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ABSTRACT 

 

As offshore energy and other development extend to deeper waters, conventional 

platforms are increasingly being replaced by floating facilities. Also, up to 60% of wind 

power development is anticipated to be in deeper waters that require floating platforms 

moored to the seabed by anchors. Seabed soils at sites often contain sandy soil strata; 

therefore, practical development of offshore wind power requires anchor systems that are 

suitable for deployment in sands, such as piles, suction caissons and direct embedment 

plate anchors. Of these options, plate anchors are particularly attractive due to their 

compact size, light weight, variety of installation techniques, and highly efficient and 

suitable for a wide range of soil conditions. However, more reliable predictive models for 

plate anchor performance in cohesionless soils are needed for mooring systems to be 

securely designed.  

The limited research focus on plate anchor performance in cohesionless soil, 

particularly for deep embedment, has triggered a strong motivation for this research. 

Therefore, extensive small and large deformation finite element simulations were 

conducted to study the effects of anchor embedment depth, with special emphasis on 

characterizing the transition in the anchor behavior from a shallow to a deep failure, 

considering elastic soil behavior (in terms of Rigidity Index Ir) in evaluating anchor 

performance. Additionally, there is a significant gap in knowledge concerning the keying 

behavior of direct embedment plate anchors in sand after installation, and the 

corresponding irrecoverable loss of embedment. Finally, most previous plate anchors 
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research have focused on either horizontal or vertical anchor orientations while the effect 

of inclined orientations has received limited attention.  

The predictions showed that at shallow anchor embedment depths, rigidity index 

Ir has negligible influence on anchor capacity while the performance of deeply embedded 

anchors is strongly influenced by rigidity index Ir. This study developed an empirical 

model for predicting anchor pullout capacity as function Nq (Dr, ' , z/D), describing the 

transition in the breakout factor Nq from the shallow mode to its maximum value Nqmax. In 

regard to the keying process behavior, the large deformation finite element analyses 

showed that the angle of orientation α at which the maximum pullout capacity occurs 

increases with increasing e/B ratio, ranging between 75º and 85º. Also, the predictions 

revealed that as the loading eccentricity ratio e/B increases, the loss in anchor embedment 

δz/B during rotation decreases. However, once the eccentricity e ≥ B, a minimal loss in 

anchor embedment can be achieved regardless of the plate thickness. A linear relationship 

was observed between the maximum loss in anchor embedment and anchor pullout angle 

θ at any e/B ratio. In regard to the pullout capacities of inclined plate anchors in 

cohesionless soil. An empirical equation was proposed to estimate the breakout factor of 

an inclined anchor at any inclination angle 𝜃 between 0º and 90º. Also, the observations 

showed a significant sensitivity of the breakout factor Nq to the plate width B.  
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CHAPTER I  

INTRODUCTION  

 

1.1 Background 

Soil anchors are primarily designed and constructed to serve as a foundation 

system for resisting uplift and lateral forces in onshore and offshore applications. In 

onshore applications, plate anchors are made from steel plate, precast concrete slabs, 

poured concrete slabs, or timber sheets. They are installed by excavating the ground to the 

desired depth and then using good-quality soil for backfilling and compacting (Das, 1990). 

Plate anchors subjected to uplift and lateral forces can be found in many geotechnical 

onshore applications such as transmission towers, tunnels, submerged pipelines, aircraft 

moorings, and the tieback resistance of earth retention structures, as well as in the 

underpinnings of settling structures.  

Generally, anchors in offshore applications (see Figure 1.1) serve to secure 

moorings in a fixed position on the seabed. Floating structures are often the system of 

choice in offshore energy development. For instance, in oil and gas applications in water 

depths greater than 500 m, conventional platforms are generally replaced by floating 

facilities (Song et al., 2009). Offshore wind energy is in an early stage of development, 

and promising as an economical and clean energy solution. Currently, offshore wind 

development is largely taking place in shallow water depths, where fixed supporting 

structures are feasible. However, most wind power development is anticipated to be 

located in deeper waters, at depths greater than 40 m; this would require floating platforms
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moored to the seabed by anchors. Seabed soils at these sites often contain sandy soil strata. 

Therefore, practical development of offshore wind power requires anchor systems that are 

suitable for deployment in sand.  Anchors in offshore applications are available in many 

types, depending on how they obtain the ability to maintain their position.  The oil - gas 

and renewable energy industries have regularly moored different sizes of floating 

facilities, anchoring them to the seabed by a variety of anchor alternatives, including piles, 

suction caissons, dynamically installed anchors, drag embedded anchors, and an 

assortment of direct embedment plate anchors, as shown in Figure 1.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Future floating wind turbine technology 

(Laurie Carol, NREL 2017).  

(b)   Offshore production facilities (courtesy of 

Mineral Management Services). 

(c)   Pelamis wave energy converter (courtesy of 

Sounds & Sea Technology). 

(d)   Helical plate anchor (for underwater pipelines).  

http://www.macleandixie.com/  

Figure 1.1 Offshore applications. 

 



 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Driven piles (courtesy of JD Murff). (b)  Typical drag anchor (courtesy of 
Sounds & Sea Technology). 

(c) Suction caisson 

(courtesy of E Clukey). 

(d) Dead weight anchors (courtesy of C. 

Aubeny). 
(e) Vertically-loaded anchor (courtesy of 

C. Aubeny).  

(f)  Suction-embedded plate anchor (courtesy R Wilde, Intermoor). 
(g)  Dynamically-embedded 
plate anchor (O’ Loughlin et 

al., 2014). 

(h) Pile-driven PDPA (NAVFAC, 2011). (i) Helical anchor (courtesy of 
MacLean Dixie HFS). 

Figure 1.2 Offshore anchors. 

 

Figure 1.3 Plate anchor 

efficiency (Aubeny, 

2016).Figure 1.4 Offshore 

anchors. 
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Over the last five decades, various types of anchors have been developed to meet 

the growing needs of anchorage systems in floating facilities for oil and gas and wind 

energy structures. In the last thirty years, embedded plate anchors have served as a 

practical and efficient option for mooring such floating facilities (see Figures 1.2f to 1.2k), 

due to their: 

• Compact size,

• Low weight,

• Variety of installation techniques,

• Suitability for a wide range of soil conditions, and

• High efficiency (i.e., the holding capacity-to-dry-weight ratio of the plate).

Figure 1.3 shows the high level of efficiency offered by the plate anchor 

option for certain anchor geometries and soil profiles, as compared to the 

caisson option. 

All contribute to greatly reduced costs in terms of manufacture, transport, and installation. 

Although direct embedment anchor installation is typically more costly than drag 

installation, it permits relatively precise positioning both vertically and horizontally. 

Additionally, deep embedment is possible in sandy and stratified soil profiles in which 

deep penetration is not possible by drag embedment (Aubeny, 2017). Figure 1.4 shows the 

main geometric shapes of plate anchors investigated in the present research. 
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1.2 Installation of Offshore Plate Anchors 

Directly embedded plate anchors can be installed through a variety of means, as 

outlined below. 

Figure 1.3 Plate anchor efficiency (Aubeny, 2016). 
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Qu = qu A 

B 
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Figure 1.4 Different geometric shapes of plate anchors. 
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1.2.1 Suction Embedded Plate Anchors (SEPLA) 

Suction-embedded plate anchors (SEPLAs) comprise one alternative approach that 

can be used to embed a plate anchor at a target depth. This is accomplished by locating a 

vertical plate at the base of a suction caisson (see Figure 1.2f). A SEPLA is primarily 

intended for use in soft clay (Aubeny, 2017). This installation technique offers the 

advantages of known location and embedment depth, and avoids the issue of interference 

with other seabed infrastructure (Barron, 2014). The installation and keying processes are 

summarized schematically in Figure 1.5. A SEPLA undergoes the following main steps 

during its installation. 

Step 1: Suction self-weight penetration  

The plate anchor is inserted vertically into the base of the suction caisson and 

lowered to the seabed. Then, the suction caisson penetrates the seabed under its own 

weight, until the end-bearing and skin friction resistances equal the caisson’s weight.  

Step 2: Suction caisson penetration 

Closing the vent valve on the top of the caisson causes differential pressure that is 

created by pumping water from the interior of the caisson. This generates the driving force 

necessary to overcome the frictional resistance along the caisson wall, until the caisson is 

fully embedded and the plate anchor reaches its target depth.  

Step 3: Suction caisson retraction 

The plate anchor is released and the water is pumped back into the interior of the 

caisson, causing upward movement of the suction caisson and leaving the plate anchor 
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embedded in the seabed at a vertical orientation. When the bottom of the suction caisson 

reaches the seabed, the caisson is retrieved and prepared for use in the next installation. 

Step 4: Plate anchor keying and steady pullout 

In this step, the connected anchor chain is tensioned in the design direction of the 

applied loading. As the chain cuts into the soil, the plate anchor rotates or “keys” into its 

target orientation. Unrecoverable embedment loss occurs during the plate anchor’s keying 

process. Afterwards, the plate anchor is approximately perpendicular to the direction of 

loading at the anchor’s pad eye, such that the ultimate capacity is mobilized when the 

maximum projected area is presented to the direction of loading. 

Seabed 

1 

 2  3  4 

Figure 1.5 Suction-embedded plate anchor concept. 

Figure 1.8 Suction-embedded plate anchor concept.
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1.2.2 Pile Driven Plate Anchors (PDPA) 

Conventional pile driving, rather than the suction caisson technique, can be used 

to drive the plate anchor vertically to the required depth and then key or rotate it to an 

orientation approximately perpendicular to the direction of the applied mooring line load 

(see Figure 1.2h). This is a common approach used by the US Navy when installing plate 

anchors. In this process, the plate anchor is attached to the tip of a pile, termed a 

“follower,” which can be installed by hammer driving, vibration, or jetting. Then the pile 

is extracted for the next installation (Aubeny, 2017). Pile driven plate anchors (PDPAs) 

can be installed in a wide range of soil profiles, including soft and over-consolidated clays 

and all types of sand (Forrest et al., 1995). The type of hammer depends on the soil type 

and anchoring requirements. Impact or hammer equipment is used in stiff clays and dense 

sands; vibratory hammers may be considered for loose sands soil and soft mud. Jetting 

may be used to assist penetration into dense sand when vibratory hammers are used 

(NAVFAC, 2012). PDPAs have no particular limitations with regards to installation 

depths in either sand, clay, or stratified soil profiles.  

1.2.3 Dynamically Embedded Plate Anchors (DEPLA) 

The most recently developed plate anchor installation technique is dynamic-

embedded plate anchors (DEPLAs). A DEPLA consists of a rocket-shaped anchor 

comprised of a removable central shaft named a “follower,” and a set of four flukes (see 

Figure 1.2g). This new, dynamically installed anchor combines the installation benefits of 

other dynamically installed anchors with the capacity benefit of plate anchors (O’Loughlin 

et al., 2013). Dynamically embedded plate anchors penetrate the seabed to a target depth 
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via the kinetic energy obtained through a freefall in the water. The follower is retrieved 

after the anchor penetrates to the required depth, and then re-used for the next installation, 

leaving the anchor flukes vertically embedded in the seabed. Then, the anchor flukes rotate 

or “key” into the target orientation (see Figure 1.2g). This technique is economically 

attractive due to the advantage of relatively quick and easy installation. However, their 

capacity-to-weight ratio is low, meaning that they need to be very large to provide the 

required anchor capacity. Both the experimental and numerical investigations performed 

by O’Loughlin et al. (2013) demonstrate that the capacity of a DEPLA is much higher 

than that of other dynamically installed anchors with capacities up to 40 times the dry 

weight of the plate and a plate-bearing capacity factor of about 15. 

1.2.4 Helical Anchors  

In the energy industry, helical anchors have received relatively little attention with 

regards to offshore floating structures, although they have long been in use for anchoring 

vessels and submarine pipelines. They offer the advantage of relatively rapid, easy, and 

inexpensive installation, and are composed of one or more helical plates fixed to a central 

shaft (see Figure 1.2k). Helical anchors are installed in both sand and clay by applying 

torque and axial force to the shaft using hydraulic torque motors that are transmitted to the 

helical plate (Aubeny, 2017). Due to the pitch of the helical plate, these elements produce 

no spoils and create minimal disturbance in the area surrounding the anchor installation 

(Young, 2012).   

All of the abovementioned methods of installation are effective in normally 

consolidated clay profiles. In contrast, only limited installation depths are possible through 
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suction or dynamic installation in sand, stiff clay, and stratified soil profiles. PDPAs and 

helical anchors have no particular limitations with regards to installation depths in either 

sand, clay, or stratified soil profiles. The plate anchors in all of the above-mentioned 

techniques except helical anchors are installed vertically and then reoriented to achieve a 

large projected area to maximize ultimate uplift anchor capacity. However, these anchors 

attached to floating structures by using two major types of mooring systems, i.e. catenary 

or taut-wire moorings system as shown in Figure 1.6. The main difference between taut 

and catenary moorings for the geotechnical anchor system is the angle at which the 

mooring enters the seafloor (Randolph and Gourvenec, 2011). It is noted that even 

catenary mooring lines, which are horizontal at the seabed, are inclined (by about 15° from 

horizontal) due to the curvature in the reverse catenary (Figure 1.6a). In taut or semi-taut 

systems (Figure 1.6b), the inclination angle is substantially larger and arrives an angle up 

to 50° relative to the horizontal at the seabed, and the anchor has to resist horizontal and 

vertical forces.  Additionally, tension-leg platforms are usually anchored with vertical 

moorings that arrive at an angle close to 90° and will result in mainly vertical forces. The 

steeper the angle between mudline and floating platform is, the shorter and lighter the 

anchor line will be (Randolph and Gourvenec, 2011).   
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1.3 Research Objectives  

Cohesionless soil strata are common in nearshore deposits. Such a condition is 

particularly relevant to floating renewable energy systems, which are often situated 

relatively close to shore. Therefore, practical development of offshore wind power 

requires anchor systems suitable for deployment in sand, such as piles, caissons, and direct 

embedment plate anchors. The present study investigates the performance of directly-

embedded plate anchors in sand, from an offshore rather than onshore point of view. A 

primary measure of anchor performance is its pullout capacity, which increases as the 

embedment depth grows due to improved soil strength and the diminishing effect of the 

free surface. However, irrespective of the plate anchor installation method, reliable 

prediction of anchor pullout capacity is required. To achieve a reliable assessment of the 

pullout capacity of plate anchors in cohesionless soil, the following main points must be 

considered. 

 

(a) Catenary system 

 

(b) Taut-leg system 

Figure 1.6 Mooring Systems 

http://www.dredgingengineering.com. 

 

Figure 1.9 Mooring Systems 

http://www.dredgingengineering.com. 
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 1.3.1 The Effects of Anchor Embedment Depth 

Most previous studies on embedded plate anchor capacity problems in sand have 

covered relatively shallow anchor embedment ranges (approximately 8 to 10 plate widths 

or diameters), which is insufficiently deep to characterize the transition of the anchor 

behavior from shallow to deep embedment. The main objectives of this part of the research 

are to: 

❑ Improve the general understanding of deep plate anchor behavior in sand, with a 

focus on describing the transition from shallow to deep failure mechanisms; and 

❑ Identify the need for considering elastic soil behavior (in terms of the rigidity 

index, Ir) in evaluating anchor performance, especially for deep anchors. 

1.3.2 Effects of the Plate Keying Process 

Irrespective of the plate anchor installation method except helical anchor, an 

embedded plate anchor always has a vertical orientation after penetration of the seabed to 

the required depth. Installation usually involves a “keying” process, where the anchor 

rotates to an orientation that is nearly perpendicular to the direction of the mooring line 

load. During keying, the anchor moves both horizontally and vertically as it rotates to its 

target orientation. The upward vertical displacement is of particular concern, since a loss 

of anchor embedment leads to a reduction in pullout capacity. Very limited experimental 

data are available for plate anchor keying in sand, and to the author’s knowledge, no 

analytical or numerical studies have been performed. However, the primary objective of 

this section of the research focuses on a significant gap in numerical knowledge 

concerning the keying behavior of direct embedment plate anchors in sand. 
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1.3.3 Effects of Anchor Inclination/Load Angle 

The majority of the reported experimental, analytical, and numerical studies have 

been concerned with evaluating the pullout resistance of either horizontal or vertical plate 

anchors. The mooring systems of offshore floating structures usually involve inclined load 

orientations, where the plate anchor does not have a horizontal orientation. For shallowly 

embedded anchors, where free surface effects are dominant, plate orientation is likely to 

be particularly important. In this part of the research, the effects of anchor inclination will 

receive considerable attention. 

 1.4 Dissertation Structure  

The dissertation is divided into seven chapters. The content of each chapter is 

described below. 

Chapter 2 provides an overview of main previous theoretical/numerical and 

experimental studies relevant to the pullout capacity of plate anchors embedded in sand. 

The anchor keying process and post-anchor pullout capacity are also summarized. 

Installation aspects of the problem are not addressed.   

Chapter 3 provides details regarding the following points: 

• Description of the Mohr Coulomb yielding criterion, plastic flow rule, and 

significance of dilatancy in plate anchor performance;  

• Numerical techniques used in this research to handle the issue of excessive 

distortion of the finite element mesh where large deformations are required to 

mobilize the pullout capacity, especially for deeply embedded plate anchors; and  

• Soil anchor interface modeling and the collapse criterion adopted in this research 
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Chapter 4 presents a parametric finite element study of the pullout capacity of 

circular, horizontally oriented anchors in sand subjected to centric loading, using 

conventional small strain and large deformation finite element (i.e., Arbitrary Lagrangian 

Eulerian) analyses to characterize the transition of the anchor behavior from a shallow to 

deep failure mechanism, depending on the soil properties friction angle ', dilation angle 

ψ and rigidity index Ir. Also, this part of the research investigates the influence of elastic 

behavior (in terms of the rigidity index Ir) of the soil on the pullout capacity of deeply 

embedded plate anchors. 

Chapter 5 focuses on a numerical investigation of the behavior of vertically installed 

strip plate anchors during rotation and prediction of the irrecoverable loss of embedment 

that accompanies that rotation, since such loss can lead to significant reductions in the 

uplift capacity of plate anchors. Therefore, the keying process of plate anchors embedded 

in uniform sand was simulated using the large deformation finite element analysis made 

possible by the RITSS technique. 

Chapter 6 presents a finite element study investigating the pullout capacity of strip 

plate anchors in sand at various embedment depths and with inclination angles ranging 

from 0o to 90o, where the pullout direction is centrically perpendicular to the anchor plate 

face. Parametric finite element analyses are used to introduce simple design charts relating 

the breakout capacity to the embedment depth and relative density.  

Chapter 7 presents the conclusions and recommendations for further work related to 

this research. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

A number of previous investigations have been performed to predict the pullout 

capacity of horizontally and vertically embedded plate anchors in sand, including 

conventional small-scale laboratory models, centrifuge modeling, limit equilibrium 

analysis, upper and lower bound limit analysis, and elasto-plastic finite element analyses. 

The performance of embedded plate anchors in clay have received unlimited coverage in 

the research literature while attention to plate anchors in sand has been relatively limited, 

particularly for deeply embedded plates. This chapter presents a brief overview of the main 

published theoretical, numerical, and experimental research into quantifying of uplift plate 

anchor capacities in sand, and the anchor keying behavior and post- pullout anchor 

capacity in sand and clay, estimating the loss of anchor embedment during keying process. 

2.2 Uplift Plate Anchor Capacity 

The resistance of soil to compression is reasonably well understood while the 

resistance to uplift is uncertain and there are a number of competing theories reported in 

the literature (Meyerhof and Adams, 1968). An accurate prediction of the pullout capacity 

of plate anchor is important for an economical design and stability of the supported 

structure.  Since early of 1960s’, a number of previous studies have been performed to 

determine the uplift capacity of embedded plates anchors in cohesionless soil. The 



 

16 

 

following sections provide a summary of studies into uplift plate anchor capacities in sand, 

which is divided into analytical, numerical, and experimental investigations. 

2.2.1 Limit Equilibrium Analysis 

  Several theories have been developed based on limit equilibrium approach to 

predict the breakout capacity of shallow horizontal plate anchors embedded in different 

types of soil. The limit equilibrium solution is guided by the deformation mechanisms 

observed in model tests (Cheuk et al., 2007). This approach assumes a failure surface 

condition and then the forces acting on that surface are determined. Therefore, the 

breakout capacity is determined by considering the weight of soil within the failure zone 

and the friction developed along the failure surface. The limit equilibrium approach 

assumes that the sliding block at the ultimate load inclined at an angle α to the vertical. 

The greater the angle α, the more soil to be displaced during pullout, thereby increasing 

the pullout capacity. Also, a reasonable estimate of lateral earth pressures is needed to 

quantify the friction forces that acting on the failure surface, therefore contribute to 

possible increase in pullout capacity. Thus, the shape of the failure zone and the lateral 

earth pressure estimates were the two main assumptions among the limit equilibrium 

models that proposed by different researchers. This section presents some limit 

equilibrium models for the pullout resistance of plate anchors embedded in sand. 

Generally, for shallow embedment depths, the commonly observed and assumed failure 

slip surfaces appearing in the literature are shown in Figure 2.1. Some early theories were 

presented to predict the uplift resistance for embedded circular plate anchors. For all the 

three failure modes shown in the figure, the failure slip surface at ultimate load starts from 
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the corner of the plate anchor and extend to the free surface. A critical feature of the failure 

mode is the angle β (Figure 2.1) at which the failure surface intersects the ground surface. 

For loose sand and soft clay, β may equals 90º while for dense sand and stiff clay β may 

be close to 45 – /2, where  is the friction angle of soil (Das, 1990) and that observed by 

Dickin (1988) as well. 

 

 

 

 

 

 

 

 

However, for relatively deep anchors conditions at ultimate load, local shear failure will 

be localized around the plate and does not extend to the ground surface. The gross uplift 

resistance for the given plate anchor in Figure 2.1 can be defined as: 

( )u gross u AnchorQ Q W= +                              (2.1) 

where Qu is net uplift anchor capacity, while AnchorW  is effective self-weight of the anchor. 

The net uplift resistance Qu is a combination of the effective soil weight over the plate 

anchor and shearing resistance mobilized with a defined failure surface. The first type of 

failure modes (Figure 2.1a, as indicated by Das 1990) was first proposed by Majer (1955) 

β = 45º - φ/2 

γH 

β = 45º - φ/2 

𝑄𝑢  

(c) 

𝑄𝑢  

α 

(b) 

𝑄𝑢  

B 

H
 

(a) 

γz 

z

Figure 2.1 Three different failure modes of shallow embedded plate anchors in sand: 

(a) frictional cylinder; (b) truncated cone; (c) circular failure surface. 



 

18 

 

to estimate the uplift resistance of shallowly embedded circular plate anchors. He assumed 

a cylindrical failure surface having a diameter equal to the anchor diameter to predict the 

uplift capacity. For frictional soils, Qu is the summation of the weight of the soil mass 

inside the failure cylindrical surface plus the frictional resistance mobilized along the 

failure surface. 

2

0

( )
4

H

u o z

B
Q V H tan d   = = +         (2.2) 

where V is the volume of the soil mass in the truncated cone, γ is the unit weight of soil, 

H is the embedment depth of anchor, 
o  is the effective stress at a depth z measured from 

the ground surface ['o = (πB)(γz)] (Figure 2.1a), and  is the soil friction angle.  

Simplifying and integration of Eq. 2.2 gives Eq. 2.3  

2 2

( )
4 2

u

B H
Q H B tan  = +        (2.3) 

When assuming this type of failure mode, the uplift capacity tends to be underestimated 

because the failure mass mobilized by an anchor is normally larger than the cylinder above 

the anchor. (Ilamparuthy et al. 2002). Mors (1959) proposed the second type of failure 

mode at ultimate uplift load Figure 2.1b. He proposed that the failure surface may be 

approximated as a truncated cone having an apex angle of β = 45º -  /2. The net uplift 

resistance Qu is calculated to be only the weight of soil mass inside the failure surface. 

The shearing resistance mobilized along the failure surface has been neglected as obvious 

in Eq. 2.4.  
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2 2 23 4 (45 ) 6 (45 )
3 2 2

u

H
Q V B H cot HBcot

 
 

 
= = + + − + − 

 
                                (2.4) 

A similar theory was proposed by Downs and Chieurzzi (1966) but they proposed that the 

apex angle β equals to 60º. Therefore, the net uplift capacity Qu becomes as in Eq. 2.5. 

 
3

2 23 1.33 3.46
3

u

H
Q B H H= + +        (2.5) 

The Mors method is usually too conservative for shallow anchors because it ignores the 

frictional force along the failure surface. However, it overestimates the pullout capacity 

for deep anchors where the failure surface normally does not extend to the ground surface 

and will be smaller than the assumed truncated cone (Liu et al. 2012). 

A more complicated failure surface (Figure 2.1c) or Figure 2.2 was first observed by Balla 

(1961), based on several model field test results in dense sand for shallow circular anchors, 

and Baker and Kondner (1966). The failure surface in this type is a circular that extends 

from the edge of the plate and intersects the free surface at an angle of approximately 45º 

-  /2. The radius of the circle aaʹ equals to: 

sin(45 )
2

H
r


=

+

         (2.6) 

The net uplift capacity Qu of an anchor embedded at shallow depth is the sum of the weight 

of mobilized soil within the failure zone plus the shearing resistance developed along the 

failure surface and can take the following expression: 

3

1 3( , ) ( , )u

H H
Q H F F

D D
  

 
= + 

 
       (2.7) 
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where 3

1 3 / ( )uF F Q H + =  ; 1 3( , ) ( , )
H H

F F
D D

 +   are non-dimensional factors that can be 

determined using Figure 2.3. 

 

 

 

 

 

 

 

 

 Das (1990) indicated that Balla's theory is in good agreement for anchors 

embedded in dense sand at an embedment ratio of H/D ≤ 5. However, for anchors located 

in loose to medium sand and with embedment ratio H/D > 5, Balla's theory overestimates 

the net ultimate uplift capacity Qu. The main reason that the theory is overestimates Qu for 

H/D > about 5, even in dense sand, is that it is essentially a deeply embedded anchor and 

the failure surface does not extend to the soil surface. Based on the experiments that 

performed by Baker and Kondner (1966) on circular plate anchors embedded in Ottawa 

dense sand ( = 42º), they observed the distinct circular failure surface that was observed 

by Balla (1961) for H/D < 6, while the failure surface was different for H/D > 6. They 

concluded that the analysis of Balla (1961) could be used for anchors of H/D < 6. 

Several studies developed limit equilibrium models for shallowly embedded, 

horizontal strip and circular anchors based on observed failure mechanisms from small 

aʹ a 

β = 45º - φ/2 

𝑄𝑢  

𝑊 

B 

H
 

r 

β = 45º + φ/2 

Figure 2.2 Circular arc failure surface (after Bella, 1961). 

 

 

 

Figure 2.2 Circular arc failure surface (after Bella, 1961). 
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scale tests. The following paragraphs summarize the main proposed models by several 

researchers to predict the vertical uplift capacity of square, rectangular, circular and strip 

plate anchors in dry sand. It would appear that the lack of agreement on uplift-capacity 

theory lies in the difficulty of predicting the geometry of the failure zone (Meyerhof and 

Adams, 1968). 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1.1 Meyerhof and Adams  

An approximate general theory of uplift resistance in soil has been developed by 

Meyerhof and Adams, 1968, which is based on the observations and test data presented 

by a series of model uplift tests in sand (loose and dense) and clay for strip and rectangular 

anchors. The study has considered the ultimate uplift capacity of soils under centric 

Figure 2.3 Variation of F1 + F3 based on Balla's theory (1961). 
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Soil friction angle  
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CF 

Pp 

δ 

C 

F 

φ 

𝑄𝑢  

𝑊 

B 

D 

D 

Hcr 

Pp = Total passive earth pressure  
δ = φ/2 to 3φ/4 
q = Surcharge  

Hcr = Critical depth  

 

(a) Shallow depth (b) Great depth 

q 

Figure 2.4 Failure of soil above a strip plate anchor under uplift loading 

based on Meyerhof and Adams (1968). 

vertical loading relative to the plane of the plate. They found that the uplift resistance is a 

combination of the soil weight over the foundation and soil shearing resistance mobilized 

with a defined failure surface. The failure slip surface varies in shape and extent depending 

on the embedment depth/width ratio, and the rigidity or soil relative density. The theory 

is derived for a strip and is then modified for circular and rectangular footings and also for 

group action. A theoretical shape factors are applied to the general expression to account 

for the three- dimensional effect of individual square or circular footings. The theory is 

simplified by considering the forces acting on a cylindrical surface above the plate anchor. 

Also, the actual failure surfaces are simplified because of the complex form of the failure 

surfaces. Figure 2.4 shows the two distinct failure modes depending on the embedment 

depth, namely shallow and deep embedment. 
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In bearing-capacity theory the stresses are distributed below the footing in a 

continuous medium which is assumed to be homogeneous and isotropic: consequently, the 

geometry of the failure zone is predictable, and consistent with conventional soil 

mechanics theory. In uplift capacity the stresses are distributed above the footing, and their 

distribution appears to be uniquely influenced by the surface boundary (Meyerhof and 

Adams, 1968). In loose sands the increase in uplift capacity with depth is approximately 

linear and much less than that in dense sand (Meyerhof and Adams, 1968). 

2.2.1.1.1 Strip anchor 

(a) Shallow embedment 

As can be noticed from Figure 2.4, at the net ultimate uplift load Qu, the failure surface 

is curved and extends from the corner of the anchor to the free surface. Unit shearing 

resistance 𝑡𝑓 along the failure slip surface includes mobilized a cohesive force fC and 

friction force 𝐹 can be expressed as: 

tanft c  = +          (2.8) 

where c is unit cohesion, σ is normal stress, and  is the angle of shearing resistance. Form 

equilibrium, the  

2 cos 2 cosu fQ C F W = + +        (2.9) 

W is the total weight of lifted soil mass plus plate anchor, 𝛼 and 𝛽 are average inclination 

with vertical of forces fC  and F respectively. Meyerhof and Adams, 1968 assumed that 

in the absence of a rigorous solution for the stress on the curved pyramidal failure surface, 

uQ can be expressed by: 
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2 2 sinu pQ C P W= + +         (2.10) 

where C = cD = cohesion along vertical plane through footing edge and Pp is the total 

passive earth pressure inclined at average angle 𝛿 acting downward on vertical plane 

through footing edge. Normal component of total passive earth pressure Pp can be 

expressed by:  

2cos ( / 2)p pP D K =          (2.11) 

where Kp coefficient of passive earth pressure. Substituting Kp into Eq. 2.10 

22u pvQ cD D K W= + +          (2.12) 

where Kpv = Kp tan Test results on model strip plate anchor indicate that, for sands, the 

average angle of the failure surface with the vertical varies between about  /3 and 2 /3. 

For an average value of about  / 2 for this angle, trial calculations have shown that 𝛿 is 

approximately 2 /3. From the corresponding passive earth pressure coefficients Kp, based 

on curved failure surfaces (Caquot and Kerisel 1949), the vertical component Kpv 

governing the uplift resistance has been evaluated and is shown in Figure 2.5. It is of 

interest to note that for a given value of  the value of Kpv is not very sensitive to changes 

of 𝛿 in the range of about  /2 and 3 /4, and the corresponding theoretical failure surface 

has roughly the observed shape. 

For convenience of the analysis and comparison with test results the value of Kpv, may be 

expressed by: 

tanpv uK K =          (2.13) 
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where Ku  is nominal uplift coefficient of earth pressure on vertical plane through plate 

anchor edge. Thus Eq. 2.12 becomes 

22 tanu uQ cD D K W = + +          (2.14) 

For sands c = 0, thus Eq. 2.12 will be: 

2 tanu uQ D K W = +         (2.15)       

The corresponding theoretical values of Ku, are shown in Figure 2.5 and are found to vary 

from about 0.7 to nearly 1.  

 

 

 

 

 

 

 

 

 

 

 

(b) Deep embedment 

For deeper plate anchors, the failure surface in Figure 2.4 does not extend to the ground 

surface. The extent of this local shear failure may be incorporated in the analysis by 

limiting the vertical extent H of the failure surface and using the surcharge pressure 𝑞 

Figure 2.5 Theoretical uplift coefficients of earth pressure for strip 

footing (after Meyerhof and Adams, 1968). 
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above the level of the failure surface is q = γ(D – H). Accordingly, Eq. 2.15 may be 

modified for great plate anchor depths in sand and written as in Eq. 2.16. 

(2 ) tanu uQ H D H K W = − +        (2.16) 

The magnitude of H can be determined from the observed extent of the failure surface and 

an analyses of test results is given in Table 2.1. 

 

Table 2.1 The value of H/B from test results (after Meyerhof and Adams, 1968). 

 

2.2.1.1.2 Circular anchor: 

The analysis for strip plate anchor can be modified to circular plate anchor by 

determining the shearing resistance from cohesion and passive earth pressure inclined at 

𝛿 on a vertical cylindrical surface through the plate edge (Figure 2.4). Thus, for shallow 

anchor depths (D ≤ H), Eqs. 2.10 and 2.14 become: 

sinu pQ BC s BP W  = + +          (2.17) 

or 

2( / 2) tanu uQ cBD s BD K W   = + +        (2.18) 

where s = shape factor governing the passive earth pressure on a convex cylindrical wall. 

Similarly, for great depths (D > H), Eq. 2.18 becomes: 

( / 2) (2 ) tanu uQ cBH s BH D H K W   = + − +       (2.19) 

Test results on model circular plate anchor reviewed below have shown that for sands the 

average angle of the failure surface with the vertical varies between about  /4 and  /2. 

For an average value of about  /3, the angle 𝛿 is approximately 2 /3 and the 

Friction Angle   (º) 20 25 30 35 40 45 48 

Depth H/B 2.5 3 4 5 7 9 11 
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corresponding values of the shape factor s can be estimated from approximate earth 

pressure theories based on plane failure surfaces (Berezantzev 1952 and MacKay 1986). 

For shallow embedment depths the theoretical results are approximately represented by: 

1 /s mD B= +           (2.20) 

where s has a maximum value 

1 /s mH B= +           (2.21) 

and H/B is given in Table 2.1 and the coefficient 𝑚 has the values given in Table 2.2 The 

corresponding earth pressure coefficients, designated as sKu are shown in Figure 2.6 for 

circular plate anchors at shallow and great depths in sands.  

 

Table 2.2 Values of shape factor s and coefficient m against friction angle. (after 

Meyerhof and Adams, 1968). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Friction Angle  (º) 20 25 30 35 40 45 48 

Coefficient 𝑚 0.05 0.1 0.15 0.25 0.35 0.5 0.6 

Max factor 𝑠 1.12 1.30 1.60 2.25 3.45 5.50 7.60 

Figure 2.6 Comparison of theory and model tests for plate anchors in sands (after 

Meyerhof and Adams, 1968). 
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2.2.1.1.3 Rectangular anchor: 

An approximate analysis for the ultimate uplift load of a rectangular footing of 

width B and length L can be obtained by assuming that the earth pressure along the 

perimeter of the two end portions of length B/2 is governed by the shape factor 𝑠 as for 

circular anchor, while the passive earth pressure along the central portion of length L– B 

is the same as for a strip footing. On this basis it can be shown that for shallow depths: 

2
2 ( ) (2 ) tan

u u
Q c B L D D sB L B K W = + + + − +       (2.22) 

For great depths the following equation applies: 

2 ( ) (2 )(2 ) tan
u u

Q cH B L H D H sB L B K W = + + − + − +       (2.23) 

For square footings B = L in the above expressions. 

Meyerhof (1973) developed the theory of Meyerhof and Adams (1968) to estimate 

the pullout capacity of shallow inclined strip plate anchors subjected to an axial pullout 

force (Figure 2.7) by using active and passive earth pressure theory. The following 

relationship was proposed by Meyerhof to estimate the breakout factor for inclined plate 

anchor at inclination angle 𝜃 between angles 0° and 90° for embedment depth ratios 

ranging from 1 to 10. (Das, 1990).  

2

2

1 1 1
1 1

2 2 / 2 /

c
b

c c

H
N K sin sin cos

B H B H B
   

    
    

   
+


= + +    (2.24) 

Kb is an uplift coefficient that is determined from the earth pressure coefficients for an 

inclined wall (Caquot and Kerisel 1949) as shown in Figure 2.8 for the values of  = 0°, 

45°, 75° and 90°, and 𝜃 is the inclination angle of plate anchor with respect to horizontal.  
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2.2.1.2 Murray and Geddes 1987 

Murray and Geddes (1987) developed a limit equilibrium model for the vertical 

uplift of shallow strip and circular anchors in dense and medium sand. Figure 2.9 

illustrates the failure mechanism considered for the limit equilibrium method. Figure 2.9 

shows that the failure surface starts vertical at the edge of the plate anchor and then curves 

as it reaches to the soil surface. The failure surface meets the vertical at an angle of  /2. 

The net ultimate uplift resistance is then determined by the weight of soil vertically above 

the plate (Wbd) added to twice the sum of the weight of soil contained in wedge abc (Ww) 

and the vertical component of the shearing resistance force (F). Murray and Geddes (1987) 

developed the following dimensionless form of the ultimate uplift resistance for strip and 

circular anchors: 

 

𝑄𝑢 

θ 

Hc H 

Ha 

Figure 2.7 Inclined shallow strip anchor 

plate. 

 

Figure 2.8 Variation of Meyerhof’s earth 

pressure coefficient 𝐾𝑏(after Das 1990) 

 

Kb 

Friction Angle   
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(a) Strip anchor  

tan tan
1

tan tan( )

w

w

P H

BH B

 

   

  
= +   

− −   
      (2.25) 

where  ≥ δw ≥ ( − α) ≥ 0. If the 𝛼 =  𝜃 is adopted and this requires a straight- line failure 

configuration, the analysis is simplified and  ≥  𝜃 ≥ 0. Thus, limits can be placed on the 

uplift capacity. 

1 1 tan
P H

BH B




 
  +  

 
        (2.26) 

The lower limit of the ultimate uplift resistance is obviously unrealistic and implies that it 

is equal to the weight of soil vertically above the plate. A practical approach would be to 

take an average value of  = = /2 and a mid-range value of δw = 3 /4. Therefore Eq. 

2.25 may be rewritten: 

1 sin sin
2

P H

BH B






   
= + +   

   
        (2.27) 

(b) Circular anchor  

The ultimate uplift resistance may be written in dimensionless form as:  

Kt q z 

Kt q z 

Ro F 

Plan of (b) 

F 

θ 
φ 

(φ-α) 

α 

a 

b c 

𝑊𝑤  

c b 

a 

𝑄𝑢  

𝑊𝑏𝑑  

B or D 

H
 

F 

φ 

(b) (a) (c) 

Figure 2.9 Definition of parameters in equilibrium analysis (after Murray and Geddes, 

1987). 

 

Figure 2.9 Definition of parameters in equilibrium analysis (after Murray and Geddes, 

1987). 
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 
tan tan2 2

1 1 tan tan( )
tan tan( ) 3

w
t

w

P H H
K

BH D D

 
  

   

    
= + + + −    − −    

   (2.28) 

where  ≥ δw ≥ ( − α) ≥ 0. If the 𝛼 =  𝜃 is adopted this requires a straight- line failure 

configuration, and the analysis is simplified and  ≥  𝜃 ≥ 0. Thus, limits can be placed on 

the uplift capacity. 

2 2
1 1 tan 1 tan

3

P H H

BH D D
 



   
  + +   

   
       (2.29) 

The lower limit of the ultimate uplift resistance is obviously unrealistic and implies that it 

is merely equal to the weight of soil vertically above the plate. A practical approach would 

be to adopt Eq. 2.28 and take an average value of 𝛼 =  𝜃 = /2 and a mid-range value of 

δw = 3 /4 as for strip anchor case. They assumed the lateral earth pressure coefficient Kt 

equals to at rest condition Ko = 1− sin to estimate the lateral earth pressure that acting 

along the failure surface at the ultimate load. Thus  

2
1 2 sin sin 1 tan (2 sin )

2 3 2

P H H

AH D D

 
 



     
= + + + −     

     
     (2.30) 

where P is the ultimate uplift resistance of circular anchor or ultimate uplift resistance per 

unit length of strip anchor, A is the plan area of circular anchor, B is the width strip anchor, 

D is the diameter of circular anchor, H is the depth of embedment,  is the angle of 

shearing resistance, γ is the unit weight of soil α is the angle made by the tangent to the 

vertical, and δw is the inclination of the resultant forces Ww and F to the horizontal in 

Figure 2.9a.  
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2.2.1.3 White et al., 2008 

A limit equilibrium solution was adopted by White et al., 2008 for the prediction 

of ultimate uplift resistance of pipe and horizontal plate anchor embedded in sand. This 

solution assumes that an inverted trapezoidal block (Figure 2.10) is lifted above the 

anchor. The shear planes on each side of the block are inclined at the angle of dilation ψ, 

which is consistent with experimental observation by Cheuk et al. (2007) and Lui et al, 

2012.  The uplift resistance is simply the weight of the lifted soil. Hence, from the area of 

the trapezium of soil above the plate anchor, the uplift resistance is given by Eq. 2.31, 

which is the upper limit of the ultimate uplift resistance for Murray and Geddes (1987) as 

in Eq. 2.26.    

1 tan p

P H

BBH




 
= +  

  
                                                                                             (2.31) 

 

 

 

 

 

 

 

 

The limit equilibrium approach has the advantage that normality can be neglected, and the 

assumed failure mechanism can be tuned to match experimental observations. The limit 

equilibrium solution adopted by White et al., 2008 assumes that shear planes on each side 

B  

𝑆 = න 𝜏𝑓 𝑑𝑠   

𝑊𝑤  
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𝑃 

ψ 
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𝜏𝑓 =  𝜎𝑛
′  𝑡𝑎𝑛 𝜑 

z z 

𝜏𝑓 =  𝜎𝑛
′  𝑡𝑎𝑛 𝜑 

𝑆 = න 𝜏𝑓 𝑑𝑠   

𝑊𝑤  

ψ 𝑃 
ψ 

H 

D 

Figure 2.10 Sliding block mechanism with shear planes at ψ with vertical for strip plate 

and pipe geometry (after White et al. 2008). 
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of the failure block are inclined at the angle of dilation ψ.  The uplift resistance was 

computed by considering the weight of soil within the trapezoidal failure zone and the 

shear resistance along the two inclined sliding planes. Determining of the weight of the 

mobilized soil block is straightforward while an assumption regarding the distribution of 

normal stress (and hence shear resistance) along the slip planes must be proposed. White 

et al., 2008 assumed that the normal stress on the sliding planes is equal to the values at 

Ko conditions using Mohr’s circle shown in Figure 2.11, implying that the normal stress 

on the failure surface does not change throughout deformation.  

An increase in vertical stress in the sliding planes is permitted, as shown by the larger 

Mohr’s circle representing the conditions at peak resistance. From the geometry of these 

two Mohr’s circles, the peak mobilized shear stress along the slip surface can be calculated 

as in Eq. 2.32.  

 

 

 

 

 

 

 

 

 

 

(1 (1
tan 2

)

2 2

)o o
f p p

K K
z cos   

+ − = − 
 

        (2.32) 

Figure 2.11 Assumed Mohr’s circles in situ and at peak uplift 
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By integrating 𝜏𝑓  in Eq. 2.32 above along the failure surface and equating the vertical 

forces acting on the sliding block, the peak uplift force per unit length, P, is calculated as: 

2 2 (1 (1
tan (tan tan

2

)
) 2

2

)o o
p p p p

K K
P HB H H cos      

+ −   = + −+ − 
 

 (2.33) 

Eq. 2.33 can be normalized to obtain a dimensionless breakout factor, Nγ, which is a 

function of the embedment depth H/B and an uplift factor Fps: 

1 ps

P H
N F

BBH




 
= = +  

  
         (2.34) 

(1 (1
tan (tan tan 2

2

) )

2
) o o

ps p p p p

K K
F cos   

+ − 
= −  −


+ 


    (2.35) 

The limit equilibrium solution includes three independent variables: (a) the peak friction 

angle  p (b) the peak dilation angle  p, and (c) the effective unit weight γ'. If we assume 

the normality condition ( p = p), Eq. 2.33 reduces to the simple upper-bound solution 

given by Eq. 2.31.  

 

2.2.1.4 Giampa 2014 and Giampa et al., 2017 

Giampa, 2014 proposed a new axisymmetric (as) model for helical anchors using 

non-associated flow limit equilibrium model adapted by White et al. (2008), which it is 

assumed that the sliding planes is inclined at an angle equal to the dilation angle ψ. 

Therefore, the weight of the soil wedge wW  plus the resistance along the failure surface 

will represent the breakout capacity of circular plate anchor. The weight of the truncated 

cone of the soil wedge is defined by Eq. 2.36. Giampa, 2017 also assumed (as White el., 

2008) that the normal stress on the sliding planes is equal to the values at oK conditions 
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and does not change during uplift loading. Consistent with the assumptions made by White 

et al., 2008, only frictional energy dissipation is considered on the failure surface. Thus 

the peak-mobilized shear stress (𝜏𝑓) can be determined by Eq. 2.37: 

2

21 1 1
tan tan

3 2 2 2
w p p

D
W H H D DH   

   = + + +  
   

                                          (2.36) 

( )1 (1
tan 2

2 2

)o o
f p p

K K
z cos   

+ −  = − 
 

      (2.37) 

Through integration of 𝜏𝑓 in Eq. 2.37 along the failure surface and equating the vertical 

forces acting on the sliding block, the peak uplift resistance, P, is defined as: 

2

2

2

1 1 1
tan tan

3 2 2 2

(1 (1 2
tan 2 tan tan

2 2 2 3

) )

p p

o o
p p p p

D
P H H H DH

K K D
H cos H H

   

     

   = + + + +  
   

+ −   − + −  
  

    (2.38) 

Normalized form of Eq. (2.38), Nγ, for circular plate anchor is expressed by Eq. 2.39 to be 

as a function of embedment ratio (D/B) and uplift factors (𝐹𝑎𝑠1, 𝐹𝑎𝑠2): 

2

1 21 as as

H H
N F F

B B


   
= + +   

   
       (2.39) 

1 12 tan (tan t )anas p p pF C   = + −
 

      (2.40) 

2 1

24
tan (tan tan ta

3
) nas p p p pF C     −+=

 
     (2.41) 

1

(1 (1
2

)

2

)

2

o o
p

K K
C cos 

+ − 
= − 

 
        (2.42) 

where; D is the anchor diameter, H is the embedment depth, 𝐹𝑎𝑠1and 𝐹𝑎𝑠2 are uplift factors, 

Ko is the coefficient of lateral earth pressure at-rest condition, γ' is the effective unit weight, 
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 p is the peak angle of dilation, and 'p  is the peak friction angle. Afterwards, Giampa et 

al., 2017 reassessed the constant C1 for axisymmetric (as) condition for circular plate 

anchor by interpreting previous analyses on strip plate anchors (ps) in a non-associated 

frictional soils NAF performed by several authors. Relevant conclusions from previously 

strip plate anchor analyses included the following: 

• Initial at rest earth pressure coefficient (Ko) has a minor effect on uplift resistance 

(Rowe and Davis 1982). 

• When  p = 0, Fps ≈ sin 'p, i.e., C1 = cos 'p  (Rowe and Davis 1982; Vermeer and 

Sutjiadi 1985; Koutsabeloulis and Griffiths 1989). 

• When  p = 'p, Fps ≈ tan 'p, i.e., C1 = 1 (Rowe and Davis 1982; Vermeer and 

Sutjiadi 1985; Murray and Geddes 1987; Smith 1998; Koutsabeloulis and Griffiths 

1989; White et al. 2008; Smith 2012). 

Based on the above review of the previous studies, Giampa et al., 2017 assumed that C1 

can be taken as: 

1 )( p pC cos  = −          (2.43) 

Thus, the friction coefficient equals (tan 'p − tan p), and the peak-mobilized shear stress 

(𝜏𝑓) can be defined by Eq. 2.44: 

1 )(tan tanf p pC z   − =         (2.44) 

Integrating Eq. 2.44 along the failure surface and combining with Eq. 2.36, the breakout 

factor for circular plate anchor can be simplified to: 

2

1 21 as as

H H
N F F

B B


   
= + +   

   
       (2.45) 
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1 12 tan (tan t )an 2as p psF C F   = − =


+


      (2.46) 

2

2 1

4 4
tan (tan tan tan ta

3
) n

3
as p psF C F     = − =+

 
    (2.47) 

where 𝐹𝑎𝑠1 and 𝐹𝑎𝑠2 are uplift factors for axisymmetric conditions and 𝐹𝑝𝑠 is the uplift 

factor for plane strain condition that obtained by White et al. (2008). As with the plane 

strain solution discussed by White et al. (2008), the combination of Eq. 2.45 with Eqs. 

2.46 and 2.47 become the upper bound (UB) solution when assuming associated flow 

material (AF). For the UB solution Fps = tan 'p, Fas1 = 2tan 'p, and Fas2 = 4/3tan2'p, 

which is in agreement with a reorganization of the UB solution of Murray and Geddes 

(1987). Giampa et al., 2017 performed an experimental study for 22 intermediate-scale, 

helical anchors installed in dry sand to develop and validate an analytical expression that 

will accurately predict the uplift capacity of shallow circular anchor. Three test trenches 

were prepared to different dry unit weights (γ) with peak friction angles range between 

40° and 50°, while laboratory triaxial tests indicated that the dilation angle varied between 

10° and 25° for these peak friction angles. Anchor depth to diameter ratios (H/D) varied 

from 1.8 to 7.1. Comparison of analytical with experimental results gives confidence in 

the further application of the non-associated limit equilibrium analytical solution 

presented in this study. Analyses involving that shear planes on each side of the failure 

block are inclined at the angle of dilation ψ yield the following simple relation which 

proposed by Vermeer and Sutjiadi (1985) for the breakout factor of strip plate anchor 

embedded in sand: 
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1 tan cosps cv

H
N

B
  = +          (2.48) 

In which  ps,  cv are the peak and critical state friction angle in plane strain. 

2.2.2: Plastic Limit Analysis Method 

Limit analysis is an alternative method, based on the theory of plasticity, to predict 

the ultimate uplift resistance of plate anchor. Comparing to limit equilibrium method, a 

limit analysis method does not give an exact prediction of the net uplift capacity 𝑄𝑢 but 

provide a bounded solution. This section presents some main limit analysis studies of the 

pullout capacity of plate anchors in cohesionless soil. Generally speaking, the upper bound 

theorem is applied more frequently than the lower bound theorem when analyzing soil 

behavior and the main reason for this is, in many cases, it is difficult to construct a 

statically admissible stress field that extends to infinity. In contrast, it is usually easier to 

construct a kinematically admissible upper bound failure mechanism [John W. Bull, 

2009]. The upper bound theorem has been utilized by several authors to estimate the 

pullout capacity of plate anchors embedded in cohesionless soils including Murray and 

Geddes (1987, and 1989), Regenass and Soubra (1995), and Kumar (1999). The upper 

bound solution is obtained by equating the work done by external forces, which is 

determined by multiplying the vertical component of displacement by the soil’s self-

weight, to the dissipation of energy (which is zero for the cohesionless soil because the 

displacement vector is perpendicular to the frictional resistance force on any 

discontinuity), and then using a suitable minimization algorithm to determine the collapse 

load. 
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2.2.2.1 Murray and Geddes (1987)  

Murray and Geddes (1987) developed a limit analysis approach to estimate the 

uplift capacity of strip, circular, and rectangular plate anchors embedded in sand.  

(a) Strip anchor  

The ultimate uplift resistance of a strip anchor based on limit analysis solution 

performed by Murray and Geddes (1987) was represented by the following dimensionless 

form. There has been a poor lower bound solution because there is a difficulty in 

determining an effective means of altering the stress field that should not violate yield 

condition anywhere and equilibrium should be maintained throughout the soil mass 

(Figure 2.12a). This gives the breakout resistance as equal to the lower limit of Eq. 2.26. 

As mentioned earlier, that for frictional materials obeying an associated flow rule (ϕ = ψ), 

there is no dissipation during shear or on sliding planes, so for an upper bound solution it 

is necessary to find the minimum value of loading computed for defined failure 

mechanism, and then to examine different failure mechanism in similar way to evaluate 

as close bound as possible to the ultimate uplift resistance in the idealized material. The 

following upper bound solution (Eq. 2.49) was obtained by equating the work done by 

external forces to the dissipation of energy for Figure 2.10b.  

tan( ) tan( ) tan tan( )

t
1

an( ) tan( )

P H

BH B

       

    

 
= +  

 

+ − − − −


+ + − −
   (2.49) 

It is obvious from Figure 2.12b that the larger value of 𝛽 the greater value of  
𝑃

𝛾𝐵𝐻
 . The 

smallest possible value of  
𝑃

𝛾𝐵𝐻
 must be found. Since (𝛽 − 𝜔 − 𝜙) ≥ 0, the minimum value 

is given by 𝛽 = 𝜔 + 𝜙 and Eq. 2.27 will be reduced to the upper limit of Eq. 2.26. Murray 
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and Geddes, 1987 proposed that the failure boundaries consist of two straight lines 

inclined at an angle ϕ to the vertical at the plate edges as shown in Figure 2.1b and that 

will provide a minimum upper bound solution for the problem because it was difficult to 

imagine any other failure mechanism that leads to a lower ultimate uplift resistance.  

(b) Circular anchor  

Lower bound solution for circular anchor also brought a poor lower bound value 

such as for strip anchor. This solution is given by the lower limit of Eq. 2.29. The failure 

boundaries of the minimum upper bound solution appear to be a straight-line incline at 

angle 𝜑 to the vertical at the plate edge. The upper bound solution is equal to the upper 

limit of equilibrium solution in Eq. 2.29. 

 

 

 

 

 

 

 

(c) Rectangular anchor  

Similarly, the upper bound solution of rectangular plate anchor for the uplift 

resistance is given as follows 

1 tan 1 tan
3

P H B H

BH B L L


 



 
= + + + 

 
      (2.50) 

 

Figure 2.12 Limit analysis solutions: (a) Lower bound solution; (b) Upper bound failure 

mechanism (after Murray and Geddes, 1989). 
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2.2.2.2 Murray and Geddes (1989)  

Murray and Geddes (1989) used the limit analysis of soil plasticity to estimate the 

passive resistance of inclined strip anchors in cohesionless soil. The following lower 

bound solution (Eq. 2.51) is the ultimate passive resistance for a strip plate anchor pulled 

horizontally. Figure 2.13 indicates a simple admissible stress field that should not violate 

yield condition anywhere and equilibrium should be maintained throughout the soil mass. 

1 0.5p

P B
K

BH H

 
= − 

 
          (2.51) 

where P is the ultimate passive resistance per unit length of anchor and Kp is the coefficient 

of passive resistance. There are difficulties in altering the stress field to formulate a lower 

bound solution for inclined or horizontal anchors because interface friction, which give 

rise to energy dissipation, is called into play and this invalidates the analysis.  

   

 

 

 

 

 

 

Murray and Geddes (1989) examined two mechanisms in developing an upper 

bound solution to determine a valid collapse load mechanism such that the displacement 

field throughout is continuous. The interface friction between anchor plate and soil 

𝐾𝑝γz 

γz 

Stress discontinuities 

γz

Figure 2.13 Lower bound solution for a strip anchor pulled 

horizontally (after Murray and Geddes, 1989).  
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(smooth or rough) can be taken into consideration by following the method proposed by 

Drucker (1954) and allowing dilation on the interface. Therefore, the displacement vector 

is inclined to this interface at the angle of interface friction δ. The following upper bound 

solution for mechanism 1 is shown in Figure 2.14. 

1 2 3

1

cos

cos( )

W W WP

BH BH



   

 + +
= −  

 + 
       (2.52) 

where W1, W2, and W3 denote the work done by the soil’s weight in the regions of the 

proposed failure mechanism.  
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Figure 2.14 Upper bound mechanism 1: (a) overall scheme; (b) vector displacement 

diagram for δ = 0; (c) vector displacement diagram for δ > 0; (d) log spiral zone abc 

(after Murray and Geddes, 1989). 
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For mechanism 2 that shown in Figure 2.15, the upper bound solution for the 

collapse load as follows: 

1 2

2

1

sin( )

sin ( )cos

W WP

BH BH

   

     

 + + + −
= −  

 + + 
      (2.53) 

where W1 and W2 denote the work done by the soil’s weight in the 2 regions of the 

proposed failure mechanism 2. For a given mechanism, it is necessary to calculate the 

minimum solution. 
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Figure 2.15 Upper bound mechanism 2: (a) overall scheme; (b) vector displacement 

diagram for δ = 0; (c) vector displacement diagram for δ > 0 (after Murray and Geddes, 

1989). 
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2.2.2.3 Kumar (2003) & Kumar (2014) 

Kumar (2003) performed upper bound limit analysis to determine the vertical 

uplift capacity of shallow strip and circular plate anchors embedded horizontally in a two 

layered sand. He established uplift factors 𝑓γ and 𝑓q due to the effects of soil unit weight 

and surcharge load respectively. The collapse mechanism shown in Figure 2.16 was 

assumed to be a combination of different rigid blocks bounded by linear rupture / velocity 

discontinuity lines. For the critical collapse mechanism, the entire soil wedge lying above 

the anchor moves as a single rigid block with the same anchor velocity and the magnitudes 

of the relative velocities vectors (V10, V20, and V12) shown in Figure 2.16 become 

simultaneously zero and that was similar to what Murray and Geddes (1987) observed for 

the pullout capacity of anchors embedded in homogenous soil. He noticed that for a given 

thickness of two layers, the uplift factor 𝑓γ is comparatively greater when the anchor is 

embedded in dense sand underlying a loose sandy layer. Also, Kumar (2003) found that 

uplift factors for circular anchors much higher than for strip anchors. 

 

 

 

 

 

 

 

 

 
Figure 2.16 Collapse mechanism and velocity hodographs (after Kumar, 2003). 
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Kumar (2014) using lower bound analysis in combination with finite elements and 

linear optimization to evaluate the pullout capacity of an inclined strip plate anchor 

embedded in sand. The pullout resistance results presented in terms of breakout factors by 

changing the plate inclination angle (θ) from horizontal to vertical. The results showed 

that the breakout factors, with different combination of embedment depth H/B, soil friction 

angle  , and δ/ , where δ is anchor soil interface friction angle, significantly increase 

with increasing the horizontal inclination of the plate particularly for θ > 30º. Also, they 

found that for θ < 30º, the roughness of the plate anchor does not have a significant effect 

either on the pullout capacity and failure mechanism. 

  

2.2.2.4 Bhattacharya and Kumar (2014) 

Bhattacharya and Kumar (2014) performed lower bound analysis in combination 

with finite elements and linear optimization to determine the pullout capacity of an 

inclined strip plate anchor embedded in sand. The pullout resistance results presented in 

terms of breakout factors by changing the plate inclination angle (θ) from horizontal to 

vertical. The results showed that the breakout factors, with different combination of 

embedment depth H/B, soil friction angle ϕ, and δ/ ϕ, where δ is anchor soil interface 

friction angle, significantly increase nonlinearly with increasing the horizontal inclination 

of the plate particularly for θ > 30º as shown in Figure 2.17. Also, they found that for θ < 

30º, the roughness of the plate anchor does not have a significant effect either on the 

pullout capacity and failure mechanism. 
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2.2.2.5 Merifield and Sloan (2006) & Merifield et al., 2003 

Merifield and Sloan (2006) performed rigorous lower and upper bound solutions 

in combination with finite element analyses to estimate the pullout capacity of horizontal 

and vertical strip plate anchors embedded in sand. Considerations have been highlighted 

to the effect of soil friction angle, soil dilation, embedment depth, and anchor roughness. 

The results revealed that the range of Nq values between the lower and upper solution 

increased as the friction angle increased (Figure 2.18). They also found that the effect of 

anchor roughness on pullout capacity was a very little for horizontal anchors at all 

embedment depths while there was a significant effect for vertical anchors especially for 

shallow embedment depths. The results revealed that the failure mode for vertical anchors 

indicates active zone of failure behind the anchor especially for H/B ≤ 2 and for low values 

of ϕ while for H/B > 2, any active zone behind the anchor has little influence on the pullout 

Figure 2.17 Variation of breakout factor 𝐹𝛾 with inclination angle θ for smooth and 

rough anchor plates of the plate for (H/B = 4, 6, and 8 for ϕ = 30°) (after Bhattacharya 

and Kumar, 2014). 
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capacity while the failure mode of horizontal anchor consists of the upward movement of 

a rigid column of soil immediately above the anchor which is accompanied by lateral 

displacement extending out and upwards from the anchor edge and as the anchor pulled 

vertically upwards, the material above the anchor tends to lock up as it attempts to dilate 

during deformation (Figure 2.19).  

 

 

 

 

 

 

  

 

 

 

 

Three-dimensional numerical lower bound theorem and axi-symetrical 

displacement finite element analysis for the ultimate capacity of horizontal square and 

circular anchors in cohesionless soil have been performed by Merifield et al., 2003. The 

author’s numerical lower bound analysis was based upon associated flow material (   = 

ψ). The effect of anchor shape on the pullout capacity has been examined. Merifield et al., 

2003 found that the capacity of both square and circular anchors is significantly greater 

than strip anchors at the same embedment ratio. The results showed that the lower bound 

Figure 2.18 Breakout factors for horizontal 

anchors in sand (after Merifield and Sloan 

2006). 

Figure 2.19 Observed velocity plots 

from UB analyses (after Merifield and 

Sloan 2006). 
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solution compared well with axisymmetric finite element results using the research 

software SNAC but were less favorable with the range of theoretical solutions found in the 

literature such as Meyerhof & Adams (1968), Murray & Geddes (1987), Saeedy (1987), 

Sarac (1989), and Ghaly & Hanna (1994). 

 

2.2.3 Finite Element Analysis  

The majority of past studies has been theoretically and experimentally based and 

therefore many design practices are basically depending on empirical solutions. Very few 

numerical analyses have been performed to determine the pullout capacity of plate anchors 

in sand. This section presents some rigorous finite element analyses have been performed 

by several authors. 

2.2.3.1 Rowe and Davis (1982) 

The most early extensive finite element study has been performed by Rows and 

Davis, 1982, from which they proposed design charts to estimate the breakout factors of 

plate anchors. The Rowe and Davis finite element studies considered only strip anchors 

embedded in sand, but experimentally-based factors were also presented to account for 

finite length effects. The soil was modeled to satisfy the Mohr-Coulomb failure criterion 

and either an associated (ϕ = ψ) or a non-associated flow rule (ϕ ≠ ψ) while the plate 

anchor was modeled to be perfectly rigid and weightless. The pullout capacity of an anchor 

plate in a cohesionless soil can be expressed by Eq. 2.54.  

uQ HF =           (2.54) 
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Where F'γ  is a breakout factor which is a function of horizontal versus vertical plate 

orientation, embedment ratio, friction angle, dilation angle, anchor roughness, and initial 

state of stress. F'γ   may be approximately expressed in terms of a basic breakout factor 

and number of correction factors: 

. . .R kF F R R R  
           (2.55) 

where F is break factor of the basic case of a smooth plate anchor in non-dilatant soil (ψ 

= 0) with lateral earth pressure coefficient at rest condition Ko = 1. , ,R kR R R
are correction 

factors for the influence of soil dilatancy, anchor roughness and initial state of stress, 

respectively. They found that vertical anchors exhibit higher pullout capacity and greater 

contained plastic deformations before collapse, than horizontal anchors as shown in 

Figures (2.20 & 2.21). They also found that the roughness has a negligible influence on 

the collapse load of horizontal anchors and RR can be taken as unity but significantly 

increases for vertical anchors especially for shallowly embedded anchors (H/B < 3). 

Dilation angle was found to have a significant effect on anchor pullout capacity and may 

appreciably increase the collapse load at H/B >3 in medium to dense sand.  However, R

varies linearly with embedment D/B and increases nonlinearly with ψ for associated 

materials, R for non associated materials can be determined by linear interpolation. The 

effect of initial stress state on pullout capacity is significant only for soil exhibiting 

relatively little dilatancy so that the decreasing Ko slightly decreases the pullout capacity 

for horizontal anchors and slightly increases the pullout capacity for vertical anchors. 
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2.2.3.2 Hao et al., 2014 

More recently, parametric finite element study was conducted by (Hao et al., 2014) 

based on non-associated elastic-perfectly plastic finite element analysis to investigate 

Figure 2.20 Variation of basic horizontal and vertical anchor capacity (after Rowe 

and Davis 1982). 

Figure 2. 21 Plastic region at collapse ϕ = 30º, ψ = 0º (after Rowe and 

Davis 1982). 
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uplift behavior of circular plate anchors in sand. The influences of soil elastic stiffness E 

in terms of rigidity index Ir, soil-plate interface, initial stress state and dilatancy on uplift 

capacity have been investigated for shallowly embedded anchors. The main findings of 

that study are: 

• Sand dilatancy makes a significant influence on uplift behavior of anchors, where 

the higher collapse load and displacement will be obtained for greater dilation 

angle. This influence is more remarkable with increase in friction angle and 

embedment ratio as shown in Figure 2.22. 

  

 

 

 

 

 

 

 

• The sliding planes that develop from the corners of anchor plate to the sand ground 

surface are approximately inclined at dilation angles with the vertical. 

• The numerical analyses overestimated the uplift capacity results of anchors 

because the elastic-perfectly plastic model that adopted in the study cannot 

describe the strain softening that occurs in dense sand during plastic shearing. 

Figure 2.22 Breakout factor for various H/D and sand properties (after Hao et al., 

2014). 
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• The failure displacement corresponding to ultimate load becomes smaller for 

greater elastic modulus (rigidity index). 

 

2.2.3.3 Kumar (2006) 

The load-displacement relationship of shallowly embedded strip plate anchors in 

sand subjected to centric uplift force has been examined by Kumar (2006) using finite 

element method. The soil medium was modeled as a linear elastic-perfect plastic Mohr 

Coulomb failure criterion following an associated flow rule. The results showed that the 

uplift resistance increases with increase of embedment depth ration H/D (linearly) and the 

friction angle   of the soil. However, the effect of the friction angle   was found to be 

more appreciable at higher embedment ratios as shown in Figure 2.23. Kumar (2006) also 

noticed that the collapse of the plate anchors occurs once the development of a thin curved 

plastic shear zone generates from the bottom of the anchor and then extends up to the free 

surface  

 

 

 

 

 

 

 

 
Figure 2.23 Variation of breakout factor Nγ with embedment depth 

ratio H/B and friction angle  (after Kumar, 2006). 
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2.2.3.4 Khatri and Kumar (2011) 

Khatri and Kumar (2011) have been performed lower bound finite element limit 

analysis to examine the effect of width B on the vertical pullout capacity for strip plate 

anchor embedded horizontally in cohesionless soil. The results showed that for a given 

embedment depth ratio H/B, decreasing in the width of the anchor B will cause increasing 

in the pullout factors continuously and the scale effect becomes more pronounced for deep 

anchors as shown in Figure 2.24. 

 

 

 

 

 

 

 

 

 

 

 

2.2.3.5 Dickin and Laman (2007) 

Computational and physical investigations have been performed by Dickin and 

Laman (2007) to model the uplift behavior of 1m strip plate anchors horizontally 

embedded in sand. They observed a very good agreement between uplift capacities from 

Figure 2.24 Variation of breakout factor Fγ and γB/σa for different embedment 

depth ratios (H/B) (after Khatri and Kumar, 2011). 
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centrifuge results and finite element modeling using Hardening Soil Model in Plaxis 2D, 

based on 0.2m computed maximum displacements, up to H/B ratios approximately 6 as 

shown in Figure 2.25, although the finite element results are slightly higher than 

observation for loose sand as shown in Figure 2.25a. The results showed that for plate 

anchor at relatively shallow depths, the soil displacements, and hence increased shear 

stresses, extend to the soil surface as shown in Figure 2.26a while the mechanism over 

deeper anchors is more localized in nature, predominating in the region above the anchor 

as shown in Figure 2.26b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25 Comparison between breakout factors from centrifuge model tests and 

PLAXIS analyses for loose and dense sand.  (after Dickin and Laman, 2007). 

(a) Loose sand (b) Dense sand 
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2.2.4 Experimental Studies 

2.2.4.1 Dickin (1988) 

Dickin (1988) performed a series of centrifugal tests to model the uplift behavior 

of 1meter wide rectangular horizontal embedded plate anchor in dry uniform loose and 

dense sand. Four aspect ratios, which is the ratio of length to width of the rectangular 

horizontal anchor plate L/B, (1, 2, 5, and 8) were considered at embedment depth H/B up 

to 8. Several conventional gravity tests were also performed to compare with the 

centrifugal tests. Dickin (1988) found that the breakout factor Nq for strip anchors 

increases significantly with anchor embedment depth H/B and soil density. It was found 

that the breakout factor Nq decreases by 75% as the aspect ratio varies from 1 to 8 as shown 

in Figure 2.27. The predictions showed that as the L/B increases the breakout factor Nq 

decreases independent of the embedment depth ratio H/B. It was also noticed that failure 

displacements increase with the embedment depth ratio H/B but reduce with the soil 

Figure 2.26 Displacement contours for shallow and deep strip plate anchor in dense 

sand (after Dickin and Laman, 2007). 

(a) Shallow anchor 
(b) Deep anchor 
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density and aspect value ratio L/B. Comparison with conventional tests on 50 mm models 

in dense sand demonstrated the overoptimistic prediction of large-scale anchor resistance 

by direct extrapolation of data from such tests. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.4.2 Ilamparuthi et al. (2002) 

Ilamparuthi et al. (2002) performed relatively large scale model circular plate 

anchors 100, 150, 200, 300, and 400 mm in diameter embedded in loose, medium-dense, 

and dense dry uniform sand. Ilamparuthi et al. (2002) noticed two failure modes can 

develop with in the soil mass depending on the anchor embedment ratio H/B. Irrespective 

of soil density, shallow anchor failure mode is described by an uplifted frustum of cone of 

soil extends from the top anchor edge to the free surface, with an inclination angle  /2 - 

Figure 2.27 Variation of breakout factor Nγ with embedment depth ratio H/B for 1 

meter horizontal anchors in (a) loose sand; (b) dense sand (after Dickin, 1988). 
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2º for loose and  /2 + 2º for dense sand to the vertical as shown in Figure 2.28a. While 

for deeply embedded anchor and irrespective of soil density of soil, the behavior is 

characterized by a balloon-shaped rupture zone in the soil mass above the anchor. The 

plane portion of this rupture surface emerges from the top edge anchor and is inclined at 

0.8  to the vertical as shown in Figure 2.28b. It was observed three phase of the load-

displacement response for shallow anchors, while two phase of the load-displacement 

response was observed for deep anchors as shown in Figure 2.29. They also noticed that 

the critical embedment ratio (H/D)cr increases with an increase in soil density. The critical 

embedment ratio (H/D)cr was identified by six alternative methods, and values of 4.8, 5.9, 

and 6.8 were recommended for loose, medium-dense, and dense sand, respectively, for 

anchors in the 100–150 mm diameter range considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Shallow anchor 

- - - - - Displaced 

position of anchor 

upper surface and 

soil particles 

(b) Deep anchor 

Figure 2.28 Delineation of rupture surface in half-cut model test on shallow and deep 

circular plate anchor in dense sand (after Ilamparuthi et al., 2002). 
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2.2.4.3 Murray & Geddes (1989) 

Murray & Geddes (1989) presented laboratory experimental results for the 

ultimate passive resistance and corresponding displacements of rectangular anchor plates 

pulled at angle of inclination between horizontal and vertical through very dense sand. 

The experimental results of the ultimate passive resistance were compared with the upper 

and lower bound limit solutions for anchors pulled horizontally through an assumed elastic 

–plastic soil. It was observed that the ultimate passive resistance and corresponding 

displacements at failure increase with depth and angle of loading, the greatest changes 

occurring within in interval θ =45º to θ = 90º. Also, the experimental results give 

predictions of failure load, for H/B values of about 4 or less, reasonably close to the upper 

bound solutions (assuming   = ψ) particularly those involving an interface friction angle 

(a) Shallow anchor  (b) Deep anchor  

Figure 2.29 Relationship between pullout load and displacement for shallow and deep 

circular plate anchors in sand (after Ilamparuthi et al., 2002). 
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δ between sand and the anchor plates similar to that measured while for higher values of 

H/B, the results diverge and in general the upper bound solutions tend to underestimate 

the experimental values since the real soil such as that used in the experiments is probably 

more accurately described by a non- associated flow rule where ψ <  . Therefore, the 

upper bound solution that proposed by Murray & Geddes (1989) may be used to assess 

the ultimate passive resistance of inclined anchors in dry sand for shallow inclined anchor 

when H/B. 

2.2.4.4 Liu et al., 2012 

Liu et al., 2012 presented an experimental study using Digital Image Correlation (DIC) 

to investigate soil deformation around uplift circular plate anchors in dry sand. A series of 

scaled model tests have been performed to study the influence of particle size, soil density, 

and anchor embedment depth on anchor behavior. The main findings of that study were: 

• Anchor pullout capacity and the corresponding displacement are significantly 

influenced by soil density. Liu et al., 2012 found that in loose sand, the anchor 

experienced a much larger displacement before reaching its peak pullout resistance 

compared with a much smaller displacement in dense sand. 

• For shallow anchors, a truncated cone is observed in dense sand, which extends 

from the edges of anchors to the soil surface and forms an angle of 1∕4 ϕ with the 

vertical. In contrast, different failure plane is observed in loose sand, in which a 

cone-shaped failure plane is formed with an angle of 45º + ϕ ∕ 2 to the horizontal. 

• For deeper anchors, the compressibility of soil in loose sand is the dominating 

factor on anchor behavior which leads to no obvious failure surface. While for 
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dense sand, the failure surface changes to a combined shape of a curved cone and 

a truncated cone. The curved cone starts from the anchor edges and extends to a 

depth of approximately three times the anchor diameter above the anchor plate as 

shown in Figure 2.30. The width of the failure surfaces increases with increasing 

anchor depth for both soil density conditions. 

 

 

 

  

 

 

 

 

 

 

2.2.4.5 Rasulo et al. 2017 

A recent series of anchor uplift tests were conducted by Rasulo et al. 2017 to better 

understand the uplift capacity and the transition from shallow to deep failure mechanism 

of helical anchors. This study presents results from 74 uplift tests on 50 mm, 152 mm, and 

254 mm diameter helical anchors in a saturated sand prepared in two states, one with a 

moderate and the other with a high friction angle. The results showed that the transition 

from shallow to deep response in the loose sands appears to begin between 6 to 8 diameters 

(a) Loose sand (b) Dense sand 

Figure 2.30 The failure surface shape for H/B =5: (a) loose sand; (b) dense sand (Liu et 

al., 2012). 



 

61 

 

while with higher friction angle in the medium dense sand appears to push the transition 

deeper to between 10 to 13 diameters as shown in Figure 2.31. Retest results for anchors 

that were installed at least one diameter past a previous test seemed to be in general 

agreement with first time anchor tests. However, in the range of the shallow mechanism, 

the breakout factor for the medium dense sand was approximately twice the value for a 

loose sand for a given normalized embedment. In the deep failure mechanism the medium 

dense sands factor approached approximately 5 to 7 times the loose sands factor at 100 to 

135 in the medium dense compared to the value of 20 in the loose sand as shown in Figure 

2.31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31 Breakout factor with depth for uplift tests on circular anchors in (a) loose 

saturated sand and (b) medium dense saturated sand (after Rasulo et al. 2017). 

(b) Medium dense sand (a) Loose sand 

0

2

4

6

8

10

12

14

16

18

0 20 40 60

N
o
r
m

a
li

z
e
d

 D
e
p

th
, 

z
/D

Breakout Factor, Nq or N

50 mm

152 mm

254 mm

Nq,max=20

Fit

N=Eq. 2



 

62 

 

2.2.5 Other empirical relationships 

Various models that use empirical relationships to predict pullout capacity of plate 

anchors in sand have been published by several authors depending on their experimental 

and analytical studies. The following empirical formula proposed by Ovesen (1981) based 

on the series of centrifugal test results that performed on shallow square plate anchor in 

sand.  This formula is limited to shallow square anchor with 1 ≤ 
H

B
≤ 3.5 in sand with  

29º ≤ tx ≤ 42º. 

3
2( )

1 (4.32 tan 1.58)t x

H
N

B
 

 
 


= + −


       (2.56) 

where tx is the peak friction angle for in triaxial test. Alternatively, an extended version 

of Eq. 2.56 was given by Vermeer and Sutjiadi (1985) may be used by replacing 
H

B

 
 
 

 by

H H

B L
+

 
 
 

. Semi-empirical design approach has been suggested by Meyerhof and Adams 

(1986) for strip plate anchor and developed by Das and Seeley (1982) may be used in the 

following form: 

   tan 2 1 1 1ps

H H B
N K m

B B L
 

  
= + + +  

  
      (2.57) 

where m is a function of friction angle. A set of empirical formulas (from Eq. 2.58 to 2.63) 

were formulated by Ilamparuthi et al. (2002) for predicting breakout factors for circular 

plate anchors with H/D ≤12 embedded in loose sand. 

(33.5/28)( / )H D

qN e=       for 0.0 ≤ (H/D) ≤ 1.0               (2.58) 
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1( / )q qN H D N=         for 0.0 < (H/D) ≤ 4.2              (2.59) 

1

(tan ln / )( / 2 )( )q q

H DN H D e N=     for 2.4 < (H/D) ≤ 4.2                (2.60) 

1

(tan ln / )( / ) ( / )( )q q

D HN H D H D e N = +       for 4.2 < (H/D) ≤ 6.0    (2.61) 

1

(tan ln / )( / ) ( )q q

H DN H D e N = +        for 6.0 ≤ (H/D) ≤ 10.0               (2.62) 

10

(tan ln( / 10))( )q q

H DN N e  − = +      for 10.0 ≤ (H/D) ≤ 12.0     (2.63) 

where qN  is the breakout factor for any desired H/D ratio in loose sand, 1qN is the breakout 

factor for H/D = 1.0 (which is equal to 3.3) for  = 33.5º, and 10qN is the breakout factor 

for H/D = 10.0. Eq. 2.64 can be used to predict the breakout factor for circular plate 

anchors at any embedment depth ratio H/D in dense sand.  

( /3 )( 33.5)/33.533.5( )q qf f
H D

N N e −
=        (2.64) 

where q fN 
 is the breakout factor for any   value and H/D value, and 

33.5
q fN  is the 

breakout factor for   = 33.5º at the same embedment ratio, obtained from Eqs. (2.58 to 

2.63). Ilamparuthi et al. (2002) found that a good agreement between breakout values from 

the proposed empirical equations and those obtained from many experimental studies 

reported in the literature.  
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2.3 Keying 

An embedded plate anchor has always a vertical orientation after penetration the 

seabed to the design depth irrespective of plate anchor installation method. Keying process 

initiates as a sufficient force develops in mooring line connected to the padeye of the 

anchor (Barron 2014). During keying process, both horizontal and vertical movement of 

the anchor occurs as the anchor rotates into its target orientation as shown in Figure 2.32. 

The upward vertical displacement is a particular concern, since a loss of anchor 

embedment leads to a reduction in pullout capacity. Therefore, quantifying this 

embedment loss is critical for plate anchor design. The following section presents a brief 

overview of the main published research into quantifying of loss of embedment during 

keying process and post uplift capacity of plate anchors embedded in sand and clay. A 

fairly extensive body of previous research exist for keying of direct embedment in 

normally consolidated clays, largely in relation to plate anchors installed by suction 

embedment and dynamic embedment; e.g., Lowmass (2006). As noted in chapter one, 

plate anchors can be directly embedded into the seabed by suction (SEPLA), dynamic 

installation (DEPLA) and pile driven installation. All methods of installation are effective 

in normally consolidated clay profiles. By contrast, only limited installation depths are 

possible through suction or dynamic installation in sands, stiff clays, and stratified soil 

profiles. Pile driven plate anchors (PDPAs) have no particular limitations on installation 

depths in either sand, clay or stratified soil profiles.  
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2.3.1 O’Loughlin et al. (2006) 

O’Loughlin et al. (2006) presented results from a serious of centrifuge of plate 

anchor embedded in normally consolidated kaolin clay at 100g against a Perspex window 

(Figure 2.33). The tests performed to quantify the plate anchor embedment loss during 

keying process by careful examination of the digital images captured during the centrifuge 

tests. Figure 2.34 shows images at different stages in the keying process with eccentricity 

ratio e/B = 0.17, 0.5 and 1.0, respectively. Evidently, loss in anchor embedment for e/B = 

0.17 (Figure 2.34a) is much higher than either e/B = 0.5 or e/B = 1.0 in Figure (2.34b and 

2.34c). Figure 2.35 illustrates the influence of the eccentricity ratio e/B on the plate anchor 

loss of embedment. Therefore, O’Loughlin et al. (2006) suggested that in order to keep 

plate anchor embedment loss at negligible levels, the eccentricity of the anchor padeye or 

load attachment point e/B should be at least 1 plate width B. 

Target orientation 
after keying process 
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Figure 2.32 Keying process and anchor notation. 
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Figure 2.33 Geometrical notation and testing chamber with installed 

plate Anchor (after O’Loughlin et al. 2006). 

 

 

(a) e/B = 0.17 

 

 
(b) e/B = 0.5 

 

 

(c) e/B = 1.0 

Figure 2.34 Plate rotation during keying for (a) e/B = 0.17, (b) e/B = 0.5, 

and (c) e/B = 1.0 (after O’Loughlin et al. 2006). 



 

67 

 

 

 

 

 

 

 

 

 

2.3.2 Song et al. (2006) & Song et al. (2009) 

          Song et al. (2006) investigated the effect of different loading inclinations on the 

rotation behavior for vertically installed square plate anchors in uniform Kaolin clay and 

transparent soil. The tests were conducted at 1g and in centrifuge at 100 g. Figure 2.36 

shows that the load-displacement responses are similar for vertical pullout (90o) and 

inclined pullout angle (60º). The only differences are: (1) it takes a little longer for the 

chain to tighten before the anchor rotate during inclined pullout; (2) it takes a little longer 

for the anchor to be fully rotated during vertical pullout. Song et al. (2006) observed four 

phases during the orientation of the plate anchor to the direction of loading (Figure 2.36): 

(1) chain tightening (from point 1 to point 2); (2) half way anchor rotation (from point 2 

to point 3); (3) full rotation and pullout capacity development (from point 3 to point 4); 

(4) steady pullout, where pullout capacity remains steady (from point 4 to point 5). At the 

end of each phase, the pullout capacity was shown to be independent of the load 

inclination. The results showed that for full rotation (90º) during vertical pullout, the plate 

Figure 2.35 Plate anchor rotation (vertical pullout  θ vs. δze/B) 

(after O’Loughlin et al. 2006). 
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anchor moves a vertical displacement δz plate = 0.65B, compared to 0.33B for inclined 

pullout load with angle of 60º.  

Similar studies were performed by Song et al. (2009) evaluated the effects of 

anchor geometry, anchor submerged unit weight, and pullout angle on the loss in anchor 

embedment during keying process. Song et al. (2009) reported results from large 

deformation FE analyses using RITSS method and centrifuge model tests of a vertically 

installed plate anchor in uniform and NC soils. They developed an expression to predict 

the plate anchor embedment loss for vertical pullout in terms of a non-dimensional 

geometric factor 
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 as stated in Eq. 2.65.  
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        (2.65) 

Figure 2.36 Load – displacement Response during Pullout and 

Keying (after Song et al. 2006). 
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where t, B, and e are geometric parameters shown in Figure 2.32. A is the anchor area, Su 

is the undrained shear strength, and Mo is the initial moment around the anchor center as 

shown in Figure 2.32. They found that the embedment loss during rotation may be 

expressed in terms of a non-dimensional geometric factor 

0.10.3
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Me t

B B ABS

   
   

    
, which 

is a function of the loading eccentricity ratio, pullout angle, and the net moment applied 

to the anchor at the stage where the applied load balances the anchor weight. Then values 

range between n=0.15 for the best data fit and n = 0.2 for an upper bound of the fitted line, 

which provides a conservative design curve. The results showed that loss of embedment 

decreases linearly with decreasing pullout angle as shown in Figure 2.37, since less 

rotation is needed to complete the anchor keying when a lower anchor pullout angle is 

applied. Song et al. (2009) predicted the effect of plate anchor thickness ratio (t/B) on the 

normalized embedment loss δz/B and found that as (t/B) increase, the loss of embedment 

δz/B decreases as shown in Figure 2.38. The causes of this are: firstly, thicker anchor has 

higher end capacity, thus it is more difficult to move upwards and secondly a thicker 

anchor is heavier, thus the rotational moment plays a more important role during initial 

pullout to promote anchor rotation. 
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2.3.3 Long et al. (2009) 

Long et al. (2009) analyzed square and strip anchors installed vertically and deeply 

embedded in normally consolidated (NC) clay using the RITSS large deformation finite 

Figure 2.37 Pullout angle θ effect on anchor keying e/B=0.625, t/B =0.05, 

and γʹ =60 kN/m3 (after Song et al. 2009). 

 

Figure 2.38 Influence of plate thickness on the embedment loss (after Song 

et al. 2009).Figure 2.37 Pullout angle θ effect on anchor keying e/B=0.625, 

t/B =0.05, and γʹ =60 kN/m3 (after Song et al. 2009). 

Figure 2.38 Influence of plate thickness on the embedment loss 

(after Song et al. 2009). 
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element method to simulate the keying process. This study investigated the effects of 

pullout direction and the loading eccentricity ratio e/B on the loss of embedment during 

keying process. However, the loss in anchor embedment during rotation decreases with 

increasing eccentricity e/B as shown in Figure 2.39, while the trajectory of the anchor 

padeye during keying is independent of eccentricity.  

 

 

 

 

 

 

 

 

 

The numerical results showed that the effect of e/B on the loss in anchor 

embedment mainly occurs during the initial 60º of anchor rotation. Long et al. (2009) 

noticed that during the initial 60º of anchor rotation, the anchor’s center displacement is 

reduced to zero with e/B = 1 while with e/B < 1, the anchor center’s displacement increases 

with decreasing e/B. They also found that the shape effect, square versus strip, increases 

pullout by a factor of 1.1-1.19, while increasing embedment loss by a factor of about 1.05-

1.09.  They recommended that the pad-eye eccentricity e/B exceed 0.5 to contain the loss 

of embedment to δz/B < 0.5 during keying process, where δz is the loss in embedment 

 

 

 

Figure 2.39 Anchor keying response in NC clay (after Long 

et al. 2009). 
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during keying. The effect of pullout loading angle on anchor keying was also investigated 

for square and strip plate anchors by considering three pullout angles, θ = 45º, 60º, and 

90º, with a loading eccentricity of e/B = 0.66. They found that the loss in anchor 

embedment increases with increasing pullout angle as shown in Figure 2.40. Their 

numerical results showed that e/B has a much larger influence on the embedment loss than 

the pullout angle does. 

 

 

 

 

 

 

 

 

 

 

 

2.3.4 Gaudin et al. (2009) 

Gaudin et al. (2009) performed a series of centrifuge tests of strip plate anchors 

embedded in normally consolidated clay NC along with PIV analysis to investigate the 

plate anchors keying mechanism of various eccentricities subjected to pullout at various 

inclinations. Figures (2.41a and2.41b) present digital images which captured against a 

 

Figure 2.40 Rotation versus the loss in anchor embedment 

(after Long et al. 2009). 
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Perspex window at different stages of the rotation for the tests were performed with an 

eccentricity loading ratio of e/B = 0.25. It was clearly apparent that the anchor pullout at 

45º experienced a lower loss of embedment that pulled out at 90º. The Particle Image 

Velocity (PIV) was used to identify the failure mechanisms generated during keying 

process. Different failure mechanisms were noticed based on the eccentricity e/B ratio, the 

load inclination and the loading stages. Gaudin et al. (2009) noticed a pure rotational 

mechanism for high e/B ratio, and plane shearing mechanisms was identified along the 

anchor for low e/B. Figures (2.42 & 2.43) show that a higher eccentricity is beneficial in 

reducing the embedment loss during rotation because it mobilizes a larger failure 

mechanism during the keying stage and consequently requires a higher pullout load.  

 

 

 

 

 

 

 

 

 

 

 

 

(a)  θ = 45º (b)  θ = 90º 

Figure 2.41 Anchor rotation during pullout at 4 different successive stages for e/B = 

0.25 (after Gaudin et al. 2009). 
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The total anchor embedment loss has been quantified for each test at the end of the 

rotation, and is plotted against the load inclination such as in Figure 2.44. It can be noticed 

that the load inclination has no effect on the loss of embedment for an e/B = 1. However, 

for e/B = 0.25, two different behaviors can be observed. For load inclinations lower than 

(a)  e/B = 0.25 

(a)  e/B = 1.0 

Figure 2.42 Failure mechanism (e/B = 0.25, 1.0 for θ = 90º) (after 

Gaudin et al. 2009). 
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45º, the embedment loss remains constant and limited approximately to 0.25B, while for 

pullout load inclinations higher than 45º, the loss of embedment increases linearly up to a 

value of 1.15B, which is slightly lower than the value of 1.25 recorded by O’Loughlin et 

al. (2006) for an eccentricity ratio of 0.17.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

2.3.5 Wang et al. (2011) 

Wang et al. (2011) simulated the keying process of rectangular and strip plate 

anchors embedded in normally consolidated clay using 2D and 3D LDFE allowing for 

evolution of the anchor-chain profile. They conducted a parametric study to quantify the 

loss in embedment during keying process in terms of the soil properties, anchor geometry, 

Figure 2.43 Loss of embedment during keying for different load 

inclination angle θ (after Gaudin et al. 2009a). 
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loading eccentricity, and inclination and may be expressed as a function of key non-

dimensional groups according to the following: 

, , , , , ,uo
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    (2.66) 

where  (
𝑒

𝐵
) is the loading eccentricity ratio, (

𝐵

𝐿
)is the aspect ratio, (

𝑡

𝐵
)is the thickness ratio, 

(
𝑆𝑢𝑜

𝛾′𝐵
)is the local shear strength ratio, which should only become relevant for anchors near 

the surface of the seabed where the overburden stress affects the failure mechanism, 
uo

S is 

the local shear strength at the initial embedment depth of the anchor, (
𝐸

𝑆𝑢
)is the soil rigidity 

index, (
𝑘𝐵

𝑆𝑢𝑜
)is the soil non-homogeneity index (k is the soil strength gradient), and (

𝑒𝛾𝑎
′

𝐵𝑆𝑢𝑜
)is 

the normalized moment. They determined that the loss in the anchor embedment decreases 

dramatically with increasing loading eccentricity ratio (they recommended that the e/B of 

plate anchor should never be less than 0.5B) and decreasing chain angle to the horizontal. 

Also, they found that the embedment loss may be underestimated if the rectangular anchor 

is simplified to a strip anchor because the loss in the anchor embedment decreases with 

increasing aspect ratio of rectangular anchors. Also, the keying response is essentially 

independent of the soil rigidity and the normalized strength gradient, kB/Suo as shown in 

Figure 2.44. On the basis of the parametric LDFE, Wang et al. (2011) proposed the 

following expression (Eq. 2.67) for the ultimate embedment loss of square plate anchor 

subjected to vertical pullout loading. 

max / [( / )( / ) ]p q

z B a e B t B          (2.67) 
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where the three coefficients are fitted as a = 0:144, p = 0:2, and q = -1:15. 

 

 

 

 

 

 

 

 

 

2.3.6 O’Loughlin and Barron (2012) 

O’Loughlin and Barron (2012) examined the capacity and keying behavior of strip 

plate anchors embedded in dense silica sand by a series of 30 g centrifuge tests. Image 

analyses showed that the failure mechanism to transition during keying from a deep 

localized rotational mechanism to a shallow block mechanism extending to the soil surface 

and the onset of this transition coincides with the peak uplift resistance of the plate which 

occurs when the plate anchor rotated approximately 65º to the vertical. Also, it was noticed 

that the pullout resistance of the plate anchor as it becomes horizontal is in good agreement 

with a limit equilibrium solution proposed by White et al. (2008) in which normality 

condition is neglected.  

 

 

 

Figure 2.44 Effect of soil rigidity on anchor keying response for strip square and strip 

anchor. (after Wang et al. (2011). 
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2.3.7 Barron (2014)  

Barron (2014) focused on the keying behavior and the plate anchor capacity in 

sand. Barron (2014) identified the strong relationship between plate anchor capacity with 

sample density, anchor geometry and embedment ratio. 37 model anchor tests were 

conducted in dense silica sand in a geotechnical centrifuge at 30g using Perspex window 

to facilitate observation and quantification of the keying response. Six anchor tests with 

the same geometry with varying eccentricity ratios (0.25 < e/B < 2) were used. Barron 

(2014) found out that the dependence of loss in embedment on the pad-eye eccentricity 

for sand is very similar to that reported for clay and can be quantified using a modified 

form of the loss in embedment expression proposed by Wang et al. (2011). He also found 

out that a minimal loss in embedment during keying can be achieved with an anchor with 

an e/B ≥ 1. The experimental study observed that the peak anchor capacity before the end 

of keying process, at a plate orientation between 50º and 80º to the horizontal, increasing 

as the eccentricity loading ratio e/B increased. Barron (2014) noticed that the peak load 

(e.g. Figure 2.45) does not represent the final stage of the plate orientation because the 

Particle Image Velocity (PIV) analyses demonstrated that the peak load corresponds to a 

transition in failure mechanism from a deep localized to a shallow mechanism that extends 

to the free surface   
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Figure 2.45 Load – displacement Response during Keying and Pullout (vertical 

anchor line displacement) - PIV Analysis (e/B = 1) (after Barron 2014). 
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2.4 Summary 

This chapter summarized the main reported research literature on the uplift 

capacity of plate anchors in sand and the keying behavior of plate anchors in clay and 

sand. From the research literature reviewed in this chapter, it was noticed that the most 

previous analytical, numerical, and experimental researches on plate anchor performance 

in sand cover a relatively shallow anchor embedment range (8-10 plate widths or 

diameters), which is not sufficiently deep to characterize the transition to deep 

embedment. Also, the influence of elastic soil stiffness E (soil rigidity) in evaluating 

anchor performance in sand especially for deeply embedded anchor has received very little 

attention in the research literature and need to be systematically investigated. Additionally, 

most past plate anchor research has focused either on the horizontal or vertical uplift 

capacity problems while the effect of inclined anchor and load inclination have received 

a very limited attention. In regard to the keying behavior of plate anchor in sands, it is 

noted that very few experimental studies have been conducted to understand the behavior 

of plate anchor in sand during keying process and to the author’s knowledge, no finite 

element studies have been performed in this field. Hence, a full assessment of plate anchor 

performance in sand must consider the above-mentioned points into account to achieve a 

reliable prediction of pullout capacity of plate anchors in sand. 
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CHAPTER III 

MATERIAL AND FINITE ELEMENT MODELING 

 

3.1 Introduction 

In this research, an extensive numerical displacement finite element study was 

conducted to acquire a reliable understanding of the performance of plate anchors 

embedded in cohesionless soils. This research considers the effects of: (1) anchor 

embedment depth, (2) plate orientation (keying process), and (3) inclined and non-

eccentric applied loads. Large deformation finite element analyses employing a Mohr-

Coulomb failure criterion and non-associated flow rule were utilized to accomplish this 

goal. 

3.2 Material Modeling 

Soil is a complex material that has elastic, plastic, and viscous properties. 

Therefore, selection of the proper constitutive model to represent a soil’s complexity 

requires taking into account several factors, such as the material’s characteristics, 

availability of experimental data, and type of analysis. This ensures that a balance is struck 

between accuracy, simplicity, and the problem’s requirements. The Mohr Coulomb Model 

(MCM) is one of the most common constitutive models used in geotechnical engineering 

applications to model soil behavior, particularly cohesionless soil. The MCM is an elastic, 

perfectly plastic model that combines Hooke’s law and the generalized form of Coulomb’s 

failure criterion (Brinkgreve, 2005). The MCM assumes that the material behaves in a 

linearly elastic fashion until the stress reaches its yield value; no further change in stress 
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accumulates after yielding as a plastic strain (see Figure 3.1). Based on this model, if the 

strain is known, the stress can be specified (but not vice versa).   

 

 

 

 

 

 

 

 

 

3.2.1 Mohr-Coulomb Yielding Criteria in the Principal Stress Space 

Yielding is a condition defining the limit of elasticity and onset of plastic behavior. 

The combinations of stress states at which yielding occurs is referred to as the yield 

criterion. Generally, any yield or failure criterion can be visualized by the mathematical 

function 𝑓.  The conventional arguments for the yield function 𝑓 are the individual 

independent components of stress, as follows: 

( , , , , , )xx yy zz xy yz zxf k      =        (3.1) 

 The yielding is signaled once the function 𝑓 equals the constant k. For greater 

simplification in an isotropic soil, one can replace the six stress components with three 

principal stresses (σ1, σ2, σ3) plus information about the principal directions. The 

developments that follow will benefit from the introduction of an isotropic material’s 
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Figure 3.1 Typical original and simplified (elastic-perfectly plastic) 

bilinear stress-strain relationship of dense soil. 
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characteristics, which removes all dependence on the orientation of the principal direction. 

This means that at any point in the soil body there will always be at least three surfaces on 

which the shear stresses xy, yz, and zx will vanish (Davis & Selvadurai, 2005). Therefore, 

for isotropic material, Eq. (3.1) can be rewritten in terms of principles stresses, as in Eq. 

(3.2). 

1 2 3( , , )f k   =          (3.2) 

In a coordinate system in which the coordinate directions are parallel to the 

principal direction, the stress matrix will have this simple form: 

2

3

1 0 0

0 0

0 0



 



 
 

=
 
  

         (3.3) 

The stress tensor is usually divided into a purely hydrostatic stress (i.e., mean stress) 𝜎𝑚, 

as defined in Eq. (3.4), and the deviatoric stress tensor S is defined in Eq. (3.5): 

1 2 3

1
( )

3
m p k   = = + + =        (3.4) 

2

3

1 1

2

3

0 0 0 0

0 0 0 0

0 0 0 0

m

m

m

S

S S

S

 

 

 

−  
  

= = −
  
   −   

     (3.5) 

where S1, S2, and S3 are the principle values of the stress deviator tensor S.  The principal 

invariants of the characteristic equation of the stress tensor 𝜎  (see Eq. (3.3)) are defined 

as: 

1 1 2 3I   = + +  

2 1 2 2 3 3 1I      = + +         (3.6) 

3 1 2 3I   =          
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The associated invariants that indicate the second-order identity tensor are defined below 

as deviatoric stress invariants. 

1 0J =  

( ) ( ) ( )
2 22

2 1 2 2 3 3 1

1

6
J       = − + − + −

 
     (3.7) 

1 1

3 2 1

3 1

1
0 0

3

1
0 0

3

1
0 0

3

I

J I

I







 
− 

 
 = −
 
 
 −
  

 

Many yielding criteria have been proposed by various researchers, but Coulomb’s 

failure criteria, developed in 1773, has become the cornerstone of understanding soil 

behavior. Coulomb (1773) observed that soil strength comes from both cohesion and 

friction. He suggested that the soil failure associated with a surface rupture and plastic 

yielding begins as long as the shear stress τ and normal stress σ (i.e., compression positive) 

reach the critical combination demonstrated in Eq. (3.8) (Davis & Selvadurai, 2005). In 

other words, the shear stress τ on any point in a material in the failure plane reaches a 

value that depends linearly on the normal stress σ. 

τ = c + σ tan '         (3.8) 

where σ and τ represent the normal and shear stresses on the physical plane, at which soil 

plastic yielding begins. The constant c is the cohesion with the dimensions of stress (c = 

0 for cohesionless material). The magnitude of tan' is similar to the friction coefficient 

in the generalized Coulomb’s friction law, based on sliding friction where ' is the angle 
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of internal friction. For soil material, it was not stipulated in Coulomb’s (1773) failure 

criteria whether ' refers to the friction angle 'cv at the critical state, or the peak friction 

angle 'p.  The Mohr–Coulomb yield criterion for the combination of σ1 ≥ σ2 ≥ σ3 is 

visualized in the Mohr plane representation shown in Figure (3.2), and can be expressed 

in terms of principal stresses, with compressive stress taken as positive (as in Eq. (3.9)). 

1 3 1 3( ) ( )sin 2 cos 0f c      = − − + − =          (3.9) 

 

 

 

 

 

 

 

  

For cohesionless soil (c = 0), Eq. (3.9) becomes: 

1 3 1 3( ) ( )sin 0f     = − − + =         for   σ1 ≥ σ2 ≥ σ3                  (3.10) 

For other possible combinations of principal stresses, the yield functions are: 

𝑓 = (𝜎2 − 𝜎3) −  (𝜎2 + 𝜎3) sin 𝜙′ = 2 𝑐 cos 𝜙′                   σ2 ≥ σ1 ≥ σ3 

𝑓 = (𝜎2 − 𝜎1) −  (𝜎2 + 𝜎1) sin 𝜙′ = 2 𝑐 cos 𝜙′                   σ2 ≥ σ3 ≥ σ1 

𝑓 = (𝜎3 − 𝜎1) −  (𝜎3 + 𝜎1) sin 𝜙′ = 2 𝑐 cos 𝜙′                   σ3 ≥ σ2 ≥ σ1  (3.11) 

𝑓 = (𝜎3 − 𝜎2) −  (𝜎3 + 𝜎2) sin 𝜙′ = 2 𝑐 cos 𝜙′                   σ3 ≥ σ1 ≥ σ2 

𝑓 = (𝜎1 − 𝜎2) −  (𝜎1 + 𝜎2) sin 𝜙′ = 2 𝑐 cos 𝜙′                   σ1 ≥ σ3 ≥ σ2 

Each equation defines a plane in the principal stress space. Each plane has one face of the 

Mohr-Coulomb pyramid aligned with the space diagonal, whose apex is located at zero 

σ 

c 

σ1 σ3 

τ 

φ 

σ 

τ = c + σ tanφ  
Failure Envelope 

τ

Figure 3.2 The Coulomb failure criterion. 
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for sand and √3 c cot  for c- soil, as shown in Figure (3.3). Therefore, for σ1 ≥ σ2 ≥ σ3, 

the intersection of the Coulomb yield surface with the π plane is a straight line, and for all 

possible combinations of principal stresses, the shape will be irregular hexagonal shown 

in Figure (3.4). The size of the surface on the π plane strongly depends on the mean stress 

p', but the shape of the Coulomb yield surface on the π plane changes only because of a 

change in the friction angle '.  The uppermost major vertex represents the loading case, 

where σ1 > σ2 = σ3, which corresponds to the conventional compression triaxial test; the 

lowermost minor vertex, where σ1 < σ2 = σ3, corresponds to the triaxial extension test. The 

vertices of the irregular hexagonal shape represent loading cases in which the two 

principal stresses are equal (Davis & Selvadurai, 2005). The initial position and size of the 

yield surface is a direct expression of the material memory of the past loading history.  

Also, it should be noted that in Eqs. (3.9-3.11), the yield function representation is not 

influenced by the magnitude of the intermediate principal stress. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3 Perspective view of the Coulomb yield surface in a principal stress space. 

(a) c-φ Soils (b) Cohesionless soils 
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If one considers the intersection of the Coulomb yield surface in the principal stress 

space as a plane surface defined by σ2 = 0 and each of the six possible combinations of 

principal stresses mentioned above, the following Eq. (3.12) gives the Coulomb yield 

surface shape in a two-dimensional space, as shown Figure (3.5). The m and n variables 

take values between 1 and 3.  

(1 sin ) (1 sin )sin 2 cosm nf c        = − − + =      (3.12) 

 

 

 

 

 

 

 

σ2> σ3 > σ1 σ3> σ2 > σ1 

σ1> σ3 > σ2 

σ2> σ1 > σ3 

σ1> σ2 > σ3 

σ1 = σ3 σ1 = σ2 

σ1 

σ3 σ2 

σ3> σ1 > σ2 

60˚ 

60˚ 60˚ 

60˚ 

60˚ 

60˚

Figure 3.4 Cross section (π plane) of the Coulomb yield surface in a 

principal stress space. 

 

 

Figure 3.5 Perspective view of the Coulomb yield surface in a 

two-dimensional space.

 

Figure 3.5 Perspective view of the Coulomb yield surface in a two-dimensional space. 
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Additionally, the three-dimensional representation of the Mohr-Coulomb yield 

function can be expressed in many other forms in terms of the abovementioned stress 

invariants (Zienkiewicz & Taylor, 1977), as in Eq. (3.13). 

1 2 1 2

1 1
( , , ) sin (cos sin sin cos 0

3 3
f I J I J c       = + − − =    (3.13) 

where I1 is the first stress invariant, J2 is the second deviatoric stress invariant (see Eqs. 

(3.6) and (3.7), respectively), and 𝜃 is the Lode angle (i.e., deviatoric polar angle), defined 

as: 

1

2

1
cos

3

S

J
 =       (-30º ≤ θ ≤ 30º)   (3.14) 

The invariant θ is controlled by the relationship of the intermediate principal stress to the 

major and minor principal stresses. For instance, in the combination of σ1 ≥ σ2 ≥ σ3, when 

the intermediate principal stress 𝜎2 equals 𝜎3, the value for θ becomes 60º. When the 

intermediate principal stress 𝜎2 equals 𝜎1, the value for θ becomes 0º. Thus, θ is an 

indication of the magnitude of the intermediate principal stress in relation to the major and 

minor principal stresses. It should be noted that the yield behavior may be influenced by 

the magnitude of the intermediate principal stress. However, the Mohr–Coulomb failure 

(i.e., yield) surface is expressed in ABAQUS 2014 by rewriting Eq. (3.13) in Haigh-

Westergard space in terms of the invariants p, q, and θ, as shown in Figure (3.6): 

tan 0mcf R q p c= − − =         (3.15) 

where 𝑅𝑚𝑐  is the measure of the shape of the yield surface in the deviatoric stress plane, 

defined as: 

https://en.wikipedia.org/wiki/Yield_surface#Invariants_used_in_yield_functions
https://en.wikipedia.org/wiki/Yield_surface#Invariants_used_in_yield_functions


 

89 

 

1 1
( , ) sin( ) cos( ) tan

3 3 33 cos
mcR

 
    


 = + + +


    (3.16) 

3

cos3
r

q


 
=  

 
          (3.17) 

where p is the mean stress as stated in Eq. (3.4), r is the third invariant of deviatoric stress 

(J3) as defined in Eq. (3.7), and q is the Mises equivalent stress (i.e., the deviatoric stress) 

as defined in Eq. (3.18). 

( ) ( ) ( )
1/2

2 22

1 2 2 3 3 1

3

2
q      

 
= − + − + − 

 
     (3.18) 

where ' is the slope of the Mohr-Coulomb yield surface in the p - 𝑅𝑚𝑐  𝑞 stress plane, as 

shown in Figure (3.7a). This is commonly referred to as the friction angle of the material, 

and ranges from 0º ≤ ' ≤ 90º. In the case of ' = 0º, the Mohr-Coulomb model reduces to 

the mean stress-independent Tresca model with a perfectly hexagonal deviatoric section, 

as shown in Figure (3.7b). In the case of ' = 90º, the Mohr-Coulomb model reduces to 

the “tension cutoff” Rankine model with a triangular deviatoric section and 𝑅𝑚𝑐 =

 ∞. However, this limiting case is not permitted within the Mohr-Coulomb model 

described here (ABAQUS, 2014). 

The MC yield surface in ABAQUS consists of two different criteria:  a shear 

criterion known as the MC surface, and the optional tension cut-off criterion using the 

Rankine surface to give a better approximation of the tensile behavior of certain materials 

such as concrete (ABAQUS, 6.14). Figures 3.7a and 3.7b show the Mohr Coulomb 

criterion in the principal stress plane (i.e., the Meridional plane) and deviatoric plane (i.e., 

the π plane), respectively. 
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Space diagonal 

√3 𝑝 

𝝈𝟐 

𝝈𝟏 

𝝈𝟑 

Right angle 

𝜃 

Parallel to σ1 

Figure 3.6 Graphical representation of the stress invariants (p,q,θ) (ABAQUS, 2014). 

𝜃 = 4𝜋/3 𝜃 = 2𝜋/3 

𝜃 = 𝜋/3 

𝜃 = 0 

Mohr-Coulomb  

(φ = 20˚) 

Drucker-Prager 

(Mises) 
Rankine 

(φ = 90˚) 

Tresca  

(φ = 0˚) 

(b)    Deviatoric plane 

𝜙′
 

𝑅𝑚𝑐  𝑞 

𝑐 

𝜎𝑡  

𝑝 

Mohr-Coulomb 

Tension cutoff 

(a) Meridional plane 

Figure 3.7 Yield surfaces in: (a) the meridional plane, and (b) the deviatoric plane 

(π plane) (ABAQUS, 6.14). 
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3.2.2 Flow Rule for Plastic Strain 

The flow rule is used to describe the deformations expected to follow yielding. To 

determine the plastic strain increment 𝑑𝜀𝑖
𝑝

 when the current stress state is on the yield 

surface, a functional relationship (i.e., plastic potential function G) must be formulated 

linking the components of the plastic strain and current stress state. The plastic potential 

function G in the MCM adopted by ABAQUS was employed by Menétrey and Willam 

(1995); it presents a hyperbolic function in the meridian plane and a smooth elliptic 

function combined by three elliptic arcs in the deviatoric plane that together make G 

continuous and smooth in both the meridional and deviatoric planes; thus, the flow 

direction is defined uniquely in those planes. 

The smooth triple-elliptic function r(θ,e) is expressed in Eq. (3.19), based on the 

five-model parameter by Willam and Wranke (1974). This model was originally 

formulated with three parameters for the failure surface, and then refined by adding two 

additional parameters to describe the curved meridians. 

2 2 2

2 2 2 2

4(1 )cos (2 1)
( , )

2(1 )cos (2 1) (4(1 )cos 5 4 )

e e
r e

e e e e e




 

− + −
=

− + − − + −
   (3.19) 

The deviatoric eccentricity parameter e describes the out-of-roundness of the deviatoric 

trace, in terms of the ratio between the shear stresses along the extension meridian (θ = 0) 

and compression meridian (θ = π/3) (Menetrey & Willam, 1995; ABAQUS, 2014). The 

deviatoric eccentricity e is determined by the following: 

3 sin

3 sin
e





−
=

+
          (3.20) 
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ABAQUS allows for this deviatoric eccentricity to be considered an independent material 

parameter. The flow potential function G used for the Mohr-Coulomb yield surface is 

described below. 

2 2( \ tan ) ( ) tanmwoG c R q p  = + −       (3.21) 

where  

( , ) ( , )
3

mw mcR r e R


 =         (3.22) 

and 

3 sin
( , )

3 6cos
mcR

 




−
 =


         (3.23) 

where  is the dilation angle measured in the p - 𝑅𝑚𝑤  𝑞 stress plane (see Figure 3.8) at a 

high confining pressure; 𝜀  is a parameter referred to as the meridional eccentricity, which 

defines the rate at which the hyperbolic function approaches the asymptote (the flow 

potential tends to a straight line in the meridional stress plane as the meridional 

eccentricity tends to zero) and the default value taken is 1; \ oc  is the initial cohesion yield 

stress; and ' is the Mohr-Coulomb friction angle. This calculation matches the flow 

potential to the yield surface in both triaxial compression and tension in the deviatoric 

plane. The smoothness of the elliptic function requires that the deviatoric eccentricity 

parameter is 0.5 < e ≤ 1.0. The upper limit, ' = 0º (e = 1.0), leads to r(θ, e) = 1 and Rmw 

(θ, e = 1.0)  = Rmc(π/3, '), which describes the Mises circle in the deviatoric plane, as 

shown in Figure (3.9). The lower limit, ' = 90º (e = 0.5), leads to r(θ, e) = 2cosθ, Rmw (θ, 
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e = 0.5)  = 2Rmc(π/3, ') cos θ, which describes the Rankine triangle in the deviatoric 

plane, as shown in Figure (3.9).  

To represent the Mohr-Coulomb model, ' must be defined between 90º > ' ≥ 0º 

(1.0 ≥ e > 0.5). The plastic flow potential function G is smooth and non-associated with 

the yield function 𝑓, and the angle of internal friction ' is replaced by the dilatancy angle 

ψ. However, the role of the dilation angle ψ in the plastic potential function is analogous 

to the role of the angle of shearing resistance ' in the yield function. The dilation angle ψ 

attains a constant value just slightly before and after peak strength, but is always smaller 

than the friction angle. Cohesionless geomaterials generally exhibit the non-associated 

behavior characterized by the dilation angle 0 ≤ ψ ≤ '. However, a non-associated flow 

rule is often assumed with the MCM, in which the plastic potential function takes the yield 

function but the friction angle is replaced by the dilation angle (Yu, 2007).  
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Figure 3.8 Family of hyperbolic flow potentials in the 

meridional stress plane (ABAQUS, 6.14). 
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3.2.3 MCM Parameters 

As can be seen above, the MCM consists of five main parameters: Young's 

modulus E and Poisson’s ν ratio from Hooke’s law, which represent the elastic range, 

cohesion c (c = 0 for cohesionless soils) and angle of internal friction ' from Coulomb’s 

failure criterion, and the dilation angle ψ for characterizing a dilatant material, which 

describes the irreversible volumetric change developed during plastic shearing. All of 

these parameters have a clear physical meaning and can be obtained by performing a 

triaxial test. The MCM (non-hardening) model is very useful in failure problems such as 

anchor capacity problems, as limit loads can be captured quite accurately, especially for 

drained conditions. Additionally, true triaxial tests performed when stress combinations 

cause failure in real soil samples have been shown by researchers to be in close agreement 

with the irregular hexagonal-shaped MC failure (Goldsheider, 1984). 

Rankine (' = 90˚, e = 0.5) 

Menétrey-Willam (0.5 < e ≤ 1) 

Mises (' = 0˚, e = 1.0) 

𝜃 = 4𝜋/3 𝜃 = 2𝜋/3 

𝜃 = 0 

𝜃 = 𝜋/3 

(90˚ > '  ≥ 0˚) 

 (1.0 ≥ e > 0.5) 

Figure 3.9 Menétrey-Willam flow potential in the deviatoric stress plane 

(ABAQUS, 2014). 



 

95 

 

Next, this research defines the stress-dilatancy equation by determining a suitable 

relationship between the peak friction angle and dilation angle, linking the plastic potential 

function to the yield function. Before that, however, the significance of the dilation angle 

on cohesionless material must be described in details.  

 

3.2.4 The Significance of Dilatancy 

An introduction to the concept of dilatancy will serve to underscore its importance. 

The compacted state of granular material tends to expand in volume (i.e., dilate) during 

shearing. Taylor (1948) found that the shear strength of cohesionless soil consists of two 

components: frictional and interlocking particles. Taylor (1948) argued that the 

interlocking component is responsible for volume change, but did not mention the term 

“dilatancy.” Figure (3.10) shows a pack of incompressible spherical sand particles 

arranged in loose and dense states respectively. For the initial loose-state condition where 

there is no significant particle interlocking, changes in the relative positions of the particles 

when any shear distortion is applied causes a reduction in the total volume of the pack 

(i.e., contractive), as shown in Figure (3.10a). Conversely, for the initial dense state 

condition where there is a considerable degree of interlocking between particles, applying 

any shear distortion will change the relative positions of the particles and cause an increase 

in the total volume of the pack (i.e., dilatative), as shown in Figure (3.10 b). Therefore, 

dilatancy is the measure of post-yield volumetric change in granular materials that 

develops during plastic shearing. The angle of dilation ψ (see Figure 3.10b) is the 
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parameter used to characterize dilatant material such as dense soil. The dilation angle 

represents the average value of this angle for the pack as a whole.   

 

 

 

 

 

 

 

 

 

 

 

As Figure (3.11) shows, in concrete, the dilation phenomenon is caused by frictional 

sliding along micro-cracks. 

 

 

 

 

 

 

 

Resultant direction of 

relative movement 
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comp.  dy 
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(b)   Dense sand (dilatative soil). 

(a)   Loose sand (contractive soil). 

Figure 3.10 Sliding between groups of particles. 
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𝜙′
 σ

Figure 3.11 Sliding along microcracks leads to dilation 
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The dilation angle can be determined from the Mohr’s circle of strain for plane 

strain, as shown in Figure (3.12), and also from a conventional triaxial compression or 

shear box test.  For simplicity, one can idealize frictional soil by assuming a bilinear 

approximation of the triaxial test results, as shown in Figure (3.13). It is clear that the 

stress-strain relationship in Figure (3.13) involves three deformation parameters (i.e., 

Young's modulus E, Poisson’s ratio υ for elastic range, and angle of dilatancy ψ for the 

plastic shearing stage) (Vermeer & Borst, 1984).  

The angle of dilation ψ can be determined from the plot of volumetric strain versus 

axial strain for a conventional triaxial compression test on dilatant soil (the broken line) 

or resulting from the Mohr-Coulomb model (the continuous line), as shown in Figure 

(3.13). It is important to note that the initial part of this plot represents the elastic regime, 

while the second part represents the plastic regime.  

 

 

 

 

 

 

 

 

 

 Figure 3.12 Mohr circles of strain increments for a dense sand sample in a plane 

strain test: (a) at low stress, and (b) high stress (Bolton, 1986). 

(a) (b) 



 

98 

 

 

 

 

 

 

          

 

                                                                                                                                  

 

 

 

 

 

 

 

Strictly speaking, a dilatancy angle only has geometrical meaning for plane strain 

conditions, as shown in Figure (3.12). Therefore, Andersen and Schjetne (2013) 

characterized the tendency for volume change under triaxial test conditions from the plot 

of volumetric strain versus axial strain, as shown in Figure (3.13). The angle of dilation  

from the triaxial test is defined as: 

sin
2

vol

a vol

d

d d




 

−
=

−
            (3.24) 

where vol and a are the volumetric and axial increment components of strain measured 

in a drained triaxial test. The angle  is still termed a dilatancy angle, recognizing that it 

cannot be defined in geometric terms on a Mohr diagram, as is possible in the case of 
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Figure 3.13 Bilinear idealization of the triaxial compression test. 
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plane strain (see Figure 3.12). The dilation angle ψ performs a similar geometric role with 

regards to strain rates, as the angle of shearing resistance does with regards to stresses 

(Row & Davis, 1982). Therefore, the plastic volume strain rate to major principal strain 

rate are given by the following equations: 

1vol

a

d
N

d





= −           (3.25) 

1 sin

1 sin
N





+
=

−
         (3.26) 

The shear box analogy shown in Figure (3.14) is well suited to illustrate the 

physical meaning of the dilation angle .  In the beginning of the shear box test, the 

horizontal stress σxx changes to cause some elastic strain, but eventually σxx will be 

constant so that both the elastic and plastic contributions vanish (Vemeer & Borst, 1984): 

tan
p
yy

p
xy





=          (3.27) 

0.0p
xx = ; 

p y
yy

d

y
 =          (3.28) 

where 𝜀𝑦𝑦
𝑝

 represents the volumetric strain component and 𝛾𝑥𝑦
𝑝

 is the shearing strain 

component. The rate of dilation can be represented by the ratio of plastic volume change 

over plastic shear strain, dεvol / dγ. The MC model idealizes dilation at a constant rate 

during plastic shearing. However, this is unrealistic due to the decrease in dilation that 

occurs as yielding progresses. Also, it has been found to be constant just near and at peak 

strength. Therefore, the MCM adopting non-associative plasticity causes the dilation rate 

to be less, but it is still constant during shearing. Figure (3.15) illustrates the effects of 

dilation on Coulomb’s failure envelope. 
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The linear failure envelope (OA) in Figure (3.15) represents the soil at the critical 

state condition, while the curved failure envelope (i.e., OBCA) models the actual behavior 

of the dilatant soil, due to changes in the normal stress. Point C represents the critical state 

condition in which dilatancy is suppressed. This occurs at the critical normal effective 

stress (σn)crit. Therefore, the dilation angle ψ is not a fundamental soil parameter, but rather 

depends on the initial stress state and loading conditions. 

 

 

 

 

 

 

 

 

Figure 3.14 The prediction of dilation angle ψ from the shear box test 

(Vemeer & Borst, 1984). 
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Figure 3.15 Dilatancy effects on Coulomb’s failure envelope (Budhu, 2000). 
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3.2.5 Critical State Friction Angle 'cv and Peak Friction Angle 'p 

The typical shear stress and strain behaviors for initially dense and loose sand in 

the triaxial test are illustrated in Figure (3.16). This figure shows that the shearing 

resistance and volume of the soil specimen become constant with continued shearing at a 

constant shear stress to normal effective stress ratio. This is referred to as the critical state 

condition. The corresponding angle of shearing resistance of 'cv and angle of shearing 

resistance of 'cv  at the critical state do not change, irrespective of initially loose or dense 

sand and/or loading conditions. The material behaves at the critical state as a frictional 

fluid, rather than yielding as a solid. Also, the void ratio in the critical state may sometimes 

be greater than the accepted maximum void ratio (Schofield & Wroth, 1968). The critical 

state is identified as the point of constant yield stress that corresponds to the point of zero 

rate of dilation on the volumetric shear strain curve (tan ψ = Δε / Δγ = 0). Stresses at the 

critical state define a straight-line failure envelope intersecting the origin, the slope of 

which is 'cv , as shown in Figure (3.15) (Craig, 2004). It may be difficult to determine the 

value of the critical state friction angle 'cv because of the relatively high strain (>10%) 

required to reach the critical state (Craig, 2004). However, the critical state angle of 

shearing resistance 'cv is a fundamental soil property and principally a function of 

mineralogy. This can be determined experimentally within a margin of about lº, being 

roughly 33º for quartz and 40º for feldspar (Bolton, 1986). 
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Figure 3.16 Typical shearing responses of cohesionless soils. 
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In dense sand, the maximum angle of shearing resistance 'p is determined at the 

peak stress. This angle is significantly greater than the true angle of friction 'u between 

individual particles. The difference represents the work required to overcome interlocking 

and rearrange the particles. In loose sand, the difference between 'u and 'cv represents 

the work required to rearrange the particles. The peak friction angle 'p generally depends 

on the initial relative density of the soil sample and stress level at which the test is 

performed (Andersen & Schjetne, 2013). At a high normal effective stress, 'p is 

approximately equal to 'cv, while at a low normal effective stress, 'p has a very high 

value. Though the shear strength parameters ('p, 'cv) of sand and soil can be determined 

from either direct shear or drained triaxial tests, in practice, only the drained strength of a 

sand is normally relevant. The characteristics of dry and saturated sands are the same, 

provided there is zero excess pore water pressure in the case of saturated sands. In practice, 

the peak angle of shearing resistance 'p is used for situations in which it can be assumed 

that the strain remains significantly less than that corresponding peak stress. If, however, 

the strain is likely to exceed the corresponding peak stress, the situation may lead to 

progressive failure. Then, the critical-state friction angle 'cv should be used (Craig, 2004).  

3.2.6 Stress - Dilatancy Relationships 

Bolton (1986) performed detailed dilatancy and strength analyses of 17 uniform 

sands in plane strain and axisymmetric loading conditions, and proposed an empirical 

approach to Rowe’s (1962, 1969) and Rowe et al.’s (1964) stress-dilatancy theory. The 
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strength of cohesionless material is characterized by the angle of internal friction ' and 

dilation angle ψ. The first limiting value of ' is the critical state friction angle 'cv, which 

is the fundamental soil property (as discussed above). The second limiting value is the 

maximum angle of shearing resistance 'p, which is determined at the peak stress, as 

shown in Figure (3.16). Bolton (1986) introduced a new relative dilatancy index IRD, in 

terms of the initial relative density Dr and effective stress level, as follows: 

( ln )RD rI D q p R= − −         (3.29)                                                                       

The values Q = 10 for quartz and feldspar sands and R = 1 were recommended by 

Bolton (1986) from the test results of the 17 sands. Eq. (3.29) links the dilation angle to 

the relative density in terms of the dilatancy index 𝐼𝑅𝐷  and grain-crushing stress, which is 

sufficient to eliminate dilation and relates to the mean effective stress p' at failure. 

Andersen and Schjetne (2013) found that for drained compression tests with a friction 

angle between 35° and 40°, the corresponding average consolidation stress 𝜎𝑐
′  is of the 

order of 60% of the stress at failure p'. Bolton (1986) also proposed that the maximum 

dilation angle max is related to the peak 'p and critical state friction angle 'cv. Assuming 

that the angle of critical state friction angle 'cv does not change irrespective of whether 

the soil in initially loose or dense sand and/or loading conditions, Bolton (1986) proposed 

the following empirical stress-dilatancy relationships: 

RDp cv AI  − =          (3.30) 

maxp cv k   − =                                                                                       (3.31) 



 

105 

 

The preceding correlations proposed by Bolton (1986) were found to be available 

in the range of 0 < 𝐼𝑅𝐷 < 4 for silica sand. According to Bolton (1986), the parameters k 

and A were taken as 0.8 and 5, respectively, under plane strain conditions, while k and A 

for triaxial strain were taken as 0.5 and 3, respectively. Bolton (1986) also determined the 

following relationship, which relates the maximum dilation rate in the failure state to the 

dilatancy index 𝐼𝑅𝐷 , applicable to both triaxial and plane strain configurations: 

max

0.3vol
RD

a

d
I

d





 
− = 

 
        (3.32) 

where 𝜀𝑎 and 𝜀𝑣𝑜𝑙 are the axial and volumetric strains, respectively. Andersen and Schjetne 

(2013) described the dilation angle ψ defined by Eq. (3.33): 
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It may be expressed by the following form, in combination with Eq. (3.32): 

0.3
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2 0.3
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I

I
 =

+
         (3.34) 

Charkraborty and Salgado (2010) proposed the empirical equation for Q in Eq. (3.29) as 

a function of  𝜎𝑐
′, instead of the constant value proposed by Bolton (1986). Houlsby (1991) 

developed a parametric relationship similar to Eq. (3.30) based on the critical state theory. 

Xiao et al. (2014) developed an empirical equation showing the variations of A with the 

fine contents of sand. These researchers found that in triaxial tests, A ranges between 3.0 

and 5.53 for Ottawa sand with 0% to 20% fine content. The parameters Q and 'cv exhibit 

minimal variations among cohesionless soils. Therefore, these parameters are not needed 

as further variables in preparing a parametric study (White et al., 2008).  
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The drained peak friction angle 'p from all of the triaxial tests performed by 

Andersen and Schjetne (2013) shows that 'p increases as the relative density Dr increases, 

and decreases with the increasing effective consolidation stress level 𝜎′
𝑐. Also, the 

dilatancy angle ψ increases with an increasing Dr, and ψ increases with a decreasing 𝜎′
𝑐 

at a high relative density Dr. Although the value of 'cv might slightly increase with a 

decreasing p' (Lings & Dietz, 2004), 'cv = 33º is used in the present study, based on the 

data presented by Randolph et al. (2004). From Eqs. (3.29-3.31), one can predict the peak 

angle of shearing resistance 'p and maximum dilatancy angle max , which are required in 

the finite element calculations, combined with the assumed value of the mean effective 

stress at failure  p'. For dense sand and low stress levels, the peak friction angle from the 

plane strain test 
PS

p is higher than the peak friction angle from the triaxial test   
TX

p  

(Schanz & Vermeer, 1996), knowing that the triaxial and direct shear tests are 

conventionally used to determine the angle of internal friction '. For plane strain analysis, 

the value of  
PS

p   should be properly adjusted.  Lings and Dietz (2004) stated that 
PS

p = 

DS

p + 5º.  

 

3.3 Large Deformation Modeling 

Relative significant displacement of the structural element through the soil 

medium, which causes significant movement of soil masses, occurs in many geotechnical 

problems, especially in offshore applications such as pile installation problems (Xu, 2016; 

Sheng et al., 2009), penetration of spudcan foundations (Craig & Chua, 1990; The et al., 
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2008; Hossain & Randolph, 2009), uplift capacity and keying of mooring anchors (Song 

et al., 2008; Wang et al., 2010; Wang & O’Loughlin, 2014; Tian et al., 2014), lateral 

buckling of pipelines (Dingle et al., 2008; Yu et al., 2012), etc. Numerical modelling of 

large deformation problems remains one of the most challenging aspects of geotechnical 

issues, combining geometric nonlinearity and, often, material constitutive nonlinearity 

(Tian et al., 2014). The main FE formulations used for large deformation problems in 

continuum mechanics are presented below.  

3.3.1 Lagrangian Approach 

In this approach, each individual node of the FE mesh is attached to the material 

particle in the deformable body during motion. The elements deform as the material 

deforms, as shown in Figure (3.17a). As the nodes are associated with the material 

particles, variations in state variables such as stress, strain, velocity, etc., throughout the 

process can easily be tracked. Also, implementation of the boundary conditions (i.e., free 

surfaces and interfaces between different materials) is simple. The main drawbacks of the 

Lagrangian approach are gross distortion of the individual finite elements that accompany 

large strains within the body, and high computational time (Rout et al., 2017). The 

Lagrangian approach can be adopted in two ways: 

• Total Lagrangian (TL) formulation, and 

• Updated Lagrangian (UL) formulation. 

The difference between the two formulations concerns the reference state of the body, 

which is taken at time zero in the TL approach, while the current (i.e., updated) geometry 



 

108 

 

is used in the UL approach. In the other words, all kinematic or static variables (e.g., stress, 

strain, velocity, displacement, etc.) in the TL correspond to a time zero configuration, 

while they correspond to the updated deformed configuration in the UL. In practice, the 

TL formulation is probably only useful for problems involving large deformations but 

small strains, or where the complex stress-strain law valid for large strains is to be 

followed. UL descriptions are commonly used to deal with large displacements, rotations, 

and strains of solids (Hu & Randolph, 1998). As discussed above, the UL corresponds to 

the updated deformed configuration, and configuration is updated with each strain 

increment. With sufficient accumulatively large strains, the FE mesh can suffer from 

excessive distortion and entanglement, leading the analysis to be terminated or become 

inaccurate. However, with a proper remeshing criterion or mesh rezoning technique, this 

approach can also be used for large deformation problems, overcoming the limitations 

related to element distortion (Cheng & Kikuchi, 1986; Rout et al., 2017). In both 

approaches, it is necessary to include second derivatives in the description of strains in 

order to account for finite rotations of the body (Hu & Randolph, 1982). 

As mentioned above, both the TL and UL formulations are limited by excessive 

distortion of the FE mesh as the analysis progresses. However, numerical convergence 

issues related to this mesh distortion, especially around the structural member where the 

shear strain localization zones are located, could terminate the analysis, even if serious 

distortion occurs within a few elements in the entire FE mesh. This termination of the 

analysis for a distorted element mainly occurs because of a zero or negative value of the 

Jacobian matrix determinant, understanding that the Jacobian matrix is used in FE analysis 
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to map the variables from the local coordinate system to a global coordinate system, or 

vice versa (Sun, 2013). 

In regard to the uplift capacity problems in this research, the results of the traditional 

Lagrangian FE analysis can sometimes be suspect when large deformations are required 

to mobilize the collapse load. Also, the Lagrangian approach does not take into 

consideration the geometric changes that might occur as the plate anchor moves upwards 

towards the ground surface, or into lower strength soil layers. This geometrical 

nonlinearity is so large that it cannot be ignored during analysis. 

3.3.2 Eulerian Approach 

In the Eulerian or spatial approach, the nodes of the FE mesh are fixed, while the 

material flow with respect to the mesh is as shown in Figure (3.17b). As the FE mesh is 

fixed, the excessive distortion that occurs in large deformation problems can be handled. 

Eulerian elements may not always be 100% full of material; many may be partially or 

completely void. The Eulerian material boundary must, therefore, be computed during 

each time increment, and generally does not correspond to an element boundary. Eulerian 

analysis is effective for applications involving extreme deformation, which may 

potentially lead to high nonlinearity, up to and including fluid flow. In these applications, 

traditional Lagrangian elements become highly distorted and lose accuracy. As material 

flows through a Eulerian mesh, state variables are transferred between elements via 

advection. The variables are assumed to be linear or constant in each old element. These 

values are then integrated over the new elements, after remeshing. The new value of the 
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variable is found by dividing the value of each integral by the material volume or mass in 

the new element (ABAQUS, 2014). 

The following sections present a review of the most popular numerical approaches 

proposed over last three decades to handle the issue of excessive distortion of finite 

element mesh, due to significant soil deformation. The focus is on techniques used in the 

present study. 

3.3.3 ALE Approach 

As mentioned above, the mesh velocity in the Updated Lagrangian UL approach 

equals the material velocity, while the mesh velocity is fixed to zero in the Eulerian 

approach. In an attempt to combine the best features of both the Lagrangian and the 

Eulerian approaches, a more flexible approach called the Arbitrary Lagrangian-Eulerian 

(ALE) was developed by Ghosh and colleagues (Ghosh & Kikuchi, 1991; Ghosh, 1990). 

In the ALE approach, the nodes of the FE mesh may be moved with the material in the 

normal Lagrangian fashion, or be held fixed in the Eulerian manner. Also, as suggested 

above, they may be moved in some arbitrarily specified way to give a continuous rezoning 

capability. Because of this freedom in moving the FE mesh that is offered by the ALE, 

greater distortions of the continuum can be handled than would be allowed by a purely 

Lagrangian method, with more resolution than that afforded by a purely Eulerian approach 

(Donea et al., 2004). In other words, the FE mesh motion based on the ALE technique can 

move with the material in a normal Lagrangian fashion only where necessary, such as at 

free boundaries (as shown in Figure (3.17a)). Otherwise, the mesh and material motions 

are independent, as shown in Figures (3.17c & 3.18). 
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There are several FE methods that essentially fall within the ALE approach and 

are used in the analysis of many of geotechnical engineering problems, such as the uplift 

of plate anchors. Three main techniques will be discussed in the following section, with a 

focus on those used in the present research. The performance of each method is facilitated 

by specific time integration schemes for the governing equations, remeshing strategy, and 

mapping technique (see Table 1), resulting in each approach having certain advantages 

and disadvantages for particular problems (Wang et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.17 An explanatory demonstration of the Eulerian, Lagrangian, and 

ALE formulations (courtesy of Proudian, 2012). 
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Table 3.1 Differences Among the Three Techniques (Wang et al., 2015). 

 RITSS EALE CEL 

Integration 

scheme 

Implicit  Implicit Explicit 

Elements Quadratic  Quadratic, quartic, quintic Linear 

Implementation  2D, 3D  2D  3D 

Meshing Periodic mesh 

regeneration in global or 

local region 

Mesh refinement by adjusting 

the location of nodal points 

Mesh fixed in 

space 

Mapping of field 

variables 

Interpolation ALE convection equation First- or second-

order advection 

Cost of 

Lagrangian phase 

Heavy Heavy Moderate 

Cost of Eulerian 

phase 

Minimal Minimal Heavy 

Applications Static, dynamic, 

consolidation 

Static, dynamic, consolidation, 

dynamic consolidation 

Quasi-static, 

dynamic 

User-friendliness Commercial pre- and 

post-processors, but 

requires script programs 

to control  

In-house pre- and post-

processors 

Commercially 

available, 

graphical 

interface available 

 

3.3.3.1 Efficient ALE Approach 

There are two categories of efficient ALE (EALE), including the operator-split 

(i.e., the decoupled ALE method) and coupled ALE methods. With the decoupled ALE, 

each time step is decoupled into two phases. First, there is a conventional Lagrangian UL 
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phase, which is performed on the deformable mesh. Then, the deformed mesh is updated 

by adjusting the positions of the nodes, but maintaining the topology. Next, the field 

variables (such as stresses and material properties) are updated and mapped from the old 

(i.e., distorted) mesh to the new (i.e., refined) mesh, representing the Eulerian flow phase 

through the mesh. In the decoupled ALE, one first solves the material displacements via 

the equilibrium equation, and then computes the mesh displacements through a mesh 

refinement technique. In the UL phase, the incremental displacements are calculated for a 

given load increment by satisfying the principle of virtual work.  It is of note that in a large 

deformation analysis, the stress–strain relations must be frame-independent to guarantee 

that possible rigid body motion does not induce extra strain within the material. This 

requirement is satisfied by introducing an objective stress rate into the constitutive 

equations. An important feature of an objective stress rate is that it should not change the 

values of the stress invariants, thus guaranteeing that a previously yielded point remains 

on the yield surface after being updated, due to rigid body motion (Wang et al., 2014). 

After satisfying equilibrium, the UL phase is usually finalized by updating the 

spatial coordinates of the nodal points according to incremental displacements. 

Unfortunately, the continuous updating of nodal coordinates alone may cause mesh 

distortion in regions with relatively high deformation gradients. Hence, the distorted mesh 

is refined using a suitable mesh refinement technique. Most mesh refinement techniques 

are based on special mesh generation algorithms, which must consider various factors such 

as the dimensions of the problem, type of elements to be generated, and regularity of the 

domain. In fact, it is possible to use any mesh-refining algorithm designed to improve the 
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shape of the elements once the topology is fixed. Simple iterative averaging procedures 

can be implemented when possible (Donea et al., 1982; Trepanier et al., 1993; Ghosh & 

Raju, 1996; Aymone et al., 2001; Wang et al., 2014).  

When the ALE description is used as an adaptive technique, the objective is to 

optimize the computational mesh to achieve improved accuracy, possibly at a low 

computing cost. (The total number of elements in the mesh and element connectivity 

remain unchanged throughout the computation.) Mesh refinement is typically carried out 

by moving the nodes towards the zones with a strong solution gradient, such as 

localization zones in large deformation problems involving softening materials. 

Developing such algorithms for any arbitrary domain is usually both difficult and costly. 

Moreover, these algorithms often do not preserve the number of nodes and elements in the 

mesh, and may cause significant changes in the topology. To overcome these problems, a 

general method for determining mesh displacement based on the use of an elastic analysis 

was presented by Nazem et al., 2006. In this method, the nodes on all of the boundaries of 

the problem – including the boundaries of each body, material interfaces, and loading 

boundaries – are first relocated along the boundaries, resulting in prescribed values for the 

mesh displacements for those nodes. With the known total displacements of these 

boundary nodes, an elastic analysis can then be performed using the prescribed 

displacements to obtain the optimal mesh and, hence, the mesh displacements for all of 

the internal nodes. An important advantage of this mesh optimization method is its 

independence of element topology and problem dimensions. This method uses the initial 

mesh during the analysis and does not regenerate a mesh, (i.e., the topology of the problem 
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does not change, and hence can be implemented easily using existing FE codes). After 

mesh refinement, all variables at the nodes and integration points are mapped from the old 

(i.e., distorted) mesh to the new (i.e., refined) mesh (Wang et al., 2014). 

Conversely, in the so-called coupled ALE method, this separation usually 

introduces unknown mesh displacements into the governing global system of equations, 

doubling the number of unknown variables and leading to significantly more expensive 

analyses. Several numerical studies have shown that ALE adaptive meshing using the 

commercial software ABAQUS maintains a high-quality mesh and avoids numerical 

problems that would develop from a high distortion of the soil surrounding the structural 

member, especially in different geotechnical applications such as cone penetration (Susila 

& Hryciw, 2003; Wang et al., 2015; Huang et al., 2004; Walker & Yu, 2006) and uplift 

capacity problems (Hong et al., 2014 for embedded suction caisson anchors in sand, and 

Hao et al., 2014 for circular plate anchors in sand). Hao et al. (2014) analyzed uplift 

capacity problem for plate anchors in sand, using the explicit dynamics procedure and 

adaptive meshing tool in ABAQUS/Explicit. The different mesh re-discretization 

strategies used in the analysis did not produce obvious differences in uplift capacity, as 

determined by comparing the load displacement curve based on different mesh control 

parameters and smoothing algorithms. 

3.3.3.1.1 ALE Method in ABAQUS/Explicit 

ABAQUS/Explicit provides a very general and robust adaptive meshing capability 

for highly nonlinear problems ranging from quasi-static to high-rate dynamic. Adaptive 

meshing is performed in ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian 
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(ALE) based on the operator-split technique for implementing mesh distortion issues 

attributable to large deformations in the surrounding soil. This is especially useful for 

deeply embedded plate anchors with uplift capacity problems. The ALE adaptive meshing 

in ABAQUS uses a single mesh definition that is gradually smoothed within the analysis 

steps. The basic characteristics of the ALE algorithm in ABAQUS/Explicit is that the FE 

mesh is smoothed at regular incremental steps, keeping the element distortion as minimal 

as possible within an acceptable element aspect ratio. Also, this technique maintains the 

same mesh topology, number of elements and nodes, and connectivity, in order to keep a 

high-quality mesh throughout the analysis (ABAQUS, 2014). Figure (3.18) shows the 

differences between the Lagrangial and ALE simulations in improving the finite element 

mesh through a reduction of element distortion.  

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Deformed configuration using Lagrangian and ALE simulations, 

upon completion of the analysis (ABAQUS Handbook, 2014). 
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In most cases, the frequency of the adaptive meshing is the parameter that most affects 

the mesh quality and computational efficiency of adaptive meshing. During each adaptive 

meshing increment, the new mesh is created by performing one or more mesh sweeps, and 

then advecting the solution variables to the new mesh. ALE adaptive meshing in 

ABAQUS/Explicit consists of two main tasks: 

Mesh sweeps (smoothing the mesh) 

In problems where large deformations are anticipated, the improved mesh quality 

resulting from adaptive meshing can prevent the analysis from terminating as a result of 

severe mesh distortion. In an adaptive meshing increments, a new, smoother mesh is 

created by sweeping iteratively over the adaptive mesh domain. These iterations, 

conducted according to the chosen smoothing algorithm, are called mesh sweeps. During 

each mesh sweep, the nodes in the domain are relocated based on the current positions of 

neighboring nodes and elements, in order to reduce element distortion. In a typical sweep, 

a node is moved a fraction of the characteristic length of any element surrounding the 

node. Increasing the number of sweeps increases the intensity of the adaptive meshing in 

each adaptive meshing increment. The default number of mesh sweeps is one. Smoother 

mesh can be determined in ABAQUS/Explicit based on four aspects, as illustrated below. 

Each of these aspects can be controlled by defining the adaptive mesh controls. Defaults 

have been chosen so that the overall algorithm works well for most problems. The 

resulting meshes will differ depending on the method used. 
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Volume smoothing 

    Figure (3.19), the new position of node M is determined by a volume-weighted 

average of the positions of the element centers C of the four surrounding elements (i.e., 

two dimensions). This is the default method in ABAQUS/Explicit, and will tend to push 

the node M away from element center C1 and toward the element center C3, in order to 

reduce possible element distortion. 

Laplacian smoothing 

In Figure (3.19), the new position of node M is determined by averaging the positions 

of the four nodes L connected to M by element edges. The locations of nodes L2 and L3 

will pull node M up and to the right in order to reduce element distortion. For domains 

with boundaries of a complex curvature, volume smoothing generally results in a more 

balanced mesh. 

Equipotential smoothing 

Equipotential smoothing is a higher-order method that relocates a node by calculating 

a higher-order weighted average of the positions of the node's eight nearest neighbor nodes 

in two dimensions (or its 18 nearest neighbor nodes in three dimensions). In Figure 

(3.19), the new position of node M is based on the positions of all the surrounding L and 

E nodes. 

Combining smoothing methods 

To combine smoothing methods, one must specify the weighting factor for each 

method. When more than one smoothing method is used, a node is relocated by computing 

a weighted average of the locations predicted by each chosen method. All weights must 

https://www.sharcnet.ca/Software/Abaqus/6.14.2/v6.14/books/usb/pt04ch12s02aus79.html#aaleremesh-smooth-method
https://www.sharcnet.ca/Software/Abaqus/6.14.2/v6.14/books/usb/pt04ch12s02aus79.html#aaleremesh-smooth-method
https://www.sharcnet.ca/Software/Abaqus/6.14.2/v6.14/books/usb/pt04ch12s02aus79.html#aaleremesh-smooth-method
https://www.sharcnet.ca/Software/Abaqus/6.14.2/v6.14/books/usb/pt04ch12s02aus79.html#aaleremesh-smooth-method
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be positive, and their sum should typically be 1.0. If the sum of the chosen weights is less 

than 1.0, the mesh smoothing algorithm will be less aggressive at each adaptive mesh 

increment. If the sum of the chosen weights is greater than 1.0, their values are normalized 

so that their sum is 1.0. 

 

 

 

 

 

 

 

 

Advection sweeps (remapping solution variables) 

The process of mapping solution variables from an old to a new mesh is referred to as 

an advection sweep. At least one advection sweep is performed in every adaptive mesh 

increment. However, the numerical stability of the advection sweep is maintained only if 

the difference between the old and new mesh is small. Therefore, if after a mesh sweep 

the total accumulated movement of any node in the domain is greater than 50% of the 

characteristic length of any adjacent element, an advection sweep is performed to remap 

the solution variables from the old to the intermediate mesh. The mesh sweeps will 

continue until the specified number is reached or the movement of any node again exceeds 

the 50% threshold. At this time, an advection sweep is again performed to map the 

Figure 3.19 Relocation of a node during a mesh sweep 

(ABAQUS Handbook, 2014). 
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variables from the last intermediate mesh to the new intermediate mesh. The cycle will 

continue until the number of mesh sweeps reaches the specified number. The number of 

advection sweeps per adaptive mesh increment required for each adaptive mesh domain 

is determined automatically by ABAQUS/Explicit. The framework for ALE adaptive 

meshing in ABAQUS/Explicit introduces advective terms into the momentum balance and 

mass conservation equations to account for independent mesh and material motion. After 

the mesh has been smoothed, the element variables, nodal variables, and momentum are 

remapped by advection. Two advection methods are available in ABAQUS/Explicit:  

1. The default second-order advection method improves accuracy during the 

remapping phase of the adaptive meshing.  

2. The first-order method tends to diffuse any sharp gradients of element variables 

during the remapping phase. This technique should be used only as a 

computationally efficient alternative for quasi-static simulations that do not require 

frequent adaptive meshing. 

Both advection methods conserve the value of any solution variable integrated over the 

domain, keeping it unchanged by adaptive meshing. For more information, refer to the 

ABAQUS Analysis User’s Manual. 

The Analyses in Chapters 4 and 6 of this research were performed using the 

decoupled EALE technique. This technique allows the anchor to experience relatively 

large deformations, avoiding numerical divergence issues due to mesh distortion that 

occurs around the corners of the anchor plate, where the large shear strain localization 

zones exist. Basically, the nature of the pullout process of a plate anchor is a quasi-static 
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process. The large deformation finite element analysis was formulated in the frame of 

dynamic explicit use of ABAQUS/Explicit software rather than a static implicit procedure 

to promote numerical stability and avoid the divergence problems from mesh distortion 

that could occur in a static formulation. To simulate the quasi-static condition as closely 

as possible, a pullout rate of 0.02 m/sec was applied at the reference point of the anchor.  

Explicit finite element programs using a central difference integration scheme are 

more efficient than implicit programs when solving transient large-deformation problems. 

The time step size of explicit programs is limited by the Courant stability criterion, which 

says that the largest stable time step is the minimum time necessary for a sound wave to 

cross the smallest element in the mesh. As an analysis proceeds, elements stretch in length 

and shrink in width, and the size of the time step decreases. When the size of the time step 

becomes too small, continuing the analysis becomes prohibitively expensive (Benson, 

1989). 

3.3.3.2 RITSS Technique  

The Remeshing and Interpolation Technique with Small Strain (RITSS) was 

developed by Hu and Randolph (1998). It was employed by Randolph (2006) for large 

deformation problems in geotechnical engineering, such as cone penetration, spudcan 

penetration, and caisson installation issues. The RITSS technique is a combination of the 

conventional Lagrangian small strain finite element analysis, automatic periodic 

remeshing process, and linear field variables by polynomial interpolation from the old 

mesh to the new. Large deformations occurring during the keying process of the plate 

anchor may cause numerical instability as a result of severe mesh distortion. The RITSS 
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approach was adopted successfully in the second part of this research in order to 

investigate the plate keying process.  

The basic characteristic of this approach is that the deformation of the structure 

object (in this research, a plate anchor) is divided into increments that are adequately small 

enough to ensure that there is no mesh distortion that could terminate the analysis. After 

every analysis step for each small deformation increment, the last deformed geometry is 

extracted for the next new analysis step (see Figure 3.20) and remeshed based on the 

updated structural object. The main difference between RITSS and EALE is that the 

topology of the mesh can be updated as needed in RITSS, while the topology of the 

problem does not change when using EALE. Thereafter, all field variables such as stresses 

and material properties are mapped from the old mesh to the new. This remeshing-

remapping process is repeated in a loop until the accumulated displacement of the 

structural object reaches the desired value. Figure (3.21) describes the algorithm for the 

RITSS technique. 

3.3.3.2.1 RITSS Implementation 

Generally, the RITSS approach includes four steps (Randolph et al., 2008): (1) 

initial mesh generation, (2) incremental step of the Lagrangian analysis, (3) updating of 

the boundary conditions and remeshing, and (4) mapping of the field variables and 

material properties from the old mesh to the new. In any analysis, steps (2) to (4) are 

repeated until completion of the whole LDFE analysis. Step (2) can be fulfilled by any 

traditional Lagrangian finite element program, such as AFENA (Carter & Balaam, 1995). 

More recently, FE commercial packages such as ABAQUS (Wang et al., 2010a; Wang et 
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al., 2010b), ANSYS (Yu, 2008), and LS-DYNA (Liyanapathirana, 2008) have been used 

to implement step (2) (Tian et al., 2014). Once the last deformed geometry is extracted, a 

new mesh (i.e., steps (1 & 3)) that is more suitable to the current state of the problem must 

be generated via third party software by using the mesh generation capabilities (e.g., 

ABAQUS, ANSYS) or even the affiliated pre-processor of any Lagrangian finite element 

program.  The accuracy of large deformation analysis using RITSS depends significantly 

on the interpolation and mapping procedure of step 4 in the analysis. Irrespective of 

whether the field variables are mapped to the new integration points (e.g., total or effective 

stresses and material properties) or the new nodes (e.g., velocities, accelerations, and pore 

pressure), the interpolation is always conducted locally within an old element, old element 

patch, or triangle connecting old integration points, depending on the mapping technique 

adopted. Therefore, the mapping process for the field variables is the core of the RITSS 

approach.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.20 Use of mesh-to-mesh solution mapping as a component of a 

rezoning technique (ABAQUS User’s Manual, 2014). 
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Three main mapping techniques for the field variables (i.e., stresses and material 

properties) moving from the old mesh to the new were explored in previous FE simulations 

(Wang et al., 2015). Super-convergent Patch Recovery (SPR) was first proposed by 
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Figure 3.21 RITSS approach flow chart. 
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Zienkiewicz and Zhu (1992), and Recovery by Equilibration of Patches (REP) was 

described by Boroomand and Zienkiewicz (1997). These techniques are employed to 

recover stresses from old integration points and move them to old element nodes. 

Subsequently, the old element containing each new integration point is searched for, and 

the field variables are then interpolated from the old element nodes. In contrast, in the 

Modified Unique Element Method (MUEM) proposed by Hu and Randolph (1998), the 

field variables are mapped directly from the old integration points in the old mesh to the 

integration points in the new mesh. To implement step (4), powerful commercial 

computation and programming packages such as FORTRAN and MATLAB may be 

required to write user-subroutine code, adopting one of the abovementioned mapping 

techniques.  

3.3.3.2.2 Mesh-to-Mesh Solution Mapping 

This algorithm, similar to MUEM, is used to map field variables between meshes 

with different topologies. It has been adopted by a number of researchers due to the 

simplicity and applicability of the RITSS approach to geotechnical applications. These 

researchers demonstrated the performance of the RITSS approach, applying the algorithm 

to several geotechnical problems such as deep penetration of a T-bar penetrometer (Tian 

et al., 2014), penetration of shallow strip footing (Tian et al., 2014), keying of a plate 

anchor (Tian et al., 2014; Yu et al., 2009), cone penetration tests (Sun, 2013; Wang et al., 

2015; Randolph, 2006), and penetration and buckling of shallowly embedded pipelines 

(Wang et al., 2015). Most recently, the RITSS approach was adopted by Xu (2016), using 

an SPR or MSM mapping solution technique to model a concrete pile penetration problem. 
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The numerical analysis was carried out using ABAQUS software, and the RITSS approach 

was implemented by a script written in Python code.   

ABAQUS adopted the MSM solution mapping technique by using a built-in function 

termed “mesh-to-mesh solution mapping,” The keyword *MAP SOLUTION operates by 

interpolating results from the nodes in the old mesh to points (either nodes or integration 

points) in the new mesh. Most recently, Tian et al. (2014) avoided the need for user-

defined code to map field variables by utilizing this function to present a simple 

implementation of RITSS. According to Dassault Systèmes, MSM is performed according 

to the following steps: 

1. Extract the coordinate information from the old mesh. 

2. Associate the solution variables with the nodes in the old mesh. For nodal solution 

variables such as nodal temperature or pore pressure, the association is already 

made.  

3. For integration point variables (e.g., stresses), ABAQUS obtains the solution 

variables at the nodes of the old mesh by extrapolating values from the integration 

points to the nodes of each element of the old mesh, and then averaging these 

values over all similar elements abutting each node.  

4. Specify the element of the old mesh in which the new integration point lies.  Next, 

determine the location of each point in the new mesh with respect to the old mesh 

by inverse transformation of the position information from a global coordinate 

system to a natural local coordinate system (Xu, 2016).  
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5. Interpolate the field variables (i.e., stresses and material properties) from the nodes 

of the old element to the points in the new model. All necessary variables should 

be automatically interpolated in this way so that the solution can proceed with the 

new mesh.  

 

3.3.3.2.3 RITSS Implementation for Keying Process by ABAQUS 

The whole LDFE of the plate keying process requires a large number of increments to 

reach its final orientation. Therefore, the RITSS approach can be implemented by 

submitting a Python script code to the ABAQUS/Standard software to automate the 

process of keying. The Python script code includes the main steps: 

1. The original problem geometry is built with initial geostatic stresses and the first 

small incremental displacement is applied, producing an ODB (Output File) result 

file after completion of the analysis. In the keying process problem, the FE analysis 

is controlled by displacement increments at the anchor pad eye.  

2. After every small increment, the updated position of the plate anchor, soil 

boundaries, and interfaces are extracted from the previous ABAQUS ODB result 

file. The ABAQUS built-in functions PartFromOdb and either 

Part2DGeomFrom2DMesh or PartFromNodesAndElements are utilized to 

store the geometric information of the deformed mesh and generate a new 

geometry. In the plate anchor keying problem, the extraction scheme is divided 

into three conditions: 
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o During the keying process, the soil surface or free boundary is allowed to 

be changed in the following numerical analysis. 

o The soil–anchor interface is limited to the “no breakaway” condition during 

the keying process. (This eliminates the potential gap between the anchor 

and soil body.) A pair of nodes is placed at the same initial geometric 

location. One is attached to the rigid anchor (i.e., the master surface) and 

the other is affixed to the interface soil body (i.e., the slave surface). To tie 

these two surfaces, ABAQUS eliminates the degrees of freedom of the 

slave surface nodes that are constrained and ties the two surfaces together 

for the duration of the simulation. By default, ABAQUS uses a position 

tolerance criterion to determine the constrained nodes, based on the 

distance between the slave nodes and the master surface. Alternatively, one 

can specify a node set containing the slave nodes to be constrained, 

regardless of their distance to the master surface. 

o Other boundaries are kept unchanged during the keying process   

All finite element nodes coordinate and deformation information for the 

abovementioned boundaries are detected and stored in a scratch file by the 

ABAQUS. Before a new displacement increment begins, the geometry of a new 

finite element model is created based on the updated coordinates of the nodes from 

the scratch file for all soil boundaries and interfaces in the last displacement 

increment.  
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3. A new finite element model is set up, based on the deformed geometry and 

remeshing. 

4. Field variables such as stresses and material properties are mapped from the old 

mesh to the new, using the keywords *RESTART, WRITE, and *MAP 

SOLUTION in the Python script file. The first keyword is used to extract and store 

the field variables from the old mesh, and the second keyword is used to map the 

field variables by extrapolation and interpolation calculations, as discussed above 

with regards to the MSM algorithm. 

5. The Python script input file is run for another incremental step of displacement.  

Steps (2 - 4) are repeated until completion of the analysis.  

With the *MAP SOLUTION function built in to this procedure to avoid any need to 

write user subroutine code, the whole LDFE simulation can be conducted with 

ABAQUS/CAE. However, by writing one piece of ABAQUS Python script, a large 

number of increments required in the LDFE can be automated (rather than operated 

manually in ABAQUS/CAE). This Python script can be submitted to ABAQUS for 

running without any user intervention (Tian et al., 2014). The structure of the Python code 

is illustrated below. It is described briefly for implementation into the RITSS approach for 

use with the keying problem. 
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# START OF  THE PYTHON CODE (MASTER PROGRAM) 

import os, sys, re, osutils 

import driverUtils, sys 

from Functions_Utility import * 

…… 

 

# INITIAL MODEL PHASE (SUBROUTINE) 

execfile('MESH-0Mod.py') 

# CODE TO CREATE INITIAL MODEL WITH THE FIRST DISPLACEMENT INCREMENT OF KEYING  

  

mymodel=mdb.models[’Model-1’] 

p = mdb.models['MESH-0'].Part(name='Soil', dimensionality=TWO_D_PLANAR, 
type=DEFORMABLE_BODY) 

p.BaseShell(sketch=s) 

p = mdb.models['MESH-0'].Part(name='Anchor', dimensionality=TWO_D_PLANAR,   

type=DISCRETE_RIGID_SURFACE) 

p.AnalyticRigidSurf2DPlanar(sketch=s1) 

mdb.models['MESH-0'].Material(name='Soil') 

a = mdb.models['MESH-0'].rootAssembly 

a.Instance(name='Anchor-1', part=p, dependent=ON) 

a.Instance(name='Soil-1', part=p, dependent=ON) 

p.setMeshControls(regions=faces, elemShape=QUAD, technique=FREE, allowMapped=False) 

elemType1 = mesh.ElemType(elemCode=CPE8R, elemLibrary=STANDARD) 

p.seedEdgeBySize(edges=pickedEdges, size=size_around_anchor, deviationFactor=0.1, constraint=FINER) 

mdb.models['MESH-0'].parts['Soil'].generateMesh() 

…... 

mdb.models['MESH-0'].GeostaticStress(name='Predefined Field-1', region=region, stressMag1=-160, 
vCoord1=0.0, stressMag2=0.0, vCoord2=10.0, lateralCoeff1=0.5, lateralCoeff2=None) 

mdb.models['MESH-0'].StaticStep(name='Static', previous='Initial', timePeriod=1.0, maxNumInc=10000, 
initialInc=0.001, minInc=1e-35, maxInc=0.01, nlgeom=ON) 

…… 

MyJob=mdb.jobs['MESH-0'] 

….. 

 

# LOOP PHASE 

# KEEP THE LOOP UNTIL THE FINAL PLATE ANCHOR ORIENTATION IS REACHED  

while (MeshNumber <= MAX): 

 nowJobName="MESH-" + "%i" % (MeshNumber) 

 prevJobName="MESH-" + "%i" % (MeshNumber-1) 

#SUBROUTINE CODE TO EXTRACT GEOMETRY AND BOUNDARY CONDITIONS DATA OF THE 
OLD MESH FROM PREVIOUS ANALYSIS AND CONVERT IT TO A NEW PART AND REMESH IT 
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execfile('RemeshingandSettingUpNewModel3.py') 

 ….. 

deformed=mdb.models[nowJobName].PartFromOdb(fileName=odbName,name='Soil',instance=o
rphanInstance,    shape=deformedShape,  step=importStep) 

p1=mdb.models[nowJobName].Part2DGeomFrom2DMesh(name='Soil',part=deformed, 

featureAngle=featureAngle) 

….. 

# REMESH AND SET UP NEW MODEL  

…… 

p.seedEdgeBySize(edges=pickedEdges, size=size_around_anchor_base, deviationFactor=0.1, 
#Soil Anchor Surface constraint=FINER) 

mdb.models[nowJobName].parts['Soil'].generateMesh() 

 

#MAP FIELD VARIABLES AND MATERIAL PROPERTIES FROM PREVIOUS ANALYSIS USING 
MESH - TO - MESH SOLUTION  

…. 

model.keywordBlock.insert(modelBlock, """*MAP SOLUTION""") 

…. 

# CREATE NEW JOB TO CONDUCT SMALL INCREMENT OF KEYING PROCESS AND SUBMIT 
THE ANALYSIS 

….. 

mdb.jobs[nowJobName]. writeInput(consistencyChecking=OFF)  

os.system ('abaqus job=MESH-'+str (MeshNumber) +' oldjob=MESH-'+str (MeshNumber-1)+ ' 
output_precision=full interactive') 

…. 

 

# END OF CODE 

 

3.4 Soil Anchor Interface Modeling 

Contact interface modeling is an important factor in the numerical modeling of soil 

structure interaction problems. A soil-anchor interface transmits shear plus normal forces 

when they are in contact. The relationship between these two force components is the 

friction between the contact bodies. However, the friction model available in ABAQUS is 

the basic concept of the Coulomb friction model, which relates the maximum allowable 
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frictional (shear) stress across an interface to the contact pressure between the contacting 

bodies. 

According to ABAQUS, two contacting surfaces can carry shear stresses across 

their interface up to a certain magnitude before they start sliding relative to one another; 

this state is known as sticking. The Coulomb friction model defines this critical shear 

stress as 𝜏𝑐𝑟𝑖𝑡𝑖𝑐 , at which the sliding of the surfaces begin as a fraction of the normal 

effective contact stress at the interface 𝜎′ between the surfaces (𝜏𝑐𝑟𝑖𝑡𝑖𝑐 =  𝜇𝜎′). Stick/slip 

calculations determine when a point transitions from sticking to slipping or from slipping 

to sticking. The fraction μ =  tan δ is known as the coefficient of friction, where δ is the 

soil anchor interface friction angle. The value for δ depends on the interface characteristics 

and relative movement between the anchor and soil; however, it generally lies between 

50% and 100% of the peak friction angle (Roy et al., 2015). The value δ = 0% of the peak 

friction angle 𝜙′
𝑝
 is adopted for perfectly smooth anchors (i.e., frictionless), while δ = 

100% is used for perfectly rough anchors; finally, δ = 50% is for use in situations of 

intermediate roughness. 

There are two ways to define the basic Coulomb friction model in ABAQUS when 

simulating a soil-structure contact interface: rigid plastic and bilinear elasto-plastic 

models. In the rigid plastic model, once the shear stress at the soil anchor interface reaches 

the critical value 𝜇𝜎′, permanent relative displacement suddenly occurs, as shown in 

Figure (3.22a). In the default bilinear elasto-plastic model shown in Figure (3.22b), 

sticking friction corresponds to the elastic regime, and slipping friction corresponds to the 

plastic regime. The amount of elastic slip is taken as 5% of the element size in the contact 
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interface. For instance, if the minimum contact interface soil element size is 10 mm, the 

full interface strength can be mobilized when the relative displacement is around 1/2. Xu 

(2016) found in a feasibility study using a RITSS approach and conducted for a pile 

penetration problem that the rigid plastic contact model will cause serious divergence 

problems in FE analysis. Conversely, an elastic zone in the elasto-plastic contact model 

will help to increase the stability of an FE analysis. 

Frictional constraints are enforced by default with stiffness (i.e., the penalty 

method) in ABAQUS/Standard, and with the general contact algorithm in 

ABAQUS/Explicit. The separation or breakaway of the anchor from the soil is allowed to 

occur where the normal effective stresses 𝜎′ behind the anchor plate face are reduced to 

zero (particularly in the first and third parts of this research). Immediate breakaway occurs 

when there is no suction between the soil and anchor for cohesionless soil.   
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Sticking friction 

Slipping friction 

Shear Stress, τ 

Total slip 
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Slipping friction 
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a- Rigid plastic model. b-   Bilinear elasto-plastic 

Figure 3.22 Soil anchor contact interface model. 
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CHAPTER IV 

 VERTICAL PULLOUT CAPACITY OF CIRCULAR PLATE ANCHORS IN 

SAND*1 

 

4.1 Introduction 

As noted in chapter two, attention to plate anchors in sand has been relatively 

limited in the research literature, particularly for deeply embedded plates. Moreover, most 

previous studies on embedded plate anchor capacity problems in sand cover a relatively 

shallow anchor embedment depths (typically ranging between 8-10 plate widths or 

diameters), which is not sufficiently deep to characterize the transition behavior from 

shallow to deep embedment. Also, the influence of elastic soil stiffness E in evaluating 

anchor performance in sand, especially for deeply embedded anchors, has received little 

attention in the research literature and needs to be systematically investigated. Therefore, 

this chapter is devoted to improve the understanding of deep plate anchor behavior in sand, 

with a focus on describing the transition from shallow to deep failure mechanisms. The 

present finite element study investigates a range of anchor embedment depths from one to 

more than 20 plate diameters. Additionally, the effect of elastic soil behavior (in terms of 

Rigidity Index Ir) on anchor performance is investigated, with emphasis on deeply 

embedded anchors. This study focuses on how dimensionless breakout capacity Nq varies 

with embedment depth, considering the effects of rigidity index, dilatancy angle and 

                                                

* Reprinted with permissions from “Numerical Investigation of Uplift Behavior of Circular Plate Anchors 

in Uniform Sand” by Authors Nabil Al Hakeem and Charles Aubeny, 2019, Journal of Geotechnical and 

Geoenvironmental Engineering, ASCE 145 (9).  
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friction angle. The validity of the present finite element analyses was evaluated through 

comparisons to lower bound plastic limit solutions, previous finite element studies, and 

previously published experimental data. 

4.2 Framework of the Parametric Finite Element Study 

This chapter presents a parametric finite element study of pullout capacity of 

circular, horizontally oriented anchors in sand, subjected to centric loading (Figure 4.1a). 

Additionally, the analyses are directly applicable to helical anchors.  

The pullout resistance may be expressed in terms of a dimensionless breakout factor 

defined as: 

Nq = Qult/A′z                                                                    (4.1) 

where Qult is ultimate load (force) capacity, A is anchor area and 'z is effective vertical 

overburden stress. Figure 4.1b shows a typical trend in the variation of Nq with anchor 

embedment depth z as depicted by Rasulo et al. (2017) for a circular plate anchor of 

diameter D embedded at depth z. Shallow embedment failures involve breakout of a soil 

block to the surface, with the associated Nq-z curve showing a relatively rapid increase in 

breakout resistance with increasing embedment depth. For deeply embedded anchors a 

localized flow - around failure mechanism develops, with corresponding constant 

breakout factor Nqmax. Experimental data, supported by numerical simulations presented 

later in this chapter, show a smooth transition between the shallow and deep mechanisms. 

Therefore, a full predictive model for plate anchor capacity must (1) describe the shallow 

failure mechanism, (2) define the maximum breakout factor Nqmax for deeply embedded 

anchors, and (3) define the depth at which Nqmax is approached. 
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This framework applies to a soil profile for which the relevant soil properties 

(friction, dilation, rigidity index) are constant (Figure 1b). However, it is important to 

recognize that such conditions virtually never occur, even in hypothetical soil profiles 

having a uniform relative density Dr. Since the soil parameters controlling breakout 

resistance are stress-level dependent (e.g. the reduction of friction angle ', dilation angle 

 and rigidity index Ir at high stress levels), it follows that Nqmax cannot be considered to 

be independent of depth, and in fact declines as illustrated by the dashed line in Figure 

4.1b. It further follows that a predictive framework for Nqmax and the depth at which it 

mobilizes must account for both soil relative density as well as the stress-level dependency 

of the various soil parameters affecting load capacity. 

Figure 4.1 Definition sketch and typical anchor behavior. Reprinted with permission 

from (Al Hakeem and Aubeny, 2019). 
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In regard to the soil strength-deformation parameters that need to be considered in 

developing a model of load capacity versus embedment depth (Nq-z/D), the study 

presented herein considers (1) the strength behavior defined by an angle of internal friction 

', (2) post-yield volume change behavior defined by a dilation angle ψ, and (3) elastic 

behavior defined in terms of the soil rigidity index Ir. Past studies of anchor performance 

have done much to quantify the influence of the first two parameters (' and ψ) for 

relatively shallow levels of embedment, typically z/D less than 8. However, the current 

investigation revealed that the elastic properties of the soil medium, as characterized by a 

rigidity index Ir, also exerts a significant influence on the performance of deeply embedded 

anchors. Accordingly, the predictive model of anchor performance developed in this 

chapter includes rigidity index along with ' and ψ, which is key to calculating anchor 

capacity at deep embedment. It is recognized that site investigations for most anchor 

installations will not typically involve direct evaluation of friction angle ', dilation angle 

ψ  and rigidity index Ir. Rather, a more realistic design approach would generally be based 

on relative density Dr (typically estimated from Cone Penetration Tests CPT) from which 

the relevant strength, dilation and elastic parameters would be estimated. At a given 

relative density, all three parameters vary with confining stress and, therefore, depth. Thus, 

a framework for predicting plate anchor capacity will ideally express anchor capacity as a 

function of relative density and embedment depth, implicitly accounting for effects of 

stress-dependent variations in material parameters on anchor capacity. 

In view of the above discussion, the study presented in this chapter proceeds according 

to the following steps:  
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➢ Finite element analyses are employed to investigate the influence of embedment 

depth z/D and soil parameters ', ψ  and Ir on the breakout factor Nq. 

➢ Based on the finite element studies an empirical function is developed for the 

breakout factor   Nq (', ψ, Ir).  

➢ Existing correlations of the relevant soil parameters to confining stress and relative 

density '('c, Dr), ('c, Dr), Ir('c, Dr ) – are invoked to develop relationships for 

breakout factor as a function of relative density, unit weight and depth Nq (Dr, ′, 

z/D). 

Most studies to date have considered relatively shallow anchor embedment, although 

experimental work by Merifield et al. (1999) and Rasulo et al. (2017) investigated 

embedment depths z/D greater than 10 to 15. Load capacity measurements in deeply 

embedded anchors showed a reversal in the curvature of the Nq versus z relationship, 

suggesting that a transition from a shallow to a deep failure mechanism occurs. The trend 

of the data in these investigations suggest that the bearing factor trends toward a constant 

value Nqmax, but these experimental and numerical studies were not extended to sufficient 

anchor embedment depths z/D to fully define the relationship. 

As summarized by Rasulo et al. (2017), Equation 4.2 characterizes the behavior of 

shallowly embedded circular plate anchors reasonably well. Equations 4.3 and 4.4 show 

the bounds of the factors Fas1 and Fas2. The lower bounds shown correspond to conditions 

of zero dilation. 

2

1 21q as as

z z
N F F

D D

   
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   
       (4.2) 
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1 2sin '  to 2 tan 'csasF  =         (4.3) 

( ) 2

2 0  to 4 / 3 tan 'asF =         (4.4) 

These equations realistically describe overall measured trends, but uncertainty remains, 

particularly in regard to the effect of the dilation angle .  

In light of the above summary of the state of knowledge on circular plate anchors in sand, 

finite element studies were undertaken to: (1) fully define the breakout factor Nq versus 

z/D relationship from shallow embedment through the transition range to a deep 

embedment characterized by a maximum breakout factor Nqmax, and (2) to evaluate the 

validity of Equations 4.2 - 4.4 and explore the possibility of incorporating these equations 

as one component of a general model of circular plate anchor behavior.  

 

4.3 Geometry, Material, and Finite Element Model 

A wished in place circular plate anchor using the ABAQUS/Explicit finite element 

analysis was considered in this chapter. As detailed in chapter three, a linearly-elastic, 

perfectly-plastic Mohr- Coulomb model was adopted in this research to simulate sand soil 

behavior, while the anchor plate was considered as perfectly weightless rigid because of 

its very high stiffness. The symmetry in the circular geometry and the applied loads 

dictated an axisymmetric formulation. Therefore, the soil medium was discretized into a 

mesh of four node axisymmetric bilinear quadrilateral reduced integration ABAQUS 

elements CAX4R. A typical structured mesh (Figure 4.2b) is created by zoning the 

problem geometry. A zone of high element density, with a minimum element size hmin 

=D/20, is constructed in the vicinity anchor. Preliminary finite element analyses showed 
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that the far field boundaries shown in the Figure 4.2a were sufficiently large to diminish 

any boundary effects on the calculated pullout capacity of plate anchor. Horizontal and 

vertical displacements were constrained at the bottom of the finite element domain, while 

only lateral displacements were constrained at the far field vertical boundaries. The 

displacement-controlled FE procedure was used in the current analysis. Therefore, 

displacement loading increments were imposed on the reference point of rigid body (plate 

anchor). However, the stiffness matrix obtained by displacement-based finite element 

formulations tends to over-estimate the actual stiffness, which the analysis presented 

herein sought to mitigate by employing a reduced integration formulation. Therefore, 

using reduced integration point instead full integration element is advisable for many cases 

in non-linear plasticity problems. Generally speaking, second order elements give better 

stress distribution with more accuracy and lower number of elements. However, second 

order elements dramatically increase the simulation time due to having more nodes and 

therefore far larger stiffness matrix compared to first order elements. Accuracy of the 

solution for displacement-based finite element formulations, which use first ordered 

reduced integration point can be improved by increasing the number of elements. 

All analyses were performed with an anchor diameter D = 1m and a thickness-diameter 

ratio t/D = 0.1. Key soil properties considered in the analysis include the friction angle ', 

dilation angle ψ, and rigidity index of the soil Ir. The present parametric study considered 

friction angles ranging from ' equal to 30° to 50°, soil dilation angle ψ varying from 0º 

to 25º, and soil rigidity index Ir varying from 100 to 500. Other soil properties for all cases 

included a cohesion c = 0.05 kPa, Poisson’s ratio μ = 0.3, an at-rest lateral earth pressure 
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coefficient Ko = 0.5, and soil unit weight γ= 18.0 kN/m3. The soil-anchor frictional interface 

was simulated using the Abaqus/Explicit contact surface approach which is described in 

terms of a Coulomb friction coefficient μ= tan φ'u, where φ'u is the soil anchor interface 

friction angle. As detailed in Chapter III, φ'u values depend on the interface characteristics 

and relative movement between the anchor and soil. Accordingly, a value of φ'u = 0.5 ' 

was adopted in this analysis. Separation or breakaway of the anchor from the soil was 

permitted to occur at locations below the anchor plate where stresses reduce to zero. 

 

 

 

 

 

 

 

 

 

Although small strain FE analysis, which is mainly adopted by Abaqus/Standard 

solver, has been noticeably used in the determination of anchor capacities especially for 

shallow anchors, the accuracy of this approach is suspect where large displacements are 

required to mobilize the ultimate capacity of relatively deep plate anchors. This is because 

of the small strain FE analysis cannot take account of geometric changes as the anchor 

moves upwards toward the free surface, and potentially into soil of lower strength. The 

Figure 4.2 Finite element model.  
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pullout process of a plate anchor is essentially quasi static in nature, while the large 

deformation finite element analysis was formulated in the frame of dynamic explicit rather 

than a static implicit procedure. The dynamic formulation using ABAQUS/Explicit solver 

was selected to promote numerical stability and avoid the divergence problems that could 

be in the static formulation. Adaptive meshing is performed in ABAQUS/Explicit using 

the arbitrary Lagrangian-Eulerian (ALE) to implement numerical divergence issues 

related to the excessive mesh distortion due to the large deformations in the surrounding 

soil around the corners of the anchor plate where shear strain localization zones exist. ALE 

adaptive meshing in Abaqus uses a single mesh definition that is gradually smoothed 

within analysis steps. ALE adaptive mesh domain are set to the four squares around the 

plate anchor with length of diameter of plate D. To seek a balance between minimizing 

the computational time and at the same time matching quasi-static state as closely as 

possible, three pullout rates of 0.005 m/sec, 0.01 m/sec and 0.02 m/sec were performed to 

investigate the influence of the pullout rate. The non-dimensional load-displacement 

curves are illustrated in Figure 4.3 and for associated material (' =40º,  = 40º) and non-

associated material (' = 40º, ψ =10º) respectively, where z/D = 4, Poisson’s ratio µ=0.3, 

and E = 20000 kPa. It can be seen from Figure 4.3 that the uplift non-dimensional curves 

for three different pullout rates are approximately identical. Therefore, the pulling rate of 

0.02 m/s is slow enough to simulate quasi static analysis, which is adopted for all 

subsequent analyses. 
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4.4 Adopted Failure Criterion 

In this study the collapse load of the plate anchor was taken as the resistance at 

which anchor displacement reached 25% of the anchor diameter. This collapse criterion is 

consistent with that adopted by Song et al., (2008). As shown in Figure (4.4), the collapse 

load at shallow depths occurs well below this displacement magnitude, so pullout capacity 

estimates derived from the finite element results are not affected by this failure criterion. 

However, for deeply embedded anchors, large deformations must occur for resistance to 

approach its ultimate value, so the displacement limitation described often governs. The 

25% of the anchor diameter criterion is somewhat arbitrary, but it represents a balance of 

maintaining a tolerable level of displacement without discounting too much of the actual 

capacity of the anchor. In regard to tolerable displacements, it is noted that the high degree 

of compliance in most mooring systems leads to a lesser importance assigned to anchor 

Figure 4.3 Uplift capacity curves at different pullout rates 
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displacements. Nevertheless, the failure criterion adopted in this chapter must be kept in 

mind, especially in instances where tolerable anchor displacements are an issue. 

Additionally, the effective stress calculation should account for the embedment loss when 

deeply embedded anchors are under consideration, as this can influence the breakout 

factor calculation in Eq. 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Typical Failure Mechanism 

To gain insight into the failure mechanisms of plate anchors embedded in sand, Figures 

4.5 and 4.6 show contours of total displacement at failure state. The properties of the loose 

sand used in the simulations to investigate failure mechanisms were taken from a soil 

Figure 4.4 Typical load-displacement curves for shallow and deep embedment. 

Reprinted with permission from (Al Hakeem and Aubeny, 2019). 
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having a relative density of about Dr = 37%, peak friction angle 'p =35.5º and max dilation 

angle max = 0º. The properties for the very dense sand, peak friction angle 'p = 46.7º and 

max dilation angle max =14.5º were taken as representative of a relative density of about 

Dr = 95%. A rigidity index Ir = 500 was used in all cases. These properties correspond to 

data on sands at a confining stress level of 100 kPa measured by Schanz and Vermeer 

(1996). Figures 4 and 5 show the contours of the displacements for the anchors with z/D= 

2, 8, and 16 in loose and very dense sands. The mode of failures that one can notice during 

this study as following: 

1. For shallow embedment depths (e.g. z/D = 2, Figure 4.5a and Figure 4.6a), 

irrespective the soil properties (Ir, ', and ψ), the failure slip surface starts from the 

corner of the plate anchor and extend to the free surface with an angle 

approximately around the dilation angle ψ from vertical. 

2. For intermediate embedment depths (e.g. z/D = 8, Figure 4.5b and Figure 4.6b), 

the development of a shallow versus deep failure mechanism depends on the soil 

properties (Ir, ', and ψ). It can be noticed that a localized failure mechanism 

develops in the loose sand. By contrast, in a very dense sand the influence of the 

free surface on the displacement pattern is still evident. 

3. For deep embedment depths (e.g. z/D = 16, Figure 4.5c and Figure 4.6c), 

irrespective the soil properties (Ir, ', and ψ), it can be noticed a localized slip 

surface around the anchor. 
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4.6 Comparisons with Prior Numerical, Analytical and Experimental Results  

The validity of the present numerical study is evaluated through comparisons to 

previously published numerical, analytical and experimental results. Lower and upper 

bound solutions provided by plastic limit analyses, which treat the soil as a perfectly 

plastic material with infinite-elastic modulus before yielding, can provide useful reference 

solutions for the FE analyses provided that elastic effects are not significant (Wang et al., 

2010), which is usually the case at relatively shallow embedment depths. Figure 4.7 

compares the current LDFE estimates of circular anchor and lower bound solution of  

(Merifield et al., 2003). For consistency with the lower bound solution, the FE adopts an 

associated flow rule,  = '. As shown in this figure, the breakout factors increase in a 

nonlinear manner with increasing z/D and the greatest increase occurs with high friction 

angles '. It can be seen that the FE results agree very well with the lower bound results 

by Merifield. This is due to the selection of the rigidity index (taken as Ir = 500), since the 

breakout factors depend on the value of soil rigidity Ir. Therefore, Ir = 500 could represent 

a rigid plastic condition due to the negligible magnitude of elastic strain at the beginning 

of the yielding stage. Also, it should be noted that the lower bound Merifield solution does 

not consider rigidity index Ir, but the finite element studies show the results to be 

essentially independent of Ir at shallow embedment. 
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Laboratory model tests of anchor pullout capacity of anchors in a sand test bed 

provide a second basis for validation of the LDFE results. While such tests are typically 

supported by the measured friction angle ' and dilation angle  of the test bed, many 

early model test studies omitted evaluation of the elastic moduli E or G, from which 

rigidity index Ir is determined. Since the LDFE studies indicate that the effects of Ir can be 

significant, particularly at high embedment depths z/D, the absence of information on the 

elastic properties of the soil test bed precludes fully conclusive comparisons of LDFE 

results to laboratory measurements. A notable exception is the Giampa et al. (2017) anchor 

test study, which did include estimates of the elastic modulus E. Table 4.1 provides a 

Figure 4.7 Comparison of finite element predictions to Merifield et al. (2003) Lower 

Bound Solution. Reprinted with permission from (Al Hakeem and Aubeny, 2019). 
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comparison of LDFE solutions to small-displacement finite element analyses employing 

a non-associated flow rule by Giampa et al. (2017). Differences between the two solutions 

ranges from 0.1 to 31%. On average, the LDFE values exceed those of Giampa et al. 

(2017) by about 6%; however, no consistent bias is apparent on the high or low side for 

the two methods. Possible sources of the differences between the two sets of predictions 

can be the absence of unique solutions for non-associated flow problems, the 

consequences of small versus large displacement analyses, and the need for judgment in 

selecting collapse loads, especially for deep anchors; as examples, Giampa et al. (2017) 

reported oscillations on the order of ±10% in their solutions, and this study adopted a 25% 

maximum displacement criterion for selecting collapse loads from LDFE solutions. 

Table 4.2 compare LDFE predictions to experimental data by Giampa et al. (2017) for 

shallow circular anchors in sand. In this case the elastic modulus (E) of the test bed were 

known, along with the friction and dilation angles. As per the recommendations from 

Giampa et al. (2017), Poisson’s ratio ν = 0.25 was used in the calculation of shear modulus 

and rigidity index and a coefficient of earth pressure at-rest K0 = 0.45 was assumed in the 

finite element analyses. For each test listed in Table 4.2 a LDFE analyses was performed 

using the best available inputs for ',  and Ir. Table 4.2 shows that the finite element 

predictions tend to over-estimate the measurements. Various causes may be postulated for 

this bias, but the author considers that a major contribution to this bias is that the model 

assumes peak dilation with no softening to occur at all points in the zone of yield, whereas 

actual dilatational behavior is dependent on strain level as detailed in chapter three. 

Accordingly, peak dilation does not mobilize at all locations simultaneously and, if 
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displacements are sufficiently large, a critical state assumption may be more representative 

of actual conditions.  

 

Table 4.1 Comparison of LDFE Solution to Giampa et al. (2017) Small Displacement FE 

Solutions. 

Case Unit 

Weight 

kN/m3 

E 

(kPa) 

Diameter

, D 

(m) 

Depth 

z 

 (m) 

z/D ' 

(o) 

 

(o) 

Ir FE 

Giampa 

Nq 

LDFE 

Nq 

1 14.75 3000 0.152 0.457 3 40 9.5 335 7.5 9.35 

2 14.75 3000 0.152 0.760 5 40 9.5 202 15.4 19.38 

3 14.75 3000 0.152 1.06 7 40 9.5 145 29.6 22.8 

4 14.75 3000 0.254 0.457 1.8 40 9.5 335 3.5 3.68 

5 14.75 3000 0.254 0.760 3 40 9.5 202 6.8 8.334 

6 14.75 3000 0.254 1.06 4.2 40 9.5 145 11.6 14.38 

7 15.6 12000 0.152 0.457 3 50 25.0 892 12.6 13.13

2 8 15.6 12000 0.152 0.760 5 50 25.0 536 27.4 30.1 

9 15.6 12000 0.152 1.06 7 50 25.0 385 46.1 60 

10 15.6 12000 0.254 0.457 1.8 50 25.0 892 5.7 4.54 

11 15.6 12000 0.254 0.760 3 50 25.0 536 12.8 12.92 

12 15.6 12000 0.254 1.06 4.2 50 25.0 385 19.6 23.57 

13 15.35 6000 0.152 0.457 3 45 17.5 540 9.8 10.98 

14 15.35 6000 0.152 0.760 5 45 17.5 325 19.5 26.8 

15 15.35 6000 0.152 1.06 7 45 17.5 233 38.0 39.95

6 16 15.35 6000 0.254 0.457 1.8 45 17.5 540 5.0 3.96 

17 15.35 6000 0.254 0.760 3 45 17.5 325 9.6 9.87 

18 15.35 6000 0.254 1.06 4.2 45 17.5 233 15.9 19.05

6  
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Table 4.2 Test Bed Parameters in Giampa et al. (2017) Helical Anchor Tests 

 
 

Figures 4.8a & 4.8b show additional comparisons of LDFE predictions to recent 

measurements of pullout capacity of helical anchors in loose and dense sand, respectively 

(Rasulo et al., 2017). This data is particularly significant in that it extends to depth z/D 

sufficient for a deep failure mechanism to develop, an associated constant breakout factor 

Unit 

Weight 

kN/m3 

Dr 

(%) 

E 

(kPa) 

'  

(o) 

 

(o) 

Depth 

(m) 

Diameter 

(m) 

Ir Measured 

Nq 

LDFE 

Nq 

14.9 23 3000 42.2 12.9 0.787 0.254 180 6.70 9.36 

14.7 16 3000 40.5 10.3 0.787 0.254 190 6.30 8.90 

14.8 19 3000 41.3 11.6 0.762 0.254 190 6.40 9.20 

15.7 48 12000

0 

48.5 22.8 0.737 0.254 580 11.2 12.10 

15.8 51 12000

0 

49.3 24 0.711 0.254 580 11.6 12.50 

15.8 51 12000

0 

49.2 23.8 0.787 0.254 530 12.1 13.35 

15.6 45 12000

0 

47.7 21.6 0.760 0.152 580 21.7 25.40 

15.5 42 12000

0 

47.7 21.6 0.457 0.254 970 4.20 6.23 

15.6 45 12000

0 

48.6 22.9 0.441 0.152 970 12.4 13.10 

15.2 32 12000

0 

45.3 17.8 0.441 0.152 112

0 

10.7 10.60 

15.5 42 6000 46.4 19.6 1.08 0.152 220 23.9 42.35 

15.5 42 6000 46.5 19.7 1.03 0.152 220 24.4 41.06 

15.4 39 6000 46.2 19.2 0.760 0.152 310 21.1 26.40 

15.4 39 6000 46.2 19.2 0.787 0.254 300 9.52 12.05 

15.3 36 6000 45.4 18.0 0.762 0.254 320 9.80 11.11 

15.3 36 6000 45.4 17.9 0.787 0.254 310 9.60 10.86 

15.3 36 6000 46.0 18.9 0.483 0.254 500 5.30 6.40 

15.3 36 6000 46.1 19.1 0.431 0.152 540 8.60 11.82 
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Nq = Nqmax.  In these cases, reliable estimates ′ and were available for the testbed soils, 

which are denoted in the figures. However, elastic properties were not measured, so 

rigidity index Ir could not be estimated. Therefore, LDFE analyses were performed for the 

ranges of Ir shown in the figure. In the loose sand at depth z/D = 3, the measured data vary 

by a factor of about 2, with the upper range of the measurements generally matching the 

finite element predictions. At shallow depths, z/D < 5, predictions are in reasonable 

agreement with measurements, irrespective of rigidity index, especially for anchors in 

very dense sand (Figure 4.8b). However, for deep embedment, measurements can be 

reconciled to predictions only by assuming rigidity indices in the range Ir = 100-300. Thus, 

it appears that elastic effects need to be factored into the evaluation of pullout capacity of 

deeply embedded anchors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Rasulo et al. (2017) Very Dense Sand a. Rasulo et al. (2017) Loose Sand 

Figure 4.8 Comparison of finite element predictions to Rasulo et al. (2017) measurements 

on helical anchors. Reprinted with permission from (Al Hakeem and Aubeny, 2019). 
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Figure 4.9 compares LDFE results to data from various experimental investigations in 

loose and dense sands. All LDFE simulations have a rigidity index Ir = 500, which, as 

discussed above, correspond to a collapse mechanism in a rigid-plastic collapse medium. 

In the case of a dense sand (Figure 9b), the LDFE results are in very good agreement with 

the experimental data measured by Ilamparuthi et al. (2002), Pearce (2000), and Murray 

and Geddes (1987) down to a depth of about z/D < 8. At greater depths, the quality of the 

predictions is mixed, with the LDFE over-estimating the Pearce data by up to 35%. This 

result is consistent with the notion that in dense soils at relatively shallow depths elastic 

effects are not significant, and pullout capacity can be estimated based solely on soil 

strength properties (′ and ), independently of any consideration of rigidity index Ir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Dense Sand a. Loose Sand 

Figure 4.9 Comparison of finite element predictions to previous experimental data. 

Reprinted with permission from (Al Hakeem and Aubeny, 2019). 
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When considering the measurements made by Saeedy (1987) and Fadl (1981) for a loose 

sand (Figure 4.9a), the LDFE results for Ir = 500 are generally in good agreement with 

data down to an embedment z/D = 5. However, at greater depths the LDFE results 

seriously over-predict the measured pullout capacity. These comparisons tend to support 

the notion (discussed further subsequently in this chapter) that (a) elastic effects have 

minor influence on pullout capacity for shallowly embedded anchors and (b) reduction in 

pullout capacity due to elastic effects is most serious for deeply embedded anchors in loose 

soils. 

 

4.7 Finite Element Parametric Study 

As a circular plate anchor geometry is easily handled to an axisymmetric two-

dimensional analysis, extensive parametric studies can be performed in this chapter with 

a relatively modest level of computational effort. Moreover, the analyses are applicable to 

helical anchors, assuming that the pitch does not affect anchor response. 

This section investigates the effects of three soil characteristics on anchor performance: 

elastic effects as represented by a rigidity index Ir, volumetric behavior at yield as 

characterized by a dilation angle , and the soil angle '. The parametric study investigated 

the variation of breakout factor Nq as a function of depth, with ',  and Ir held constant 

along the depth of each soil profile considered. Typically, past studies of plate anchors 

have performed to investigate the effect of ', and ψ on pullout capacity of shallowly plate 

anchors which z/D is less than 10. This part of research investigates a range of anchor 

embedment depths from 1 to more than 20 plate diameters.  
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4.7.1 Effect of Rigidity Index 

The soil rigidity index was introduced by (Vesic, 1965) as a consistent and rational 

means for analyzing general, local and punching shear of a typical foundation bearing 

capacity problem. Since it is well accepted that the rigidity index can have significance 

influence on the foundation bearing capacity in frictional materials, it appears reasonable 

to extend this understanding to anchor uplift capacity problems (Chen et al. 2013). The 

basic soil rigidity index Ir is defined as the ratio of shear modulus to initial shear strength 

(Vesic, 1972), which in frictional soils can be defined by the equation: 

' tan '
r

n

G G
I

S c q 
= =

+
          (4.5) 

where G is shear modulus and q'n is initial mean effective stress (1 + 2K0)σ'v0/3. 

Considering the case of a purely cohesionless soil and expressing in terms of Young’s 

modulus E and Poisson’s ratio ν, rigidity index Ir can be expressed in the following 

alternative form:  

( )2 1 ' tan '
r

n

E
I

q 
=

+
        (4.6) 

Vesic (1972) provided a general range of soil rigidity index of 100-500 for loose to dense 

sand. In the present parametric study, the elastic effect as represented by a rigidity index 

Ir on breakout factor was systematically investigated (Ir from 100 to 500) for selected 

ranges of anchor embedment (z/D), friction angle ('), and dilatancy angle (ψ). Figure 4.10 

shows the predicted effect of rigidity index Ir on the pullout capacity of circular plate 

anchors at depth ratios z/D =8 for friction angle ' = 40º. Associated ( = 40º) and non-

associated ( = 0º) flow rule conditions are considered. The influence of soil rigidity Ir 
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on the breakout factor Nq is obvious in Figure (4.10) which shows the uplift dimensionless 

curve for different Ir values. The predictions show a strong trend of reduced rigidity Ir 

leading to increased levels of displacement at which the ultimate load is approached. In 

the non-associated flow rule ( = 0º), it can be noticed some numerical instabilities 

occurred in the form of oscillations in the solution for high rigidity index values (Ir = 500 

in this case) at large displacements w/D > 0.25. Since interpreted breakout factors consider 

displacements only up to w/D = 0.25, these oscillations do not affect the interpretations 

presented later analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

In this parametric study, anchor depths were extended to sufficiently great z/D (ranged 

from z/D = 12-28) to ensure full definition of the transition from shallow to deep pullout 

b. Non-associated a. Associated 

Figure 4.10 Normalized uplift capacity curves for different rigidity indices. 

Reprinted with permission from (Al Hakeem and Aubeny, 2019). 
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behavior. In general, this transition depth increases with increasing ',   and Ir. The study 

considered a range of soil internal friction ' = 30º - 50º and dilation angles ψ = 0º - 25º. 

The variation of breakout factor Nq with embedment depth ratio (z/D) for loose (' = 30º, 

ψ  = 0
o
), medium (' =38.5º, ψ  =7.2º), and very dense (' =50º, ψ =25º) are presented in 

the Figure (4.11). This Figure shows a general trend of upward curvature at shallow 

embedment depths for the Nq versus z/D curves. With increasing depth, the curvature 

eventually reverses and, at sufficiently great depth Nq becomes independent of depth. This 

depth-independent zone is interpreted as corresponding to a full flow-around failure 

mechanism that does not reach the free surface. The depth at which the reversal in 

curvature occurs as well as the depth below which the breakout factor approaches a 

constant value Nqmax is influenced by the soil friction angle ', soil volumetric behavior at 

yield as represented by dilation angle ψ, and elastic soil stiffness as represented by a 

rigidity index Ir. It can also be noticed from Figure (4.11) that for shallow depths, z/D ≤ 

3-6, the breakout factor values are minimally affected by rigidity index Ir, which suggests 

that simple rigid block limit equilibrium or plastic limit analyses can be used to describe 

anchor performance in this depth interval.  

As mentioned above that the breakout factor Nq in general, and Nqmax in particular, shows 

a high degree of sensitivity soil properties. For example, Figure 4.11a for a loose sand 

shows Nqmax to double as Ir increases from 100 to 500. The sensitivity of Nqmax to Ir is even 

greater in denser soils, with Figure 4.11c showing Nqmax increasing by a factor exceeding 

3 over a range of Ir from 100 to 500. For a loose sand with low stiffness (' =30º, ψ =0º, Ir 

= 100) Nqmax slightly exceeds 6, in contrast to a very dense sand with high stiffness (' 
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=50º, ψ =25º, Ir = 500) where Nqmax exceeds 170. The sensitivity of the breakout factor 

Nqmax to rigidity index is an important component of the empirical model developed later 

in this chapter and, therefore, a focus of attention in this parametric study. Also, Figure 

(4.11) shows that Nqmax increasing approximately by a factor of 2-4 with increasing Ir over 

the range of rigidity indices considered (Ir = 100-500). 

For given values of ' and ψ, value of Nqmax increases almost linearly with Ir as shown in 

Figure 4.12. Also, Figure 4.12 shows Nqmax to increase substantially with increasing 

dilation angle for all friction angles especially with high values of Ir.  

 

4.7.2 Effect of Dilatancy and Friction Angle on Pullout Capacity 

Soil strength-deformation parameters need to be considered in developing a model 

of load capacity versus embedment depth (Nq-z/D), the study presented herein considers 

the strength behavior defined by an angle of internal friction ', and post-yield volume 

change behavior defined by a dilation angle ψ. Following up on the observations above 

regarding the effects of dilatancy, frictional soils generally exhibit non-associated 

behavior (0 ≤ ψ ≤'). Dilatancy during plastic deformation causes the soil ahead of the 

anchor to lock, requiring an extensive plastic region to develop before there is sufficient 

freedom for collapse to occur (Rowe and Davis, 1982). Enlargement of the zone of plastic 

flow substantially increases the pullout capacity (Nq); therefore, careful attention to soil 

dilatancy and its effect on pullout resistance is required when evaluating the capacity of 

anchors in sand. In fact, dilation angle ψ is a function of soil density and confining stress, 

both of which vary in the stress field surrounding a loaded plate anchor. 
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Additionally, dilatancy is strain level dependent, with a peak tangent dilatancy angle 

occurring at relatively low strains in dense sands, followed by gradual decline to zero 

dilatancy as the critical state condition is approached. Thus, a single dilatancy angle ψ is 

a substantial simplification of actual sand behavior, and assuming that a peak dilatancy 

mobilizes at all points simultaneously in the yielded soil mass surrounding an anchor is 

unconservative. Nevertheless, a parametric study varying the dilatancy parameter ψ can 

provide useful insights into the effects of plastic volume change behavior on anchor 

performance, provided that one recognizes that some equivalent or average ψ angle needs 

to be applied to practical situations in recognition of the facts that the peak value does not 

mobilize simultaneously at all points in the yielded soil mass surrounding the anchor and 

that high stress gradients in the region surrounding the anchor lead spatial non-uniformity 

in ψ. Figure 4.13a shows the variation of breakout factor Nq with normalized depth (z/D) 

for ' =38.5
 o
, Ir =500 and ψ varied from 0 to 25

o
. The predictions show ψ to have a more 

than five-fold effect on the maximum breakout factor Nqmax. This influence of dilatancy 

parameter ψ is also demonstrated in Figure 4.14 that the maximum breakout factor Nqmax 

increases substantially with increasing ψ particularly for high values of Ir.  

Figure 4.13.b shows the effect of friction angle on breakout factor Nq over a range of ' 

from 30º - 50º for Ir =500 and ψ = 25º. The predictions indicate that Nqmax can vary by a 

factor of up to three over the generally expected range of friction angles for sand. Figure 

4.15 shows how the maximum breakout factor Nqmax increases with increasing friction 

angle for various rigidity indices Ir and dilatancy angle  
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4.8 Empirical Model 

This section investigates the effects of three soil characteristics on anchor 

performance: elastic effects as represented by a rigidity index Ir, volumetric behavior at 

yield as characterized by a dilation angle ψ, and the soil friction angle ϕ'. The parametric 

study investigated the variation in the breakout factor Nq as a function of depth, with ϕ', 

ψ  and Ir held constant along the depth of each soil profile considered. To produce a 

predictive model for anchor capacity that is amenable to routine design calculations, this 

section presents empirical curve fits to the finite element results presented above. The 

empirical model comprises three components for describing anchor performance for (1) 

shallow embedment depths, (2) deeply embedded anchors where maximum capacity Nqmax 

mobilizes, and (3) the transition between shallow and deep behavior. 

b. Friction a. Dilation 

Figure 4.13 Effect of dilatancy and friction angles on breakout factor. Reprinted with 

permission from (Al Hakeem and Aubeny, 2019). 
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4.8.1 Shallow Embedment 

 

The model for shallow embedment depth adopts the basic quadratic form shown 

in Equation 4.2. The coefficent for linear term Fas1 (Equation 4.7) interpolates between 

the lower and upper estimates defined by Equation 4.3, with Fas1 being a minimum when 

  = 0, and maximum for associated flow material  = '.  

( )1 2 sin ' tan ' sin ' tan / tan 'as cs p csF      = + −
 

     (4.7) 

A similar approach is adopted for Fas2, except that a minimum value is set at 1/3 for the 

case of zero dilation   = 0  (Equation 4.8). 

( )2

2 1/ 3 1 4 tan ' 1 tan / tan 'as pF    = + −
 

      (4.8) 

The load capacity for shallow embedment depths is assumed to be independent of rigidity 

index Ir, an assumption supported by the finite element results presented in Figure 4.11. 

Superposition of Equations 4.2, with the modified expressions for Fas1 and Fas2 in 

Equations 4.7 and 4.8, on to the finite element predictions in Figure 4.13 shows 

satisfactory agreement.   

 

4.8.2 Maximum Resistance Nqmax 

In contrast to shallow anchor behavior, the finite element parametric studies 

showed that maximum load capacity Nqmax of deeply embedded anchors is highly sensitive 

to rigidity index Ir, in addition to the dilation and friction angles. The dependency of Nqmax 

on all three variables is described empirically by the equation shown below: 
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qmax
N F D R M= + + +                                                   (4.9) 

The terms F, D and R respectively are cubic functions describing the contributions of 

friction angle, dilatancy angle and rigidity index to Nqmax according to the following 

equations: 

3 2

1 2 3
F f f f  = + +                        (4.10) 

3 2

1 2 3
D d d d  = + +             (4.11) 

3 2

1 2 3r r r
R r I r I r I= + +                        (4.12) 

The fourth term M describing the cross-dependency of friction angle, dilation angle and 

rigidity index on Nqmax is the following third-order function: 

2 2 2 2 2

1 2 3 4 5

2

6 7 8 9 10

r r r

r r r r

M m m I m m I m I

m I m m I m I m I

      

    

= + + + + +

+ + + +
                    (4.13) 

Table 4.3 describes the curve fitting procedure and presents the curve fit constants. The 

model presented for estimating Nqmax requires three parameters: ',  and Ir, all of which 

can be obtained by conventional triaxial shear tests. Additionally, since all three 

parameters correlate strongly to relative density Dr, directly estimating Nqmax from relative 

density is not unreasonable. This approach is further considered in a later section.  
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Table 4.3 Curve Fit Parameters for Estimating Nqmax. Reprinted with permission from  

(Al Hakeem and Aubeny, 2019). 

Description Equation Variable Name Value 

Sensitivity to 

friction angle ' 

4.10 f1 

f2 

f3 

0.00036 

-0.024 

0.477 

Sensitivity to 

dilation angle  

4.11 d1 

d2 

d3 

-0.00046 

0.06 

-2.6 

Sensitivity to 

rigidity index Ir 

4.12 r1 

r2 

r3 

6.8 x 10-8 

-7.9 x 10-5 

0.0185 

Cross-dependence 

of ,  and Ir 

4.13 m1 

m2 

m3 

m4 

m5 

m6 

m7 

m8 

m9 

m10 

-0.00117 

4.9 x 10-5 

-0.0012 

5.3 x 10-6 

-8.5 x 10-7 

1.9 x 10-7 

0.1177 

-0.0058 

-0.00027 

0.000304 

 

4.8.3 Transitional Behavior 

The finite element predictions show that, below a certain transition depth zT, the 

breakout factor curve departs from the shallow breakout capacity curve and trends 

asymptotically towards a maximum value Nqmax. This behavior is well described by the 

following equation: 

( ) ( )
2

1 2

max

1 / /
q as as T

q q T

N F z D F z D z z

N rN z z

= + + 

= 
      (4.14) 
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The transition function r is defined as: 

( ) ( ) 

( )

( ) ( )

( ) 

2

1 2 max

1 2 max

1 1 exp /

'/ 1

1 / / /

' 2 / /

T T

T T

T as T as T q

T as as T q

r r z z D

r r

r F z D F z D N

r F F z D N





= − − − −

= −

= + +

= +

 
 

     (4.15) 

Equation 4.15 was formulated such that Nq transitions from a shallow surface failure 

mechanism to Nqmax in such a manner that the function Nq (z/D) and its first derivative are 

continuous at all depths. The parameter zT is conveniently expressed as a fraction of z100, 

which is defined as the depth at which the shallow breakout factor computed by Equation 

4.2 reaches its maximum value, Nq = Nqmax (computed by Eq. 4.9). Figure 4.16 shows zT 

= 0.85z100 achieving a good match to finite element solutions. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

b. Very Dense Sand a. Medium Dense Sand 

Figure 4.16 Transition from shallow to deep failure mode. Reprinted with permission from 

(Al Hakeem and Aubeny, 2019). 
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4.9 Estimating Load Capacity from Relative Density 

The finite elements studies presented earlier elucidated the influence of friction, 

dilatancy and rigidity index on load capacity of circular plate anchors as a function of 

embedment depth. However, all three parameters actually vary with confining stress; 

specifically, as embedment depth increases all three parameters will continuously decrease 

as effective confining stress increases. Thus, the load capacity curves shown to this point 

do not provide an entirely clear picture of the variation of Nq with depth, even in a uniform 

soil profile. Fortunately, all three relevant soil parameters can be expressed as functions 

of relative density and effective confining stress. Thus, it is possible to express the 

previously presented relationship Nq (', , Ir, z/D) to a more useful format Nq (Dr, ' , 

z/D ). Total unit weight  can be replaced by buoyant unit weight '  if an unsubmerged 

soil profile is under consideration.   

4.9.1 Correlations to Relative Density 

As mentioned in Chapter III, Bolton (1986) defined a relative dilatancy index in 

his framework for relating relative density to peak friction angle and dilatancy as in Eq. 

3.29: 

( ln )RD rI D Q p R= − −                 (4.16) 

The term  𝑝′ denotes mean effective stress (kPa) at failure, which includes the initial stress 

state along with alterations in the stress state imposed by the foundation. For preliminary 

estimates Kulhawy and Mayne (1990) recommend estimating 𝑝′as twice the overburden 

stress 'o. This recommendation is sensible for conventional compression foundations, 
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which invariably increase the stress state in the soil. However, an embedded plate involves 

a more complex stress field involving both compression and extension, with minimal 

change in average mean stress. For this reason, the approach adopted in this study simply 

sets 𝑝′equal to 'o. 

Bolton then relates the relative dilatancy index IRD to the difference between peak and 

critical state friction angles. For triaxial stress states he gives 'p - 'cv =3IRD. A triaxial 

stress state actually occurs only along the centerline of an axially loaded circular plate. 

Nevertheless, this condition is taken as the closest approximation to actual conditions in 

the parametric study that follows. The computations for 'p use 'cv = 33º degrees, based 

on data presented by Bolton (1986). 

Strictly speaking, a dilatancy angle only has meaning for plane strain conditions. Andersen 

and Schjetne (2013) therefore characterize the tendency for volume change under triaxial 

test conditions as follows: 

0.3
sin

2 0.3

vol RD

a vol RD

d I

d d I




 

−
= =

− +
       (4.17) 

where vol and a are volumetric and axial components of strain measured in a triaxial test. 

The angle  is still termed a dilatancy angle, recognizing that it cannot be defined in 

geometric terms on a Mohr diagram, as is possible for the case of plane strain. 

The final parameter affecting load capacity is the rigidity index Ir, which also declines 

with increasing confining stress. Based on data tabulated by Kulhawy and Mayne (1990) 

and Vesic (1977) for Chattahoochee sand, the dependence of rigidity index Ir on relative 

density Dr and confining stress ’c shown in Figure 4.17a was adopted for this study.  
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4.9.2 Influence of relative density 

Having established a framework for predicting load capacity of anchors in sands 

in terms of relative density and effective stress level, it is now possible to develop charts 

for predicting anchor performance that implicitly account for the variation in soil 

properties with depth. The parametric studies presented below consider a sand profile 

having a submerged unit weight '  = 9 kN/m3. Figures 4.17b and 4.17c show the assumed 

variation in soil parameters with confining stress utilized in this parametric study, which 

are based respectively on Bolton’s dilatancy framework (Eqs. 4.16 and 4.17) and the curve 

fit developed in this study relating rigidity index to confining stress shown in Figure 4.17a. 

Figure 4.18a shows predictions of the breakout factor Nq as a function of depth for a 1.2-

m diameter anchor, with relative density varying over a range Dr = 20 -100%. Model 

predictions are shown for two cases: “peak” predictions assume fully mobilized peak 

friction and maximum dilation angles (solid lines), and critical state (CS) predictions 

assume a critical state friction angle 'cv and zero dilation angle ( = 0, dashed lines). The 

reason for considering the latter case is that at large anchor displacements critical state 

conditions may prove to be a more appropriate assumption. At embedment depths 

exceeding the shallow zone, the overall range of peak breakout factors is Nq = 8 to 60. The 

model predictions show a significant decline in breakout factor with increasing depth, 

especially for the high density soils. This trend is supported by measurements by Dickin 

(1988), although the tests were not extended to sufficient depths to fully validate the 

predictions in Figure 4.18a. The reduction in the breakout factor Nq with increasing depth 

is anticipated, since rigidity index, peak friction angle and dilation angle all decrease with 
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increasing confining stress. For the 1.2-m diameter plate, the depth at which the transition 

from a shallow to a deep failure mode occurs varies from about z/D = 3 to 7, with the 

greater transition depths occurring in denser soils. In the critical state case the effect of 

relative density is greatly diminished; however, the breakout factor for deeply embedded 

anchors is still affected by Dr by virtue of its influence on the rigidity index (Figure 4.17c). 

The dashed lines representing predictions for CS conditions in Figure 4.18a indicate 

dramatic reductions in the breakout factor when the effects of dilation are omitted from 

the analysis. 

The decline in the breakout factor Nq with increasing embedment depth may lead one to 

question the practical effectiveness of increasing the embedment of the anchor. However, 

the accompanying plot of qult versus depth in Figure 4.18b shows that the rate of increase 

in effective stress more than offsets the rate of decline in Nq, such that a net benefit is 

realized through increased anchor embedment. Also shown in Figure 4.18a are full-scale 

anchor test measurements for pile driven plate anchors in loose, medium and dense sands 

presented by Forrest et al. (1995). The tests were performed on a rectangular plate anchor 

having a 2:1 length-width ratio and area 1.16 m2. To permit comparison to circular 

anchors, the anchor embedment depths were normalized by an equivalent diameter Deq = 

1.2 m. While geometry and aspect ratio are known to affect the Nq factor, comparing the 

predictions to data measurements can provide some sense as to the reliability of the model 

predictions.  
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The comparisons in Figure 4.18a indicate that the model predictions assuming peak 

resistance are generally consistent with field measurements for medium dense sand (Dr = 

40-60%) and somewhat conservative for dense (Dr = 60-80%) sand. For the loose sand 

the field measurements lie at the low end of the range peak parameter model predictions 

for Dr = 20 - 40%, while closely matching the CS model predictions. Although some 

ambiguity exists in this particular case, this suggests that CS conditions may be a more 

appropriate basis for predicting breakout capacity in loose soils. Comparison of model 

predictions to measurements by Dickin (1988) discussed in the next paragraph make a 

much more convincing case for using CS parameters in loose soils. 

b. Pullout Capacity a. Breakout Factor 

Figure 4.18 Capacity versus depth for 1.2-m diameter plate anchor. Reprinted with 

permission from (Al Hakeem and Aubeny, 2019). 
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Figure 4.19 compares empirical model predictions to centrifuge test data presented by 

Dickin (1988). In this case the tests were conducted in dry sand at two density states: ′= 

14.24 kN/m3
 and Dr = 33% (Test A), and ′ = 16 kN/m3, Dr = 76% (Tests B and C). At 

prototype scale, Tests A and B used square plates of width 1m. Merifield et al. (2003) 

show that the shape factor for circular versus square plates varies from Nq-circle / Nq-square = 

1.1 to 1.27 over an embedment range from z/D =1 to 10. Although some controversy exists 

in regard to the need for this adjustment, for the purposes of comparison in this study the 

Dickin data were adjusted using the Merifield et al. (2003) shape factors. As before, model 

predictions for all test cases are shown for conditions of peak resistance (solid lines) and 

critical state conditions (dashed lines). For dense sand (Dr = 76%) the model predictions 

incorporating dilatational effects agree reasonably well with the measurements, with the 

maximum discrepancy between model and measurement being about 20%. By contrast, 

the agreement between model predictions and measurements in the Dr = 33% sand is 

clearly superior when critical state conditions are assumed. These comparisons strongly 

suggest that plate anchor capacity estimates in loose sands should proceed on the basis of 

critical state conditions, while estimates in dense sand can assume fully mobilized peak 

friction and maximum dilation angles. Referring back to the Giampa et al. (2017) data in 

Table 2, considerable discrepancies between measurements and peak resistance LDFE 

simulations begin to occur at relative densities less than 45%. For this reason, it can be 

concluded that load capacity estimates should be based on critical state conditions for Dr 

< 50%. 
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4.10 Summary 

Attention to plate anchors in sand has been relatively limited in the research 

literature, particularly for deeply embedded plates. Past studies of anchor performance 

have done much to quantify the influence of the parameters (' and ) for relatively 

shallow levels of embedment, typically z/D less than 10. This part of research presents a 

parametric finite element study of pullout capacity of circular, horizontally oriented 

anchors in sand, subjected to vertical centric loading. Additionally, the analyses are 

directly applicable to helical anchors. This study investigates a range of anchor 

embedment depths from one to more than 20 plate diameters, which is sufficient to 

characterize the transition of the anchor behavior from a shallow to a deep failure 

Figure 4.19 Comparison of predictions to data by Dickin (1988). Reprinted with 

permission from (Al Hakeem and Aubeny, 2019).  
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mechanism. However, this study focuses on how dimensionless breakout capacity Nq 

varies with a selected range of anchor embedment depths z/D, considering the effects of 

key soil properties include rigidity index Ir, dilatancy angle ψ and friction angle '. The 

predictions showed that pullout capacity of shallowly embedded anchors is controlled by 

friction ' (Figure 14.3 b) and dilatancy  (Figure 4.13 a), and essentially independent of 

rigidity index Ir (Figure 4.11). Beyond the shallow zone, breakout capacity of deeply 

embedded anchors is highly sensitive to rigidity index Ir, in addition to the dilation and 

friction angles. The normalized transition depth from a shallow to a deep collapse mode 

is expected to range from about z/D = 3 in loose soils to more than 10 in very dense soils, 

depending on rigidity index (e.g. Figure 4.11). Since the three primary soil parameters (', 

ψ, and Ir) influencing soil resistance all correlate well to relative density and confining 

stress, expressing the breakout factor as a function of relative density, unit weight and 

depth, Nq (Dr, ' , z/D ) is an appealing approach for practical applications. Therefore, for 

design purposes, this part of research developed an empirical model for predicting anchor 

pullout capacity as function Nq (Dr, ' , z/D ). Pullout capacity of shallowly embedded 

circular plates is well described by Equation 4.14 (Figure 4.13), while Equation 4.15 is an 

exponential function describing the transition in the breakout factor Nq from the shallow 

mode (Equation 4.14) to its maximum value (Equation 4.9). Additionally, the parameters 

',  and Ir all decrease with increasing overburden stress (Figure 4.17), implying that 

Nqmax decreases with anchor embedment, even in a soil profile having a uniform relative 

density. Figures 4.18 and 4.19 provide predictions on how Nqmax is expected to decrease 

with increasing plate embedment depth. Also, for relative densities Dr < 50%, using 
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critical state soil parameters (' = 'crit and  = 0) in the empirical model for breakout 

capacity greatly improves the agreement between predictions and measurements (Figure 

4.19). 
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CHAPTER V 

 NUMERICAL MODELING OF KEYING PROCESS OF VERTICALLY 

INSTALLED PLATE ANCHOR IN SAND 

5.1 Introduction 

 

Most plate anchor keying studies have been performed for soft clay, since this is 

the most common type of soil in deep-water environments in which plate anchors are 

currently used. However, installation of floating wind turbines and wave energy 

converters at water depths of less than 100m will typically require anchoring systems 

suitable for sand deposits (O'Loughlin & Barron, 2012). As discussed in previous chapters, 

plate anchors have been used as a practical and efficient option for mooring floating 

facilities, due to their high efficiency, suitability for a wide range of soil conditions, and 

variety of available installation techniques. Irrespective of the installation method, a 

directly embedded plate anchor has a vertical orientation after penetration to the 

designated depth. Since such anchors are oriented vertically after installation and seldom 

subjected to purely horizontal loading, a “keying” step (see Figure 5.1) is required to orient 

the anchor into the direction of the mooring line load. Simulation of the keying process 

has not been extensively investigated in previous research, especially with regards to 

cohesionless soil; however, much work has been done in the last few years on plate anchor 

performance in clay soil during the keying process. 

As noted in Chapter II, limited experimental data are available for plate anchor 

keying in sands. To the author’s knowledge, no finite element studies have been 

conducted. The present chapter focuses on a significant gap in the knowledge regarding 
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the performance of vertically installed plate anchors subjected to different angles of 

mooring line load: in other words, keying behavior in sand. Experimental validation is 

definitely desirable, but beyond the scope of this study. As shown in Figure 5.1, during 

the keying process, both horizontal and vertical displacement of the anchor occurs as the 

anchor rotates into its target orientation, which is approximately perpendicular to the 

direction of loading. The upward vertical displacement is a particular concern, since a loss 

of anchor embedment δz leads to a reduction in pullout capacity (Al Hakeem and Aubeny, 

2018). During the keying process, the soil in the vicinity of the plate anchor is remolded. 

This remolding causes a reduction in soil strength that may be recovered over the course 

of soil reconsolidation (Long et al., 2009). 
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Figure 5.1 Anchor keying process. 
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5.2 Finite Element Model 

The study presented herein considers the performance of a vertically installed strip 

plate anchor with a length significantly greater than the width, embedded in uniform 

cohesionless soil and modeled as a two-dimensional plane strain problem. The keying 

process of the plate anchor is a large deformation problem because large vertical and 

horizontal displacements occur during orientation (see Figure 5.1); accordingly, a large 

deformation finite element (LDFE) analysis was employed using the finite element code 

ABAQUS/Standard (Simulia, 2014). The anchor geometry (both with and without shank) 

and typical finite element mesh are shown in Figures 5.2 and 5.3, respectively. The soil 

medium was modeled as an elastic-perfectly plastic material with Mohr-Coulomb yield 

criterion. The soil domain defined in Figure 5.3 is large enough to eliminate the boundary 

effects. Both horizontal and vertical movement were constrained at the bottom boundary, 

while only horizontal movement was constrained at the far field boundary. Different mesh 

re-discretization strategies using a smoothing algorithm were conducted to check for mesh 

sensitivity. Therefore, the soil domain with a minimum element size hmin = B/20, which 

was constructed in the vicinity of the anchor, produced accurate results in terms of the 

breakout factor -displacement. The soil domain was discretized into the mesh of an eight-

node quadrilateral reduced integration ABAQUS element in CPE8R, while the anchor 

plate was considered to be perfectly rigid due to its high stiffness, with a unit weight equal 

to that of the surrounding soil. 
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A displacement-controlled FE procedure was utilized in the current analysis. 

Imposed displacement on the reference point of the rigid body (i.e., the plate anchor) at 

the padeye was used to simulate the keying process of the plate anchor. The selected 

α t2 
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θ 
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t1 

(With Shank) 

(Without Shank) 

Figure 5.2 Model of a strip plate anchor during keying. 

2H 2H 

Figure 5.3 Typical mesh and boundary conditions. 
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displacement increments of δt = 0.001B between the remeshing steps was small enough to 

ensure that the Lagrangian calculation remains accurate and avoid any mesh distortion. 

The cases analyzed considered anchor widths of B = 0.5 and 1.0 m, t/B = 0.05 and t/B = 

0.1, and embedment depths of H/B = 5 and 10. The soil properties used in the analysis 

were cohesion c = 0.05 kPa, friction angle ' = 30º and 33º, Poisson’s ratio ν = 0.3, and at 

rest condition lateral earth pressure coefficient Ko = 0.5. A non-associated flow rule was 

assumed, with the soil dilation angles being ψ = 4º and 5º. The ' and ψ properties 

corresponded to data on sands at a confining stress level in the range of 30 kPa to 100 kPa, 

as measured by Rowe and Davis (1982). 

As mentioned in Chapter III, the soil anchor interface was modeled using the 

ABAQUS/Standard contact surface approach. The tangential (i.e., frictional) interface 

between the outer surface of the anchor and soil was simulated using the Coulomb friction 

coefficient μ = tan 'u, where 'u is the soil anchor interface friction angle. The 'u values 

depended on the interface characteristics and relative movement between the anchor and 

soil (Roy et al., 2015). The value of μ = 0.5 was used in the present study. The present 

analysis assumed that the overburden pressure of 5B to 10B was sufficient to overcome 

any tendency for the base of the plate to separate from the soil during keying. Therefore, 

all simulations in the present study considered a no breakaway (i.e., fully bonded) 

condition between the anchor and adjacent soil during the keying process, using an 

ABAQUS constraint tie.  This constraint made the tied pair of surfaces (i.e., the anchor- 

soil contact surfaces) have the same translational and rotational movement. Since the soil 

was essentially cohesionless, the suction force under the base of the anchor was taken as 
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zero. A “wished-in-place” strip plate anchor installed vertically in sand was taken as the 

initial condition (see Figure 5.1). In other words, installation disturbance effects were not 

considered in this study. Finite element simulations of keying plate anchors in clay have 

typically neglected installation disturbance effects, with satisfactory results with regards 

to comparisons to experimental data (Song et al., 2009; Wang et al., 2010).  

To simulate the continuous rotation and pullout of the plate anchor, large 

Deformation Finite Element Analysis (LDFE) was conducted in this study by using a 

Remeshing and Interpolation Technique using Small Strains (RITSS) approach. In this 

approach, deformation of the soil domain is divided into several small increments to avoid 

any excessive mesh distortion. As mentioned in Chapter III, this approach is based on a 

standard Lagrangian finite element analysis, using finite element code ABAQUS/Standard 

for each increment. After the analysis of each small increment, the convection of field 

variables (i.e., the stresses and material properties) was performed by polynomial 

interpolation from the old mesh to the new one. The remeshing and convection steps were 

repeated until the accumulated deformations reached the desired value. In the present 

study, the complete RITSS analysis approach was implemented by Python script files 

using ABAQUS built-in functions such as *RESTART and *MAP SOLUTION, as 

explained in Chapter III to automate the process of keying. Practically speaking, the 

anchor chain slides and cuts through the soil during uplift in an inverted catenary shape, 

and this generates an additional frictional capacity along the length of the chain (Long et 

al., 2009). However, for simplification of the problem and reduction in computational 

time, the chain was not considered in the following analyses.  



 

186 

 

5.3 Results and Discussion 

5.3.1 Shank versus No Shank 

In the present study, the performances of vertically installed strip plate anchors 

with and without shanks embedded in uniform cohesionless soil were investigated as two-

dimensional plane strain problems, as shown in Figure 5.2. The first model implicitly 

considered soil resistance from the shank to provide a preliminary indication of the effects 

of including a shank as a solid object on the keying behavior. The effects of soil shank 

resistance were also investigated for the special case of the shank having the same length 

as the fluke plate (i.e., e/B = 1), as shown in Figure 5.2. However, a full study of the effects 

of shank resistance would require 3D modeling, which is beyond the scope of the present 

research.  To investigate the effects of shank resistance on keying behavior, LDFE 

analyses were conducted with the following soil properties: soil unit weight γ = 18 kN/m3, 

friction angle ' = 30º, soil dilation angle ψ = 5º, and E = 3000 kPa. This case considered 

an anchor width of B = 0.5m, t/B = 0.05, and embedment depth of H/B = 5. 

The simulations considering the shank showed higher estimates of pullout capacity 

and lower estimates of embedment loss than did the case of no shank anchor, as illustrated 

in Figures 5.4, 5.5, and 5.6. These findings are similar to those reported by Wei et al. 

(2014), who showed that including shank soil resistance increases pre- and post-pullout 

capacity and decreases the maximum loss of embedment during the keying process. It 

should be noted from the LDFE results included in Figure 5.6 that without considering the 

shank, the maximum loss of anchor embedment would have been overestimated by 

approximately 17%.  
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Figure 5.4 Breakout displacement curve with and without shanks when e/B = 1, 

B = 0.5m, t = 0.1B, and θ = 90º. 
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 The predictions of the plate anchor with a shank showed a slower rotational rate, 

especially for the first 60° of anchor rotation, than did the plate anchor without a shank. 

However, the analysis overestimated the loss of anchor embedment and correspondingly 

underestimated pullout capacity. Therefore, to minimize computational effort and simplify 

the analysis in this section of the research, the anchor shank was not considered, which is 

conservative for design purposes.  

 

5.3.2 Typical Breakout, Displacement and Breakout, and Rotation Curve 

In the following LDFE analyses, the performances of vertically installed plate 

anchors without shanks, with t/B = 0.05 and 0.1, and with initial embedment depths of 

H/B = 5 and 10 are considered, as shown in Figure 5.2. The keying process was simulated 

Figure 5.6 Relationship between anchor rotation αº and δz/B when e/B = 1, B = 0.5m, t 

= 0.1B, and θ = 90º. 
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using a submerged unit weight of γ′ = 8 kN/m3, friction angle of ' = 33º, and soil dilation 

angle of ψ = 4º. The pullout resistance at any embedment depth can be expressed in terms 

of the dimensionless breakout factor Nq, defined as:  

Nq = Pu / γ′ BHmod          (5.1) 

where Pu is the ultimate load (force), γ′ is the unit weight of the soil, B is the anchor width, 

and Hmod is the depth from the soil surface to the anchor center, which changed due to loss 

in the anchor embedment δz. Figure 5.7 shows a typically shaped breakout Nq and 

normalized vertical displacement δt/B curve for a vertical pullout angle of θ = 90º. The 

predictions showed four major phases during the keying process (i.e., θ = 90º), as 

illustrated in Figure 5.7. 

The first phase (i.e., from Point 1 to Point 2) represents the padeye tightening and 

slight initial rotation, while the second phase (i.e., from Point 2 to Point 3) indicates a half 

anchor rotation at which can be noticed a small increase in pullout capacity. Next, the third 

phase (i.e., from Point 3 to Point 4) demonstrates the pullout capacity and full rotation 

development that occurs before the end of the keying process, while the fourth phase (i.e., 

from Point 4 to Point 5) represents when the pullout capacity remains steady and the 

translational movement of the anchor is dominant, where the anchor becomes 

approximately horizontal. Since the anchor embedment depth H/B varies during anchor 

rotation from one phase to another, the breakout values were calculated using the updated 

values of embedment depth Hmod/B to keep the results more comparable between phases.  
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Figure 5.8 shows the breakout Nq and rotation α curve of vertical keying (i.e., θ = 

90º) for various e/B ratios. It should be noted that the angle of orientation α at which the 

maximum pullout capacity occurs increases with the increasing e/B ratio. For instance, the 

maximum pullout capacity occurs before the end of the keying process at an orientation 

approximately where α = 70º when e/B = 0.25, while α was approximately 85º when e/B 

= 1.5. 

 

 

 

 

Figure 5.7 Normalized breakout-displacement curve when e/B = 1.0, θ = 90º, and 

t/B = 0.1. 
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5.3.3 Factors Affecting the Keying Process 

The most critical effect from the rotation of the plate anchor is the loss in 

embedment depth (presented as δz/B), which leads to a reduction in the potential anchor 

capacity. The main factors investigated in the following analyses include the anchor 

padeye eccentricity ratio e/B, loading inclination angle θ, effect of anchor thickness in 

terms of t/B, and effect of the elastic soil stiffness E and initial embedment depth H/B. 

 

5.3.3.1 Effects of Loading Eccentricity e/B on Anchor Rotation Behavior 

The influence of the eccentricity loading ratio e/B during vertical pullout was 

studied using LDFE analysis, considering four eccentricity ratios e/B: 0.25, 0.5, 1.0, and 

1.5. Figure 5.9 shows the relationship between the anchor orientation αº and the 

Figure 5.8 Normalized breakout rotation curve (vertical pullout θ = 90º) when e/B 

= 0.5, 1.0, and 1.5. 
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normalized loss in anchor embedment δz/B, as measured at the anchor center for a strip 

plate with a width B = 1.0m, H/B = 10, and t/B = 0.1. The LDFE results show that when 

e/B = 1.0 and 1.5, the loss in anchor embedment mainly occurred during the last 20° of 

anchor rotation. When e/B = 0.5 and 0.25, the prediction of loss in anchor embedment δz/B 

was greater and a longer distance was required to approach the same anchor rotation αº, 

which meant that as the e/B increased, the anchor rotated at a faster rate. However, the 

dependence of loss in the embedment on padeye eccentricity in sand is similar to that 

which was reported by O’Loughlin et al. (2006) and Song et al. (2006) for clay, and this 

can be quantified. Also, one can see in Figure 5.10 that the vertical anchor padeye 

movement δt/B increased almost in a linear manner with an increase in anchor rotation. 

This was true until Phase 4, when the increase become nonlinear after the translational 

movement became dominant. 

  

Figure 5.9 Relationship between the anchor rotation αo and δz/B for e/B 

= 0. 25, 0.5, 1.0, and 1.5). 
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Figure 5.11 shows that a lower eccentricity ratio e/B leads to a larger movement 

required for the anchor to reach its pullout capacity. This larger embedment loss reduced 

the pullout capacity, as shown in this figure. Also, it can be noted from Figure 5.11 that a 

minimal loss in anchor embedment (i.e., the highest potential pullout capacity) can be 

achieved with an anchor with an e/B equal at least to the anchor breadth B, regardless of 

the plate thickness. In other words, once the eccentricity e ≥ B, a minimal loss in anchor 

embedment can be achieved regardless of the plate thickness. This is consistent with what 

was reported by Barron (2014). Decreasing e/B from 1.5 to 0.25 caused a decrease in 

pullout capacity of approximately 20%, as shown in Figure 5.11.  

 

 

Figure 5.10 Relationship between anchor rotation αº and δt /B for e/B = 

0.5, 1.0, and 1.5. 
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The relationship between the normalized loss in anchor embedment δz/B, measured 

at the anchor center, and the normalized total vertical displacement of the anchor padeye 

δt/B are shown in Figure 5.12. It should be noted that when e/B = 1.5, there was minimal 

loss in anchor embedment δz at the initial value of δt. This stiffer response for e/B = 1.5 

was changed to a softer response once the eccentricity e/B was reduced to 1.0, 0.5, and 

0.25, as illustrated in the figure. It is worth noting that for all e/B ratios, the slopes become 

approximately 1:1 when the anchor reaches the maximum pullout capacity. In other words, 

as e/B reduced to 0.25, δz/B increases linearly with δt/B starting from the beginning of 

keying process. These findings are similar to those reported by Long et al. (2009) for clay. 

 

 

Figure 5.11 Normalized breakout displacement curve with t/B = 0.1 when 

e/B = 0.25, 0.5, 1.0, and 1.5. 
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The predictions in Figure 5.13 show that the movement of the anchor padeye for vertical 

pullout followed a similar pattern for different e/B ratios.  The results show that as the e/B 

increased, the total vertical displacement δt required to reach pullout capacity, also 

increased. Once the translational movement became dominant, the pullout anchor capacity 

developed rapidly.  

 

The results in Figure 5.14 show that the trajectory of the anchor padeye movement, 

which corresponds to phases 2 to 3 and 3 to 4 in the breakout displacement curve 

illustrated in Figure 5.7, was accompanied by a backwards horizontal movement. As the 

anchor approached its full rotation in Phase 4, the vertical displacement became dominant, 

as shown in Figure 5.14.  It should also be noted that as e/B increased, the total 

accumulated value of the backwards horizontal movement at its full rotation in Phase 4 

Figure 5.12 Relationship between δt/B and δz/B for e/B = 0.25, 0.5, 

1.0, and 1.5. 
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became larger. The trajectory of the anchor center with t/B = 0.05 (see Figure 5.15) showed 

vertical and horizontal backwards movements during rotation. As the anchor rotation 

progressed, it was noted that the backwards movement could change to forwards 

horizontal movement, followed by a dominant vertical movement. It can also be seen from 

Figure 5.15 for the trajectory of the anchor center that as e/B increases, the backwards 

horizontal movement also decreases.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.13 Normalized breakout displacement during keying under vertical 

pullout for e/B = 0.25, 0.5, 1.0, and 1.5. 
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Figure 5.14 Trajectories of the anchor padeye during rotation when e/B = 

0.25, 0.5, 1.0, and 1.5. 

Figure 5.15 Trajectories of anchor center during rotation with t/B = 0.05 when 

e/B = 0. 5, 1.0, and 1.5. 
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5.3.3.2 Effects of Pullout Angle θ on Anchor Rotation Behavior 

In the following LDFE analyses, vertically installed strip plate anchors at a padeye 

eccentricity ratio of e/B = 1.0 and with pullout angles to the horizontal of θ = 30º, 45º, and 

90º were considered in an effort to determine the effects of anchor pullout inclination on 

the loss of embedment δz/B. The results for each pullout angle θ in Figure 5.16 for t/B = 

0.05 showed that the loss in anchor embedment increased with increases in anchor rotation 

α to its final orientation. However, the maximum loss in anchor embedment increased with 

increasing pullout angle θ, since more rotation was required to complete the anchor 

rotation when the higher pullout angle was applied. It should also be noted from Figure 

5.16 that the anchor did not rotate to a full 30º or 45º position, but instead stabilized at a 

plate inclination of α = 26º and 43º, respectively. Therefore, the maximum loss in 

embedment δz/B was determined at the point where the anchor approached its stable 

orientation. For instance, it can be seen in Figure 5.16 that when the plate anchor was 

stabilized at a plate inclination of α = 26º, the plate anchor experienced a maximum loss 

of embedment δz/B, approximately 0.325. 

A linear relationship was also observed between the maximum loss in anchor 

embedment and anchor pullout angle θ at any e/B ratio, as shown in Figure 5.17. However, 

the dependence on loss of embedment of pullout angle θ for sand is similar to that reported 

for clay by Song et al. (2009) and Long et al. (2009), as illustrated in Figures 2.37  
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Figure 5.16 Relationship between anchor rotation αo and δz/B for e/B = 

1.0 when θ = 30º, 45º, and 90º. 

Figure 5.17 Relationship between pullout angle θ and maximum δz/B 

for e/B = 1.0 and 1.5. 
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The predictions in Figure 5.18 show the trajectory of the anchor padeye’s movement for 

e/B = 1.0 at different pullout angles. The results illustrate that the amount of backward 

movement primarily depended on the pullout loading angle θ and then vanished, and could 

change to forward movement when the loading angle θ was small.  

 

 

 

 

 

 

 

 

 

 

 

 

5.3.3.3 Influence of Anchor Thickness t/B 

To investigate the effects of the anchor thickness ratio t/B on keying behavior, 

LDFE analyses were performed using t/B ratios of 0.05 and 0.1, with different loading 

eccentricity e/B ratios (i.e., 0.25, 0.5, 1.0, and 1.5) for the vertical pullout loading (i.e., θ 

= 90º). The initial anchor embedment was maintained at H/B = 10.  Figure 5.19 shows that 

when t/B = 0.05, the prediction of loss in anchor embedment δz/B was greater and a longer 

Figure 5.18 Anchor padeye trajectories during rotation for e/B = 1.0 when 

pullout angle θ = 30º, 45º, and 90º. 
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distance was required to approach the final orientation, meaning that as t/B increased, the 

anchor rotated faster and lost less embedment during keying.  This effect became minimal 

as e/B = 1.5, as shown in Figure 5.19c. It is apparent from Figure 5.20 that the lower the 

anchor thickness ratio t/B, the higher the loss in anchor embedment δz/B, especially for 

small e/B ratios. In other words, the effect of t/B on the loss of anchor embedment δz/B 

became more pronounced when e/B < 0.5. For instance, at e/B = 0.25, the increase in 

maximum loss in anchor embedment δz/B was ~ 80% greater than the maximum δz/B when 

e/B = 0.5.   

Figure 5.20 shows that at certain e/B values, as the thickness ratio t/B decreases, 

the maximum loss of embedment δz/B increases and, therefore, the corresponding pullout 

capacity decreases. This effect becomes minimal as e/B increases. Increasing the t/B ratio 

may increase resistance to the translational and rotational movement, due to increases in 

friction and bearing contact area for the anchor thickness.  Additionally, the LDFE results 

showed that the trajectory of the anchor padeye was dependent on t/B before the end of 

the keying process, especially for small ratios of e/B (see Figure 5.21), while the padeye 

trajectory became independent in all keying process phases when e/B = 1.5. Therefore, 

thinner anchors may suffer greater embedment loss during the keying process but 

practically are beneficial for minimizing the penetration resistance, which is important 

when installing suction embedded plate anchors (Wang et al., 2009). 
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 Figure 5.19 Effects of anchor thickness t/B on the relationship 

between anchor rotation αo and δz/B for e/B = 0.5, 1.0, and 1.5. 



 

203 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ax

im
u

m
 δ

z
/B

e/B

t/B = 0.1

t/B = 0.05

Figure 5.20 Effects of anchor thickness t/B on the maximum loss of 

embedment δz/B for θ = 90o. 
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Figure 5.21 Effects of anchor thickness t/B on trajectories of the anchor 

padeye during rotation for the vertical pullout angle θ = 90o. 
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5.3.3.4 Effects of Soil Stiffness E and Embedment Depth H/B on Rotation Behavior 

The effects of elastic soil stiffness E on the responses of a plate anchor during the 

keying process were also investigated for different elastic soil stiffness E (i.e., 3,000, 

6,000, and 10,000 kPa). The simulation was conducted for H/B = 3 and 10, e/B = 1.0, t/B 

= 0.05, and vertical pullout θ = 90º. The predictions showed in Figures 5.22, 5.23, and 

5.25 demonstrate that the keying behavior of shallow anchors (e.g., H/B = 3) is essentially 

independent of soil elastic stiffness E. Beyond the shallow zone, the keying behavior and 

pullout capacity of deeply embedded anchors (e.g., H/B = 10) are sensitive to E, as shown 

in these figures. The influence of elastic soil stiffness E on the breakout Nq factor for 

relatively deeply embedded anchors (e.g., H/B = 10) is obvious in Figure 5.22b, which 

shows the uplift dimensionless curves for different E values. The results show a trend in 

reduced elastic soil stiffness E, leading to increased levels of displacement at which the 

ultimate load is approached. However, it should be noted that there was around a 10% 

difference in pullout capacity at the end of the keying, as E increased from 3,000 to 10,000 

kPa.  

As shown in Figure 5.23a, the results of the plate inclination α embedment loss 

δz/B curve for E = 3,000, 6,000, and 10,000 kPa are identical for shallow anchors, while 

the effects of E on the embedment loss δz/B is evident for deeply embedded anchors (e.g., 

H/B = 10), as shown in Figure 5.23b. Also, the predictions for H/B = 10 show that the 

maximum embedment loss decreases in a nonlinear manner (see Figure 5.24) as the elastic 

soil stiffness E increases. For instance, the maximum embedment loss for e/B =1.0 when 

E = 10,000 kPa became about 30% smaller than the result of E = 3,000 kPa. Therefore, 
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the keying response of a strip plate anchor can be interpreted as essentially independent 

of elastic soil stiffness E for shallowly embedded anchors, while the responses for deeply 

embedded anchors during the keying process are influenced by the soil stiffness E. 
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Figure 5.22 Effects of elastic soil stiffness E on the breakout Nq for shallowly and 

deeply embedded anchors. 
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Figure 5.23 Effects of elastic soil stiffness E on the relationship between 

anchor rotation αº and δz /B for shallowly (H/B = 3) and deeply (H/B = 10) 

embedded anchors. 
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The influence of E on the anchor trajectories during the keying process was also 

investigated for H/B = 3 and 10. The LDFE results showed that the anchor padeye 

trajectory for H/B = 10 was dependent upon E before the end of the keying process, as 

shown in Figure 5.25b, while the anchor padeye trajectory for H/B = 3 was independent 

of E in all anchor keying phases, as illustrated in Figure 5.25a. However, for both 

trajectories the rotational movement was accompanied by vertical and backwards 

horizontal movement. The influence of initial embedment depth H/B on anchor response 

during the keying process is illustrated in Figures 5.26 and 5.27 for H/B = 3, 5, and 10.  

Figure 5.26 shows that the anchor rotation with the loss in anchor embedment was 

approximately independent of the embedment depth.  
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Figure 5.24 Relationship between elastic soil stiffness E and maximum δz /B for 

e/B = 1.0 and 1.5. 
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Figure 5.25 Effects of elastic soil stiffness E on padeye anchor trajectories during 

rotation for shallowly and deeply embedded anchors. 
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Figure 5.27 shows that the pre- and post-pullout capacities mainly depended on H/B. 

However, as H/B increased, the loss of embedment depth where the pullout capacity 

reached the ultimate anchor capacity increased slightly, as shown in Figure 5.27.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26 Relationship between anchor rotation αo and δz/B for different 

H/B ratios. 

Figure 5.27 Normalized breakout displacement curve for various H/B ratios. 
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5.4 Soil Flow mechanisms 

To investigate the soil flow mechanisms surrounding the anchor plate during the 

keying process, a typical contour of total displacement for vertical pullout θ = 90º, e/B = 

1.0, t/B = 0.05, and H/B = 10.0 is shown in Figures 5.28, 5.29, and 5.30.  These figures 

present the soil flow mechanism as the anchor position evolved at various phases during 

the anchor keying process. It was observed that a fully localized soil flow mechanism 

occurred around the anchor when α increased from 0º to approximately 60º, as shown in 

Figure 5.28.  

 

 

 

 

 

 

 

 

 

 

 

 

 (c)  α = 30º (d)  α = 45º 

(b)  α = 15º (a)  α = 5º 

Figure 5.28 Soil flow mechanisms during anchor keying: (a) α = 5º; (b) α = 15º; (c) 

α = 30º; and (d) α = 45º. 
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This was due to the rotational movement of the plate anchor during this phase 

being dominant, and the bearing resistance of the plate anchor remaining steady or 

increasing slightly during rotation. As the keying progressed and a combination of 

rotational and translational movements of the anchor occurred (i.e., when α exceeded 

approximately 60º), it could be seen that localized soil flow was accompanied by some 

plastic soil flow, which extended to the upper zones ahead of the anchor as shown in Figure 

5.29. Consequently, the breakout factor increased rapidly as the translational movement 

started to be dominant. 

 

 

 

 

 

 

 

 

 

 

 

As the plate anchor approached the final stages of the keying process (i.e., the 

highest potential pullout capacity) where the translational movement of the plate anchor 

became dominant, a transition from deep localized rotational mechanism to shallow soil 

(a)  α = 60º (b)  α = 70º 

Figure 5.29 Soil flow mechanisms during anchor keying: (a) α = 60º; and (b) α = 70º. 
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flow mechanism, consisting failure bands which begin from the corner of the plate anchor 

and extend to the free surface as shown in Figure 5.30. For the anchor embedment H/B = 

10, it was obvious that the soil flow mechanism remained as is, and not fully in deep failure 

mode. Once the plate anchor was embedded deeper (e.g., H/B = 18), the soil flow around 

the anchor was fully localized (see Figure 5.31) due to the diminishing effect of the free 

surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)  α = 80º (b)  α = 89.5º 

Figure 5.30 Soil flow mechanisms during anchor keying (e/B = 1.0, θ = 90º): (a) α = 80º; 

and (b) α = 89.5º. 



 

214 

 

 

 

 

 

 

 

 

 

 

 

5.5 Summary 

The keying process behavior and pullout capacity of a vertically installed strip 

plate anchor embedded in uniform cohesionless soil was simulated using large 

deformation finite element (LDFE) analysis (i.e., a RITSS technique). Simulation of the 

keying process has not been extensively investigated in previous research, especially for 

cohesionless soil. Irrecoverable loss of embedment predictions accompanied the keying 

rotation, which led to a considerable reduction in the uplift capacity; these were 

investigated with various loading eccentricity ratios (e/B), pullout angle θ, and thickness 

ratio t/B. The anchor shank was not considered in this analysis because it was noticed that 

the including shank soil resistance increases post pullout capacity by approximately 15% 

when a shank was not considered.  

Figure 5.31 Soil flow mechanisms during anchor keying 

(e/B = 1.0, θ = 90º) when α = 89º for H/B = 18. 
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As demonstrated in this study, the peak pullout capacity did not occur at the end 

of the anchor keying process. The angle of orientation α at which the maximum pullout 

capacity occurred increased with an increasing e/B ratio, ranging between 70º and 85º (see 

Figure 5.8). The LDFE results showed that as the loading eccentricity ratio e/B increases, 

the loss in anchor embedment δz/B during rotation decreases (see Figure 5.10). Also, once 

the eccentricity e ≥ B, a minimal loss in anchor embedment (i.e., the highest pullout 

capacity) can be achieved regardless of the plate thickness. Decreasing e/B from 1.5 to 

0.25 caused a decrease in pullout capacity of approximately 20% (see Figure 5.11). 

It was also found from Figure 5.20 that the lower the anchor thickness ratio t/B, 

the higher the loss in anchor embedment δz/B, especially for small e/B ratios. Also, the 

trajectory of the anchor padeye predictions showed that the amount of backward 

movement primarily depended upon the pullout loading angle θ and then vanished, and 

could change to forward movement when the loading angle θ was small (see Figure 5.18).  

The numerical results from the figures (i.e., e/B and pullout angle θ) show that the loading 

eccentricity e/B had a much larger effect on the embedment loss than did the pullout angle.  

It was found that the effect of t/B on the loss of anchor embedment δz/B became 

more pronounced for smaller values of e/B (see Figure 5.20). The keying behavior of the 

plate anchor was determined to be essentially independent of the soil elastic stiffness E 

for shallowly embedded anchors, while it was influenced by E for deeply embedded 

anchors.  
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CHAPTER VI 

 INCLINED PULLOUT OF STRIP PLATE ANCHORS IN SAND 

 

6.1 Introduction 

Mooring systems for offshore floating structures often involve inclined load 

orientations where the plate anchors are not horizontally orientated. To meet the design 

requirements of many of offshore applications, plate anchors are frequently placed at 

orientations somewhere between vertical and horizontal. The majority of the previously 

published experimental, analytical, and numerical studies have been concerned with 

evaluating the pullout resistance of either horizontal or vertical plate anchors. Very few 

finite element studies have been performed that estimate the pullout capacities of inclined 

plate anchors in cohesionless soil. This phase of the research directs attention to the effects 

of anchor inclination. The influence of parameters such as anchor inclination, dimensions, 

embedment depth, soil relative density, and anchor roughness on overall plate anchor 

performance were investigated. Finite element analyses were conducted to introduce 

simple design charts relating the breakout factor to the embedment depth and relative 

density for different inclination angles and anchor widths. The finite element predictions 

were then compared to experimental, analytical, and finite element analyses reported in 

the literature.   

 

6.2 Problem geometry, boundary conditions, and finite element modeling 

The problem geometry considered in the present study is shown in Figure 6.1. 

Anchor inclination is defined in terms of an angle θ, as shown in Figure 6.1a. Horizontal 
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and vertical anchors have inclination angles of θ = 0º
 
and θ = 90

o
, as shown in Figures 

6.1b and 6.1c, respectively. The depth of the anchor plate is measured in terms of 

embedment depth ratios (i.e., Hc/B, H/B), where the normalized depth to the center of the 

plate Hc/B applies to inclined and vertical plates, and the depth to the base of the plate H/B 

applies to horizontal plates.  

In the present study, the stability and performance of wished-in-place strip plate 

anchors inclined at θ = 0
o
, 22.5

o
, 45

o
, 67.5

o
, and 90

o
 were investigated. While the 

assumption of the plate anchor behavior being a strip (i.e., in a plane strain condition) may 

be unrealistic for many applications, in this case it is essential as a reference in much the 

same way as strip footing serves as a reference when assessing the bearing capacity of 

shallow foundations (Yu et al., 2014). All analyses in this chapter were performed with a 

thickness width ratio of t/B = 0.1. The soil material must obey the non-associated flow 

yielding rule, which very often is observed during the failure of cohesionless soil. The soil 

domain was discretized into the mesh of a four-node bilinear quadrilateral reduced 

integration element CPE4R, while the anchor plate was modeled as perfectly rough or 

smoothly rigid. A typical structured mesh (see Figure 6.2) was created by zoning the 

problem geometry. However, a denser zone with a minimum element size hmin/B = 1/20 

was between the plate and adjoining sand mass.  

Far field boundaries, as shown in Figure 6.2 were chosen to be sufficiently far for 

the plate to diminish any boundary effects on the ultimate capacity of the plate anchor. 

The analyses were performed using the Arbitrary Lagrangian-Eulerian (ALE) technique 

adopted by the Abaqus/Explicit software package. As mentioned in Chapter III, using this 
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technique in Abaqus/Explicit allows the anchor to experience relatively large 

displacements while avoiding any numerical divergence issues related to mesh distortion, 

especially around the corners of the anchor plate where the shear strain localization zones 

are located. Therefore, for cases where large strains occur, the ALE technique was used 

to solve any resulting element distortions. 

The present study utilizes displacement-based finite element analyses with an 

applied constant pullout velocity, where the pullout load is centrically applied in a 

direction perpendicular to the anchor plate face. For all subsequent analyses, the pullout 

rate of 0.02 m/sec was applied at the reference point of the plate anchor. This rate was 

slow enough to simulate the pullout process, essentially a quasi-static process in nature, 

as closely as possible. The collapse load of the plate anchor was taken to be the same 

criterion as in Chapter IV (i.e., the collapse load at which the anchor displacement reached 

25% of the anchor width). As mentioned in Chapter IV, the collapse load at shallow depths 

occurs well before this displacement magnitude, so pullout capacity estimates derived 

from the finite element results were not affected by this failure criterion. However, for 

deeply embedded anchors, large deformations are required to mobilize the ultimate 

capacity and large deformation finite element analysis (LDFE) must be conducted; thus, 

the displacement limitation described above governs. Immediate breakaway occurs when 

there is no suction between the soil and anchor for cohesionless soil.  Separation or 

breakaway of the anchor from the soil occurs when the vertical stresses behind the anchor 

plate face are reduced to zero. 
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6.3 Parametric Study 

In the present study, LDFE analyses were undertaken to investigate the 

performance of strip plate anchors embedded in cohesionless soil with various inclination 

angles ranging from 0º to 90º. The effects of the anchor inclination (in terms of inclination 

factor Fi), scale effect (i.e., the B effect), embedment depth (i.e., H/B), relative density of 

the soil Dr, and anchor roughness were all examined. Theses analyses were performed for 

Figure 6.1 Problem analysis for an inclined strip plate anchor. 

Pu = quB 

θ Hc 

H 

Ha 

(a) 

Pu = quB 

B 

H 

(b) 

Pu = quB 

H 

Hc 

B 

(c) 

𝑁𝑞 = Pu / B′z 
 

Nq : Breakout factor 

Pu : Ultimate load  
B : Anchor width 

'z  : Effective vertical overburden stress at 

the anchor’s center for inclined and vertical 
anchors an at the beneath of the horizontal 
anchor. 
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different values of the embedment depth ratio H/B, ranging from 1 to in some cases more 

than 30 anchor widths. The failure mechanism for certain typical cases was also 

investigated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Horizontal anchor 

3H 3H 

  H 

4B 

Figure 6.2 Typical finite element mesh and boundary conditions. 

3Hc 2Hc 

  Hc 

4B 

(a) Inclined and vertical anchors 
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6.3.1 Anchor width B (scale effect) 

This part of the research examined the influence of anchor width B on the ultimate 

capacity of a strip plate anchor, incorporating variations in embedment depth and relative 

density. To determine the influence of scale effect, analyses were performed for various 

anchor widths B ranging from 0.25 to 3 m and embedment depth ratios varying from 1 to 

10. The predictions for a horizontal anchor (i.e., θ = 0º) embedded in loose sand (i.e., Dr 

= 30%) showed that an increase in anchor width B led to a slight decrease in breakout 

factor Nq, especially for shallow anchors (as shown in Figure 6.3a). As the H/B value 

increases, the effect of B becomes more appreciable for deep anchors. For instance, for 

H/B = 2, an increase B from 0.25 to 3 causes a decrease in Nq from 2.17 to 1.95, while for 

H/B = 10, a similar increase in B causes a decrease in Nq from 7.19 to 5.1.  

However, for horizontal anchors (i.e., θ = 0º) in dense sand (i.e., Dr = 80%), it is 

evident from Figure 6.4a that the effect of B becomes minimal for all H/B ratios 

considered. For H/B = 2, an increase in B from 0.25 to 3 causes a decrease in Nq from 2.61 

to 2.37, while for H/B = 10, a similar increase in B causes a decrease in Nq from 8.92 to 

8.21. The results also show that the Nq for vertical anchors (i.e., θ = 90º) in dense sand (see 

Figure 6.4c) decreases with an increase in B at a rate higher than what was observed for 

loose sand (see Figure 6.3c). However, for vertical anchors, the analyses revealed that the 

effects of B on the Nq values were appreciable for loose and dense sand. For instance, for 

a vertical anchor with H/B = 2 embedded in loose sand, an increase in B from 0.25 to 3 

causes a decrease in Nq from 7.4 to 6.13, while for H/B = 10, a similar increase in B causes 

a decrease in Nq from 11.2.0 to 6.55. 
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Figure 6.3 Variations of Nq with anchor widths B in loose sand (Dr = 30%) and 

with different embedment depth ratios H/B for θ = 0º, θ = 45º, and θ = 90º. 
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Conversely, for a vertical anchor with H/B = 2 in dense sand (Dr = 80%), an increase in B 

from 0.25 to 3 leads to a decrease in Nq from 19.75 to 13.0, while for H/B = 10, a similar 

increase in B causes a decrease for Nq from 31.0 to 15.77, which was about a 50% reduction 

in the Nq value.  For an inclined anchor (θ = 45º), as shown in Figures 6.3b and 6.4b, the 

predictions demonstrated the same trend as for the horizontal and vertical anchors. 

However, the rate of decrease for Nq with the increase in B for loose sand was higher than 

what was predicted for inclined anchors (θ = 45º) embedded in dense sand, especially deep 

anchors. It is also worth noting in Figures 6.5, 6.6, and 6.7 that the effects of anchor width 

B become more pronounced for anchors embedded in loose and dense sand, especially 

when the angle of inclination θ is close to the vertical. Also, the effect of scale is more 

significant for anchors deeply embedded for all inclination angles θ. It can be also 

observed from these figures as the angle of inclination close the vertical (i.e., θ = 90º), the 

effect of scale B becomes significant for shallow and deep anchors especially for dense 

sand as shown in Figure 6.6. For instance, for vertical anchors embedded in loose sand 

(Figure 6.6a) with H/B = 2, an increase B from 0.25 to 3 causes an approximately 20% 

reduction in Nq, a similar increase in B at H/B = 10 causes a decrease in Nq about 45%. In 

view of the above observations, one may conclude that it is definitely important to take 

the contribution of the scale effect into consideration when designing plate anchors. 
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Figure 6.4 Variations in Nq with anchor width B in dense sand (Dr = 80%) for 

different embedment depth ratios H/B for θ = 0º, θ = 45
o
, and θ = 90

o
). 
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Figure 6.5 Variations of Nq with embedment depth ratios H/B for horizontal 

anchors (θ = 0
o
) with different anchor widths B in loose and dense sand. 
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Figure 6.6 Variations of Nq with embedment depth ratios H/B for vertical anchors 

(θ = 90º) with different anchor widths B in loose and dense sand. 
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Figure 6.7 Variations of Nq with embedment depth ratios H/B for inclined anchors 

(θ = 45º) with different anchor widths B in loose and dense sand. 
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6.3.2 Inclination factor Fi 

Among the previous investigations pertaining to strip plate anchors in cohesionless 

soil, relatively few have examined the effects of anchor inclination. As mentioned above, 

most reported studies evaluated the breakout capacity of either horizontal or vertical plate 

anchors. However, these studies revealed that for a given embedment depth, the pullout 

capacity of a plate anchor changes from the minimum for horizontal to the maximum for 

vertical plate anchors. The pullout capacity for an inclined plate anchor for any inclination 

angle θ can be expressed in terms of the dimensionless breakout factor, defined as: 

𝑁𝑞𝜃 = Pu / B′z         (6.1) 

where Pu is the ultimate load (i.e., force) capacity, B is the anchor width, and 'z is the 

effective vertical overburden stress at the anchor’s center. To investigate the effects of 

inclination, a correction inclination factor was introduced in this study, as: 

90

q

i

N
F

Nq


=           (6.2) 

 

where Fi = the inclination factor, 𝑁𝑞𝜃 is the breakout factor for an inclined anchor at a 

given embedment depth ratio, and  𝑁𝑞90 is the breakout factor for a vertical anchor at the 

same embedment depth ratio.  

The effects of the plate anchor inclination angle on the anchor breakout factor are 

presented in Figures 6.8, 6.9, 6.10, and 6.11 for loose and dense sand (i.e., relative 

densities Dr = 30% and 80%) for different anchor widths B. It is evident from these figures 

that the minimum value of Nq corresponds to the horizontal plate anchor (i.e., θ = 0
o
), 

while the maximum Nq occurs when the plate is vertical (θ = 90º); the Nq value for any 
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inclined anchor is intermediate between the maximum and minimum values of Nq. The 

predictions shown in these figures indicate that the inclination factor Fi increased in a 

nonlinear manner with an increasing inclination angle 𝜃 from 0 to 90º for loose and dense 

sand. It should be noted from Figures 6.8 and 6.9 that the effects of B on Nq become more 

pronounced in loose and dense sand with greater values of θ, particularly when the plate 

anchor becomes vertical. For relatively deep anchors (i.e., H/B = 10) embedded in loose 

sand, the effects of B on Nq were evident for all values of θ, as shown in Figure 6.9a.  

Figures 6.10 and 6.11 indicate that there was a very slight difference between the 

breakout factor for horizontal (θ = 0º) and inclined anchors when θ ≤ 30º. A greater rate 

of increase in the inclination factor appeared when 30º ≤ θ ≤ 60º. The greatest rate of 

increase in anchor capacity began approximately at θ > 45º for loose sand (i.e., Dr = 30%) 

and at θ > 60º
 
for dense sand (i.e., Dr = 80%). For a given embedment depth (Hc/B) and 

relative density Dr, and with an adequate level of accuracy for design purposes, a simple 

relationship is proposed in this research to estimate the breakout factor of an inclined 

anchor at any inclination angle 𝜃 between 0º and 90º. 

0 90 0

3

[ ]
90

qN Nq Nq Nq

 
= + −  

 
       (6.3) 

where 𝑁𝑞0 and 𝑁𝑞90 are the breakout factors for the horizontal and vertical anchors, 

respectively. The general form of Equation 6.3 is approximately similar to the empirical 

equation proposed by Das and Puri (1989), based on their laboratory investigations 

estimating the pullout capacity of inclined square anchors in clay. Superposition of 
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Equations 6.3 on to the finite element predictions in Figure 6.9b shows very good 

agreement 
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Figure 6.8 Variations of Nq with inclination angle θ for shallow anchors (H/B = 

2) in loose and dense sand where B = 0.25 and 3.0. 
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Figure 6.9 Variations of Nq with inclination angle θ for deep anchors (H/B = 10) 

in loose and dense sand where B = 0.25 and 3.0.  
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Figure 6.10 Inclination factors for plate anchors embedded in loose sand (Dr = 

30%) for different embedment depth ratios H/B and different B values. 
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Figure 6.11 Inclination factors for plate anchors embedded in dense sand (Dr = 

80%) for different embedment depth ratios H/B and different B values. 
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6.3.3 Roughness 

The soil anchor interface was modeled using the Abaqus/Explicit contact surface 

approach. The tangential (i.e., frictional) interface between the outer surface of the anchor 

and the soil was simulated using the Coulomb friction coefficient μ = tan δ where δ is the 

soil anchor interface friction angle. As mentioned in Chapter III, δ values depend on the 

interface characteristics and relative movement between the anchor and soil; however, 

they generally lie between 50% and 100% of the peak friction angle 'p (Roy et al., 2015). 

The value δ = 0% of the peak friction angle 'p was adopted in the present study for 

perfectly smooth anchors, while δ = 100% was applied to perfectly rough anchors. To 

investigate the influence of roughness on an anchor’s ultimate capacity, cases of perfectly 

smooth and perfectly rough anchors with various θ values were examined.  

The finite element analyses confirmed the significance of the roughness of the soil 

anchor interface when estimating the pullout resistance of vertical anchors (i.e., θ = 90º), 

especially for shallow embedment depths ranging from 1 to 4 as shown in Figure (6.12). 

For instance, changing from perfectly smooth to perfectly rough anchors and Hc/B = 2 can 

cause the anchor pullout resistance to increase by as much as 40%, as compared to an 

increase of about 5% for Hc/B = 8. The increase in ultimate capacity due to the interface 

roughness is attributable to soil movement when the anchor’s passive side is upwards at 

an angle to soil anchor interface friction angle δ (Merifield and Sloan, 2006). This upward 

movement develops significant shear stresses at the soil anchor interface, which increases 

the anchor’s ultimate capacity. Figure 6.12 shows the variations in breakout factor Nq for 

smooth and rough anchors, which demonstrated less sensitivity to soil roughness for 
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inclined anchors with θ ≤ 45º. For example, a roughness interface for Hc/B = 2 for θ = 45º 

can cause an increase in the anchor’s pullout resistance of as much as 18%. However, the 

ultimate capacity of a horizontal anchor is approximately independent of the roughness 

interface for all embedment depths, as shown in Figure 6.12a. 
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6.3.4 Correlation to relative density 

Since estimation of relative density Dr and effective stress level is practiced by a 

conventional site investigation, it is more practical to utilize a framework for predicting 

pullout anchor resistance in sand in terms of the relative density Dr and effective stress 

level. Bolton (1986) introduced a relative dilatancy index IRD in terms of relative density 

Dr and effective stress level, as follows: 

( )ln ln 1c
RD r RDI D Q p R I

p

  
− − == − 

 
                                                                         (6.4) 

The values Q = 10 and R = 1 were recommended by Bolton (1986) from test results for 17 

sands. As mentioned in Chapter IV, the following plane strain correlation proposed by 

Bolton (1986) was found to be applicable to the range 0 < IRD < 4. Eq. 6.5 links the dilation 

angle to the relative density Dr and confining stress 𝜎𝑐
′, which is sufficient to eliminate 

dilation relating to the mean effective stress 𝑝′ at failure. 

maxp cv RDk AI    =− =                                                                                         (6.5) 

According to Bolton (1986), the parameters k and A are 0.8 and 5, respectively, 

under plane strain conditions, which is appropriate for problems related to strip plate 

anchor pullout capacity. A single representative dilation angle ψ and mean effective stress 

at failure 𝑝′ was assumed in the present research. Assuming a single dilatancy angle 

mobilized at all points in the yielded soil surrounding the anchor was not conservative. 

The selection of  𝑝′ as the effective overburden pressure was taken at the bottom face of 

the horizontal plate anchor and center of the plate anchor for the inclined and vertical 

anchors. This selection of 𝑝′instead of the mid-depth between the ground soil surface and 
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the anchor allowed for an increase in mean stress within the shearing zone during uplift, 

which lead to less dilatancy than would be implied by using the initial stress condition 

(White et al., 2008).  Bolton (1986) proposed a constant value for A and Q. Xiao et al. 

(2014) formulated an empirical equation to show that Q is a function of confining pressure. 

Also, Xiao et al. (2014) proposed an empirical equation that shows the variations in A with 

the fine contents of sand. These researchers found that in triaxial tests, A ranged between 

3.0 and 5.53 for Ottawa sand with 0% to 20% fine content. The parameters Q and 𝜙′
𝑐𝑣

 

exhibited minimal variations among cohesionless soils; therefore, these parameters were 

not needed as further variables when preparing the design charts (White et al., 2008).  

In the present study, constant values of Q = 10 and A = 5 for plane strain condition 

were used. Although the value of 'cv might slightly increase with a decreasing 𝑝′ (Lings 

and Dietz, 2004), 'cv = 33 was employed here, based on data presented by Randolph et 

al. (2004). From Eqs. 6.4 and 6.5, one can calculate the peak angle of shearing resistance 

'p and peak dilatancy angle ψmax, which are required in the finite element calculations, 

combined with the assumed value of the mean effective stress at failure  𝑝′. It was 

reasonable to develop the design charts for predicting the anchor capacity for different 

values of relative density. According to Janbu (1963) and Harden and Black 1966), elastic 

stiffness soil E varies with 𝑝′, based on the following power function: 

a

a

n
p

E mp
p

 
=  

 
         (6.6) 
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where 𝑝𝑎 is the atmospheric pressure (i.e., 101 kPa), and m and n were developed in this 

study as a function of the relative density, as in Eqs. 6.7 and 6.8, respectively.  

2223.6 136.7 106.1r rm D D= + +        (6.7) 

0.74 0.2 rn D= −          (6.8) 

The range of submerged unit weights in seabed sands is relatively modest; therefore, 

density has not been considered a contributing factor in predicting anchor capacity, except 

when considering dry versus submerged soil profiles. The present study considers a sand 

profile with a submerged unit weight of γ' = 8 kN/m3. Other soil properties for all cases 

included cohesion c = 0.05 kPa, Poisson’s ratio μ = 0.3, and an at-rest lateral earth pressure 

coefficient of Ko = 0.5. 

Figures 6.13., 6.14, and 6.15 show the effects of relative density Dr on the ultimate 

capacity of horizontal and vertical strip plate anchors for different anchor widths B (i.e., 

0.5, 1.0, and 3.0). The results showed that the effects of relative density were more 

significant for vertical anchor orientation, especially with deeply embedded anchors. For 

instance, for the vertical anchor with B = 0.5, Nq increased by a factor of around 4 over a 

range of Dr from 20% to 80% for shallowly embedded anchors with H/D = 2, while Nq 

increased by a factor of about 6 for the same range of relative densities for deeply 

embedded anchors (i.e., H/B = 10). However, for B = 3m, Nq increased by the same factor, 

about 2.5 for H/B = 2 and H/B = 10. Conversely, for horizontal anchors, Nq increased by 

a factor ranging between 0.15 and 0.2 for different B values over a range of Dr from 20% 

to 80% for H/B = 2, while for H/B = 10, Nq increased by a factor ranging between 1.4 to 

1.7 for different B values over a range of Dr from 20% to 80%. Also, Figures 6.5, 6.6, 6.7, 
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and 6.16 show that the transition depth for vertical anchors occurred in shallower depths 

than those of horizontal anchors, for all Dr and B values. The results in these figures show 

a noticeable decline in breakout factors after transition depths for different Dr values. This 

behavior was anticipated because the increase in mean confining stress  𝑝′ within the 

failure zone during uplift as H/B increases led to a decrease in the values of friction angle 

' and dilatancy angle .  
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Figure 6.13 Effects of relative density Dr on the pullout capacities of horizontal and 

vertical strip plate anchors (θ = 0º and θ = 90º) when B = 0.5. 
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Figure 6.14 Effects of relative density Dr on the pullout capacities of horizontal and 

vertical strip plate anchors (θ = 0º and θ = 90º) when B = 1.0. 
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Figure 6.15 Effects of relative density Dr on the pullout capacities of horizontal and 

vertical strip plate anchors (θ = 0º and θ = 90º) when B = 3.0. 
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 6.4 Failure Mechanism 

The failure mechanism is explained in this section by the formation of a slip 

surface showing contours of total displacement as a failure state is approached. Since the 

first part of this research (see Chapter IV) covered in detail the mode of failure for the 

horizontal orientation of circular plate anchors, this section presents only the failure 

mechanism of inclined and vertical plate anchors for shallow and deep embedment depths. 

Depending on the embedment depth and relative density, the following failure 

mechanisms can be noticed. 
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6.4.1 Shallow anchors 

The failure mechanism for shallow strip plate anchors where free surface effects 

are dominant, with different inclination angles θ and relative densities Dr, are illustrated 

in Figures 6.17 and Figure 6.18. It can be noticed from Figure 6.17 that for a given relative 

density, inclination angle, and H/B (e.g., Dr = 40%,  = 90º, B = 1.0 m, and H/B = 2), the 

failure slip surface for the shallow anchor extends to the ground surface, presenting 

general shear failure. This failure consists of a rigid movement of soil immediately over 

the anchor, accompanied by lateral movement extending out of the anchor’s edge in the 

pullout direction. The lateral extent of the passive failure zone (i.e., the right side) 

increases with the increasing inclination angle, as shown in Figure 6.17. However, soil 

surface settlement occurs behind the anchor (i.e., the active side), while heave occurs in 

the front (i.e., the passive side). As the angle of inclination exceeds 45
o
 towards the vertical 

(i.e., θ = 90º), the failure zone for the shallow anchor was characterized by the active 

failure zone immediately behind the anchor for both loose and dense sand.  

The slip surface (i.e., the shear band) for the passive failure side extends to the 

right side as the relative density increases from 20% to 80%, as shown in Figure 6.18, for 

 = 90º. This means that the size of zone of the passive failure in front of the anchor 

increases with an increase in the relative density. It can also be noted from Figure 6.18 

that the active failure zone behind the anchor was significant for low relative densities 

(i.e., loose sand), and the zone decreases as the relative density increases. This is consistent 

with what Merifield and Sloan, 2006 found; active failure behind the anchor was 
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significant only when both the embedment ratio and friction angle were low (roughly 

when H/B ≤ 2 and  ≤ 20). 
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6.4.2 Intermediate anchors 

For intermediate embedment depths (e.g., H/B = 8, see Figures 6.19a and 6.19b), 

the development of a shallow versus deep failure mechanism depends on the relative 

density Dr. For instance, it can be noted that a localized failure mechanism develops in the 

loose sand (Dr = 30%) for inclined anchors where θ = 45º, while the influence of the free 

surface on the displacement pattern is still evident in dense sand (i.e, Dr = 80%), as shown 

in Figure 6.19b. It should also be noted that the plastic zone for anchors embedded in 

dense sand initially developed similarly to that of shallower anchors in both loose and 

dense sands. While the plastic zone for an anchor in loose sand is confined to the 

immediate vicinity of anchor, this zone extends to a height approximately three times 

greater than the diameter of the anchor in the pullout direction, as shown in Figure 6.19a. 

For relatively deep embedment depths, the effects of an active failure zone appeared to 

diminish, and only the passive failure zone of the soil ahead of the anchor is of a primary 

significance, as shown in Figure 6.19b. 

 

 

 

 

 

 

 

 

(b) Dense Sand (a) Loose Sand 

Figure 6.19 Contours of the resultant displacement in loose and dense sands for 

intermediate anchors H/D = 12. 
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6.4.3 Deep anchors 

Changes in failure behavior from general to local shear failure (i.e., a localized slip 

surface around the anchor) with increasing embedment depths for loose and dense sand 

are shown in Figure 6.20. The observed failure modes of an inclined anchor with θ = 45º 

and embedment depth H/B = 17 are shown in Figure 6.20 for both loose and dense sand. 

As can be seen in Figure 6.20, collapse of the plate anchor in dense sand involves a wider 

plastic region than does loose sand. However, irrespective the soil relative density Dr, it 

can be seen that there was a localized zone of yield around the plate anchor. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 

Figure 6.20 Contours of resultant displacement in loose and dense sands for deep 

anchors H/D =17. 
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6.5 Comparison to prior theoretical and experimental data 

The numerical results obtained from the present study were compared with 

published numerical, analytical, and experimental results for validation. Figure 6.21 

compares the finite element solution estimates with the experimental results and upper 

bound solution obtained by Murray and Geddes (1989). This figure illustrates the 

comparison of the case of inclined anchors with  = 45º, noting that  and δ are 43.6 and 

10.6º, respectively, where δ is the soil anchor interface friction angle.  
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experimental and theoretical results obtained by Murray and Geddes (1989). 
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Comparing numerical and experimental results can be quite complicated, due to 

uncertainties regarding a wide range of soil properties (e.g., friction angle, dilation angle 

ψ, E, etc.), soil types, and the geometry of the anchor plates for which experimental results 

are reported (Dickin, 1988). However, the careful selection of soil parameter values allows 

for a close correlation with experimental results; therefore, good agreement was found 

when using ψ = 12º to 18º (Murray and Geddes, 1989). The experimental observations 

were slightly higher than the numerical and theoretical results. While plastic limit analyses 

assume a rigid plastic medium, Chen (2103) showed that ultimate collapse loads are 

independent of the elastic response. However, if elastic effects lead to a significant 

geometric nonlinearity, plastic limit solutions will not necessarily match the large 

deformation finite element solutions. 

Figure 6.22 illustrates a comparison between the present research and a finite 

element study performed by Rowe and Davis (1982) for cases of vertical anchors 

embedded in cohesionless soil with different values of friction angle '. The breakout 

factors increased in a nonlinear manner with increasing H/D; the greatest increase 

occurred with high friction angles '. However, the results of the present finite element 

analysis agree very well with the Rowe and Davis predictions, as shown in Figure 6.22. 
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6.6 Summary 

As noted above, there are very few numerical studies of inclined plate anchors 

embedded in cohesionless soil. The present research utilized displacement-based finite 

element analyses to investigate the influence of parameters such as anchor inclination (in 

terms of inclination factor), scale effect (i.e., B effect), embedment depth (i.e., H/B), soil 

relative density Dr, and anchor roughness on the overall plate anchor performance. This 
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Figure 6.22 Comparison of breakout factors from the current FE study and 
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section of the research presents a parametric finite element study to introduce design charts 

relating the breakout factor Nq to the embedment depth H/B and relative density Dr for 

different inclination angles θ and anchor widths B.  

The predictions showed a significant sensitivity of the breakout factor Nq to the 

plate width B. Accordingly, the contribution of the scale effect (i.e., the B effect) to the 

design of plate anchors in cohesionless soil should be given careful consideration, 

especially for vertical anchors with all embedment depth ratios. For design purposes, a 

relationship was proposed (Eq. 6.3) in the present research to estimate the breakout factor 

of an inclined anchor at any inclination angle 𝜃 between 0º and 90
o
. Also, the observations 

in this study confirmed the significance of the roughness of the soil anchor interface when 

estimating the pullout resistance of vertical anchors (i.e., θ = 90º), especially for shallow 

embedment depths ranging from 1 to 4, while the variations of breakout factor Nq for 

smooth and rough anchors showed a lesser degree of sensitivity to soil roughness for 

inclined anchors where θ ≤ 45º. It was also noted that as the angle of inclination exceeded 

45º, the active failure zone behind the anchor was significant for low relative densities 

(i.e., loose sand), and the zone decreases as the relative density increases. 
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CHAPTER VII 

 CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Introduction 

As offshore energy and other development extend to deeper waters, conventional 

platforms are generally replaced by floating facilities. Increased attention is also being 

given to floating renewable energy facilities in water depths that are considered relatively 

shallow by oil-gas development standards, say greater than 60 m. Moving into deep water 

demands an anchoring solution for floating offshore structures. Although clay soil is the 

common type in the deep-water environment in which plate anchors are being used 

increasingly, offshore structures such as wind turbines and wave energy converters in 

water depths of typically less than 100m will require anchoring systems that are suitable 

for deployment in sands, since the seabed soils at these sites often contain sandy soil strata. 

As mentioned in previous chapters plate anchors provide an attractive anchorage 

alternative for mooring different floating facilities in a wide range of soil conditions due 

to their compact size, low weight, variety of installation techniques, and high efficiency. 

Due to the limited attention in the research literature for plate anchor performance in 

cohesionless soils, more reliable predictive models are needed for mooring systems to be 

securely designed. Few numerical studies have been conducted to assess the pullout 

performance of plate anchors embedded in sands and the majority of past studies has been 

experimentally based. Therefore, the aim of this research is to achieve a reliable numerical 

assessment of the performance and pullout capacity of plate anchors in cohesionless soil. 
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This research made some significant contributions in understanding the mechanics of plate 

anchors embedded in cohesionless soil as described in the following sections. 

7.2 Effects of Anchor Embedment Depth and Elastic Soil Stiffness 

Most previous studies of anchor performance have much performed to quantify the 

influence of the parameters (' and ) for relatively shallow levels of embedment, 

(typically less than 10 plate width or diameter), which is insufficiently deep to characterize 

the transition to deep embedment. Attention to deeply embedded plates has been very 

limited. Chapter IV was devoted to improve the understanding of deep plate anchor 

behavior in sand, characterizing the transition from shallow to deep failure mechanisms. 

This chapter presented a parametric study of circular, centrically loaded, horizontal plate 

anchors. 

One of the significant findings of large deformation finite element analyses in this 

part of the research is the need of considering elastic soil effect (in terms of the rigidity 

index, Ir) in evaluating anchor performance, especially for deep anchors. The predictions 

showed that at shallow anchor embedment depths, rigidity index Ir has negligible influence 

on anchor capacity. However, the performance of deeply embedded anchors is strongly 

influenced by rigidity index Ir (the sensitivity to Ir is greater in denser soils), in addition 

to the dilation and friction angles. Since the three primary soil parameters (', ψ, and Ir) 

correlate well to relative density and confining stress, for design purposes and practical 

applications, this study developed an empirical model for predicting anchor pullout 

capacity as function Nq (Dr, ' , z/D ). It was found that the parameters ',  and Ir all 
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decrease with increasing overburden stress (Figure 4.17), implying that Nqmax decreases 

with anchor embedment, even in a soil profile having a uniform relative density (Figure 

4.18a). Also, an exponential function describing the transition in the breakout factor Nq 

from the shallow mode (Equations 4.14 and 4.15) to its maximum value (Equation 4.9) 

was developed in this study. It was also found that for relative densities Dr < 50%, using 

critical state soil parameters (' = 'crit and  = 0) in the empirical model for breakout 

capacity greatly improves the agreement between predictions and measurements (Figure 

4.19). 

Two modes of failure develop in the soil mass surrounding an embedded anchor 

depending on soil properties and embedment depth. The failure zone for shallowly 

embedded anchors extends to the free surface, irrespective of soil properties. The slip 

surface is oriented at an angle (measured from vertical) approximately equal to the dilation 

angle ψ. For intermediate embedment depths, the development of a shallow versus deep 

failure mechanism depends on the soil properties (Ir, ', and ψ). In this transitional case, 

localized failure mechanism develops in the loose sand, while in a very dense sand the 

influence of the free surface on the displacement pattern is still evident. For deep 

embedment depths (e.g. z/D = 16, Figure 4.5c and Figure 4.6c), irrespective the soil 

properties (Ir, ', and ψ), it can be noticed a localized slip surface around the anchor. 

7.3 Keying Process of Vertically Installed Plate Anchors in Sand 

During keying process, both horizontal and vertical movements occur as an anchor 

rotates to its target orientation that is nearly perpendicular to the direction of the mooring 

line load. A primary evaluation of any anchor performance is pullout capacity, which is 
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potentially decreases as the loss of embedment increases during the orientation of the plate 

anchor into the direction of loading. Very few experimental data are available for plate 

anchor keying in sand, and to the author’s knowledge, no analytical or numerical studies 

have been performed. The primary objective of chapter V is to fill the gap in numerical 

knowledge concerning the behavior of plate anchors during rotation and prediction of 

irrecoverable loss of embedment accompanying to that rotation. Therefore, a series of 

large deformation analyses were performed to investigate the response of plate anchor 

during the keying process in cohesionless soil.  

The keying process behavior and pre- and post-pullout capacity of a vertically 

installed strip plate anchor embedded in uniform cohesionless soil was simulated using 

large deformation finite element (LDFE) analysis (i.e., a RITSS technique) with various 

loading eccentricity ratios (e/B), pullout angle θ, and thickness ratio t/B. The anchor shank 

was not considered in these analyses because it was found that the including shank soil 

resistance increases pre pullout capacity in phases 2 and 3 by approximately 50% and 

post- pullout capacity in phase 4 by approximately 15% when a shank was not considered. 

Therefore, not considering the shank in LDFE analyses is conservative for design. As 

demonstrated in this study, the peak pullout capacity does not occur at the end of anchor 

keying process. the angle of orientation α at which the maximum pullout capacity occurs 

increases with increasing e/B ratio, ranging between 75° and 85° (Figure 5.8). The LDFE 

predictions revealed that as the loading eccentricity ratio e/B increases, the loss in anchor 

embedment δz/B during rotation decreases (see Figure 5.9). Also, once the eccentricity e 
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≥ B, a minimal loss in anchor embedment (i.e., the highest pullout capacity) can be 

achieved regardless of the plate thickness. 

The predictions also showed that the maximum loss in anchor embedment 

increased with increasing pullout angle θ (Figure 5.16) since more rotation was required 

to complete the anchor rotation when the higher pullout angle was applied. A linear 

relationship was also observed between the maximum loss in anchor embedment and 

anchor pullout angle θ at any e/B ratio, as shown in Figure 5.17. However, the numerical 

results from Figures (e/B and pullout angle θ), show that the loading eccentricity e/B has 

a much larger effect on the embedment loss than the pullout angle does. 

The keying behavior of the plate anchor was determined to be essentially 

independent of the soil elastic stiffness E for shallowly embedded anchors, while it was 

influenced by E for deeply embedded anchors. Also, the predictions revealed that 

increasing the t/B ratio may increase resistance to the translational and rotational 

movement, due to increases in friction and bearing contact area for the anchor thickness. 

Therefore, it was found that the lower the anchor thickness ratio t/B, the higher the loss in 

anchor embedment δz/B, especially for small e/B ratios (Figure 5.20).  

 

7.4 Pullout Behavior of Inclined Plate Anchor 

A primary measure of anchor performance is ultimate load capacity under general 

conditions of loading, specifically for mooring lines oriented at arbitrary inclination angles 

relative to the seabed. Previous research on plate anchors has largely focused on the 
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horizontal or vertical breakout problems, with very limited attention directed towards 

obtaining a full characterization of the effects of anchor inclination angle. 

For shallowly embedded anchors where free surface effects are dominant, plate orientation 

is likely to be particularly important. In chapter VI, LDFE analyses were undertaken to 

investigate the performance of strip plate anchors embedded in cohesionless soil with 

various inclination angles ranging from 0
o
 to 90

o
. The effects of the anchor inclination (in 

terms of inclination factor Fi), scale effect (i.e., the B effect), embedment depth (i.e., H/B), 

relative density of the soil Dr, and anchor roughness were all examined. These analyses 

were performed for different values of the embedment depth ratio H/B, ranging from 1 to 

in some cases more than 30 anchor widths. This part of the research examined the 

influence of anchor width B on the ultimate capacity of a strip plate anchor, incorporating 

variations in embedment depth and relative density. It was found that the effects of anchor 

width B become more pronounced for anchors embedded in loose and dense sand, 

especially when the angle of inclination θ is close to the vertical. For design purposes, a 

relationship (Eq. 6.3) was proposed in the present research to estimate the breakout factor 

of an inclined anchor at any inclination angle 𝜃 between 0
o
 and 90

o
. The observations in 

this study confirmed the significance of the roughness of the soil anchor interface when 

estimating the pullout resistance of vertical anchors (i.e., θ = 90
o
), especially for shallow 

embedment depths ranging from 1 to 4, while the variations of breakout factor Nq for 

smooth and rough anchors showed a lesser degree of sensitivity to soil roughness for 

inclined anchors where θ ≤ 45
o (Figure 6.12). 
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7.5 Recommendations and Future Work 

The following points are suggested to be the most relevant to this study.    

• Experimental validation is needed to confirm numerical predictions regarding the 

keying behavior of vertically installed plate anchors in sand subjected to different 

angles of mooring line load.  

• The empirical equations (4.14 and 4.15) developed in chapter IV is recommended 

to be generalized to all anchor shapes, taking into account anchor geometry factor 

in addition to relative density and embedment depth.  

• In the MC model, which is based on elastic-perfectly plastic adopted in this study, 

friction angle ' and dilation angle ψ remain constant with varying plastic shear 

strain during analysis. This will overestimate the pullout capacity of plate anchors 

because MC model does not describe the softening behavior that occurs during 

pullout process especially in dense soil. Therefore, a constitutive model describing 

the process of strain softening (strength reduction) is advised for future research in 

estimating uplift capacity. 

• More analyses for pullout behavior of square and rectangular inclined plate 

anchors are recommended to investigate shape effects. 

• Investigation of installation disturbance effects is a worthwhile endeavor that will 

be considered in future studies. Also, a full study of the effects of shank resistance 

would require 3D modeling. 
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• Anchor chain generates additional frictional capacity along the length of the chain, 

therefore, the chain should be considered in the future analyses of the keying 

process. 

• It is recommended to investigate the loss of embedment during the keying process 

and pullout behavior of inclined plate anchors in multilayered (clays and sands) 

soils. 

• It is recommended to study group action of shallowly and deeply embedded plate 

anchors.  
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