnitude to that for the zero pre-swirl insert presented in Figure 

46 46a. Compared to the data presented in Fig. 46b, the data presented in Fig. 47b shows a 

reduced dependence between 𝑀𝑦𝑦 and 𝜖0. For 𝜖0 < 0.53, 𝑀𝑦𝑦 is approximately equal for the zero 

pre-swirl insert shown in Fig. 46b and the high pre-swirl insert in Fig. 47b. At 𝜖0 = 0.5, and for 

ω > 6 krpm, 𝑀𝑦𝑦 is ~25% greater for the high pre-swirl insert than for the zero pre-swirl insert, 

but for 𝜖0 = 0.80 𝑀𝑦𝑦 is ~50% less than that of the zero pre-swirl insert. 
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Figure 47. (a) Mxx and (b) Myy vs. ϵ0 for the high pre-swirl insert at ∆P = 8.27 bar. 

For the zero pre-swirl insert, Fig. 48 shows a representative relationship between 𝑀𝑥𝑥, 

𝑀𝑦𝑦, and ∆𝑃. As ∆𝑃 increases, 𝑀𝑥𝑥and  𝑀𝑦𝑦 converge to ~17 kg. In general, as  ω increases, 

𝑀𝑥𝑥, and  𝑀𝑦𝑦 are less dependent on ∆𝑃. 

 

Figure 48. (a) Mxx and (b) Myy vs. ∆P for the zero pre-swirl insert at ϵ0 = 0.00. 

 

5.4.2. Cross-coupled Virtual Mass Coefficients 

For the zero pre-swirl insert, Fig. 49 shows a representative relationship for 𝑀𝑦𝑥 and 𝑀𝑥𝑦 

and 𝜖0. Figure 49a shows that 𝑀𝑥𝑦 is negative, and relatively unaffected by increasing 𝜖0. Figure 
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49b shows that 𝑀𝑦𝑥 is negative and unaffected by increasing 𝜖0 until 0.5. As seen in Fig. 49b, for 

𝜖0 > 0.5, 𝑀𝑦𝑥 rapidly increases in magnitude. Note for all 𝜖0, the values of the 𝑀𝑦𝑥 and 𝑀𝑥𝑦 

remain negative have the same sign, and have approximately equivalent magnitudes and thus 

minimal impact on the overall stability.  

 

Figure 49. (a) Mxy and (b) Myx vs. ϵ0 for the zero pre-swirl insert at ∆P = 8.27 bar. 

For the high pre-swirl insert, Fig. 50 shows a representative relationships between 𝑀𝑦𝑥 

and 𝑀𝑥𝑦 and 𝜖0. Figure 50a and Fig. 50b are nearly identical for the zero and high pre-swirl 

insert. The main difference is the reduction in magnitude of 𝑀𝑦𝑥 for ω greater than 4 krpm for 

the high pre-swirl insert. The values of the 𝑀𝑦𝑥 and 𝑀𝑥𝑦 are generally negative and have the 

same sign, and thus no impact on the overall stability. 
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Figure 50. (a) Mxy and (b) Myx vs. ϵ0 for the high pre-swirl insert at ∆P = 8.27 bar. 

For the zero pre-swirl insert, Fig. 51 shows a representative relationship between 𝑀𝑥𝑦, 

𝑀𝑦𝑥, and ∆𝑃  at 𝜖0 = 0.00. 𝑀𝑥𝑦 and 𝑀𝑦𝑥 are relatively unaffected by increasing ∆𝑃.  𝑀𝑥𝑦 and 

|𝑀𝑦𝑥 | increase with increasing ω. Generally, when 𝜖0 < 0.53, 𝑀𝑥𝑦 and 𝑀𝑦𝑥 are both 

approximately equal in magnitude, and have opposite signs. The differing signs for 𝑀𝑥𝑦 and 𝑀𝑦𝑥 

will directly impact the stability of the seal. These terms are accounted for in 𝐶𝑒𝑓𝑓 to be 

discussed in Section 5.6. 

 

Figure 51. (a) Mxy and (b) Myx vs. ∆P for the zero pre-swirl insert at ϵ0 = 0.00. 
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5.4.3. Pre-swirl Effects on Virtual Mass Coefficients 

Figure 52 shows 𝑀𝑥𝑥,, 𝑀𝑦𝑦, 𝑀𝑥𝑦, and 𝑀𝑦𝑥 versus imposed PSR for ω = 6 krpm, ∆𝑃 = 

8.27 bar, and 𝜖0 = 0.53. Each connected data point in Fig. 52 is for a different pre-swirl insert for 

the same test conditions. (i.e. the left most point is for the zero pre-swirl insert, the middle point 

is the medium pre-swirl insert, and the far right data point is the high pre-swirl insert.)  As PSR 

increases,  𝑀𝑦𝑦 increases while 𝑀𝑥𝑥 remains relatively constant. The cross-coupled virtual mass 

shows a similar trend as the direct terms; 𝑀𝑥𝑦 is approximately zero for the entire range, while 

𝑀𝑦𝑥 steadily decreases in value for the range of imposed pre-swirls.  

 

 

Figure 52. Mxx, Mxy, Myx, and Myy vs. PSR for three pre-swirl inserts at ω = 6 krpm, ΔP = 8.27 bar, and ϵ0 = 0.53. 

5.5 Whirl Frequency Ratio 

Lund [9] defined the whirl-frequency ratio, 𝑓𝑤, as a function of the rotordynamic 

coefficients for a flexible rotor supported on plain journal bearings, as,  
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  𝑂𝑆𝐼 =  
ω𝑛

𝑓𝑤
 (24) 

where ω𝑛 is the first flexural natural frequency and OSI is the onset speed of instability. 𝑓𝑤 is 

useful for defining seal performance for a single geometry at various operating conditions. For 

most of the tested points, 𝑀𝑥𝑦 and 𝑀𝑦𝑥 have differing signs meaning that they were not 

negligible and we have to use the extended model provided by San Andrés et al. [27]  

For the zero pre-swirl insert, Fig. 53a shows that 𝑓𝑤 is not strongly dependent on 𝜖0. An 

interesting observation is that in Fig. 53a, 𝑓𝑤 increases as 𝜔 increases; however, for the high pre-

swirl insert, Fig. 53b shows that 𝑓𝑤 decreases as ω increases. For the various pre-swirl inserts, as 

ω increases, 𝑓𝑤 tends to converge to ~0.4-0.6. In general, the high pre-swirl insert has a 𝑓𝑤 

greater than 0.5. For ω =  2 krpm, 𝑓𝑤 is impacted by the increase in PSR from the high pre-swirl 

insert. For ω >  2 krpm, 𝑓𝑤 is generally unaffected by the increase in PSR.  

 

Figure 53. 𝒇𝒘 vs. ϵ0 for the (a) zero and (b) high pre-swirl insert at ∆P = 8.27 bar. Note the excluded point in (a) at ϵ0= 

0.27. 

 Figure 54a and Fig. 54b shows 𝑓𝑤 versus ∆𝑃 for the zero and high pre-swirl insert 

respectively. Figure 54a shows that 𝑓𝑤 drops with increasing ∆𝑃. For the high pre-swirl insert, 

Fig. 54b shows as ∆𝑃 increases, 𝑓𝑤 increases significantly for ω = 2 krpm.  
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Figure 54. 𝒇𝒘 vs. ∆P for the (a) zero and (b) high pre-swirl insert at ϵ0  = 0.00. 

Figure 55 shows 𝑓𝑤 versus PSR for 𝜔 = 6 krpm, ∆𝑃 = 8.27 bar, and 𝜖0 = 0.53. Note that 

the relationship behaves differently for low ω. At ω = 2 krpm and ω = 4 krpm,  𝑓𝑤 increases with 

increasing PSR. For ω = 6 krpm and ω = 8 krpm, as ω increases, 𝑓𝑤 appears to converge to ~0.5. 

Note that for both the medium and high pre-swirl inserts, 𝑓𝑤 > 0.5; meaning that the seals exhibit 

stability characteristics worse than that of a plain journal bearing (~0.5). 

 

Figure 55. 𝒇𝒘 vs. PSR for the three pre-swirl inserts for ΔP = 8.27 bar, and ϵ0 = 0.53. 



 

58 

 

 

5.6 Effective Damping Coefficients 

When comparing annular seals, a more stabilizing seal will exhibit higher values of 

effective damping for the full range of operating conditions for 𝜖0 = 0.0. Effective damping 𝐶𝑒𝑓𝑓 

is defined as, 

  𝐶𝑒𝑓𝑓 = 𝐶 −
𝑘

ω
+𝑚ω (25)  

where 𝐶 =  𝐶𝑥𝑥 = 𝐶𝑦𝑦 , 𝑘 =  𝐾𝑥𝑦 = −𝐾𝑦𝑥, and  𝑚 =  𝑀𝑥𝑦 = −𝑀𝑦𝑥 will be used to compare the 

rotordynamic characteristics of the different tests performed about a centered orbit. 

Figure 56 shows that 𝐶𝑒𝑓𝑓 generally increases with increasing ∆𝑃, except for the medium 

and high pre-swirl insert at ω = 2 krpm in Fig. 56a. Overall, Fig. 56a and Fig. 56b shows that 

𝐶𝑒𝑓𝑓 decreases significantly at lower speeds in moving from the zero to the medium to the high 

pre-swirl insert. Figure 56a and Fig. 56b shows that for ω = 2 krpm and ω = 4 krpm, the most 

stable seal configuration was the zero pre-swirl insert. Note that as ω increases, the choice of pre-

swirl insert has less effect on 𝐶𝑒𝑓𝑓. Figure 56c and Fig. 56d show that for ω = 6 krpm and ω = 8 

krpm there is almost no difference between the values of 𝐶𝑒𝑓𝑓 for the zero, medium and high pre-

swirl insert.  
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Figure 56. 𝑪𝒆𝒇𝒇 vs. ∆P for (a) 2, (b) 4, (c) 6, and (d) 8 krpm. 

Figure 57 shows 𝐶𝑒𝑓𝑓 versus ω for each of the tested centered data points. For ΔP = 2.1 

bar, Fig. 57a shows that changing ω has little to no effect on 𝐶𝑒𝑓𝑓. For ω = 8 krpm, Fig. 57 shows 

that 𝐶𝑒𝑓𝑓 is relatively unaffected by increasing ΔP. Note that in Fig. 57b, Fig. 57c, and Fig. 57d 

the zero pre-swirl insert’s 𝐶𝑒𝑓𝑓 tends to be a decreasing function of ω while the medium and high 

pre-swirl insert’s 𝐶𝑒𝑓𝑓 are increasing functions of ω. In general, Fig. 57 shows that at high ω, 

𝐶𝑒𝑓𝑓 tends to converge to similar value independent of the imposed pre-swirl. Overall, for the 

range of tested data, the zero pre-swirl insert provides the most stable configuration. As pre-swirl 

increases, 𝐶𝑒𝑓𝑓 drops. 
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Figure 57. 𝑪𝒆𝒇𝒇 vs. ω for ∆P = (a) 2.1, (b) 4.13, (c) 6.21, and (d) 8.27 bar. 

Figure 58 shows 𝐶𝑒𝑓𝑓 vs. PSR for each of the tested ∆𝑃𝑠.  Figure 58a shows that PSR has 

very little effect on 𝐶𝑒𝑓𝑓for ∆𝑃 = 2.1 bar. In moving from Fig. 58b to Fig. 58c to Fig. 58d, as ∆𝑃 

increases 𝐶𝑒𝑓𝑓 becomes a stronger, decreasing function of PSR. Figure 58 shows that the most 

stable configuration is the zero pre-swirl insert because the medium and high pre-swirl inserts 

have significantly reduced values of 𝐶𝑒𝑓𝑓 as PSR increases, and therefore are less stabilizing. 
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Figure 58. 𝑪𝒆𝒇𝒇 vs. PSR for ∆P = (a) 2.1, (b) 4.13, (c) 6.21, and (d) 8.27 bar for ϵ0  = 0.00. 
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6. MEASUREMENTS VS. PREDICTIONS 

6.1 Stiffness Coefficients 

6.1a Direct Stiffness Coefficients 

Figure 59 shows representative relationships between 𝐾𝑥𝑥 and 𝐾𝑦𝑦 for the predicted and 

experimental results versus 𝜖0 for the zero pre-swirl insert at ω = 2 krpm and ∆𝑃 = 8.27 bar. 

Note that for all figures in Section 6, the measured value of pre-swirl was used for calculating the 

predicted values presented.  𝐾𝑥𝑥 and 𝐾𝑦𝑦 are smaller than predicted for 𝜖0 < 0.53 and larger than 

predicted above 0.53. For 𝜖0 = 0.53, predicted 𝐾𝑥𝑥 value very closely approximate the 

experimental results and were larger than the experimental values by ~6% and then diverge as 𝜖0 

approaches 0.80. These relationships are also true for the medium, and high pre-swirl insert. For 

𝜖0 = 0.00, the predicted values of 𝐾𝑥𝑥 are larger than the experimental values by a factor of 3. 

The total Reynolds number at this location is ~3100. This result indicates that the friction factor 

model for this set of conditions does not accurately predict the experimental data. 
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Figure 59. Kxx and Kyy vs ϵ0 for ∆P = 8.27 bar and ω = 2 krpm for the zero pre-swirl insert. 

For the zero pre-swirl insert at 𝜔 = 6 krpm and ∆𝑃 = 8.27 bar, Fig. 60 show 

representative relationships for the predicted and experimental relationships of 𝐾𝑥𝑥 and 𝐾𝑦𝑦 

versus 𝜖0. 𝐾𝑥𝑥 and 𝐾𝑦𝑦 predictions more accurately approximate the experimental results at 𝜔 = 

6 krpm. For 𝜖0 < 0.53, the direct stiffness predictions are off by ~2%. At 𝜖0 > 0.53 the 𝐾𝑥𝑥 and 

𝐾𝑦𝑦 predictions are larger than the experimental results by ~35-50%. These relationships hold 

true for the medium, and high pre-swirl insert. 
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Figure 60. Kxx and Kyy vs ϵ0 for ∆P = 8.27 bar and ω = 6 krpm for the zero pre-swirl insert. 

Recall Fig. 35 that depicted the direct stiffness results for ω = 2 krpm, and 𝜖0 =0.00 for 

the zero pre-swirl insert. Recall that the direct stiffness experienced a significant drop in 

magnitude between 4.13 bar and 6.21 bar as the Reynolds number traversed the transitional 

regime. Figure 61 shows the predicted values of  𝐾𝑥𝑥  and 𝐾𝑦𝑦 versus Reynolds number for the 

data set in Fig. 35 and shows no drop in 𝐾𝑥𝑥 and 𝐾𝑦𝑦 for the Reynolds number range shown. 
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Figure 61. Predicted Kxx, Kyy and Re vs. ∆P for ϵ0 = 0.00 and ω = 2 krpm. 

For the zero pre-swirl insert at ω = 2 krpm and 𝜖0 = 0.00, Fig. 63 shows representative 

relationships for the predicted and experimental results of 𝐾𝑥𝑥 and 𝐾𝑦𝑦 versus ∆𝑃. In Fig. 63, the 

predicted values of 𝐾𝑥𝑥 and  𝐾𝑦𝑦 are continually increasing with respect to increasing ∆𝑃 and 

𝐾𝑥𝑥  ≅  𝐾𝑦𝑦. The experimental data showed that the direct stiffnesses were equal but experienced 

a drop at ∆𝑃 = 4.13 bar. Looking back at the experimental results in Fig. 35, when ∆𝑃 = 2.07 bar, 

the predicted stiffnesses closely approximate those shown in Fig. 35. Similar to the data 

presented in Fig. 62, the Reynolds number transitions from laminar to transitional throughout the 

data presented in Fig. 63. The transition from laminar to transitional is predicted to occur near 

∆𝑃 = 4.13 bar. Note the predicted values of 𝐾𝑥𝑥 and  𝐾𝑦𝑦 are nearly identical and are shown one 

on top of the other. 
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Figure 62. Kxx and Kyy vs ∆P for ϵ0 = 0.00 and ω = 2 krpm for the zero pre-swirl insert. 

For the zero pre-swirl insert at ω = 2 krpm and 𝜖0 = 0.80, Fig. 63 shows representative 

relationships for the predicted and experimental results of 𝐾𝑥𝑥 and 𝐾𝑦𝑦 versus ∆𝑃. In Fig. 63, the 

predictions more closely match the experimental data. The magnitude of the experimental values 

of 𝐾𝑥𝑥 and 𝐾𝑦𝑦 are over-predicted by ~50%. Note the ~400% increase in magnitude when ∆𝑃 = 

8.28 bar. Note that the data presented in Fig. 63 is uncharacteristic for direct stiffness and 

appears to represent cross-coupled stiffness. Recalling Fig. 59, as you move from 𝜖0 = 0.53 to 𝜖0 

= 0.80, there is a large drop in 𝐾𝑥𝑥. The negative 𝐾𝑥𝑥 value seen in Fig. 59 are seen in Fig. 63 for 

𝜖0 = 0.80, and ω = 2 krpm, for all of the tested ∆𝑃. 



 

67 

 

 

 

Figure 63. Kxx and Kyy vs ∆P for ϵ0= 0.80 and ω = 2 krpm for the zero pre-swirl insert. 

For the zero pre-swirl insert at ω = 6 krpm and 𝜖0 = 0.00, Fig. 64 shows representative 

relationships for the predicted and experimental results of 𝐾𝑥𝑥 and 𝐾𝑦𝑦 versus ∆𝑃. As ω 

increases the predictions more closely align with the experimental results. For ∆𝑃 = 2.07, the 

predicted results are positive, while the experimental results were approximately equal in 

magnitude, but were opposite in sign. Experimental 𝐾𝑥𝑥 and  𝐾𝑦𝑦 values are under-predicted, but 

start to align with the predicted values as ∆𝑃 increases. 𝐾𝑥𝑥 and 𝐾𝑦𝑦 predictions for the medium, 

and high pre-swirl insert were similar to those for the zero pre-swirl insert shown in Fig. 64. 



 

68 

 

 

 

Figure 64. Kxx and Kyy vs ∆P for ϵ0= 0.00 and ω = 6 krpm for the zero pre-swirl insert. 

6.1b Cross-coupled Stiffness Coefficients 

For the zero pre-swirl insert at ω = 2 krpm and ∆𝑃 = 8.27 bar, Fig. 65 shows 

representative relationships for the predicted and experimental results of 𝐾𝑥𝑦 and 𝐾𝑦𝑥 versus 𝜖0. 

When 𝜖0 = 0.00, the predicted 𝐾𝑥𝑦 and 𝐾𝑦𝑥 values closely approximate experimental results. As 

𝜖0 increases, the predicted 𝐾𝑦𝑥 closely approximate the experimental results with the exception 

of 𝜖0 = 0.27. For 𝐾𝑥𝑦, the predicted results follow the same trend as the experimental values 

while over-predicting most of the experimental values by ~50-75%. These relationships hold true 

for the medium, and high pre-swirl insert. 
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Figure 65. Kxy and Kyx vs ϵ0 for ∆P = 8.27 bar and ω = 2 krpm for the zero pre-swirl insert. 

 Figure 66 shows the same data set as Fig. 65 for ω = 6 krpm. Overall for 𝜖0 < 0.53, 𝐾𝑥𝑦 

and 𝐾𝑦𝑥 predictions closely approximate the experimental results. Unlike Fig. 65 at 𝜖0 = 0.80, 

the 𝐾𝑦𝑥 predictions diverge from the experimental results and under-predict the magnitude of the 

experimental results by a factor of ~2.5. 

 

Figure 66. Kxy and Kyx vs ϵ0 for ∆P = 8.27 bar and ω = 6 krpm for the zero pre-swirl insert. 
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 For the zero pre-swirl insert at ω = 6 krpm and 𝜖0 = 0.00, Fig. 67 shows representative 

relationships for the predicted and experimental results of 𝐾𝑥𝑦 and 𝐾𝑦𝑥 versus ∆𝑃. Predicted 

values of 𝐾𝑥𝑦 are underpredicted by ~10% except at ∆𝑃 = 6.21 bar, where experimental values 

of 𝐾𝑥𝑦 are underpredicted by a factor of 2.5. Predicted values of 𝐾𝑦𝑥 exceed the experimental 

values by ~50-850%. There is a significant decrease in the experimental values of 𝐾𝑦𝑥 at ∆𝑃 > 

6.21 bar. Note from the same data set given in Fig. 61 and Fig. 62, the transition between laminar 

and transitional is predicted to occur at ∆𝑃 = 4.13 bar. 

 

Figure 67. Kxy and Kyx vs ∆P for ϵ0= 0.00 and ω = 2 krpm for the zero pre-swirl insert. 

For the zero pre-swirl insert at ω = 2 krpm and 𝜖0 = 0.80, Fig. 68 shows representative 

relationships for the predicted and experimental results of 𝐾𝑥𝑦 and 𝐾𝑦𝑥 versus ∆𝑃. The most 

accurate predictions of 𝐾𝑦𝑥 are at higher ∆𝑃 while the reverse is true for 𝐾𝑥𝑦. As 𝜖0 increases, 

the experimental results more closely match the predicted results as compared to Fig. 67. 
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Figure 68. Kxy and Kyx vs ∆P for ϵ0= 0.80 and ω = 2 krpm for the zero pre-swirl insert. 

For the zero pre-swirl insert at ω = 6 krpm and 𝜖0 = 0.00, Fig. 69 shows representative 

relationships for the predicted and experimental results of 𝐾𝑥𝑦 and 𝐾𝑦𝑥 versus ∆𝑃. The 𝐾𝑥𝑦 and 

𝐾𝑦𝑥 values are ~1-3% overpredicted until ∆𝑃 > 6.21 bar at which point the experimental data is 

under-predicted by 40% and 100% for ∆𝑃 = 6.21 bar and ∆𝑃 = 8.27 bar respectively. It is 

important to note that the trends for both the experimental and predicted values for 𝐾𝑥𝑦 and 𝐾𝑦𝑥 

are approximately equal in magnitude and opposite in sign. 
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Figure 69. Kxy and Kyx vs ∆P for ϵ0 = 0.00 and ω = 6 krpm for the zero pre-swirl insert. 

For the high pre-swirl insert at ω = 6 krpm and 𝜖0 = 0.00, Fig. 70 shows representative 

relationships for the predicted and experimental results of 𝐾𝑥𝑦 and 𝐾𝑦𝑥 versus ∆𝑃. Figure 70 

shows that the predicted values of 𝐾𝑥𝑦 align closely with the experimental data similar to those 

shown in Fig. 69. Unlike the data shown in Fig. 69 for 𝐾𝑦𝑥, those in Fig. 70 were under-predicted 

by ~100% across the entire range of measured ∆𝑃. The relationships shown were also true for 

the medium and high pre-swirl inserts. 
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Figure 70. Kxy and Kyx vs ∆P for ϵ0= 0.00 and ω = 6 krpm for the high pre-swirl insert. 

6.2 Damping Coefficients 

6.2a Direct Damping Coefficients 

A large portion of the relationships between the experimental and predicted 𝐶𝑥𝑥 and  𝐶𝑦𝑦 

can be represented by Fig. 71, which shows a representative relationship between 𝐶𝑥𝑥 and  𝐶𝑦𝑦 

for the predicted and experimental results versus 𝜖0 for the zero pre-swirl insert at ω = 2 krpm 

and ∆𝑃  = 8.27 bar. At low values of 𝜖0, the predictions are larger than the experimental data by 

a factor of 1.15. When  𝜖0 > 0.53, the predicted values are larger than the experimental results by 

1.50 for both 𝐶𝑥𝑥 and 𝐶𝑦𝑦. 
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Figure 71. Cxx and Cyy vs ϵ0 for ∆P = 8.27 bar and ω = 2 krpm for the zero pre-swirl insert. 

For the zero pre-swirl insert at ω = 6 krpm and ∆𝑃  = 8.27 bar, Fig. 72 shows 

representative relationships for the predicted and experimental results of 𝐶𝑥𝑥 and  𝐶𝑦𝑦 versus 𝜖0. 

𝐶𝑥𝑥 and  𝐶𝑦𝑦 predictions more closely match the experimental results for low values of  𝜖0.  At 

𝜖0 = 0.80, the predictions are larger than the experimental results by ~10% compared to the 

~50% from Fig. 71. The relationships shown hold for the medium and high pre-swirl inserts. 
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Figure 72. Cxx and Cyy vs ϵ0 for ∆P = 8.27 bar and ω = 6 krpm for the zero pre-swirl insert. 

For the zero pre-swirl insert at ω = 2 krpm and 𝜖0  = 0.00, Fig. 73 shows representative 

relationships for the predicted and experimental results of 𝐶𝑥𝑥 and  𝐶𝑦𝑦 versus ∆𝑃. The 𝐶𝑥𝑥 and  

𝐶𝑦𝑦 predictions are smaller than the experimental values by ~10% except for ∆𝑃 > 6.21 bar 

where the predictions over-predict the experimental results by ~10%. 
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Figure 73. Cxx and Cyy vs ∆P for ϵ0 = 0.00 and ω = 2 krpm for the zero pre-swirl insert. 

For the high pre-swirl insert at ω = 2 krpm and 𝜖0 = 0.80, Fig. 74 shows representative 

relationships for the predicted and experimental results of 𝐶𝑥𝑥 and  𝐶𝑦𝑦 versus ∆𝑃. The values of 

𝐶𝑦𝑦 and 𝐶𝑥𝑥 are over-predicted by ~50%.  

 

Figure 74. Cxx and Cyy vs ∆P for ϵ0 = 0.80 and ω = 2 krpm for the zero pre-swirl insert. 
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For the high pre-swirl insert at ω = 6 krpm and 𝜖0 = 0.00, Fig. 75 shows representative 

relationships for the predicted and experimental results of 𝐶𝑥𝑥 and  𝐶𝑦𝑦 versus ∆𝑃. As ω 

increases, the experimental results diverge from the predicted results. The direct damping results 

were over predicted by ~50-100%. As ∆𝑃 increases beyond 4.27 bar, the predictions and 

experimental results start to diverge. 

 

Figure 75. Cxx and Cyy vs ∆P for ϵ0 = 0.00 and ω = 6 krpm for the zero pre-swirl insert. 

For the high pre-swirl insert at ω = 2 krpm and 𝜖0 = 0.80, Fig. 76 shows representative 

relationships for the predicted and experimental results of 𝐶𝑥𝑥 and  𝐶𝑦𝑦 versus ∆𝑃.  Contrary to 

the zero pre-swirl insert data shown in Fig. 74, the 𝐶𝑥𝑥 and  𝐶𝑦𝑦 predictions show the opposite 

trend in Fig. 76. The experimental results for 𝐶𝑦𝑦 are closely approximated by the predicted 

results contrary to Fig. 74, where 𝐶𝑦𝑦 is over-predicted by a factor of ~3-4. 
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Figure 76. Cxx and Cyy vs ∆P for ϵ0 = 0.80 and ω = 2 krpm for the high pre-swirl insert. 

6.2b Cross-coupled Damping Coefficients 

For the zero pre-swirl insert at ω = 2 krpm and ∆𝑃  = 8.27 bar, Fig. 77 shows 

representative relationships for the predicted and experimental results of 𝐶𝑦𝑥 and 𝐶𝑥𝑦  versus 𝜖0. 

Note that for 𝜖0 < 0.53, 𝐶𝑦𝑥 and 𝐶𝑥𝑦 have opposite signs and are gyroscopic (do not dissipate 

energy). When 𝜖0 > 0.53 𝐶𝑦𝑥 and 𝐶𝑥𝑦 decrease significantly and have the same sign (do dissipate 

energy). At low values of 𝜖0, the 𝐶𝑦𝑥 and 𝐶𝑥𝑦 predictions over-predict the experimental data by 

~15%, and when 𝜖0 < 0.53 the predictions are off by ~10% and for 𝜖0 > 0.53, the predictions 

over-predict by a factor of ~1.75.  
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Figure 77. Cxy and Cyx vs ϵ0 for ∆P = 8.27 bar and ω = 2 krpm for the zero pre-swirl insert. 

For the zero pre-swirl insert at ω = 6 krpm and ∆𝑃  = 8.27 bar, Fig. 78 shows 

representative relationships for the predicted and experimental results of 𝐶𝑦𝑥 and 𝐶𝑥𝑦 versus 𝜖0. 

For 𝜖0 < 0.53, the predictions are ~10% under the experimental values. When 𝜖0 > 0.53, the 

predictions under-predict the experimental values by 30% for 𝐶𝑦𝑥, and ~75% for 𝐶𝑥𝑦. The 

relationships shown in Fig. 78 were also true for the medium and high pre-swirl inserts. 
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Figure 78. Cxy and Cyx vs ϵ0 for ∆P = 8.27 bar and ω = 6 krpm for the zero pre-swirl insert. 

 For the zero pre-swirl insert at ω = 2 krpm and 𝜖0 = 0.00, Fig. 79 shows representative 

relationships for the predicted and experimental results of 𝐶𝑦𝑥 and 𝐶𝑥𝑦 versus ∆𝑃. The 𝐶𝑦𝑥 and 

𝐶𝑥𝑦 predictions closely approximate the experimental values. For higher values of ω, and 𝜖0 = 

0.00, the same general trend holds. 

 

Figure 79. Cxy and Cyx vs ∆P for ϵ0 = 0.00 and ω = 2 krpm for the zero pre-swirl insert. 



 

81 

 

 

  For the zero pre-swirl insert at ω = 2 krpm and 𝜖0 = 0.80, Fig. 80 shows representative 

relationships for the predicted and experimental results between 𝐶𝑦𝑥 and 𝐶𝑥𝑦 versus ∆𝑃. The 𝐶𝑦𝑥 

and 𝐶𝑥𝑦 predictions under-predict the experimental values by ~100%. Comparing Fig. 79 and 

Fig. 80 note that as 𝜖0 increases to 0.80, the predictions and the experimental results diverge. 

This trend was true for the medium and high pre-swirl inserts. Note that in Fig. 79 𝐶𝑦𝑥 and 𝐶𝑥𝑦 

have opposite signs (gyroscopic damping), whereas 𝐶𝑦𝑥 and 𝐶𝑥𝑦 are both negative (dissipative 

damping) in Fig. 80. 

 

Figure 80. Cxy and Cyx vs ∆P for ϵ0 = 0.80 and ω = 2 krpm for the zero pre-swirl insert. 

6.3 Virtual Mass Coefficients 

6.3a Direct Virtual Mass Coefficients 

For the zero pre-swirl insert at ω = 2 krpm and ∆𝑃  = 8.27 bar, Fig. 81 shows 

representative relationships for the predicted and experimental results of 𝑀𝑥𝑥 and  𝑀𝑦𝑦 versus 

𝜖0. The relative difference between the 𝑀𝑥𝑥 and  𝑀𝑦𝑦 predictions and the experimental results is  
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~50% until 𝜖0 > 0.80. At 𝜖0 = 0.80, the difference between the predictions and the experimental 

results for 𝑀𝑥𝑥 remains  ~50%, but 𝑀𝑦𝑦 is under-predicted by a factor of ~3.5. This large 

difference is also seen for both the medium and high pre-swirl inserts for low speeds. At the time 

of writing, the author is unsure of the reason for the large difference between the predicted and 

experimental results at 𝜖0 = 0.8 for 𝑀𝑦𝑦. 

 

Figure 81. Mxx and Myy vs ϵ0 for ∆P = 8.27 bar and ω = 2 krpm for the zero pre-swirl insert. 

 For the high pre-swirl insert at ω = 6 krpm and 𝜖0= 0.00, Fig. 82 shows representative 

relationships for the predicted and experimental results of 𝑀𝑥𝑥 and  𝑀𝑦𝑦 versus ∆𝑃. The 

predicted values of 𝑀𝑥𝑥 and 𝑀𝑦𝑦 under-predict the experimental values by by a factor of ~2-3. 
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Figure 82. Mxx and Myy vs ∆P for ϵ0 = 0.00 and ω = 6 krpm for the high pre-swirl insert. 

6.3b Cross-coupled Virtual Mass Coefficients 

For the high pre-swirl insert at ω = 2 krpm and ∆𝑃  = 8.27 bar, Fig. 83 shows 

representative relationships for the predicted and experimental results of 𝑀𝑥𝑦 and 𝑀𝑦𝑥 versus 𝜖0. 

Similar to Fig. 81, up until 𝜖0 = 0.8, the predicted results were ~10% off of the experimental 

results. At 𝜖0 = 0.8, the difference between the predictions and the experimental results for 𝑀𝑥𝑦 

is relatively small but 𝑀𝑦𝑥 is under-predicted by a factor of ~3.5. This large difference is seen for 

both the zero, medium and high pre-swirl inserts for all measured speeds. At the time of writing, 

the author is unsure of the reason for the large difference between the predicted and experimental 

results at 𝜖0 = 0.8 for 𝑀𝑦𝑦. 
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Figure 83. Mxy and Myx vs ϵ0 for ∆P = 8.27 bar and ω = 2 krpm for the high pre-swirl insert. 

For the zero pre-swirl insert at ω = 2 krpm and 𝜖0= 0.00, Fig. 84 shows representative 

relationships for the predicted and experimental results of 𝑀𝑥𝑦 and 𝑀𝑦𝑥 versus ∆𝑃. The 

magnitude of the experimental values for 𝑀𝑥𝑦 are under-predicted by ~50%, while the 

magnitude of the experimental values for 𝑀𝑦𝑥 are over-predicted by ~100%. However, the signs 

of the predictions and the experimental results for 𝑀𝑥𝑦 and 𝑀𝑦𝑥 are opposite, i.e. the predicted 

values indicated that the seal should have been destabilizing, but the experimental results showed 

that the seal was actually stabilizing. 
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Figure 84. Mxy and Myx vs ∆P for ϵ0 = 0.00 and ω = 2 krpm for the zero pre-swirl insert. 

6.4 Whirl Frequency Ratio 

 For the zero pre-swirl insert at ∆𝑃 = 4.13 bar, Fig. 85 shows representative relationships 

for the predicted and experimental results of 𝑓𝑤 versus 𝜖0. Recall  when comparing liquid 

annular seals, a lower 𝑓𝑤 indicates a more stable seal. For the zero pre-swirl insert, as 𝜖0 

increases both the experimental and predicted values of whirl frequency converge to ~0.4–0.5.  

The 𝑓𝑤 predictions under-predict the experimental values by ~50-100%. Hence the seal is less 

stable than predicted. In general for the zero pre-swirl insert, the operating conditions where the 

seal is most stable are 𝜖0= 0.00 and 𝜔 = 2 krpm. 



 

86 

 

 

 

Figure 85. 𝒇𝒘 vs. ϵ0  for the zero pre-swirl insert at ∆P = 4.13 bar. 

For the high pre-swirl insert at ∆𝑃 = 4.13 bar, Fig. 86 shows representative relationships 

for the predicted and experimental results of 𝑓𝑤 versus 𝜖0. Note that for the high pre-swirl insert, 

the most stable operating conditions for the seal are when 𝜔 = 8 krpm, because of the dominating 

effect on pre-swirl the insert has at low speeds. Unlike the data presented for the zero pre-swirl 

insert in Fig. 85 there is no clear trend between 𝑓𝑤 and 𝜖0.  In general for the high pre-swirl 

insert, the 𝑓𝑤 predictions under-predict the experimental values by ~50-100%. Hence the seal is 

less stable than predicted. 
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Figure 86. 𝒇𝒘 vs. ϵ0  for the high pre-swirl insert at ∆P = 4.13 bar. 

For the zero pre-swirl insert at ∆𝑃 = 8.27 bar, Fig. 87 shows representative relationships 

for the predicted and experimental results of 𝑓𝑤 versus 𝜖0. Comparing the data presented in Fig. 

85 for ∆𝑃 = 4.13 bar and the data presented in Fig. 87, we can see that in general lower values of 

𝜖0 and 𝜔 are the most stable operating conditions. Note that for ∆𝑃 = 8.27 bar, the 𝑓𝑤 predictions 

over-predict the experimental values by ~10-100%. For the zero pre-swirl insert, the operating 

conditions where the seal is most stable are 𝜖0= 0.27 and 𝜔 = 2 krpm. Hence the seal is generally 

more stable than predicted. 
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Figure 87. 𝒇𝒘 vs. ϵ0  for the zero pre-swirl insert at ∆P = 8.27 bar. 

For the zero pre-swirl insert at 𝜖0= 0.00, Fig. 88 shows representative relationships for 

the predicted and experimental results of 𝑓𝑤 versus ∆𝑃. In general, the 𝑓𝑤 predictions under-

predict the experimental values by ~10-100%. As 𝜔 increases, 𝑓𝑤 increases and is therefore less 

stable. Relative to the effect of 𝜔 on 𝑓𝑤, ∆𝑃 has relatively little effect on 𝑓𝑤 for the zero, 

medium, and high pre-swirl inserts. Hence the seal is less stable than predicted. 
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Figure 88. 𝒇𝒘 vs. ∆P for the zero pre-swirl insert at ϵ0 = 0.00. 

For the zero pre-swirl insert at 𝜖0= 0.80, Fig. 89 shows representative relationships for 

the predicted and experimental results of 𝑓𝑤 versus ∆𝑃. When 𝜖0 = 0.80, the relationships 

between 𝑓𝑤 and ∆𝑃 seen in Fig. 88 are no longer discernable. Note: for clarity, the experimental 

results for 6 krpm are hidden behind the trends, but it matches the predicted results within 5% 

when ∆𝑃 = [2.07, 4.13] bar and larger by a factor of ~2 when ∆𝑃 = [6.21, 8.27] bar. 
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Figure 89. 𝒇𝒘 vs. ∆P for the zero pre-swirl insert at ϵ0 = 0.80. 

6.5 Effective Damping 

Recalling the discussion from Section 5.6, Fig. 90 shows the experimental and predicted 

𝐶𝑒𝑓𝑓 values vs. ∆𝑃 for the zero and high pre-swirl insert. The experimental data shown in Fig. 90 

is from the same set of data shown in Fig. 56. The predictions consistently over-predict the 

stability of the seals by as much as a factor of 2. In general, the predictions are more accurate at 

low 𝜔, and low ∆𝑃. There is not a significant difference in the accuracy of the predicted values 

of 𝐶𝑒𝑓𝑓 between the zero, medium, and high pre-swirl insert.  
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Figure 90. Measured and predicted 𝑪𝒆𝒇𝒇 vs. ∆P for (a) 2, (b) 4, (c) 6, and (d) 8 krpm. 

 Figure 91 shows the experimental and predicted 𝐶𝑒𝑓𝑓 values vs. 𝜔 for the zero and high 

pre-swirl insert. The predictions over-predict the experimental values by up to a factor of 2, 

hence the seal is less stable than predicted. There is not a significant difference in the accuracy of 

the predicted values of 𝐶𝑒𝑓𝑓 between the zero, medium, and high pre-swirl insert. Note that the 

predictions follow the same trends as the experimental values.   
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Figure 91. Measured and predicted 𝑪𝒆𝒇𝒇 vs. ω for ∆P = (a) 2.1, (b) 4.13, (c) 6.21, and (d) 8.27 bar. 

 Figure 92 shows the experimental and predicted 𝐶𝑒𝑓𝑓 values vs. PSR for the zero and 

high pre-swirl insert. The predictions over-predict the seal by up to a factor of 2, hence the seal is 

less stable than predicted. There is not a significant difference in the accuracy of the predicted 

values of 𝐶𝑒𝑓𝑓 between the zero, medium, and high pre-swirl insert. Note that the predictions 

follow the same trends as the experimental values.   
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Figure 92. Measured and predicted 𝑪𝒆𝒇𝒇 vs. PSR for ∆P = (a) 2.1, (b) 4.13, (c) 6.21, and (d) 8.27 bar. 
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7. SUMMARY AND CONCLUSIONS 

Tests were conducted for the static and rotordynamic characteristics of plain annular 

seals. The set of plain annular seals tested had: length of 50.800 mm (2.00 inches), diameter of 

102.0064 mm (4.016 inches), and radial clearance of 0.2032 mm (0.008 inches). The tests were 

conducted by varying the following parameters: running speeds, ω = 2, 4, 6, 8 kprm, axial 

pressure drops, ΔP  = 2.1, 4.13, 6.21, and 8.27 bar (30, 60, 90, and 120 psi), eccentricity ratios, 

𝜖0 = 0.00, 0.27, 0.53, and 0.80, and three pre-swirl inserts to target zero, medium, and high (0.0, 

0.4, and 0.8) pre-swirl ratios, PSRs, for a set of specified operating conditions. The lubricant 

used was ISO VG 2 oil at 46.1°C (115°F). 

7.1 Static Results 

 The static performance measurements included volumetric flow rate, �̇�, PSR, and outlet 

swirl ratio, OSR. �̇� is a strong function of ∆𝑃 and is relatively immune to changes in ω or 𝜖0. It 

was reduced on average 10% or 6.5 LPM with the high pre-swirl insert as compared to the zero 

pre-swirl insert. (Note: ∆𝑃 is based on a pressure measurement upstream of the pre-swirl insert 

and downstream of the seal. Hence ∆𝑃 includes the pressure drop of the pre-swirl insert.) The 

representative plots for �̇� show that the XLAnSeal leakage predictions [16] match the measured 

�̇� results for low ω and radial injection. At low ω, the measured leakage is within 5% of the 

predicted values. As ω and imposed pre-swirl were increased, the predicted leakage values were 

greater than the measured leakage values on average by a factor of ~1.5, particularly for low 𝜖0.  

 The vector average Reynolds number, Re, was predicted to range over the transitional 

and turbulent regimes, while the experimental results showed the flow was mostly transitional 

with occasional test points in the laminar and turbulent regimes. Re was relatively unaffected by 
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increases in 𝜖0 or imposed pre-swirl. When ΔP is increased from 2.13 bar to 8.27 bar for low ω, 

the vector Reynolds number increased by a factor of 3 from ~1250 to 3100. When ω increased 

from 2 krpm to 8 krpm, the total Reynolds number increased from ~1400-3500 or a factor of 2.5. 

At low 𝜖0, the predictions are smaller than the experimental results by a factor of ~2. As 𝜖0 

increases, the predictions are smaller than the experimental results by as little as 5%.  

 Regarding PSR, as 𝜔 increased, PSR at the inlet to the seal tended to converge to a value 

of ~0.4-0.5 for all pre-swirl inserts. This result implies that, for lower ω, the inlet swirl velocity 

will be more important; i.e., since most ESPs run between 1.2-3.6 krpm, the seals will be heavily 

impacted by the inlet pre-swirl. An unexpected result was the lack of correlation between PSR 

and OSR. This was most probably due to the sudden radial expansion of the fluid at the outlet of 

the seal and the axial distance between the seal exit and the pitot tube measurement. The 

measured OSR values could be useful in validating CFD studies of annular liquid seals. 

When “in the centered position", for low ∆𝑃, and high ω, the seals experienced strong 

decentering forces, forcing the rotor to 𝜖0 = ~0.05-0.10. As ω increased, the seal decentering 

reaction force decreased, and the seal operated closer to 𝜖0 = 0.00. 

7.2 Rotordynamic Measurements 

The seals direct stiffness coefficients, 𝐾𝑥𝑥 and 𝐾𝑦𝑦 were relatively unaffected by changes 

in the pre-swirl insert, and changes in 𝜖0 over the range [0.00, 0.53]. For all tested ΔP, ω, and 

imposed PSR, the measured values of 𝐾𝑦𝑦 for 𝜖0 = 0.80 were larger than measured 𝐾𝑦𝑦 by a 

factor of ~1.5-2 for 𝜖0 = 0.00. When ΔP increased from 2.13 bar to 8.27 bar for the zero pre-

swirl insert, the direct stiffness increases by a factor of ~2.5 for ω > 6 krpm, and 𝜖0 < 0.53. At 

low values of ΔP and ω > 2 krpm, 𝐾𝑥𝑥 and 𝐾𝑦𝑦 were generally negative; i.e., a pump supported 
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by these seals would have both a reduced natural frequency and a lowered onset speed of 

instability at these operating points. Additionally, for operating conditions where the Reynolds 

number traverses ~2000-2300 or the mid-transitional regime, the direct stiffness experienced a 

marked decrease in magnitude.   

Regarding the cross-coupled stiffness coefficients for 𝜖0 ∈ [0.00, 0.53],  𝐾𝑥𝑦 ≅ −𝐾𝑦𝑥. 

For 𝜖0 = 0.80, 𝐾𝑦𝑥 increased 1.25 times in magnitude when compared to the measured values at 

𝜖0 = 0.00, and 𝐾𝑥𝑦 is relatively constant for any changes in 𝜖0, and ΔP. Therefore an increase in 

|𝐾𝑦𝑥| increases |𝐾𝑥𝑦 − 𝐾𝑦𝑥|, indicating that the seal will be more destabilizing at 𝜖0 > 0.5. In 

general, as the PSR increased from ~0.1 to ~0.45 with the different pre-swirl inserts, |𝐾𝑥𝑦 − 𝐾𝑦𝑥| 

increased by a factor of 2.5, indicating that when higher PSRs are experienced by the seal, the 

seal will be more destabilizing.  

The seals direct damping coefficients, 𝐶𝑥𝑥 and 𝐶𝑦𝑦, increased with increasing ΔP and ω, 

but were relatively unaffected by changes in 𝜖0 ∈ [0.00, 0.53]. For 𝜖0 < 0.53, 𝐶𝑥𝑥 ≅ 𝐶𝑦𝑦. When 

𝜖0 = 0.80, 𝐶𝑥𝑥 and 𝐶𝑦𝑦 experience a large increase in magnitude. Interestingly, 𝐶𝑥𝑥 increases 

with increasing ω, while 𝐶𝑦𝑦 decreases with increasing ω. For the zero pre-swirl insert, for all 𝜖0 

and ω, when ΔP is increased from 2.13 bar to 8.27 bar, 𝐶𝑦𝑦 increases by a factor of ~2. When the 

high pre-swirl insert was used for 𝜖0 < 0.53, 𝐶𝑥𝑥,  𝐶𝑦𝑦 measured values closely approximated 

those of the zero pre-swirl insert for all conditions. However, for 𝜖0 = 0.80, 𝐶𝑥𝑥 and 𝐶𝑦𝑦 

increased in magnitude by a factor of 3, and 2, respectively, as compared to the values measured 

at 𝜖0 < 0.53.  

As for the cross-coupled damping coefficients, 𝐶𝑥𝑦 and 𝐶𝑦𝑥 were largely unaffected by 

ΔP  and 𝜖0 ∈ [0.00, 0.53]. Over the range 𝜖0 = [0.00, 0.53], and for all ΔP, 𝐶𝑥𝑦 and 𝐶𝑦𝑥 are 
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approximately equal in magnitude and opposite in sign; i.e., gyroscopic damping. In moving 

from 𝜖0 = 0.53 to 𝜖0 = 0.80,  𝐶𝑥𝑦 and 𝐶𝑦𝑥  decreased by a factor of 5, making both cross-coupled 

damping coefficients negative causing them to be dissipative damping. When ω is increased 

from 2 krpm to 8 krpm, the cross-coupled damping coefficient magnitudes increase by a factor of 

~4 independent of the remaining variables. When the high pre-swirl insert was used in place of 

the zero pre-swirl insert for 𝜖0 < 0.53, 𝐶𝑥𝑦 and 𝐶𝑦𝑥 experience a ~40-50% increase in magnitude.  

 The seals direct virtual mass coefficients, 𝑀𝑥𝑥 and 𝑀𝑦𝑦, were generally unaffected by ω 

and 𝜖0 ∈ [0.00, 0.53] while they increased with increasing ΔP for all of the pre-swirl inserts. 𝑀𝑥𝑥 

and 𝑀𝑦𝑦 are above 12 kg for all of the measured data points.  In general, 𝑀𝑥𝑥 ≅ 𝑀𝑦𝑦 for 𝜖0 < 

0.53. For the zero pre-swirl insert, when moving from 𝜖0 = 0.53 to 𝜖0 = 0.80, the magnitude of 

the direct virtual mass increased by 50% for 𝑀𝑥𝑥 and by a factor of ~2.5 for 𝑀𝑦𝑦. For the high 

pre-swirl insert when moving from 𝜖0 = 0.53 to 𝜖0 = 0.80,  𝑀𝑥𝑥 increased by a factor of 1.5, 

while 𝑀𝑦𝑦 increased by a factor of 2. At 𝜖0 = 0.53, ΔP = 8.27 bar, and ω = 6 krpm, when PSR 

increased from 0.1 to 0.45, 𝑀𝑥𝑥 was unaffected, but 𝑀𝑦𝑦 increased by factor of 1.5.  

  Regarding the cross-coupled virtual mass coefficients, 𝑀𝑥𝑦 and 𝑀𝑦𝑥 were unaffected by 

changing: (a) 𝜖0 ∈ [0.00, 0.53], (b) ω over the full range, (c) ΔP over the full range, and (d) 

increasing pre-swirl. 𝑀𝑥𝑦 ≅ −𝑀𝑦𝑥 for 𝜖0 < 0.53. In moving from 𝜖0 = 0.53 to 𝜖0 = 0.80, 𝑀𝑦𝑥 

increased in magnitude by a factor of 10 for the zero pre-swirl insert and by a factor of 3 for the 

high pre-swirl insert, but generally maintain 𝑀𝑥𝑦 ≅ −𝑀𝑦𝑥, implying a stabilizing seal over the 

range of tested values. At 𝜖0 = 0.53, ΔP = 8.27 bar, and ω = 6 krpm, when PSR increased from 

0.1 to 0.45, 𝑀𝑥𝑦 was unaffected, while 𝑀𝑦𝑥 increased in magnitude by a factor of ~5 .  
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  For all pre-swirl inserts, whirl frequency ratio, WFR, was largely unaffected with 

changing 𝜖0 or ∆𝑃 except when the rotor was operating at ω = 2 krpm. At ω = 2 krpm, for the 

high pre-swirl insert, WFR decreased by ~20% with increasing 𝜖0 and increased by a factor of 2 

with increasing ∆𝑃. For the zero pre-swirl insert, WFR increased with increasing ω for all given 

conditions; for the high pre-swirl insert WFR decreased with increasing ω for all given 

conditions. This result highlights the destabilizing effect that higher pre-swirls have on the seal, 

particularly at low ω. For the zero pre-swirl insert, and 𝜖0 < 0.80, the seals were generally the 

most stable when ω = 2 krpm. 

  The effective damping coefficients, 𝐶𝑒𝑓𝑓, generally increased with increasing ∆𝑃, and 

were highest and thus the most stable when ∆𝑃 = 8.27 bar, and ω = 2 krpm. At lower values of 

∆𝑃, and higher values of ω, 𝐶𝑒𝑓𝑓 converged to a similar value independent of the imposed pre-

swirl. The effects of the imposed pre-swirl velocity are most prominent at ω = 2 krpm, and 

diminish as speed increases. At ω = 8 krpm, the imposed pre-swirl velocity did not affect 𝐶𝑒𝑓𝑓. 

Overall the data showed that for increased PSR, (e.g. using the medium and high pre-swirl 

inserts), there is a marked decrease in effective damping and hence worse rotordynamic stability 

performance, indicating that inhibiting the inlet swirl velocity produces more favorable 

rotordynamic characteristics. For centered operation, the seal 𝐶𝑒𝑓𝑓 values were the most stable 

for ω > 2 krpm, and ∆𝑃 = 8.27 bar.  

7.3 Measurements vs. Predictions 

7.3.1 Direct Stiffness 

The magnitude and sign of the predicted values of the direct stiffness coefficients, 𝐾𝑦𝑦 

and 𝐾𝑥𝑥 were generally larger than the experimental results for the tested cases except when ∆𝑃 



 

99 

 

 

= 8.27 bar, 𝜖0 = 0.80 for 𝐾𝑦𝑦, and 𝜖0 > 0.27 for 𝐾𝑥𝑥. In these exception cases, the predicted 𝐾𝑦𝑦 

and 𝐾𝑥𝑥 values are smaller than the experimental results by a factor of 2. The sign of the 

predicted values of 𝐾𝑥𝑥 were often opposite that of the measured values for ∆𝑃 > 6.21 bar and 𝜖0 

= 0.80. 

Recall Fig. 59 and Fig. 60, which show the predicted and experimental results between 

𝐾𝑦𝑦 and 𝐾𝑥𝑥 versus 𝜖0 for ∆𝑃 = 8.27 bar for ω = 2 krpm and ω = 6 krpm, respectively. For ω = 6 

krpm, the predicted values of 𝐾𝑦𝑦 and 𝐾𝑥𝑥 are within 5% of the experimental values, contrasted 

with ω = 2 krpm, where the predicted values are within 1.8 times the experimental values on 

average. Indicating that at higher speeds, the predicted values more closely match the 

experimental values. This same trend is evident in Fig. 62 and Fig. 64. 

As shown in Fig. 62, for ω = 2 krpm and 𝜖0 ∈ [0.00, 0.80] there was a large drop in the 

experimental values of 𝐾𝑦𝑦 and 𝐾𝑥𝑥 when the total Reynolds number traversed ~2000-2300 or 

the mid-transitional regime that was not predicted.  

Recall Fig. 62 and Fig. 63 which show the predicted and experimental results between 

𝐾𝑦𝑦 and 𝐾𝑥𝑥 versus ∆𝑃  for ω = 2 krpm for 𝜖0 = 0.00 for and 𝜖0 = 0.80, respectively. When 𝜖0 = 

0.00, the predicted values are consistently greater than the experimental values by an average 

factor of 2.25, and a factor of 4.5 at its peak. Contrasted with 𝜖0 = 0.80 where the magnitude of 

the predicted values is generally smaller than the experimental values by an approximate factor 

of 1.5. 

7.3.2 Cross-coupled Stiffness 

Regarding the cross-coupled stiffness predictions, there was no clear pattern for when the 

predicted values of 𝐾𝑥𝑦 and 𝐾𝑦𝑥 would be larger or smaller than the experimental values. In 



 

100 

 

 

general, XLAnSeal did an adequate job of predicting the trends of the cross-coupled stiffness 

experimental values for all tested parameters; i.e., changed due to changing 𝜖0, ω, ΔP, and 

imposed PSR. With a few exceptions, the predictions were generally within 10-50% of the 

experimental values. The predicted values of 𝐾𝑥𝑦 and 𝐾𝑥𝑦 often did not match the sign of the 

corresponding experimental data. 

7.3.3 Direct Damping 

The predicted values of the seals direct damping coefficients, 𝐶𝑥𝑥 and 𝐶𝑦𝑦, are generally 

larger than the experimental values by 10-50% for ω > 4 krpm. When ω = 2 krpm with the zero 

pre-swirl insert, the experimental values were generally greater than the predicted values by 10-

30%. When ω = 2 krpm with the high pre-swirl insert, at 𝜖0 =0.8 the experimental values of 𝐶𝑦𝑦 

were larger than the predicted values by a factor of 2 at ΔP = 8.27 bar. The accuracy of the 

predicted values of 𝐶𝑥𝑥 and 𝐶𝑦𝑦 are generally unaffected by increasing ΔP. The predicted signs 

consistently match that of the experimental values. 

7.3.4 Cross-coupled Damping 

As for the predicted values of 𝐶𝑥𝑦 and 𝐶𝑦𝑥, for 𝜖0 ∈ [0.00, 0.53] the magnitude of 𝐶𝑥𝑦 is 

generally 10- 25% smaller than the experimental values, and the magnitude of 𝐶𝑦𝑥 are both 

larger and smaller than the experimental values, but generally within 10-40%. However, when ω 

= 2 krpm, and 𝜖0 = 0.80, the predicted magnitudes of 𝐶𝑥𝑦, and 𝐶𝑦𝑥 are up to ~2 times larger than 

the experimental values. When 𝜖0 = 0.8, all the predicted values of 𝐶𝑥𝑦, and 𝐶𝑦𝑥 were larger in 

magnitude than the experimental results. The sign of the predicted values consistently matched 
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those of the experimental values. The accuracy of the predicted values of 𝐶𝑥𝑦 and 𝐶𝑦𝑥 are 

generally unaffected by increasing ΔP, and imposed inlet swirl velocity.  

7.3.5 Direct Virtual Mass 

The experimental values of the seal’s direct virtual mass coefficients, 𝑀𝑥𝑥 and 𝑀𝑦𝑦, were 

generally larger than the predicted values by a factor of 2 for 𝜖0 ∈ [0.00, 0.53].  The predictions 

are the least accurate for 𝑀𝑦𝑦 at 𝜖0 = 0.80, where the predictions are smaller than the 

experimental values by a factor of 6. The accuracy of the predicted values of 𝑀𝑥𝑥 and 𝑀𝑦𝑦 were 

relatively unaffected by changing ΔP, ω, and imposed inlet swirl velocity.  

7.3.6 Cross-coupled Virtual Mass 

As for 𝑀𝑥𝑦 and 𝑀𝑦𝑥, the predicted values of 𝑀𝑥𝑦 are generally larger than the experimental 

results by 10% for 0.27 < 𝜖0 < 0.53.  When 𝜖0 = 0.00, and 𝜖0 = 0.80, the predicted values for 

𝑀𝑦𝑥 are larger than the predicted magnitudes by a factor of ~3.5-5. The prediction accuracy of 

𝑀𝑥𝑦 and 𝑀𝑦𝑥 were relatively unaffected by changing ΔP, ω, and PSR. The signs of the 

predictions and the experimental results for 𝑀𝑥𝑦 and 𝑀𝑦𝑥 were often opposite, i.e. the predicted 

values indicated that the seal would be destabilizing, but the experimental results showed that the 

seal was actually stabilizing. 

7.3.7 Whirl Frequency Ratio 

For the zero pre-swirl insert, the calculated experimental values of WFR were generally 

larger than the values calculated from the predicted values by a factor of 1.5 to 2 for ΔP < 8.27 

bar; i.e., the seals were less stable than predicted. An exception occurred when ΔP = 8.27 bar, ω 
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> 4 krpm, and 𝜖0 < 0.4 where XLAnSeal generally over-predicts WFR; i.e., the seals were more 

stable than predicted by XLAnSeal.  

When the high pre-swirl insert was used, the predicted values no longer followed the same 

trends as the experimental values. Specifically for the high pre-swirl insert, and ω = 2 krpm, 

XLAnSeal predicted that the WFR would converge towards ~0.45-0.5. For the high pre-swirl 

insert and ω > 4 krpm, XLAnSeal predicted that the WFR would be relatively constant at ~0.45-

0.50 over the range of tested 𝜖0. For ω = [2, 4] krpm, the experimental data for the high pre-swirl 

insert showed that WFR was relatively unaffected by increasing 𝜖0.  

7.3.8 Effective Damping 

For seals operating in the centered position, 𝐶𝑒𝑓𝑓 provides a good comparison of the 

seal’s stabilizing capacity. Predicted 𝐶𝑒𝑓𝑓 values were typically larger than the experimental 

values by a factor of 1.2-1.5, but could be as much as 2 times larger. Overall, the seal was less 

stabilizing than predicted. In general, the predictions were more accurate at low 𝜔, and low ∆𝑃. 

There is not a significant difference in the accuracy of the predicted 𝐶𝑒𝑓𝑓 values between the 

zero, medium, and high pre-swirl insert.  

7.4 Future Recommendations 

Overall, increases in inlet swirl velocity negatively affects seal rotordynamic 

performance by increasing the magnitude of the cross-coupled stiffness values. As expected, the 

results presented show that reducing the inlet pre-swirl increases the overall stability of the seal. 

The results also show that the effect of changing the inlet swirl velocity diminished at 8 krpm. 

Overall, inlet swirl could be reduced by using swirl brakes or negative-swirl inlet geometries. 

Swirl brakes and negative-swirl inlet geometries have been used to reduce inlet pre-swirl 
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velocities and eliminate rotordynamic instabilities in pump and compressor seals, respectively. 

Additionally, a study dedicated to testing at 𝜖0 > 0.6 should be conducted to investigate the large 

increases in the rotordynamic stiffness, damping, and virtual mass coefficients magnitude at 

large eccentricities. The information gathered from investigating high eccentricity operating 

points could be used to better predict and diagnose abnormal operating conditions and 

misalignment from poor dimensional assemblies. 

XLAnSeal does an adequate job at predicting rotordynamic damping coefficients, but 

does a poor job predicting the direct stiffness and virtual mass coefficients when the Lomakin 

Effect dominates the centering forces; e.g., combinations of low �̇�, low 𝜖0, low ω, or high ΔP. 

An examination of the applicability of the Zirkelback and San Andrés [16] model for transitional 

test data should be conducted. From the data in this thesis, a friction factor vs Reynolds number 

graph could be extracted to examine the discrepancy with the direct stiffness predictions. 

A computational fluid dynamic (CFD) analysis should be developed to determine the best 

location for the OSR pitot tube, allowing a more thorough analysis on the effects of outlet swirl 

velocity on rotordynamic coefficients. With this CFD analysis, different pre-swirl inserts and 

swirl-brake designs can be investigated, giving additional insight for measured test programs 

including testing inlet swirl that opposes rotational motion of the rotor. Additional tests should 

be conducted to measure the effects of swirl-brakes on liquid annular seals with imposed pre-

swirl to determine the extent to which rotordynamic characteristics can be improved by 

decreasing the inlet swirl velocity. 
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APPENDIX A TABULATED RESULTS 

A.1 Zero Pre-swirl Insert Assembly 

Table A. 1. Static results for the zero pre-swirl insert. 

 

  

 ω

[rpm]

ΔP

[bar] [-]

ω

[rpm]

ΔP

[bar] [-] [LPM]

φ

[rad] [N]

1 2000 2.07 0.00 2002.9 1.952 0.026 20.98 -1.285 18.65

2 2000 2.07 0.27 2003.7 2.003 0.275 19.79 0.262 87.06

3 2000 2.07 0.53 2004.7 2.006 0.529 22.13 0.523 143.99

4 2000 2.07 0.8 2004.4 2.040 0.799 26.68 0.956 264.30

5 2000 4.14 0.00 2004.2 4.102 0.033 39.48 0.220 21.92

6 2000 4.14 0.27 2004.2 3.988 0.294 39.61 0.188 123.04

7 2000 4.14 0.53 2004.8 4.107 0.531 40.40 0.331 207.91

8 2000 4.14 0.8 2004.7 4.044 0.800 42.63 0.706 326.66

9 2000 6.21 0.00 2004.8 6.090 0.061 53.98 -3.001 3.13

10 2000 6.21 0.27 2004.9 6.146 0.273 52.91 0.234 89.09

11 2000 6.21 0.53 2004.5 6.120 0.527 52.93 0.228 253.36

12 2000 6.21 0.8 2004.3 6.084 0.797 57.00 0.496 409.34

13 2000 8.27 0.00 2004.3 8.304 0.029 64.23 -0.914 4.81

14 2000 8.27 0.27 2004.3 8.222 0.274 63.96 0.572 89.19

15 2000 8.27 0.53 2004.3 8.276 0.526 65.30 0.234 331.63

16 2000 8.27 0.8 2003.7 8.649 0.816 69.27 0.478 530.13

17 4000 2.07 0.00 3999.7 2.016 0.024 15.37 0.984 6.05

18 4000 2.07 0.27 3999.8 1.914 0.269 15.41 1.179 72.98

19 4000 2.07 0.53 3999.9 2.007 0.537 18.94 1.220 201.57

20 4000 2.07 0.8 3999.4 1.928 0.807 18.87 1.328 450.50

21 4000 4.14 0.00 3999.6 4.002 0.084 35.41 2.417 22.63

22 4000 4.14 0.27 3999.7 4.069 0.277 35.34 1.164 123.14

23 4000 4.14 0.53 3999.5 4.054 0.523 35.39 0.961 254.08

24 4000 4.14 0.8 4003.8 4.576 0.796 38.85 1.172 423.32

25 4000 6.21 0.00 3999.7 6.220 0.097 48.90 -1.060 -0.03

26 4000 6.21 0.27 4000.1 6.219 0.270 48.93 1.087 124.93

27 4000 6.21 0.53 3999.7 6.133 0.529 49.10 0.773 301.42

28 4000 6.21 0.8 4003.6 6.508 0.812 53.86 1.022 560.34

29 4000 8.27 0.00 4001.3 8.213 0.016 58.38 -0.803 2.33

30 4000 8.27 0.27 3999.4 8.069 0.282 58.68 0.864 136.54

31 4000 8.27 0.53 3999.5 8.142 0.532 60.90 0.621 354.53

32 4000 8.27 0.8 4003.5 8.654 0.794 65.65 0.841 620.30

Target Measured
Test 

Point 𝐹𝑟



 

108 

 

 

Table A. 1. Static results for the zero pre-swirl insert. (Continued) 

 

  

 ω

[rpm]

ΔP

[bar] [-]

ω

[rpm]

ΔP

[bar] [-] [LPM]

φ

[rad] [N]

33 6000 2.07 0.00 6003.8 1.933 0.029 11.45 -2.007 2.66

34 6000 2.07 0.27 6004.3 1.909 0.278 11.85 1.504 186.71

35 6000 2.07 0.53 6003.9 1.978 0.532 14.62 1.553 380.65

36 6000 2.07 0.8 6004.9 2.467 0.806 15.83 1.369 693.40

37 6000 4.14 0.00 6006.3 4.114 0.027 26.45 -1.922 3.22

38 6000 4.14 0.27 6005.5 4.059 0.267 26.52 1.426 194.85

39 6000 4.14 0.53 6005.5 4.046 0.527 28.82 1.371 388.25

40 6000 4.14 0.8 6004.0 4.435 0.786 32.44 1.382 679.95

41 6000 6.21 0.00 6005.8 6.162 0.019 39.18 2.077 5.52

42 6000 6.21 0.27 6005.4 6.064 0.273 39.32 0.985 203.32

43 6000 6.21 0.53 6004.5 6.043 0.528 42.89 1.070 397.76

44 6000 6.21 0.8 6005.2 6.600 0.817 49.72 1.249 933.53

45 6000 8.27 0.00 6005.0 8.223 0.034 50.72 1.727 0.93

46 6000 8.27 0.27 6005.2 8.108 0.279 51.09 0.919 226.41

47 6000 8.27 0.53 6004.6 8.237 0.523 55.50 1.087 455.03

48 6000 8.27 0.8 6004.5 8.738 0.812 61.10 1.155 1002.88

49 8000 2.07 0.00 8004.2 2.094 0.043 10.69 0.707 3.69

50 8000 2.07 0.27 8004.8 1.930 0.275 10.72 1.474 230.77

51 8000 2.07 0.53 7998.1 2.380 0.535 12.58 1.609 392.60

52 8000 2.07 0.8 7999.4 2.312 0.816 14.91 1.237 1290.62

53 8000 4.14 0.00 7998.3 3.957 0.028 22.07 -1.928 0.63

54 8000 4.14 0.27 8005.2 3.779 0.272 22.22 1.446 266.70

55 8000 4.14 0.53 7996.9 4.279 0.517 26.16 1.533 436.78

56 8000 4.14 0.8 7998.5 4.492 0.809 31.86 1.386 1300.26

57 8000 6.21 0.00 7997.7 5.983 0.031 33.88 -2.446 -0.92

58 8000 6.21 0.27 7997.7 6.038 0.272 34.63 1.267 266.64

59 8000 6.21 0.53 7995.8 6.526 0.550 38.84 1.389 533.75

60 8000 6.21 0.8 7996.8 6.468 0.801 44.12 1.374 1312.89

61 8000 8.27 0.00 7998.5 8.208 0.021 45.25 1.954 0.83

62 8000 8.27 0.27 7998.0 8.108 0.265 45.52 1.094 271.85

63 8000 8.27 0.53 7998.6 8.350 0.575 48.99 1.269 634.44

64 8000 8.27 0.8 7996.4 8.611 0.812 55.89 1.309 1454.18

Test 

Point

Target Measured

𝐹𝑟
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Table A. 2. Flow results for the zero pre-swirl insert. 

 

 

 

  

1 0.000 0.264 47.455 49.796 967.6 871.8 1302.4

2 0.000 0.295 45.612 44.381 883.1 843.9 1221.5

3 0.000 0.330 45.398 44.812 983.7 841.2 1294.3

4 0.000 0.317 47.008 49.308 1220.8 865.4 1496.5

5 0.000 0.311 45.902 45.687 1771.0 848.4 1963.7

6 0.000 0.311 46.083 48.123 1782.6 851.2 1975.4

7 0.000 0.340 45.516 46.027 1800.0 843.0 1987.6

8 0.000 0.362 46.971 46.454 1949.0 865.0 2132.3

9 0.000 0.283 47.049 49.035 2471.6 866.2 2619.0

10 0.000 0.305 46.623 46.538 2403.8 859.7 2552.9

11 0.000 0.331 45.391 45.568 2352.9 841.0 2498.7

12 0.000 0.391 45.336 46.863 2531.7 840.1 2667.4

13 0.000 0.287 47.981 49.643 2991.1 880.9 3118.1

14 0.000 0.346 46.364 46.413 2892.7 855.5 3016.5

15 0.000 0.387 47.661 49.261 3023.3 875.7 3147.6

16 0.182 0.411 46.926 46.974 3164.8 854.3 3278.0

17 0.234 0.255 45.383 45.993 683.4 1677.8 1811.7

18 0.237 0.237 45.611 47.056 687.6 1684.6 1819.5

19 0.206 0.251 47.332 49.616 871.4 1737.2 1943.5

20 0.200 0.260 47.666 48.022 873.9 1747.6 1953.9

21 0.138 0.251 45.709 46.131 1583.1 1687.4 2313.8

22 0.126 0.267 46.166 46.526 1592.5 1701.1 2330.2

23 0.108 0.273 46.442 46.914 1602.7 1709.4 2343.2

24 0.087 0.296 45.785 45.040 1739.3 1672.8 2413.2

25 0.054 0.269 47.798 49.704 2269.6 1751.9 2867.1

26 0.060 0.273 47.560 47.481 2261.1 1744.5 2855.8

27 0.040 0.274 46.278 46.741 2217.3 1704.5 2796.7

28 0.015 0.286 45.387 47.089 2394.4 1661.1 2914.2

29 0.092 0.274 45.331 45.935 2592.4 1677.0 3087.5

30 0.069 0.278 47.609 47.778 2714.1 1745.8 3227.1

31 0.000 0.325 46.915 48.939 2781.7 1724.0 3272.6

32 0.000 0.347 46.906 48.411 2997.9 1706.4 3449.5

Inlet 

Temp.

[°C]

Outlet 

Temp.

[°C]
[-] [-] [-]

Test 

Point

Pre-swirl 

Ratio

[-]

Post-swirl 

Ratio

[-]

𝑅𝑒𝑧 𝑅𝑒𝜃 𝑅𝑒𝑡
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Table A. 2. Flow results for the zero pre-swirl insert. (Continued) 

 

33 0.300 0.172 45.638 47.442 511.1 2529.8 2580.9

34 0.289 0.321 45.304 47.292 526.2 2515.2 2569.7

35 0.268 0.228 46.169 49.247 658.9 2553.7 2637.3

36 0.265 0.192 47.285 47.106 728.0 2577.0 2677.9

37 0.230 0.232 45.953 47.199 1187.4 2544.9 2808.3

38 0.223 0.258 46.479 47.368 1201.9 2568.5 2835.8

39 0.204 0.260 47.270 48.157 1324.9 2605.3 2922.8

40 0.187 0.270 45.144 44.131 1436.0 2480.5 2866.2

41 0.185 0.229 45.757 46.825 1753.0 2535.9 3082.8

42 0.171 0.253 45.723 46.707 1758.4 2534.2 3084.5

43 0.152 0.263 45.812 47.982 1920.8 2537.8 3182.8

44 0.122 0.265 46.981 49.193 2273.5 2563.0 3426.1

45 0.158 0.237 45.682 46.607 2266.3 2532.2 3398.3

46 0.141 0.277 46.076 46.862 2298.6 2550.0 3433.1

47 0.119 0.275 47.179 47.647 2546.8 2600.6 3640.0

48 0.118 0.305 47.500 47.267 2820.6 2587.0 3827.3

49 0.361 0.112 47.572 50.955 493.9 3491.5 3526.2

50 0.346 0.170 46.417 50.479 485.5 3419.8 3454.0

51 0.314 0.290 45.362 49.653 559.0 3316.9 3363.7

52 0.303 0.211 45.453 49.564 663.4 3322.7 3388.3

53 0.261 0.295 47.656 49.893 1021.6 3494.2 3640.5

54 0.253 0.305 47.662 52.118 1028.9 3497.7 3645.9

55 0.234 0.266 46.408 50.109 1184.2 3378.2 3579.8

56 0.214 0.248 47.073 50.659 1459.3 3419.5 3717.9

57 0.230 0.236 47.017 49.214 1550.1 3453.7 3785.6

58 0.218 0.239 46.621 48.599 1573.3 3429.2 3772.9

59 0.199 0.248 48.274 50.807 1818.4 3494.1 3939.0

60 0.180 0.263 48.437 51.194 2072.0 3505.2 4071.8

61 0.201 0.226 45.992 47.724 2032.9 3391.4 3954.0

62 0.190 0.253 46.248 48.063 2054.4 3406.6 3978.2

63 0.180 0.266 46.053 46.263 2203.6 3357.7 4016.2

64 0.158 0.261 47.188 47.035 2565.5 3425.7 4279.9

[-] [-] [-]

Test 

Point

Pre-swirl 

Ratio

[-]

Post-swirl 

Ratio

[-]

Inlet 

Temp.

[°C]

Outlet 

Temp.

[°C]

𝑅𝑒𝑧 𝑅𝑒𝜃 𝑅𝑒𝑡
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Table A. 3. Stiffness coefficients and uncertainties for the zero pre-swirl insert. 

 

  

Test 

Point [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m]

1 0.79 0.12 0.37 0.06 -0.46 0.06 0.80 0.12

2 0.60 0.10 0.68 0.05 -0.54 0.06 0.49 0.14

3 0.16 0.14 1.47 0.11 -0.72 0.17 0.32 0.32

4 -1.97 1.00 3.41 0.61 -4.70 0.70 2.19 0.88

5 2.57 0.15 0.12 0.11 -0.39 0.07 2.49 0.11

6 1.51 0.21 0.71 0.07 -0.37 0.07 1.21 0.17

7 1.16 0.16 1.40 0.08 -0.71 0.13 1.20 0.32

8 -1.19 0.90 4.51 0.79 -3.21 0.91 2.57 1.45

9 0.26 0.22 0.53 0.13 -1.20 0.08 0.07 0.26

10 1.40 0.18 -0.06 0.08 -1.02 0.08 3.07 0.18

11 2.13 0.12 1.10 0.10 -0.74 0.08 2.54 0.33

12 0.19 0.53 5.28 0.72 -2.12 0.68 2.69 2.00

13 1.01 0.21 0.56 0.11 -0.84 0.08 1.32 0.19

14 2.17 0.19 -1.19 0.08 -2.14 0.07 3.36 0.15

15 3.21 0.11 0.66 0.10 -0.86 0.06 4.56 0.34

16 0.26 0.54 8.12 0.90 -3.17 2.04 8.53 5.12

17 -0.19 0.11 1.44 0.13 -1.44 0.05 -0.11 0.08

18 -0.25 0.13 1.57 0.10 -1.55 0.06 -0.10 0.08

19 -0.11 0.32 2.13 0.19 -2.58 0.11 0.36 0.10

20 0.68 2.34 3.64 0.61 -10.46 0.44 1.22 0.35

21 -0.61 0.07 2.19 0.10 -2.24 0.12 0.00 0.19

22 1.19 0.14 1.64 0.05 -2.33 0.14 0.32 0.07

23 0.89 0.16 2.09 0.14 -2.85 0.18 1.32 0.16

24 -2.42 2.87 5.98 0.85 -12.34 3.55 5.13 5.49

25 0.00 0.15 2.03 0.22 -2.07 0.20 -0.27 0.10

26 1.95 0.15 1.37 0.13 -2.74 0.07 0.51 0.09

27 1.91 0.12 1.82 0.18 -2.86 0.15 2.63 0.19

28 -3.91 2.15 8.28 1.07 -12.13 4.76 6.54 5.88

29 0.75 0.11 1.77 0.19 -1.71 0.17 0.84 0.12

30 1.43 0.10 1.53 0.07 -2.38 0.12 1.56 0.13

31 2.98 0.09 1.40 0.17 -2.89 0.14 4.13 0.17

32 -2.74 1.40 9.13 1.02 -11.31 3.15 9.57 3.82

𝐾𝑥𝑥   𝑥𝑥 𝐾𝑥𝑦   𝑥𝑦 𝐾𝑦𝑥   𝑦𝑥 𝐾𝑦𝑦   𝑦𝑦
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Table A. 3. Stiffness coefficients and uncertainties for the zero pre-swirl insert. (Continued) 

 

  

Test 

Point [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m]

33 -0.42 0.05 2.92 0.06 -2.95 0.05 -0.31 0.07

34 -0.44 0.13 3.02 0.11 -3.35 0.08 -0.46 0.07

35 -0.39 0.37 3.74 0.26 -5.17 0.15 -0.49 0.08

36 10.25 1.82 5.01 0.50 -20.76 1.82 3.22 0.81

37 0.28 0.22 3.39 0.22 -3.31 0.12 0.23 0.29

38 0.32 0.14 3.47 0.18 -3.55 0.12 0.36 0.18

39 -0.43 0.31 3.90 0.24 -5.02 0.19 0.35 0.25

40 2.01 2.45 6.62 0.52 -19.85 1.09 3.16 0.98

41 1.80 0.12 3.07 0.10 -3.08 0.10 1.96 0.09

42 1.51 0.08 3.23 0.10 -3.23 0.11 1.80 0.13

43 0.42 0.27 4.32 0.21 -4.13 0.17 1.66 0.26

44 1.12 1.57 7.43 0.69 -26.31 3.37 7.48 2.21

45 2.93 0.10 3.22 0.22 -3.20 0.20 3.15 0.10

46 1.58 0.16 3.88 0.22 -2.80 0.11 2.56 0.23

47 3.00 0.14 3.41 0.14 -4.92 0.14 2.34 0.14

48 -3.20 2.95 9.02 0.97 -23.67 3.18 9.64 2.91

49 -0.87 0.08 4.44 0.10 -4.48 0.05 -0.88 0.07

50 -1.02 0.16 4.74 0.14 -5.07 0.10 -0.97 0.09

51 -0.52 0.39 6.32 0.38 -9.06 0.50 -0.82 0.73

52 25.03 1.23 1.94 0.61 -33.85 2.61 9.72 1.69

53 -0.16 0.16 4.60 0.12 -4.72 0.10 -0.01 0.14

54 -0.22 0.17 4.90 0.19 -5.35 0.08 -0.14 0.16

55 -0.79 0.35 6.40 0.24 -9.95 1.14 -0.34 1.06

56 17.01 1.44 8.83 0.53 -29.78 1.05 4.37 1.24

57 0.64 0.23 5.37 0.27 -5.26 0.21 0.86 0.18

58 0.57 0.24 5.62 0.30 -5.78 0.24 0.82 0.21

59 -0.79 0.46 6.60 0.26 -10.44 1.40 0.55 1.64

60 7.26 1.69 8.90 0.71 -29.69 2.09 4.99 1.42

61 2.33 0.10 4.86 0.11 -4.94 0.20 2.47 0.11

62 1.92 0.11 5.11 0.14 -5.27 0.17 2.38 0.12

63 -0.53 0.44 7.38 0.36 -8.83 0.81 2.57 0.60

64 4.94 1.64 9.20 0.56 -33.55 3.25 8.17 2.03

  𝑥𝑥   𝑥𝑦   𝑦𝑦  𝑦𝑥𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑦𝑥 𝐾𝑦𝑦  𝑥𝑥   𝑥𝑦   𝑦𝑦  𝑦𝑥𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑦𝑥 𝐾𝑦𝑦
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Table A. 4. Damping coefficients and uncertainties for the zero pre-swirl insert. 

 

  

Test 

Point [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m]

1 6.48 0.60 2.02 0.13 -1.98 0.11 6.67 0.53

2 6.80 0.61 1.92 0.10 -2.23 0.13 7.84 0.79

3 9.62 0.83 -0.01 0.25 -4.72 0.23 13.19 1.19

4 51.21 3.17 -22.80 1.63 -29.36 1.71 34.64 2.23

5 9.58 0.54 1.99 0.16 -1.67 0.16 9.89 0.40

6 10.83 0.40 1.82 0.16 -1.59 0.11 11.35 0.49

7 12.14 0.46 1.28 0.15 -2.60 0.22 16.08 0.81

8 36.27 2.19 -20.01 1.82 -25.94 1.72 47.07 2.92

9 14.87 0.77 1.51 0.23 -0.75 0.21 15.17 0.38

10 14.09 0.37 2.29 0.16 -0.94 0.12 13.08 0.21

11 14.40 0.30 2.10 0.20 -1.86 0.23 17.55 0.69

12 28.72 1.38 -14.23 1.76 -19.74 1.70 55.20 4.11

13 16.13 0.50 1.84 0.26 -1.18 0.20 16.17 0.30

14 16.29 0.48 2.62 0.19 -0.49 0.19 15.64 0.20

15 16.26 0.41 2.15 0.13 -1.83 0.14 18.45 0.58

16 34.55 1.32 -22.93 2.00 -24.56 4.60 78.59 11.99

17 6.38 0.84 4.03 0.24 -4.10 0.12 6.58 0.67

18 7.23 0.87 3.89 0.20 -4.39 0.13 7.00 0.69

19 12.41 1.13 2.39 0.25 -6.50 0.30 9.58 0.96

20 55.27 3.80 -3.47 1.13 -15.63 1.11 18.41 1.08

21 11.66 0.75 3.93 0.17 -3.62 0.24 11.35 0.57

22 10.31 0.64 3.85 0.18 -3.89 0.22 11.47 0.58

23 12.69 0.76 2.84 0.14 -5.96 0.20 13.20 0.75

24 61.56 5.88 -13.75 1.79 -35.98 8.53 32.54 4.32

25 13.95 0.55 3.75 0.39 -3.25 0.33 13.86 0.32

26 13.60 0.43 3.76 0.26 -3.50 0.28 13.98 0.30

27 14.49 0.51 3.21 0.28 -5.34 0.26 16.38 0.63

28 63.90 4.82 -21.68 2.20 -46.04 11.97 50.97 8.04

29 15.40 0.23 3.47 0.56 -3.25 0.53 15.46 0.21

30 15.90 0.49 3.38 0.22 -3.99 0.27 15.53 0.32

31 16.06 0.57 3.71 0.25 -4.95 0.25 18.32 0.50

32 50.57 3.88 -19.22 2.62 -31.38 3.64 49.72 4.74

𝐶𝑥𝑥  𝐶𝑥𝑥 𝐶𝑥𝑦  𝐶𝑥𝑦 𝐶𝑦𝑥  𝐶𝑦𝑥 𝐶𝑦𝑦  𝐶𝑦𝑦
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Table A. 4. Damping coefficients and uncertainties for the zero pre-swirl insert. (Continued) 

 

  

Test 

Point [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m]

33 8.15 0.71 6.09 0.17 -6.34 0.11 8.49 0.73

34 9.54 0.92 6.48 0.16 -6.50 0.16 8.92 0.76

35 15.82 1.45 6.88 0.37 -7.54 0.42 10.78 0.83

36 58.67 4.09 -6.09 1.68 -21.90 4.69 21.62 2.62

37 11.38 0.56 5.32 0.38 -5.63 0.19 12.11 0.57

38 11.84 0.83 5.31 0.28 -5.94 0.18 11.55 0.90

39 17.11 0.70 5.73 0.32 -8.09 0.33 14.00 0.50

40 62.53 5.89 -1.24 1.61 -18.86 4.99 19.92 3.33

41 11.80 0.44 6.34 0.15 -6.22 0.20 12.11 0.38

42 12.02 0.54 6.21 0.13 -6.46 0.23 12.46 0.47

43 15.13 1.11 5.50 0.33 -8.67 0.30 14.38 0.56

44 74.37 4.82 -11.34 1.65 -30.20 3.50 37.06 7.23

45 13.72 0.43 5.97 0.31 -5.71 0.40 14.02 0.29

46 14.15 0.80 5.66 0.35 -6.44 0.37 14.52 0.37

47 17.18 0.78 5.84 0.27 -7.78 0.26 16.62 0.44

48 67.80 3.99 -14.15 2.26 -31.92 6.73 42.76 7.91

49 9.05 0.76 8.31 0.19 -8.33 0.17 9.38 0.82

50 10.67 0.95 8.56 0.23 -8.64 0.26 9.87 0.90

51 19.70 2.01 8.44 0.67 -11.65 1.76 12.54 2.18

52 53.46 4.22 -14.25 1.18 -35.48 2.71 40.32 9.89

53 10.75 0.78 8.03 0.30 -8.07 0.25 11.08 0.84

54 12.33 0.89 8.08 0.31 -8.30 0.37 11.53 0.88

55 21.48 1.51 8.01 0.63 -12.55 4.32 15.87 1.58

56 67.89 3.74 -6.22 1.25 -25.33 4.32 29.38 3.55

57 13.80 0.49 7.07 0.39 -7.36 0.40 14.16 0.50

58 15.08 0.47 6.96 0.49 -7.97 0.30 14.76 0.55

59 24.40 1.52 7.89 0.67 -17.68 7.59 21.71 5.00

60 65.06 4.90 -1.09 1.55 -25.24 2.31 32.20 6.22

61 14.14 0.35 8.64 0.34 -8.45 0.32 14.25 0.46

62 14.83 0.49 8.36 0.23 -8.98 0.32 14.79 0.51

63 23.44 2.01 7.11 0.43 -14.99 0.94 20.15 1.92

64 70.33 4.97 -4.40 1.77 -28.59 3.49 36.59 6.48

𝐶𝑥𝑥  𝐶𝑥𝑥 𝐶𝑥𝑦  𝐶𝑥𝑦 𝐶𝑦𝑥  𝐶𝑦𝑥 𝐶𝑦𝑦  𝐶𝑦𝑦
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Table A. 5. Virtual mass coefficients and uncertainties for the zero pre-swirl insert. 

 

  

Test 

Point [kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg]

1 14.47 0.16 0.34 0.08 0.05 0.08 14.72 0.16

2 14.60 0.13 0.39 0.07 -0.07 0.09 15.00 0.20

3 16.21 0.20 -0.17 0.15 -1.00 0.23 16.87 0.43

4 27.48 1.36 -4.74 0.83 -5.61 0.95 21.81 1.20

5 15.97 0.20 0.30 0.15 -0.06 0.09 16.26 0.15

6 15.72 0.29 0.28 0.09 -0.08 0.10 16.41 0.23

7 16.75 0.22 -0.36 0.11 -0.90 0.18 18.64 0.44

8 25.16 1.22 -5.21 1.08 -6.48 1.24 25.62 1.98

9 15.89 0.30 0.55 0.17 -0.23 0.11 16.09 0.35

10 16.22 0.25 0.01 0.12 -0.23 0.11 17.76 0.25

11 17.50 0.16 -0.08 0.14 -0.31 0.10 19.64 0.45

12 22.67 0.72 -3.79 0.98 -5.00 0.93 27.94 2.72

13 16.84 0.28 0.21 0.15 0.35 0.11 17.42 0.26

14 16.89 0.26 -0.23 0.11 -0.25 0.10 18.18 0.20

15 18.02 0.15 -0.13 0.14 -0.27 0.08 20.45 0.47

16 22.09 1.31 -1.13 2.20 -11.82 4.96 52.89 12.46

17 12.71 0.14 0.83 0.17 -0.35 0.07 13.10 0.11

18 13.11 0.17 0.66 0.14 -0.40 0.08 13.08 0.11

19 15.41 0.43 0.62 0.26 -0.91 0.16 13.59 0.14

20 29.35 3.19 -2.01 0.84 -2.73 0.60 15.42 0.48

21 14.72 0.10 0.42 0.14 -0.25 0.16 15.63 0.25

22 15.85 0.20 0.53 0.07 -0.57 0.19 15.48 0.10

23 17.83 0.22 -0.16 0.19 -1.46 0.25 16.62 0.22

24 34.58 4.02 -3.13 1.19 -9.64 4.96 29.67 7.67

25 16.17 0.20 0.53 0.29 -0.35 0.27 16.49 0.14

26 16.39 0.20 0.47 0.17 -0.09 0.10 16.49 0.13

27 18.17 0.17 -0.55 0.25 -1.14 0.21 18.17 0.26

28 32.07 3.00 -4.11 1.50 -13.48 6.66 33.88 8.22

29 17.09 0.16 0.09 0.26 0.33 0.23 17.49 0.16

30 17.00 0.13 0.30 0.10 0.09 0.17 17.60 0.17

31 18.46 0.12 -0.70 0.23 -0.97 0.19 19.37 0.24

32 28.91 3.41 -5.14 2.49 -20.78 7.66 48.68 9.30

𝑀𝑥𝑥   𝑥𝑥
𝑀𝑥𝑦   𝑥𝑦

𝑀𝑦𝑥   𝑦𝑥
𝑀𝑦𝑦   𝑦𝑦
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Table A. 5. Virtual mass coefficients and uncertainties for the zero pre-swirl insert. (Continued) 

 

  

Test 

Point [kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg]

33 12.62 0.07 1.07 0.08 -0.84 0.07 12.95 0.10

34 13.26 0.18 1.18 0.15 -0.59 0.10 12.99 0.09

35 16.19 0.51 1.82 0.35 -0.24 0.21 13.68 0.11

36 32.67 4.44 -4.87 1.23 -16.10 4.43 19.52 1.98

37 12.74 0.30 1.11 0.30 -0.66 0.16 12.80 0.39

38 13.02 0.19 1.46 0.25 -0.83 0.16 12.61 0.25

39 17.82 0.42 0.43 0.33 -0.18 0.26 15.68 0.34

40 32.98 5.96 -1.32 1.26 -5.28 2.66 20.81 2.38

41 15.95 0.17 0.67 0.13 -0.45 0.13 16.41 0.12

42 16.19 0.11 0.54 0.14 -0.54 0.15 16.38 0.17

43 18.39 0.36 0.04 0.29 -1.50 0.24 17.72 0.35

44 35.57 3.83 -3.12 1.68 -23.40 8.20 41.32 5.39

45 16.52 0.14 0.84 0.30 -0.49 0.28 17.27 0.14

46 16.67 0.21 0.49 0.30 -0.02 0.15 17.17 0.31

47 18.35 0.19 -0.57 0.19 -1.52 0.19 17.67 0.20

48 29.00 7.18 -1.34 2.36 -23.84 7.75 47.00 7.09

49 12.65 0.11 1.46 0.14 -1.23 0.07 12.80 0.10

50 13.21 0.22 1.65 0.20 -1.12 0.13 12.95 0.13

51 16.38 0.92 3.48 0.90 -1.09 1.19 15.91 1.74

52 29.88 2.95 -7.43 1.47 -28.12 6.25 36.65 4.04

53 12.68 0.21 1.41 0.17 -1.34 0.14 13.02 0.20

54 13.34 0.23 1.74 0.26 -1.30 0.11 13.04 0.22

55 16.02 0.83 2.27 0.58 -6.01 2.72 16.06 2.53

56 31.25 3.45 -2.80 1.26 -14.42 2.51 27.07 2.97

57 12.89 0.31 1.59 0.36 -1.33 0.29 13.36 0.24

58 14.05 0.33 1.39 0.40 -1.13 0.32 13.88 0.28

59 19.65 1.09 -0.03 0.61 -5.95 3.34 21.08 3.91

60 32.86 4.12 -1.64 1.74 -16.39 5.08 35.67 3.46

61 16.55 0.13 0.39 0.15 -0.57 0.28 17.11 0.15

62 16.78 0.15 0.32 0.19 -0.44 0.23 17.04 0.17

63 20.80 0.73 0.54 0.60 -1.54 1.35 27.07 1.00

64 34.19 3.99 -2.62 1.36 -23.42 7.92 39.81 4.95

𝑀𝑥𝑥   𝑥𝑥
𝑀𝑥𝑦   𝑥𝑦

𝑀𝑦𝑥   𝑦𝑥
𝑀𝑦𝑦   𝑦𝑦
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Table A. 6. Whirl frequency ratio, effective damping, and uncertainties for the zero pre-swirl insert. 

 

  

 ω

[rpm]

ΔP

[bar] [-]

WFR

[-] [-] [kN-s/m] [kN-s/m]

1 2000 2.07 0.00 0.30 0.03 4.64 0.29

2 2000 2.07 0.27 0.40 0.04 4.47 0.42

3 2000 2.07 0.53 0.45 0.06 6.32 0.34

4 2000 2.07 0.8 0.49 0.10 24.70 -0.42

5 2000 4.14 0.00 0.10 0.05 8.56 0.04

6 2000 4.14 0.27 0.21 0.03 8.54 0.12

7 2000 4.14 0.53 0.34 0.03 9.20 0.14

8 2000 4.14 0.8 0.46 0.12 24.52 -1.51

9 2000 6.21 0.00 0.25 0.03 10.97 0.07

10 2000 6.21 0.27 0.00 0.00 11.02 -0.11

11 2000 6.21 0.53 0.26 0.02 11.65 0.07

12 2000 6.21 0.8 0.41 0.10 25.26 -0.60

13 2000 8.27 0.00 0.20 0.02 12.87 -0.05

14 2000 8.27 0.27 0.00 0.00 8.07 -0.02

15 2000 8.27 0.53 0.09 0.11 13.79 0.12

16 2000 8.27 0.8 0.31 0.46 31.01 -0.35

17 4000 2.07 0.00 0.53 0.05 3.29 0.55

18 4000 2.07 0.27 0.52 0.05 3.62 0.58

19 4000 2.07 0.53 0.52 0.05 5.69 0.68

20 4000 2.07 0.8 0.48 0.05 21.01 1.18

21 4000 4.14 0.00 0.46 0.02 6.34 0.40

22 4000 4.14 0.27 0.42 0.02 6.37 0.38

23 4000 4.14 0.53 0.45 0.03 7.39 0.38

24 4000 4.14 0.8 0.48 0.13 27.87 -0.15

25 4000 6.21 0.00 0.35 0.03 9.19 -0.06

26 4000 6.21 0.27 0.32 0.02 9.00 0.13

27 4000 6.21 0.53 0.35 0.02 10.21 0.17

28 4000 6.21 0.8 0.44 0.16 36.79 -0.53

29 4000 8.27 0.00 0.27 0.02 11.36 -0.21

30 4000 8.27 0.27 0.29 0.01 11.13 0.17

31 4000 8.27 0.53 0.27 0.02 12.42 0.17

32 4000 8.27 0.8 0.44 0.14 31.20 -0.66

Test 

Point

Target Measured

   𝑅  𝐶𝑒  𝐶𝑒𝑓𝑓

[-]
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Table A. 6. Whirl frequency ratio, effective damping, and uncertainties for the zero pre-swirl insert. (Continued) 

 

 ω

[rpm]

ΔP

[bar]

ε

[-]

WFR

[-] [-] [kN-s/m] [kN-s/m]

33 6000 2.07 0.00 0.56 0.03 4.26 0.63

34 6000 2.07 0.27 0.55 0.04 4.72 0.70

35 6000 2.07 0.53 0.53 0.04 6.86 0.81

36 6000 2.07 0.8 0.46 0.05 26.25 1.51

37 6000 4.14 0.00 0.45 0.02 6.98 0.30

38 6000 4.14 0.27 0.48 0.03 6.84 0.62

39 6000 4.14 0.53 0.45 0.02 8.66 0.26

40 6000 4.14 0.8 0.53 0.06 22.25 3.33

41 6000 6.21 0.00 0.41 0.01 7.42 0.26

42 6000 6.21 0.27 0.42 0.02 7.45 0.34

43 6000 6.21 0.53 0.45 0.02 8.52 0.53

44 6000 6.21 0.8 0.44 0.06 37.23 2.80

45 6000 8.27 0.00 0.37 0.02 9.19 0.02

46 6000 8.27 0.27 0.36 0.02 9.18 0.32

47 6000 8.27 0.53 0.38 0.01 10.94 0.38

48 6000 8.27 0.8 0.42 0.07 37.20 2.65

49 8000 2.07 0.00 0.58 0.04 5.02 0.70

50 8000 2.07 0.27 0.57 0.04 5.57 0.79

51 8000 2.07 0.53 0.57 0.06 8.85 1.57

52 8000 2.07 0.8 0.18 0.09 40.42 5.13

53 8000 4.14 0.00 0.51 0.03 6.51 0.67

54 8000 4.14 0.27 0.51 0.03 7.10 0.72

55 8000 4.14 0.53 0.52 0.04 12.38 0.72

56 8000 4.14 0.8 0.42 0.04 32.80 2.71

57 8000 6.21 0.00 0.45 0.02 8.86 0.21

58 8000 6.21 0.27 0.46 0.02 9.18 0.19

59 8000 6.21 0.53 0.43 0.06 15.38 2.27

60 8000 6.21 0.8 0.43 0.05 33.14 3.89

61 8000 8.27 0.00 0.41 0.01 8.74 0.22

62 8000 8.27 0.27 0.42 0.01 8.93 0.31

63 8000 8.27 0.53 0.44 0.04 13.00 1.27

64 8000 8.27 0.8 0.42 0.05 38.84 3.45

Test 

Point

Target Measured

   𝑅  𝐶𝑒  𝐶𝑒𝑓𝑓

[-]
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A.2 Medium Pre-swirl Insert Assembly 

Table A. 7. Static results for the medium pre-swirl insert. 

 

  

 ω

[rpm]

ΔP

[bar] [-]

ω

[rpm]

ΔP

[bar] [-] [LPM]

φ

[rad] [N]

1 2000 2.07 0.00 1991.0 2.067 0.042 19.22 1.810 6.45

2 2000 2.07 0.27 2002.4 2.024 0.276 21.22 0.622 81.79

3 2000 2.07 0.53 2002.7 2.071 0.538 21.26 0.782 145.23

4 2000 2.07 0.8 2003.2 2.031 0.800 26.12 1.111 293.18

5 2000 4.14 0.00 2004.4 4.095 0.026 39.06 1.632 1.32

6 2000 4.14 0.27 2004.1 4.114 0.269 37.61 0.531 152.04

7 2000 4.14 0.53 2004.1 4.105 0.541 40.54 0.751 253.46

8 2000 4.14 0.8 2003.3 3.893 0.798 40.85 1.017 409.38

9 2000 6.21 0.00 2004.4 6.022 0.027 52.45 2.801 5.22

10 2000 6.21 0.27 2004.7 6.112 0.261 50.84 0.789 144.64

11 2000 6.21 0.53 2002.9 6.056 0.525 50.93 0.788 305.40

12 2000 6.21 0.8 2004.4 6.267 0.797 55.04 1.009 610.80

13 2000 8.27 0.00 2003.6 8.045 0.086 61.49 -2.556 30.13

14 2000 8.27 0.27 2004.3 8.222 0.271 61.32 1.468 194.74

15 2000 8.27 0.53 2004.4 8.079 0.531 61.47 0.957 439.56

16 2000 8.27 0.8 2004.5 8.158 0.784 65.20 0.969 749.59

17 4000 2.07 0.00 3998.7 1.969 0.022 13.92 1.277 27.61

18 4000 2.07 0.27 3999.4 1.884 0.269 13.95 1.262 96.80

19 4000 2.07 0.53 4000.0 1.979 0.533 15.42 1.320 211.69

20 4000 2.07 0.8 3999.6 1.887 0.794 17.04 1.389 476.97

21 4000 4.14 0.00 4004.7 4.053 0.042 35.88 -1.742 13.39

22 4000 4.14 0.27 4000.2 4.106 0.277 34.34 1.425 139.68

23 4000 4.14 0.53 3999.5 3.999 0.536 34.46 1.164 283.52

24 4000 4.14 0.8 4003.4 3.914 0.786 36.28 1.301 647.70

25 4000 6.21 0.00 4009.6 6.040 0.087 47.31 -2.243 43.81

26 4000 6.21 0.27 4000.3 6.050 0.278 47.00 1.257 185.03

27 4000 6.21 0.53 4000.0 6.022 0.539 47.07 1.006 377.88

28 4000 6.21 0.8 4009.6 6.125 0.815 51.54 1.225 782.45

29 4000 8.27 0.00 4001.5 8.148 0.057 57.49 2.143 2.61

30 4000 8.27 0.27 4002.0 8.019 0.280 57.84 1.600 163.58

31 4000 8.27 0.53 4001.7 8.333 0.534 59.61 1.129 406.03

32 4000 8.27 0.8 4009.9 8.006 0.827 62.18 1.188 970.04

Test 

Point

Target Measured

𝐹𝑟
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Table A. 7. Static results for the medium pre-swirl insert. (Continued) 

 

  

 ω

[rpm]

ΔP

[bar] [-]

ω

[rpm]

ΔP

[bar] [-] [LPM]

φ

[rad] [N]

33 6000 2.07 0.00 6016.9 2.108 0.031 12.41 -2.275 47.25

34 6000 2.07 0.27 6016.0 1.947 0.286 11.07 1.596 226.78

35 6000 2.07 0.53 6016.5 1.950 0.530 12.55 1.632 415.44

36 6000 2.07 0.8 5999.3 1.897 0.794 15.02 1.424 883.90

37 6000 4.14 0.00 6016.2 3.912 0.045 23.89 -0.127 43.11

38 6000 4.14 0.27 6016.3 4.061 0.279 25.52 1.340 214.90

39 6000 4.14 0.53 6014.0 4.194 0.544 28.37 1.364 424.79

40 6000 4.14 0.8 5999.2 4.181 0.784 32.66 1.383 924.15

41 6000 6.21 0.00 6007.6 6.009 0.029 36.76 -0.045 4.45

42 6000 6.21 0.27 6010.4 6.151 0.282 38.45 1.312 262.07

43 6000 6.21 0.53 6015.9 6.072 0.524 41.04 1.289 466.18

44 6000 6.21 0.8 5998.9 6.270 0.820 47.15 1.307 1161.84

45 6000 8.27 0.00 6005.5 8.296 0.042 49.86 -0.141 2.39

46 6000 8.27 0.27 6004.8 8.228 0.274 50.01 1.272 210.04

47 6000 8.27 0.53 5999.2 8.294 0.446 53.42 1.201 506.53

48 6000 8.27 0.8 5998.2 8.203 0.785 57.39 1.238 1136.70

49 8000 2.07 0.00 8001.7 1.954 0.042 9.73 -1.610 3.96

50 8000 2.07 0.27 8002.6 1.864 0.277 9.76 1.667 298.49

51 8000 2.07 0.53 8005.6 1.988 0.536 11.83 1.598 724.65

52 8000 2.07 0.8 8002.7 1.892 0.799 13.55 1.373 1287.88

53 8000 4.14 0.00 8003.8 3.892 0.062 20.27 1.030 19.39

54 8000 4.14 0.27 8002.4 3.776 0.276 20.34 1.415 223.15

55 8000 4.14 0.53 8008.7 3.974 0.521 24.82 1.515 747.84

56 8000 4.14 0.8 8002.9 4.081 0.793 28.09 1.479 1386.71

57 8000 6.21 0.00 8001.5 5.988 0.027 33.35 1.923 5.14

58 8000 6.21 0.27 8001.5 6.002 0.276 33.24 1.372 258.00

59 8000 6.21 0.53 8012.0 5.930 0.545 35.41 1.434 791.79

60 8000 6.21 0.8 8002.7 6.071 0.792 41.14 1.440 1413.38

61 8000 8.27 0.00 8001.9 7.966 0.046 42.30 1.593 4.23

62 8000 8.27 0.27 8000.8 8.194 0.270 44.13 1.208 253.43

63 8000 8.27 0.53 8002.0 8.142 0.540 47.20 1.271 830.94

64 8000 8.27 0.8 8002.3 8.196 0.811 54.14 1.352 1604.90

Test 

Point

Target Measured

𝐹𝑟
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Table A. 8. Flow results for the medium pre-swirl insert. 

 

  

1 0.328 0.251 44.709 44.648 844.2 826.6 1181.5

2 0.325 0.291 47.484 49.804 979.2 873.2 1312.0

3 0.291 0.302 46.481 45.189 963.7 857.6 1290.1

4 0.337 0.296 46.620 49.095 1186.6 860.0 1465.5

5 0.616 0.268 45.698 47.660 1745.8 846.6 1940.2

6 0.546 0.343 46.729 45.337 1712.2 862.1 1917.0

7 0.558 0.370 45.985 48.139 1821.0 850.7 2010.0

8 0.544 0.399 44.411 43.934 1785.6 827.4 1968.0

9 0.938 0.318 46.397 48.288 2373.3 857.1 2523.4

10 0.879 0.326 46.638 45.825 2310.7 860.9 2465.9

11 1.012 0.373 45.498 45.240 2268.4 843.0 2420.0

12 0.767 0.332 47.101 46.737 2522.5 863.4 2666.2

13 1.053 0.309 45.668 47.295 2746.9 845.8 2874.2

14 1.050 0.310 47.135 46.892 2812.1 868.5 2943.1

15 1.022 0.369 45.533 46.982 2739.5 844.1 2866.6

16 0.920 0.404 46.697 48.452 2966.3 857.2 3087.7

17 0.279 0.303 44.992 45.455 614.7 1668.2 1777.8

18 0.270 0.268 46.314 48.210 630.1 1707.7 1820.2

19 0.268 0.249 47.237 47.021 708.2 1736.4 1875.3

20 0.259 0.262 45.594 45.644 760.3 1686.2 1849.7

21 0.344 0.266 45.884 47.636 1609.1 1687.9 2332.0

22 0.326 0.242 46.928 46.922 1568.9 1726.9 2333.2

23 0.309 0.246 45.362 46.762 1531.0 1679.3 2272.4

24 0.311 0.238 45.499 46.151 1616.1 1676.0 2328.2

25 0.421 0.271 47.555 49.602 2186.3 1741.4 2795.0

26 0.395 0.255 46.733 46.775 2139.6 1720.9 2745.8

27 0.376 0.294 45.751 45.987 2105.9 1691.0 2700.8

28 0.381 0.298 47.508 47.384 2379.6 1739.9 2947.8

29 0.497 0.255 47.333 47.187 2645.6 1740.2 3166.6

30 0.484 0.262 45.835 46.406 2591.5 1694.3 3096.2

31 0.461 0.257 47.845 48.187 2768.8 1756.6 3279.0

32 0.454 0.236 47.190 46.942 2854.2 1730.0 3337.6

Inlet 

Temp.

[°C]

Outlet 

Temp.

[°C]
[-] [-] [-]

Test 

Point

Pre-swirl 

Ratio

[-]

Post-swirl 

Ratio

[-]

𝑅𝑒𝑧 𝑅𝑒𝜃 𝑅𝑒𝑡
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Table A. 8. Flow results for the medium pre-swirl insert. (Continued) 

 

  

33 0.328 0.178 46.796 49.910 565.5 2591.3 2652.3

34 0.328 0.280 47.110 48.717 507.4 2605.7 2654.6

35 0.311 0.325 46.020 47.496 564.1 2555.6 2617.1

36 0.292 0.255 46.185 47.890 677.0 2542.1 2630.7

37 0.275 0.289 45.509 46.869 1064.1 2532.6 2747.0

38 0.265 0.280 45.686 47.011 1140.3 2540.5 2784.7

39 0.264 0.253 49.121 49.039 1349.5 2703.2 3021.4

40 0.264 0.260 47.568 48.015 1509.4 2606.1 3011.7

41 0.295 0.255 45.995 46.739 1651.8 2550.7 3038.8

42 0.291 0.257 46.677 47.251 1748.5 2583.0 3119.2

43 0.288 0.262 45.536 47.095 1828.9 2533.6 3124.8

44 0.291 0.242 47.673 48.266 2183.4 2611.0 3403.6

45 0.332 0.252 46.915 49.083 2277.5 2592.0 3450.4

46 0.322 0.244 45.193 45.894 2215.6 2513.8 3350.9

47 0.323 0.258 47.497 49.898 2465.6 2602.7 3585.2

48 0.322 0.244 46.332 46.697 2593.9 2548.2 3636.2

49 0.379 0.113 46.360 50.710 440.2 3419.4 3447.6

50 0.366 0.078 45.920 50.114 437.9 3393.2 3421.3

51 0.356 0.321 46.294 49.955 534.5 3398.8 3440.6

52 0.323 0.280 46.398 50.235 613.2 3403.9 3458.7

53 0.304 0.346 47.225 48.990 931.0 3473.8 3596.4

54 0.298 0.398 46.062 48.327 915.2 3401.6 3522.6

55 0.278 0.319 45.744 49.570 1110.2 3367.2 3545.5

56 0.268 0.236 47.374 48.697 1293.6 3464.3 3697.9

57 0.271 0.283 47.430 51.324 1537.6 3485.8 3809.8

58 0.267 0.274 45.331 47.467 1476.2 3357.8 3668.0

59 0.261 0.242 47.297 48.790 1628.5 3463.4 3827.1

60 0.262 0.237 46.129 47.628 1852.8 3387.7 3861.2

61 0.278 0.274 47.131 48.211 1939.7 3467.1 3972.8

62 0.277 0.263 45.775 47.166 1975.1 3383.8 3918.0

63 0.273 0.268 46.066 47.687 2123.3 3383.6 3994.6

64 0.274 0.255 47.680 51.131 2507.2 3483.4 4291.9

[-] [-] [-]

Test 

Point

Pre-swirl 

Ratio

[-]

Post-swirl 

Ratio

[-]

Inlet 

Temp.

[°C]

Outlet 

Temp.

[°C]

𝑅𝑒𝑧 𝑅𝑒𝜃 𝑅𝑒𝑡
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Table A. 9. Stiffness coefficients and uncertainties for the medium pre-swirl insert. 

 

  

Test 

Point [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m]

1 0.67 0.09 0.67 0.08 -0.71 0.05 0.74 0.11

2 0.61 0.12 0.84 0.05 -0.71 0.08 0.70 0.16

3 -0.04 0.29 1.48 0.13 -1.04 0.14 0.61 0.20

4 -1.98 2.86 3.31 1.08 -6.12 0.90 2.21 0.63

5 2.76 0.17 1.34 0.13 -1.42 0.12 2.82 0.18

6 2.03 0.15 1.61 0.08 -1.11 0.12 1.93 0.24

7 0.80 0.30 2.33 0.15 -1.48 0.20 1.25 0.25

8 -1.75 2.14 4.27 0.86 -5.56 0.72 2.77 0.76

9 0.33 0.18 2.42 0.21 -2.82 0.24 -0.15 0.20

10 2.04 0.17 2.06 0.19 -2.41 0.13 2.05 0.22

11 1.74 0.24 2.44 0.15 -2.32 0.18 2.18 0.25

12 -0.50 4.17 5.31 1.23 -8.53 2.64 5.53 2.87

13 -0.09 0.40 2.26 0.23 -3.85 0.21 0.47 0.31

14 4.24 0.18 2.71 0.11 -3.23 0.15 1.13 0.13

15 3.02 0.22 2.65 0.18 -3.52 0.12 3.15 0.17

16 -0.27 2.72 6.38 0.63 -6.95 2.00 4.80 2.61

17 -0.20 0.07 1.44 0.11 -1.51 0.05 -0.04 0.07

18 -0.28 0.16 1.55 0.11 -1.64 0.05 0.00 0.06

19 -0.14 0.52 1.94 0.15 -2.69 0.12 0.32 0.07

20 0.76 3.08 3.30 0.47 -10.27 0.54 1.15 0.26

21 -1.44 0.41 2.61 0.26 -3.30 0.64 -3.02 0.90

22 1.18 0.11 2.46 0.07 -2.47 0.18 0.11 0.10

23 0.74 0.48 2.57 0.17 -3.48 0.21 1.07 0.18

24 -0.94 3.91 4.65 0.64 -13.20 2.03 4.30 2.73

25 -1.37 0.17 2.78 0.19 -3.52 0.88 -1.04 0.62

26 2.22 0.17 2.59 0.12 -3.45 0.17 -0.04 0.10

27 1.64 0.36 2.83 0.15 -3.86 0.14 1.97 0.12

28 -1.70 3.77 7.01 0.74 -17.25 1.72 5.84 1.95

29 -0.31 0.23 3.62 0.16 -3.49 0.25 -0.33 0.20

30 2.97 0.32 4.23 0.20 -3.10 0.20 0.32 0.17

31 3.36 0.27 3.18 0.17 -4.76 0.15 2.67 0.16

32 -2.01 3.71 8.29 0.94 -17.61 2.14 6.18 0.63

𝐾𝑥𝑥𝐾𝑥𝑥   𝑥𝑥 𝐾𝑥𝑦𝐾𝑥𝑦   𝑥𝑦 𝐾𝑦𝑥𝐾𝑦𝑥   𝑦𝑥 𝐾𝑦𝑦𝐾𝑦𝑦   𝑦𝑦
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Table A. 9. Stiffness coefficients and uncertainties for the medium pre-swirl insert. (Continued) 

 

  

Test 

Point [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m]

33 -0.31 0.08 2.96 0.07 -2.95 0.05 -0.21 0.06

34 -0.37 0.17 3.06 0.11 -3.37 0.06 -0.42 0.05

35 -0.15 0.55 3.72 0.25 -5.24 0.19 -0.57 0.08

36 5.60 5.16 5.75 0.71 -18.25 2.86 2.14 3.73

37 0.32 0.21 3.34 0.12 -3.25 0.14 0.42 0.11

38 0.20 0.17 3.65 0.19 -3.80 0.12 0.41 0.15

39 -0.65 0.57 4.18 0.23 -5.33 0.17 0.36 0.27

40 1.77 5.34 7.60 0.97 -22.66 3.89 3.20 4.44

41 1.60 0.10 3.33 0.07 -3.44 0.14 1.76 0.13

42 1.33 0.08 3.57 0.10 -3.77 0.12 1.76 0.11

43 -0.15 0.57 4.48 0.26 -5.00 0.16 1.52 0.17

44 -0.34 6.14 8.37 1.02 -25.57 3.86 6.11 2.28

45 2.97 0.08 4.05 0.30 -4.11 0.26 3.17 0.04

46 0.78 0.29 4.28 0.18 -4.25 0.19 2.75 0.10

47 1.69 0.42 5.24 0.18 -6.58 0.96 2.31 2.21

48 -1.36 4.29 8.76 1.01 -20.74 3.03 5.99 2.04

49 -1.02 0.13 4.56 0.11 -4.60 0.05 -0.88 0.07

50 -0.96 0.21 4.84 0.14 -5.20 0.10 -1.04 0.05

51 -0.38 0.56 6.14 0.42 -10.50 1.53 0.67 4.26

52 17.49 3.84 5.54 0.73 -25.26 2.87 5.13 1.22

53 -0.22 0.14 4.56 0.16 -4.72 0.09 -0.16 0.12

54 -0.44 0.24 5.01 0.17 -5.39 0.08 -0.17 0.13

55 -0.47 0.52 6.36 0.35 -9.89 1.13 0.43 2.56

56 9.14 3.79 9.17 0.74 -24.84 2.76 1.04 0.94

57 0.58 0.27 5.46 0.34 -5.49 0.30 0.63 0.32

58 0.34 0.25 5.92 0.40 -6.17 0.25 0.55 0.32

59 -0.55 0.42 6.66 0.50 -10.62 1.25 1.36 2.11

60 5.06 4.32 9.77 0.80 -28.61 3.40 2.84 1.08

61 1.90 0.09 5.25 0.14 -5.36 0.16 2.05 0.06

62 1.68 0.16 5.60 0.13 -5.77 0.08 2.23 0.12

63 0.03 0.43 7.02 0.39 -10.22 1.23 3.33 1.99

64 2.39 4.31 10.71 0.76 -31.47 2.66 5.49 1.78

𝐾𝑥𝑥𝐾𝑥𝑥   𝑥𝑥 𝐾𝑥𝑦𝐾𝑥𝑦   𝑥𝑦 𝐾𝑦𝑥𝐾𝑦𝑥   𝑦𝑥 𝐾𝑦𝑦𝐾𝑦𝑦   𝑦𝑦
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Table A. 10. Damping coefficients and uncertainties for the medium pre-swirl insert. 

 

  

Test 

Point [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m]

1 6.60 0.59 2.41 0.13 -2.27 0.15 6.87 0.55

2 6.97 0.58 2.13 0.06 -2.64 0.21 7.72 0.62

3 11.41 0.97 -0.50 0.23 -5.86 0.36 12.45 0.72

4 61.52 8.02 -20.74 2.82 -27.36 2.37 28.44 1.79

5 9.28 0.39 3.18 0.30 -2.81 0.20 9.55 0.39

6 9.79 0.36 2.61 0.10 -2.98 0.26 10.78 0.45

7 13.76 0.70 0.77 0.20 -5.15 0.46 15.43 0.62

8 57.20 6.47 -21.39 2.84 -28.55 2.64 35.04 1.90

9 14.81 0.56 3.28 0.46 -2.55 0.65 15.38 0.66

10 12.98 0.35 3.67 0.45 -2.80 0.44 13.64 0.28

11 15.18 0.77 2.20 0.22 -4.78 0.51 16.39 0.61

12 69.34 10.95 -23.95 4.67 -32.19 4.18 40.82 2.52

13 16.81 1.07 4.31 0.57 -3.06 0.83 17.02 0.57

14 14.33 0.33 4.32 0.27 -3.58 0.49 16.38 0.43

15 16.99 0.87 3.11 0.22 -5.03 0.43 17.61 0.47

16 53.84 8.18 -16.03 3.41 -24.53 5.52 36.97 6.23

17 6.53 0.71 4.32 0.18 -4.11 0.10 6.57 0.63

18 7.51 0.71 4.21 0.16 -4.38 0.20 7.12 0.63

19 12.56 1.35 3.26 0.20 -6.07 0.38 8.71 0.72

20 54.43 5.89 -1.71 0.90 -13.01 1.84 17.36 0.69

21 12.89 1.25 4.49 0.74 -1.78 2.76 13.01 4.24

22 10.13 0.65 4.17 0.15 -4.62 0.27 11.42 0.71

23 13.76 1.27 3.28 0.22 -6.65 0.37 13.11 0.68

24 54.70 11.73 -5.61 2.38 -18.33 3.16 22.80 1.72

25 15.25 0.41 4.49 0.67 -4.14 1.53 14.67 2.86

26 12.83 0.40 5.05 0.19 -4.32 0.45 14.30 0.46

27 15.37 0.59 3.86 0.19 -6.90 0.36 16.30 0.37

28 75.13 12.43 -13.86 2.67 -26.90 3.86 31.38 3.41

29 15.75 0.41 5.18 0.49 -4.67 0.59 16.21 0.43

30 15.49 0.66 5.47 0.42 -4.75 0.61 16.48 0.44

31 16.77 1.02 4.87 0.33 -6.86 0.38 17.43 0.43

32 74.97 11.89 -15.48 3.04 -29.01 4.90 35.42 3.49

𝐶𝑥𝑥  𝐶𝑥𝑥 𝐶𝑥𝑦  𝐶𝑥𝑦 𝐶𝑦𝑥  𝐶𝑦𝑥 𝐶𝑦𝑦  𝐶𝑦𝑦
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Table A. 10. Damping coefficients and uncertainties for the medium pre-swirl insert. (Continued) 

 

  

Test 

Point [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m]

33 8.39 0.70 6.34 0.18 -6.37 0.10 8.64 0.74

34 9.52 0.96 6.76 0.17 -6.33 0.21 8.93 0.69

35 15.49 1.58 7.24 0.30 -7.13 0.59 10.68 0.76

36 48.72 8.83 0.58 2.00 -14.17 5.57 17.70 4.25

37 10.44 0.95 5.94 0.35 -5.93 0.29 10.55 0.82

38 11.85 0.96 5.61 0.30 -6.25 0.21 11.47 0.96

39 17.85 0.60 5.59 0.36 -8.25 0.55 14.38 0.40

40 58.50 11.80 1.07 2.28 -17.21 7.53 20.63 3.66

41 11.81 0.37 7.02 0.17 -6.63 0.24 11.83 0.46

42 12.20 0.77 7.03 0.16 -6.94 0.23 12.21 0.50

43 16.21 1.20 7.01 0.35 -8.54 0.57 13.87 0.53

44 62.24 14.35 -4.20 3.10 -25.00 9.89 30.15 6.14

45 13.66 0.53 7.00 0.42 -6.45 0.46 13.74 0.48

46 14.99 1.42 7.02 0.40 -6.74 0.45 14.24 0.47

47 17.77 1.86 7.44 0.48 -8.42 1.01 16.15 1.96

48 50.79 11.88 -2.70 2.86 -24.42 8.22 32.42 7.39

49 9.60 0.66 8.71 0.23 -8.53 0.11 9.63 0.76

50 10.89 1.06 9.17 0.22 -8.43 0.40 10.26 0.77

51 19.78 2.32 9.15 0.73 -9.88 1.27 13.02 2.81

52 46.81 5.22 -4.79 2.08 -26.59 3.40 24.84 1.53

53 10.71 0.73 8.44 0.37 -8.19 0.23 11.00 0.73

54 12.44 0.75 8.28 0.36 -8.51 0.44 11.83 0.71

55 20.28 2.09 8.54 0.67 -9.10 1.61 14.50 4.20

56 51.41 6.92 3.80 2.08 -17.51 3.74 21.80 2.37

57 14.33 0.22 7.68 0.60 -7.52 0.59 14.81 0.34

58 15.54 0.40 7.37 0.66 -7.77 0.40 15.24 0.49

59 23.25 1.96 8.33 1.02 -10.54 2.24 16.45 4.88

60 56.16 9.01 5.22 2.42 -21.21 6.13 24.66 2.26

61 14.06 0.28 9.50 0.23 -8.85 0.37 14.29 0.32

62 15.14 0.43 9.21 0.28 -9.46 0.40 15.01 0.29

63 22.09 1.81 8.29 0.67 -12.49 1.88 17.17 4.66

64 61.98 10.55 1.32 2.53 -28.34 10.02 32.94 8.26

𝐶𝑥𝑥  𝐶𝑥𝑥 𝐶𝑥𝑦  𝐶𝑥𝑦 𝐶𝑦𝑥  𝐶𝑦𝑥 𝐶𝑦𝑦  𝐶𝑦𝑦
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Table A. 11. Virtual mass coefficients and uncertainties for the medium pre-swirl insert. 

 

  

Test 

Point [kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg]

1 14.56 0.13 0.37 0.11 0.14 0.07 14.49 0.15

2 15.00 0.16 0.17 0.07 -0.09 0.11 14.89 0.22

3 16.99 0.43 -0.59 0.20 -0.96 0.21 16.66 0.30

4 31.60 3.90 -4.72 1.47 -5.30 1.23 20.75 0.86

5 16.47 0.23 0.43 0.18 -0.06 0.16 16.31 0.24

6 16.34 0.21 0.26 0.12 -0.03 0.17 16.36 0.33

7 17.96 0.41 -0.77 0.21 -1.20 0.27 17.83 0.34

8 29.36 2.91 -5.02 1.18 -5.24 0.99 22.47 1.03

9 15.14 0.24 0.29 0.28 0.03 0.33 14.77 0.27

10 16.78 0.23 -0.28 0.26 -0.03 0.17 16.59 0.29

11 18.79 0.32 -0.89 0.21 -1.02 0.25 18.20 0.34

12 39.29 8.98 -7.58 2.65 -14.37 5.67 35.50 6.17

13 16.27 0.54 -0.45 0.31 0.55 0.29 16.40 0.42

14 18.24 0.25 -0.07 0.14 0.24 0.20 16.61 0.17

15 19.77 0.31 -0.70 0.25 -0.90 0.16 18.54 0.24

16 31.96 5.86 -4.69 1.35 -10.73 4.31 30.95 5.61

17 12.82 0.10 0.55 0.15 -0.28 0.07 12.89 0.10

18 13.23 0.24 0.49 0.16 -0.25 0.07 12.91 0.09

19 15.40 0.77 0.51 0.23 -0.59 0.17 13.73 0.11

20 26.36 4.62 -1.37 0.71 -1.56 0.81 15.56 0.40

21 14.40 0.86 0.26 0.54 -0.56 1.35 10.75 1.88

22 16.11 0.15 0.90 0.09 -0.48 0.25 14.88 0.13

23 18.50 0.65 0.09 0.22 -1.33 0.29 16.28 0.25

24 34.00 8.42 -1.15 1.37 -10.83 4.37 29.60 5.87

25 15.61 0.35 -0.04 0.39 -0.94 1.84 14.84 1.30

26 16.69 0.24 0.44 0.17 -0.36 0.24 15.74 0.13

27 18.77 0.54 -0.48 0.22 -0.79 0.21 17.54 0.19

28 35.43 7.96 -2.35 1.55 -10.58 3.63 24.46 4.11

29 16.88 0.31 0.03 0.22 0.42 0.34 16.60 0.27

30 17.55 0.44 0.53 0.27 -0.15 0.28 16.16 0.23

31 19.60 0.37 -0.25 0.23 -0.95 0.21 17.88 0.22

32 35.21 7.83 -2.37 1.99 -12.75 4.53 24.31 1.33

𝑀𝑥𝑥   𝑥𝑥
𝑀𝑥𝑦   𝑥𝑦

𝑀𝑦𝑥   𝑦𝑥
𝑀𝑦𝑦   𝑦𝑦
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Table A. 11. Virtual mass coefficients and uncertainties for the medium pre-swirl insert. (Continued) 

  

Test 

Point [kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg]

33 13.13 0.11 0.94 0.10 -0.66 0.07 12.85 0.08

34 13.63 0.25 1.19 0.17 -0.59 0.09 13.07 0.07

35 16.54 0.83 1.81 0.38 -0.21 0.29 13.80 0.12

36 28.58 10.90 -0.38 1.50 -14.49 6.04 21.24 7.88

37 12.68 0.28 1.29 0.16 -0.72 0.18 12.53 0.14

38 13.42 0.23 1.46 0.27 -1.06 0.17 12.64 0.21

39 17.53 0.86 0.21 0.35 -0.39 0.25 15.05 0.41

40 32.13 11.28 0.98 2.05 -20.13 8.22 29.66 9.38

41 16.17 0.13 0.43 0.10 -0.52 0.19 16.18 0.18

42 16.71 0.11 0.52 0.13 -0.70 0.17 16.42 0.15

43 19.40 0.85 0.03 0.39 -1.28 0.23 17.33 0.25

44 30.40 12.96 1.31 2.15 -23.01 8.14 32.85 4.81

45 16.93 0.11 0.96 0.41 -0.78 0.36 16.94 0.05

46 16.39 0.44 0.55 0.27 -0.36 0.28 17.11 0.16

47 19.11 0.89 0.26 0.37 -7.53 2.04 24.01 4.67

48 26.71 9.06 0.63 2.13 -18.42 6.40 31.33 4.31

49 13.32 0.17 1.19 0.15 -0.97 0.07 13.05 0.09

50 13.85 0.32 1.67 0.21 -0.91 0.15 13.26 0.08

51 17.94 1.20 2.83 0.91 -8.01 3.30 25.37 9.17

52 32.51 8.26 -4.73 1.56 -18.05 6.18 18.43 2.62

53 13.17 0.19 1.07 0.22 -1.09 0.12 13.09 0.17

54 13.59 0.36 1.44 0.26 -1.09 0.12 13.35 0.19

55 17.34 1.13 2.19 0.74 -6.15 2.42 18.52 5.51

56 31.94 8.01 1.07 1.56 -13.95 5.82 14.44 1.98

57 14.14 0.37 0.77 0.47 -0.64 0.42 13.89 0.44

58 13.86 0.38 1.63 0.60 -1.25 0.37 13.20 0.48

59 19.34 0.90 -0.08 1.07 -4.87 2.69 21.49 4.55

60 33.73 9.12 1.42 1.69 -15.92 7.18 22.30 2.29

61 16.92 0.12 0.18 0.19 -0.15 0.22 16.91 0.09

62 17.27 0.24 0.22 0.20 -0.06 0.12 17.22 0.17

63 20.41 0.92 0.00 0.84 -5.76 2.65 23.73 4.27

64 31.46 9.10 1.38 1.61 -17.21 5.62 24.81 3.77

𝑀𝑥𝑥   𝑥𝑥
𝑀𝑥𝑦   𝑥𝑦

𝑀𝑦𝑥   𝑦𝑥
𝑀𝑦𝑦   𝑦𝑦
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Table A. 12. Whirl frequency ratio, effective damping, and uncertainties for the medium pre-swirl insert. 

 

  

 ω

[rpm]

ΔP

[bar]

ε

[-]

WFR

[-] [-] [kN-s/m] [kN-s/m]

1 2000 2.07 0.00 0.49 0.04 3.49 0.26

2 2000 2.07 0.27 0.50 0.04 3.70 0.27

3 2000 2.07 0.53 0.50 0.05 6.08 0.20

4 2000 2.07 0.8 0.55 0.17 23.54 0.17

5 2000 4.14 0.00 0.70 0.05 2.87 -0.21

6 2000 4.14 0.27 0.62 0.04 3.84 -0.09

7 2000 4.14 0.53 0.61 0.05 5.72 -0.17

8 2000 4.14 0.8 0.56 0.12 23.77 0.41

9 2000 6.21 0.00 0.82 0.06 2.65 -0.45

10 2000 6.21 0.27 0.80 0.04 2.68 -0.45

11 2000 6.21 0.53 0.72 0.04 4.64 -0.11

12 2000 6.21 0.8 0.63 0.21 24.40 -2.47

13 2000 8.27 0.00 0.83 0.06 2.45 -0.22

14 2000 8.27 0.27 0.80 0.04 1.25 -0.23

15 2000 8.27 0.53 0.84 0.04 2.75 -0.05

16 2000 8.27 0.8 0.74 0.19 15.27 0.93

17 4000 2.07 0.00 0.54 0.05 3.20 0.47

18 4000 2.07 0.27 0.52 0.04 3.67 0.49

19 4000 2.07 0.53 0.52 0.04 5.34 0.71

20 4000 2.07 0.8 0.46 0.04 20.31 2.08

21 4000 4.14 0.00 0.53 0.11 6.07 1.67

22 4000 4.14 0.27 0.54 0.03 5.18 0.38

23 4000 4.14 0.53 0.53 0.04 6.51 0.52

24 4000 4.14 0.8 0.53 0.10 19.97 3.55

25 4000 6.21 0.00 0.50 0.08 7.66 0.37

26 4000 6.21 0.27 0.50 0.02 6.51 0.07

27 4000 6.21 0.53 0.50 0.02 8.12 0.14

28 4000 6.21 0.8 0.55 0.09 27.09 5.00

29 4000 8.27 0.00 0.53 0.02 7.59 -0.07

30 4000 8.27 0.27 0.51 0.03 7.39 0.07

31 4000 8.27 0.53 0.54 0.02 7.88 0.34

32 4000 8.27 0.8 0.58 0.09 27.53 4.02

Measured
Test 

Point

Target

   𝑅  𝐶𝑒  𝐶𝑒𝑓𝑓

[-]
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Table A. 12. Whirl frequency ratio, effective damping, and uncertainties for the medium pre-swirl insert. (Continued) 

 

  

 ω

[rpm]

ΔP

[bar]

ε

[-]

WFR

[-] [-] [kN-s/m] [kN-s/m]

33 6000 2.07 0.00 0.55 0.03 4.33 0.62

34 6000 2.07 0.27 0.55 0.04 4.69 0.69

35 6000 2.07 0.53 0.54 0.04 6.61 0.81

36 6000 2.07 0.8 0.55 0.10 18.78 3.70

37 6000 4.14 0.00 0.50 0.03 5.90 0.68

38 6000 4.14 0.27 0.51 0.03 6.54 0.71

39 6000 4.14 0.53 0.47 0.02 8.75 0.19

40 6000 4.14 0.8 0.60 0.10 22.11 3.86

41 6000 6.21 0.00 0.46 0.02 6.73 0.24

42 6000 6.21 0.27 0.48 0.02 6.76 0.46

43 6000 6.21 0.53 0.50 0.03 7.93 0.53

44 6000 6.21 0.8 0.55 0.11 26.82 6.36

45 6000 8.27 0.00 0.47 0.03 7.76 0.06

46 6000 8.27 0.27 0.46 0.03 8.12 0.65

47 6000 8.27 0.53 0.55 0.06 9.99 1.00

48 6000 8.27 0.8 0.53 0.11 24.10 6.42

49 8000 2.07 0.00 0.57 0.03 5.05 0.61

50 8000 2.07 0.27 0.57 0.04 5.66 0.77

51 8000 2.07 0.53 0.60 0.09 11.02 1.39

52 8000 2.07 0.8 0.38 0.07 27.00 1.23

53 8000 4.14 0.00 0.51 0.03 6.22 0.58

54 8000 4.14 0.27 0.51 0.02 6.99 0.58

55 8000 4.14 0.53 0.55 0.09 11.20 2.27

56 8000 4.14 0.8 0.51 0.06 22.60 2.55

57 8000 6.21 0.00 0.45 0.02 8.62 -0.11

58 8000 6.21 0.27 0.47 0.02 9.39 0.06

59 8000 6.21 0.53 0.51 0.09 11.63 2.38

60 8000 6.21 0.8 0.53 0.06 24.78 3.13

61 8000 8.27 0.00 0.45 0.01 7.97 0.12

62 8000 8.27 0.27 0.45 0.01 8.41 0.23

63 8000 8.27 0.53 0.52 0.08 11.76 2.27

64 8000 8.27 0.8 0.49 0.08 30.09 7.36

Measured
Test 

Point

Target

   𝑅  𝐶𝑒  𝐶𝑒𝑓𝑓

[-]
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A.3 High Pre-swirl Insert Assembly 

Table A. 13. Static results for the high pre-swirl insert. 

 

  

 ω

[rpm]

ΔP

[bar] [-]

ω

[rpm]

ΔP

[bar] [-] [LPM]

φ

[rad] [N]

1 2000 2.07 0.00 2001.6 2.155 0.029 23.09 -0.018 11.95

2 2000 2.07 0.27 2002.4 1.925 0.287 23.25 0.468 101.61

3 2000 2.07 0.53 2003.4 2.257 0.522 26.89 0.680 190.70

4 2000 2.07 0.8 2003.7 1.852 0.802 27.25 1.064 320.44

5 2000 4.14 0.00 2004.3 4.185 0.020 39.17 0.459 7.47

6 2000 4.14 0.27 2004.5 4.101 0.285 38.85 0.664 156.18

7 2000 4.14 0.53 2003.9 4.048 0.532 39.63 0.828 265.61

8 2000 4.14 0.8 2004.3 4.168 0.795 41.83 1.055 457.77

9 2000 6.21 0.00 2004.4 6.221 0.024 50.48 0.441 -0.04

10 2000 6.21 0.27 2004.4 6.120 0.281 49.49 0.985 163.69

11 2000 6.21 0.53 2004.5 6.430 0.520 50.55 0.893 361.09

12 2000 6.21 0.8 2001.6 6.053 0.820 50.32 1.049 829.82

13 2000 8.27 0.00 2004.6 8.093 0.026 57.47 0.989 5.00

14 2000 8.27 0.27 2005.1 8.201 0.277 58.01 1.097 193.29

15 2000 8.27 0.53 2005.2 8.156 0.524 59.12 0.920 458.10

16 2000 8.27 0.8 2002.7 8.196 0.801 59.78 1.020 995.21

17 4000 2.07 0.00 4006.5 2.166 0.013 15.13 -1.766 3.72

18 4000 2.07 0.27 4005.8 2.112 0.269 15.20 1.269 86.43

19 4000 2.07 0.53 4005.3 1.936 0.527 16.79 1.292 205.77

20 4000 2.07 0.8 4004.3 2.180 0.789 19.25 1.364 453.36

21 4000 4.14 0.00 4004.7 4.133 0.024 35.02 1.139 86.64

22 4000 4.14 0.27 4005.0 4.045 0.274 32.51 1.663 250.28

23 4000 4.14 0.53 4004.8 4.122 0.529 34.26 1.313 394.75

24 4000 4.14 0.8 4002.7 4.089 0.779 36.22 1.192 714.12

25 4000 6.21 0.00 4004.4 6.282 0.029 46.40 -2.218 9.94

26 4000 6.21 0.27 4004.0 6.247 0.276 46.40 1.762 180.21

27 4000 6.21 0.53 4003.8 6.081 0.546 45.20 1.288 387.17

28 4000 6.21 0.8 4001.9 6.219 0.821 49.33 1.201 946.86

29 4000 8.27 0.00 4003.9 8.300 0.025 54.88 1.427 7.91

30 4000 8.27 0.27 4003.7 8.277 0.275 55.23 1.712 210.84

31 4000 8.27 0.53 4003.6 8.179 0.531 55.50 1.249 465.08

32 4000 8.27 0.8 4001.3 8.238 0.754 58.76 1.117 1007.98

Test 

Point

Target Measured

𝐹𝑟
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Table A. 13. Static results for the high pre-swirl insert. (Continued) 

 

  

 ω

[rpm]

ΔP

[bar] [-]

ω

[rpm]

ΔP

[bar] [-] [LPM]

φ

[rad] [N]

33 6000 2.07 0.00 5999.5 2.019 0.038 11.26 3.109 5.39

34 6000 2.07 0.27 5999.2 1.965 0.268 12.06 1.600 166.78

35 6000 2.07 0.53 5998.5 2.057 0.532 12.76 1.628 366.90

36 6000 2.07 0.8 6000.5 2.009 0.784 14.74 1.411 849.99

37 6000 4.14 0.00 5998.7 3.965 0.027 24.06 2.200 8.18

38 6000 4.14 0.27 5998.0 4.128 0.278 25.08 1.351 169.63

39 6000 4.14 0.53 5999.4 4.108 0.525 27.05 1.371 367.87

40 6000 4.14 0.8 6000.9 3.929 0.812 30.99 1.370 1050.17

41 6000 6.21 0.00 6000.5 6.116 0.046 37.07 0.697 4.78

42 6000 6.21 0.27 5999.5 6.177 0.276 37.00 0.969 192.54

43 6000 6.21 0.53 5999.4 6.190 0.531 40.45 1.104 415.17

44 6000 6.21 0.8 6001.6 6.130 0.812 44.04 1.318 1171.60

45 6000 8.27 0.00 6000.1 8.229 0.026 46.85 -1.109 5.63

46 6000 8.27 0.27 6000.1 8.335 0.275 48.04 0.914 297.69

47 6000 8.27 0.53 6002.8 8.181 0.549 51.42 1.198 645.41

48 6000 8.27 0.8 6001.7 8.116 0.800 54.57 1.270 1267.13

49 8000 2.07 0.00 8014.7 1.977 0.034 9.92 1.983 2.53

50 8000 2.07 0.27 8006.8 2.100 0.274 10.40 1.305 248.99

51 8000 2.07 0.53 8008.6 2.077 0.495 11.00 1.629 485.49

52 8000 2.07 0.8 8010.7 2.091 0.807 13.31 1.374 1219.55

53 8000 4.14 0.00 8009.6 3.998 0.034 20.47 -2.661 2.41

54 8000 4.14 0.27 8006.4 3.940 0.281 21.32 1.530 279.20

55 8000 4.14 0.53 8007.4 4.118 0.521 23.48 1.556 501.73

56 8000 4.14 0.8 8011.8 4.028 0.789 26.86 1.464 1246.67

57 8000 6.21 0.00 8009.1 5.983 0.036 30.84 2.262 -0.53

58 8000 6.21 0.27 8004.1 6.092 0.277 32.49 1.379 239.32

59 8000 6.21 0.53 8006.4 6.298 0.519 35.58 1.442 537.08

60 8000 6.21 0.8 8007.1 6.209 0.797 39.74 1.435 1357.32

61 8000 8.27 0.00 8006.1 8.164 0.036 42.65 -1.842 1.85

62 8000 8.27 0.27 8006.2 8.215 0.267 42.57 1.251 238.38

63 8000 8.27 0.53 8006.2 8.383 0.541 45.81 1.321 653.22

64 8000 8.27 0.8 8006.4 8.458 0.813 52.23 1.362 1542.39

Test 

Point

Target Measured

𝐹𝑟
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Table A. 14. Static flow results for the high pre-swirl insert. 

 

  

1 0.568 0.254 46.837 46.247 1053.0 872.4 1367.4

2 0.544 0.293 45.879 47.155 1042.3 858.0 1350.1

3 0.578 0.348 47.235 46.637 1235.2 879.5 1516.3

4 0.574 0.308 48.421 50.395 1279.2 899.0 1563.5

5 0.816 0.299 46.997 46.425 1791.7 876.1 1994.5

6 0.760 0.345 45.880 45.947 1741.9 858.9 1942.1

7 0.730 0.385 47.233 48.815 1820.5 879.7 2021.9

8 0.721 0.422 46.128 45.604 1883.8 862.6 2071.9

9 1.170 0.317 45.974 47.244 2267.3 860.3 2425.1

10 1.136 0.334 45.329 46.414 2197.8 850.6 2356.6

11 1.132 0.404 46.563 45.898 2294.4 869.4 2453.6

12 0.838 0.408 45.112 45.634 2226.3 844.5 2381.1

13 1.405 0.324 46.306 47.634 2596.2 865.5 2736.7

14 1.333 0.355 45.846 45.468 2599.7 858.7 2737.8

15 1.287 0.415 45.958 47.236 2654.6 860.4 2790.5

16 1.034 0.419 47.026 46.616 2735.7 874.1 2872.0

17 0.391 0.275 47.813 48.543 702.3 1786.1 1919.2

18 0.382 0.257 46.417 46.164 687.8 1741.3 1872.3

19 0.372 0.241 45.049 46.771 741.8 1699.7 1854.5

20 0.367 0.228 47.523 47.129 888.8 1775.7 1985.8

21 0.505 0.249 46.212 48.274 1579.7 1734.5 2346.0

22 0.476 0.259 47.199 46.693 1492.6 1765.6 2312.0

23 0.463 0.240 47.975 49.972 1595.4 1790.7 2398.3

24 0.460 0.249 48.056 49.704 1689.2 1780.2 2454.1

25 0.613 0.266 47.168 46.711 2129.0 1764.3 2765.1

26 0.608 0.245 47.275 48.636 2132.9 1767.6 2770.1

27 0.572 0.264 46.460 46.017 2047.5 1741.8 2688.1

28 0.583 0.337 46.866 47.355 2251.1 1741.7 2846.2

29 0.664 0.261 46.501 47.798 2487.8 1743.1 3037.7

30 0.661 0.252 45.553 45.223 2462.1 1714.0 2999.9

31 0.640 0.303 47.328 48.178 2553.6 1769.1 3106.6

32 0.632 0.289 46.578 48.567 2667.6 1732.5 3180.8

Inlet 

Temp.

[°C]

Outlet 

Temp.

[°C]
[-] [-] [-]

Test 

Point

Pre-swirl 

Ratio

[-]

Post-swirl 

Ratio

[-]

𝑅𝑒𝑧 𝑅𝑒𝜃 𝑅𝑒𝑡
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Table A. 14. Static flow results for the high pre-swirl insert. (Continued) 

 

  

33 0.403 0.162 45.627 47.957 502.7 2571.8 2620.5

34 0.393 0.311 46.898 50.352 550.4 2630.4 2687.4

35 0.377 0.320 47.626 48.626 590.3 2665.1 2729.7

36 0.359 0.244 46.233 47.441 665.2 2582.2 2666.5

37 0.384 0.275 46.817 48.721 1096.8 2626.4 2846.2

38 0.380 0.247 47.523 48.171 1158.0 2659.8 2901.0

39 0.374 0.239 46.377 47.336 1223.7 2606.1 2879.1

40 0.375 0.254 45.812 47.927 1387.9 2563.2 2914.8

41 0.431 0.244 47.945 50.802 1725.3 2681.5 3188.6

42 0.423 0.253 47.046 47.490 1693.9 2637.6 3134.7

43 0.423 0.260 47.339 49.610 1861.7 2651.6 3239.9

44 0.418 0.251 46.157 46.572 1984.2 2579.2 3254.1

45 0.467 0.251 47.158 47.310 2148.9 2643.2 3406.5

46 0.455 0.250 45.326 45.989 2133.3 2558.5 3331.3

47 0.463 0.250 47.753 49.823 2384.3 2655.0 3568.4

48 0.468 0.250 45.173 46.052 2416.6 2535.0 3502.3

49 0.427 0.118 49.009 54.472 471.0 3653.2 3683.5

50 0.422 0.168 47.672 50.727 481.7 3560.3 3592.7

51 0.399 0.284 46.921 50.290 502.4 3489.0 3525.0

52 0.382 0.253 45.742 48.388 595.5 3417.4 3468.9

53 0.385 0.288 46.704 48.467 931.4 3499.7 3621.5

54 0.374 0.403 47.088 50.846 976.8 3522.6 3655.5

55 0.359 0.266 46.726 48.413 1068.8 3476.3 3636.9

56 0.341 0.224 44.919 47.382 1184.2 3369.1 3571.2

57 0.377 0.288 47.683 49.277 1428.5 3562.1 3837.8

58 0.375 0.277 46.490 48.240 1472.4 3483.9 3782.3

59 0.370 0.226 45.126 48.152 1574.2 3379.0 3727.7

60 0.366 0.215 47.051 48.292 1819.5 3496.5 3941.6

61 0.384 0.274 48.029 51.402 1987.7 3583.4 4097.8

62 0.390 0.252 45.798 47.953 1906.1 3442.3 3934.8

63 0.393 0.261 46.119 47.368 2062.6 3438.4 4009.6

64 0.392 0.257 48.380 50.489 2450.2 3582.3 4340.0

[-] [-] [-]

Test 

Point

Pre-swirl 

Ratio

[-]

Post-swirl 

Ratio

[-]

Inlet 

Temp.

[°C]

Outlet 

Temp.

[°C]

𝑅𝑒𝑧 𝑅𝑒𝜃 𝑅𝑒𝑡
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Table A. 15. Stiffness coefficients and uncertainties for the high pre-swirl insert. 

 

  

Test 

Point [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m]

1 1.07 0.15 0.87 0.09 -1.07 0.16 1.13 0.16

2 0.95 0.11 1.03 0.09 -1.09 0.21 0.88 0.09

3 0.29 0.25 1.95 0.16 -1.24 0.25 0.50 0.24

4 -2.02 1.02 3.36 0.61 -5.73 0.64 2.38 0.68

5 2.72 0.18 1.92 0.17 -2.31 0.20 2.81 0.13

6 1.53 0.12 2.46 0.09 -1.88 0.23 1.20 0.11

7 0.95 0.14 2.37 0.11 -2.25 0.27 1.35 0.19

8 -1.32 1.54 4.29 0.71 -6.07 0.78 2.68 0.77

9 -0.94 0.09 2.91 0.17 -3.23 0.41 -0.86 0.12

10 2.45 0.09 1.99 0.08 -3.95 0.25 2.00 0.11

11 1.97 0.11 3.00 0.11 -3.25 0.19 2.16 0.13

12 -0.81 1.71 5.75 0.72 -8.65 3.90 5.41 4.72

13 1.34 0.13 3.27 0.22 -3.72 0.33 1.57 0.18

14 3.33 0.13 2.57 0.12 -4.96 0.19 2.17 0.11

15 2.96 0.12 3.66 0.11 -4.29 0.10 3.05 0.15

16 0.07 1.31 6.15 0.66 -7.86 3.50 4.58 2.30

17 0.05 0.23 1.51 0.14 -1.83 0.32 0.14 0.27

18 -0.18 0.11 1.58 0.13 -1.83 0.19 0.03 0.16

19 0.01 0.19 2.11 0.18 -2.81 0.21 0.38 0.16

20 -0.02 2.02 3.51 0.54 -9.76 0.56 1.23 0.33

21 -1.13 0.49 2.63 0.33 -4.13 0.26 -0.98 0.38

22 1.11 0.17 2.89 0.09 -2.36 0.26 0.35 0.11

23 1.16 0.23 2.74 0.17 -3.54 0.29 0.84 0.08

24 -0.60 1.88 4.55 0.60 -12.57 3.80 4.68 2.90

25 -0.99 0.50 2.59 0.33 -5.17 0.66 -0.82 0.38

26 2.15 0.10 4.49 0.13 -2.64 0.24 0.49 0.12

27 1.84 0.32 3.43 0.22 -4.32 0.26 1.42 0.11

28 -1.65 2.78 6.97 0.80 -16.53 2.47 5.62 1.52

29 0.58 0.35 3.84 0.39 -4.24 0.62 0.77 0.42

30 2.81 0.21 5.23 0.13 -3.45 0.19 0.31 0.08

31 3.17 0.21 3.95 0.18 -5.03 0.20 2.16 0.13

32 -0.83 1.17 6.91 0.54 -12.25 1.59 6.17 0.87

𝐾𝑥𝑥𝐾𝑥𝑥   𝑥𝑥 𝐾𝑥𝑦𝐾𝑥𝑦   𝑥𝑦 𝐾𝑦𝑥𝐾𝑦𝑥   𝑦𝑥 𝐾𝑦𝑦𝐾𝑦𝑦   𝑦𝑦
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Table A. 15. Stiffness coefficients and uncertainties for the high pre-swirl insert. (Continued) 

 

  

Test 

Point [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m]

33 -0.37 0.12 3.04 0.06 -3.21 0.19 -0.26 0.12

34 -0.37 0.07 2.99 0.11 -3.36 0.12 -0.35 0.05

35 -0.27 0.18 3.84 0.21 -5.17 0.13 -0.64 0.10

36 5.63 2.33 5.42 0.59 -18.72 2.59 1.45 2.25

37 0.25 0.15 3.44 0.19 -3.59 0.25 0.29 0.15

38 0.11 0.14 3.61 0.20 -3.87 0.18 0.27 0.17

39 -0.63 0.19 4.27 0.27 -5.38 0.26 0.30 0.19

40 7.71 2.96 6.07 0.60 -25.13 2.60 3.64 0.74

41 1.63 0.11 3.53 0.12 -3.96 0.32 1.77 0.09

42 1.50 0.22 3.76 0.15 -4.07 0.49 1.70 0.27

43 -0.30 0.16 5.08 0.25 -4.54 0.26 1.37 0.21

44 0.15 2.84 7.77 0.73 -21.78 2.71 3.68 0.93

45 2.82 0.44 4.15 0.33 -5.07 0.76 3.25 0.68

46 1.75 0.22 4.75 0.13 -4.35 0.29 2.45 0.16

47 1.47 0.22 5.46 0.19 -7.44 1.87 3.28 3.41

48 -0.86 2.69 8.91 0.89 -23.22 2.47 4.76 1.07

49 -0.88 0.22 4.56 0.20 -4.69 0.26 -0.88 0.18

50 -0.97 0.30 4.83 0.12 -5.20 0.27 -0.82 0.16

51 -0.45 0.34 5.98 0.41 -10.37 1.57 -0.23 2.95

52 14.73 2.56 6.65 0.55 -23.26 1.46 2.43 1.24

53 -0.17 0.25 4.97 0.18 -5.15 0.27 -0.13 0.16

54 -0.23 0.15 5.16 0.17 -5.58 0.15 -0.21 0.14

55 -0.43 0.40 6.34 0.39 -10.66 1.26 -0.98 1.82

56 11.32 2.27 9.31 0.78 -24.72 0.94 -0.17 1.50

57 0.52 0.22 5.65 0.36 -5.73 0.27 0.74 0.23

58 0.25 0.18 6.14 0.40 -6.34 0.39 0.44 0.25

59 -0.35 0.33 6.42 0.37 -10.75 1.50 0.62 2.15

60 5.28 2.57 9.48 0.81 -26.33 1.46 1.47 1.01

61 2.04 0.21 5.43 0.14 -5.80 0.43 1.97 0.12

62 1.55 0.18 5.88 0.16 -6.11 0.26 1.86 0.16

63 -0.34 0.40 7.30 0.38 -11.28 1.53 2.86 2.42

64 3.72 2.45 10.42 0.83 -31.59 3.55 5.36 1.40

𝐾𝑥𝑥𝐾𝑥𝑥   𝑥𝑥 𝐾𝑥𝑦𝐾𝑥𝑦   𝑥𝑦 𝐾𝑦𝑥𝐾𝑦𝑥   𝑦𝑥 𝐾𝑦𝑦𝐾𝑦𝑦   𝑦𝑦
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Table A. 16. Damping coefficients and uncertainties for the high pre-swirl insert. 

 

  

Test 

Point [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m]

1 7.40 0.60 2.81 0.20 -2.62 0.20 7.57 0.54

2 7.42 0.89 2.69 0.33 -2.92 0.25 8.31 0.99

3 11.28 1.05 0.48 0.48 -5.89 0.30 13.42 1.25

4 59.04 3.34 -21.43 1.51 -29.69 1.47 31.15 1.51

5 9.88 0.55 3.92 0.47 -3.51 0.16 9.97 0.53

6 11.05 0.71 3.33 0.30 -3.66 0.40 11.69 0.89

7 13.96 0.86 1.91 0.42 -5.65 0.42 14.76 0.99

8 57.56 5.03 -18.68 2.12 -28.10 1.74 33.40 1.70

9 15.46 0.41 4.14 0.27 -4.12 0.45 15.43 0.40

10 13.07 0.41 4.92 0.26 -3.65 0.26 13.53 0.73

11 15.98 0.64 2.98 0.30 -5.96 0.38 16.44 0.79

12 57.32 5.57 -16.52 2.31 -27.67 5.32 36.10 3.70

13 14.98 0.20 4.88 0.20 -4.83 0.27 15.11 0.26

14 14.83 0.50 5.49 0.27 -4.36 0.22 15.28 0.59

15 17.38 0.71 3.67 0.30 -6.50 0.35 17.75 0.64

16 51.41 3.73 -14.28 1.49 -25.65 4.94 36.44 4.20

17 6.82 0.96 4.91 0.57 -4.35 0.29 6.61 1.03

18 7.53 0.75 4.83 0.32 -4.61 0.30 6.91 0.92

19 12.12 1.15 3.65 0.54 -6.53 0.27 8.71 1.19

20 48.93 3.74 -1.49 0.95 -14.35 1.07 16.51 1.19

21 12.21 1.48 5.37 0.72 -3.63 0.55 12.24 1.41

22 10.34 0.93 4.57 0.50 -5.31 0.35 10.46 1.02

23 13.35 1.41 4.49 0.36 -6.54 0.36 12.02 0.95

24 43.96 6.27 -6.54 1.59 -19.78 6.68 20.92 9.26

25 14.35 1.47 6.05 0.80 -4.58 0.59 14.41 1.29

26 12.99 0.64 5.60 0.47 -5.80 0.45 13.79 0.90

27 15.96 1.34 4.85 0.39 -7.46 0.46 14.83 0.80

28 69.02 10.08 -11.91 2.58 -27.70 7.28 28.58 10.87

29 15.29 0.30 6.47 0.26 -6.28 0.49 15.10 0.71

30 15.08 0.52 6.27 0.36 -6.18 0.58 16.11 0.76

31 16.80 0.88 5.81 0.37 -7.82 0.33 16.45 0.64

32 48.85 3.23 -8.37 1.21 -22.52 7.13 28.19 11.17

𝐶𝑥𝑥  𝐶𝑥𝑥 𝐶𝑥𝑦  𝐶𝑥𝑦 𝐶𝑦𝑥  𝐶𝑦𝑥 𝐶𝑦𝑦  𝐶𝑦𝑦
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Table A. 16. Damping coefficients and uncertainties for the high pre-swirl insert. (Continued) 

 

  

Test 

Point [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m] [kN-s/m]

33 8.61 0.83 6.50 0.32 -6.62 0.14 8.70 0.96

34 9.67 0.84 6.77 0.22 -6.61 0.22 8.92 0.76

35 15.60 1.25 7.27 0.31 -7.40 0.36 10.55 0.89

36 51.91 4.36 -0.16 1.39 -17.26 5.46 17.22 5.57

37 11.30 0.58 6.22 0.36 -6.28 0.24 11.31 0.72

38 12.50 0.41 6.12 0.35 -6.65 0.25 11.96 0.60

39 16.94 0.69 6.28 0.40 -8.64 0.38 13.68 0.56

40 67.96 5.25 -4.70 1.61 -23.20 5.95 24.07 7.36

41 11.87 0.52 7.71 0.41 -7.24 0.31 11.79 0.70

42 12.06 0.63 7.67 0.51 -7.52 0.36 12.02 1.18

43 15.51 0.89 7.20 0.41 -9.81 0.30 14.41 0.64

44 60.10 7.44 -1.59 1.87 -22.85 6.10 24.14 7.72

45 13.80 0.45 7.89 0.91 -8.02 1.03 13.34 0.74

46 14.11 0.76 7.79 0.50 -7.90 0.46 14.10 0.77

47 18.04 1.66 7.78 0.74 -10.17 1.86 16.05 2.07

48 63.95 9.49 -3.87 2.11 -25.56 5.90 28.43 8.33

49 9.08 0.84 9.02 0.48 -8.76 0.22 8.96 1.15

50 10.67 0.98 9.07 0.59 -9.24 0.24 9.63 1.22

51 19.38 1.78 9.33 0.64 -10.12 1.18 11.92 4.47

52 49.88 4.13 -3.23 1.62 -23.03 4.33 22.04 7.06

53 11.09 0.88 8.79 0.70 -8.54 0.21 10.95 1.25

54 12.47 0.97 8.78 0.48 -8.72 0.36 11.59 0.95

55 21.19 1.91 9.71 0.61 -9.99 1.29 14.91 2.52

56 56.75 3.61 2.55 1.56 -18.75 2.93 22.66 7.77

57 13.40 0.83 8.14 0.84 -8.10 0.54 13.11 1.18

58 15.45 0.68 7.92 0.79 -8.26 0.50 14.73 0.84

59 22.37 1.47 9.88 0.92 -11.98 1.61 16.61 2.46

60 58.29 5.47 5.94 1.78 -19.76 4.39 22.90 8.48

61 14.44 0.33 10.24 0.43 -9.76 0.56 14.05 0.85

62 15.06 0.61 9.94 0.37 -9.92 0.50 14.59 0.79

63 23.27 2.00 8.86 0.75 -13.56 1.79 17.52 3.29

64 66.39 5.28 2.59 1.53 -23.48 5.12 24.45 8.72

𝐶𝑥𝑥  𝐶𝑥𝑥 𝐶𝑥𝑦  𝐶𝑥𝑦 𝐶𝑦𝑥  𝐶𝑦𝑥 𝐶𝑦𝑦  𝐶𝑦𝑦
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Table A. 17. Virtual mass coefficients and uncertainties for the high pre-swirl insert. 

 

  

Test 

Point [kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg]

1 15.23 0.23 0.08 0.14 -0.69 0.25 15.63 0.23

2 15.68 0.15 -0.13 0.13 -1.04 0.29 16.08 0.13

3 17.38 0.34 -0.72 0.22 -1.99 0.35 17.59 0.32

4 29.02 1.38 -4.50 0.83 -6.52 0.87 22.39 0.93

5 16.95 0.27 0.18 0.26 -1.23 0.30 17.31 0.19

6 16.63 0.17 0.09 0.13 -1.10 0.32 16.94 0.15

7 18.62 0.18 -0.93 0.15 -2.20 0.36 18.42 0.26

8 31.03 2.10 -4.64 0.96 -6.62 1.06 23.12 1.04

9 16.59 0.13 -0.34 0.25 -1.03 0.62 17.03 0.18

10 18.10 0.12 -0.64 0.11 -1.48 0.34 17.79 0.15

11 19.36 0.15 -0.67 0.15 -1.76 0.25 18.81 0.18

12 32.99 3.67 -5.42 1.55 -19.17 8.40 35.30 10.15

13 18.29 0.19 -0.71 0.33 -1.01 0.50 18.76 0.27

14 18.50 0.17 -0.56 0.17 -1.28 0.27 18.19 0.15

15 20.00 0.16 -0.62 0.14 -1.69 0.13 19.37 0.21

16 30.27 2.82 -3.95 1.41 -15.52 7.52 28.07 4.95

17 14.63 0.34 0.14 0.21 -1.46 0.49 15.01 0.40

18 14.97 0.17 0.10 0.19 -1.10 0.29 14.97 0.23

19 16.99 0.26 0.50 0.25 -1.35 0.29 15.20 0.21

20 27.71 2.76 -0.42 0.74 -2.54 0.76 17.45 0.46

21 14.88 0.68 -0.09 0.46 -2.81 0.36 15.44 0.53

22 16.42 0.23 0.97 0.12 -0.77 0.36 15.96 0.15

23 18.96 0.33 0.46 0.24 -1.51 0.41 16.56 0.11

24 30.40 4.04 -2.00 1.29 -16.79 8.17 25.95 6.24

25 16.24 0.70 -0.23 0.46 -2.13 0.92 17.67 0.52

26 17.47 0.14 0.84 0.17 -0.60 0.32 16.90 0.16

27 19.90 0.45 0.33 0.31 -1.17 0.36 17.51 0.16

28 38.15 5.98 -3.94 1.71 -14.66 5.32 24.28 3.26

29 18.50 0.54 -1.24 0.60 -1.42 0.96 19.11 0.64

30 18.06 0.31 0.50 0.19 -0.44 0.29 16.92 0.11

31 19.95 0.30 0.07 0.25 -0.94 0.28 18.24 0.19

32 28.77 2.51 -2.05 1.17 -10.11 3.41 23.50 1.87

𝑀𝑥𝑥   𝑥𝑥
𝑀𝑥𝑦   𝑥𝑦

𝑀𝑦𝑥   𝑦𝑥
𝑀𝑦𝑦   𝑦𝑦
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Table A. 17. Virtual mass coefficients and uncertainties for the high pre-swirl insert. (Continued) 

 

  

Test 

Point [kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg]

33 13.29 0.17 0.76 0.09 -1.49 0.29 13.46 0.18

34 13.57 0.10 0.76 0.17 -0.92 0.19 13.46 0.07

35 16.12 0.26 1.75 0.29 -0.52 0.19 13.80 0.14

36 30.76 5.01 -1.91 1.26 -15.29 5.57 17.65 4.84

37 13.69 0.22 0.59 0.28 -1.39 0.38 13.82 0.22

38 14.37 0.21 0.61 0.31 -1.09 0.28 14.04 0.25

39 17.64 0.27 0.51 0.37 -1.09 0.36 15.50 0.26

40 37.09 6.36 -3.75 1.29 -18.28 5.60 21.31 1.59

41 16.82 0.16 0.08 0.18 -1.65 0.49 17.00 0.14

42 17.35 0.30 -0.09 0.21 -1.85 0.69 17.34 0.38

43 19.51 0.23 -0.49 0.35 -1.70 0.37 17.87 0.30

44 35.39 6.11 -0.77 1.57 -15.00 5.83 22.38 2.01

45 18.11 0.62 -0.22 0.46 -3.31 1.07 19.27 0.95

46 17.22 0.30 0.32 0.19 -0.91 0.41 17.59 0.23

47 19.86 0.48 0.66 0.40 -9.58 4.02 26.05 7.35

48 34.67 5.80 -0.97 1.91 -13.51 5.32 21.21 2.29

49 13.65 0.31 0.99 0.28 -2.05 0.37 13.56 0.25

50 14.27 0.42 1.07 0.17 -1.92 0.37 13.75 0.22

51 16.79 0.73 2.85 0.88 -8.32 3.38 19.11 6.34

52 31.27 5.50 -4.76 1.19 -11.67 3.14 10.09 2.66

53 13.71 0.35 1.14 0.26 -2.13 0.38 13.45 0.23

54 13.97 0.21 1.60 0.24 -1.54 0.21 13.49 0.19

55 17.88 0.87 1.76 0.83 -8.49 2.71 16.90 3.93

56 32.12 4.88 -0.66 1.68 -11.62 2.03 10.45 3.23

57 13.24 0.31 1.64 0.50 -2.63 0.37 13.45 0.32

58 14.30 0.26 1.56 0.56 -1.73 0.54 13.45 0.35

59 19.68 0.71 -0.63 0.80 -7.81 3.22 21.84 4.62

60 34.83 5.53 0.22 1.73 -9.62 3.13 18.40 2.16

61 18.07 0.36 -0.53 0.24 -1.44 0.73 17.48 0.21

62 17.66 0.25 0.16 0.23 -0.76 0.37 17.19 0.22

63 20.03 0.87 0.29 0.82 -8.15 3.29 23.85 5.20

64 35.83 4.69 -0.98 1.59 -18.85 6.80 24.80 2.67

𝑀𝑥𝑥   𝑥𝑥
𝑀𝑥𝑦   𝑥𝑦

𝑀𝑦𝑥   𝑦𝑥
𝑀𝑦𝑦   𝑦𝑦
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Table A. 18. Whirl frequency ratio, effective damping, and uncertainties for the high pre-swirl insert.  

 

  

 ω

[rpm]

ΔP

[bar]

ε

[-]

WFR

[-] [-] [kN-s/m] [kN-s/m]

1 2000 2.07 0.00 0.62 0.07 2.93 -0.05

2 2000 2.07 0.27 0.64 0.09 2.93 0.22

3 2000 2.07 0.53 0.62 0.08 5.03 0.16

4 2000 2.07 0.8 0.53 0.09 24.57 -0.54

5 2000 4.14 0.00 1.01 0.07 0.00 -0.35

6 2000 4.14 0.27 0.90 0.07 1.17 0.01

7 2000 4.14 0.53 0.77 0.06 3.66 0.03

8 2000 4.14 0.8 0.60 0.10 21.98 -0.17

9 2000 6.21 0.00 0.95 0.07 0.95 -0.97

10 2000 6.21 0.27 1.01 0.05 -0.63 -0.21

11 2000 6.21 0.53 0.92 0.04 1.57 0.01

12 2000 6.21 0.8 0.76 0.26 14.95 -6.39

13 2000 8.27 0.00 1.10 0.06 -1.44 -1.09

14 2000 8.27 0.27 1.13 0.05 -2.69 -0.21

15 2000 8.27 0.53 1.08 0.04 -1.12 0.19

16 2000 8.27 0.8 0.82 0.22 12.58 -5.94

17 4000 2.07 0.00 0.59 0.09 3.07 0.44

18 4000 2.07 0.27 0.56 0.06 3.41 0.45

19 4000 2.07 0.53 0.57 0.06 4.93 0.70

20 4000 2.07 0.8 0.50 0.05 17.52 1.15

21 4000 4.14 0.00 0.65 0.07 4.77 0.74

22 4000 4.14 0.27 0.60 0.05 4.51 0.55

23 4000 4.14 0.53 0.58 0.05 5.61 0.63

24 4000 4.14 0.8 0.61 0.21 15.95 2.52

25 4000 6.21 0.00 0.62 0.07 5.61 0.20

26 4000 6.21 0.27 0.60 0.04 5.19 0.33

27 4000 6.21 0.53 0.60 0.04 6.47 0.50

28 4000 6.21 0.8 0.60 0.17 24.67 6.57

29 4000 8.27 0.00 0.63 0.06 6.12 -0.69

30 4000 8.27 0.27 0.63 0.03 5.44 0.26

31 4000 8.27 0.53 0.64 0.03 6.12 0.31

32 4000 8.27 0.8 0.60 0.16 18.20 4.66

Measured
Test 

Point

Target

   𝑅  𝐶𝑒  𝐶𝑒𝑓𝑓

[-]
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Table A. 18. Whirl frequency ratio, effective damping, and uncertainties for the high pre-swirl insert. (Continued) 

 

  

 ω

[rpm]

ΔP

[bar]

ε

[-]

WFR

[-] [-] [kN-s/m] [kN-s/m]

33 6000 2.07 0.00 0.57 0.05 4.39 0.69

34 6000 2.07 0.27 0.54 0.04 4.77 0.62

35 6000 2.07 0.53 0.55 0.04 6.61 0.80

36 6000 2.07 0.8 0.53 0.10 20.77 2.44

37 6000 4.14 0.00 0.49 0.03 6.34 0.30

38 6000 4.14 0.27 0.49 0.02 6.81 0.20

39 6000 4.14 0.53 0.50 0.02 8.13 0.21

40 6000 4.14 0.8 0.50 0.09 28.11 3.76

41 6000 6.21 0.00 0.50 0.03 6.41 0.26

42 6000 6.21 0.27 0.52 0.04 6.42 0.39

43 6000 6.21 0.53 0.51 0.03 8.00 0.35

44 6000 6.21 0.8 0.55 0.11 23.57 4.84

45 6000 8.27 0.00 0.54 0.05 7.34 -0.27

46 6000 8.27 0.27 0.51 0.03 7.25 0.42

47 6000 8.27 0.53 0.59 0.09 10.01 0.23

48 6000 8.27 0.8 0.55 0.11 25.18 6.24

49 8000 2.07 0.00 0.61 0.05 4.79 0.72

50 8000 2.07 0.27 0.59 0.05 5.42 0.87

51 8000 2.07 0.53 0.62 0.13 10.59 1.95

52 8000 2.07 0.8 0.41 0.08 25.02 4.39

53 8000 4.14 0.00 0.55 0.04 6.36 0.79

54 8000 4.14 0.27 0.53 0.03 6.94 0.77

55 8000 4.14 0.53 0.55 0.06 12.21 1.23

56 8000 4.14 0.8 0.46 0.08 24.57 4.66

57 8000 6.21 0.00 0.51 0.03 8.26 0.63

58 8000 6.21 0.27 0.49 0.03 9.03 0.30

59 8000 6.21 0.53 0.52 0.06 12.79 0.85

60 8000 6.21 0.8 0.50 0.09 23.37 5.62

61 8000 8.27 0.00 0.47 0.02 8.37 0.26

62 8000 8.27 0.27 0.48 0.02 8.06 0.44

63 8000 8.27 0.53 0.53 0.07 12.85 1.51

64 8000 8.27 0.8 0.54 0.10 28.68 4.39

Measured
Test 

Point

Target

   𝑅  𝐶𝑒  𝐶𝑒𝑓𝑓

[-]
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APPENDIX B UNCERTAINTY ANALYSIS 

The author used the same general testing apparatus, instrumentation, procedure, and data 

analysis tools that Moreland and Torres used in their test program [8, 12]. Consequently, the 

author uses Moreland’s uncertainty analysis, adapting it, where needed, to the current study as 

follows: 

“Instrument error is assumed to be negligible and only repeatability is calculated for the 

uncertainty of measurements. A 95% confidence interval is used to calculate the uncertainties for 

static measurements and the dynamic stiffness values. The true mean, 𝜇, of a set of sample 

measurements, 𝑥𝑖, lies within the confidence interval 

 
�̃� − 𝑡𝛼/2,𝑣

𝑆𝑥

√𝑛
< 𝜇 <  �̃� + 𝑡𝛼/2,𝑣

𝑆𝑥

√𝑛
  

(B. 1) 

 

where �̃� is the sample mean, 𝑡𝛼/2,𝑣 is the Student’s t-distribution value, the level of significance 

is 𝛼 = 1 − 𝑐, 𝑐 = 0.95 is the level of confidence, the degrees of freedom are 𝑣 = 1 - 𝑛, and 𝑛 is 

the number of samples. The standard deviation is 

 

𝑆𝑥 = √(
∑ 𝑥𝑖

2𝑛
𝑖=1 − 𝑛�̅�2

𝑛 − 1
) 

(B. 2) 

 

Recalling Eqs. (19)-(23), the confidence intervals on the rotordynamic coefficients are 

determined using a statistical test described in [26]. The true slope of a least-squares regression 

lies within the 𝑐% confidence interval 

 
𝑏 ± 𝑡𝛼/2,𝑣

𝑆𝑦/𝑥

 𝑆𝑥𝑥
 

(B. 3) 

 

where the standard error of the y-data about the curve fit is 
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𝑆𝑦/𝑥 = (

1

𝑛 − 2
∑[𝑦𝑖 − 𝑦(𝑥𝑖)]

2

𝑛

𝑖=1

) 
(B. 4) 

 

and the total squared variation of the independent variable, 𝑥𝑖, is 

 
𝑆𝑥𝑥
2 = ∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 
(B. 5) 

 

Finally, the true intercept lies within the interval 

 

𝑎 ± 𝑡𝛼/2,𝑣𝑆𝑦/𝑥√
1

𝑛
+ 

𝑥2̅̅ ̅

𝑆𝑥𝑥2
 

(B. 6) 

 

 

Confidence intervals of the rotordynamic coefficients are propagated into the confidence 

intervals on the WFR, 𝐾𝑒𝑓𝑓 and   values. Uncertainty propagation is defined as” 

 

𝑢𝑦 = √(
𝜕𝑦

𝜕𝑥1
𝑢1)

2

+ (
𝜕𝑦

𝜕𝑥2
𝑢2)

2

+⋯+ (
𝜕𝑦

𝜕𝑥𝑛
𝑢𝑛)

2

  

(B. 7) 

 

 

 


